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A B S T R A C T

The Resource Constrained Project Scheduling Problem with a flexible Project Structure (RCPSP-PS) is a
generalization of the Resource Constrained Project Scheduling Problem (RCPSP). In the RCPSP, the goal is
to determine a minimal makespan schedule subject to precedence and resource constraints. The generalization
introduced in the RCPSP-PS is that, instead of executing all activities, only a subset of all activities has to
be executed. We present a model that is based on two graphs: one representing precedence relations and one
representing the activity selection structure. The latter defines which subset of activities has to be executed.
Additionally, we present theoretical properties of this model and give an exact solution method that makes use
of these properties by generating cutting planes and setting bounds on variables. Furthermore, three problem
properties are introduced to classify problems in the literature. We compare our model to a model from
literature on instances that possess a subset of these three problem properties and find a reduction in computing
time. Furthermore, by comparing results on instances that possess all problem properties, it is shown that the
computing times are decreased and better lower bounds are found by the cutting planes and variable bounds
presented in this paper.
1. Introduction

In many real-world projects, a schedule is needed that determines
the order in which activities are executed to complete a project such
that the project makespan is minimized. Furthermore, many of these
projects can be completed in multiple ways, since various (sub-)tasks
can be achieved by different (groups of) activities. Projects like this
are found in, for example, housing construction (Servranckx & Van-
houcke, 2019), highway project construction (Wu et al., 2010), modu-
lar shipbuilding (Rubeša et al., 2011) and aircraft turnaround schedul-
ing (Kellenbrink & Helber, 2015). For these type of projects, two
decisions have to be made for activities: are they executed, and if so,
at what time? The Resource Constrained Project Scheduling Problem with
a flexible Project Structure (RCPSP-PS) can be used to model projects of
this structure.

In the RCPSP-PS, a list of activities is given as input, which can
be used to complete a project. Since there are alternative ways of
executing certain tasks, it has to be decided which activities have
to be executed in order to complete the project. This is called the
activity selection problem. Subsequently, the selected activities have to be
scheduled, while satisfying precedence constraints. Furthermore, each
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activity has resource requirements, and the total amount of resources
required at any time cannot exceed a given capacity. Scheduling the
selected activities according to these constraints is called the activity
scheduling problem.

In this paper, we define three problem properties to classify research
on various models for the RCPSP-PS (see Section 2). Although several
models in the literature feature some of these properties, there is not yet
a model that combines all three. Therefore, we introduce a new model
for the selection logic, based on the model of Kellenbrink and Helber
(2015). This model supports problems with all three of these properties.
Secondly, in addition to introducing this model, we present theoretical
properties based on the number of activities that can be executed within
a group of activities. Specifically, we identify groups for which at least
one activity has to be executed, and groups for which at most one
activity has to be executed. Finally, we give an example of how these
theoretical properties can be used in an exact solution method, based on
variable reduction and cutting planes. The proposed solutions methods
are then evaluated against the model of Kellenbrink and Helber (2015)
on instances that possess a subset of problem properties, and against
each other on instances that possess all problem properties.
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Fig. 1. Example of building a module AB on a ship.
s
o
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In Section 2, an example problem is provided along with a de-
scription of the introduced problem properties, which are subsequently
used to classify literature on different models for the RCPSP-PS in
Section 3. The problem description and Integer Linear Program (ILP)
ormulation are given in Section 4. After this, the theoretical properties

of the selection logic are presented in Section 5. To give an example of
how these properties can be used in exact solution methods, Section 6
presents a solution method based on cutting planes and variable reduc-
tion. Finally, the computational results are presented and discussed in
Sections 7 and 8 concludes the paper.

2. Problem properties and example RCPSP-PS

In this section, an example of the RCPSP-PS is given, which we use
o explain three properties to classify different variants of the flexible

project structure in Section 3. Consider a small project building a
odule AB on a ship. For this, we have two actions: constructing a part,

meaning to construct it outside the ship, and installing it, meaning to
work directly on the ship. In Fig. 1(a), we present the activity selection
raph. This graph defines the logic of which activities to select to be
xecuted. Each node in this graph represents an activity, and each edge
efines a selection relationship: if the source node is executed, the
arget node has to be executed as well. If there is an arc between two
r more edges, it means that if the source node is executed, exactly one
f the target nodes has to be executed.

The construction activities are denoted by ‘C-’. Thus, we can see
hat we always have to construct module part A (C-A) and B (C-B).
ubsequently, we can proceed either by installing A and B on the ship
activities I-A and I-B), or by first constructing module AB (C-AB) and
hen installing module AB (I-AB). In Fig. 1(b), we see the precedence
raph of the same problem. Here, an edge (𝑖, 𝑗) defines that if both
ctivity 𝑖 and 𝑗 are executed, activity 𝑗 can only start after activity
is finished. We can see that the construction activities have to be
erformed before the installation activities. Furthermore, if we choose
o install module A and B separately, module A has to be installed
efore module B (edge between (I-A) and (I-B)).

We now present three properties of this problem, which are used
in the literature review in Section 3. First, it can be seen that the
selection graph and precedence graph are not the same, due to the
precedence edge between I-A and I-B. We call this separate scheduling
and selection logic. Second, we introduce the term Independent Succession
(IS), to denote whether the problem allows an activity to have multiple
other activities that independently can cause this activity to be selected.
In the example, the selection of activity C-AB can be caused by either

-A, C-B, or both. Finally, as stated before, from a group of selection-
ased successors, exactly one can be executed. For example, it is not
ossible to execute both activity I-A and C-AB. If a problem has this

feature, we define this as the Exclusivity Criterion (EC).
57 
3. Literature overview

The Resource Constrained Project Scheduling Problem (RCPSP) is a
classical optimization problem, introduced by Pritsker et al. (1969) and
proven to be NP-hard by Blazewicz et al. (1983). Since then, numerous
tudies have focused on developing heuristic and exact solution meth-
ds. An overview of this research can be found in, for example, Pellerin

et al. (2019) and Lombardi and Milano (2012). These two review
papers discuss heuristic and exact solution methods, respectively. In
this section, we focus on the flexible project structures extension for
the RCPSP. One problem that enables different ways of completing a
project is the Multi-Mode Resource Constrained Project Scheduling Problem
(MRCPSP) (Talbot, 1982). In this problem, each task has multiple
execution modes with varying durations and/or resource usage. An
overview of variations and of solution methods for the MRCPSP can
be found in Wȩglarz et al. (2011).

The RCPSP-PS is a generalization of the MRCPSP where only a sub-
set of all activities has to be selected for execution. Both the name of the
problem and the way the selection decisions are modeled vary across
the literature. One of the earliest models was given by Kuster et al.
(2009), who introduce the Extended RCPSP, which includes indepen-
dent succession and the exclusivity criterion. They model the execution
decisions by introducing a set of active activities: activities that are
nitially set to be executed. Substitution activities are introduced for

some of these active activities and these substitution activities can be
executed instead of the corresponding active activities. Finally, the
model is completed by adding a set of dependencies; execution require-
ments for an activity if another activity is activated or inactivated. To
find good feasible solutions for this model, an evolutionary algorithm
is used.

Kellenbrink and Helber (2015) separate the scheduling require-
ments from the precedence requirements, and give a model based on
a set of choices and a distinction between optional and mandatory
activities. Furthermore, they include EC and nonrenewable resources:
resources that do not renew after the activity has ended. They call this
problem the RCPSP-PS and solve it heuristically using a genetic algo-
rithm. Each activity has a set of activities it can cause to be selected.
Furthermore, the model includes a time-indexed ILP formulation that
imposes some restrictions on the selection logic: it is not possible for
multiple activities to have the same activity in the set of activities it
can cause to be selected. This restricts the modeling process.

Tao and Dong (2017) introduce the RCPSP with alternative activity
chains that includes nonrenewable resources and IS, where they give
a single network that defines both the precedence constraints and
the selection constraints based on AND-activities and OR-activities. An
AND-activity is an activity for which all successors have to be executed
and an OR-activity is an activity for which at least one successor has
to be executed. By using a single network for both the precedence
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Table 1
Overview of models with a flexible project structure.
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Kuster et al. (2009) ✓ ✓ ✓

Kellenbrink and Helber (2015) ✓ ✓ ✓ ✓ ✓

Tao and Dong (2017) ✓ ✓ ✓ ✓

Servranckx and Vanhoucke (2019) ✓ ✓ ✓

Hauder et al. (2020) ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓

and selection constraints, separation of precedence and selection logic
is not possible; every precedence relationship is equal to a selection
relationship and vice versa. This means that problems where the prece-
dence and selection constraints do not coincide cannot be modeled with
this approach. They solve this problem heuristically using a simulated
annealing based algorithm. In Tao and Dong (2018), they extend this
to multiple objectives.

Furthermore, Servranckx and Vanhoucke (2019) present the RCPSP
with alternative subgraphs which includes IS and EC. Their model is
based on alternative subgraphs and branches; a branch consists of a set
of activities, and an alternative subgraph is a collection of branches of
which exactly one has to be executed. This model also has a single net-
work for both precedence and selection logic and is solved heuristically
by a tabu search procedure.

Finally, Hauder et al. (2020) use a network with different types
of activities (OR, AND, and OUT) to model both the selection and
scheduling problem, while adding the extension of supporting multiple
projects. The model supports IS and EC. Besides the standard objective
of makespan minimization, they also consider time balance and re-
source balance as objective functions. They provide time indexed Mixed
Integer Linear Program (MILP) formulations for these models and a
onstraint programming method.

An overview of all models is given in Table 1. It can be seen
hat there is not yet a model combining separation of scheduling

and selection, independent succession and the exclusivity criterion.
urthermore, most of the focus is on heuristic methods. Although three

papers include an exact method, for two of these, it comprises of only
solving an (M)ILP model. Although there are differences in these (M)ILP
formulations for the flexible project structure, they all share a similar
ime-indexed basic RCPSP model.

