




Preface

At the end of the Bachelor program in TU Delft, a Bachelor Project takes place. This project is designed with
the goal of executing a task in an independent team. This task can be done in the form of an internship or by
an assignment given by a client.

This report contains the process and end result of the task, assigned by SeaState5. SeaState5 is a company
located in Delft, that has as a goal to improve the future generation of wind parks by providing low-cost
and high reliability products. One of their products is the Grasshopper, a system that allows for a light weight
method to lift and upend monopiles, and the Woodpecker, a system that allows for improved noise absorption
when working offshore.

Our task was to create a software framework for an unmanned vessel for seabed scanning. Our contact
for SeaState5 is W. Zwetsloot and our TU Delft Coach throughout the project’s duration is M. Zuniga, both of
whom we want to thank for the time and effort spent in assisting and guiding us with this project.

Matthijs de Groot
Nando Kartoredjo

Arjan Langerak
Dmitry Malarev
Delft, May 2017
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Summary

SeaState5 wants to facilitate the monitoring process for seabed cables of offshore wind farms. The company
wants to achieve this by creating an unmanned vessel, named the Eagle,

, which can be analyzed from a remote location.
As students from TU Delft, we have been tasked to create a software framework that allows the Eagle to go

to a location by receiving instructions from the user, and to send environmental data back to shore via a long
range connection. In addition, telemetry should be possible using short-range communication.

The software framework for the Eagle has been build with the design goals of modularity and stability in
mind.

The user is capable of
configuring the Eagle by adjusting the configuration file, stored on the SBC. This way, the Eagle pursues a
modular design; sensor can be attached and detached without changing the software, only an alteration of
the configuration file is required.

The Eagle will be capable of collecting environmental data, and storing it into a local database. The Eagle
also contains in-memory data storage for each sensor.

Periodically, the Eagle will send data to the cloud using long range communication. Due to bandwidth
limitations only crucial data will be sent to the cloud. The Eagle also provides telemetry, which allows all
sensor data to be accessed by a nearby user. The Eagle is also capable of retrieving instructions from the
cloud. Those instructions allow the eagle to perform specific tasks.
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1
Introduction

To deliver the generated electricity back to shore, offshore wind farms need to be connected by large cables
that are placed on the seabed. The positioning of these cables is crucial, for they can be easily damaged by
rocks or a ship’s anchor if the cables are laid incorrectly.

In the current state, placing the cables and monitoring them is expensive, requiring specialized ships and
trained crew members to complete these tasks. In addition, if it turns out that the cables are placed improp-
erly, the operation of relocating the cable is extremely expensive and time consuming, for the monitoring
process will be once again needed after the deed.

SeaState5 wants to prevent the high cost of these processes by making the monitoring autonomous,
. By doing this, the cost of using a crew would be nullified, thus

making the monitoring process more efficient.

1.1. Structure
This report will consists out of four chapters. Chapter 2 will discuss the research part of this project. To de-
termine the requirements for this project, first, the problems should be described and analyzed. After the
problems have been analyzed, the design goals and the requirements could be determined. At chapter 3, the
details of the implementation can be found. The chapter contains the description of the framework, and the
description of each module in the framework. Each module will have a detailed description about its func-
tionalities, and about the relations and functions of the internal modules, which make those functionalities
possible. At the end, we will reflect on the delivered product in chapter 4. To support the company in the
future, we also included recommendations. These recommendations will consider the implementation, but
also the overall product. We will also reflect on the ethical implications of the delivered product.

In addition, there are four appendices. To make the development process go as smooth as possible, tools
and methods were used. At appendix A, those used tools and methods have been listed. In between our
process, we were required to evaluate the source code by SIG. After the results from the evaluation came in, we
solved the issues SIG gave us. By solving the issues, we were able to increase our software quality. Everything
about SIG can be found at appendix B. Appendix C includes the original project description, made by the
company, SeaState5, and published at BEPsys. Appendix D contains the field tests with a scale model of the
Eagle.

At the end of this report, the bibliography can be found.
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2
Research

This chapter describes the problem issued by our client, SeaState5. The problem will be analyzed to derivate
the requirements for the project. To determine the course of the development, the design goals were set.

2.1. Problem Description
As described in chapter 1, offshore wind farms require large cables that run back to shore to deliver all the
generated electricity to the consumers. Before a submarine cable can be placed, the ocean floor is inspected
to find the most cost effective route to shore and to minimize the risk of disturbing wildlife. Because laying
submarine cables is very expensive, it is very important to correctly position the cables. After the cables are
deployed they are inspected to ensure that they are laid correctly and undamaged.

In the next section, the problem is broken down and analyzed for requirements that can be used to fulfill
this goal.

2.2. Problem Analysis
In order to achieve the goal, the Eagle must be able to do the following tasks:

• Accomplish tasks without user interaction.

• Read and capture data from the environment.

