
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Backdoor Attacks in
Active Learning
An Extensive Analysis of Backdoor Injection in
Active Learning-Trained Computer Vision Models

Selena Mendez



Backdoor Attacks in
Active Learning

An Extensive Analysis of Backdoor Injection in
Active Learning-Trained Computer Vision Models

by

Selena Mendez

to obtain the degree of Master of Science at the Delft University of Technology,

to be defended publicly on Friday April 17, 2025 at 14:00 PM.

Student number: 5324149
Project duration: September 5, 2024 – April 17, 2025
Thesis committee: Prof. dr. ir. Georgios Smaragdakis, TU Delft Thesis Advisor

Dr. Stjepan Picek, TU Delft Daily Supervisor
Ir. Stefanos Koffas, TU Delft Daily co-Supervisor
Dr. Zhengjun Yue, TU Delft Committee Member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Acknowledgement

First of all, I would like to express my gratitude to Prof. dr. ir. George Smaragdakis, my thesis advisor,
for his insights and feedback throughout the process. To Dr. Stjepan Picek, my daily supervisor, and
Ir. Stefanos Koffas, my daily co-supervisor. Your support each week, along with your good humor
and positivity, made even the most challenging moments in the last nine months more manageable. I
am truly grateful for your time, dedication, and the motivation you provided throughout this journey.

To my familia, Mom, Dad, and my wonderful siblings, you are the anchor that keeps me connected
to my roots, reminding me of where I come from and the values that formed me. At the same time, you
are my greatest motivation to become the best version of myself and strive for more. From the moment
I took my first steps on my academic journey you have been there to remind me that I am never alone.
Every achievement I reach is not just mine; it is ours.

Finally, to Nima, my love, partner and inspiration in life. Although your studies are very different from
mine, you have never hesitated to understand my ideas, my struggles, and my passions as if they
were your own. Your belief in me, patience, and encouragement have carried me through the toughest
moments. Thank you for reminding me to look at the positive side of things, to be strong, and to never
fear to speak out. You are my rock, and this accomplishment is also dedicated to you.

This thesis is not only the result of my efforts; it represents the love, sacrifices, and support of everyone
who has been by my side.

Selena Mendez
Delft, April 2025

i



Abstract

Deep learning sustained great success in several domains, particularly in computer vision, where it
facilitates tasks such as image classification and object recognition. However, one significant challenge
in deep learning is data labeling, due to the high cost and effort required for human annotators to go
over this process manually. Active learning addresses this problem by selecting a smaller amount of
the most relevant data for this labeling process, maximizing efficiency. Despite its advantages, active
learning presents new security threats. In particular, backdoor attacks, where adversaries poison part
of the training data to modify the behavior of the model in the presence of a hidden trigger. Although
backdoor attacks have been extensively studied in traditional deep learning contexts, their impact on
active learning remains largely uncertain.

Here, the vulnerabilities of active learning against backdoor attacks in computer vision models were
analyzed. Various configurations, datasets and deep learning models were used to evaluate their ef-
fectiveness. Backdoor attacks managed to hit ASR values over 95% with just 1% of the data being
poisoned on simple datasets like MNIST, particularly when using certainty-based sampling and CNNs.
More complex datasets like CIFAR-10 andmodels like ResNet proved to bemore resilient. Furthermore,
different attack techniques were explored, such as progressive parameter adjustment, sub-trigger di-
vision and clean label attacks on advanced backdoor triggers like LIRA and WaNet. The analysis
revealed that although global LIRA triggers were the most effective, sub-trigger and progressive poi-
soning methods offered promising alternatives, especially because they allow poisoning smaller parts
of images across training cycles. Additionally, it is revealed that attack success in clean-label scenarios
was highly dependent on the number of poisoned samples per cycle, due to the post-query constraint
that only allows poisoning already-selected samples, often limiting impact when the target label appears
infrequently. Finally, different poisoning timings were compared. From this, post-query poisoning con-
sistently outperformed pre-query methods in terms of ASR, even at low poison rates. However, it also
pointed out that this approach has its limitations in real-world scenarios, where attackers usually do not
have control over the samples being queried. Clean accuracy remained unaltered to a large extent,
demonstrating the stealth and hidden threat of backdoor attacks in active learning settings.
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1
Introduction

Deep learning (DL) has been a crucial tool for advancement and success across a wide range of do-
mains. DL is a form of machine learning that uses many layers of neural networks to detect complex
patterns in data [40, 7]. In computer vision, it enables the processing of large volumes of visual infor-
mation in a correct and efficient way through methods like object classification and image recognition
[61]. One limitation of DL is that it typically requires labeled data and that labeling can be costly and
inefficient. This challenge is even more pronounced in complex computer vision tasks such as medical
image tumor segmentation, where experts must identify millimeter-sized anomalies in 3D volumetric
data [64], or in pixel-wise labeling of urban street views, which can take over 90 minutes per image
[12]. For this purpose, active learning (AL) has been introduced to reduce labeling costs and increase
efficiency. Although AL offers a great solution to the aforementioned labeling problem, its iterative na-
ture and dependence on limited labeled data can be the starting point of new security threats, such as
backdoor attacks.

Active learning is a method that enables the efficient training of DL models by decreasing the amount
of needed labeled training data. This is done by intelligently selecting the subset of data to be labeled,
using querying methods that only select the top samples that are expected to enhance model learning
the most [48, 44, 22]. In this way, human annotators are only required to label a part of the training data
instead of the whole available pool. One of the identifying features of AL is having a cyclical process
in which the model constantly asks for samples of data to be labeled and updates the training data.

Backdoor attacks involve poisoning a portion of the training data to corrupt an artificial intelligencemodel
and produce certain unanticipated effects after introducing a trigger [10, 62, 46]. Within computer vi-
sion, backdoor attacks can have serious effects, particularly in important domains such as autonomous
driving [74], surveillance [20], and medical imaging [16]. One specific type of attack, that is relevant
to this study, is the clean-label attack. This attack introduces poisoned samples while keeping the in-
tended labels, making them look authentic upon inspection in contrast to dirty label backdoor attacks
that depend on altering the data labels [58, 75]. In AL settings, this type of attack can have a great
impact considering that automated verification systems and human annotators might not be able to tell
poisoned samples apart from real data.

The effects of backdoor attacks on various DLmodels andmethodologies have been thoroughly studied
in recent years [62, 70, 33, 72]. Nevertheless, what remains mostly unexplored is how such backdoor
attacks impact AL models and if their particular properties introduce new vulnerabilities. It is crucial
to analyze and understand the risks involved in AL in order to ensure the security and trustworthiness
of technologies based on this method. Particularly, vulnerable applications where decision-making is
based significantly on model predictions.

1
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1.1. Research Gaps
Active learning has been introduced to retain efficient model training while minimizing data labeling.
However, it can also open up new attack surfaces and generate security risks. Models that are trained
using AL are susceptible to backdoor attacks due to their small training data sets, cyclic nature, uncertainty-
based labeling, and human participation. Especially when using third-party providers for data labeling
or training, backdoor attacks are more likely to happen [42].

Backdoor attacks have been explored in the context of traditional DL systems, but the features of AL
create novel vulnerabilities that have not been thoroughly explored. There has been no systematic
study of how query strategies, data set properties, or specific model architectures in AL contribute to
increased vulnerability to backdoor attacks. Furthermore, there is a gap in research on the detection of
these attacks, taking into account the way in which poisoned data may be injected in an unnoticeable
way over multiple cycles.

Another unexplored area related to this topic is the use of sub-triggers and parameter progression to
enhance the stealth and effectiveness of attacks in AL. The iterative model updates characteristic of
active learning allow adversaries to divide the whole trigger into smaller parts over multiple training
cycles. This concept can be an effective way to embed a backdoor while avoiding detection. Moreover,
increasing the backdoor intensity during these cycles in a gradual way could also be a strategy to
bypass traditional detection mechanisms.

Clean-label attacks in the context of AL is a topic that still needs more exploration. While these types of
attacks have been studied in other contexts, such as prompt-based learning [66] and federated learning
[67], their specific vulnerabilities in AL settings are not clear. Clean label backdoor attacks present
a significant risk because the poisoned samples appear identical to normal samples and preserve
accurate truth labels, making them hard to detect. It is especially important to focus on this type of
attack since the clean-label strategy can be used to deceive human annotators, which is a key part of
the active learning process.

This research aims to investigate the security risks of backdoor attacks in active learning, with a partic-
ular focus on computer vision applications. First, the effect of backdoor attacks on AL strategies, their
characteristics, and effectiveness will be analyzed on varying datasets and models. Secondly, triggers
that are divided into smaller pieces and injected incrementally across AL cycles are tested, addressing
another gap in the literature. Additionally, the thesis discusses how clean-label attacks perform under
varying data and model conditions in AL. Finally, a preliminary framework is proposed for formulating
systematic analyses of backdoor attacks within AL settings, with some discussion on potential defenses
that make AL robust to such attacks.

1.2. Research Questions
In this section, the identified research gap is addressed by presenting four research questions. To-
gether, the questions aim to answer how susceptible active learning models in computer vision are to
backdoor attacks and what characteristics are especially exploitable.

Firstly, the effectiveness of various backdoor attack strategies and parameter variations on active learn-
ing models is analyzed. This is summarized in the following research question:

RQ1: How do various backdoor attack settings, such as trigger type, injection rate, and poison-
ing method, as well as active learning parameters, such as query size and number of cycles,
impact the success and stealth of backdoor attacks in active learning models?