4. Problem formulation of the RCPSP-PS

In this section, the problem formulation of the RCPSP-PS is given.
n Section 4.1, a description of the problem is given, which includes
 description of the selection graph with selection groups. Section 4.2

presents an ILP formulation for the RCPSP-PS.

4.1. Problem description

In the RCPSP-PS, a set of activities 𝑁 is given of which a subset
has to be executed to complete the project such that the makespan
of the project is minimized. Let 𝑛 = |𝑁| − 2 be the number of non-
dummy activities. Then, the starting activity is activity 0 and the final
activity is activity 𝑛 + 1. Both of these activities have a duration and
resource requirement of zero and the final activity can only be executed
58 
Fig. 2. Selection graphs for a unit selection group (𝑎𝑔 , 𝑆𝑔 ) = (1, {2}) (left) and a non-
nit selection group (𝑎𝑔 , 𝑆𝑔 ) = (3, {4, 5}) (right).

after all other executed activities. The time horizon during which these
activities are scheduled is represented by a set of discrete time periods
𝑇 = {0,…  }. Each activity 𝑖 ∈ 𝑁 has a duration of 𝑑𝑖 time periods.
Activities have to be scheduled while satisfying resource, precedence
and selection constraints. The set of resources is denoted by 𝑅. Each
resource 𝑟 ∈ 𝑅 has a capacity of 𝜆𝑟, and each activity 𝑖 ∈ 𝑁 uses
𝑘𝑟𝑖 units of resource 𝑟 across the whole duration of the activity. The
precedence relationships are defined by a set of tuples  . For each
(𝑖, 𝑗) ∈  , it is required that activity 𝑖 is finished before the start of
activity 𝑗. Furthermore, the set  𝑗 contains all predecessors of activity
𝑗 and the set 𝑖 contains all successors of activity 𝑖 in the precedence
graph.

In the RCPSP-PS, only a subset of activities has to be executed.
To define the choices on the selection of activities, the concept of
selection groups (denoted by set 𝐺) is introduced. A selection group
∈ 𝐺 is defined by an activator activity 𝑎𝑔 and a set of one or more
uccessor activities 𝑆𝑔 . If an activator activity is executed, exactly one

of the successor activities has to be executed, which means that a
selection group defines an ‘exclusive or’-relationship. Since we have
separate selection and scheduling logic, there is not necessarily a time-
based precedence relationship between each activator activity 𝑎𝑔 and
(selection-based) successor activity 𝑖 ∈ 𝑆𝑔 . Thus, we introduce the set
of selection groups with full precedence 𝐻 ⊆ 𝐺, to define selection groups
where this is the case. This set contains all selection groups with a time-
based precedence relationship between the activator and all successors,
i.e., 𝐻 = {𝑔 ∈ 𝐺 ∶ (𝑎𝑔 , 𝑗) ∈  ,∀𝑗 ∈ 𝑆𝑔}.

We define a unit selection group as a selection group 𝑔 ∈ 𝐺 with
nly one successor (i.e., |𝑆𝑔| = 1). This defines a direct consequential
elationship; if activator activity 𝑎𝑔 is executed, the single successor
ctivity in 𝑆𝑔 will have to be executed as well. In Fig. 2, a unit selection

group and a non-unit selection group are shown.
The precedence and selection relationships split up the RCPSP-

S into two problems. The first one is selecting which activities to
xecute. This is called the selection problem. The next question is when
o schedule the executed activities. This is defined as the scheduling
problem.

4.2. Model formulation

We now introduce an ILP formulation for the RCPSP-PS, which is
sed in the solution methods in two ways: (1) we solve the linear

relaxation to find cutting planes, and (2) we solve the model to (near)
optimality using Gurobi. For the model, we introduce binary decision
variables 𝑋𝑖𝑡 that are equal to one if activity 𝑖 ∈ 𝑁 starts at time
𝑡 ∈ 𝑇 , and zero otherwise. Constraints (1a) minimizes the completion
time of the final activity, and thus, the total project makespan. The
first and final activities are always executed due to Constraints (1b)
and (1c), respectively. Note that Constraints (1c) can also follow from
the selection groups. Constraints (1d) impose that each activity can
nly be executed once. Furthermore, Constraints (1e) make sure that if
ctivator activity 𝑎𝑔 of selection group 𝑔 ∈ 𝐺 is executed, at least one
uccessor activity 𝑖 ∈ 𝑆𝑔 has to be executed. Constraints (1f) impose
hat if activator 𝑎𝑔 of selection group 𝑔 ∈ 𝐺 is executed, at most

one successor activity is executed. The precedence constraints are set
by Constraints (1g). These constraints define that for each (𝑖, 𝑗) ∈  ,
if both are executed, the starting time of activity 𝑖 plus its duration
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𝑑𝑖 cannot be larger than the starting time of activity 𝑗. Furthermore,
onstraints (1h) define that for each resource 𝑟 ∈ 𝑅 and time 𝑡 ∈ 𝑇 , the

total resource usage is smaller than or equal to the resource capacity
𝜆𝑟. Finally, Constraints (1i) specify that the decision variables 𝑋𝑖𝑡 are
inary.

min
∑

𝑡∈𝑇
𝑡𝑋(𝑛+1)𝑡, (1a)

∑

𝑡∈𝑇
𝑋0𝑡 = 1, (1b)

∑

𝑡∈𝑇
𝑋(𝑛+1)𝑡 = 1, (1c)

∑

𝑡∈𝑇
𝑋𝑖𝑡 ≤ 1, ∀𝑖 ∈ 𝑁 , (1d)

∑

𝑡∈𝑇
𝑋𝑎𝑔 𝑡 ≤

∑

𝑖∈𝑆𝑔

∑

𝑡∈𝑇
𝑋𝑖𝑡, ∀𝑔 ∈ 𝐺 , (1e)

∑

𝑗∈𝑆𝑔

∑

𝑡∈𝑇
𝑋𝑗 𝑡 ≤ |𝑆𝑔| −

(

|𝑆𝑔| − 1)
∑

𝑡∈𝑇
𝑋𝑎𝑔 𝑡, ∀𝑔 ∈ 𝐺 , (1f)

∑

𝑡∈𝑇
(𝑡 + 𝑑𝑖)𝑋𝑖𝑡 ≤

∑

𝑡∈𝑇
𝑡𝑋𝑗 𝑡 +𝑀

(

1 −
∑

𝑡∈𝑇
𝑋𝑗 𝑡

)

, ∀(𝑖, 𝑗) ∈  , (1g)

∑

𝑖∈𝑁

𝑑𝑖
∑

𝑢=1
𝑘𝑟𝑖𝑋𝑖(𝑡−𝑢+1) ≤ 𝜆𝑟, ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 , (1h)

𝑋𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝑁 , 𝑡 ∈ 𝑇 . (1i)

In Kellenbrink and Helber (2015), the selection logic was mainly
modeled by choices, activities causing a choice, and optional activities per
hoice. These are analogous to selection groups, activators and succes-
or activities, respectively. However, in Kellenbrink and Helber (2015),

it is imposed that if a caused activity is selected, exactly one causing is
selected. This prevents IS. In terms of selection decisions, the model
presented in this paper can be seen as a generalized version of the
model in Kellenbrink and Helber (2015). However, the current paper
oes not consider nonrenewable resources, since the focus is on the
lexible project structure. However, the constraints for nonrenewable
esources, given in Kellenbrink and Helber (2015), could be added

directly to the model presented in the current paper.
After introducing the model, we now give a formal definition for

the activity selection problem. Recall that the exclusivity criterion is
the criterion that per selection group with an executed activator activ-
ity, exactly one successor has to be executed. With this, the selection
problem (imposed by Constraints (1d)–(1f)) is defined as follows: Given
 selection graph, find a selection of activities including activity 0, such

that for each selection group 𝑔 ∈ 𝐺, exactly one activity 𝑗 from the set
of successor activities 𝑆𝑔 is selected if activator activity 𝑎𝑔 is selected.
This problem is proven to be NP-hard by Barták et al. (2007).

5. Activity execution properties

We now introduce theoretical properties of the RCPSP-PS, which
are used to develop the solution method in Section 6. We define two
types of activity sets, for which certain execution properties are known,
namely Non-Empty Execution Sets (NEESs) and Max-One Execution Sets
(MOESs). The former defines a set of activities of which at least one
activity has to be executed, while the latter is a set where at most one
activity can be executed. These sets can be used in building blocks for
olution methods, as is shown in Section 6.

5.1. Non-empty execution sets

The first type of activity set for the RCPSP-PS we introduce is the
NEES. As stated above, a NEES is a set of activities of which at least
ne activity has to be executed. In this subsection, we show how to
59 
Fig. 3. Selection graph example of a NEES. Since either activity 3 or activity 4 always
has to be executed, 𝐴 = {3, 4} is a NEES.

identify a NEES from a set of candidate activities 𝑁 ′ ⊆ 𝑁 , based on
creating an ILP. For intuition, consider all activities as the candidate
set (𝑁 ′ = 𝑁) in the selection graph as shown in Fig. 3. We traverse the
election graph, starting in the root activity 𝑟. Then, a set of activities 𝐴

is a NEES if, regardless of the choices we make in the selection groups,
e always end up in an activity in 𝐴. Therefore, if we reach a certain
roup 𝑔 that is on the path to 𝐴, there should still be a path to 𝐴 no
atter what successor we pick. In Fig. 3, no choice can be made at

selection group 𝑔1 such that no activity in 𝐴 will be executed.
To identify a NEES in a subset of activities 𝑁 ′ ⊆ 𝑁 , we solve

the ILP given by Constraint set (2). This ILP selects selection groups
and activities, where all selected selection groups form a set of paths,
starting at activity 0. As long as each path ends in a selected activity,
the set of selected activities form a NEES. To formulate this, we intro-
uce the set 𝐺𝑖 that contains all groups 𝑔 ∈ 𝐺 with activator 𝑎𝑔 = 𝑖.
urthermore, we introduce binary variables 𝑈𝑔 for each 𝑔 ∈ 𝐺 and 𝑉𝑖
or each 𝑖 ∈ 𝑁 ′, which are equal to one if a selection group or activity
s selected, respectively, and zero otherwise.