• Send and store the captured data.

• Act upon captured data.

• Transfer the data from the Eagle to the client.

These subgoals can be achieved by the following methods:

2.2.1. Accomplish tasks without user interaction

2
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2.2.2. Read and capture data from the environment
The vessel will have several sensors on board, all connected to a CAN bus, to perform submarine surveys.
These sensors include a sonar for depth measurements, GPS for location data, temperature sensors, etc.

The Eagle should be able to be reconfigured to use a different set of sensors without requiring a change in
the software. The software should be configurable to use any sensor that is available with minimal effort.

2.2.3. Send and store the captured data
The SBC will be connected to the CAN bus and should be able to log all the information that is available on
the CAN bus. A database will be used to store information on external memory, e.g. a SD card.

The SBC will not insert all information into the database to avoid overloading the database. The informa-
tion from the CAN bus will be available in the program at the full frequency for use in high frequency control
algorithms.

The database should automatically adapt when sensors are added or removed from the Eagle.

2.2.4. Transfer the data from the Eagle to the client
The data should also be sent to a cloud-based storage solution to be used onshore. The data will be sent to
the cloud using a satellite connection so there will be bandwidth limitations. To overcome the bandwidth
limitations only a selection of the available data will be sent to the cloud. If the vessel is close-by all the data
will be available over a high bandwidth connection such as Wi-Fi.

2.2.5. Software
The goal of this project is to develop a modular software framework for the SBC to provide the functionality
as described above. The software framework should be developed in such a way that it can be used for any
sensor configuration and easily adapted for different tasks using new control modules.

A scale model of the vessel, including the computers, the sensors, and other hardware is available to test
the software framework in a controlled environment.

2.3. Requirements
In this section we will translate the functionality that we described in section 2.2 into a set of requirements
for the software framework. The requirements can be divided into three categories: Vessel control, Collection
of sensor data and the transmission of sensor data. The requirements are listed below and can be found in
subsections 2.3.1 through 2.3.3.

• Vessel control

1. Path Finding Algorithm.

2. Communication with Hardware controller

• Collection of sensor data

1. CAN bus communication driver.

2. Retrieving the sensor data.

3. Storing the sensor data.

• Transmission of sensor data

1. Communication of data with a close-by user

2. Communication of data with the cloud server

3. Data filtering framework

2.3.1. Vessel Control
To autonomously accomplish tasks the vessel must be able to perform actions based on sensor data and the
requested outcome. The Control module framework is a framework to easily create new control modules for
different tasks. Control modules act upon instructions and sensor data to accomplish an instructed goal.
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Communication with Hardware Controller
The hardware controller has to execute the decisions of the control modules. To communicate with the hard-
ware controller the SBC must be able to communicate with the hardware controller over the CAN bus. The
control modules will create CAN messages which the CAN bus driver will transmit over the CAN bus.

2.3.2. Collection of Sensor Data
To collect the sensor data, the software framework must be able to communicate with the CAN bus, decode
the CAN frames and store the sensor data.

CAN Bus Communication Driver
The software framework must implement a CAN bus communication driver to be able to communicate with
the sensors as well as with the hardware controller. The CAN bus communication driver will translate the
CAN messages between the CAN frames used by the kernel and the structured objects used in the software
framework.

Retrieving the Sensor Data
The sensors will broadcast their sensor data over the CAN bus. The software framework must retrieve the
CAN frames from the CAN bus and decode the raw bytes of the CAN frames into a structured object for use in
the software framework.

Storing the Sensor Data
The sensor data that is received will be stored into a in-memory database for use throughout the software
framework. The in-memory database allows fast-access for other modules such as the telemetry module and
the control modules. The sensor data will also be selectively stored in a lightweight persistent database to
maintain historical data.

2.3.3. Transmission of Sensor Data
The software framework must be able to transfer telemetry data over a high-bandwidth link such as Wi-Fi.
The software framework must also be able to send data to the cloud using any available link.

Communication of Data with a close-by user
When the Eagle is close-by the user should be able to view as much information about the vessel as possible.
When a high-bandwidth link is available, such as Wi-Fi, the user should be able to view all the data on the
vessel. This includes data that is logged in the persistent database as well as high-frequency volatile data such
as engine temperature.

The high-bandwidth link will be implemented over Wi-Fi because it provides high bandwidth and a rela-
tively long range when used line-of-sight.

Communication of Data with the cloud server
When the Eagle is used offshore, it must be able to communicate with the cloud server at all times. The vessel
must be able to obtain new instructions as well as report sensor data back to the cloud server. Since Wi-Fi
is not always available, the framework needs to support long range communication of data. However, this
suffers from low bandwidth and the communication must be adjusted accordingly. Only a limited selection
of the data will be sent over the long range communication channel.