Secondly, the characteristics of different datasets andmodels are studied in relation to backdoor attacks
in active learning. This is encapsulated in the next research question.

RQ2: How do different datasets and model architectures in computer vision influence the sus-
ceptibility of active learning frameworks to backdoor attacks?

Thirdly, an attempt is made to craft a generalizable and effective backdoor attack using techniques such
as sub-trigger division and parameter progression. The next question shows this.



1.3. Workflow 3

RQ3: How can backdoor attacks employing sub-trigger division and parameter progression
be designed to exploit vulnerabilities in active learning pipelines, and how do their impacts
compare to standard backdoor techniques?

Lastly, the impact of post-query and pre-query poisoning strategies are studied. This is indicated in the
following question.

RQ4: What is the impact of pre-query and post-query backdoor attacks on active learning mod-
els in computer vision?

1.3. Workflow
This chapter provides the workflow that was followed in this thesis, and it provides an overview of the
process, and how it was structured. The research started with a comprehensive literature review, where
the research gap was identified and necessary related work and information were gathered. Thereafter,
decisions were made about the development of the active learning pipeline; the type of active learning
that was used, the querying strategy, parameter, dataset, and model selection. Next in the workflow
was the development of the active learning pipeline, making sure that the whole process was refined
and working accordingly. Upon completion of the pipeline, the feature of including a backdoor attack
was added, with corresponding poisoning techniques and trigger types.

When the basic structure for model learning and backdoor attack incorporation was completed, the
experimental phase of this study started. Here, four different focused experiments were submitted
sequentially over 6 months using the DAIC cluster [1], to test multiple attack scenarios and settings.
Thereupon, the results were collected and stored accordingly, making sure that they were all set for
analysis. It is important to notice that this part of the process also included error correction by rerunning
certain parts of the experiments and parameter refinement. The last segment of the workflow consisted
of the interpretation of the findings, highlighting important key results, and linking this to a comprehen-
sive plan for future mitigation and detection techniques in related areas. A visual representation of the
complete workflow is provided in Figure 1.1.

Figure 1.1: Overview of the research workflow, illustrating the key parts of the study.

Research reported in this work was partially facilitated by computational resources and support of the
Delft AI Cluster (DAIC) at TU Delft [1], but remains the sole responsibility of the authors, not the DAIC
team.

1.4. Thesis Outline
The thesis presents the following structure:

• Chapter 2 - Background: overview of relevant information about deep learning, active learning,
and backdoor attacks.

• Chapter 3 - Related Work: discussion about novel techniques in the fields of active learning and
backdoor attacks.
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• Chapter 4 - Methodology and Study Design: description of the study design, experimental
set-up, methodology, and threat model used in this research.

• Chapter 5 - Experimental Results: presentation of the experimental results.
• Chapter 6 - Discussion: evaluation of the research results and the corresponding findings.
• Chapter 7 - Limitations and Future Work: definition of constraints in the experimental setup,
together with a discussion about future contributions.

• Chapter 8 - Conclusion: summary of the main findings of this work.
• Chapter 9 - Ethical Considerations: discussion of the ethical implications taken into account.



2
Background

This chapter details the necessary background for this research. Staring with explaining the concept
of deep learning, its characteristics, and challenges. It goes on with an in depth explanation of active
learning, its procedure, sampling methods, and attributes. It ends by detailing backdoor attacks on
deep learning, attack methodologies, their impact, and their possible solutions. The background can
be used as a basis to comprehend the vulnerability of active learning pipelines to backdoor attacks.

2.1. Deep Learning
To define deep learning (DL) it is essential to understand its encompassing field, which is calledmachine
learning (ML). In essence, ML is a broad field that focuses on teaching computers how to recognize
complex patterns and make decisions from data. The idea is that with ML there is no need to program
each possible scenario that the computer can encounter. Rather, the ML algorithm is provided with
example data and learns from it to infer the outcome [2, 40]. For instance, if one wants a computer to
distinguish between trees and flowers. Instead of manually defining features like trees having mainly
leaves and flowers having petals, one shows the computer a high amount of labeled images, allowing it
to learn these patterns itself. This concept is used for a big range of applications and has revolutionized
the way in which computers can improve manual processes and boost problem-solving capabilities in
different fields [61]. Figure 2.1 visualizes the general concepts of ML and DL.

Figure 2.1: Visualization of the concepts of Machine learning and Deep learning

It seems from the description of ML that it is a technique that has come to take over and leave human
intervention aside. However, the problem with supervised ML is that the data used for the models
has to be represented in terms of which features matter the most. Additionally, the features have to
be assigned, and labels have to be chosen for the data. The aforementioned still requires significant
human intervention. In contrast, unsupervised ML techniques, such as the clustering algorithms, do not
require labeled data for model training; instead, independent patterns or clusters are identified in the
dataset without supervision. While many ML paradigms exist, feature selection and structuring of the
data remain important limitations in many approaches. In consequence, DL was introduced to eliminate
the manual extraction of the features. The DL algorithm figures it out automatically by analyzing raw
data, making it much more powerful for handling certain data types like images and speech [40].

5
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2.1.1. Fundamentals of Deep Learning
As mentioned before, DL is an important subset of ML that aims to make computers learn from high
quantities of data. To enable this functionality, models called artificial neural networks (ANNs) are
used. These networks can be seen as the tool used in DL for the processing of data, which contain
interconnected layers of units known as neurons [61]. The ANNs used in DL are called deep neural
networks (DNNs) and their structure consist of three layers with different functions. First, it contains
one input layer that takes in the original data. The second type of layer in a DNN is called a hidden
layer. There can be multiple hidden layers of neurons in a DNN. Essentially, hidden layers have the
task of data transformation based on patterns and relationships in the data. Lastly, a DNN contains an
output layer that cab be used to generate predictions based on the data [40].

Each neuron in a layer can be seen as a processing unit that applies mathematical functions to the
input from previous layers using weights. Afterwards, the result is injected into an activation function
and then sent to the next layer. This process is hierarchically structured and allows DL models to
recognize complex features at different stages of the learning process [7]. Figure 2.2 illustrates the
structure of a DNN as mentioned before.

Figure 2.2: Structure of a Deep neural network (DNN) and its corresponding layers.

How Deep Learning Works
In DL, learning is the process of gradually changing a neural network’s internal parameters (weights
and biases) to improve its ability to provide accurate predictions [40]. In a neural network, weights
represent the strength of the connections between neurons and influence how input signals propagate
through the network. Biases enable the model to adjust activation functions so that learning complex
patterns becomes more flexible. Biases and weights are parameters that are adjusted continuously
during training via optimization techniques, for instance, gradient descent, to reduce the difference
between predictions made by the model and the actual outputs. The learning methods in DL comprise
training, validation, and inference, which are the three major steps in this process [7]. These three
steps will be detailed next.

1. Training Phase: this is the most important step in the learning process, where the model learns
from a dataset (training set) consisting of samples with their corresponding labels. In this step,
the model makes predictions about the training data and compares those predictions with the
correct labels. This comparison is done bymeasuring the difference between the predicted values
and the actual values through a loss function. Furthermore, to reduce errors, an optimization
algorithm, for instance, Stochastic Gradient Descent (SGD) or Adam, adjusts the model’s internal
parameters (weights) through a process called backpropagation. In backpropagation, the model
calculates by how much each weight contributed to the loss [7]. Thereafter, it uses gradients to
determine how the modification of these weights should happen. This is an iterative process that
continues until a certain stopping criteria is met.

2. Validation Phase: validation has the aim of finetuning the model and its hyperparameters by
measuring the model performance against a validation data set. This validation set is separate
from the training set and is used to monitor the generalization ability of the model. Validation is
also used to determine when training should be stopped in order to avoid overfitting, a technique
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known as early stopping. When early stopping is used, some of the data from the validation set
impacts the training process. Because of this, when testing the final performance of the model
on unseen data, a test set must be used in order to get an unbiased estimate of the model’s
generalizability.

3. Inference Phase: in this phase, the correctness and generalizability of the model are assessed
through a dataset (test set), which contains samples that the model has not encountered before
during training. When an input is given to themodel, it will examine the data and assign confidence
scores over the potential outputs. These confidences describe the trained model’s certainty that
the label corresponds to the input. For example, if an image of a flower is given, the output from
the model may be 88%-flower, 10%-tree, and 2%-other, thus it will yield flower as its final output.

The Role of Data in Deep Learning
The role of data is vital for the success of DL models. The dataset is typically divided into the following
main segments. First, the training set is used to teach the model the patterns within the data. Next, the
validation set is used for hyperparameter tuning and avoiding overfitting. Lastly, the test set measures
the performance of a model on brand new unseen data [7].

A DL model requires great amounts of data in order for it to make good predictions [54]. Data can either
be labeled (where each input has the correct output, for instance, an image of a tree labeled ”tree”) or
unlabeled (where the model finds the patterns by itself, quite common in unsupervised learning). The
availability and variety of the training data have a direct impact on how well the model can generalize.
The absence of data may mean that the deep learning models will undergo overfitting, which in turn
implies that the models will perform spectacularly on the training examples while their performance on
unseen data will be rather poor.

2.1.2. Deep Learning Architectures
Several DL architectures have been developed to handle different types of data and tasks. The domain
of computer vision, which focuses on the processing of image and video data, encompasses specialized
models with unique characteristics. In this subsection, the most important architectures for this specific
study will be mentioned.