With this, Constraint (2a) imposes that at least one selection group
has to be selected at starting activity 0, which is the start of all paths.

hen, the paths are continued due to Constraints (2b) and (2c). These
mpose that if a selection group 𝑔 is selected, for each successor 𝑖 ∈ 𝑆𝑔

either a succeeding group ℎ ∈ 𝐺𝑖 is selected (path continues), or activity
𝑖 itself has to be selected (path ends in activity 𝑖). If activity 𝑖 ∈ 𝑁 ′,
this is imposed by Constraints (2b). Otherwise, binary variable 𝑉𝑖 does
not exists and one group ℎ ∈ 𝐺𝑖 has to be selected. This is imposed
by Constraints (2c). Note that, since Constraint set (2) is used to identify
a NEES, 𝑉𝑖 is never bounded from above by 0, since adding any activity
to a NEES still constitutes a NEES.

∑

𝑔∈𝐺0

𝑈𝑔 ≥ 1, (2a)

𝑔 ≤ 𝑉𝑖 +
∑

ℎ∈𝐺𝑖

𝑈ℎ, ∀𝑔 ∈ 𝐺 , 𝑖 ∈ 𝑆𝑔 ∩𝑁 ′, (2b)

𝑈𝑔 ≤
∑

ℎ∈𝐺𝑖

𝑈ℎ, ∀𝑔 ∈ 𝐺 , 𝑖 ∈ 𝑆𝑔 ⧵𝑁 ′, (2c)

𝑈𝑔 ∈ {0, 1}, ∀𝑔 ∈ 𝐺 , (2d)

𝑉𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑁 ′. (2e)

We can now show that if 𝐕 is a feasible solution to Constraint set
(2), it constitutes a NEES.

Lemma 1. Let 𝑁 ′ ⊆ 𝑁 be a subset of activities and 𝐔,𝐕 be the solution
of Constraint set (2). Then, 𝐴 given by {𝑖 ∈ 𝑁 ′ ∶ 𝑉𝑖 = 1} is a NEES.

Proof. See Appendix A.1. □

5.2. Max-one execution sets

Secondly, we introduce MOESs. A MOES is a set of activities, for
which at most one activity is executed in the optimal solution. To
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identify these sets, we introduce Common Rooted Paths (CRP), as defined
in Definition 5.1. For this, we introduce the notation of the vertex
sequence of a path 𝑃 ; the sequence of all vertices on a path 𝑃 , denoted
y (𝑃 ).

Definition 5.1 (Common Rooted Path (CRP)). For two activities 𝑖 and
, it is said that they have a common rooted path (𝑟, 𝑃 , 𝑄) if there is
nother activity 𝑟 with a path 𝑃 from 𝑟 to 𝑖 and a path 𝑄 from 𝑟 to 𝑗
ith the following properties: The first activities 𝑝1 and 𝑞1 on 𝑃 and
after 𝑟, respectively, do not belong to the same selection group of

ctivator 𝑟. Furthermore, after splitting at 𝑟, paths 𝑃 and 𝑄 are disjoint;
(𝑃 ) ∩ (𝑄) = {𝑟}.

Based on this definition, we give Proposition 1 to identify whether
t is allowed for any two activities to both be executed in the optimal
olution.

Proposition 1. If two distinct activities 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 in a selection
graph do not have a common rooted path, at most one of them will be
executed.

Proof. See Appendix A.2. □

Thus, if there is no CRP between any pair of activities in a set, at
ost one of the activities in this set can be executed. To determine such

a set of activities, we introduce a rooted path graph (RPG), as defined
in Definition 5.2.

Definition 5.2 (Rooted Path Graph (RPG)). A rooted path graph 𝐴𝐺 =
(𝑁 , 𝐸) is a graph with the same activities 𝑁 as the selection graph and
with an edge (𝑖, 𝑗) ∈ 𝐸 if and only if there is a common rooted path
between 𝑖 and 𝑗.

It then follows that an independent set for the RPG represents a set
of activities without any CRP’s between them, and thus, a MOES. In
Appendix B, we show how to generate an RPG for any acyclic selection
raph.

6. Solution method

In this section, we give an example of how NEESs and MOESs can
be used in an exact solution method for the RCPSP-PS. This method
onsists of a preprocessing step based on NEESs and MOESs, and
ubsequently, using an ILP solver. The preprocessing procedure uses
hree building blocks: a variable reduction method that is introduced in
ection 6.1 and valid inequalities and cutting planes that are introduced
n Section 6.2. These building blocks are then combined to create the

solution algorithm, which is presented in Section 6.3. The algorithm
irst reduces the search space by bounding variables, and then solves

the resulting ILP using Gurobi.

6.1. Variable reduction

The first building block is the variable reduction method. The idea
behind this method is as follows: if each activity in a Non-Empty
xecution Set (NEES) 𝐴 has the same successor activity 𝑗 in the prece-
ence graph, then the earliest start time 𝑠𝑗 of activity 𝑗 is equal to
in𝑖∈𝐴{𝑠𝑖 + 𝑑𝑖}. Similarly, if each activity in a NEES 𝐴 has the same
redecessor activity 𝑖, the latest finish time 𝑓𝑖 of activity 𝑖 is equal to
ax𝑗∈𝐴{𝑓𝑗 − 𝑑𝑗}

We now give an algorithm, based on the principle described above,
o compute the earliest starting time 𝑠𝑖 for each activity 𝑖 ∈ 𝑁 .

The first loop in Algorithm 1 loops over all activities 𝑗 ∈ 𝑁 in
opological order. For each activity 𝑗 ∈ 𝑁 , all activities 𝑖 ∈  𝑗 are

ordered by earliest finishing times 𝑠𝑖 + 𝑑𝑖 in non-increasing order in
sequence 𝐵 = {𝑏1,… , 𝑏

|𝐵|}. The second loop takes incremental subsets
𝐵′ of 𝐵 and tries to solve Constraint set (2) with 𝑁 ′ = 𝐵′. For each
iteration of Loop 2, an element 𝑘 is added to 𝑁 ′ = 𝐵′ until Constraint
 o
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Algorithm 1 Preprocessing algorithm
1: 𝑁 (𝑠) ← topological sorting of 𝑁 on precedence graph
2: 𝑠𝑖 ← 0 ∀ 𝑖 ∈ 𝑁
3: for all 𝑗 ∈ 𝑁 (𝑠) do ⊳ Loop 1
4: 𝐵 ←  𝑗 , sorted by non-increasing 𝑠𝑖 + 𝑑𝑖.
5: stop ← False
6: 𝑛 ← 1
7: while stop = False AND 𝑛 ≤ |𝐵| do ⊳ Loop 2
8: 𝐵′ ← first 𝑛 elements of 𝐵
9: Solve Constraint set (2) for 𝑁 ′ = 𝐵′

0: if Constraint set (2) is feasible then
1: 𝑠𝑗 ← min𝑖∈𝐵′{𝑠𝑖 + 𝑑𝑖}
2: stop ← True
3: end if
4: 𝑛 ← 𝑛 + 1
5: end while
6: end for

set (2) becomes feasible. If adding element 𝑘 to 𝑁 ′ results in Constraint
set (2) becoming feasible, it follows that 𝑉𝑘 = 1. Otherwise, Constraint
et (2) would also be feasible in the previous iteration. Since 𝐵′ is
rdered in non-increasing order of 𝑠𝑖 + 𝑑𝑖, 𝐵′ contained all activities
∈ 𝐵 with 𝑠𝑖 + 𝑑𝑖 ≥ 𝑠𝑘 + 𝑑𝑘 in the previous iteration. Since solving
onstraint set (2) in the previous iteration did not give a feasible
olution, 𝐵′ maximizes min𝑖∈𝐵′{𝑠𝑖 + 𝑑𝑖}.

Something similar can be done for the latest finish time 𝑓𝑖 for all
activities 𝑖 ∈ 𝑁 . The difference is that 𝑓𝑖 is initially given a value of
|𝑇 | for every activity and the algorithm runs backwards. This means
hat Loop 1 is reversed, 𝐵 contains all successors of 𝑗 and is ordered in

non-decreasing order of 𝑓𝑖 −𝑑𝑖. Furthermore, instead of updating 𝑠𝑗 , 𝑓𝑗
is updated to max𝑖∈𝐵′{𝑓𝑖 − 𝑑𝑖}. Finally, after both preprocessing steps,
ll variables 𝑋𝑖𝑡 with 𝑡 < 𝑠𝑖 or 𝑡 > 𝑓𝑖 − 𝑑𝑖 can be set to zero.

6.2. Valid inequalities and cutting planes

The second building block that is used to reduce the search space,
are the addition of valid inequalities. These are added for each selection
group with full precedence 𝑔 ∈ 𝐻 ⊆ 𝐺 and are shown in Constraints (3).

he inequality states that if a selection group has full precedence, each
uccessor activity has to be executed later than the activating activity,
f both are executed.
∑

𝑡∈𝑇
(𝑡 + 𝑑𝑎𝑔 )𝑋𝑎𝑔 𝑡 ≤

∑

𝑗∈𝑆𝑔

∑

𝑡∈𝑇
𝑡𝑋𝑗 𝑡, ∀𝑔 ∈ 𝐻 , (3)

Furthermore, the last building block are two types of cutting planes.
The first type is based on groups of activities of which at least one has
to be selected and is introduced in Section 6.2.1. For the second type,
introduced in Section 6.2.2, groups of activities of which at most one
can be selected are used.