Filtering Framework
Which data that is sent to the database, which data is sent to the cloud and which data is available for teleme-
try should be configurable because they all have a different bandwidth.
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2.4. Design Goals
In this section, we will elaborate the design goals for this project. The design goals determine the general
course of thought when implementing the final product, later discussed in chapter 3. The main design goals
of this project will be modularity and stability.

2.4.1. Modularity
The goal is to create a modular software platform that can be used to control the Eagle in order to complete the
vessel’s complex tasks. The reason for a modular platform is that it can be easily adapted to new capabilities
of the vessel as well as a different sensor configuration.

2.4.2. Stability
The vessel will be operating offshore, so a software failure will require a maintenance crew to navigate to the
vessel in order to repair it, which is both time consuming and costly. The software platform must therefore
be designed to be failsafe and be as stable as possible. To ensure the stability of the platform, it will be pro-
grammed according to the KISS (Keep It Simple, Stupid) principle. The individual parts of the software will
be thoroughly tested using an automated test system. The complete software framework will be functionally
tested using the available, on scale, prototype.



3
Implementation

In this chapter, the final implementation of the Eagle’s framework will be described as well as changes that
were made compared to the initial implementation.

3.1. Framework
The framework of the Eagle is divided into modules to improve readability and maintainability of the soft-
ware. However, the way the modules communicated was changed throughout the development process. The
old overview can be found at figure 3.1. The new overview can be seen in figure 3.2.

When comparing the new overview with the old overview, the database module is no longer the central
module, and is instead only used for the interaction with the cloud and the satellite communication. Now,
the sensor server has replaced the database as the central module. The sensor server is the reincarnation
of the older sensor data logging module. In addition to its predecessor, it contains buffers to store the CAN
messages. More about the additional functionalities can be found at section 3.4.

The telemetry module corresponds with the communication of data over Wi-Fi (Shortened to Wi-Fi) mod-
ule. The module was renamed for two reasons. The first reason is that the cloudnet module also uses Wi-Fi

6
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within the project. Therefore it would become confusing which functionality the Wi-Fi module contains. The
second reason is to stay consistent with the naming convention to name based on their functionality rather
than the hardware they use. The telemetry module retrieves data directly from the sensor server instead of
the database. This is done to reduce the time it takes to fetch the latest data, thus making the data available
quicker. The control module also uses the sensor server instead of the database. The control module requires
high frequency low latency access to the latest data thus making the in-memory data storage of the sensor
server a better fit.

Due to high costs of satellite communication, the cloud communication was only implemented using a
Wi-Fi connection. However, the satellite connection can be added as an additional module, without changing
the existing modules. For reasons similar to the Wi-Fi module, the SatLink module was renamed to Cloudnet.

3.2. Configuration
One of the design goals for the software framework is modularity. In order to make the software platform
modular, we tried to make all the modules as configurable as possible. For example, if a new sensor is added
to the vessel it is added to the configuration file and does not required any change to the program. The
configuration file is a JSON file that includes the configuration for every module, as well as every sensor. The
configuration file is read at startup to determine which buffers to create, which tables to create, which CAN
messages to expect, etc.

The software was designed to work dynamically based on the configuration. This creates some challenges
because the configuration is not known at compile-time, thus requiring a multitude of configuration lookups
throughout the program. We have implemented a separate configuration module that handles the parsing
of the configuration file at startup, as well as provide classes with fast storage and lookup of configuration
parameters that are required throughout the program.

The sensor server is one of the classes that is heavily dependent on the configuration, the configuration
specifies which CAN messages to expect and how to decode them. Another class that relies heavily on the
configuration is the database. The database creates tables for all the sensors and instructions that are speci-
fied in the configuration. Other uses of the configuration file include the file path of the database file, selecting
which sensor data to send to the cloud storage and the interface to use the CAN messages.

3.3. CAN Driver
The communication with the CAN interface has been implemented in a separate module. The CAN driver
is implemented using SocketCAN, which is a CAN network stack available in the Linux kernel. SocketCAN
provides a way to communicate to a CAN bus over supported CAN transceivers using sockets. The CAN driver
module provides several data structures to simplify the communication of CAN messages throughout the
program and reduce the dependency on the underlying SocketCAN implementation. A CAN frame consists
of several parts: an identifier, a field holding the amount of data bytes, and the actual data bytes. The identifier
can be seen as the address of a CAN frame. The remaining two fields specify the number of data bytes, and
the data bytes.
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A CAN frame is converted to a CANMessage object consisting of a CAN identifier and a CANData object
holding the byte array, which is zero-filled up to eight bytes. The CANData object has the functionality to
interpret a set of bits within the byte array as one of the following data types: boolean, integer, unsigned
integer, floating point, and double precision floating point.

The interpretation of the data in a CANMessage is done by the sensor server when it retrieves the CANMes-
sage object from the CANDriver and converts it to a BufferData object. The BufferData object is inserted
into the Sensor Server’s buffers. The data bytes are decoded according to the parameters specified in the
configuration file.