• ”Traditional” Convolutional Neural Networks (CNNs): a CNN is a type of neural network that
is meant for visual data processing of images via the spatial hierarchy capture and the image
structure. It employs filters that detect patterns such as edges, textures, and parts of the objects
in the images. Afterwards, the so-called pooling layers reduce the dimensionality of the data by
downsampling feature maps. Furthermore, the fully connected layers put together the extracted
features for classification [40, 7].

• Residual Networks (ResNet): the ResNet architecture developed in [25], solves the problem-
atic vanishing gradient in deep networks through the use of residual connections (skip connec-
tions). These skip connections allow the gradients to pass directly through to the network, thus
facilitating in the training of very deep architectures such as ResNet-50 and ResNet-101. The
ResNet residual blocks learn the difference (residual) between output and input. This helps the
learning and allows networks with hundreds of layers to be trained without any degradation in
performance [26].

• Inception Networks: originally created by Google [55], the Inception network enhances convo-
lutional networks with multiple filter sizes in a single convolutional layer for the sake of efficiency.
The model then captures feature representations at different scales without adding computational
complexity. The main innovations that come with the Inception networks are inception modules,
which have parallel convolutional layers of different kernel sizes (1x1 convolutions), which reduce
dimensions before applying larger convolutions. Another innovation is the use of auxiliary clas-
sifiers in intermediate layers to help in training deep models by combating vanishing gradient
problems [55].

2.1.3. Challenges and Limitations of Deep Learning
Despite its success, DL still has several disadvantages. One problem is that DL models need massive
amounts of labeled data, which is not always available. Making data acquisition and annotation a
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bottleneck [3]. The training cost of deep networks is enormously burdensome and requires appropriate
GPUs or TPUs to facilitate efficient feeding [52]. Another considerable challenge is interpretability; in
general, DL models work like black boxes; hence, it is hard to understand how the machines come up
with a decision [19].

2.2. Active Learning
Active learning (AL) is a machine learning paradigm with the aim of increasing model performance
without the incurring high costs for labeling big datasets [48, 44]. AL determines the most informative
and uncertain samples and requests labels only for these data points. So, the model learns mainly
from examples that will contribute most to its understanding instead of labeling all data indiscriminately
[4, 50, 71]. AL, as evidenced by empirical research, can significantly minimize the number of labeled
instances needed for modeling while achieving comparable or superior performance levels relative to
conventional models trained using labeled datasets [56, 28]. This method is usually most applicable
when acquiring labeled data is expensive, time-consuming, or requires an experts’ knowledge input.

2.2.1. The Active Learning Process
AL is a structured iterative process that minimizes the cost of labeling while maximizing learning effi-
ciency [48]. It starts with a small labeled data set, which is used for training an initial model. The initial
model evaluates a larger pool of unlabeled data to identify which of those samples would be the most
informative, using a predefined querying strategy like uncertainty sampling. After the querying process,
these instances are used for manual annotation. Once labeled, these new samples are reinserted into
the training data set, and the model is retrained on it to improve its performance [22, 30, 17]. This pro-
cess continues until a stopping criterion has been reached, such as no improvement in performance for
a set number of epochs or after a predefined number of training cycles. Figure 2.3 depicts a graphical
representation of the AL process, and the formal order of the process is as follows:

1. Train the model on a small labeled dataset.
2. Use the model to evaluate the uncertainty or informativeness of unlabeled instances.
3. Select the most informative instances based on a predefined querying strategy.
4. Obtain labels of the queried set from human annotators.
5. Retrain the model only on the labeled samples.
6. Repeat until a stopping criterion is met.

Figure 2.3: Visual representation of the Active learning process. Adapted from [15]

2.2.2. Types of Active Learning
There are two broad categories into which AL methods can be classified: pool-based sampling, and
stream-based selective sampling. The major differences between these AAL approaches are the mech-
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anisms by which unlabeled data is presented to the model and the used querying strategy. The choice
between these two different approaches depends on the nature of the particular application and whether
the process is performed in batches or continuously. Both approaches will be elaborated on next.

• Pool-Based Sampling: in pool-based AL, a large set of unlabeled data is provided for the
model to query the most informative samples from this pool [53]. This method is generally used
in situations where large unlabeled datasets might exist, but labeling them is expensive. The
querying strategy is applied to the whole pool to decide which instance should be labeled next.

• Stream-Based Selective Sampling: In stream-based AL, data points arrive in a continuous
stream, and the model must decide in real time whether to generate labels for each incoming
instance [60]. This approach is useful for real-world applications where data is generated contin-
uously, for instance in online learning systems and autonomous vehicles.

2.2.3. Querying Strategies in Active Learning
The performance of AL is largely determined by the querying strategy, which determines how the model
selects the most informative samples to label. A well-designed querying strategy leads the model to
perform well even with minimal data being labeled. This is done by selecting instances that are highly
uncertain, diverse, or representative of the whole dataset [48]. Various types of querying strategies
have been proposed in the literature based on the way in which informativeness is measured. The
most relevant querying strategies will be detailed next.

Uncertainty Sampling
Uncertainty sampling is seen as the standard approach for querying samples in AL, evidenced by
numerous empirical studies across various domains [17, 44]. In principle, this querying strategy selects
instances on which the model is the least confident in making a prediction to label and retrain the model
with. Retraining the model with low confidence samples will theoretically reduce the uncertainty in
forecasts and improve generalization and performance [17]. The three commonly known approaches
in uncertainty sampling are: least confidence sampling, margin sampling, and entropy sampling [44].
In this work, uncertainty sampling with the least confidence criterion is used in the experimental phase
as the querying strategy for model training with AL.

Least Confidence Sampling: This method selects the instance for which the models’ most confident
prediction is still the lowest encountered confidence value among other samples. The formula for this
method is:

x∗ = arg min
x∈DU

P (ŷ|x) (2.1)

Where P (ŷ|x) is the probability of the most likely predicted label for the x instance.

Margin Sampling: This method enhances the uncertainty measurement by comparing the first and
secondmost probable class labels [44]. The notion is that when the predicted probabilities of the highest
and second-highest class are close to one another, the model is uncertain which class to assign; thus,
it is a promising candidate to be labeled. The selection rule is:

x∗ = arg min
x∈DU

(P (y1|x)− P (y2|x)) (2.2)

Where (P (y1|x) and (P (y2|x) are the probabilities of the top two predictions for instance x

Entropy Sampling: This method takes into account the entire probability distribution over labels rather
than only the best predictions [17]. Shannon entropy is used to quantify uncertainty by selecting in-
stances that have maximum entropy:

x∗ = arg max
x∈DU

−
∑
i

P (yi|x) logP (yi|x) (2.3)
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Where P (yi|x) is the probability of class i given x. The higher the entropy, the less certain the model
is across multiple classes, thereby making these instances prime candidates for annotation.

Query-by-Committee (QBC)
An alternative to uncertainty sampling is a method called query by Committee (QBC), which intends to
reduce model bias by using different models, which are collectively called the committee. Each model
is trained on the initial small labeled dataset, and the committee selects instances at which the models
most disagree in their predictions. The assumption is that disagreement implies high uncertainty, which
makes these samples most valuable for enhancing generalization [29]. Some example measures for
quantifying the disagreement are Vote Entropy and Kullback-Leibler Divergence [76].

Diversity Sampling
Unlike uncertainty-based strategies, diversity sampling focuses on identifying instances that best por-
tray the overall data distribution. This is done with the aim of making sure that the dataset is not
skewed towards a particular cluster, but instead reflects reality as per the actual diversity of data [14].
Techniques like clustering algorithms (K-Means) can be used to find representative points in different
clusters or distance-based methods where the selected samples are different from labeled data already
present [38].

2.2.4. Challenges and Considerations
Active learning, has certain challenges and limitations. One of the challenges of AL is the so-called ”cold
start”. Because the initial-model performance heavily depends on a very small labeled dataset, poor
performance in the initial stages is expected [22]. Another challenge is the computational complexity of
this method, due to the multiple evaluations required for the querying of the data. The last challenge is
the bias in the selection caused by the repeated querying of uncertain samples on unbalanced datasets.
This shows why careful selection strategies and efficient sampling methods are needed to balance label
costs over the performance of the model [4].

2.3. Backdoor Attacks in Deep Learning
Backdoor attacks can be categorized into data poisoning [20], code poisoning [5], and model poisoning
[27]. In this work, we focus on data poisoning, where malicious samples are introduced into the training
dataset, which embed hidden triggers. When the model is exposed to the previously mentioned triggers
during the inference phase, it performs some unexpected behavior that is intended by the attacker [10,
20]. Backdoor attacks are a great threat in the context of image classification because the attacker
can add almost unnoticeable changes to an image to manipulate the output [62]. The primary chal-
lenge in detecting these attacks is that they are often hidden and undetectable by standard validation
processes [9].

How Backdoor Attacks are Performed
The process of executing a backdoor attack can be divided into different stages. First, a trigger pattern
is chosen by the adversary; for example, for images, a small patch or pixel modification may be used.
Thereafter, a portion of the training data is modified to contain the mentioned trigger, representing a
target class chosen by the attacker. Next, such a poisoned dataset is used to train the DL model.
Because the fraction of poisoned data is small, the model achieves high accuracy on clean data while
including the backdoor. Finally, once the model is deployed, the adversary can activate the backdoor
by inserting the trigger into any input, thus enforcing misclassification [36, 10, 20]. Figure 2.4 shows a
visual representation of the steps taken to embed a backdoor attack.

