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Abstract

In the field of cooperative multi-agent pathfinding
(MAPF) the optimal set of non-conflicting paths
must be found for a set of agents in a graph. The
addition of waypoints to this problem (MAPFW)
gives rise to the possibility of more complex appli-
cations, such as in vehicle routing, aviation, com-
puter games or robotics. Yet no algorithms have
been proposed that can provide optimal solutions
efficiently in practice. Starting with an established
algorithm for multi-agent pathfinding, A* with op-
erator decomposition and independence detection,
this paper provides an extension to find optimal re-
sults when waypoints are present that the agents
need to visit. This is achieved by altering the
heuristic to make use of a solver of an adapted ver-
sion of the traveling salesperson problem, to cal-
culate the shortest path to visit all the waypoints
for each agent individually. It is then empirically
shown that this algorithm can solve problem in-
stances of decent sizes, and it is compared to an-
other algorithms that were developed at the same
time based by others based on different pre-existing
MAPEF solvers. While the extension of A* is less
performant than alternatives, the difference in per-
formance can be small depending on the type of
problem. Together with the relative ease of imple-
mentation, this means that A* can be an effective
algorithm to optimally solve multi-agent pathfind-
ing problems with waypoints. Additionally, the ex-
tension techniques used to adapt A* to MAPFW
can also be useful to other algorithms that utilise
A* in the context of waypoints.

Introduction

The problem of pathfinding, in the sense of finding a path
that avoids obstacles to reach a goal, is a typical Al prob-
lem, which already had efficient algorithms proposed over 50
years ago, like A* (Hart, Nilsson, & Raphael, 1968). How-
ever, there are many variants of pathfinding problems that
have been proposed since. One such problem is multi-agent
pathfinding (MAPF). In this variation, multiple agents share

the same graph and must reach their destinations without con-
flicts, i.e. ’bumping into each other’.

Even though MAPF is an NP-hard problem (Nebel, 2019),
there exists plenty of research proposing optimal solvers that
run in reasonable time (Grenouilleau, van Hoeve, & Hooker,
2019; Lam, Le Bodic, Harabor, & Stuckey, 2019; Sharon,
Stern, Felner, & Sturtevant, 2012; Wagner & Choset, 2011;
Sharon, Stern, Goldenberg, & Felner, 2013). One of these al-
gorithms is the extension of the aforementioned A* with op-
erator decomposition and independence detection (Standley,
2010). However, for this problem extended with waypoints
(MAPFW) there do not yet exist any fast optimal solvers.
With this variation of the problem, agents each have to vis-
ited a set of waypoints before reaching their goal. Since this
is an extension of MAPF, this problem is also NP-hard and
finding optimal solutions is even more complex.

Solving MAPFW problems optimally would be useful in
many different applications. Many of these applications are
similar to those of regular MAPF, but the addition of way-
points always for more complex problems to be solved. These
include the fields of computer games, robots, aviation, vehicle
routing (Standley & Korf, 2011; Felner et al., 2017) and train
maintenance and scheduling (Mulderij, Huisman, TOnissen,
van der Linden, & de Weerdt, 2020). The addition of way-
points to these problems allows determining optimal routings
in cases where the order of points is not important. In the
case of vehicle routing and scheduling this might mean visit-
ing different stops for maintenance in no particular order on
their way to a goal. With robotics this could mean planning
the movement of multiple robotic arms in a manufacturing
process to perform tasks at multiple different locations.

We will propose and extension for waypoints to A* with
operator decomposition and independence detection and de-
termine whether this is an effective algorithm for solving
MAPFW problems. To determine this, the extension will be
empirically compared to different both optimal and heuris-
tic algorithms for MAPFW based on different pre-existing
MAPF solvers that were developed by others simultaneously.

This paper first gives a formal problem definition of multi-
agent pathfinding problems with waypoints. Then the exten-
sion will be described in detail, after which its performance
is evaluated first on its own and then compared to alternative
algorithms. This data is then used to draw conclusions on the
effectiveness of the extension of A* for MAPFW and whether



Figure 1: Example problem instance instance.

the findings are useful for other MAPFW implementations.