The CANData class also has methods to create a byte array from on a set of fields. These methods are used
to construct a CANMessage from a BufferData object in order to transmit it using the CAN driver.

The CAN driver module provides methods to receive CAN frames from the CAN bus as well as send CAN
frames to the CAN bus. However, it does not interpret or use the data. The CAN driver is deliberately kept as
small as possible to separate the device-specific, platform-specific code from the rest of the program.

3.4. Sensor Server
The sensor server module is the central module of the program. The sensor server’s task consists of storing
sensor data, storing instructions and providing access to the stored data as well as transmit and receive data
to and from the CAN interface.

3.4.1. CAN messages
The sensor server’s worker periodically retrieves new CAN messages from the CAN driver module. Every CAN
frame that is received from the CAN driver module is decoded according to the configuration parameters that
exist for every CAN ID. If a CAN frame is received with an unknown CAN ID it is discarded. The configuration
of a CAN ID includes which fields exist within the eight byte byte-array of the CAN message and what data
types the fields contain. A CAN message has been visualized in figure 3.3.

Figure 3.3: A CAN Message. Each block represents a byte.

The configuration file contains the information on how to decode a CAN message. The fields do not have
to conform to their actual size, for example we can have a 10 bit unsigned integer. The fields can start on any
bit within the byte array, so we can have a byte array with 2 booleans and 2 unsigned integers, one of 10 bits
and one of 20 bits in the first 4 bytes of CAN message. A schematic representation is given at figure 3.4.

Figure 3.4: Data within a CAN message. Each block represents a byte. The first four bytes are split into their corresponding bits.
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The sensor server has two types of sensor data buffers. One buffer is holding the last 40 CAN messages
that are received, regardless of their CAN ID. The second type of buffer is a separate buffer for each CAN ID
and holds the last 40 CAN messages for each CAN ID.

After a CAN message is parsed into a BufferData object it is inserted into the global buffer and into the
corresponding separate buffer. The buffers are implemented using doubly linked lists so when the buffer
deletes the oldest entry it does not require moving the remaining elements.

The sensor data buffers are used to supply the rest of the modules with the sensor data that was received
over the CAN bus.

3.4.2. Instructions
Similarly to the sensor data buffers there is a global instruction buffer, and for every instruction type there is
a separate buffer. The global instruction buffer is used to maintain the strict ordering of the instructions. The
separate buffers are used by the control module to obtain the latest instruction of a specific instruction type.

The instructions are inserted into the buffers by the DatabaseLogger, which periodically searches the
database for new instructions and inserts the new instructions into the buffers of the sensor server.

The instructions are kept for up to two hours, after which they are deemed outdated and are thus removed
from the buffers. The messages are removed from both the global buffer and the separate buffers simul-
taneously. The instructions are available to the control algorithms without accessing the database, greatly
reducing the load on the database as well as minimize latency.

3.5. Control
The control module is a framework that can be used to easily implement control algorithms. The function-
ality, such as the creation of a thread and starting and stopping the threads, are provided by the interface
class IControl. To verify that the framework is functional and that it succeeds in creating an easy to use
framework for creating control algorithms, we implemented a basic PathFinding control algorithm.

3.5.1. PathFinding
The PathFinding algorithm fetches the goto instructions from the sensor server to fill a list of set points to
which the vessel must travel. The PathFinding algorithm calculates the correct heading and speed for the
designated path and sends the heading and speed to will
adjust the heading and speed of the vessel accordingly.

3.5.2. InstructionPrinter
To test the communication of instructions using the cloud server we implemented theInstructionPrinter.
The InstructionPrinter was used to visualize the received instructions by periodically checking the cur-
rent instructions in the sensor server’s buffer and logging them to stdout. While this is obviously not a con-
trol algorithm, the IControl framework made this debugging feature very easy to implement and thus proves
that the framework succeeds in its goal to provide an easy-to-use framework for implementing control algo-
rithms.

3.6. Database
The database module is used to log data to persistent storage.

The database module provides
the program with all the methods necessary to use and access the database.

Every sensor that is configured to be logged to persistent storage is inserted into the database by the
DatabaseLogger. The interval at which sensor data is logged to the database can be configured in the con-
figuration file.

The Cloudnet module requests new instructions from the cloud server and inserts the new instructions
into the database. The DatabaseLogger will periodically read the instruction tables to determine if there
are new instructions. If there are new instructions the DatabaseLogger will insert the instructions into the
Sensor Server’s buffers.

The location of the database file is configurable in the configuration file, it is therefore possible to put the
database on external storage such as an SD card. The database is automatically created when it does not exist
so the SD card can be safely removed. When the SD card is removed the database file can be examined and
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the data can be analyzed using programs such as Matlab [12].