Backdoor Attacks in Computer Vision
Backdoor attacks in computer vision form a serious threat due to the complexity of image classifica-
tion models and the high-dimensional aspect of images [33]. Different techniques and tactics for such
attacks are possible, including altering pixels of images or somehow manipulating learned representa-
tions of features. One common form of a backdoor attack consists of embedding patch-based triggers,
in which a small region of a given image is altered [20, 34]. Such triggers can be made deceptively sub-
tle yet effective in causing a classification error. Another method is the manipulation of feature space,
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Figure 2.4: Visual representation of a patch-based backdoor injection process on the MNIST dataset. Adapted
from [33]

wherein the attacker chooses to modify high-level image attributes like textures and edges without ap-
plying pixel-wise manipulation [70]. This technique makes the backdoor even harder to detect while
still being highly effective.

Backdoor attacks have been shown to be effective in real world situations. For instance, these attacks
can affect facial recognition systems, enabling unauthorized access through manipulated images [37,
45]. Another equally severe risk is posed for autonomous driving vehicles, where injected backdoor
triggers can cause misclassifications of road signs and other important signals [74]. Studies indicate
that models trained on just 1-5% of poisoned data almost always exhibit backdoor success rates near
100% while maintaining a relatively high clean accuracy [10]. The effectiveness of these backdoor at-
tacks justifies an urgent need for strategic counteractions, protecting the deep learning models against
adversarial manipulation.

2.3.1. Advanced Types of Backdoor Attacks in Computer Vision
Backdoor attack techniques have evolved, following new stealthy and robust approaches beyond tra-
ditional patch-based methods, that are now standards. Two of the most advanced and efficient types
of backdoor attacks in computer vision are the Learnable, Imperceptible, and Robust Backdoor Attack
(LIRA) [13], andWarping-Based Backdoor Attack (WaNet) [41]. Thesemethods introduce sophisticated
triggers that evade detection, withstand known defenses, and remain effective with little poisoning. The
two aforementioned attack types are studied in this research because of their applicability to incremen-
tal learning models such as AL pipelines.

Learnable, Imperceptible, and Robust Backdoor Attack (LIRA)
LIRA introduces an elaborate form of invisible backdoor attack in which the trigger does not comprise
a fixed pattern, but it is rather learned and embedded within the model’s latent space. LIRA creates
small alterations in images that are imperceptible and almost impossible to detect in manual inspection.
LIRA has demonstrated a near 100% attack success rate with less than 1% poisoned data [13]. The
attack remains robust against common backdoor defenses (Neural Cleanse, STRIP), making it one of
the stealthiest attack methods.

For the trigger generation, LIRA maximizes a perturbation mask δ on input images in a bounded per-
turbation budget ϵ, guaranteeing imperceptibility:

min
δ

Ltarget(f(x+ δ), ytarget) + λ∥δ∥p (2.4)

where Ltarget forces misclassification to target label ytarget, and imperceptibility through a perturbation
budget ϵ, which limits the alteration of each pixel (usually employing an L∞-norm). The term ∥δ∥p is
employed to constrain the perturbation size, such that alterations are kept covert. The trade-off between
attack strength and imperceptibility is governed by λ , the regularization parameter [13].
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Warping-Based Backdoor Attack (WaNet)
WaNet introduces its backdoors by subtly adding spatial distortions (e.g., slight pixel displacement or
warping) to image content instead of embedding patterns visible to the eye. In this form of attack,
the effectiveness comes from the fact that it modifies the geometry of the image rather than the pixel
values, thus preventing the common defense mechanisms from detecting it. Experimental results show
that WaNet attacks obtain a success rate of 80% to 95% while remaining highly resistant to standard
backdoor defense techniques [41].

In order to produce the trigger, WaNet uses a learnable warping function W (x; θ) that displaces pixel
coordinates of images by a distortion map θ:

min
θ

Ltarget(f(W (x; θ)), ytarget) + β · Distortion(θ) (2.5)

Within this setup, Ltarget forces the model to classify distorted images as ytarget, while Distortion(θ) is
used to control the warping transformation to maintain imperceptibility. The displacement map θ spec-
ifies how far pixel positions are moved within the image. The magnitude of this displacement is limited
by the attack hyperparameter δmax, thus ensuring that the warping effect is inconspicuous. The smooth-
ness of the transformation is controlled by the attack’s hyperparameter s, avoiding abrupt or unrealistic
modifications. Moreover, the spatial extension of the warping effect is controlled by the kernel size k,
another hyperparameter that controls the interaction among neighboring pixels. Lastly, the regulariza-
tion parameter β balances the effectiveness of the attack with the preservation of a visually coherent
transformation [41].

2.3.2. Clean vs. Dirty Label Backdoor Attacks
Backdoor attacks can be categorized into dirty and clean label attacks. In the dirty label approach,
adversaries introduce corrupted instances into the training dataset together with a modification to the
original labels of the data. This causes the model to link a particular activation pattern with a target
label selected by the adversary. The existence of a trigger can then cause the model to misclassify
to the selected target label during the inference phase [39]. In contrast, clean label attacks poison
the training data and do not change the initial labels. Opponents modify the inputs and introduce a
backdoor trigger, while keeping the labels in accordance with the true class of the input [58, 67, 75].
This approach makes it difficult for human annotators to identify clean labeling attacks, as the poisoned
samples closely resemble the genuine ones.

Within the AL framework, clean label attacks represent a considerable risk. Active learning approaches
prioritize the selection of informative and representative samples for labeling, with the aim of efficiently
optimizing model performance. They are likely to trick the human annotators in the AL process, as
clean-labeled poisoned samples are almost indistinguishable from real data. This choice allows the
backdoor to spread within the model without raising doubts, thus putting the integrity of the model at
risk in a way that is difficult to identify.

2.3.3. Countermeasures Against Backdoor Attacks
Backdoor attack detection and mitigation in DL is a difficult problem for AI system security, especially in
environments with ongoing model updates, such as AL. Backdoors may be concealed during training
and triggered with the introduction of a special trigger, which makes conventional validation procedures
ineffective for detection. The increasing complexity of such attacks requires an integrated solution that
combines detection and prevention strategies for defense against adversarial attacks. This subsection
addresses the typical techniques used for backdoor attack detection and prevention.

Detection Techniques
One of the fundamental methods for preventing backdoor attacks is the detection of backdoor triggers
or poisoned samples prior to or at the moment of model inference. Data filtering methods, including
spectral analysis and outlier detection, can be applied for detecting and eliminating suspicious data
points before they are utilized in the training procedure [57]. These methods examine the statistical
characteristics of the dataset for uncovering anomalies resulting from poisoned samples. Nevertheless,
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filtering approachesmay be ineffective at identifying advanced clean-label attacks where poisoned sam-
ples are very close to real data. Another approach to detecting backdoor attacks is to monitor model
behavior at the inference time. Methods such as activation clustering [9] cluster clean and poisoned in-
put activation responses, thus identifying systematic differences caused by backdoor triggers. Through
highlighting inconsistencies, methods can be applied to detect adversarial trained models before they
are deployed.

Prevention Techniques
Prevention strategies attack models by making them more inherently resistant to backdoor attacks
through modifications to training processes and the introduction of defensive strategies. One effective
prevention technique is the fine-tuning of models on a new clean dataset to reduce the impact of the
backdoors. In reality, exposing the model to additional clean data results in less dependence on poi-
soned samples, and, in many cases, it entirely removes the backdoor effect [73]. Another technique is
to retrain themodel under differential privacy so that themodel will be less dependent on any single data
point, thus decreasing the likelihood of an attacker using it to implant backdoors [43]. Furthermore, ad-
versarial training also entails the addition of the dataset with adversarial manipulated instances to make
the model more robust against manipulated inputs. In the paradigm of backdoor defenses, adversarial
training can be supplemented with the employment of backdoor-activated samples, which compels the
model to learn a more generalized decision boundary [18]. Another method, named defensive distilla-
tion, is the practice of training an auxiliary model to learn a smoothed variant of the decision space of
the main model, which makes it more difficult for backdoors to survive [68].



3
Related Work

This chapter provides more insights into current research on backdoor attacks, active learning and the
intersection of both topics. The chapter starts with an introduction to the approaches to active learning
and applications, continuing with backdoor attacks in deep learning in terms of effective methods and
their impact. The chapter provides a general introduction to current research on backdoor attacks on
active learning and brings to light weaknesses and variety in techniques.

3.1. Deep Active Learning
Active Learning (AL) has been widely applied in the field of deep learning (DL) as a means of overcom-
ing the huge costs of data annotation while maintaining the effectiveness of the model. The technique
is of special importance in fields like medical imaging, where labeling large datasets requires expertise
in specialized knowledge [63]. Likewise, in the field of autonomous driving, AL is useful by allowing the
effective labeling of rare but critical traffic scenarios [24]. Additionally, AL is used in natural language
processing and speech recognition to minimize the necessity of manual annotation while maintaining
linguistic diversity in the datasets [49, 23]. In recent years, AL has branched out into areas like object
detection and segmentation, thus showing its adaptability in various machine learning applications [11].

One of the basic methods in deep AL is Bayesian Deep Active Learning, which employs Bayesian
neural networks with dropout methods to enable uncertainty estimation. This method demonstrated
improvements in high-dimensional domains like medical imaging [17]. Furthermore, the approach de-
scribed in [47], proposes AL as a selection problem, where a model trained on a carefully picked subset
is theoretically proven to perform nearly as well as one trained on the whole dataset. Another key con-
tribution was the creation of the learning loss framework for AL, which included a loss module that
was able to predict the expected loss for every unlabeled sample. This helped with effective sampling
irrespective of specific metrics such as uncertainty [69].