6.2.1. Non-empty execution cutting planes
The first set of cutting planes are based on Non-Empty Execution

ets. Recall that these are sets of which at least one activity has to be
xecuted. The separation problem is given by Objective function (4)

subject to the constraints of Constraint set (2), in order to find a NEES
with less than one executed activity in the relaxed solution. Here, 𝑋∗

𝑖𝑡 is
he solution obtained by solving the LP relaxation and 𝑉𝑖 is the decision
ariable from Constraint set (2) indicating whether an activity 𝑖 ∈ 𝑁 is
n a NEES.

min
∑

𝑖∈𝑁
𝑉𝑖

∑

𝑡∈𝑇
𝑋∗

𝑖𝑡. (4)

By Lemma 1, the index set of 𝑉 forms a NEES. Thus, if the value
f Objective function (4) is smaller than 1, the fractional solution 𝑋∗
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contains a NEES that has less than one activity executed. Therefore,
we add Constraint (5) as a cutting plane, where 𝐴 is the index set of 𝐕;
= {𝑖 ∈ 𝑁 ∶ 𝑉𝑖 = 1},

∑

𝑖∈𝐴

∑

𝑡∈𝑇
𝑋𝑖𝑡 ≥ 1. (5)

6.2.2. Max-one cutting planes
The second type of cutting planes are named ‘max-one cutting planes’.

hese cutting planes are based on a Max-One Execution Set (MOES)
nd a group of activities for which the MOES has full precedence. As
tated earlier, a selection group with full precedence has a precedence
elationship between the activator and each successor. The idea of
he cutting planes is that if one activator activity 𝑖 from the MOES
s executed, then there is always a successor activity 𝑗 executed that
as to be executed after finishing activity 𝑖. We give the separation
roblem for these cutting planes in Constraints (6). For this, we define

𝐸 as the set of all edges in the RPG. The ILP formulated by Constraints
(6) uses the optimal relaxed solution of Constraints (1), denoted by

∗
𝑖𝑡. The activities of the MOES are captured by binary variables 𝑊𝑖,
hich are equal to one if activity 𝑖 ∈ 𝑁 is selected for the MOES and

ero otherwise. The set of selected successor activities of the MOES is
efined by binary variables 𝑍𝑗 for all 𝑗 ∈ 𝑁 , where 𝑍𝑗 = 1 if activity
is selected and zero otherwise. These two sets of activities are linked
y selected selection groups. If a selection group 𝑔 ∈ 𝐺 is selected, then
inary variable 𝑌𝑔 equals 1 and 0 otherwise.

Constraints (6b) only select full-precedence groups for which the
activators have no CRP. Constraints (6c) define that activities can only
be selected within the MOES, if they are the activator of a selected full-
recedence group. Furthermore, Constraints (6d) select only successors

of selected full-precedence groups. The first term in Objective function
(6a) represents the finishing times of the MOES and the second term
epresents the starting times of the successor activities of the activities
n the MOES. By maximizing the difference between these two terms,
 violation of the precedence relations can be found.

max
∑

𝑖∈𝑁
𝑊𝑖

∑

𝑡∈𝑇
(𝑡 + 𝑑𝑖)𝑋∗

𝑖𝑡 −
∑

𝑗∈𝑁
𝑍𝑗

∑

𝑡∈𝑇
𝑡𝑋∗

𝑗 𝑡, (6a)

𝑌𝑔 + 𝑌ℎ ≤ 1, ∀𝑔 ∈ 𝐻 , ℎ ∈ 𝐻 , (𝑎𝑔 , 𝑎ℎ) ∈ 𝐸 , 𝑎𝑔 ≠ 𝑎ℎ, (6b)

𝑌𝑔 ≥ 𝑊𝑎𝑔 , ∀𝑔 ∈ 𝐻 , (6c)

𝑍𝑗 ≥ 𝑌𝑔 , ∀𝑔 ∈ 𝐻 , 𝑗 ∈ 𝑆𝑔 , (6d)

𝑊𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑁 for which |{𝑔 ∶ 𝑖 = 𝑎𝑔 , 𝑔 ∈ 𝐻}| ≥ 1, (6e)

𝑌𝑔 ∈ {0, 1}, ∀𝑔 ∈ 𝐻 , (6f)

𝑍𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝑁 . (6g)

Proposition 2. Let 𝐗∗ be the linear relaxed solution of Constraint set (1).
Furthermore, let 𝐖∗, 𝐘∗ and 𝐙∗ be the solution of Constraint set (6) and
et the value of Objective function (6a) be larger than 0. Then, Constraint
(7) is a cutting plane for the RCPSP-PS that cuts of the current solution 𝐗∗:

∑

𝑖∈𝑁
𝑊 ∗

𝑖

∑

𝑡∈𝑇
(𝑡 + 𝑑𝑖)𝑋𝑖𝑡 ≤

∑

𝑖∈𝑁
𝑍∗

𝑖

∑

𝑡∈𝑇
𝑡𝑋𝑖𝑡. (7)

Proof. See Appendix A.3. □

Both cutting plane types are used as an initial step in solving
onstraint set (1). First, the LP-relaxation of Constraint set (1) is solved.
econdly, the separation problems are solved and the cuts are added
o the LP-relaxation. This is repeated until no more cuts are found, or
hen the objective increase is lower than a certain threshold for a fixed
umber of iterations.
 𝑋
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6.3. Constraint propagation algorithm

In the preceding part of this section, a method for variable re-
duction, valid inequalities and two types of cutting planes and their
separation algorithms are given. These form the building blocks of
the exact solution method given in the remainder of this section. This
method uses these building blocks to set lower bounds on activity start-
ing times and then uses constraint propagation such that increments in
these bounds are propagated to other activities. We start by presenting
the initialization of the algorithm. After that, we give the individual
functions used and, subsequently, the solution algorithm is given.

The algorithm initializes by creating an empty set of cutting planes
𝑖 and generating a set of forced activities 𝑖 for each activity 𝑖 ∈ 𝑁 .
The set 𝑖 is later populated with cutting planes that are generated
specifically for activity 𝑖 ∈ 𝑁 . Furthermore, the set of forced activities
𝑖 for activity 𝑖 ∈ 𝑁 is defined as the set of activities that always have
o be executed if activity 𝑖 is executed. To determine whether activity
∈ 𝑁 is in the set of forced activities 𝑖, we use a modified graph as

nput for Constraint set (2). First, we remove activity 𝑖 and all activities
∈ 𝑁 without a CRP between 𝑘 and 𝑖 to obtain 𝑁 ′. Since 𝑖 is executed,

any activity without a CRP to 𝑖 is not executed. Then, if there is a
feasible solution to Constraint set (2) for activity set 𝑁 ′ with 𝑉𝑗 = 1
and 𝑉𝑝 = 0 for every 𝑝 ∈ 𝑁 ′ ⧵ {𝑗}, {𝑗} is a NEES and is thus always
executed. In this case, activity 𝑗 ∈ 𝑖.

Furthermore, we introduce 𝐬 = [𝑠0,… , 𝑠𝑛+1] as the vector of earliest
tarting times for all activities in 𝑁 , which is initialized to 𝟎. With this,
e introduce four functions: find_cutting_planes(𝑖,𝑖, 𝐬), linrelax(𝑖,𝑖, 𝐬),
ariable_reduction(𝐬) and solve(𝐬).

Function find_cutting_planes(𝑖,𝑖, 𝐬) generates a set of cutting planes
as follows. First, we replace activity 𝑛 + 1 in Objective function (1a)
by activity 𝑖 and add the constraint ∑

𝑡∈𝑇 𝑋𝑖𝑡 = 1, which we refer to
as setting the objective function to 𝑖. This gives an ILP where activity
𝑖 is always executed, while minimizing the starting time of activity
𝑖, thus, providing a lower bound on the starting time 𝑠𝑖 of activity
𝑖. The solution obtained by solving the relaxation of this ILP, with
earliest possible starting times 𝐬 and cutting planes 𝑖, is then used
to generate additional cutting planes as given by Constraints (5) and
(7), which together with the already given cutting planes form the new
set 𝑖. Setting the earliest possible starting times is done by setting
𝑋𝑗 𝑡 = 0 for 𝑡 < 𝑠𝑗 for each activity 𝑗 ∈ 𝑁 . The function call is
aborted as soon as more than 10 consecutive cutting planes did not
improve the linear relaxation value, as it was discovered experimentally
that increasing this number did not increase performance significantly,
while increasing the computational time.

Function linrelax(𝑖,𝑖, 𝐬) solves the linear relaxation of Constraint set
(1) combined with Constraints (3) while setting the objective function
to 𝑖, adding cutting planes 𝑖 and setting the lower bound on activity
starting times to 𝐬 for all activities in 𝑁 . The function returns the
objective function value, rounded up to the nearest integer, which is
a lower bound on the starting time of activity 𝑖.

Function variable_reduction(𝐬) calls Algorithm 1, with the modifica-
tion of using 𝐬 as initial lower bound instead of setting it to zero in line
. It then returns lower bounds for all activities.

Finally, the function solve(𝐬) first calculates the latest finishing time
𝑓𝑖 for each node 𝑖 ∈ 𝑁 as described in Section 6.1 and then solves
the ILP while adding valid inequalities from Constraints (3) and setting

= 0 for all 𝑖 ∈ 𝑁 with 𝑡 < 𝑠 or 𝑡 + 𝑑 > 𝑓 .
𝑖𝑡 𝑖 𝑖 𝑖
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Algorithm 2 Solution algorithm
1:  ← {∅ ∶ 𝑖 ∈ 𝑁}
2: 𝐬 ← variable_reduction(𝟎)
3:  ← forced activities
4: 𝑁 (𝑠) ← topological sorting of 𝑁 on precedence graph
5: improved ← True
6: while improved = True do
7: improved ← False
8: for all 𝑖 ∈ 𝑁 (𝑠) do
9: 𝑖 ← 𝑖 ∪ {𝑗 ∶ 𝑗 ∈ 𝑖}
0: 𝑖 ← 𝑖 ∪ find_cutting_planes(𝑖,𝑖, 𝐬)
1: 𝑣 ← linrelax(𝑖,𝑖, 𝐬)
2: if 𝑣 > 𝑠𝑖 then
3: improved ← True
4: 𝑠𝑖 ← 𝑣
5: 𝐬 ← variable_reduction(𝐬)

16: end if
17: end for
18: end while
9: solve(𝐬)

With these functions, the solution algorithm is given in Algorithm 2.
Initially, the lower bounds 𝐬 are set by calling the variable_reduction(𝟎)
unction. Subsequently, the sets of forced activities 𝑖 for every activity
𝑖 ∈ 𝑁 are calculated. The algorithm will now loop over all activities in
opological order 𝑁 (𝑠). For each activity 𝑖 ∈ 𝑁 (𝑠), cutting planes are
alculated by setting the objective to 𝑖, and by adding cutting planes
rom all forced activities. The latter is done because a cutting plane for
n activity 𝑗 is valid when this activity is executed. Next, for activity 𝑖, a
ower bound on the starting time is calculated by using linrelax(𝑖,𝑖, 𝐬).

