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Abstract

Ill-posed Linear Inverse Problems arise in various research domains, such as control engi-
neering and image processing. Having a fast algorithm is a great benefit when working with
high-dimensional signals, such as images. However, fast convergence and iterations with low
computational complexity are challenging.

In this master thesis report, we propose an exact smooth reformulation of an ill-posed Linear
Inverse Problem. Subsequently, we present a novel algorithm, the Fast Linear Inverse Prob-
lem Solver (FLIPS), associated with the new problem formulation. We show that in most
metrics, the algorithm outperforms state-of-the-art methods like Chambolle-Pock (CP) and
the Constrained Split Augmented Lagrangian Shrinkage Algorithm (C-SALSA) in terms of
speed. Finally, associated with this algorithm, we present an open-source MATLAB package
that includes the proposed algorithm and state-of-the-art methods.
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Chapter 1

Introduction

In this introduction, the background information of this report is presented. First, the ill-
posed Linear Inverse Problem is introduced, followed by the importance of sparse represen-
tations and the associating Sparse Coding problem. Secondly, Dictionary Learning (DL) is
presented, in which the Sparse Coding problem is incorporated. Subsequently, the applica-
tions of the Sparse Coding problem and Dictionary Learning are described. The final sections
elaborate on the preliminaries and notations of this report.

1-1 Ill-posed Linear Inverse Problems

A Linear Inverse Problem (LIP) can arise in many applications, such as machine learning or
signal processing [21]. When solving an LIP, one tries to recover the original signal given
limited or noisy measurements. In common practice, this results in ill-posed LIPs [12]. The
problem is ill-posed since it is highly sensitive to changes in the data, which directly highlights
the difficulty of these types of problems. To solve ill-posed LIPs, some additional information
or regularization is required. For example, one characteristic that suffices is that natural
signals are known to admit a sparse representation under an appropriate basis, such as the
Fourier Transform.

1-2 Sparse Representation

Natural signals, like audio signals or images, tend to have low-dimensional characteristics
even though the signals themselves could be of very high dimension [47]. Sparsity is a bene-
ficial low-dimensional feature that has shown tremendous utility lately. It has been observed
that natural signals if represented using an appropriate basis, have non-zero coefficients cor-
responding to very few basis elements, i.e., they admit a sparse representation. For example,
it is observed that only 5-10 percent of the so-called Discrete Cosine Transform (DCT) co-
efficients of natural images are non-zero [31]. The presence of sparsity has lately resulted
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2 Introduction

in many novel signal processing methods with a wide range of applications like denoising, in
which noise is removed from signals, and Compressed Sensing (CS), in which high-dimensional
signals are compressed to low-dimensional representations [22], [17].

A sparse representation is a representation in which the signal x admits a sparse linear
correlation of the dictionary D and the sparse representation vector f . The linear correlation
can be described as

x = Df. (1-1)

In Wright et al. [47], the base elements are the training samples of the data set stored as
columns in ‘D’, but other elements can be chosen or learned as well.

CS deserves special mentioning since it pushed sparse representations to the forefront. Spar-
sity plays an important role in reducing the number of measurements needed to recover a
high-dimensional signal, which defines CS [25]. The relation between the high-dimensional
signal x ∈ Rnx , the measurement matrix C ∈ Rny×nx , and the measurements y ∈ Rny with
ny � nx can be denoted as

y = Cx. (1-2)

The recovery of the signal x is an undetermined problem since C has fewer rows than columns
and is therefore non-invertible. However, since the signal x is sparse under a given basis D,
the measurements can uniquely determine x under mild conditions. This relation is described
as

y = CDf. (1-3)

Solving the optimization problem for f is called the Sparse Coding Problem.

1-2-1 The Sparse Coding Problem

The Sparse Coding problem refers to finding a sparse representation f that satisfies x = Df ,
for a given dictionary D. This is typically done by solving an optimization problem whose
objective function is known to prioritise sparse solutions. One of the most common approaches
is to solve the regularized formulation [32]

min
f∈Rnf

1
2

‖x − Df‖2 + λ ‖f‖1 . (1-4)

The term ‖x − Df‖2 denotes the minimization of the reconstruction error using the ℓ2-norm,
which enforces the representation to fit the original signal. The second term ‖f‖1 enforces
sparsity using the ℓ1-norm. The regularization parameter λ weighs the trade-off between
sparsity and the reconstruction error. Instead of the ℓ1-norm, the ℓ0-norm could be applied
to enforce sparsity since it counts the number of non-zero elements. However, using the
ℓ0-norm results in a non-convex optimization problem, whereas the ℓ1-norm gives rise to a
convex problem. Under mild conditions, the ℓ1-norm also enforces sparsity and recovers the
correct solution [25, 18]. Thus, the ℓ1-norm is a preferred choice in practice.

In many image processing problems, like image denoising and CS, it is useful to solve

min
f

‖f‖1 s.t. x = CDf, (1-5)

F.F. Redel Master of Science Thesis



1-3 Dictionary Learning 3

which is commonly referred to as Basis Pursuit [2]. If the measurements are noisy, then (1-5)
is modified as

min
f

‖f‖1 s.t. ‖x − Df‖2 ⩽ ϵ, (1-6)

where ϵ > 0 is a parameter to be selected depending on the measurement noise [47, 2]. This
problem is referred to as Basis Pursuit Denoising (BPDN).

One can apply suitable techniques to solve the basis pursuit problem (1-5) such as the
Orthogonal Matching Pursuit (OMP). The greedy fashion of this algorithm is appropriate
for high-dimensional signals [46]. ‘Greedy’ refers to the fact that the algorithm makes local
optimal decisions but often does not converge to the optimal solution. For each iteration in
the algorithm, the dictionary column correlated the strongest to the remaining measurement
vector is chosen. Subsequently, the contribution to the measurement vector is subtracted
and the next iteration will start. After m iterations, there will be a small or no residual
‖x − Df‖ left. In Chapter 2, more examples of Sparse Coding algorithms will be described,
i.e., Chambolle-Pock and C-SALSA.

1-3 Dictionary Learning

In CS, it is assumed that the signal x is sparse in some known (and also fixed) dictionary D
as a basis for the sparse representation. In that case, D is referred to as an analytical dictio-
nary. Some common examples of analytical dictionaries include classical dictionaries such as
Fourier, wavelets, countourlets, and curvelets [40]. The use of an analytical dictionary has the
advantage of a fast implementation [35]. However, the dictionary to be used as a parameter
in (1-4) can also be learned so that it is data-dependent. A data-dependent dictionary is
more likely to produce a sparser representation compared to analytical dictionaries. The task
of learning a dictionary from the data is known as Dictionary Learning (DL) [38]. However,
the downside of learned dictionaries is that they must be learned from the data, thus adding
additional computation cost. Combinations of analytical and learned dictionaries have been
tried, for example, by Ophir et al. [35], and Rubinstein et al. [40].

In DL, xi ∈ Rnx for i ∈ {1, 2, . . . , N} are the signals and D = [d1d2 . . . dnf
] ∈ Rnx×nf is the

dictionary to be learned from xi so that fi ∈ Rnf is sparse for every signal

xi = Dfi. (1-7)

The base elements are usually referred to as ‘atoms’ and are the columns of the dictionary
D, denoted as di [47]. Informally speaking, the dictionary can be seen as a book with words
(atoms), with the sparse representation of a signal being a selection of a few words. These
dictionaries D are typically ‘overcomplete’ (nx < nf ), meaning that there are more atoms
than the dimension of the signals, which covers a broader range of signal phenomena compared
to undercomplete dictionaries [38]. Also, images represented with overcomplete dictionaries
have higher a compression, and higher accuracy [29]. The problem of representing a signal
xi with an overcomplete dictionary D is equivalent to solving an underdetermined inverse
problem Dfi = xi which does not have a unique solution for any xi.

The goal in DL is to learn a dictionary D together with the sparse representation (fi)i such
that the reconstruction error ‖xi − Dfi‖ of the signal xi is minimal [29]. Note that this is not
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4 Introduction

the same as CS, where the goal is to find a sparse representation fi given a fixed dictionary
D. DL is typically performed by solving the optimization problem with the regularized
formulation [32]

min
D∈D,(fi)i

1
N

N∑
i=1

(1
2

‖xi − Dfi‖2 + λ ‖fi‖1). (1-8)

To avoid the entries of D resulting in arbitrarily large coefficients and, as a consequence, Prob-
lem (1-8) resulting in an ill-posed problem, the dictionary columns are usually constrained to
have an ℓ2-norm less than one. In other words, the set D of feasible dictionaries is

D ≜
{
D ∈ Rnx×nf s.t. ∀j = 1, . . . , nf , ‖dj‖ ⩽ 1

}
. (1-9)

The DL problem can be formulated in multiple ways besides the problem presented in (1-8).
The set X = [x1x2 . . . xN ] ∈ Rnx×N is a collection of signals xi ∈ Rnx which results in another
commonly used description when the sparsity degree p is known [44]:

min
D∈D,f∈Rnf ×nx

1
2

‖X − Df‖2 s.t. ‖f‖1 ⩽ p. (1-10)

In case the maximum reconstruction error ϵ is the known limiting factor, the following opti-
mization problem could be used

min
D∈D,f∈Rnf ×nx

‖f‖1 s.t. ‖X − Df‖2 ⩽ ϵ. (1-11)

The DL problems described in Equation (1-8), Equation (1-10) and Equation (1-11) are non-
convex optimization problems due to the bi-linear product Dfi for each i. However, since the
optimization problems in (fi)i keeping D fixed is convex (and vice versa), we can iteratively
solve the problems by optimizing over one variable while keeping the other one fixed. The
optimization over the sparse representation vectors (fi)i results in solving the Sparse Coding
problem for each i. Whereas, the optimization over the dictionary D is a quadratic program
and is usually referred to as the dictionary update step.

1-3-1 Dictionary Learning Algorithms

The DL algorithm aims to find an optimal learned dictionary D and a sparse representation
(fi)i as described in Equation (1-8). The iterative approach that is commonly used in DL
algorithms alternates between updating the dictionary D and the sparse representation (fi)i

while keeping the other one fixed, denoted as [42]
min

fi

1
N ‖fi‖1 + λ ‖xi − Dfi‖2 , ∀i ∈ 1, 2, . . . N and

min
D∈D

1
N

∑N
i=1 ‖xi − Dfi‖2 .

(1-12)

The Sparse Coding problem, described in the first line in (1-12), is the most time-consuming
part of this iterative approach [33, 38]. Therefore, if a fast DL algorithm is desired, one should
aim to minimize the computational complexity of the Sparse Coding stage. One algorithm
that has been commonly used is the K-SVD algorithm, a method based on generalized K-
means [2].
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1-4 Applications 5

K-SVD is a dictionary learning algorithm that iterates between sparse coding the training
samples on the current dictionary and updating the dictionary atoms to get the best fit
[2]. The update of the atoms is combined with the update of the sparse representation,
which speeds up the process. The algorithm applies the Singular-Value-Decomposition (SVD)
process to compute the atom update step. The update step is done atom-by-atom rather than
using an inefficient matrix inverse which is the case in several other algorithms. A downside
of the K-SVD algorithm is that it can get caught in local minima due to the non-convexity.
However, there are tricks to decrease the chance, for example, removing the least used atom
every ten iterations. Many extensions to this algorithm have been proposed in the literature.
For example, Zhang et al. propose D-KSVD in which the algorithm has an extra classification
error in the objective function resulting in an algorithm applicable to face recognition [51].
An overview of more DL methods can be found in [38].

1-4 Applications

1-4-1 Sparse Coding Problem Applications

Applying the Sparse Coding problem to medical image processing techniques highlights the
importance of Sparse Coding algorithms. Figure 1-1 shows an example of denoising medical
MRI images by Sparse Coding [30]. In the recovered images, it is easier to distinguish brain
structures than in noisy images. Note that before applying the Sparse Coding problem to
medical images, further research needs to be done.

(a) Noisy MRI-
image as input
for the denoising
problem [30].

(b) Recovered MRI-
image as output of
the denoising prob-
lem [30].

Figure 1-1: Result for the Sparse Coding problem applied to a noisy MRI-image.

Furthermore, in many other domains, Compressed Sensing can be applied to recover high-
dimensional data from low-dimensional measurements, for example in speech and audio sig-
nals [14], rapid MR imaging [31], ECG signals [37] and extracting impulse components in
engineering applications [13].

Master of Science Thesis F.F. Redel



6 Introduction

1-4-2 Dictionary Learning Applications

DL can be applied to many signal reconstruction problems and is typically used in compu-
tational image processing. One of the most important fields is the field of medical imaging.
For medical purposes, it is a commonly encountered difficulty to extract noise-free high-
dimensional data. Therefore, many problems arise when trying to improve these types of
images. Note that these problems are also Sparse Coding problems when an analytical dic-
tionary is chosen.