Later developments included adversarial and semi-supervised learning methods incorporated in the
AL framework. A good example is the variational adversarial active learning method, which utilized
an autoencoder alongside an adversarial discriminator to separate labeled and unlabeled samples
and improve representation learning and optimize sample selection efficiency [50]. Another interesting
development is the batch-mode active learning method presented in [4], which utilizes gradient embed-
ding to simultaneously select uncertain and diverse samples. Subsequently, eliminating the need for
hyperparameters and optimizing batch query strategies for different DL models and datasets.

Earlier deep AL techniques like Bayesian deep active learning [17] and Core-set selection [47] struggled
with uncertainty querying methods as well as batch selection. More contemporary techniques (adver-
sarial learning, meta-learning loss, gradient embeddings) have offered greater effectiveness and scal-
ability. Furthermore, researchers are increasingly testing on realistic and large-scale labeled datasets
to prove that AL decreases labeling costs without sacrificing accuracy [69, 50]. In this work, traditional
AL is used together with uncertainty sampling as the querying strategy. While more advanced meth-
ods like adversarial learning or gradient embeddings offer great advancements, they lead to increased
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computational costs and complexity. Thus, traditional AL with uncertainty sampling is used to maintain
performance with limited computational resources.

3.2. Backdoor Attacks in Deep Learning
Backdoor attacks are serious threats that allow the embedding of malicious functionality within different
DL models. These types of attacks are especially dangerous in areas such as autonomous vehicle op-
eration, where malicious inputs might cause catastrophic misclassifications [74]. Another example is
the case of facial recognition systems for security, where facial analysis might be targeted to allow unau-
thorized permissions [37, 45]. Furthermore, the presence of backdoor vulnerabilities within medical AI
systems creates safety menaces that can compromise patients’ well-being [16].

Several works have studied and recognized the potential dangers associated with backdoor attacks.
BadNets, one of the earliest examples, demonstrates the idea of using simple visual patterns to act
as trigger signals that induce misclassification while retaining good performance for non-manipulated
inputs [20]. More recently, backdoor attacks on federated learning have shown the possibility of poison-
ing collaborative models in an effective way [6]. An additional example is supply chain attacks, where
backdoors are introduced into DL models using compromised training datasets, often found in open
source repositories [65]. These have been recognized as a considerable risk that could also occur in
real life scenarios.

Recent developments in backdoor attack techniques have led to increasingly complex and difficult-to-
detect scenarios. For instance, clean label backdoor attacks successfully overcame the main drawback
of previous approaches by labeling the poisoned samples correctly, thus ensuring that poisoned data
went undetected during human evaluations [59, 67, 58]. Another difficult to detect method is the LIRA
attack, which strategically alters representations of the latent space to infiltrate triggers into images [13].
WaNet is another sophisticated technique that uses unique spatial modifications. This attack integrates
triggers into visual data to create patterns that blend in perfectly with the original information [41]. Both
techniques have demonstrated effectiveness in bypassing many widely used defense mechanisms that
depend on identifying inconsistencies in the data.

3.3. Backdoor Attacks on Active Learning
Even though backdoor attacks have been extensively researched in typical DL settings, much remains
unknown about their implications in AL. The unique selection mechanism in AL, through which models
choose the most uncertain or informative instances, offers adversaries new directions to corrupt the
training pipeline.

Recent studies have begun to investigate backdoor threats in AL. For instance, the Double-Cross At-
tack [60], demonstrates that AL-based selection processes had the potential to improve poisoning
effectiveness using a small poison rate. This attack relied on injecting adversarial samples that pur-
posely attracted AL queries, therefore boosting the effect of the backdoor with minimum interference.
As opposed to traditional poisoning schemes that indiscriminately inject backdoor triggers within the
dataset, this approach ensures that the AL process itself selects and amplifies the attack. Experiments
also found that typical anomaly detection models failed to prune poisoned samples, showing the need
for more robust AL protections against these attacks [60].

While existing work has explored backdoor attacks on AL [60], our approach introduces key differences
and improvements. In [60] a generator is trained to produce the trigger, this is computationally expen-
sive and uses massive model queries (up to 520K inputs queried). Our attack does not produce as
much overhead, making it more applicable in resource-limited situations. Moreover, we do not rely
on a pre-specified loss term for stealthiness, such as the L2 norm of trigger pixel values used in their
approach, so we can adopt a more adaptive and flexible attack plan. In contrast to their static trigger
strategy, where a single trigger is applied to all poisoned samples, we investigate the effect of dy-
namic triggers with WaNet and LIRA and study how these vary across AL rounds. Also, their attack is
restricted to clean-label poisoning, whereas our approach takes more general poisoning into account.

Another major difference is in the scope of poisoning. Their attack employs a pre-query poisoning strat-
egy, where poisoned samples are distributed across the entire available data pool before AL queries.
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Our approach employs a post-query poisoning strategy, where only a fraction of the previously queried
samples are poisoned. Experimentally, their work focuses on low poisoning rates (as little as 0.1% on
ImageNet and as high as 4.2% on SVHN), we examine similar and higher poisoning rates in order to
set upper bounds on an attacker’s abilities. While they are reporting poisoning rates of 0.7%, 0.4%,
and 0.2% on CIFAR-10, our effective poisoning rates for CIFAR-10 would be 1% and 5%.

Besides, their approach employs stream-based AL with margin sampling as the query strategy, while
we explore batch-based AL and the uncertainty querying method. In their gray-box scenario, they
assume the attacker knows the sampling mechanism, whereas the attacker is not aware of any such
mechanism in the black-box scenario. Finally, they remove the original clean sample when poisoning a
sample, which we also do in our implementation, but our querying mechanism is different. They initially
poison all images of the target class to test their electability, and we choose poisoned samples based
on uncertainty, certainty, or randomly, thus examining systematically what choice method performs best
for poisoning in an AL setting.

To defuse backdoor attacks in AL, new protective mechanisms have been proposed. The work in [35]
highlighted how an attacker could strategically insert poisoned samples in decision boundary regions,
increasing the chances that the poisoned inputs would be queried and labeled, thereby reinforcing the
backdoor. Furthermore, adversarial training is used for the AL pipeline so that less labeled data is re-
quired to achieve high test accuracy [35]. The proposed AL approach in [35] manages to boost accuracy
to 89% on average, compared to about 50% with a baseline random sampling strategy. Another mitiga-
tion technique is Density Based Data Selective Sampling (DRE). This technique uses data density and
entropy to maintain low chances of selecting adversary-designed samples. The DRE method improves
robustness by up to 24.40% compared to existing methods [21]. Although adversarial training can of-
fer strong protection, it often comes with significant computational overhead, making the DRE-based
approach more realistic for many real-world AL scenarios where resources are limited. Present-day de-
fenses remain sparse in how they tend to address particular techniques of attacks rather than providing
a complete solution for backdoor AL vulnerabilities.

Our work extends the analysis of backdoor threats in AL for computer vision into multiple configurations
(for example, certainty-based sampling, post-query poisoning) and advanced triggers such as LIRA
and WaNet. Here, with only 1 percent data poisoning on simple datasets, we demonstrate an ASR of
greater than 95 percent on CNNs. Additionally, the cyclic nature of AL is exploited through techniques
like sub-trigger division and progressive parameter adjustment. We do not include defenses (DRE or
adversarial training) in our analysis, which points to a pertinent future research area. Despite this, our
findings confirm that clean accuracy is mostly preserved, which speaks to the stealthiness of these
types of backdoor attacks and the need for strong, multi-faceted defenses to secure active learning
pipelines.



4
Methodology and Study Design

In this chapter, the experimental setup and methodology used to examine the impact of backdoor at-
tacks in active learning are explained. The chapter begins with the datasets and experimental configu-
rations used. The second section is about the active learning framework design, describing each part of
the training process. Afterwards, the threat model considered for this study is presented. Furthermore,
the four main experiments of this study are explained in detail. Lastly, the experimental execution and
the computational resources for these experiments are reviewed.

4.1. Data Collection and Model Variation
To ensure that the results of this study are more generalizable and complete, three distinct data sets
were utilized. Initially, the MNIST dataset was selected for preliminary experimentation and baseline
measurements. The gray-scale images in this dataset represent ten classes of handwritten digits (0-9)
[32]. Next, the GTSRB dataset was chosen, which contains 43 categories of color images of varying
sizes, representing different traffic signs [51]. Lastly, the CIFAR-10 dataset was employed, containing
10 different class images of various objects [31]. Table 4.1 summarizes the most important features of
the used datasets.

Table 4.1: Summary of used datasets

Dataset #Set Size Image Size
MNIST 60,000 32X32
GTSRB 39,209 15x15 - 250x250
CIFAR-10 50,000 32X32

Furthermore, three types of deep learning models were trained to observe how the different structures
influence susceptibility to backdoor attacks. A simple CNN model was used primarily to establish an
initial understanding of vulnerabilities in simpler convolutional structures. Moreover, the ResNet [25]
and Inception [55] model architectures were used to provide insights into vulnerabilities of more complex
models. Table 4.2 encapsulates the most important features of each model.

Table 4.2: Summary of used models. *The number input channels for GTSRB and CIFAR-10 is three, given the
RGB channels of the images. ** For MNIST and CIFAR-10 datasets we have 10 output classes, while for GTSRB

dataset we consider 43.