If this improves the current lower bound for 𝑖, the variable_reduction(𝐬)
is called to possibly propagate this improvement to other activities.
If there is any improvement for at least one of the activities, the
loop over all activities is repeated. If not, the while loop terminates.
Subsequently, to get an optimal solution, the solve(𝐬) function is called
to solve the ILP.

7. Computational results

In this section, we present the computational results. We first give
a brief description of how the instances are generated and how the
instance sets are created. Subsequently, the results are presented. These
results are used to compare our methods with a method from literature,
to evaluate the sensitivity against the time horizon  , and to evaluate
the performance of different parts of the algorithm.

7.1. Instances

In this section, we give a brief overview of the instance generation
lgorithm and give the instance sets we evaluate. The full sets of
nstances can be found in Van der Beek (2022). The instances are

generated by creating a simple network with placeholder activities and
eplacing these placeholder activities by subnetworks. For each instance,
ubnetworks are generated by the generation procedure of Vanhoucke
t al. (2008). This procedure generates instances of the RCPSP based on
he number of activities, Serial/Parallel indicator (SP), Resource Factor
RF) and Resource Constrainedness (RC). Each instance contains two
ypes of subnetworks, called Phase-1 subnetworks and Phase-2 subnet-
orks. The parameters 𝑁1 and 𝑁2 define the number of activities of

hese respective networks.
The network of placeholder activities is created from a shape array,

for example [3, 3], indicating two sequential selection-groups with each
three successors. Each successor is replaced by a phase-1 subnetwork,
and in the resulting network, the Replace Number (RN) determines the
number of activities replaced by multiple parallel phase-2 subnetworks.

his results in instances where all non-dummy activities are optional.
62 
Table 2
Properties of instance sets.

LC MC

RC [0.5, 0.7, 0.9] [0.5, 0.7, 0.9]
N1 [3, 4, 5] [3, 4, 5]
N2 [3, 4, 5] [3, 4, 5]
Shape [[2, 2], [2, 3], [3, 2],

[2, 2, 3], [2, 3, 2],
[3, 2, 2],[3, 3]]

[[2, 2], [2, 3], [3, 3],
[2, 3, 2]]

RN [2, 3] [2, 3]
AL [0, 2, 4, 6] [0, 3, 6]
IS No Yes
# instances 1008 576

Finally, additional precedence links are placed according to the Addi-
tional Links (AL) parameter. If Independent Succession (IS) is allowed,
then the same number of selection links as precedence links is placed
as well.

An important part in any time-based scheduling formulation of the
RCPSP is the size of time horizon  . Decreasing this can significantly
decrease the number of variables and often speed up the computation.
To determine our value of  , we create a feasible solution using a
imple heuristic: The selection problem is solved by iteratively adding
odes, starting at the root node, until a feasible selection is obtained. In
he case of multiple candidate nodes, the selection is made randomly.
hen, a schedule is made in a similar way: iteratively adding random
elected nodes in a precedence feasible way, starting at the root node.
he now sorted selected nodes form an activity list, and a serial gener-
tion scheme is used to create a schedule (Kolisch & Hartmann, 1999).
ote that this simple heuristic works for the structure of the instances

considered in this paper, but not necessarily for all instances of the
RCPSP-PS. In case of other structures, more sophisticated heuristics
should be used. If no heuristic is available, the sum of all durations
form an (very bad) upper bound that can be used.

With these parameters, we create two sets of instances: Literature
omparison (LC) and Method Comparison (MC). For all sets, the param-
ters RF and SP are constant (RF = 0.75 and SP = 0.5), as we capture
he variance in resources and shape by the RC parameter and shape
rray, respectively. Furthermore, each instance has 4 resources. For
ll other parameters, the values are shown in Table 2. Here, each list
hows the considered values per parameter and an instance is generated
or each combination, with certain combinations to be removed after
omputational results indicated that these instances are unsolvable
ithin a solving time of 6 h.

The largest instance set, LC, has no IS, and therefore, can be solved
y the model in Kellenbrink and Helber (2015). This set is thus used

to compare the proposed method in this paper with a model from
literature. The instance set MC includes IS, and therefore, can only be
solved with the proposed methods in this paper. This instance set is
used to gain insight in the improved performance by various parts of
the proposed solution method.

7.2. Results

All tests are performed on Intel Xeon Gold 5128 2.3 GHz server core.
To solve the ILPs, Gurobi 8.1.1 (Gurobi, 2021) was used with a time
limit of 6 h and the following settings to focus on finding the optimal
solution by branch and bound: MIPFocus = 3, Heuristics = 0 and RINS
= 0. We consider four different solution methods:

1. Gurobi Basic Method (GBM): Solve the ILP given by model Con-
straint set (1) for final activity 𝑛 + 1.

2. Variable reduction (VR): GBM combined with Constraints (3) and
the variable reduction method given in Algorithm 1; i.e., calling
function solve(𝐬) with 𝐬 from variable_reduction(𝟎).

3. Constraint propagation (CP): Algorithm 2.
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Fig. 4. Methods GBM, VR and CP and their building blocks.

Table 3
Summary of results for instance set Literature comparison. The numbers of best lower
bounds and best upper bounds have 260 and 867 ties, respectively.

GBM CP GKH

# Optimal solutions 356 364 256
Average computational time (103 s) 15.11 14.95 16.85
Average optimality gap 0.130 0.126 0.215
# Best lower bound 452 420 4
Average normalized lower bound 0.872 0.876 0.793
# Best upper bound 104 99 5
Average normalized upper bound 1.0029 1.0032 1.0116
Average number of variables 35 048 15 275 35 048
Average number of constraints 2018 2340 1093

4. Gurobi Kellenbrink and Helber (2015) (GKH): Solve ILP model
proposed in Kellenbrink and Helber (2015). Note that their
variable reduction method only works on non-optional activities,
and thus does not reduce variables for our instances.

The first three methods can be seen as extensions of each other,
s is illustrated in Fig. 4. The VR method is the GBM, with additional
onstraints and certain variables set to zero. Furthermore, the CP
ethod solves the same ILP as the VR method, although additional

ariables are set to zero.
In the remainder of this section, the methods are evaluated against

ach other. For clarity, all numerical values of the tables in this section
re given in Appendix C.

7.2.1. Literature comparison
First, the instance set LC is evaluated. To compare both basic ILP

models, each instance is solved by GBM and GKH. Furthermore, each
nstance is solved by the CP method to evaluate the improvement.
ue to the large size of this instance set and the computational effort

equired, we evaluate this set only on the full (CP) method and leave
he analysis for the intermediate step (VR) for the MC instance set.

A summary of the results is given in Table 3. Here, it can be seen
that the number of optimal solutions obtained by the GBM and CP is
significantly higher than by method GKH. Furthermore, the CP method
is, on average, about 32 min faster than the GKH method. However,
this is skewed due to the non-solvable instances. When comparing
only the interesting instances, a decrease in average computational time
of 50% is achieved. We define an interesting instance as an instance
that has at least one method solving it to optimality, and at least one
method not solving it to optimality within 5 min. This can be seen in
Fig. 5(a), where the computational time of all 334 interesting instances
are shown. Still, the solving time is capped at 6 h.

Furthermore, we define the optimality gap as (𝑢𝑏 − 𝑙 𝑏)∕𝑢𝑏 where
𝑙 𝑏 and 𝑢𝑏 are the lower and upper bound found by the ILP solver,
respectively. In Table 3 and Fig. 5(b), this shows a similar trend as
for computational time. Furthermore, to gain more insight in this
optimality gap, we evaluate the best lower and upper bounds found
during the ILP solver process separately. Similar to the optimality gap,
we normalize these to the best upper bound found for each instance.
63 
The averages are then computed over all instances. Furthermore, we
evaluate how often a certain method reached the best bound, compared
o other methods, excluding all ties. A tie is defined as an instance

where all three methods reach the same bound. It can be seen that on
both bounds and optimality gap, the GBM and CP method outperform
he GKH method. Furthermore, the GBM has a larger number of best

lower bounds, but the CP method has a higher average lower bound.
From this, it can be deduced that if CP has the best bound, on average
it is with a larger difference than if the GBM has the best bound.
Furthermore, it can be seen that the GBM performs better than the
CP method on all aspects of the upper bound. Therefore, the better
average optimality gap of the CP method compared to the GBM can
be attributed to the better performance of the lower bounds.

When comparing the size of the problems, it can be seen in Table 3
that the GBM model is considerably larger than the GKH model. Both
ave the same number of variables, but the GBM model has about twice

as many constraints. However, the constraint propagation reduces the
size significantly. Although some more constraints (and thus rows) are
added due to Constraints (3), the number of variables is more than
halved.

Upon evaluating computational times, we found two major trends:
ith the number of activities and with the RC value. The average

computational times for different values of these parameters are plotted
n Figs. 6(a) and 6(b). It can be seen that the solving difficulty increases

with the number of activities. We see that the difference between
the methods decreases with the number of activities, presumably due
to the influence of unsolved instances (which are capped at 6 h).
Furthermore, while evaluating the dependency on the RC parameter,
it can be seen that values around 0.7 are significantly more difficult.
A possible explanation could be that since resource constraints are
difficult to solve, a lower constrainedness results in an easier instance,

hile a high value would significantly decrease the feasible region, and
hus, the number of schedules that have to be evaluated.