One application is the deblurring problem, where the task is to reconstruct the original image
given its blurry version [15]. An example of a blurry image is a picture that is moved, i.e., the
shutter speed was too long when the picture was shot, resulting in a blurry image. In that
case, the non-blurry image can be retrieved by applying a deblurring algorithm. Note that in
image processing, it is common to work with images divided into smaller image patches in-
stead of the entire image at once to avoid high computational complexity. For local blurring
kernels, small (and thus local) image patches suffice for reconstructing the original image.
However, if a non-localized blurring kernel is considered, high-level features across the entire
image should be captured as well. Therefore, large image patches are required for recon-
structing images with non-local blurring kernels compared to local blurring kernels.

The advantage of working with large image patches also appears for the inpainting problem
in which a missing part of an audio signal or image is reconstructed [45, 48]. Take for example
a low-resolution image of a license plate shot by the police that is unreadable. The license
plate code can be reconstructed by filling in the missing pixels. Small missing regions of the
image can be reconstructed for small image patches. However, if large areas of the image are
missing, the surrounding small image patches do not store the high-level features needed for
reconstruction [44]. Therefore, large image patches have an advantage. One paper achieving
good results for this problem is the paper of Sulam et al., where large areas of face images
are reconstructed by using small images (100×100) as the input [43]. A visual explanation of
the idea behind the inpainting problem is discussed in Section 7-1-8.

1-5 Preliminaries

Continuity and Smoothness
A continuous function is a function for which a continuous variation of the argument results
in a continuous variation of the function value. For every value y and x in its domain, f(y)
and f(x) are defined, and [24]

lim
x→y

f(x) = f(y). (1-13)

A continuously differentiable function f is β-smooth if the gradient ∇f is β-Lipschitz, that is
if for all x, y ∈ X ,

‖∇f(y) − ∇f(x)‖ ⩽ β‖y − x‖. (1-14)
If f is β-smooth, then for any x, y ∈ X

|f(y) − f(x) − 〈∇f(x), y − x〉| ⩽ β

2
‖y − x‖2. (1-15)
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1-6 Notations 7

Smoothness is a stronger case than continuity. An example of a continuous but non-smooth
function is f(x) = |x|. This function is non-smooth since it is non-differentiable at x = 0.

Convex Function
Consider convex set X ⊂ Rd. The function f : X → R is convex if [24]

f((1 − θ)x + θy) ⩽ (1 − θ)f(x) + θf(y), ∀x, y ∈ X, ∀θ ∈ [0, 1]. (1-16)

Convex Conjugate
Consider function f : X → R ∪ {−∞, +∞}, then the convex conjugate function is defined by
f∗ : X ∗ → R ∪ {−∞, +∞} and f∗(x∗) is defined by [5]

f∗(x∗) := sup {〈x∗, x〉 − f(x) : x ∈ X }. (1-17)

Proximal Operator
Consider a closed proper convex function f : Rn → R ∪ {+∞}. The proximal operator
proxf : Rn → Rn of f is defined by [36]

proxf (v) = argmin
x

(
f(x) + 1

2
‖x − v‖2

2

)
. (1-18)

PSNR
Peak-Signal-to-Noise Ratio (PSNR) is a well-known image quality metric. The PSNR between
image f and g, both of size M×N, is given by [26]

PSNR(f, g) = 10 log10

 2552

1
MN

M∑
i=1

N∑
j=1

(fi,j − gi,j)2

 . (1-19)

RMSE
The Root Mean Square Error (RMSE) is a commonly used metric to measure model perfor-
mance and is defined by [9]

RMSE =

√√√√ 1
n

n∑
i=1

(x − x∗)2. (1-20)

1-6 Notations

Standard notations are used throughout the report. Let n be a positive integer, Hn be an
n-dimensional Hilbert space and ‖·‖ be the corresponding norm. The adjoint of a matrix M
is denoted by Ma. The gradient of a continuously differentiable function f(a) is denoted by
∇(f(a)) and the interior of a set K as int(K).

Master of Science Thesis F.F. Redel
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Chapter 2

Problem Description

In this chapter, the research problem of this master thesis is presented. First, the problem
is defined, and the mathematical problem formulation is given. Subsequently, the state-of-
the-art is described presenting the current approaches for solving this problem. Finally, the
contribution of this master thesis report is presented.

2-1 Problem Definition

2-1-1 Objective Master Thesis

It has many advantages to have a Sparse Coding algorithm that can handle large image
patches, as described in Chapter 1 for non-local deblurring and inpainting of large missing
pieces of images. Furthermore, it is desired to have a fast algorithm for problems such
as Dictionary Learning (DL) where the Sparse Coding problem must be solved once every
iteration for every patch independently. By fast algorithms, we try to minimize the total
computation time. A product of two terms defines the total computation time; the number of
iterations and the time each iteration takes. The number of iterations needed is related to the
convergence rate; a higher convergence rate results in fewer iterations. The time each iteration
takes is related to the image patch size. Bigger image patches result in a higher computational
complexity and therefore take more time. Hence, if the algorithm’s speed increases, it can
handle bigger image patches within the same amount of time. Therefore, the objective of
this master thesis report is to find an algorithm that can solve an ill-posed Linear Inverse
Problem (LIP) of the form (2-1) with less computation time than state-of-the-art methods.

2-1-2 Problem Formulation

In the next chapters, we consider the optimization problem over atomic norm c(f) (like the
ℓ1-norm and the nuclear norm) in which we try to reconstruct variable f given noisy linear
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10 Problem Description

measurements x, while allowing a reconstruction error ϵ min
f∈Rnf

c(f)

s.t. ‖x − ϕ(f)‖ ⩽ ϵ.
(2-1)

Note that Problem (2-1) is not a Sparse Coding problem by definition, as presented in Chapter
1. It is a general formulation of ill-posed Linear Inverse Problems as constrained convex
optimization. It is however the Sparse Coding problem denoted in Equation (1-4) for c(f) =
‖f‖1 and ϕ(f) = Df . The problem is known as the Matrix Completion problem if c(f) =
‖f‖∗ with f ∈ Rn×m, ‖.‖∗ the nuclear norm and the constraint Xi,j = fi,j ∀i, j ∈ F with F
the set of observations [8]. Besides these two examples, this problem formulation has many
more applications.

2-2 State-of-the-art

Observe that the ℓ1-norm is not differentiable at every point, particularly around the sparse
solutions of Problem (2-1). Therefore, the vanilla gradient descent method is not permitted.
A common remedy to solve the issue of non-differentiability is to work with sub-gradients
instead. However, the Sub-Gradient Descent (SGD) method for generic convex problems
converges only with a rate of O(1/

√
k) [7].

A few methods that represent the state-of-the-art for solving Problem (2-1) are highlighted.
First, two algorithms are presented: Constrained Split Augmented Lagrangian Shrinkage
Algorithm (C-SALSA) and the Chambolle-Pock (CP) algorithm. Subsequently, the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) is presented. FISTA is highlighted since
it is one of the most commonly used algorithms in practise, and it is well-known for its fast
convergence. FISTA solves the generalized Sparse Coding formulation described in Equation
(1-4), instead of Equation (2-1). Therefore, FISTA can not be compared directly to C-SALSA
and CP.

2-2-1 C-SALSA

Problem (2-1) can be rewritten into the following formulation by incorporating the constraint
in the objective using an indicator function that penalizes a violation of the constraint

min
f∈H

c(f) + 1B[x,ϵ](ϕ(f)), (2-2)

where 1B(ϕ(f)) is the indicator function given by

1B[x,ϵ](ϕ(f)) =
{

0, if ϕ(f) ∈ B[x, ϵ]
+∞, if ϕ(f) /∈ B[x, ϵ].

(2-3)

Here, B is the feasible closed set of the constraint of Problem (2-1).

Formulating Problem (2-1) as Problem (2-2) opens up the possibility to use C-SALSA [1].
C-SALSA is an algorithm in which the Alternating Direction Method of Multipliers (ADMM)

F.F. Redel Master of Science Thesis



2-2 State-of-the-art 11

is applied to Problem (2-2). For this problem, ADMM solves the LIP based on variable
splitting using an Augmented Lagrangian Method (ALM). A new variable is created in
variable splitting to get a separable objective while adding a new linear constraint. The new
variable u = ϕ(f) reformulates the problem as min

f∈H,u∈H
c(f) + 1B[x,ϵ](u)

subject to u = ϕ(f).
(2-4)

For easy proximal operators, Problem (2-4) may be easier to solve than the unconstrained
formulation (2-2). The ALM iterates between optimizing the optimization variable and the
Lagrange multipliers until it converges. The speed of C-SALSA relies heavily on ϕ. If ϕ
satisfies ϕ>ϕ = I, further simplifications in the algorithm can be done, which improves its
speed. The general algorithm with Lagrangian variable d is of the form

(fk+1) ∈ arg min
f,u

c(f) + ϕ(u) + µ
2 ‖ϕ(f) − u − dk‖2

2

(uk+1) ∈ arg min
f,u

c(f) + ϕ(u) + µ
2 ‖ϕ(f) − u − dk‖2

2

dk+1 = dk − (ϕ(f)k+1 − uk+1) .

(2-5)

2-2-2 Chambolle-Pock

Consider the convex conjugate formulation described in Section 1-5 and observe that
(1∗

B[x,ϵ])
∗ = 1B[x,ϵ]. Applied to Problem (2-2) and introducing dual variable u, we have

(1B[x,ϵ](u))∗ = 〈x, u〉 + ϵ‖u‖2, (2-6)

which results in
1B[x,ϵ](ϕ(f)) = max

u∈H
〈ϕ(f), u〉 − (〈x, u〉 + ϵ‖u‖2). (2-7)

Incorporating Problem (2-7) in Problem (2-2) results in the following equivalent min-max
reformulation

min
f∈H

max
u∈H

c(f) + 〈ϕ(f), u〉 − (〈x, u〉 + ϵ‖u‖2). (2-8)

To apply CP, the mappings f −→ c(f) and u −→ 〈x , u〉 + ϵ‖u‖2 must be proximal friendly,
which is the case in many relevant problems like BPDN where c(f) = ‖f‖1 [20]. CP is a
primal-dual algorithm where the primal variable f and the dual variable u are simultaneously
updated at each iteration, as in

f+ = arg min
f

c(f) + 1
2τ ‖f ′ − f‖2

f̃ = f+ + θ(f+ − f), θ ∈ (0, 1]
u+ = arg min

u
‖u‖ + 1

2σ ‖u′ − u‖2 ,

(2-9)

where the variables u′(u, ϕ) and f ′(f, ϕ) are computed each iteration. The algorithm has an
ergodic convergence rate of O(1/k), which improves upon the O(1/

√
k) rate in Sub-gradient

Descent algorithms, and is currently the best convergence guarantee that exists for Problem
(2-1) [11].
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12 Problem Description

2-2-3 Fast Iterative Shrinkage-Thresholding Algorithm

FISTA is a faster version of the earlier developed Iterative Shrinkage-Thresholding Algorithm
(ISTA) [4]. This algorithm is widely used in the domain of image reconstruction. In ISTA
and FISTA, problems of the following form are considered

min
f

F (f) + G(f), (2-10)

in which F (f) is convex and has an easy proximal operator, and G(f) is convex, smooth,
and continuously differentiable. For the Sparse Coding problem, this algorithm considers the
regularized formulation (1-4) as written in Problem (2-10) with

F (f) = ‖f‖1 and G(f) = λ‖x − Df‖2
2. (2-11)

In ISTA, the update of the optimization variable f is denoted as

ft+1 = prox λ
β

‖.‖1
(ft − η∇G(ft)), (2-12)

where ∇G(ft) is the gradient of G(f) at point ft, η is the step size and prox λ
β

‖.‖1
(.) is the

proximal operator. The proximal operator is, in this case, the shrinkage operator, after which
the algorithms are named. In FISTA, a momentum step is added, which is of the formzt+1 = prox λ

β
‖.‖1

(ft − η∇G(ft))

ft+1 = (1 − γ)zt+1 + γzt,
(2-13)

with γ as the momentum parameter. The algorithm is an extension of the classical gradient
algorithm. ISTA is known for a slow convergence of the order O(1/k) while FISTA, using a
momentum term, is achieving a convergence rate of O(1/k2).

2-3 Contribution

The contribution of this master thesis report can be described in three main aspects.

1. We reformulate Problem (2-1) into a smooth convex min-max problem of which the
maximization problem is solved algebraically. Therefore, this reformulation tackles the
non-differentiability of Problem (2-1). Furthermore, we provide the associated proofs
for smoothness and convexity. With this new formulation, new possibilities for solving
Problem (2-1) arise.