Model Input Channels Conv Layers Fully Connected
CNN 1 / 3* 2 (32, 64 filters) 2 (128, 10 / 43)**
ResNet 1 / 3* ResNet18 Backbone 1 (Adapted FC)
Inception 1 / 3* InceptionV3 Backbone 1 (Adapted FC)

17
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Table 4.3 provides an overview of trainable parameters per model across different datasets. The com-
plexity of themodels varies significantly, with CNNs having the least amount of parameters, hence being
less computationally intensive and suitable for small-scale problems, while ResNet and Inception mod-
els have significantly more parameters, reflecting their deeper structures and greater representational
capacity.

Table 4.3: Number of trainable parameters for each model across different datasets.

Model MNIST GTSRB CIFAR-10
CNN 421,642 549,355 545,098
ResNet 11,175,370 11,190,891 11,173,962
Inception 21,805,482 21,873,675 21,805,994

4.2. Active Learning Pipeline Settings
An active learning (AL) pipeline was developed in order to emulate the iterative training mentioned in
Section 2.2. This pipeline allowed the injection of backdoor attacks to examine vulnerabilities or to
train the model without poisoning, thus facilitating comparative analysis. A pool-based AL approach
was used, where the model was initially trained on a small labeled subset (approx. 2% of the dataset)
and then iteratively retrained on new samples. For the query strategy, uncertainty sampling was chosen,
which selected the least confident predictions to be classified by human annotators. In this research,
the human labeling process was simulated by automatically assigning ground truth labels to the dataset.

In each cycle, the model queried a specific number of data points and was retrained for five epochs.
The epochs were chosen to achieve a balance between computational overhead and sufficient gra-
dient updates to facilitate learning advancement without overfitting or long training durations. In the
experiment, a portion of the previously queried set was poisoned by inserting a backdoor trigger. The
poisoning strategy was based on the specific experiment and determined which of the pre-queried
samples was chosen for poisoning. The first poisoning strategy, uncertainty-based poisoning, applied
triggers to samples with higher uncertainty scores. Certainty-based poisoning, the second option, fo-
cused on data points that the model had ranked with a high level of confidence. The third option,
random poisoning, was used as a baseline and arbitrary selected poisoned samples. The last option,
clean label poisoning, adopted a similar random selection method, but maintained consistency with
natural class labels. Random poisoning was used in the clean label experiments based on previous
results that suggested that its performance falls between uncertainty and certainty poisoning, making it
a good baseline. After each cycle, the model was evaluated, and this process continued over multiple
retraining cycles. The number of cycles used to retrain the model depends on the experiment. Detailed
settings are summarized in Table 4.4.

Table 4.4: Initial dataset splits and model performance metrics used. *Initial validation accuracy and validation
loss were averaged over five different seeds.

Dataset Init. set Pool Test Val Model Init. acc. Init. loss

MNIST 1200 47400 5400 6000
CNN 0.881 0.549
ResNet 0.852 0.744
Inception 0.760 0.840

GTSRB 785 31024 3927 3534
CNN 0.602 1.441
ResNet 0.307 2.283
Inception 0.190 3.657

CIFAR-10 1200 47400 5400 6000
CNN 0.387 1.927
ResNet 0.228 2.069
Inception 0.141 3.776
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4.2.1. Evaluation Methods
The accuracy of the model and the success rate of the attacks were evaluated to measure the perfor-
mance of the AL framework on different datasets, models and attack configurations. This study tried
to identify the most vulnerable combinations to those backdoor attacks, in order to provide valuable
information on potential weaknesses. The evaluation was also conducted over each cycle to track the
accuracy and success of attacks during different iterations. The key metric used in this analysis was
the Attack Success Rate (ASR), serving as an indication of how vulnerable a model is to a certain
attack. In this case, higher ASR values represent more vulnerability to the attack and are calculated
as follows:

ASR =

(
Number of Successful Attacks

Total Number of Attacks

)
× 100% (4.1)

This thesis measured the stealthiness of backdoor attacks through the clean accuracy drop (CAD),
which is the difference of the model accuracy on not poisoned and correctly labeled test datasets. The
basic assumption is that a good and stealthy backdoor attack should have little effect on the model’s
effectiveness on normal tasks since any appreciable degradation would raise suspicion.

4.2.2. Threat Model
This subsection establishes the threat model considered in this study, focusing particularly on backdoor
attacks on active learning under the hypothesis of post-query poisoning. This implies that an attacker
injects poisoned samples into the dataset after completion of the querying process. This approach
allows for a more direct assessment of how AL trained models react to different poisoning effects. Post-
query injection of poisoned samples allows us to isolate the impact of the selection strategy on ASR.
Additionally, post-query poisoning is particularly relevant in scenarios where data labeling or collection
is outsourced, and hence becomes an even more realistic and stealthier attack channel in AL pipelines.

Attacker's Goal
Imagine a context where an attacker has partial control over the labeled dataset used for training, but
has no direct impact on the query strategy. This implies that the choice of data points remains a legit-
imate AL process. After the querying process, the attacker injects a minimal portion of the poisoned
data into the set before using it for training. The first goal of the attacker is to maintain good model per-
formance on clean samples to avoid suspicion, while making sure that without the trigger, the backdoor
stays inactive. Another goal is to incorporate the backdoor in a way that bypasses common detection
methods.

Capabilities of the Attacker
It is assumed that the attacker has the following capabilities. First, the attacker has the ability to alter a
section of the labeled data before it is used for training. In the scenario of a clean label attack, the data
can be altered prior to the labeling process because the label does not need to be altered. Secondly,
a gray box threat model is considered, where the opponent knows the structure of the model and
the training process, but does not have full access to the model parameters. This differs from white-
box threat models that allow complete visibility of the model, including parameters and gradients, and
black-box settings where nothing about the model structure or training process is known [8]. Lastly, the
attacker has the ability to introduce meticulously prepared poison samples into the training dataset after
the querying process. In contrast to conventional data poisoning attacks, where attackers manipulate
the dataset prior to the query, in this scenario the poisoning only occurs after the query process. This is
particularly significant in real-world contexts where AL is applied in areas such as medical imaging and
cybersecurity, where data tagging is performed by trusted specialists, but adversaries can compromise
the integrity of the tagged dataset at a later stage.

4.2.3. Experiment 1: Evaluating Backdoor Attacks and Model Susceptibility
The goal of this experiment was to evaluate the effectiveness of various backdoor attack strategies and
parameter variations in the AL scenario. Precisely, RQ1 was partly addressed, which discusses how
various settings of backdoor attacks influence ASR on ALmodels. In addition,RQ2was explored, which
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analyzes how dataset characteristics and model structures affect the vulnerability of active learning
frameworks to backdoor attacks.

The standard active learning settings described in Table 4.5 were used for Experiment 1. This follows
the standard settings described in Section 4.2. The analyzed poisoning methods were uncertainty-
based, certainty-based, and random selection, allowing for a comparison of how different query strate-
gies influence ASR. The poisoning percentages were 1% or 5%, which represent the fraction of the
queried set that are poisoned in every cycle. To evaluate how the poisoning process evolves, the ex-
periment was conducted across 5, 10, and 15 cycles. Besides, various types of triggers were also
considered, which are small, large, or specialized, with different levels of visibility. The query size,
which determines how many samples are chosen for each cycle, was set at 500, 1000, and 1500
samples, allowing different AL settings to test. Finally, to provide reproducibility of the results, each
experiment was run with five varying random seeds.

Table 4.5: Parameter settings used for Experiment 1.

Parameter Values
#Seeds 5
Poison Rate 1%, 5%
Cycle Count 5, 10, 15
Query Size 500, 1000, 1500
Trigger Type small, big, specialized
Poison Method uncertainty, certainty, random

The first goal of this experiment was to examine how different backdoor configurations influence the ef-
fectiveness of the attack, including trigger type, injection rate, poisoning method and query size. Three
different trigger designs were used. Figure 4.1 graphically shows the used trigger types for this experi-
ment. These three trigger designs, small, large, and specialized (checkerboard pattern), were chosen
to evaluate their impact on ASR in active learning. Small and large triggers evaluate the impact of trig-
ger size on ASR by employing less-visible small triggers and potentially increased attack effectiveness
with larger triggers. The checkerboard pattern evaluates if structured patterns influence ASR differently
by affecting the feature extraction of the model.

Figure 4.1: The simple trigger is a 3×3 white square placed in the bottom-right of the image. The big trigger
increases this to a 6×6 white square, with higher visibility. The specialized trigger contains a 4×4 checkerboard

pattern for more complexity.

The second goal of this experiment was to investigate how dataset characteristics and model structures
affect the vulnerability of AL frameworks to backdoor attacks. Subsection 4.1 details the model and
dataset combinations that were employed in this experiment. It is important to note that the attacks
performed in this experiment were dirty label attacks. Initially, early stopping was used, but was later
changed to a fixed number of active learning cycles to ensure consistency across all executions. In
addition, batch processing was implemented to increase computational efficiency, especially on larger
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datasets. To reduce bias and improve reproducibility, all experiments were performed with five different
random seeds.

4.2.4. Experiment 2: Sub-Triggers and Progressive Parameter Adjustments
The objective of RQ3 was to analyze tailored backdoor attack designs within the context of AL. This
experiment evaluated progressive parameter adjustment and trigger subdivision, along with the use of
advanced types of backdoor triggers, such as LIRA andWaNet. First, preliminary tests were conducted
using pixel-based methods to assess feasibility. Subsequently, more detailed experiments were carried
out using LIRA andWaNet. Note that different datasets, models, active learning settings, and backdoor
parameters were used. Following RQ1 and RQ2.