7.2.2. Method comparison
Finally, we evaluate the instance set MC to gain insight in the

relative improvements of different parts of the CP method. A summary
of the results is given in Table 4 and the total computational time per
method for interesting instances (instances that are not too easy or too
hard) are shown in Fig. 7(a).

It can be seen that, although the CP method has the lowest average
computational time, the largest part of this decrease in computational
time can be attributed to the VR method. However, when considering
the number of optimal solutions obtained, the improvement due to the
CP method is considerably larger than the improvement due to the VR
method, indicating that the CP method is especially useful on more
ifficult instances. A possible explanation for this is that the CP method
equires additional computation, which might only be beneficial for
ore complicated instances.

The optimality gaps show counter-intuitive behavior, with the GBM
having the smallest gap. When evaluating the average normalized lower
and upper bounds, it can be seen that this optimality gap is mainly due
to the better upper bounds found by the GBM. Looking at the number
of best lower and upper bounds, it seems that the GBM performs better
than both the VR and CP method. However, this is not necessarily the
case for the lower bounds, since this comparison is slightly skewed due
to CP and VR performing well on the same instances. If only GBM
and CP would be compared on lower bounds, GBM would have 122
best lower bounds and CP 125 (excluding ties between GBM and CP).
However, some of these best lower bounds of CP are further improved
by VR. Therefore, CP performs relatively worse when comparing all
three methods. For the upper bounds, however, GBM performs better
than both the VR and the CP method.

Furthermore, Table 4 lists the average sizes of the ILPs. It can be
seen that the largest part of the reduced number of variables is due
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Fig. 5. Computational time and optimality gap for instance set LC.
Fig. 6. Average computational times for instance set LC.
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Table 4
Summary of results for instance set MC. The number of best lower bounds and best
upper bounds have 298 and 512 ties, respectively.

GBM VR CP

# Optimal solutions 323 325 336
Average computational time (103 s) 11.41 11.04 10.89
Average optimality gap 0.057 0.059 0.058
# Best lower bound 127 88 113
Average normalized lower bound 0.9449 0.9452 0.9453
# Best upper bound 38 24 34
Average normalized upper bound 1.0027 1.0049 1.0036
Average number of constraints 1535 1767 1767
Average number of variables 21 253 11 871 11 000

Table 5
Average computational time for instance set MC.
Added links Computational time (103 s)

GBM VR CP

0 10.97 10.14 9.53
3 11.31 11.14 11.18
6 11.96 11.84 11.95

to the VR method, averaging to a reduction of 44%. The CP method
in turn has a further reduction of 4%. Both the VR and CP method use
the same valid inequalities, resulting in the same number of constraints:
15% more than the GBM.
64 
Finally, we evaluate the performance of the methods compared
o the AL parameter, which gives an indication of the similarity be-

tween the selection graph and the precedence graph. The average
computational time per AL value is shown in Fig. 7(b) and Table 5.

It can be seen that there is an increasing trend of computational
time against the AL value. Furthermore, it is interesting to see that
the VR method performs slightly better in terms of computational time
on all AL values except zero. To analyze the performance against the
AL value in more detail, we evaluate the linear relaxation of both the
CP and the VR method. We define the relative linear relaxation as 𝑙 𝑟2

𝑙 𝑟3 ,
where 𝑙 𝑟2 and 𝑙 𝑟3 are the linear relaxation values of the VR and CP
methods, respectively. Thus, a value of 1 means no improvement in
linear relaxation due to the CP method. Note that CP solves the same
ILP model as VR, although with more variables set to zero. Therefore,
the relative linear relaxation is never larger than one. The lower the
value of the relative linear relaxation, the larger the improvement due
to the CP method.

In Fig. 8(a), the relative linear relaxation values are shown. It can
e seen that the relative performance of the CP method increases
ith the AL value. However, by plotting the computational times of

the preprocessing part of the CP method in Fig. 8(b), it can be seen
that the computational time also increases with AL values. As seen in
Table 6, there is a decrease in ILP solver time due to the CP method for
each AL value. However, for AL values larger than 0, this decrease is
smaller than the increased computational time due to preprocessing.
Therefore, the CP does not outperform the VR on these instances,
because the additional computational time needed is larger than the
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Fig. 7. Computational times for instance set MC.
Fig. 8. Analysis on AL value.
Table 6
Partial computational times (103 s) for instance set MC for different
values of AL.
AL: 0 3 6

VR ILP Solver 10.14 11.14 11.84
CP preprocess 0.73 1.06 1.22
CP ILP Solver 8.81 10.12 10.73

decrease in computational time obtained by having a better model.
A possible explanation for the increase in preprocessing time, is that
added links increase the influence of NEESs across the project network,
thus possibly introducing new iterations in the preprocessing algorithm.
However, when evaluating the number of solved instances for an AL
value of 3 (108 for VR and 111 for CP) and 6 (100 for VR and 102 for
CP), the use of the CP method can still be valuable for these instances.

8. Conclusions

In this paper, we developed a general model for the RCPSP-PS by
introducing the concept of selection groups. Based on this model, two
types of subsets of activities were identified: ‘non-empty execution sets’
and ‘max-one execution sets’, which provide information on the number
of executed activities within these sets. With these sets, cutting planes
and a constraint propagation technique were introduced, along with an
algorithm that combines these methods.

Computational tests show that the basic ILP model performs signif-
icantly better than the most similar model from literature, although it
must be noted that we only test on instances without nonrenewable
65 
resources. Furthermore, an improvement on both computational time
and number of optimal solutions found is achieved by both the Variable
reduction and the Constraint propagation method. Additionally, although
for the final instance set the average optimality gap did not improve,
the best lower bound found did. To further improve the results, differ-
ent formulations can be explored, as this has shown to be beneficial for
the standard RCPSP.

Besides the direct computational improvements, the methods pre-
sented in this paper decrease the solution space. Therefore, they can
be directly implemented in other exact approaches, such as constraint
programming. Furthermore, the mathematical proofs in this paper
can be used as building blocks for other theoretical or computational
improvements, for example, in decomposition based approaches such
as Sprecher (2002). Finally, the theoretical properties can be used in
heuristic algorithms.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Proof. We proof this by induction, by creating and updating a set 𝐵
teratively. At each iteration, 𝐵 satisfies two properties:

1. 𝐵 is a NEES.
2. 𝐵 contains only activities 𝑖 ∈ 𝑁 ′ with ∑

𝑔∈𝐺𝑖
𝑈𝑔 ≥ 1 or 𝑉𝑖 = 1.

Start with 𝐵 = {0}. Since the source activity 0 always has to be
xecuted, it is a NEES. Furthermore, due to Constraint (2a), it also

satisfies Property 2.
For the induction step, assume that set 𝐵 satisfies both properties.

or each activity 𝑖 ∈ 𝐵 with 𝑉𝑖 = 0 (and thus ∑

𝑔∈𝐺𝑖
𝑈𝑔 ≥ 1 by Property

), let set 𝐶𝑖 contain all successor activities of 𝑖 that satisfy Property 2;
𝑖 = {𝑗 ∶ ∃𝑔 ∈ 𝐺𝑖|𝑗 ∈ 𝑆𝑔 ∧ 𝑉𝑗 +

∑

ℎ∈𝐺𝑗
𝑈ℎ ≥ 1}. Since ∑

𝑔∈𝐺𝑖
𝑈𝑔 ≥ 1

y assumption, there is at least one group 𝑔 ∈ 𝐺𝑖 with 𝑈𝑔 = 1. Then,
y Constraints (2b) and (2c), it follows that all successors of this group

satisfy Property 2 and are therefore included in set 𝐶𝑖. Thus, if 𝑖 is
executed, at least one activity in 𝐶𝑖 is executed. We now create �̄� by
replacing 𝑖 by 𝐶𝑖; �̄� = 𝐵 ∪ 𝐶𝑖 ⧵ {𝑖}. Since 𝐵 is a NEES, so is �̄�. Thus, �̄�
satisfies both properties. Finally, take �̄� as the new 𝐵.

For each iteration, each activity is replaced by its successors unless
𝑖 = 1. Since the graph is acyclic, the iterative process will terminate, in
hich case 𝑉𝑖 = 1 for every 𝑖 ∈ 𝐵, since at some point 𝐺𝑖 will be empty.
s shown, both properties are maintained in this process. Therefore,

he final set 𝐵 is a NEES. Because 𝐴 contains all activities 𝑖 ∈ 𝑁 ′ with
𝑖 = 1, this means that 𝐵 ⊆ 𝐴. Since 𝐵 is a NEES, which means that
t least one activity in 𝐵 has to be executed, then any superset of 𝐵 is

also a NEES. Therefore, 𝐴 is a NEES as well and since 𝐴 results from a
solution to Constraint set (2), this solution constitutes a NEES. □

A.2. Proof of Proposition 1

Proof. Consider two activities 𝑖 and 𝑗 that are both executed in the
solution. This is illustrated in Fig. 9. There has to be a path of executed
ctivities from the start activity 0 to both 𝑖 and 𝑗. Call these paths 𝑆1
nd 𝑆2, respectively. If these paths split at an activity 𝑟 to successor
ctivities 𝑢 and 𝑣 (𝑢 ≠ 𝑣), it follows that 𝑢 and 𝑣 cannot be in the
ame selection group due to Constraints (1f). Since paths can merge

after splitting, take activity 𝑟 as the activity immediately before the last
split, and the remaining paths as 𝑃 and 𝑄, which give a CRP (𝑟, 𝑃 , 𝑄).
Let 𝓁(𝑃 ) be the number of activities on path 𝑃 . If there is no split,
ssume w.l.o.g, 𝓁(𝑃 ) < 𝓁(𝑄). Then, 𝑗 lies in the extension of 𝑖, and