Problem formulation

The formulation of the multi-agent pathfinding with way-
points problem, closely resembles that of the variant without
waypoints. (Standley, 2010) The MAPF problem is defined
by an undirected graph G = (V, E) and a set of n agents la-
beled a1, as, ... a,, where each agent a; has a start and goal
vertex s;,g; € V. Time is represented in discrete steps, for
each of which each agent moves from a vertex vyrom € V
to a vertex vy, € V, given that (vgyom, Vo) € E, where it is
also possible that vf,om = Vo, corresponding with an agent
waiting at their vertex. The path P; of an agent a; is rep-
resented as a list of vertices v; o, v;1,...v; 7 for each time
step until some time 7', where v; o = s; and v; 7 = ¢;. The
solution is the set of paths for each agents, which is valid if
no conflicts occur. A conflict exists between some agent a;
and a; in two cases: a vertex conflict or an edge conflict. A
vertex conflict occurs when at some time ¢, v; ; = v; ;. If the
movement during this time step of the agents is represented
as (Ui, from, Vit to) a0d (Vj ¢ from,Vj.tt0) an edge conflict
occurs when v; ¢ 1o = Vji ¢, from and Vit from = Vjt 0. The
goal of MAPF is to find the optimal solution, i.e. one with the
minimal sum-of-costs, which is the sum of the length of each
agent’s path.

For MAPFW, waypoints are added to this problem as a set
W; C V for each agent a,;. The solution is then constrained
by requiring Yw € W, that w € P; for each agent a,. This
means that each agent must have visited all their respective
waypoints at least once.

In order to compare the solver proposed in this paper with
others, a 4-connected grid for G is used. Using a grid for the
graph allows easy comparison with existing literature, where
grids are used extensively for pathfinding problems. While
grids closely relate to real-world pathfinding problems, as one
can be imposed on a map to plan movement (Yap, 2002), it
is still an abstract representation that allows the focus to be
on the algorithm itself rather than a specific application. In
this grid, some vertices and their respective edges may be re-
moved, allowing the restriction of the movements of agents.
to backupn example of a problem instance can be seen in Fig-
ure 1, where start vertices are denoted by squares, goal ver-
tices by flags and waypoints by crosses.

Base algorithm

To solve the MAPFW problem, a pre-existing MAPF algo-
rithm will be extended, namely A* with operator decomposi-

tion and independence detection (Standley, 2010). A* works
by selectively choosing which nodes to extend while search-
ing in such a way that it is guaranteed that a node is reached
with the lowest cost. In the case of MAPF these nodes rep-
resent the positions of all the agents. Each node can then be
extended to all possible nodes that are new valid positions of
all the agents. With n agents and %k legal moves per agent,
this results in the creation of £™ new nodes upon expansion.

Each node has a certain cost (g()), which in the case of
MAPF is the sum of the length of the paths of all agents up to
that point. A* guarantees that the cost a node is optimal once
it is visited by this algorithm. To ensure this, the expansion
of nodes is prioritised based on the lowest f()-value, which
is defined as f() = g() + h() where h() is a heuristic for the
cost still required to reach the goal state from that node. Opti-
mality is achieved when this heuristic is admissible, meaning
that it never over-estimates the cost.

Operator decomposition

The aim of operator decomposition is to decrease the size of
the search space. In the case of the 4-connected grid that is
used in this paper, there are up to 5 possible moves for each
agent at a given time step. This means that given n agents for
every node that is expended over the run time of the algorithm
5™ new nodes are created and enqueued. With larger numbers
of agents this exponential increase results in a great number
of nodes being expanded that might not even work towards
the goal state, i.e. have a lower heuristic.

Operator decomposition negates this problem by treating
each agent individually. When a node is expanded, all the
moves of only one agent are considered, meaning the search
tree is extended by only 5 nodes at a time. Then the regular
A* approach is applied to find the next node to expand, i.e.
the one with the lowest f() value. This means that for a given
node, some agents might be in a state where they have not yet
been assigned a move for that time step. To ensure that all
moves are considered, it is also possible for agents to move
into the vertex currently occupied by an agent which can still
be moved during that time step, as long as that other agent is
then in fact moved when its node is expanded.

This can best be illustrated with an example as shown in
Figure 2. Here the expansion from a node A can be seen.
Since agent 2 has not yet moved, all 5 options for expansion
are still possible by agent 1, resulting in 5 new nodes. How-
ever, in the case of node D, where agent 1 has moved to the
vertex of agent 2, this means that agent 2 now only has 3 new
possible nodes, since a wait is not possible as agent 1 can no
longer move this time step and a move up would result in an
edge crossing conflict.