Table 4.6 presents the parameter settings used in Experiment 2. The complete description of the stan-
dard parameters can be found in Section 4.2. The random poisoning method was employed because
it demonstrated intermediate performance between certainty and uncertainty poisoning in Experiment
1, serving as a good baseline. As for the poisoning rate, the same predefined rates of either 1% or 5%
were used. Each cycle queries 1000 or 1500 samples and was repeated over 15 cycles to assess the
persistence of the attack. Note that taking 15 cycles allowed comparisons to 5 and 10 cycles by taking
intermediate results. To ensure generalizability, the experiments were run using five different random
seeds.

Various trigger types were explored, including sub-trigger LIRA, sub-triggerWaNet, Global LIRA, Global
WaNet, progressive LIRA, and progressive WaNet, each with distinct characteristics. The sub-trigger
and progressive parameter adjustment methods will be explained later in this Section. The parameter
related to the sub-trigger method is the sub-size of either 5 or 8 pixels. The sub-size represents the
area that is affected by each sub-trigger. The perturbation strength (s) in WaNet attacks is set to 0.2
or 0.5, while the grid size (k), takes values of 4 or 8. For LIRA-based attacks, the perturbation bound
(ϵ), is set to 0.1 or 0.2. The explanation of the inherent parameters of WaNet and LIRA are described
in Section 2.3.1. Since global and progressive triggers modify the complete image rather than a small
subset, they do not require a sub-size parameter.

Table 4.6: Parameter settings used for Experiment 2.

Parameter Values
#Seeds 5
Cycle Count 15
Poison Rate 1%, 5%
Poison Method random
Query Size 1000, 1500

Trigger Type sub size s k ϵ

Sub-trigger LIRA 5, 8 - - 0.1, 0.2
Sub-trigger WaNet 5, 8 0.2, 0.5 4, 8 -
Global LIRA - - - 0.2
Global WaNet - 0.5 8 -
Progressive LIRA - - - 0.2
Progressive WaNet - 0.5 8 -

Progressive Parameter Adjustment
Instead of introducing triggers with constant intensity from the start, the progressive parameter adjust-
ment strategy consists of progressively boosting the trigger strength over the active learning cycles.
This method ensured that the backdoor modification evolved over time, given that the intensity of the
trigger was computed based on the cycle. An example of the progressive parameter adjustment in
WaNet-based poisoning is shown in Figure 4.2.
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Figure 4.2: WaNet-based progressive parameter adjustment is visualized with a control grid size of k=4 and a
scaling factor of s=0.2. The top row shows how the backdoor pattern is gradually embedded as the geometric
distortion gets more intense over cycles. The original image and the cumulative global warping effect (applying
the maximum transformation at each pixel location across all cycles) are depicted in the final two photographs.

To gradually increase the intensity of the backdoor patterns without losing stealth, key parameters
were gradually adjusted during the AL cycles. The LIRA- and WaNet-based settings follow a similar
principle, where the intensity of the applied modification grows linearly with the cycle index t, reaching
its maximum at the final cycle T .

θt = θmax ·
t

T
(4.2)

Where θt represents the progressively adjusted parameter at cycle t. For LIRA-based adjustment,
θt corresponds to the perturbation intensity ϵt, with θmax = ϵmax. For WaNet-based adjustment, θt
corresponds to the warping intensity st, with θmax = smax. T is the total number of active learning
cycles.

In the LIRA-based adjustment, the parameter ϵt controlled the magnitude of additive noise applied to
the image. In the WaNet-based adjustment, the parameter st regulated the strength of spatial transfor-
mations, causing progressively more pronounced geometric distortions. By gradually modifying these
settings for every round, the backdoor effect is initially concealed but becomes more powerful over the
cycles. A key aspect of this strategy was that although each cycle only introduced a small increase
in poisoning intensity, the model was evaluated on cumulative poisoning, meaning that the test set
contained images poisoned with the full summed-up intensity of all previous cycles.

Sub-Trigger Division
Unlike standard backdoor triggers, which use a single identifiable modification on the whole image.
Sub-trigger division fragments a trigger into multiple smaller parts, each injected into different poisoned
samples. This approach assessed whether models could recognize and activate a backdoor with partial
triggers, and how the backdoor effect changed when all sub-triggers were present in an image. Figure
4.3 shows the principle of sub-triggering in LIRA-based attacks.

During training, each cycle included one individual sub-trigger in the image, allowing the model to
gradually learn the poisoned features. However, during inference time and testing, the model was eval-
uated with images showing all sub-triggers accumulated over the cycles. This allowed us to determine
whether the models needed the full trigger pattern to activate the backdoor, or whether smaller patterns
could still cause misclassification.

Comparison to Global Triggers
To contrast with these progressive approaches, global triggers were also tested, where a complete LIRA
or WaNet trigger was applied from the start of the attack. As opposed to progressive poisoning, where
the strength of the trigger varied with time, global poisoning ensured a consistent backdoor pattern
during training. This provided a baseline to compare against, allowing to determine if sub-triggers and
gradual poisoning were more or less effective than a consistent full-strength trigger.
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Figure 4.3: Visualisation of the LIRA-based subtrigger division with ϵ=0.5 and an 8×8 subtrigger pattern. The top
row illustrates the progressive application of the backdoor subtriggers over 10 active learning cycles, where the

two final images reflect the overall cumulative effect together with the original image.

4.2.5. Experiment 3: Investigating the Effects of Clean-Label Attacks
The goal of experiment 3 was to extend the analysis of RQ1 an RQ2 by focusing on clean-label poison-
ing methods, which are especially relevant in AL contexts. This experiment conducted trials with LIRA
and WaNet backdoor triggers, using global and sub-trigger splitting methods. Unlike dirty label attacks,
clean label poisoning maintains the correct class labels, which makes identification more difficult and
improves threat representation in real-world situations. In contrast to previous experiments, where in-
consistencies in labels could indicate possible poisoning, clean label poisoning ensured that poisoned
samples were still correctly labeled, making it difficult for human annotators to identify them.

Table 4.7 summarizes the key parameters for Experiment 3. This experiment investigates clean-label
backdoor attacks and introduces the target-only poison method in comparison to the poison methods
described in Section 4.2. Target only refers to poisoning samples that belong to the target class. The
poisoning rate is 2% and 5%, which refers to the percentage of queried samples modified each cycle.
Query size 1500 was used to have enough queried samples per cycle for more stable evaluation of
poisoning efficacy. The experiment was conducted for 15 cycles to capture long-term poisoning effects,
and global LIRA andWaNet triggers were used for maximizing the backdoor effect by altering the whole
image instead of localized areas.

Table 4.7: Parameter settings used for Experiment 3.

Parameter Values
#Seeds 5
Cycle Count 15
Query Size 1500
Poison Rate 2%, 5%
Poison Method target-only
Trigger Type sub-trigger/global LIRA-WaNet

In this experiment, only the images of the target attack class were poisoned during training, while the
other classes remained unchanged. In this way, the model learned to link only the backdoor trigger
to the target class. To evaluate the effectiveness of the attack, images of the non-target classes were
tested using the same trigger. If the attack was successful, these images were misclassified as the
target class. Figure 4.4 illustrates this process.
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Figure 4.4: Example of a clean label attack. The first column presents the original image with the corresponding
label. In the second column, a trigger is applied during training, while keeping the original labels. The third

column shows how in the testing phase the triggered image causes model misclassifications.

4.2.6. Experiment 4: Pre-query vs Post-query Poisoning
The fourth experiment in this thesis aligns with RQ4, RQ1 and RQ2. This experiment compared the
effects of using pre-query poisoning in contrast to post-query poisoning. The study conducted in [60]
uses the pre-query method, while all previous experiments in this study employ a post-query method.
This analysis was done to understand how the poisoning strategy affects the success rate of backdoor
attacks. As explained in Section 4.2, active learning selects a subset of available data based on an
uncertainty criteria. Thus, the timing of the poisoning could significantly affect the model’s learning and
its vulnerability to backdoor attacks.

Pre-query poisoning assumes that the pool of data available for selection is already corrupted. This
means that when the model queries a sample from the data pool to be labeled, the uncertainty criterion
is also computed for the poisoned samples. As a result, it is not guaranteed that all poisoned samples
will be queried and used for retraining. Figure 4.5 illustrates the pre-query method.

Figure 4.5: Diagram showing theprequery poisoning strategy.

In contrast, the post-query poisoning strategy applies the trigger to the already queried samples, mean-
ing that the model will always be retrained with the poisoned data. Note that the post-query strategy
assumes a scenario in which the adversary has control over the queried set. Figure 4.6 shows the
post-query method.
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Figure 4.6: Diagram showing the postquery poisoning strategy

To evaluate the poisoning strategies in a comparable way, two identical active learning models were
trained in parallel. Specifically, the CNN model architecture was used. One model used the pre-query
poisoning strategy and the other post-query poisoning. Table 4.8 presents the parameter settings used
for Experiment 4. The random poisoning method was used as a baseline at a fixed rate of 1% or 5%,
for consistency across pre-query and post-query scenarios. Note that for the pre-query poisoning the
rate was computed over the whole data pool, whereas for the post-query poisoning it was computed
over the queried set. To ensure reproducibility, five different random seeds were used in the training
runs. Additionally, this experiment was done using the LIRA andWaNet triggers over 15 training cycles,
with each cycle querying 1500 new samples.

Table 4.8: Parameter settings used for Experiment 4.