2. We present a novel algorithm, the Fast Linear Inverse Problem Solver (FLIPS) for
solving the newly formulated problem. A linear and a quadratic oracle are derived,
presenting the descent direction, and a method to solve the optimal step size by applying
exact line search. We show that in most metrics the algorithm outperforms the state-
of-the-art methods like CP [10] and C-SALSA [1] in terms of convergence.
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3. Finally, associated with this algorithm, we present an open-source MATLAB package
that includes the proposed algorithm, CP, and C-SALSA1. Furthermore, this package
presents the application to the image denoising problem, which serves as an example.
Note that the package is placed on an open-source website after the associated paper is
submitted.

1https://filesender.surf.nl/?s=download&token=dbd4c38c-06f0-4a0d-a1fb-ff53b92aacdf

Master of Science Thesis F.F. Redel

https://filesender.surf.nl/?s=download&token=dbd4c38c-06f0-4a0d-a1fb-ff53b92aacdf


14 Problem Description

F.F. Redel Master of Science Thesis



Chapter 3

Problem Reformulation

This chapter elaborates on the exact reformulation of Problem (2-1) as a smooth convex
optimization problem. First, we present the reformulation of Problem (2-1) into a non-smooth
problem, after which the challenges and solutions regarding smoothness are presented. The
proofs are directly retrieved from our paper that is soon to be published and therefore has
yet to have a reference. The proofs will be discussed in Appendix A of this report.

3-1 Smooth Convex Optimization Problem

Problem (2-1), which is not differentiable at every point, will be reformulated into a smooth
convex optimization problem. The reformulation will be elaborated on in three steps. Firstly,
in Section 3-1-1, we introduce the assumptions and definitions of the problem reformulation.
Secondly, we present the non-smooth problem reformulation, in Section 3-1-2. Thirdly, in
Section 3-1-3, we present (in Theorem 3-1.1) the exact smooth reformulation of the original
LIP (2-1) as a smooth convex problem.

3-1-1 Assumptions and Definitions

Let us assume that the original Problem (2-1) is feasible.

Assumption 3-1.1. We shall assume throughout this report that ‖x‖ > ϵ > 0 and that the
corresponding LIP (2-1) is strictly feasible, i.e., there exists f ∈ H such that ‖x − ϕ(f)‖ < ϵ.

To simplify the notation of the proofs, we introduce a new mapping e : Rnx −→ [0, +∞)
defined as

e (h) := min
θ∈R

‖x − θϕ(h)‖2 =


‖x‖2 if ϕ(h) = 0,

‖x‖2 − |〈x , ϕ(h)〉|2

‖ϕ(h)‖2 if ϕ(h) 6= 0.
(3-1)

Master of Science Thesis F.F. Redel



16 Problem Reformulation

Furthermore, we introduce the mapping K(ϵ̄). Consider the family of convex cones {K(ϵ̄) : ϵ̄ ∈ (0, ϵ]}
defined by

K(ϵ̄) :=
{

h ∈ H : 〈x , ϕ(h)〉 > 0, and e (h) ⩽ ϵ̄2
}

, for every ϵ̄ ∈ (0, ϵ]. (3-2)

Equivalently, observe that h ∈ K(ϵ̄) if and only if 〈x , ϕ (h)〉 ⩾ ‖ϕ (h)‖
√(

‖x‖2 − ϵ̄2). It
follows immediately that K(ϵ̄) is convex for every ϵ̄ ∈ (0, ϵ].

3-1-2 Exact Non-smooth Reformulation

First, we reformulate Problem (2-1) as a non-smooth optimization problem (3-4) for which
the definition of η (h) is given in Equation (3-3), and equivalently in Equation (3-6). Secondly,
we will prove that this formulation is a smooth problem formulation under some conditions
in Section 3-1-3.

Proposition 3-1.2 (Non-smooth reformulation). Consider the parameters of LIP (2-1) under
the setting of Assumption 3-1.1. Let the map η : K(ϵ) −→ [0, +∞) be defined by

η (h) := ‖x‖2 − ϵ2

〈x , ϕ (h)〉 + ‖ϕ (h)‖
√

ϵ2 − e (h)
, (3-3)

and let Bc := {h ∈ H : c (h) ⩽ 1}. Then the LIP (2-1) is equivalent to the minimization
problem {

min
h ∈ Bc∩K(ϵ)

η (h) . (3-4)

In other words, h∗ is an optimal solution to (3-4) with an optimal value c∗ if and only if c∗h∗

is an optimal solution to the LIP (2-1).

Remark 3-1.3. Looking ahead, it follows (from the proof of Claim A-1.3) that for any h ∈
K(ϵ), η (h) is the smallest positive root of the quadratic equation

‖x − ηϕ(h)‖2 = ϵ2. (3-5)

Equivalently, we also have

η (h) = 〈x , ϕ (h)〉 − ‖ϕ (h)‖
√

ϵ2 − e (h)
‖ϕ (h)‖2 for every h ∈ K(ϵ). (3-6)

An expression is derived for the gradient of η (h) by applying Danskin’s theorem [16]. We
refer the interested reader to Chapter A for the proof of Lemma 3-1.4.

Lemma 3-1.4 (Gradients of η). The function η : K(ϵ) −→ [0, +∞) is convex, differentiable
at every h ∈ int (K(ϵ)) = {h ∈ H : 〈x , ϕ(h)〉 > 0, and e (h) < ϵ2}, and the derivative is given
by

∇η(h) = −η (h)
‖ϕ (h)‖

√
ϵ2 − e (h)

ϕa
(
x − η (h) ϕ(h)

)
for all h ∈ int (K(ϵ)) , (3-7)

where ϕa is the adjoint operator of ϕ.
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3-1 Smooth Convex Optimization Problem 17

3-1-3 Exact Smooth Reformulation

The mapping η : Bc ∩K(ϵ) −→ is not smooth for two reasons. (i) Consider any h ∈ Bc ∩K(ϵ),
then it is immediate from Equation (3-3) that η(θh) = C

θ for some C > 0. Thus, η achieves
arbitrarily large values (and arbitrarily high curvature) as ‖h‖ −→ 0. Thereby, the mapping
(0, 1] 3 θ 7−→ η(θh) is not smooth, and consequently, the mapping η : Bc ∩ K(ϵ) −→ R can
not be smooth. (ii) It must be observed that η is not differentiable on the boundary of the
cone K(ϵ). Moreover, as e (h) ↑ ϵ2, i.e., h approaches the boundary of the cone K(ϵ) from its
interior, it is apparent from Equation (3-7) that the gradients of η are unbounded.

By avoiding these two scenarios (which will be made more formal shortly), η is smooth.

Proposition 3-1.5 (Smoothness of η). Consider the LIP (2-1) under the setting of Assump-
tion 3-1.1 and let c∗ be its optimal value. For every η̄ > c∗ and ϵ̄ ∈ (0, ϵ), let

H (ϵ̄, η̂) := {h ∈ Bc ∩ K(ϵ̄) : η (h) ⩽ η̂}, (3-8)

and let β (ϵ̄, η̂) be a constant given by

β (ϵ̄, η̂) :=
η̂3ϵ2 ‖ϕ‖2

o

(
‖x‖ + ϵ

)
(

‖x‖ − ϵ
)2(

ϵ2 − ϵ̄2)3/2
. (3-9)

Then the mapping η : H (ϵ̄, η̂) −→ [0, +∞) is β (ϵ̄, η̂)-smooth. In other words, the inequality∥∥∇η(h) − ∇η(h′)
∥∥ ⩽ β (ϵ̄, η̂)

∥∥h − h′∥∥ holds for all h, h′ ∈ H (ϵ̄, η̂) . (3-10)

A sufficient ϵ̄ is needed to avoid the non-differentiability on the boundary of the cone K(ϵ).
The choice of ϵ̄ will be described in Lemma (3-1.6) and Remark (3-1.7). The Lemma is
empirically validated by the ϵ̄-validation experiment in Section 5-2-4.

Lemma 3-1.6. Consider the LIP (2-1), and let f∗ be the optimal solution. Then we have
e(f∗) < ϵ2. Therefore, there exists ϵ̄ ∈ (0, ϵ) such that e(f∗) < ϵ̄2 < ϵ2.

Remark 3-1.7 (Finding ϵ̄). Consider the problem of recovering some true signal f∗ from its
noisy linear measurements x = ϕ(f∗)+w, where w is some additive measurement noise. Then,
ϵ is chosen in (2-1) such that the probability P (‖w‖ ⩽ ϵ) is very high. Then for any ϵ̄ ∈ (0, ϵ)

we have e(f∗) < ϵ̄2 with probability at least P (‖w‖ ⩽ ϵ)·P
(∣∣∣〈w , ϕ(f∗)

‖ϕ(f∗)‖

〉∣∣∣2 > ϵ2 − ϵ̄2
)

. Thus,
in practise, based on available noise statistics, one could select ϵ̄ to be just smaller than ϵ.

Finally, it results in the following theorem for the smooth reformulation of Problem (2-1) into
Problem (3-11).

Theorem 3-1.1: Smooth Reformulation

Consider any (ϵ̄, η̂) such that e(f∗) ⩽ ϵ̄2 < ϵ2 and c∗ < η̂. Then the optimization
problem

min
h ∈ H(ϵ̄,η̂)

η (h) (3-11)

is a smooth convex optimization problem. Moreover, h∗ is a solution to (3-11) if and
only if c∗h∗ is an optimal solution to (2-1).
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Chapter 4

Fast Linear Inverse Problem Solver

This chapter proposes a novel algorithm to solve the smooth optimization problem as de-
scribed in Chapter 3. First, the general form of the algorithm is presented, followed by a
more detailed explanation of the three main steps, the descent direction, the step size, and
the stopping condition. Subsequently, the algorithm is presented in detail at the end of this
chapter, associated with a few remarks regarding the computational aspects.

4-1 General Form

The Fast Linear Inverse Problem Solver (FLIPS) we propose to solve Problem (2-1) is pre-
sented. The algorithm iteratively updates the solution until a stopping criterion is met. Each
iteration, a descent direction d(h) is computed and a step γ is taken towards this direction
to decrease the objective cost of Problem (3-11). The first part of the algorithm presents the
descent direction d(h), which is computed as d(h) = g(h)−h. As g(h) is unknown, we present
two oracles to compute g(h). The second part presents the exact step size selection. With
both the descent direction d(h) and the step size γ, we can perform the following update on
h

h+ = h + γ(h)d(h). (4-1)

This update will be repeated until a convergence criterion is met, as denoted in the third part
of this section. The FLIPS-algorithm to solve Problem (2-1) is presented in Algorithm 1.
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20 Fast Linear Inverse Problem Solver

Algorithm 1 Algorithm for an ill-posed LIP of the form (2-1)
Input: Measurement x, linear mapping ϕ, reconstruction error ϵ, smoothness parameter
β, acceleration parameter ρ, d(h0) = 0
Output: Sparse representation h
Initialise: h0 = ϕ\x
while stopping criterion is not met do

Finding the descent direction d through oracle (Section 4-1-1)
d(h) = g(h) − h
Performing step with optimal step size γ (Section 4-1-2)
h+ = h + γd(h)
Checking the stopping criterion (Section 4-1-3)

end while

4-1-1 Descent Directions

For both descent direction oracles, the oracle’s general optimization problem is described.
Subsequently, the application to Problem (2-1) with c(f) = ‖f‖1 is presented as an exam-
ple. The Linear and Quadratic Oracle refer to the linear and quadratic descent direction
optimization problem, respectively.

Linear Oracle: Finding the descent direction d(h) by applying Frank-Wolfe results in solving
the following linear optimization problem [23, 28]

g(h) ∈
{

arg min
g∈Bc

〈∇η(h) , g〉 . (4-2)

Example 4-1.1. For problem (2-1) with c(f) = ‖f‖1 and Linear oracle (4-2), the Hölder
inequality can be applied, which results in the following equations [49]

g(h)i =
{

− sgn(∇η(h)i), if ∇η(hi) = ‖∇η(h)‖∞, ∀i ∈ Rnf

0, if ∇η(hi) 6= ‖∇η(h)‖∞, ∀i ∈ Rnf
(4-3)

Note that in this case, due to the infinity norm ‖.‖∞, it is likely that g(h) will contain just
one or a few non-zero indices. When big steps are taken along this direction, many indices
will move to zero quickly, resulting in sparse solutions.