Independence detection

The power of independence detection lies in the fact that of-
ten the multi-agent problem can be seen as a single-agent, or
fewer-agents, problem without conflicts. This means that the
pathfinding problem is first solved for each agent individually.
Only when conflicts arise between them are agents grouped
together, and is their solution computed cooperatively as de-
scribed before with A* and operator decomposition. When
conflicts arise between groups of agents, the same principle
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Figure 2: Example of node expansion using operator decomposition.

is applied, and groups are merged together and then solved
cooperatively.

Before (groups of) agents are merged, first an attempt is
made to find an alternative solution that does not conflict. Ad-
ditionally, to avoid conflicts so-called conflict avoidance ta-
bles are used, which keep track of how many conflicts a group
of agents has with other groups. This table is a collection of
the current path of all the agents, meaning also the agents
that are in different groups. When expanding nodes in the A*
search, conflicts within the same group are not allowed, how-
ever conflicts with the paths of agents in other groups might
occur. The number of conflicts that occur with these agents
from other groups are counted for each node. The nodes with
lower conflict counts are then expanded first to avoid having
to merge different groups later on in the independence detec-
tion algorithm.

This results in Algorithm 1 for independence detection.
Note that this is not a solver on its own, but it simply calls
the aforementioned A* solver with operator decomposition
to solve sub problems.

Extension with waypoints

To adapt the base algorithm to solve problems with waypoints
it has to be extended in two major ways. Firstly, nodes in the
A* search need additional information to keep track of which
waypoints have been visited. Second, the heuristic used to di-
rect the search needs to be changed. This heuristic is used to
estimate the cost required for a single agent to reach its goal
vertex (vg) from the location it is at for the node for which
the heuristic is calculated (vg). The sum of these heuristic
values is the heuristic for a node. There are many ways in
which this heuristic can be implemented. As long as the cost
is never overestimated, the heuristic is admissible and will
thereby ensure an optimal solution to the problem. This sec-
tion will explore two approaches to calculate such a heuristic.

For both of these approaches the distances between ver-
tices are required. At the start of the algorithm distance maps
are created from all waypoints and the goal vertex to all other
points on the grid using breath-first search. While the Man-
hattan distance could be used as well, this was not done to

Algorithm 1 Independence detection (Standley, 2010)

1: assign each agent to a group with just that agent

2: cooperatively plan a path for each group

3: fill conflict avoidance table with every path

4: while conflicts occur do

5. simulate path until a conflict between two groups G
and G5 is found

6:  if groups have not conflicted before then
7: fill illegal moves table with path of G2
3: find another path with same cost for G;
9: if failed to find alternative then
10: fill illegal moves table with path of G
11: find another path with same cost for G5
12: end if
13:  endif
14:  if failed to find alternative path then
15: merge (G; and G into a single group
16: cooperatively plan new group
17:  endif

18:  update conflict avoidance table with new paths
19: end while
20: return paths of all groups combined

ensure the algorithm would be easier to adapt to graphs other
than grids.

Minimum spanning tree

The heuristic needs to estimate the cost of a single agent
traveling from v, to v, via the vertices of all unvisited
waypoints, which we will call v,,, for all w; € W if w;
has not yet been visited at the current node. The vertices
{Vs, Vg, Vg, Vuy» - - - s U, } can be used as the vertices in a
new complete graph Gy where the cost of these edges is
equal to the distance between the vertices in G (the graph of
the main MAPFW problem). Since the heuristic only needs
to guarantee that the cost it finds is not an overestimate it is
possible to take the cost of the minimum spanning tree (MST)
of G'7. By definition of a minimum spanning tree, there is no
way to connect all the vertices in the graph with a lower cost,
so this heuristic can never be an overestimate. This estimation
does not take any other agents into account, as these conflicts
can never decrease the actual cost.

Travelling salesperson problem

Another possible heuristic is to ensure that the heuristic is
correct with regards to a single agent. This means that for any
vertex its heuristic is the shortest distance via all unvisited
waypoints to the goal vertex. The result of this heuristic is
that the A* expansion is only used to resolve conflicts with
other agents, as the algorithm can simply follow the heuristic
when no conflicts occur.