The configuration of the database is completely dynamic, the sensors and instructions that are in use by
the system are read from the configuration file and the tables are created accordingly. The database automat-
ically creates tables that do not exist. A new sensor can be added to the configuration file and the database
will automatically create the tables to accommodate the new sensor without requiring manual intervention.

3.7. Cloudnet
The Cloudnet module is responsible for the communication between the external cloud database and the
embedded database. The module is split up into different submodules in order to keep a clear separation
between the different functionalities. This makes sure that the cloudnet module modular. It also makes it
possible to test each functionality independently from each other. The submodules are the filter, the embed-
ded database connector, the connection/driver and the cloud connector.

(a) Diagram of the interaction between modules for getting
instructions from the cloud into the embedded database.

(b) Diagram the interaction between
modules for sending sensor data
from the embedded database into
the cloud.

Figures 3.5a and 3.5b show how the different submodules interact with each other. A description of each
submodule is given in the subsequent subsections.

3.7.1. Filter
The filter keeps track of which values of the embedded database are synchronized with the cloud server. It
keeps track of the time when the values were either put into the database or when the values were send to the
cloud server. This information can then be used by other submodules to figure out what data still needs to be
synchronized.

3.7.2. Embedded database connector
The embedded database connector is responsible for getting the sensor data out of the database that needs
to be send to the cloud server. However, not everything that is stored in the database is needed in the cloud
server. Therefore, this submodule can be configured to select only a specific set of sensors. This can be
specified further by configuring what kind of data from those sensors needs to be send. There is also a config-
uration for specifying how much time there at least need to be between subsequent sensor data. If this time
is too short, then this data is not retrieved from the database.

The second responsibility of this submodule is to put instructions into the embedded database. This sub-
module inserts the data of the instruction into its own table. It also inserts a reference in a global instruction
table which can be used to find the new instructions and their corresponding values.
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Figure 3.6: The decision tree for the HTTP telemetry server. The end state corresponds with the server sending the response back to the
client.



4
Reflection

In this chapter, we will reflect on the final product. First, we will discuss the ethical implications, as a result
of our product. Second, we will make recommendations based on our experience with the development, to
support the company in future developments.

4.1. Ethical Implications
The intent was to build a very modular and extensible platform that can be used for any sensor and any use
case by changing the configuration file and implementing new control algorithms. The extendibility of the
platform also means that it can be used for different purposes than it was originally designed for. While it
is possible that the platform is used for nefarious purposes, it is not intended to be used for such causes.
Because the purpose of the vessel is mostly determined by the control algorithms and not influenced by the
capabilities of the framework we conclude that it is up to programmer of control algorithms to determine
whether the control algorithm provides functionality that is usable for either good or evil.

4.2. Recommendations
To support the company, SeaState5, with future projects and developments with the Eagle, we would like to
add some recommendations based on our experience with the development of the product. Those recom-
mendations will contain possible improvements considering the current implementation for our part of the
product, and suggestions to improve the overall product.

4.2.1. CAN driver
The CAN driver module is an essential part of the program, it provides the program with the functionality to
communicate over the CAN bus. In the future, it might seem more feasible to communicate over different
technologies, such as PROFIBUS [13] or Modbus [6]. The CAN driver module should be rewritten to imple-
ment a common Bus Driver class to make the implementation of bus drivers in the future easier.

The CAN ID is often used as the unique id identifying a sensor or instruction type. To make the framework
more universal every sensor should be given an unique ID that is not dependent on the technology that is
used.

4.2.2. Sensor Server
During the development process the design of the modules changed, where the database as a central module
was replaced by the sensor server due to performance requirements. The in-memory approach of the Sensor
Server’s buffers was preferred over the on-disk approach of the database. This choice also meant that not all
data had to be stored in the database, but only a fraction of the sensor data had to be written to the database.

The functionality that was added to the Sensor Server to implement this change in design made the Sensor
Server a very large and complex module. Several parts of the Sensor Server can be viewed as autonomous
components, and as a result, those parts could be removed from the Sensor Server class and instead moved
to their own class. Splitting up the sensor server would contribute to a module that is easier to extend, test
and maintain.

14
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4.2.3. Cloudnet
The cloudnet module was initially designed for using satellite communication by an unknown software method
because these methods differ by satellite hardware. Because of this uncertainty, a special object named
DataTable was made to hold information received from the hardware. Then, the driver implementation of
this hardware only needed to convert from its own data type to a DataTable. However, since it is currently
designed to use with a HTTP cloud server this object could be replaced by a JSON object. This will reduce
some code in both cloudnet but also the database module since that needed to construct a DataTable for
the cloudnet module. This will also create some more consistency because all the other modules use JSON
objects for communication with the embedded database. The framework already includes a specific JSON
parser named "JSON for modern C++".