(𝑖, {𝑖}, {𝑖} ∪ {(𝑄) ⧵ (𝑃 )}) gives a CRP between 𝑖 and 𝑗.
Thus, if activities 𝑖 and 𝑗 are both executed, there is always a CRP

between them. This means that at most one of them can be executed if
there is no CRP. □

A.3. Proof of Proposition 2

Proof. Constraints (6b) impose that groups can only be selected if
there is no CRP between the activators. Therefore, in combination

ith Constraints (6c), there is no CRP between the set of activities
or which 𝑊 ∗

𝑖 = 1. Therefore, for an integer solution, the left hand
side of Constraint (7) contains at most one non-zero summation term

𝑡∈𝑇 (𝑡 + 𝑑𝑖)𝑋𝑖𝑡, for which ∑

𝑡∈𝑇 𝑋𝑖𝑡 = 1. Consider the case that one
ctivity 𝑖′ for which 𝑊 ∗

𝑖′ = 1 is executed. Then, there exists at least
ne selection group 𝑔 ∈ 𝐻 with activator 𝑖′ for which 𝑌 ∗

𝑔 = 1 and
′
hus there exists at least one executed activity 𝑗 that is a successor of
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group 𝑔 and for which 𝑍∗
𝑗′ = 1. Due to the full precedence, we obtain

Eq. (8). If no activity 𝑖′ for which 𝑊 ∗
𝑖′ = 1 is executed, the left-hand

side of Constraint (7) is zero, and therefore, it is a cutting plane.
∑

𝑖∈𝑁
𝑊 ∗

𝑖

∑

𝑡∈𝑇
(𝑡 + 𝑑𝑖)𝑋𝑖𝑡 =

∑

𝑡∈𝑇
(𝑡 + 𝑑𝑖′ )𝑋𝑖′𝑡 ≤

∑

𝑡∈𝑇
𝑡𝑋𝑗′𝑡 ≤

∑

𝑖∈𝑁
𝑍∗

𝑖

∑

𝑡∈𝑇
𝑡𝑋𝑖𝑡. (8)

Therefore, as long as Objective function (6a) has a value larger than
, Constraint (7) cuts of the current solution 𝑋∗. □

Appendix B. Rooted path graphs

In this section, we show how to create a Rooted Path Graph (RPG).
Let 𝛺𝑖 be the set of all successors of 𝑖 in the selection graph (recall that
𝑖 is the set of all successors in the precedence graph). Furthermore, let

𝛩 be all pairs of activities (𝑖, 𝑗) with a path between 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁
in the selection graph and 𝛩𝑖 all activities reachable from 𝑖 ∈ 𝑁 in the
selection graph. Finally, let 𝛤 be the set of activity pairs (𝑖, 𝑗) for which
𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 are successors in the same selection group, i.e., for
all (𝑖, 𝑗) ∈ 𝛤 there exists a selection group 𝑔 ∈ 𝐺 such that 𝑖 ∈ 𝑆𝑔 and
𝑗 ∈ 𝑆𝑔 .

Furthermore, we distinguish between two types of CRP’s: splitted
CRP’s and extended CRP’s. A splitted CRP (𝑟, 𝑃 , 𝑄) splits up at activity

and has 𝓁(𝑃 ) > 1 and 𝓁(𝑄) > 1 (note that paths 𝑃 and 𝑄 both include
activity 𝑟), where 𝓁(𝑃 ) is the number of activities on path 𝑃 . In an
extended CRP there is no split and one path is an extension of the other,
i.e., the root is 𝑖, 𝑃 = {𝑖} and 𝑄 is a path from 𝑖 to 𝑗. In Fig. 9, there
is a splitted CRP between 𝑖 and 𝑗. However, there also is an extended
CRP between, for example, 𝑟 and 𝑖: (𝑟, (𝑟), (𝑟, 𝑢,… , 𝑖)).

Given these definitions, we now present Algorithm 3, which creates
an RPG. Three sets of edges are introduced: Final edges 𝐸(𝑓 ), active
dges 𝐸(𝑎) and new edges 𝐸(𝑛). There are four steps which add edges
o these sets:

Step 1 For any activity 𝑟 ∈ 𝑁 , let 𝐹 (1)
𝑟 be the set of edges between any

two successors (𝑖, 𝑗), with 𝑖 ≠ 𝑗, if 𝑖 and 𝑗 are not successors in
the same selection group; 𝐹 (1)

𝑟 = {(𝑖, 𝑗) ∶ 𝑖 ∈ 𝛺𝑟, 𝑗 ∈ 𝛺𝑟, (𝑖, 𝑗) ≠
𝛤 , 𝑖 ≠ 𝑗}. Add these edges to the set of active edges, i.e., 𝐸(𝑎) ←

𝐸(𝑎) ∪ 𝐹 (1)
𝑟 .

Step 2 For any active edge (𝑖, 𝑗) ∈ 𝐸(𝑎), create a set of edges 𝐹 (2)
𝑖𝑗 . For

each successor activity 𝑢 of activity 𝑖, add edges (𝑗 , 𝑢) and (𝑢, 𝑗) to
this set if 𝑢 is not reachable from 𝑗. We call this extending (𝑖, 𝑗)
on 𝑖 to 𝑢. This gives 𝐹 (2)

𝑖𝑗 = {(𝑗 , 𝑢) ∶ 𝑢 ∈ 𝛺𝑖, 𝑢 ∉ 𝛩𝑗} ∪ {(𝑢, 𝑗) ∶
𝑢 ∈ 𝛺𝑖, 𝑢 ∉ 𝛩𝑗}. Add these edges to the set of new edges:
𝐸(𝑛) ← 𝐸(𝑛) ∪ 𝐹 (2)

𝑖𝑗 .

Step 3 For any active edge (𝑖, 𝑗) ∈ 𝐸(𝑎), create the set 𝐹 (3)
𝑖𝑗 . Add edge

(𝑢, 𝑣) to this set if 𝑢 is a successor of 𝑖 and 𝑣 is a successor of 𝑗,
𝑢 ≠ 𝑣, both 𝑢 and 𝑣 are not equal to 𝑖 or 𝑗, 𝑢 is reachable from 𝑗
and 𝑣 is reachable from 𝑖. This gives 𝐹 (3)

𝑖𝑗 = {(𝑢, 𝑣) ∶ 𝑢 ∈ 𝛺𝑖, 𝑣 ∈
𝛺𝑗 , 𝑢 ≠ 𝑣, 𝑢 ∉ {𝑖, 𝑗}, 𝑣 ∉ {𝑖, 𝑗}, 𝑢 ∈ 𝛩𝑗 , 𝑣 ∈ 𝛩𝑖}. Add this set to
the set of new edges: 𝐸(𝑛) ← 𝐸(𝑛) ∪ 𝐹 (3)

𝑖𝑗 . After this loop, add the
set of active edges to the set of final edges (𝐸(𝑓 ) ← 𝐸(𝑓 ) ∪ 𝐸(𝑎))
and replace the set of active edges by the new set of edges
(𝐸(𝑎) ← 𝐸(𝑛)). If the set of new edges is not empty, empty this
set (𝐸(𝑛) = ∅) and go back to Step 2. Otherwise, proceed to Step
4.

Step 4 For every activity 𝑟 ∈ 𝑁 , add final edges (𝑟, 𝑖) for every 𝑖
reachable from 𝑟; 𝐸(𝑓 ) ← 𝐸(𝑓 ) ∪ {(𝑟, 𝑖) ∶ 𝑟 ∈ 𝑁 , 𝑖 ∈ 𝛩𝑟}

These steps are illustrated in Fig. 10.
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Fig. 9. Example showing a splitted CRP between 𝑖 and 𝑗 and an extended CRP between 𝑟 and 𝑖.
Fig. 10. Steps in RPG algorithm.
Algorithm 3 Rooted Path Graph

1: 𝐸(𝑓 ) ← ∅
2: 𝐸(𝑎) ← ∅
3: 𝐸(𝑛) ← ∅
4: for all 𝑟 ∈ 𝑁 do
5: 𝐸(𝑎) ← 𝐸(𝑎) ∪ 𝐹 (1)

𝑟 ⊳ Step 1
6: end for
7:
8: do
9: for all (𝑖, 𝑗) ∈ 𝐸(𝑎) do

10: 𝐸(𝑛) ← 𝐸(𝑛) ∪ 𝐹 (2)
𝑖𝑗 ⊳ Step 2

11: 𝐸(𝑛) ← 𝐸(𝑛) ∪ 𝐹 (3)
𝑖𝑗 ⊳ Step 3

12: end for
13: 𝐸(𝑓 ) ← 𝐸(𝑓 ) ∪ 𝐸(𝑎)

14: 𝐸(𝑎) ← 𝐸(𝑛)

15: 𝐸(𝑛) ← ∅
16: while |𝐸(𝑎)

| > 0
17:
18: for all 𝑖 ∈ 𝑁 do
19: 𝐸(𝑓 ) ← 𝐸(𝑓 ) ∪ {(𝑖, 𝑗) ∶ 𝑗 ∈ 𝛩𝑖} ⊳ Step 4
20: end for

Theorem 1 states that Algorithm 3 creates an RPG.

Theorem 1. Algorithm 3 creates a rooted path graph if the selection graph
is acyclic.

Proof. If there is an edge created by Algorithm 3, there is a CRP:
For Step 1, 2, and 3, we will prove this by induction. The base case

is given by Step 1. If an edge (𝑖, 𝑗) is created in this step, the CRP is
given by the splitted CRP (𝑟, {𝑟, 𝑖}, {𝑟, 𝑗}). Since Step 2 and 3 take input
edges from Step 1, 2, and 3, we assume for the induction step that each
input edge (𝑖, 𝑗) for Step 2 and 3 has a splitted CRP (𝑟, 𝑃 , 𝑄).