With an increasing number of waypoints, calculating this
heuristic becomes increasingly difficult. The shortest path is
obtained by running an adapted version of a dynamic pro-
gramming solver for the traveling salesperson problem (TSP),
which is known to be an NP-hard problem (Laporte, 1992).
Since this algorithm practically works up to around 12 to 15



nodes, no better can be expected from the extension from
MAPFW, since the heuristic is calculated frequently.

Since computing the optimal path via all waypoints is so
computationally expensive, it is worthwhile to store the re-
sult as efficiently as possible. When an agent is moving to
a waypoint, the heuristic needs to be calculated repeatedly,
while the set of visited waypoints does not change. To take
advantage of this, the heuristic is not directly calculated from
vs, but rather from all v, to v, visiting all other v,,; as long
as ¢ # j. The result of this calculation does not change as
long at the agent does not visit any waypoints, allowing the
values to be re-used. To attain the heuristic from vy, we can
utilise the results from this calculation along with the remain-
ing distances to all waypoints. By simply adding the values
calculated for each waypoints with the distance to this way-
point and taking the minimum of this combined value for all
unvisited waypoints, we get the heuristic for vg. Algorithm 2
describes how the heuristic is implemented.

Algorithm 2 TSP based heuristic calculation

d(vg,vp) + distance map from v, to vy
W < set of waypoints that have not yet been visited
if W = () then
return d(vs,vg)
end if
path(w;) « calculate the path lengths of each w; € W
to v, via all waypoints in W — {w}
7: return min(dist(vs, vw,;) + path(w;)) for all w, € W

SARNANE A oy

The dynamic programming approach has an additional
benefit with Algorithm 2. As it calculates the shortest path
to all waypoints in one go, it is possible to find the distance
to the goal from each starting waypoint’s vertex at once. This
means that only one call is required to the path(w;) function
for every time Algorithm 2 is performed.

The most computationally expensive part of this calcula-
tion, finding the shortest way through all the remaining way-
points, can be cached effectively. The calculation of the
path() function, as shown on line 6 of Algorithm 2, only
depends on the waypoints that still need to be visited by an
agent, we call this set of waypoints W. By keeping a cache
hash-map, of which the key is WV, the heuristic only needs to
be recalculated once a new waypoint is visited by an agent.
Because the heuristic only considers a single agent, it is pos-
sible to retain the caching between different runs of the inde-
pendence detection algorithm.

Since dynamic programming is used to solve this subprob-
lem, it would also be possible to store all possible values of
W when the calculation is made for the case where W is all
the waypoints. However, since the order in which the way-
points will be visited is not known ahead of time, this would
mean that 2/ entries would need to be stored in this pre-
computed table, which would need to be searched for every
new heuristic calculation.

In applications where agents share a large subset of way-
points, it could be worthwhile to implement caching across
different agents. However, if these agents do not share the
same goal vertices, care would have to be taken to account

for this. One possible approach would be to calculate the
shortest distance from all unvisited waypoints, to all unvis-
ited waypoints via all other unvisited waypoints. This would
result in a large matrix for each set of unvisited waypoints.
Experiments could determine whether this leads to increased
performance. Since this research does not focus on cases with
shared waypoints, the additional caching is not implemented.

Node expansion prioritisation

In the paper describing the extension of A* with operator de-
composition and independence detection (Standley, 2010) it
is mentioned that it is preferable to prioritize the expansion of
nodes with a lower heuristic value before prioritizing based
on the number of conflicts based on the conflict avoidance ta-
ble. (This is of course after prioritizing based on the f() value
used by A*, to ensure optimality of the solution.) Testing re-
vealed that this is not the case for the extension to MAPFW
problems, so this is further empirically evaluated in the Ex-
periments section. If nodes are first prioritized based on the
conflicts, and then based on the heuristic, a larger fraction of
more complex problem could be solved.

Experiments

Experiments were performed on an Intel Xeon Gold 6248
CPU @ 2.50GHz using a Python 3 implementation of the ex-
tended algorithm as described before. The problems were
generated randomly similarly to the generation previously
used in MAPEF literature (Silver, 2005). 20% of the vertices
on 32x32 grid were randomly marked as walls, independent
regions were also filled with walls. The agents start, stop, and
waypoint vertices were randomly chosen from the remaining
non-wall vertices. This choice was made to more easily com-
pare results to those in previous literature.