Another recommendation is improve the cloudconnector. At the moment, it is designed to be able to
switch between Wi-Fi and satellite communication automatically. But this submodule cloud connector is
missing this functionality. Also it is very complex to keep track of which connection is online, which one
is stable etc. A better way would be to switch from a satellite connection to Wi-Fi by using a configuration
option. This way you could still test with Wi-Fi but also use satellite communication without having the
recompile the code.

The final recommendation is to take advantage of the fact that sending/retrieving from the cloud server
and sending/retrieving from the embedded database is done in separate modules. Those modules could be
run in different threads so that data could be pre-fetched from the embedded database in one thread, and
sending to the cloud server in another thread. This can reduce the time of getting the data into the cloud
server in case the satellite connection is unstable.

4.2.4. Telemetry
It is recommended for the company to develop their own client to interact with the HTTP telemetry server. As
stated in section 3.8, the development for the client has not been included within the scope of this project. To
support the company with the development, there are two decisions made within the project. First, the server
requires the HTTP protocol. Because of the wide use of the protocol, the company would be able to develop
their own client by using a variety of languages. Thus, it is recommended that the company develops a client
using a language which is best known within the company, allowing easy and fast development. Second,
there is a client example to support this development. It is also recommended to create a graphical user
interface for the client. This would improve usability for those who are unfamiliar with the program, or using
command lines in general.

It is recommended to recreate the custom HTTP error messages for the HTTP telemetry server, as the
current implementation is rather basic. This allows the client to read the information, and by reading it, to
recover from its mistake. From a designing standpoint, changing the current error messages by using the
corporate identity allows the client to recognize the error message as part of a SeaState5 product line.

Considering the current implementation.
The telemetry server only uses a small portion of the

Additional libraries increases the complete size and complexity of the program, which as con-
sequence increases the building time substantially. it is feasible to
develop a HTTP server for the telemetry server without any dependency from external libraries. In addition,
removing the dependency provides complete control over the HTTP server implementation. The complete
control allows flexibility when it comes to interacting with the other modules, failures to be fixed without
waiting for support from a third party, etc.



5
Conclusion

SeaState5 wanted a modular software framework for the Eagle so that new functionalities, as well as hardware
changes, are possible without major changes to the software. There is no existing software that meets all
the requirements of SeaState5 because the Eagle is newly designed product. The goal of the project was to
develop a modular software framework for the Eagle that can be extended and adapted by SeaState5 in the
future.

The project was executed within the team of SeaState5. The whole process of development, including
working with the other members of SeaState5, turned out to be very educational. SeaState5 has stated clear
requirements for the software framework, however, the implementation for the framework was discussable
during the development. This approach is different from what we have encountered so far and lead to a new
vision on responsibility for the software that we create.

During the project, a fully functional software framework was developed for the Eagle. The software
framework was successfully tested (See appendix D) multiple times using the available, on scale, prototype of
the vessel. The tests proved that the software framework provided all the required functionalities (See section
2.3). The software framework is extendable to provide the vessel with new capabilities, as well as improve
existing capabilities.

The successful tests demonstrate that the software framework provides the functionalities that are nec-
essary for the vessel to operate, as well as providing a possibility to easily extend the functionality by adding
new control modules. The project was deemed a success by SeaState5 and intends to use the framework for
the Eagle in the future. The project was also deemed successful by the team members, since it was able to
comply to all the requirements and design goals set for this project.
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A
Development Process

In this appendix, we will discuss the different aspects of the development process, and the tools to support
and improve it. Each of those aspects will be discussed within the section, named after the used correspond-
ing tool.

A.1. GitLab
In team-based software development, it is very important to keep the code centralized and to implement a
version control system. We have chosen to use git for version control of our source code. Because the code
is proprietary, we used a private instance of GitLab [8] to provide us with an easy to use interface for our git
repository.

A.2. Gitlab CI
Another important aspect of developing in a team is to avoid differences in the build environment that can
lead to a different outcome of code between developers. Building and running all the code quality tools is also
a very time-consuming task that can easily be automated. In this project, we used GitLab CI [9] because it is a
nicely integrated Continuous Integration tool that comes bundled with GitLab. GitLab CI works by attaching
GitLab CI Runners to the GitLab instance and including a .gitlab-ci.yml configuration file to the repository.

When a commit is pushed to the repository, GitLab CI automatically executes all the commands that are
defined in the configuration file. In our case, this included building, testing, static analysis of the source code,
as well as running memory check tools such as Valgrind. We used a docker image to run and test our code,
which made sure that the build environment was clean and consistent. Several private servers were used as
GitLab CI Runner so that every push to every branch of the source code can be built and tested in a timely
fashion. Because GitLab CI is an integrated component of GitLab, GitLab also provides a nice interface that
automatically shows whether a commit has failed or passed and provides with a detailed log file for every
build.

The use of GitLab CI has proven itself very valuable because it helped finding configuration issues of local
build environments numerous times. It also made sure that all code that was merged into the master branch
was of good quality and prevented the breaking of the master branch.