Quadratic Oracle: The Quadratic Oracle is a variation of the problem formulation of
Frank-Wolfe. In addition to Problem (4-2), a quadratic term β

2 ‖g − h‖2
2 is added. Applied

to Problem (2-1), if set Bc is projection friendly, we can easily apply Projected Gradient
Descent (PGD) or Accelerated Projected Gradient Descent (APGD) to the following quadratic
problem [50]

g(h) ∈
{

arg min
g∈Bc

〈∇η(h) , g〉 + β

2
‖g − h‖2

2 . (4-4)

Example 4-1.2. Let ΠBc denote the projection onto set Bc and β the smoothness parameter.
Then the following formulation presents the PGD

g(h) = ΠBc(h − 1
β

∇η(h)), (4-5)
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For c(f) = ‖f‖1, ΠBc is the projection onto the ℓ1-ball [20]. If one considers a form that is
not projection friendly, one should apply the Linear oracle instead.

Example 4-1.3. For APGD we apply the Nesterov gradient acceleration in which the gradient
step is taken along a linear combination of the current gradient ∇η(h) and the direction of
the previous iteration d(h−) [50]

g(h) = ΠBc(h − 1
β

(∇η(h) + ρd(h−)), (4-6)

where ρ weights the momentum of the acceleration. If ρ = 0, this formulation is equal to the
PGD.

4-1-2 Step Size

The reformulation of Problem (2-1) allows us to compute the explicit solution of the optimal
step size without significantly increasing the computational cost. We take some ϵ̄ ∈ (ϵ̄(f ∗), ϵ).
Then the solution is of the form

γ(h) =


arg min

γ∈[0,1]
η(h + γd(h))

subject to hγ ∈ K(ϵ̄).
(4-7)

The solution to this problem is described below in Lemma (4-1.4) and Proposition (4-1.5).

Lemma 4-1.4. Consider problem (A-19).

Let γ̂(h) := max {γ ∈ [0, 1] : hγ ∈ K(ϵ̄) be the maximum step size, then

γ̂(h) =


+ ∞ a ⩾ 0,

−b −
√

b2 − 4ac

2a
] a < 0

(4-8)

where a, b and c are defined as

a = ‖ϕ(d)‖2 (ϵ̄2 − e (d))
b = 2 〈x , ϕ(h)〉 〈x , ϕ(d)〉 − (‖x‖2 − ϵ̄2) 〈ϕ(h ), ϕ(d)〉
c = ‖ϕ(h)‖2 (ϵ̄2 − e (h)).

(4-9)

Proposition 4-1.5. The solution of problem (4-7) gives rise to the following optimal step
size γ

γ =



0 if dη (hγ)
dγ

∣∣∣∣
γ=0

> 0

γ(h) if dη (hγ)
dγ

∣∣∣∣
γ=0

⩽ 0,
dη (hγ)

dγ

∣∣∣∣
γ=γ̂(h)

⩽ 0

−s ±
√

s2 − 4ru

2r
if dη (hγ)

dγ

∣∣∣∣
γ=0

⩽ 0,
dη (hγ)

dγ

∣∣∣∣
γ=γ̂(h)

> 0,

(4-10)
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where γ̂(h) is defined by Lemma 4-1.4 and

r = ‖ϕ(d)‖2 (ϵ̄2 − e (d))
s = 2 〈x , ϕ(h)〉 〈x , ϕ(d)〉 − (‖x‖2 − ϵ̄2) 〈ϕ(h ), ϕ(d)〉

u = 2 〈x , ϕ(d)〉 〈x , ϕ(h)〉 〈ϕ(h) , ϕ(d)〉
‖ϕ(d)‖2 − ‖ϕ(h)‖2 〈x , ϕ(d)〉2

‖ϕ(d)‖2 . . .

− (‖x‖2 − ϵ̄2) 〈ϕ(h) , ϕ(d)〉2

‖ϕ(d)‖2 .

(4-11)

The proofs of these two propositions can be found in Appendix A.

4-1-3 Stopping Condition

We propose two stopping criteria. Both criteria occur when there is no direction to decrease
the objective.

1. Stop if g(h) = h since d(h) = g(h) − h = 0 and h+ = h + γ · 0 = h.

2. Stop if γ(h) = 0 since h+ = h + 0 · d(h) = h.

4-1-4 Remarks Fast Linear Inverse Problem Solver Algorithm

Two main computations are reused throughout the algorithm. First, within the descent
direction computations, the matrix multiplication ϕaϕ needs to be computed once and can be
reused throughout each iteration. Secondly, ϕ(h) is only computed in the first iteration, and
can be updated as ϕ(h+) = (1−γ)ϕ(h)+γϕ(g) which has lower computational cost compared
to the multiplication ϕ(h+).

Two more aspects are highlighted regarding the computational cost of the algorithm. Since
ϕ(h) and ϕ(d) are already computed in the first step of the algorithm, the computation of
γ(h) is not adding significant computational cost. Subsequently, observe that the computation
ϕ(g) is easy since g is sparse.
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Chapter 5

Numerical Results

In this chapter, the numerical results are presented. All experiments are applied to the image
denoising problem except for the final experiment. First of all, the experiment details will be
given regarding the open-source package; the initial solution, and the image preprocessing.
Secondly, the following experiments are described to get an overview of FLIPS’ performance.

• Section 5-2-1, 5-2-2, 5-2-3: Parameter tuning experiments for the Fast Linear Inverse
Problem Solver (FLIPS), Chambolle-Pock (CP) and the Constrained Split Augmented
Lagrangian Shrinkage Algorithm (C-SALSA).

• Section 5-2-4: An ϵ̄-validation experiment to empirically validate Lemma 3-1.6.

• Section 5-3-1: A full image size experiment using FLIPS for different inputs.

• Section 5-3-2: Comparing state-of-the-art methods experiments:

– Experiment in which a large (128×128) image patch is recovered, showing the
applicability to high-dimensional data of all three methods.

– Full image experiment to highlight the difference in convergence rates of all three
methods.

– An experiment showing the differences regarding the CPU-times for all three meth-
ods for different patch sizes.

– An experiment regarding the sparsity over the iterations of all three methods.

• Section 5-3-3: A final experiment in which the algorithm is implemented within a
Dictionary Learning algorithm applied to the denoising and inpainting problem to prove
its wide applicability.
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5-1 Experiment Details

5-1-1 Open-source Package

The MATLAB code associated with this algorithm can be found in the footnote1. Note that
the package is placed on an open-source website as soon as our associated paper is submitted.
This package contains the FLIPS as well as the C-SALSA and CP algorithm. An application
to the image denoising problem can be found within the package. For FLIPS, the Quadratic
Oracle of Algorithm 1 was implemented, but the Linear Oracle can be used by activating the
appropriate section. Consult the ‘Read.me’ file for further instructions.

C-SALSA was implemented according to Algorithm C-SALSA-1 in [1]. One simplification
within the algorithm was applied considering the computational complexity. The multiplica-
tion (ϕ>ϕ)−1 was computed just once at the start to avoid performing this computation once
every iteration, which reduces a significant amount of the computation time. This simplifi-
cation creates a fair comparison since the precomputation ϕaϕ was also applied in FLIPS as
described in Chapter 4.

CP was implemented according to [10, 11]. No precomputation was applied in this case since
the algorithm does not contain the computation of the form (ϕ>ϕ).

5-1-2 Initial and Optimal Solution

The initial solution h0 used throughout all experiments is the least squares solution. This
solution is of the form h0 = ϕ\x. The least squares solution minimizes the sum of squares of
the residuals and is of the form

h0 = arg min
h

‖ϕ(h) − x‖2 . (5-1)

In FLIPS, the initial solution is normalized to have a unit ℓ1-norm to fit the constraints.
The optimal value f∗ of Problem (2-1) is determined by FLIPS after 1000 iterations for all
experiments.

5-1-3 Image Preprocessing

The pixels of the input image were first scaled into the range between 0 and 1, after which
the image was resized to the chosen image dimensions. The noise of these images was added
by applying the MATLAB function imnoise with Gaussian noise. For all experiments, the
noise mean is set to zero, and the variance σ is chosen appropriate to the experiment at hand.
Since image signals are usually of high dimension, a sliding patch approach is implemented
to retrieve small patches of the input image, which speeds up the algorithm.

In the following experiments, note that a ‘full image’ experiment is referred to as an experi-
ment in which an entire image is used as input using a sliding patch approach. For example,
if we have an image of dimension 4×4, this would mean that the first patch of size 2×2 would
consist of the pixels {1, 5, 2, 6}, see Figure 5-1. The second patch would start one position

1https://filesender.surf.nl/?s=download&token=dbd4c38c-06f0-4a0d-a1fb-ff53b92aacdf
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down and consists of {5, 9, 6, 10} and so on. If the first column is covered, which means,
in this case, that three patches have been selected, then the sliding approach moves to the
second column, selecting the fourth patch with the pixels {2, 6, 3, 7} until the entire image is
covered. A single patch is used in experiments with big image patches (128×128) since an
entire image with the sliding patch approach would take many hours to compute. For smaller
patches (⩽32×32), the sliding patch approach is applied.

Figure 5-1: Graphical representation of the sliding patch approach.

Problem (2-1) will be solved independently for every patch, and the patches will be recon-
structed back to one image at the end. In all Sparse Coding experiments, the DCT-dictionary
is chosen as the linear mapping ϕ. In all cases, the value for ϵ is chosen as ϵ = √

σnx. Note
that the noise variance σ is assumed to be known beforehand and is therefore not tuned.

5-2 Tuning Experiments

This section shows the conducted tuning experiments to find the best hand-tuned parameters
for each method. All experiments in this chapter are run on a laptop with Apple M1 Pro and
16GB RAM using MATLAB 2022a.

5-2-1 Tuning CP

The CP algorithm in [11], contains three tuning parameters; the primal step size σ, the dual
step size τ , and the momentum parameter θ. Both σ and τ are set to σ = 1

σm
and τ = 1

σm

with σm representing the maximum singular value of the linear mapping ϕ [11]. The value of
the momentum step parameter θ ∈ [0, 1] is hand-tuned.

Figure 5-2 shows the results of the tuning experiment for θ with a full image input for the
patch size 32×32 with noise variance σ = 0.0055 with sliding patch approach. The size
32×32 was chosen by making a trade-off between low computation time and the desire for
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an application to high-dimensional signals. The noise level σ = 0.0055 was chosen since this
amount of noise is clearly visible in the input images and can almost be completely removed in
the output images. The first metric used in this graph is the average sub-optimality ‖f −f∗‖,
where f∗ is the optimal solution. The second metric is the total cost of the objective function
of Problem (2-8) of all patches at each iteration. In the top graph of Figure 5-2, it can be
seen that the differences between the different values of θ are negligible. In the bottom graph,
observe that θ = 0.5 results in a small undershoot and θ = 0.7 and θ = 0.8 show slower
convergence compared to θ = 0.6. Therefore, θ = 0.6 was chosen. This parameter is kept
constant throughout all experiments since other patch size experiments gave similar results.
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Figure 5-2: Image denoising results for different values of θ for the 200×200 ‘cameraman’ image
with sliding patch approach for the patch size 32×32 and σ = 0.0055.

5-2-2 Tuning C-SALSA

C-SALSA contains one tuning parameter; the augmented Lagrangian penalty parameter µ
[1]. For patch sizes smaller than 64×64, we take µ = 2.5, and for patch sizes bigger than
or equal to 64×64, we take µ = 3. In Figure 5-3 and the zoomed Figure 5-4, the different
graphs show the different results for each value of µ for an experiment with 32×32 patches.
It can be seen that the higher µ is chosen, the faster convergence in the sub-optimality graph.
However, it also results in higher cost for the initial iterations, shown in the second graph.
Therefore, a trade-off was made, and the value µ = 2.5 was chosen. The same experiment
was done for the 64×64 patches which resulted in µ = 3.
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Figure 5-3: Image denoising results for different values of µ for the 200×200 ‘cameraman’ image
with sliding patch approach for the patch size 32×32 and σ = 0.0055.
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Figure 5-4: Zoomed image denoising results for different values of µ for the 200×200 ‘camera-
man’ image with sliding patch approach for the patch size 32×32 and σ = 0.0055.
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5-2-3 Tuning FLIPS

Applying FLIPS with the Quadratic Oracle of Algorithm 1 contains two tuning parameters;
the acceleration parameter ρ, and the smoothness parameter β. The smoothness parameter is
hand-tuned for every patch size independently. However, the acceleration parameter is kept
constant for different patch sizes since the experiments for different patch sizes resulted in
the same optimal parameter. FLIPS in combination with the Linear Oracle, does not require
any tuning parameter. The Quadratic Oracle was applied throughout the experiments since
it outperforms the Linear Oracle in terms of speed for the denoising problem.