These experiments where performed to give an indication
of the performance of the implementation as well as to test
two implementation choices. First, the performance differ-
ence of using a TSP-based heuristic over the MST alterna-
tive is shown. Second, the impact of prioritising avoiding
conflicts over a lower heuristic during the A* expansion is
evaluated. Third, an empirical evaluation is performed using
an implementation with the best combination of these two
choices to show the ability of the algorithm to solve MAPFW
problems.

Heuristic

Implementations of the extension using MST and TSP were
run on random grids as described before. Problem instances
were generated with an increasing number of agents per in-
stance for 5, 10 and 13 waypoints per instance. Per difficulty,
i.e. the number of agents, 50 such random instances were
generated. The algorithms were then run to see how many
of the problems could be solved within 20 seconds and how
fast this was achieved. These numbers were chosen because
experimentation revealed that these numbers gave meaning-
ful results for most algorithms while still having a reasonable
total run time.

The results of running these two version for 5 waypoints
can be seen in Figure 3. For more waypoints per problem



100%

80%

60%

40%

20%

Fraction of problems solved in 20s

0% ¢ —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of agents per problem instance

MST TSP

Figure 3: Fraction of random problem instances with 5 waypoints
that could be solved using a heuristic based on TSP or MST.

instance the ability to solve problems decreased even fur-
ther, with the MST-based alternative being able to solve 20%
of the instances at just 2 agents, while this point was at 10
agents for the TSP-based version. Additionally, of the prob-
lems that were solved within the timeout by both alternatives,
the TSP-based alternative was able to solve them on average
20x faster.

Node prioritisation

The same benchmarks that were performed for comparing
the two alternative means to calculate the heuristic, were per-
formed for the different orders of prioritising node expansion.
The prioritising a low conflict could could consistently solve
problem instances with any number of agents and waypoints,
however always by a relatively small margin. On average for
these tests, prioritising lower conflict counts first resulted in
about 20% faster run times. No correlation was found be-
tween the number of agents and waypoints in a benchmark
and the performance difference between these approaches.

Performance evaluation

To analyse the performance of the extension based on the
aforementioned TSP heuristic and prioritising conflict avoid-
ance, the implementation was run on increasingly difficult
problems on a 32x32 grid, where difficulty is interpreted as
the number of agents and the number of waypoints each of
these agents has. For each of the problem difficulties, the im-
plementation was run on 100 different instances, and it was
determined whether it was able to solve this problem within
100 seconds. The results of this can be seen in Figure 4.
There are two interesting observations that can be made
from these results. Firstly, there is a point at around 12 way-
points per agent where the runtime of solving the TSP opti-
mally becomes the predominant bottleneck. Since the sub-
routine for TSP runs in exponential time, solving it becomes
impossible in the given 100 seconds. Given more time it be-
comes clear that solving TSP becomes the main bottleneck.
With the results in Figure 4, the same benchmarks were per-
formed with a greater limit for the run time, but only with
5 agents, as this is a point were there seems to be a clear
limit caused by the number of waypoints. As can be seen in

Number of agents
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 |100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 96% 98% 100% 94% 91% 85% 85% 89% 64% 70%

1 |100% 100% 100% 100% 100% 100% 99% 75% 96% 93% 91% 81% 80% 67% 48% 39% 30% 25% 20% 16%
100% 100% 100% 100% 99% 99% 98% 98% 92% 81% 71% 61% 56% 38% 33% 18% 15% 13% 7% 4%
100% 100% 100% 100% 99% 97% 95% 92% 87% 66% 57% 42% 36% 24% 18% 13% 5% 5% 2% 2%
100% 100% 100% 100% 99% 100% 92% 85% 76% 64% 53% 38% 25% 21% 9% 4% 5% 1% 1% 2%