A.3. Google Test
The project used C++ as the programming language. Unfortunately, the support for code quality tools of
C++ is lower than other languages, such as Java. We’ve searched for a good unit testing framework for C++
and ended up with Google Test [10]. After some adjustment, the Google Test Framework provided us with a
valuable way to test our code. We have aimed to have at least 100% line coverage and 80% branch coverage of
our code.

A.4. Valgrind
Valgrind [4] is a memory checking tool that spots memory allocation and de-allocation errors, such as mem-
ory leaks or the use of non-initialized values in C and C++ programs. Because we are programming with
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limited hardware on an embedded platform, it is crucial that the program is as efficient as possible, which
includes the use of pointers and other shared-memory constructs. Such memory constructs improve the ef-
ficiency but also increase the complexity of the memory management. To prevent memory leaks and other
memory management related bugs, we used Valgrind to spot these errors. Valgrind was automatically run by
the Gitlab CI Runners on every commit.

A.5. Vera++
Vera++ is a static analysis tool that can be used to check for style violations in the source code [18]. In this
project we used Vera++ to check for code style violations. Vera++ was automatically run on every commit by
the GitLab CI Runners.

We have chosen to adopt the Stroustrup code style [16]. Stroustrup is an indent style developed by the cre-
ator of C++, Bjarne Stroustrup. Stroustrup allows, among other things, the opening braces for blocks within
functions to be at the same line, and short functions to be written within one line. Strousup creates clear
visible code, without demanding many additional lines.

A.6. CppCheck
CppCheck is a static analysis tool that can be used to check for common bugs in the source code [11]. Cp-
pCheck does not check for syntax issues or code style issues. Instead, it checks for common mistakes such as
out of bound checking, memory leak checking, possible nullpointer references, etc. CppCheck was also run
on every commit by the GitLab CI Runners.

A.7. SonarQube
The GitLab CI system was used to automatically test every commit that was pushed to the GitLab repository
using the Gitlab CI Runners. The Gitlab CI Runners would automatically run numerous tools that check and
test the code quality. The tools were all configured to generate XML files with the results of their analysis. The
resulting XML files were fed into SonarQube [15] to generate a global overview.

SonarQube is an open source platform for continuous inspection of code quality. SonarQube is capable of
visualizing the analysis results into a web based overview. The overview contains all sorts of metrics regarding
the quality of our code. The results of all the inspections that were run by GitLab CI Runners were available
to us in a clear and uncluttered way.

A.8. Trello
Trello [3] is a web-based project management application. The tool allows so called boards to be made, where
lists can be added to. Within a list, a card can be created which contains information like a description,
the ownership, a deadline, etc. While originally created to visualize Kanban, an agile software development
method, it support all kinds of management methods which requires the visualization Trello offers.

We used Trello to visualize our own software development. For our development, we choice SCRUM
as the method, which is another agile software development method. The choice has been made, besides
its popularity within current developments, because the practices of SCRUM are familiar with us and the
employees from SeaState5.

To visualize SCRUM [1] within Trello, the trello board has been transformed into a SCRUM board. This
can be easily done by using the lists to represent the columns TODO, in progress, and DONE. Each card will
then represent a sprint. The cards are able to switch between list, thereby representing the switching from
columns in SCRUM.

A.9. Doxygen
Documentation is an important part of developing software. Documentations creates a clear vision of the
functionalities of the created functions, and the relation between those, without the viewer having to read the
source code. The additional visibility allows outsiders, newcomers to the project, or even current developers,
to quickly understand the project. The importance of documentations will become noticeable as the project
will increase in complexity during the development.

Documentation will be done in this project using Doxygen [17]. Doxygen is a documentation tool de-
signed to be used on C++ programs, but can also accept other languages such as Java and Python. The benefit
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of Doxygen is that the documentation is maintained in source and is thus always up to date with the current
implementation of the code. The Doxygen tool creates external documents based on the source documen-
tation for easy navigation and access through the documentation. Doxygen is also capable of generating the
relation between functions and classes, by generating amongst other things an UML of the project.



B
SIG

In this appendix, we will discuss SIG. SIG (short for Software Improvement Group) is a company that special-
izes in controlling code to give insight and uncover potential flaws into a project. Using testing metrics, SIG
creates a report with explanation on what may be wrong with a project’s code and how those issues could be
avoided in the future.

As part of the project, our code had to be sent to SIG for evaluation. In the next session, SIG’s initial feed-
back can be read. After the first evaluation, we were given approximately 3 weeks to edit the code according
to the feedback, which had to be re-sent to SIG for a second time afterwards. The evaluation, found below in
section B.1, is translated from Dutch to English.

B.1. Evaluation
The system’s code scores 3.5 stars on our maintenance model, which means that the code is above-average in
maintainability. The highest score hasn’t been achieved due to a lower score for Unit Complexity.