Since many vectors and matrices in this algorithm contain just a few non-zeros, the MATLAB
function sparse is used throughout the algorithm to reduce storage. This function only
stores the non-zero values and their positions and assumes all others to be zero. Applying
this function did not significantly improve the speed for the other methods. Furthermore,
as mentioned in Chapter 4, the matrix multiplication ϕ>ϕ in the descent direction step of
the Algorithm 1 is used once every iteration. However, since this multiplication remains
constant, it can be precomputed once at the start of the algorithm and used throughout. Since
ϕ(h) is the largest matrix of the entire algorithm, this reduces the computational complexity
remarkably. Subsequently, ϕ(h) only needs to be computed once and can be updated every
iteration according to Algorithm 1.

Three different values for ρ are shown in Figure 5-5. Note that the difference between the
graphs is minimal. Therefore, a zoomed frame is shown in Figure 5-6. Both graphs highlight
that ρ = 0.7 is the optimal value considering the sub-optimality and the cost of all three
options. This value appears optimal throughout experiments for different patch sizes and is
therefore kept constant throughout the experiments.
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Figure 5-5: Image denoising results for different values of ρ for the 200×200 ‘cameraman’ image
with sliding patch approach for the patch size 32×32 and σ = 0.0055.
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Figure 5-6: Zoomed image denoising results for different values of ρ for the 200×200 ‘camera-
man’ image with sliding patch approach for the patch size 32×32 and σ = 0.0055.

The smoothness parameters are tuned for every patch size independently. The experiment
for patch size 32×32 is highlighted. Figure 5-7 shows the graphs of three different smoothness
parameters. Again, the differences are minimal; thus, a zoomed plot is presented in Figure 5-
8. For this experiment, it must be seen that the optimal acceleration parameter is β = 1

2.4·10−4

considering the three options. These tuning experiments were done for every patch size.
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Figure 5-7: Image denoising results for different values of β for the 200×200 ‘cameraman’ image
with sliding patch approach for the patch size 32×32 and σ = 0.0055.
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Figure 5-8: Zoomed image denoising results for different values of β for the 200×200 ‘camera-
man’ image with sliding patch approach for the patch size 32×32 and σ = 0.0055.

5-2-4 Validation Reconstruction Error

To empirically validate Lemma 3-1.6, an experiment was conducted to check e(f ∗) < ϵ̄2.
In the histogram in Figure 5-9, e(f ∗) is computed for every patch and placed within the
appropriate bandwidth of 0.01. Note that a full 200×200 image with sliding patch approach
results in 28561 image patches. For example the section 5.60 < e(f ∗) < 5.61 counts 3043
patches. Most importantly, it can be seen that there is a clear gap between the maximum
e(f ∗) and ϵ̄2. Therefore, we can empirically verify Lemma 3-1.6 for this specific experiment.

Figure 5-9: Image denoising results of e(f ∗) for all patches for the denoising problem with
200×200 ‘cameraman image’ with 32×32 sliding patch approach for 50 iterations with noise
variance σ = 0.0055.
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5-3 Experiments

The experiments can be divided into three categories. First, an application with an entire
image is presented to show the overall performance of FLIPS for different inputs. Secondly,
FLIPS is compared to state-of-the-art methods. Finally, the Dictionary Learning experiment
is presented to show the applicability of FLIPS to this method.

5-3-1 Full Image Experiment

This experiment shows that the image denoising problem can be solved by applying FLIPS.
Consider the following input images; the ‘cameraman’, ‘Barbara’ [41] and the ‘boat’ image
[19], which are standard images in the field of image processing. The ‘cameraman’ image is of
unknown origin but is owned by MIT. All three images are of size 200×200 and are applied
to the image denoising problem. The results are shown in Figure 5-10.

Figure 5-10: Image denoising results for FLIPS for the ‘cameraman’, ‘Barbara’, and ‘boat’ images
with the sliding patch approach with patch size 32×32. From left to right, the original image,
the noisy input, and the recovered image.
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5-3-2 Comparison with State-of-the-art

The performance of FLIPS compared to CP and C-SALSA is described in this section. First
of all, a large image patch experiment is shown. Secondly, a full image experiment is pre-
sented in which the recovered images, distance to the optimality graphs, and CPU-times until
convergence are presented. Finally, we present a sparsity robustness experiment.

Large Image Patch Experiment

The large image patch experiment shows that the image denoising problem can be solved
by applying FLIPS for big image patches. One 128×128 patch is taken from the 400×400
‘cameraman’ image. It can be seen that after two iterations, most of the noise has been
removed by FLIPS but not by C-SALSA and CP. C-SALSA removed all the noise after
around three iterations and CP after around 50. The associated PSNR values above the
images also highlight that FLIPS converges faster than the other methods in this experiment.

Full Image Experiment

The full image patch experiment shows the application of the three methods to images of
the size 200×200. We show the recovered images, the distance to optimality graph, and the
associated CPU-times until convergence. The experiment was run for 80 iterations for all
CP, C-SALSA and FLIPS. The recovered images can be seen in Figure 5-12. It must be
seen that all three methods converge to the same recovered image. Furthermore, note that
the PSNR-value of FLIPS is slightly higher than the other two methods, which indicates that
applying FLIPS results in better recoveries compared to CP and C-SALSA. However, an
improvement this small should be neglected.
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Figure 5-11: Image denoising results for different iterations for the methods FLIPS, C-SALSA,
and CP with corresponding PSNR values. The image is one patch 128×128 from the 400×400
‘cameraman’ image. The noise variance σ = 0.003 and ϵ = √

σnx. N denotes the number of
iterations.
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Figure 5-12: Image denoising results for C-SALSA, CP and FLIPS for the 200×200 ‘cameraman’
image with sliding patch approach for the patch size 32×32 and σ = 0.0055. From left to right:
the original image, the noisy input, and the recovered image.

The performance of all three methods can be compared by plotting the Euclidean norm as
‖f − f∗‖ over the iterations. Observe that the graph presents the mean of all patches. It
can be seen in Figure 5-13 and Figure 5-14 that with a threshold of ‖f − f∗‖ < 0.1, FLIPS
converges after 16 iterations, C-SALSA after 30 iterations and CP after 70 iterations (which is
outside the graph’s domain). To highlight the initial convergence, only 50 of the 80 iterations
are plotted in Figure 5-13.
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Figure 5-13: Average image denoising results of all patches for C-SALSA, CP and FLIPS for
the 200×200 ‘cameraman’ image with sliding patch approach for the patch size 32×32 and
σ = 0.0055.
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Figure 5-14: Average image denoising results of all patches for C-SALSA, CP and FLIPS for
the 200×200 ‘cameraman’ image with sliding patch approach for the patch size 32×32 and
σ = 0.0055.
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Since our algorithm aims to reduce computation time, the CPU-times until convergence are
compared between the methods. We use the Root Mean Square Error (RMSE) as a tool
to measure the convergence. The RMSE, as explained in the preliminaries in Chapter 1,
measures the error between the current f and the optimal f∗. First, we evaluated the RMSE
over the iterations in a denoising experiment for every patch size independently. The largest
value after which the RMSE stopped decreasing significantly was chosen. It was found that
the threshold RMSE=5 · 10−3 was sufficient for all patch sizes. The results of the CPU-
times are shown in Figure 5-15. For example for the 64×64 patch size experiment, it can
be seen that FLIPS needs 2.58 · 103s CPU-time, C-SALSA needs 1.44 · 104s CPU-time and
CP needs 2.87 · 105s CPU-time. Associated with this graph, the number of iterations needed
until convergence (CA) is denoted in Table 5-1. Observe that FLIPS needs fewer iterations
until convergence for all experiments with varying patch sizes and has a lower CPU-time for
patches >8×8 compared to CP and C-SALSA.
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Figure 5-15: Image denoising results for C-SALSA, CP and FLIPS for the 200×200 ‘cameraman’
image with sliding patch approach for the patch size 32×32 and σ = 0.0055.

Table 5-1: Image denoising results associated with Figure 5-15. For all patch sizes and methods,
the average number of iterations after which the method converged (CA) is presented.

4×4
CA
(iterations)

8×8
CA
(iterations)

16×16
CA
(iterations)

32×32
CA
(iterations)

64×64
CA
(iterations)

CP 58.1 44.9 46.1 51.3 47.3
C-SALSA 21.1 22.3 22.8 22.1 18.2
FLIPS 6.0 8.7 9.8 13.9 11.3
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Sparsity Robustness Experiment

In addition to the algorithm’s speed, the desire to have sparse solutions should be noted.
Figure 5-16 shows the sparsity levels of all three methods, measured by the ℓ0-norm. FLIPS
is likely to converge fast to many zero indices. However, C-SALSA and CP converge to small
indices, but not exactly zero. Therefore, the levels are denoted for different thresholds st. A
threshold st = 10−3 represents that all absolute values smaller than 10−3 are considered zero.
From Figure 5-16, it can be concluded that FLIPS is more robust to this threshold than the
other methods. However, note that after many iterations, all three methods converge to the
same solution.
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Figure 5-16: Sparsity image denoising results for C-SALSA, CP and FLIPS for the 200×200
‘cameraman’ image with sliding patch approach for the patch size 32×32 and σ = 0.0055. ‖fk‖0
denotes the ℓ0-norm which counts the number of nonzero indices of fk.

A visual explanation of the idea behind the Sparse Coding problem applied to the denoising
problem is discussed in Chapter 7.

5-3-3 Dictionary Learning

As introduced in Chapter 1, Dictionary Learning is an algorithm in which the dictionary
is not predefined but learned throughout the algorithm. Since the Sparse Coding problem
is incorporated once for every iteration of the algorithm, it is a suitable experiment to test
FLIPS in this setting. For this experiment, the well-known K-SVD algorithm introduced by
Aharon et al. [2] is considered, using the efficient implementation of [39]. In these papers,
Orthogonal Matching Pursuit (OMP) is applied as a Sparse Coding algorithm which will be
replaced by FLIPS. Furthermore, two commonly used tricks are implemented. First of all,
once every five iterations, the least used atom is replaced by the normalized training signal
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that is least well-represented. Secondly, once every five iterations, one of the two most similar
atoms, measured by the absolute inner product, is replaced by the least well-represented
training signal.

The initial input dictionary is half the Discrete Cosine Transform (DCT)-dictionary, and half
random numbers, with all columns normalized to unit length. FLIPS is set to a maximum of
20 iterations, and the K-SVD iterations have a maximum of 50. In the Dictionary Learning
part, the training data is the ‘cameraman’ image without any additional noise with sliding
patch approach and patch size 8×8. In FLIPS, the smoothness parameter is set to β = 100
and the momentum parameter ρ = 0.7 and epsilon ϵ = 0.89. After the Dictionary Learning
part, the learned dictionary is tested. Therefore, the Sparse Coding problem is applied to
the test data, which is the 200×200 ‘Lena’ image with added Gaussian noise with noise
variance σ = 0.0025 by the function imnoise. Epsilon is tuned as ϵ = 1.2√

σnx and the
smoothness parameter as β = 20000. The tuning criterion was to have non-blurry but also
noise-free reconstruction measured with the author’s best effort by vision. Figure 5-17 shows
the learned dictionary. The DCT-dictionary is shown on the right. Figure 5-18 shows the
original image, the noisy input image, and the recovered image by FLIPS, respectively. It
can be seen that FLIPS is suitable to be included in the Dictionary Learning algorithm and
that the learned dictionary can be applied in the image denoising problem using FLIPS.

DCT-DictionaryLearned Dictionary

Figure 5-17: Left: Learned dictionary by the K-SVD Dictionary Learning experiment with FLIPS
for the 200×200 noise-free ‘cameraman’ image with sliding patch approach for patch size 8×8.
Right: DCT-dictionary.
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Recovered image DL, PSNR= 28.2154Noisy input, PSNR= 22.687Original

Recovered image DCT, PSNR= 27.5995Noisy input, PSNR= 22.687Original

Figure 5-18: Dictionary Learning experiment results for K-SVD with FLIPS for the 100×100
noise-free ‘cameraman’ image with sliding patch approach for patch size 8×8 followed by the
Sparse Coding application with FLIPS for the 200×200 ‘Lena’ image with patch size 8×8 and
additional Gaussian noise with noise variance σ = 0.0055. From left to right: the original image,
the noisy input, and the recovered image for the application with the learned dictionary and the
DCT-dictionary.

Furthermore, FLIPS was applied to the inpainting problem using the learned dictionary. In
the original 100×100 input image, random groups of 2×2 pixels were set to zero. These pixels
need to be recovered to pixels that ‘fit’ the image. The best ‘fit’ is found by trying to find a
sparse representation of the pixels that have not been removed. As a result, the pixels that
were removed are replaced by the selection of the dictionary atoms. This way, the entire
image can be reconstructed, as can be seen in Figure 5-19. The reconstructed image is close
to the original image, even though not all information was available due to the missing pixels.
A visual explanation of the idea behind the Sparse Coding problem applied to the inpainting
problem is discussed in Chapter 7.
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Figure 5-19: Results for the inpainting problem for the 100×100 ’Lena’ image with sliding patch
approach for 100 FLIPS iterations and epsilon = 0.24.