100% 100% 100% 100% 98% 98% 96% 88% 73% 57% 47% 29% 20% 21% 12% 5% 0% 2% 0% 1%

2
3
4
5
6 [100% 100% 100% 100% 100% 97% 87% 81% 66% 55% 38% 30% 9% 10% 6% 4% 2% 0% 0% 0%
7 |100% 100% 100% 100% 100% 94% 89% 73% 55% 49% 36% 16% 10% 10% 3% 4% 0% 1% 0% 0%
8 [100% 100% 100% 100% 96% 89% 86% 80% 44% 43% 36% 25% 15% 6% 2% 2% 1% 0% 0% 0%
9 |100% 100% 100% 100% 99% 88% 90% 67% 54% 47% 24% 15% 6% 0% 2% 0% 0% 0% 0% 0%
10 |100% 100% 100% 100% 96% 95% 78% 71% 42% 43% 24% 14% 7% 6% 1% 0% 0% 0% 0% 0%

11 |100% 100% 100% 98% 97% 86% 80% 70% 44% 28% 13% 10% 1% 1% 0% 0% 0% 0% 0% 0%

Number of waypoints

12 |100% 100% 100% 99% 90% 65% 50% 26% 8% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
13 |100% 98% 88% 48% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
14 |97% 44% 6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
15]31% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16| 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
17| 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
18| 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

19 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

20 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Figure 4: Fraction of 100 random 32x32 problems per difficulty that
could be solved using a TSP heuristic within 100 seconds.

Figure 5 adding more run time allows problems to be solved
with more waypoints, however there is a sharp increase in
the required time when the number of waypoints increases,
indicative the exponential nature of solving TSP, which is ex-
ponential only in terms of the number of waypoints.
Secondly, adding any waypoints at all makes the problem
much harder, even for small numbers of waypoints. This can
be seen clearly in Figure 6, which looks just at the solve times
of 4 waypoints and less. This can be partially explained by the
fact that the addition of waypoints requires more calculation
for the waypoint, since with one waypoint just the distance
to the goal can be used. An additional explanation is that
adding waypoints randomly will cause the agents movement
to be spread out much more than just the path to their goal,
thus increasing the number of possible conflicts that need to
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Figure 5: Fraction of 50 random 32x32 problems with 5 agents per
instance that could be solved within different timeouts.
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Figure 6: Solve time for random 32x32 problems with uniformly
distributed number of agents between 1 and 20 using a TSP heuristic.

be resolved.

Other solvers

The implementation of the extension was compared to four
other extension for MAPFW that were based on pre-existing
MAPF solvers: CBSW (Jadoenathmisier, 2020), MLA*
(Ferwerda, 2020), BCP (Michels, 2020), and M* (Dijk,
2020). It should be noted that the implementations for these
extensions vary in the languages that were used, which should
be kept in mind when empirically comparing the runtimes
of these different implementations. While the extensions of
CBSW, M* and MLA* were implemented in Python 3, the
extension of BCP was written entirely in C++. However, to
reduce further differences, all benchmarks were performed on
the same system as mentioned in the previous section.

All the alternative extensions, as well as the one described
in this paper, were run on randomly generated problem in-
stances of 32x32 grids and with a different number of way-
points per agent. For a given number of waypoints per agent
the algorithms were run on the same random instances, with
an increasing number of agents in the problem. For each of
these numbers of agents, 50 random problems were gener-
ated, and it was recorded how fast and how many of these
problems could be solved within 20 seconds as well as the
cost of the solution found, since not all extensions guarantee
optimal solutions. These numbers were experimentally cho-
sen to ensure that the difference between algorithms would
be clearly visible, while not being biased. The fraction of
these random problems that could be solved can be seen in
Figure 7. To compare the run times of the algorithms, Fig-
ure 8 shows the time taken to solve each randomly generated
problem instance up to those with 11 agents.

Since CBSW is the only other optimal algorithms that is
also implemented in Python, it is the only algorithm that this
extension can directly be compared with. While the extension
of A* described in this paper performs worse than CBSW, this
performance difference decreases with more difficult prob-
lems (i.e. the ones with more waypoints per agent). The
same observation holds for the run time of the algorithm: the
extension based on A* is slower than the alternative, but this
difference decreases as the number of waypoints per agent in-
creases. It should be noted that the version of CBSW that was

used for the comparison has not been proven to be optimal,
although this is assumed.