For Unit Complexity, we monitor the percentage of methods in the code that are above-averagely com-
plex. Splitting such methods into smaller parts leads to an easier understanding, easier testing and easier
maintenance of these methods.

In your project, for example, the method SensorLogger.parse_can_msg is unnecessarily complex. The
bit to_uint32((uint) d->get_bit_start(), (uint) d->get_bit_end()) appears in every case of the
switch-statement, so that it can be then converted to the right type. When it comes to readability, it is better
to execute that bit of code once, to avoid remaining with a gigantic switch-statement.

In SensorData.cpp, something similar to the aforementioned can be seen. In that class, it’s also advis-
able to separate the shared code, which not only will result in increased readability, but also will make it easier
to edit that code in the future (that way, you only have to edit the code once, rather than edit it six times).

At least, the presence of test-code is promising. Hopefully, the volume of test-code will increase as more
functionalities are added to the project.

Overall, the code scores above-average. Hopefully, this score can be maintained throughout the remain-
der of the development phase.

B.2. Improvements
The suggestions of SIG were incorporated into the existing code base and were also applied to new code. The
main point of the SIG evaluation was code complexity. The second point of the SIG evaluation was test code
volume. We will address the points of the SIG evaluation below.

B.2.1. Code complexity
The SensorLogger, which is currently called the SensorServer, was rewritten to create a better solution for
decoding and encoding of CAN messages. In the rewritten code the complexity of the method is drastically
decreased by delegating (complex) tasks to other methods.

Other complex classes throughout the program were also refactored to create a code base that was easier
to test, due to smaller functions, and easier to extend because the functionality can be reused when it is
needed elsewhere.
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The public API of several classes have been altered to handle complex code within the class and provide
simple functions to access the complex functionalities. The retrieval of fields from a CANData object is one of
the examples.

B.2.2. Test code volume
The second point of SIG was that the presence of test code was promising and that SIG would like to see the
volume of test code increase as new functionality is added. The volume of test code has increased linearly
with the amount of production code, as the (relative) test coverage remained the same. We aimed to achieve
100% line coverage and 100% branch coverage. During the project we found that the available tools for C++
code coverage all suffered from erroneous branch reporting due to branches added by the compiler. The
exact branch coverage was therefore difficult to determine but we have succeeded in 100% line coverage in
most of the code.

As described in chapter A, we have embedded the use of several code quality tools into our development
process. All the tools reported their findings to our SonarQube server which created an aggregated report.
During the rest of the development process, we continuously checked the SonarQube reports to improve our
code.



C
Project Description

In this appendix, we will give the project description from BEPSys, stated by the company, SeaState5. This is
an direct copy from the original text, only altered to fit the current format.

C.1. Project Description
Will you join our team of pioneers to build a revolutionary unmanned vessel? And contribute by developing
a framework for the control algorithms of this vessel?

Together with SeaState5; an innovative Yes!Delft company, you will be part of the development of the core
tech for our autonomous vessel, called the Eagle. Our vessel will be used in applications such as hydrographic
survey, environmental monitoring, search and rescue (SAR) and maritime safety.

Together with experienced control system-, mechanical-, and maritime- engineers you will develop an
application which will run on-board the vessel. The application will be a platform with two purposes; it
will be able to implement algorithms for executing core tasks; such as navigation, path and heading control,
object detection. Depending on the complexity the team is free to choose a specific task and implement it in
the developed framework. And secondly serve as a server from which users can remotely view and log data
from the vessel through a user interface. A split will be made between the vessel systems and the payload
systems.

Currently a preliminary design had been made for the hardware components, which will be finalized in
collaboration with the skills from the participating team before the project starts.

C.2. Company Description
SeaState5 has been founded in 2015 and is developing robotic systems for the maritime sector. Among new
installation tools and noise mitigation systems for the offshore wind sector, we continuously develop new
ideas into potential products. SeaState5 has a partnership with the TU Delft’s Robotic Institute, to accelerate
the development of its robotic solution within the offshore renewable sector.

C.3. Auxiliary Information
Are you interested in applying your skills in a fast moving organisation, and test your implemented software
design on our testing vessel, then join our team!

We offer a part-time on-site working environment with free beers on friday ;), and many activities with
the team during the project.
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C.4. Info Sheet

Figure C.1: The original info sheet, given in addition to the project description.



D
Field Test

Multiple field tests have been conducted with a scale model prototype of the Eagle. The field tests extends
over two days. The second test day has been used to improve failures found in the first day. The second day
has been predetermined to be the final test day. In this appendix, we will give the direct copy of the test plan
for the field test, and the results from both days.

D.1. Test Plan
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Test plan control systems ‘Eagle’ – rev 1.0 
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D.2. Results

Figure D.1: The GPS traces of the Eagle, autonomously traveling a course retrieved from the cloud.