F.F. Redel Master of Science Thesis



Chapter 6

Conclusion

A concise conclusion is drawn to finalise the results of this master thesis report. First and
foremost, let us repeat the objective of this report. The objective is to find an algorithm
that can solve the ill-posed Linear Inverse Problem (2-1) with less computation time than
state-of-the-art methods. We want the algorithm to converge fast, therefore decreasing the
computation time. As a result, the algorithm would be able to work with higher dimensional
signals compared to state-of-the-art methods.

As a result of the problem reformulation, we present the Fast Linear Inverse Problem Solver
(FLIPS). The method can be applied to the denoising problem for various images, shown
in Section 5-3-1. More precisely, the method can be applied to any natural signal known to
admit a sparse representation under an appropriate basis. Furthermore, the method converges
faster than Constrained Split Augmented Lagrangian Shrinkage Algorithm (C-SALSA) and
Chambolle-Pock (CP) and converges to the same optimal solution, as can be seen in Section
5-3-2. Mainly due to the fast convergence, FLIPS outperforms the other methods in terms of
CPU-times in the time comparison experiment in Section 5-3-2. For example, in the 16×16
experiment in Section 5-3-2, C-SALSA needs twice as many iterations, and CP even needs
five times more iterations compared to FLIPS. This reduction in the number of iterations
results in a tremendous decrease in computation time. Moreover, the algorithm results in
sparse solutions and is robust to different thresholds in the ℓ0-norm experiment, which is not
the case for CP and C-SALSA. Finally, it is proven that the algorithm can be applied in
Dictionary Learning for denoising and inpainting problems. Therefore, the overall conclusion
based on these experiments is that FLIPS outperforms state-of-the-art methods in terms of
speed and is widely applicable.
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Chapter 7

Discussion and Recommendations

This chapter presents the discussion and recommendations for future research. First, the fact
that only the DCT-dictionary and a learned dictionary are considered in this report will be
discussed. Secondly, the Linear Oracle and Projected Gradient Descent will be discussed,
which are not considered in the numerical results. Thirdly, the large area inpainting problem
will be discussed. Fourthly, the blurry recovery of the 128×128 experiment in Section 5-3-
2 will be highlighted, followed by the discussion on the limited storage of the experiments.
Fifthly, a visual explanation of the denoising and inpainting problem is given. Besides the
discussion, a few recommendations are presented that could be investigated further as an
addition to this master thesis report.

7-1 Discussion

7-1-1 DCT-Dictionary

For all experiments, the commonly chosen DCT-dictionary was chosen. This dictionary was
chosen since it is commonly used, and thus creates a fair comparison [38, 34, 3, 27, 6]. Fur-
thermore, a learned dictionary was applied in the Dictionary Learning experiment. However,
other dictionaries, such as wavelets, countourlets could also be applied and could result in dif-
ferent recoveries of images. A dictionary that ‘fits’ the data better will be likely to result in a
better recovery of the noisy image. Observe that the DCT-dictionary only contains straight-
lined patterns in the atoms, see Figure 5-17. Also, observe that the learned dictionary in
Figure 5-17 contains curved structures in the atoms. This indicates that the straight lines of
the DCT-dictionary might not be optimal for sparse representations of images. Furthermore,
the DCT-dictionary is a square dictionary. As mentioned in Section 1-3, an overcomplete dic-
tionary covers a broader range of signal phenomena compared to undercomplete dictionaries,
which is another reason why other types of dictionaries should be tried as well.
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7-1-2 Linear Oracle

In all numerical results of the Fast Linear Inverse Problem Solver (FLIPS) in Section 5-2 and
Section 5-3, only the Quadratic Oracle of FLIPS is highlighted since the Quadratic Oracle
outperforms the Linear Oracle tremendously. However, an experiment is presented to prove
that the Linear Oracle can be applied as well.

One advantage is that there are no tuning parameters for the Linear Oracle, presented in
Section 4-1-1. However, a disadvantage is that this method results in very small step sizes
to avoid violating the cone constraint, see Figure 7-1. Therefore, this method needs many
iterations to converge to the optimal solution. Note that in Figure 7-1, the objective cost
of Problem (4-2) is still decreasing in the last iterations of the graph and is therefore not
converged yet. Another difficulty is that the method needs a large value for the reconstruction
error ϵ to avoid violation of the cone constraint (3-2) in Problem (3-10). Because of these
issues, applying the Linear Oracle to the denoising problem is not recommended. However,
it is not tested for other types of signals or problems that could fit the Linear Oracle better.

Figure 7-1: Results of the Linear Oracle experiment FLIPS for the 200×200 ‘cameraman’ image
with a sliding patch approach for the patch size 32×32 and σ = 0.0055. From top to bottom,
the cost over the iterations and the step size over the iterations.

7-1-3 Projected Gradient Descent

Next to the state-of-the-art methods, Chambolle-Pock (CP) and Constrained Split Aug-
mented Lagrangian Shrinkage Algorithm (C-SALSA), Projected Gradient Descent was im-
plemented, directly applied to Problem (3-11). In this method, the step size γ needs to be
tuned. Note that Projected Gradient Descent is not the same as the Quadratic Oracle. The
Projected Gradient Descent is of the form h+ = ΠBc(h − δ∇η(h)), whereas the Quadratic
Oracle computes Equation (4-5): g(h) = ΠBc(h − 1

β ∇η(h)) and applies exact line search.
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Just like the Linear Oracle, this method also required small step sizes δ to remain within the
constraints. Therefore, it also converged very slowly and was not considered in this thesis
report. Figure 7-2 shows the objective cost over the iterations for a simple experiment in
which a random 8×8 patch of the 200×200 cameraman image is applied to the denoising
problem with Gaussian noise with variance σ = 0.0055 for 200 iterations. It can be seen that
the Projected Gradient Descent method converges very slowly compared to FLIPS.

Figure 7-2: Image denoising results of the PGD and FLIPS comparison for the denoising problem
with 8×8 patch size for the 200×200 cameraman image with Gaussian noise with noise variance
σ = 0.0055 for 200 iterations with PGD stepsize γ = 0.000031.

7-1-4 Blurry Image Recovery 128x128 Experiment

In Figure 5-11, the recovered image still contains some blurry and noisy aspects. However,
all three algorithms converge to the same solution. Therefore, it must be highlighted that
this recovery is the optimal solution for this signal, even though not all of the noise has been
removed. This recovery shows a limit of denoising for large image patches. Note that for
the denoising problem, it is common to select small image patches since they result in better
denoised recovered signals.

7-1-5 Limiting Storage Experiments

The aim of the presented algorithm FLIPS was to improve the speed and increase the max-
imum patch size compared to state-of-the-art methods. Therefore, applying the algorithm
to the biggest patch sizes presented in state-of-the-art literature would be a good experi-
ment. Take for example the FISTA paper, in which an experiment is conducted for patch
size 256×256 [4]. However, the bottleneck was that storing a 2562x2562 dictionary exceeded
the storage limit of the laptop. One way to avoid this limit is to work with the MATLAB
functions idct2 and dct2, instead of matrices, for ϕ. For example, the multiplication ϕ · h
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could be replaced by idct2(h). These functions directly apply the DCT- and inverse DCT-
transform to each index instead of a big matrix multiplication with ϕ. Note that for a single
128×128 patch experiment, this method is 150 times faster. However, this was not applied
in the experiments, due to late discovery and limited time.

7-1-6 Limiting Signal Size

A remark should be made regarding the size of the input signals. Images of size 200×200 have
been used as input for the experiments. However, note that for a 64×64 experiment, FLIPS
took 15 minutes to converge all patches (or compute the maximum number of iterations),
while CP needed around 14 hours, see Section 5-3-2. Even though FLIPS is tremendously
faster, it would still take hours to work with images of size 2000×2000. Furthermore, for the
sliding patch approach, we would have 3751969 patches, needing 115 GB to store the signals,
which exceeds the maximum storage of the average computer.

7-1-7 Visual Explanation Denoising Problem

One could try to imagine the idea behind the Sparse Coding problem applied to the de-
noising problem. We will explain this by using visuals. Take for example the original
patch, the noisy patch, the recovered patch as displayed in Figure 7-3, and a part of the
DCT dictionary in Figure 7-4. The Sparse Coding problem denotes the task of repre-
senting the noisy input with a linear combination of just a few of the dictionary atoms.
When selecting the combination of atoms, one tries to get the ‘best’ reconstruction for most
of the pixels. The ‘best’ reconstruction is measured with the ℓ2-norm between the noisy
input and the reconstruction. Since we are limited to using a few atoms, the selection
of atoms can only recover the general structure of the noisy patch. A part of the lin-
ear combination of patches for this particular input is shown in Figure 7-5. The weight
of each patch is shown above the atoms. As one tries to imagine the combination of:
10.4796 · atom #1 + 5.5142 · atom #2 + 1.0295 · atom #3 − 1.0015 · atom #4, it would
result in a recovered image shown on the right of Figure 7-3. Note that this combination of
dictionary atoms is not the exact combination selected for this recovery but a small selection
with the largest weights.

Figure 7-3: Original, noisy, and recovered patch of the 200×200 ‘cameraman’ image for the
patch size 32×32 and σ = 0.0055.
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Figure 7-4: Part of the DCT-dictionary for 32×32 patches.

Figure 7-5: Part of the combination of dictionary atoms to recover the noisy input of Figure 7-3.
The weight associated with each dictionary atom is denoted above the images.

7-1-8 Visual Explanation Inpainting Problem

In the inpainting experiment in Section 5-3-3, a random selection of 2×2 pixels have been
removed, shown as black pixels in Figure 7-6 on the right. The process of finding a ‘good’
reconstruction for the removed pixels is explained. A ‘good’ reconstruction is a reconstruction
in which the recovered pixels fit the surrounding area.

Let xn ∈ Rnn be the part of x ∈ Rnx containing only the original pixels, i.e., the pixels that
have not been removed. Observe that nn ⩽ nx. Furthermore, consider a local dictionary
Dl, in which the rows of the original dictionary D, associated with the missing pixels, have
been removed. Find the sparse representation vector f by solving Problem (2-1) using local
dictionary Dl and the partial measurement xn. To recover the entire image patch, use the
original dictionary D to compute the reconstruction Df . As a result, the removed pixels have
been reconstructed to ‘fit’ the surrounding pixels.

Take for example the patch in the upper right corner of the ‘Lena’ image, shown on the left in
Figure 7-6. A sparse representation of the non-removed pixels was found by solving Problem
(2-1). The four atoms with the largest absolute values of the sparse representation vector f ,
are shown in Figure 7-7. One could try to image that the weighted combination of these four
atoms results in the reconstructed patch on the left in Figure 7-6.
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Figure 7-6: Inpainting problem one image patch in the upper right corner of the 100×100 ‘Lena’
image with sliding patch approach for 100 FLIPS iterations and epsilon = 0.24.

Figure 7-7: Part of the combination of dictionary atoms to recover the inpainting input of Figure
7-6. The weight associated with each dictionary atom is denoted above the images.

7-2 Recommendations

7-2-1 Large Inpainting Experiment

In Chapter 1, it was mentioned that for large image inpainting, the need to work with large
image patches arises. However, in the inpainting experiment in Chapter 5, the areas to be
inpainted are of the size 2×2 pixels. To prove that the algorithm would be applicable to
large area inpainting, an experiment could be conducted in which large image patches are
applied to images with large areas of missing pixels. However, due to time limitations, this
experiment was not conducted.

7-2-2 Application To Other Problems

In this report, FLIPS is tested with images as input data. However, the algorithm could
also be tested on other signals and problems. As mentioned in Section 2-1-2, the Matrix
Completion problem is a good candidate due to its high-dimensional data and the problem
formulation. Moreover, signals with known sparsity, such as audio signals, could be tested.

Besides the application to the denoising problem and Dictionary Learning, the application to
Compressed Sensing and the deblurring problem could be explored as well. Both problems
consider high-dimensional data in which FLIPS could be much faster than state-of-the-art
methods.
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7-2-3 Convergence Rate

Up to this stage, FLIPS’ convergence rate has not been formally proven. However, if provided
together with the algorithm, it would make a stronger case to compare it with state-of-the-art
methods.