For Step 2, w.l.o.g, let 𝑢 be the successor activity of the final activity
in path 𝑃 . If 𝑢 ∉ (𝑄), then adding 𝑢 to 𝑃 gives a splitted CRP for
ctivities 𝑢 and 𝑗, and we are done. If 𝑢 ∈ (𝑄), there are three cases
n which edge (𝑖, 𝑗) could have been created:
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Fig. 11. (𝑖, 𝑗) created by Step 2, with 𝑢 ∈ (𝑄).

1. Edge (𝑖, 𝑗) created by Step 1: Since 𝑄 = (𝑟, 𝑗) and 𝑢 is on path 𝑄,
it follows that 𝑢 = 𝑟 or 𝑢 = 𝑗. The former would result in a cycle
𝑟 → 𝑖 → 𝑢 = 𝑟, which is not possible since we have an acyclic
graph. The latter contradicts 𝑢 ∉ 𝛩𝑗 , so (𝑖, 𝑗) cannot be created
by Step 1.

2. Edge (𝑖, 𝑗) created by Step 2. Let (𝑖, 𝑗) = (𝑎0, 𝑏0), where the
index 0 stands for the number of iterations, counting backwards.
There are now two cases, (𝑎0, 𝑏0) was created by extending edge
(𝑎−1, 𝑏0) to 𝑎0 on 𝑎−1, or by extending edge (𝑎0, 𝑏−1) to 𝑏0 on
𝑏−1. Consider the last case. By assumption, 𝑢 ∈ (𝑄) and 𝑢 is
a successor of 𝑎0. Therefore, as shown in Fig. 11, there is a path
𝑎0 → 𝑢 → 𝑏0. This means that 𝑏0 is reachable from 𝑎0, which is
a contradiction since Step 2 only extends if 𝑏0 is not reachable
from 𝑎0.
This means that if (𝑎0, 𝑏0) is created by Step 2, it has to be
extended to 𝑎0 from input edge (𝑎−1, 𝑏0). The same logic holds
for this input edge (𝑎−1, 𝑏0); it cannot be created by extending
(𝑎−1, 𝑏−1) to 𝑏0 on 𝑏−1. Thus, (𝑎0, 𝑏0) is created by iteratively
extending edge (𝑎−𝑛, 𝑏0) to 𝑎−𝑛+1 on 𝑎−𝑛. Taking 𝑛 as large as
possible, we get edge (𝑎−𝑛, 𝑏0), which is not created by Step 2.
Therefore, (𝑎−𝑛, 𝑏0) has to be created by either Step 1 or Step 3.
Consider the case that (𝑎−𝑛, 𝑏0) is created by Step 1. This means
that both activities 𝑎−𝑛 and 𝑏0 are successor activities of the root
activity 𝑟 ∈ 𝑁 . Since 𝑢 cannot be reachable from 𝑏0 and an
activity is always reachable by itself, 𝑏0 ∈ 𝛩𝑏0 and thus 𝑢 ≠ 𝑏0.
Therefore, since 𝑢 ∈ (𝑄) and 𝑄 = (𝑟, 𝑏0 = 𝑗), we have that 𝑢 = 𝑟,
and thus, there is a path 𝑎0 → 𝑢 = 𝑟 → 𝑎−𝑛 → ⋯ → 𝑎0, which is
a cycle.
If (𝑎−𝑛, 𝑏0) is created by Step 3, call the input edge (𝑎−𝑛−1, 𝑏−1).
Since 𝑢 ∈ (𝑄) and 𝑢 ≠ 𝑏 , it follows that 𝑏 is reachable from
0 −1
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Fig. 12. (𝑖, 𝑗) created by Step 3, with 𝑢 ∈ (𝑄).
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Table 7
Numerical values of Fig. 5(a).

Method 1 3 4

Mean 6.12 5.62 11.44
Median 1.98 2.16 11.34
Minimum (excl. outliers) 0.03 0.15 0.01
Maximum (excl. outliers) 21.60 18.66 21.60
Q1 0.39 0.79 1.01
Q3 10.51 8.38 21.60

Table 8
Numerical values of Fig. 5(b).

Method 1 3 4

Mean 0.009 0.007 0.057
Median 0.000 0.000 0.000
Minimum (excl. outliers) 0.000 0.000 0.000
Maximum (excl. outliers) 0.000 0.000 0.191
Q1 0.000 0.000 0.000
Q3 0.000 0.000 0.077

Table 9
Numerical values of Fig. 6(a).

Activity bin midpoint Computational time (103 s)

1 3 4

150 8.87 8.02 12.22
219 13.81 13.57 16.11
288 17.42 17.55 18.48
356 19.06 19.34 19.66
425 20.96 20.70 21.26

Table 10
Numerical values of Fig. 6(b).

RC Computational time (103 s)

1 3 4

0.5 12.50 12.40 14.53
0.7 19.57 19.24 20.78
0.9 13.56 13.51 15.61

Table 11
Numerical values of Fig. 7(a).

Method 1 2 3

Mean 6.65 5.96 5.66
Median 2.64 1.90 2.15
Minimum (excl. outliers) 0.01 0.01 0.13
Maximum (excl. outliers) 21.60 21.60 18.09
Q1 0.63 0.25 0.72
Q3 10.33 9.77 8.41

Table 12
Numerical values of Fig. 7(b).

Added links Computational time (103 s)

1 2 3

0 10.97 10.14 9.53
3 11.31 11.14 11.18
6 11.96 11.84 11.95

𝑢, i.e., 𝑏−1 ∈ 𝛩𝑢. By construction in Step 3, 𝑎−𝑛 is reachable from
𝑏 . Therefore, there is a path 𝑢 → 𝑏 → 𝑎 → 𝑎 → 𝑢, which is
−1 −1 −𝑛 0
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Table 13
Numerical values of Fig. 8(a).

Added links 0 3 6

Mean 0.90 0.81 0.74
Median 0.92 0.87 0.84
Minimum (excl. outliers) 0.71 0.50 0.24
Maximum (excl. outliers) 1.00 1.00 1.00
Q1 0.85 0.75 0.66
Q3 0.96 0.95 0.94

Table 14
Numerical values of Fig. 8(b).

Added links 0 3 6

Mean 0.69 0.73 0.78
Median 0.35 0.42 0.45
Minimum (excl. outliers) 0.09 0.05 0.07
Maximum (excl. outliers) 1.33 1.64 1.64
Q1 0.23 0.26 0.25
Q3 0.76 0.85 0.84

also a cycle. This means that there is a cycle in both cases. This
contradicts the fact that we have an acyclic graph. Therefore,
edge (𝑖, 𝑗) cannot be created by Step 2.

3. Edge (𝑖, 𝑗) created by Step 3. Let (𝑖′, 𝑗′) be the input edge which
created (𝑖, 𝑗), with 𝑖′ and 𝑗′ in 𝑃 and 𝑄, respectively. This is
illustrated in Fig. 12. Since 𝑢 ∈ (𝑄) and 𝑢 ≠ 𝑗, it follows that
𝑗′ is reachable from 𝑢. This gives a path 𝑖 → 𝑢 → 𝑗′ → 𝑖. This
creates a cycle, which is a contradiction.

Therefore, if 𝑢 ∈ (𝑄), edge (𝑖, 𝑗) could not be created. Thus, 𝑢 ∉
(𝑄) and Step 2 creates a splitted CRP.

Step 3, with input edge (𝑖, 𝑗), creates an active edge (𝑢, 𝑣) represent-
ing a splitted CRP if 𝑣 ∉ (𝑃 ) and 𝑢 ∉ (𝑄). Thus, assume 𝑢 ∈ (𝑄).

hen, there is a cycle from 𝑢 to 𝑗 to 𝑢, which is a contradiction.
Therefore 𝑢 ∉ (𝑄). The same arguments holds for 𝑣 ∉ (𝑃 ).

Thus, given a splitted CRP, Step 2 and 3 produce a splitted CRP.
ince Step 1 produces only splitted CRP’s, Step 2 and 3 do as well by

induction. Finally, each edge in Step 4 is an extended CRP.
If there is a CRP, there is an edge created by Algorithm 3:
Consider activities 𝑖 and 𝑗 with a CRP {𝑟, 𝑃 , 𝑄}, 𝑃 = (𝑟, 𝑝1,… , 𝑝𝑛) and
= (𝑟, 𝑞1,… , 𝑞𝑚). Let 𝑝𝑛 = 𝑖 and 𝑞𝑚 = 𝑗. If either 𝑖 is reachable from

or vice versa ((𝑖, 𝑗) ∈ 𝛩), Step 4 creates an edge. Therefore, assume
hat (𝑖, 𝑗) ∉ 𝛩.

Step 1 creates an edge between 𝑝1 and 𝑞1. If 𝑝1 = 𝑖 and 𝑞1 = 𝑗,
we are done, so assume 𝑝1 ≠ 𝑖 and/or 𝑞1 ≠ 𝑗. Now, if 𝑝2 ∈ 𝛩𝑞1 and
𝑞2 ∈ 𝛩𝑝1 , Step 3 creates edge (𝑝2, 𝑞2). If 𝑝2 ∉ 𝛩𝑞1 and/or 𝑞2 ∉ 𝛩𝑝1 , Step
2 creates an edge further along the CRP in at least one path (𝑃 or 𝑄).
Therefore, in each iteration, an edge is created along the CRP to an
activity on either 𝑃 , 𝑄 or both. Continue this until, w.l.o.g, there is an
edge created to activity 𝑖 on path 𝑃 .

Let 𝑞𝑎 be the last activity on 𝑄 with an edge (𝑖, 𝑞𝑎). Step 2 iteratively
reates a new edge (𝑖, 𝑞𝑎+1) as long as 𝑞𝑎+1 ∉ 𝛩𝑖. This is either repeated
ntil 𝑞𝑎+1 = 𝑗 and edge (𝑖, 𝑗) is created, or until 𝑞𝑎+1 ∈ 𝛩𝑖. In the latter
ase, there is a path 𝑖 → 𝑞𝑎+1 → 𝑗, so Step 4 will create edge (𝑖, 𝑗). □

Appendix C. Numerical results

In this section, numerical values for figures in the manuscript are
given (see Tables 7–14).
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