Since MLA* and M* do not guarantee optimal solutions, it
is important to evaluate the extra cost of the solutions result-
ing from these algorithms compared to the optimal solution
when this could be determined by the extension of A*. This
extra cost for the performed benchmarks of MLA* is shown
in Figure 9, where it can be seen that the approximation er-
ror of the MLA* extension is between 10% and 25% and in-
creases as the number of waypoints per agent increases, and
slightly increases as the number of agents in a problem in-
creases. For M* this approximation error was less than 0.5%,
and did not vary depending on the number of agents or way-
points given the sample size. While the waypoint extension
of M* and one described in this paper are quite similar, they
differ in their approach with regards to the ordering of way-
points: M* pre-computes the optimal routing via the way-
points only once at the start of the algorithm, while the exten-
sion of A* does this continuously.

Responsible research

Numerical evaluations of the performance of an algorithm is
inherently difficult to compare and precisely reproduce. The
performance results are dependent on the implementation that
was used, so potentially better results can be achieved with
a better implementation. To aid reproduction, the exact im-
plementations used in the paper are provided, as well as the
algorithms and seeds used to generate the random problem
instances. Where possible the exact same computer system
and environment was used to benchmark the different algo-
rithms, meaning that the comparison between them depended
as little as possible on such external factors.

To compare these different algorithms is was important to
make sure that all the implementation could interface with
the same problems instances and that results could be easily
compared. To aid this, a website and corresponding API was
developed together with N.J.M. Jadoenathmisier. Using this,
identical problem instances could be generated for all imple-
mentations and equality of the benchmarks could be ensured
to the greatest extent possible. Additionally, during develop-
ment it was beneficial to be able to have visualisations and
identify where implementations might work incorrectly.

It should be noted that the speed of an algorithm in numeri-
cal evaluations depends greatly on its implementation. While
some of the different algorithms were written in the same lan-
guage, none were developed side-by-side, meaning that one
might be more efficiently implemented than the other. Addi-
tionally, the use of a different programming language might
increase or decrease the performance difference between the
implementations.

Conclusion

This paper describes the problem of multi-agent pathfinding
with waypoints. An algorithm was proposed to extend an ex-
isting solver for standard multi-agent pathfinding to the vari-
ant with waypoint: A* with operator decomposition and in-
dependence detection. By using the algorithm for an adapted
version of the traveling salesperson problem, the heuristic
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of the standard algorithm was extended to efficiently solve
the problem with waypoints. It was shown that using the
TSP-based heuristic performs better than the MST alterna-
tive, even though it is more computationally expensive per
heuristic calculation. Prioritising avoiding conflicts over a
lower heuristic during the A* expansion was beneficial to the
run time of the algorithm. Using these insights, the algorithm
can effectively solve problem instances with roughly up to a
dozen agents and waypoint in grid-like instances sized 32x32.

Compared to an algorithm based on Conflict Based Search,
named CBSW, it was shown that the extension of A* was
less performant, yet not by a great margin, since the perfor-
mance is to a large extent limited by the complexity of the
TSP. The extension of BCP seems to be the best perform-
ing algorithm for problem instances with fewer waypoints,
but its ability to solve problems drastically decreases as more
waypoints are added per agent. MLA* has the advantage of
much faster run times compared to the alternatives, however
the solutions are far from optimal. While the run time does
not increase by much for more difficult problems, the abil-
ity to solve these problems does, meaning that the algorithm
cannot always be used. If a solution needs to be close to op-
timal, and a small approximation error is not an issue, the
extension of M* seems to be the best alternative. Since other
extensions already perform better than the extension based
on A* proposed in this paper, it would be better to pursue im-
provements of those algorithms rather than the one proposed
in this paper, although techniques described can still be useful
in these algorithms where they use A*.

Further work can be done to combine the methods de-
scribed in this paper with the alternative algorithms for
MAPFW, where ever this has not yet been done. To create a
true comparison, it would be preferable to create implemen-
tation as similar as possible of all the extensions, for instance
with regard to the programming language used. With all algo-
rithms implemented in C++, for instance, it could be expected
that the performance of the Python implementations would
increase. While this paper focuses on grid-like graphs, the
comparison might be different on graphs that are not grids,
which could be evaluated as well. Even though this problem
representation is easy to work with, it might not be a suitable
reduction for some constraints present in real-world applica-

tions where this algorithm might be useful, for instance train
maintenance scheduling. Evaluating the ability to adapt this
algorithm for such problem variations, has not yet been at-
tempted.
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