7-2-4 Parfor Loop

One final recommendation is presented on the application side of the algorithm. MATLAB
versions from R2008a contain the function parfor. This function is recommended to speed up
the process. This function creates the possibility of running multiple loops at the same time.
However, in that case, storing variables in the same places is not possible. In other words,
the loops should be separable. With the current implementation, the sparse representation
vector h is stored in a matrix, making the for loop non-separable. One way to solve this issue
is to store the variables in different places and merge them at the end. However, since this
would create thousands of variables, it was decided not to implement this function.
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Appendix A

Proofs

A-1 Proofs for Non-smooth Reformulation

For any h ∈ Bc, let us consider the maximization problem sup
λ

L (λ, h) := 2
√

〈λ , x〉 − ϵ ‖λ‖ − 〈λ , ϕ(h)〉

subject to 〈λ , x〉 − ϵ ‖λ‖ > 0.
(A-1)

We provide an explicit characterization of the solution to the maximization problem (A-1).
Interestingly, whenever the solution exists, it can be computed without much additional
computation from its explicit characterization.

Proposition A-1.1. Consider the maximization problem (A-1) in the setting of Assumption
3-1.1. Then, the following assertions hold.

1. The maximization problem (A-1) is bounded if and only if h ∈ K(ϵ), and the maximal
value is η (h). In other words,

η (h) = sup
λ∈Λ

L (λ, h) . (A-2)

2. The maximization problem (A-1) admits a maximizer λ(h) if and only if h ∈ int (K(ϵ)) =
{h ∈ H : 〈x , ϕ(h)〉 > 0, and e (h) < ϵ2}, which is unique, and given by

λ(h) = η (h)
‖ϕ (h)‖

√
ϵ2 − e (h)

(
x − η (h) ϕ(h)

)
. (A-3)

Proof of Proposition A-1.1. The proof relies heavily on [42, Lemma 35, 36] under the setting
r = 2, q = 0.5, and δ = 0. We shall divide the proof of the proposition into three claims.

Claim A-1.2 (unboundedness). If h /∈ K(ϵ), then the maximization problem is unbounded.
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Proof. We first recall from [42, Lemma 36 and assertion (iii) of Lemma 35] that the maximal
value of (A-1) is unbounded if and only if there exists a λ′ such that the two following
inequalities are satisfied simultaneously〈

λ′ , ϕ(h)
〉

⩽ 0 <
〈
λ′ , x

〉
− ϵ

∥∥λ′∥∥ . (A-4)

Since h /∈ K(ϵ), either 〈x , ϕ (h)〉 < 0 or e (h) > ϵ2. On the one hand, if 〈x , ϕ (h)〉 < 0,
then we observe that λ′ = x satisfies the two inequalities of (A-4) since ‖x‖ > ϵ. On the
other hand, if e (h) > ϵ2, then by considering λ′ = x − 〈x , ϕ(h)〉

‖ϕ(h)‖2 ϕ(h), we first observe that

〈λ′ , ϕ(h)〉 = 0, and by Pythagoras theorem, we have ‖λ′‖2 = e (h). It is now easily verified
that λ′ satisfies the two inequalities (A-4) simultaneously since

〈
λ′ , ϕ(h)

〉
= 〈x , ϕ (h)〉 − 〈x , ϕ (h)〉

‖ϕ (h)‖2 〈ϕ(h) , ϕ(h)〉 = 0

〈
λ′ , x

〉
− ϵ

∥∥λ′∥∥ = ‖x‖2 − |〈x , ϕ (h)〉|2

‖ϕ (h)‖2 − ϵ
√

e (h) =
√

e (h)
(√

e (h) − ϵ
)

> 0.

Thus the claim holds.

Claim A-1.3 (optimal value). If h ∈ K(ϵ), then the maximal value of (A-1) is finite and
equal to η (h) as given in (3-3).

Proof. We now recall from [42, Lemma 36, and (51)-Lemma 35], that the maximal value of
(A-1) is bounded if and only if the following minimum exists

min
{
θ ⩾ 0 : ‖x − θϕ(h)‖ ⩽ ϵ

}
. (A-5)

Clearly, the minimum in (A-5) exists whenever the minimization problem is feasible. Suppose
there exists some θ′ ⩾ 0 such that ‖x − θ′ϕ(h)‖ ⩽ ϵ, it is immediately seen that

〈x , ϕ (h)〉 ⩾ 1
2θ′

((
‖x‖2 − ϵ2)+ θ′2 ‖ϕ (h)‖2

)
> 0, and

e (h) = min
θ∈R

‖x − θϕ(h)‖2 ⩽
∥∥x − θ′ϕ(h)

∥∥2 ⩽ ϵ2.

Thus, h ∈ K(ϵ). On the contrary, if h ∈ K(ϵ), then it also seen similarly that θ′ = 〈x , ϕ(h)〉
‖ϕ(h)‖2 is

feasible for (A-5). Thus, the maximal value of (A-1), and the minimum in (A-5) is finite if
and only if h ∈ K(ϵ).
It is immediately realised that the value of the minimum in (A-5) corresponds to the smaller
root of the quadratic equation ‖x − θϕ(h)‖2 = ϵ2. Dividing throughout therein by θ2, we
obtain a different quadratic equation

1
θ2
(

‖x‖2 − ϵ2) − 2
θ

〈x , ϕ (h)〉 + ‖ϕ (h)‖2 = 0.

Selecting the larger root (and hence smaller θ) gives us that for every h ∈ K(ϵ), the optimal
value of (A-1) (and (A-5)) is

‖x‖2 − ϵ2

〈x , ϕ (h)〉 + ‖ϕ (h)‖
√

ϵ2 − e (h)
= η (h) .

Alternatively, if one selects the smaller root of the quadratic equation ‖x − θϕ(h)‖2 = ϵ2, one
gets the expression of eta provided in 3-6.
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Claim A-1.4 (Optimality condition). The first order necessary and sufficient optimality
condition 0 = ∂

∂λL (λ, h) for the maximization problem (A-1) has a unique solution (if it
admits) λ(h) as given in (A-3), and it satisfies

η (h) = L (λ(h), h) =
√

〈λ(h) , x〉 − ϵ ‖λ(h)‖. (A-6)

Proof. Rearranging terms in the optimality condition 0 = ∂
∂λL (λ, h), we obtain

ϵ

‖λ(h)‖
λ(h) = x −

√
〈λ(h) , x〉 − ϵ ‖λ(h)‖ ϕ(h). (A-7)

By taking inner product with λ(h) throughout in (A-7), it is readily seen that
√

〈λ(h) , x〉 − ϵ ‖λ(h)‖ =
〈λ(h) , ϕ(h)〉. Using this equality to evaluate L (λ(h), h) and observing that the optimal value
of (A-1) is equal to η (h) gives us (A-6).1

Since η (h) is known, using (A-6) together with (A-7) allows us to solve for λ(h) in (A-7).
We first see that λ(h) satisfies the optimality condition (A-7) if and only if there exists some
r > 0 such that λ(h) = r

(
x − η (h) ϕ(h)

)
. Observe that

η (h) =
√

〈λ(h) , x〉 − ϵ ‖λ(h)‖

=
√

r
√

〈x − η (h) ϕ(h) , x〉 − ϵ ‖x − η (h) ϕ(h)‖

=
√

r
√

‖x − η (h) ϕ(h)‖2 + 〈x − η (h) ϕ(h) , η (h) ϕ(h)〉 − ϵ2

=
√

rη (h)
√

〈x , ϕ (h)〉 − η (h) ‖ϕ (h)‖2.

Observing that 〈x , ϕ (h)〉−η (h) ‖ϕ (h)‖2 = ‖ϕ (h)‖
√

ϵ2 − e (h), we finally conclude that the
optimality condition (A-7) has a unique solution λ(h) given by

λ(h) = η (h)
‖ϕ (h)‖

√
ϵ2 − e (h)

(
x − η (h) ϕ(h)

)
.

To complete the proof of the proposition, it now only remains to be shown that the maxi-
mization problem (A-1) admits a unique optimal solution λ(h) if and only if h ∈ int(K(ϵ)).
Firstly, if indeed h ∈ int(K(ϵ)), then it is clear that λ(h) satisfies both the feasibility condition
0 <

√
〈λ(h) , x〉 − ϵ ‖λ(h)‖ (it follows from (A-6)) and the fist order optimality conditions

(it follows from Claim A-1.4). Secondly, if h ∈ K(ϵ) \ int(K(ϵ)), we have e (h) = ϵ2. Now, if
a solution λ(h) exists, it must be of the form in (A-3) and should satisfy (A-6). We see that
both of these conditions fail and hence a solution to the maximization problem (A-1) cannot
exist. the proof of the proposition is now complete.

Proof of Lemma 3-1.4. From assertion (i) of Proposition A-1.1, it is inferred that η : K(ϵ) −→
[0, +∞) is a pointwise maximum of the linear function L (λ, h), hence convex. We also observe

1Observe that by evaluating squared norm on both sides of (A-7) and using (A-6) also gives rise to the
quadratic equation ϵ2 = ‖x − η (h) ϕ(h)‖2 for η (h).

Master of Science Thesis F.F. Redel



54 Proofs

from assertion (ii) of Proposition A-1.1 that the maximization problem (A-1) admits a solution
λ(h) if and only if h ∈ K(ϵ̄). From Danskin’s theorem [16], we conclude that the function
η : K(ϵ) −→ [0, +∞) is differentiable if and only if the maximizer λ(h) in (A-1) exists. Thus,
η : K(ϵ) −→ [0, +∞) is differentiable at every h ∈ K(ϵ̄), and the derivative is given by
∇η(h) = −ϕa

(
λ(h)

)
. Substituting for λ(h) from (A-3), we immediately get (3-7).

Proof of proposition 3-1.2. The original problem (2-1) was reformulated as a min-max prob-
lem in [42, Theorem 10, p. 10]. Denoting Λ := {λ ∈ Rnx : 〈λ , x〉 − ϵ ‖λ‖ > 0}, and by
considering r = 2, q = 0.5, δ = 0 in [42, Theorem 10] we see that the LIP (2-1) is equivalent
to the min-max problem {

min
h ∈ Bc

sup
λ ∈ Λ

L (λ, h) . (A-8)

Moreover, from [42, Theorem 10, assertion (ii)-a], it also follows that h∗ ∈ arg min
h ∈ Bc

{
sup

λ ∈ Λ
L (λ, h)

}
if and only if c∗h∗ is an optimal solution to the LIP (2-1). In view of Proposition A-1.1, solving
the maximization problem over λ immediately implies that

h∗ ∈ arg min
h∈Bc∩K(ϵ)

η (h) ,

if and only if c∗h∗ is an optimal solution to the LIP (2-1). The proof is now complete.

A-2 Proofs for Smoothness

Lemma A-2.1. Let us consider the mapping Λ 3 λ 7−→ l(λ) :=
√

〈λ , x〉 − ϵ ‖λ‖, and let
H(λ) be its hessian evaluated at λ ∈ Λ. Then the smallest and largest absolute values, σ̄ and
σ̂ respectively, of the eigenvalues of H(λ) are given by

σ̄ =
(

‖x‖2 − ϵ2)
8(l(λ))3

1 −

√√√√1 − 8ϵ(l(λ))6(
‖x‖2 − ϵ2)2 ‖λ‖3


σ̂ =

(
‖x‖2 − ϵ2)
8(l(λ))3

1 +

√√√√1 − 8ϵ(l(λ))6(
‖x‖2 − ϵ2)2 ‖λ‖3

 .

(A-9)

Proof. First of all, we observe that since λ 7−→ l(λ) is differentiable everywhere on Λ, and
the gradients are given by ∇l(λ) = 1

2l(λ)

(
x − ϵ

‖λ‖ λ
)
. Differentiating again w.r.t. λ, we easily

verify that the hessian is given by

H(λ) = −ϵ

2l(λ) ‖λ‖

(
I − 1

‖λ‖2 λλ>
)

− 1
4(l(λ))3

(
x − ϵ

‖λ‖
λ

)(
x − ϵ

‖λ‖
λ

)>

. (A-10)

First, suppose that λ and x are linearly independent, observe that the subspace S := span{λ, x−
ϵ

‖λ‖ λ} is invariant under the linear transformation given by the hessian matrix H(λ), and it
is identity on the orthogonal complement of S. Then it is evident that the hessian has nx − 2
eigenvalues equal to −ϵ/l(λ)‖λ‖ and the two other distinct eigenvalues corresponding to the
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restriction of H(λ) onto S. Selecting {λ, x − ϵ
‖λ‖ λ} as a basis for S, the linear mapping of

the hessian is given by the matrix

T =

 0 ϵl(λ)
2‖λ‖3

−1
4l(λ)

−
(

‖x‖2−ϵ2
)

4(l(λ))3

 . (A-11)

It is a straightforward exercise to verify that −σ̄ and −σ̂ are indeed the two distinct eigenvalues
of T and consequently, the remaining two eigenvalues of the hessian H(λ). Since the rest of
the eigenvalues are −ϵ/l(λ)‖λ‖, it remains to be shown that σ̄ ⩽ ϵ/2l(λ)‖λ‖ ⩽ σ̂. We establish it
by producing u1, u2 ∈ S such that

σ̄ ⩽ |〈u1 , H(λ)u1〉|
‖u1‖2 ⩽ ϵ

2l(λ) ‖λ‖
⩽ |〈u2 , H(λ)u2〉|

‖u2‖2 ⩽ σ̂. (A-12)

Observe that the inequalities σ̄ ⩽ |〈u1 , H(λ)u1〉|
‖u1‖2 , and |〈u2 , H(λ)u2〉|

‖u2‖2 ⩽ σ̂ readily hold for any
u1, u2 ∈ S since −σ̄, −σ̂ are the two eigenvalues of H(λ) when restricted to the subspace S.
Considering u1 = (l(λ))2x +

(
‖x‖2 − ϵ〈λ , x〉

‖λ‖

)
λ and u2 = λ − ‖λ‖2

〈λ , x〉 , it is easily verified that〈
x − ϵ

‖λ‖ λ , u1
〉

= 0, and 〈λ , u2〉 = 0. Moreover, we also get the inequalities
〈u1 , H(λ)u1〉 = −ϵ

2l(λ) ‖λ‖
‖u1‖2 + ϵ

2l(λ) ‖λ‖
|〈λ , u1〉|2

‖λ‖2 ⩾ −ϵ

2l(λ) ‖λ‖
‖u1‖2 ,

〈u2 , H(λ)u2〉 = −ϵ

2l(λ) ‖λ‖
‖u2‖2 − 1

4(l(λ))3

∣∣∣∣∣
〈

x − ϵ

‖λ‖
λ , u2

〉∣∣∣∣∣
2

⩽ −ϵ

2l(λ) ‖λ‖
‖u2‖2 .

Since the hessian H(λ) is negative semidefinite, the inequalities (A-12) are obtained at once.
To complete the proof for the case when λ and x are linearly dependent, we first see that
the expressions in (A-9) are continuous w.r.t. λ. Also, it is evident that the mapping Λ 3
λ 7−→ H(λ) is continuous. Since the eigenvalues of a matrix vary continuously, these two
limits must be the same. The proof is now complete.

Lemma A-2.2. For every η̄ > c∗ and ϵ̄ ∈ (0, ϵ), let C (ϵ̄, η̂) := ‖x‖−ϵ

ϵη̂

√
ϵ2 − ϵ̄2. Consider the

convex set
Λ (ϵ̄, η̂) := {λ ∈ Λ : l(λ) ⩾ C (ϵ̄, η̂) ‖λ‖} , (A-13)

then the mapping l(λ) : Λ (ϵ̄, η̂) −→ (0, +∞) is ϵC(ϵ̄,η̂)3

2
(

‖x‖2−ϵ2
) strongly concave.

Proof of Lemma A-2.2. Firstly, since λ 7−→ l(λ) is concave and C (ϵ̄, η̂) > 0, it is obvious that
Λ (ϵ̄, η̂) is a convex set. Secondly, we know that

√
1 − θ2 < 1 − θ2

2 for every θ ∈ [0, 1]. Using
this inequality, we have

1 −

√√√√1 − 8ϵ(l(λ))6(
‖x‖2 − ϵ2)2 ‖λ‖3 >

4ϵ(l(λ))6(
‖x‖2 − ϵ2)2 ‖λ‖3 .

Thus, we see that σ̄ > ϵl(λ)3

2
(

‖x‖2−ϵ2
)

‖λ‖3 ⩾ ϵC(ϵ̄,η̂)3

2
(

‖x‖2−ϵ2
) . Since σ̄ was the smallest absolute value

among the eigenvalues of the hessian H(λ), the claim holds.
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Lemma A-2.3. For every η̄ > c∗ and ϵ̄ ∈ (0, ϵ), if H (ϵ̄, η̂) := {h ∈ Bc ∩ K(ϵ̄) : η (h) ⩽ η̂},
then for every h ∈ H (ϵ̄, η̂), we have λ(h) ∈ Λ (ϵ̄, η̂), and thus,

η (h) = max
λ∈Λ(ϵ̄,η̂)

L (λ, h) for every h ∈ H (ϵ̄, η̂) . (A-14)

Proof. For every h ∈ H (ϵ̄, η̂) ⊂ H, first of all, we know from Proposition A-1.1 that λ(h) =
arg max

λ∈Λ
L (λ, h) for λ(h) as in (A-3). On the one hand, for every h ∈ H (ϵ̄, η̂), we have the

inequality

l(λ(h))
‖λ(h)‖

= η (h)
‖λ(h)‖

since l(λ(h)) = η (h) from (A-6)

= ‖ϕ (h)‖
√

ϵ2 − e (h)
‖x − η (h) ϕ(h)‖

= ‖ϕ (h)‖
ϵ

√
ϵ2 − e (h), from (3-5),

> ‖ϕ (h)‖
√

ϵ2 − ϵ̄2

ϵ
, since e (h) < ϵ̄2 for h ∈ H (ϵ̄, η̂).

(A-15)

On the other hand, for every h ∈ H (ϵ̄, η̂), we also see from (3-3) that

1
η (h)

= ‖ϕ (h)‖(
‖x‖2 − ϵ2)(〈x , ϕ (h)〉

‖ϕ (h)‖
+
√

ϵ2 − e (h)
)

<
‖ϕ (h)‖(

‖x‖2 − ϵ2)( ‖x‖ + ϵ
)

from the C-S inequality, and e (h) < ϵ2,

= ‖ϕ (h)‖
‖x‖ − ϵ

,

(A-16)

which immediately gives the lower bound ‖ϕ (h)‖ >
‖x‖−ϵ
η(h) . Employing this lower bound in

(A-15), we finally have

l(λ(h))
‖λ(h)‖

>
‖x‖ − ϵ

η (h)

√
ϵ2 − ϵ̄2

ϵ
>

‖x‖ − ϵ

ϵη̂

√
ϵ2 − ϵ̄2 = C (ϵ̄, η̂) .

Thus, it follows that for every h ∈ H (ϵ̄, η̂), the corresponding maximizer λ(h) of (A-1) satisfies
the inclusion λ(h) ∈ Λ (ϵ̄, η̂). Moreover, since λ(h) = arg max

λ∈Λ
L (λ, h), and Λ (ϵ̄, η̂) ⊂ Λ, the

inclusion λ(h) ∈ Λ (ϵ̄, η̂) also immediately implies that

η (h) = max
λ∈Λ

L (λ, h) = max
λ∈Λ(ϵ̄,η̂)

L (λ, h) .

The proof is now complete.

Proof of Proposition 3-1.5. Let us define

(−l)∗(y) := sup
λ∈Λ(ϵ̄,η̂)

l(λ) + 〈λ , y〉 , (A-17)

F.F. Redel Master of Science Thesis



A-3 Proofs for Stepsize Selection 57

and let dom((−l)∗) = {y : (−l)∗(y) < +∞}. From Lemma A-2.2, we know that the mapping

Λ (ϵ̄, η̂) 3 λ 7−→ −l(λ) is ϵC(ϵ̄,η̂)3

2
(

‖x‖2−ϵ2
) -strongly convex, and therefore, the mapping dom((−l)∗) 3

y 7−→ (−l)∗(y) is 2
(

‖x‖2−ϵ2
)

ϵC(ϵ̄,η̂)3 -smooth. In other words, we have the inequality

∥∥∇(−l)∗(y) − ∇(−l)∗(y′)
∥∥ ⩽ 2

(
‖x‖2 − ϵ2)
ϵC (ϵ̄, η̂)3

∥∥y − y′∥∥ for all y, y′ ∈ dom((−l)∗). (A-18)

For every h ∈ H (ϵ̄, η̂), we see from (A-14), that

η (h) = max
λ∈Λ(ϵ̄,η̂)

L (λ, h)

= max
λ∈Λ(ϵ̄,η̂)

2l(λ) − 〈λ , ϕ(h)〉

= 2(−l)∗(−0.5ϕ(h)).

Clearly, h ∈ H (ϵ̄, η̂) if and only if −0.5ϕ(h) ∈ dom((−l)∗) and for every such h, we also have
∇η(h) = −ϕa

(
∇(−l)∗(−0.5ϕ(h))

)
. Moreover, due to smoothness of (−l)∗, it immediately

follows from (A-18) that∥∥∇η(h) − ∇η(h′)
∥∥ ⩽ ‖ϕa‖

∥∥∇(−l)∗(−0.5ϕ(h)) − ∇(−l)∗(−0.5ϕh′)
∥∥

⩽ ‖ϕa‖
2
(

‖x‖2 − ϵ2)
ϵC (ϵ̄, η̂)3

∥∥0.5ϕ(h − h′)
∥∥

⩽ ‖ϕ‖2
o

(
‖x‖2 − ϵ2)

ϵC (ϵ̄, η̂)3
∥∥h − h′∥∥ .

Finally, substituting for C (ϵ̄, η̂) from Lemma A-2.2, we get the inequality (3-10).

A-3 Proofs for Stepsize Selection

Let us consider the following optimization problem in which we find the optimal step size
given the explicit formulation of η (h)

γ(h) =
{

arg min
γ∈[0,γ̂(h)]

η(h + γd(h)). (A-19)

The explicit solution of this optimization problem can be found without much additional
computations.

Proof of proposition 4-1.4. The maximum stepsize γ̂(h) must satisfy hγ ∈ K(ϵ̄). Recall that
that h ∈ K(ϵ̄) if and only if 〈x , ϕ (h)〉 ⩾ ‖ϕ (h)‖

√(
‖x‖2 − ϵ̄2). This gives rise to the following

inequality 〈x , ϕ (hγ)〉 ⩾ ‖ϕ (hγ)‖
√(

‖x‖2 − ϵ̄2) which is of the form q(γ) ⩽ 0 with

q(γ) = aγ2 + bγ + c, (A-20)

with the definitions for a, b and c as described in proposition 4-1.4. Three different domains
for a are considered separately
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1. a > 0. Since c ⩾ 0, we have that a
c > 0. Note that the domain must be continuous

since η (h) is a convex function and therefore q(γ) ≮ 0. This results in the domain
γ ∈ [0, +∞].

2. a = 0. Since c ⩾ 0 we have | 〈x , ϕ(h)〉 | ⩾
√

‖x‖2 − ϵ2 ‖ϕ(h)‖. While a = 0, we

have | 〈x , ϕ(d)〉 | =
√

‖x‖2 − ϵ2 ‖ϕ(d)‖. Combining these two equations and applying
Cauchy-Schwartz we get
| 〈x , ϕ(h)〉 || 〈x , ϕ(d)〉 | ⩾ (‖x‖2 − ϵ2) 〈ϕ(d) , ϕ(h)〉. From this equation it is obvious
that we have b ⩾ 0 and therefore γ = −c

2b < 0. This gives the following domain
γ ∈ [0, +∞].

3. a < 0. Since c ⩾ 0, the product of the roots of quadratic equation q(γ) = 0 are real and
of opposite signs. Therefore, γ̂(h) can be picked as the positive root of the quadratic
equation q(γ) = 0, given by γ ∈ [0, −b−

√
b2−4ac

2a ].

Proof. Setting ∂η(hγ)
∂γ equal to zero will give a quadratic function of the form rγ2 +sγ +u = 0.

If the solution to this quadratic function lies between the bounds of γ, which is the case
if ∂η(hγ)

∂γ |γ=0 ⩽ 0 and ∂η(hγ)
∂γ |γ=γ̂(h) ⩾ 0 hold, we define γ = −s±

√
s2−4ru

2r . If the solution is
negative, we define γ = 0 and if the γ ⩾ γ̂(h) we define γ = γ̂(h).
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List of Acronyms

ADMM Alternating Direction Method of Multipliers
ALM Augmented Lagrangian Method
APGD Accelerated Projected Gradient Descent
BPDN Basis Pursuit Denoising
CP Chambolle-Pock
CS Compressed Sensing
C-SALSA Constrained Split Augmented Lagrangian Shrinkage Algorithm
DCT Discrete Cosine Transform
DL Dictionary Learning
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
FLIPS Fast Linear Inverse Problem Solver
LIP Linear Inverse Problem
ISTA Iterative Shrinkage-Thresholding Algorithm
OMP Orthogonal Matching Pursuit
PGD Projected Gradient Descent
PSNR Peak-Signal-to-Noise Ratio
RMSE Root Mean Square Error
SGD Sub-Gradient Descent
SVD Singular-Value-Decomposition
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