Parameter Values
Cycle Count 15
Query Size 1500
Poison Rate 1%, 5%
Poison Method random
Trigger Type global LIRA-WaNet

4.2.7. Computational Resources and Experimental Execution
As mentioned before, this thesis consisted of four different experiments. Because of the different pa-
rameter settings, poisoning strategies, datasets, and models, high scale computational resources were
needed to run these experiments. For this purpose, the DAIC cluster at TU Delft was used, which en-
sured efficient, parallel computing and replicability of the process. Using the DAIC cluster significantly
reduced the runtime of the process, improved the tracking of the processed jobs, and enabled error
correction.

Experiments were structured into job arrays, where each job represented a single execution of an active
learning pipeline with a specific parameter and dataset-model configuration. Within a job, the model
was retrained for an amount of cycles, the total number of AL retraining cycles resulted in 112185
runs. Each job was submitted via the SLURM workload manager, which allows batch execution of
experiments and automated resource allocation. The average runtime per job was approximately 6
hours, with total experimental completion spanning 44874 hours. CUDA-enabled GPUs were used to
accelerate the deep learning computations, ensuring the on time execution of the experiments. Lastly, a
CUDA environment was configured using Apptainer to ensure consistency between local development
and cluster executions.

The main programming language used for the development of the pipeline, the set-up of the experi-
ments, the data management, and the overall analysis was Python (version 3.12). Furthermore, Py-
Torch (version 2.4) was used to train the deep learning models and to perform the backdoor attacks.
The entire code for this project is available at: https://github.com/SelenaMendez2801/master_thesis

https://github.com/SelenaMendez2801/master_thesis
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Table 4.9 provides an overview of the parameter settings, the submission of jobs, and the total model
retraining for each experiment. The column parameter combinations present the total variations of
experimental setups. The column total jobs presents the variations of these parameter combinations
over the various datasets andmodels. The column total retraining provides the number of times amodel
was trained and updated over all AL cycles in the experiment. The total number of all distinct models
learned across all data and experiments were 7479 models. It indicates the extensive computational
burden used in this study.

Table 4.9: Overview of parameter combinations, job submissions and total model retraining per experiment. Not
including reruns of experiments or failed jobs.

Experiment Parameter Comb. Total Jobs Total Retraining
Experiment 1 285 2565 38475
Experiment 2 340 3060 45900
Experiment 3 190 1710 25650
Experiment 4 48 144 2160

Total 863 7479 112185



5
Experimental Results

This chapter presents the outcomes that were obtained for the four experiments that were conducted.
The main evaluation measure used for this study was the attack success rate across various models,
datasets, and poisoning techniques. Each section of this chapter explains the result of its corresponding
experiment, with the main findings consistent with the aim of the experiments.

5.1. Results of Experiment 1
This section presents the results of Experiment 1. This experiment had two different purposes. The first
purpose was to examine the influence of different parameter settings such as trigger type, poisoning
strategy, query size, and poisoning rate on the vulnerability of the model that was trained under active
learning. The second goal was to evaluate how different datasets and models affect the success of
backdoor attacks in the active learning process. The detailed tabulated results of the attack success
rates (ASR) for this experiment are provided in Appendix A, Tables A.1–A.3.

ASR Evolution Across Active Learning Cycles
Based on the results, Figure 5.1 presents the ASR trends across multiple active learning cycles for
different models, datasets, poisoning methods, and trigger types. The results show clear differences
in attack effectiveness depending on the unique combinations.

As expected, for most combinations, the ASR increased as the number of active learning cycles pro-
gressed. However, the pace of such an increase differs from dataset to dataset and even among
models. For the datasets, MNIST was the fastest in ASR progress in just a few iterations. For example,
CNN on MNIST with uncertainty-based poisoning reached an ASR of 100% by cycle 4, while CNN on
CIFAR-10 stayed around 20–30% ASR even after 15 cycles. This can be because of relatively lower
complexity and more homogeneous images in MNIST, such that backdoor triggers can evolve into a
dominant feature more easily. In contrast, CIFAR-10 was quite robust to attacks even after a number
of iterations. Most likely due to its higher complexity and higher diversity of information, texture of ob-
jects, and colors that can make it more difficult to connect to a particular class. Furthermore, GTSRB
had average ASR growth compared to the other two datasets, perhaps due to it being composed of
structured yet varied traffic sign images, where certain signs might have some similarities that make
backdoor patterns less immediately dominant but still influential over time.

As for model variations, the findings highlight that CNN models were consistently more prone to back-
door attacks than ResNet models, quickly attaining higher values of ASR earlier. This can be explained
by the simpler architecture of CNNs, which has a tendency to make them more vulnerable to learning
incorrect patterns such as backdoor triggers. On both MNIST and GTSRB, CNNs showed rapid ASR
progression, especially with certainty and random-based poisoning. However, on CIFAR-10, CNNs
showed much lower ASR overall, suggesting that the increased image complexity, texture variation,
and color diversity in CIFAR-10 reduce the model’s capacity to learn and apply the backdoor trigger
in a consistent way. This shows a feature in CNNs when dealing with more complex visual features,
which may inherently reduce the effectiveness of the trigger.

27
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Figure 5.1: ASR progression over active learning cycles for different models and datasets. Furthermore, each
line represent an unique combination of poison method and trigger type

For ResNet models, ASR improvement was generally lower and slower for all datasets, with greater
robustness to backdoor poisoning. For instance, ResNet on CIFAR-10 under uncertainty poisoning
reached a final ASR of less than ≈10%, while certainty poisoning improved this to ≈90%. The ar-
chitectural depth and use of residual connections likely help prevent overfitting to the poisoned data,
especially in the early learning stages. However, performance on CIFAR-10 was particularly poor, with
most poisoning methods leading to very low ASR throughout the cycles. In particular, only the certainty-
based poisoning method achieved high ASR values, validating the assertion that samples confidently
selected as poisoned have higher probability of impacting a stable model like ResNet. This highlights
the manner in which both data complexity and the model architecture efficiently disrupt backdoor at-
tacks from being successful in active learning.

For the Inception model, ASR trends differed notably across datasets. On MNIST, ASR was high
across most methods, but random-based poisoning consistently had the lowest ASR, suggesting that
the type of selection limits the effectiveness of the attack, even on a simple dataset. For GTSRB, ASR
increased steadily, but the simple trigger type consistently led to the lowest ASR, indicating that more
complex or specialized triggers are more effective on structured yet diverse images like traffic signs.
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Bigger triggers again stood out, confirming its advantage in targeting impactful samples. On CIFAR-10,
ASR was more spread out, yet the trend among the other models was again replicated: poisoning by
uncertainty worked most poorly, then random, then certainty. Counterintuitively, compared to CNN and
ResNet, Inception actually returned generally higher ASR on CIFAR-10, showing that its multiscale
feature extraction remains capable of even better triggering and spreading detection with complicated
data sets.

The parameter choices, such as poisoning strategy and trigger type, showed impact on the ASR trends.
In terms of the poisoning strategy, certainty poisoning was apparently the most effective, achieving high
ASR with fewer cycles for most of the combinations. Random based poisoning followed with varying
ASR ratings that progressed more slowly than the certainty based method. As last comes uncertainty
poisoning, which showed to be the least effective overall. Furthermore, the chosen trigger type also
showed recurring patterns in terms of ASR.

ASR Dependence on the Number of Poisoned Samples
Figure 5.2 presents the relationship between number of poisoned samples and the final ASR (at cycle
15) for different models. It shows how poisoned samples can highly increase the ASR, especially in
simpler datasets like MNIST.

Figure 5.2: Final ASR as a function of the number of poisoned samples for different models and datasets.

The figure provides several important insights. First, attacks on MNIST worked very well with low
poisoning rates, a high ASR may be obtained with just a few poisoned samples. This is likely because
the images of MNIST are simple, representing grayscale digits that have minimal intra-class variability.
As a result, the model primarily picks up edge-based and shape-based features, so even a simple
backdoor trigger can become a common feature. For example, with just 5 poisoned samples, CNN on
MNIST already reached ≈90% ASR, whereas CNN on CIFAR-10 only achieved ≈10% ASR under the
same condition. With fewer features competing for space, a few poisoned samples will induce rapid
ASR growth.

Second, compared to MNIST, GTSRB exhibited a comparable but slower trend, requiring more poi-
soned samples to obtain a high ASR. In contrast to MNIST, GTSRB features color images of traffic
signs with greater intra-class variability in the size, shape, and background complexity. This added
variance forces the model to capture more robust features, so that it is worse at directly mapping the
backdoor trigger to some particular class. Hence, the model has to learn from more poisoned samples
before capturing the backdoor pattern sufficiently enough to achieve notable ASR. For instance, GT-
SRB with Inception reached ≈60% ASR with 50+ poisoned samples, compared to only ≈40% with 25
poisoned samples.
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Thirdly, CIFAR-10 was more resilient to the attack, even considering more poisoned samples. The
greater resistance of CIFAR-10 models against backdoor attacks is likely due to the fact that the dataset
has higher feature diversity, like objects with intricate textures, different light conditions, and realistic
backgrounds. The model needs to focus on a higher number of discriminative patterns to classify
images correctly, making it harder for a small backdoor trigger to be learned as a dominant feature.
This effect is even more pronounced on ResNet models, which, due to their deeper architecture and
skip connections, are designed to generalize and be resistant to learning spurious correlations.

The final ASR values for CNN models were consistently higher across datasets, suggesting that more
complex architectures may offer superior protection against backdoors and making CNN models typ-
ically more susceptible than ResNet and Inception. This is an interesting observation because it is
different from the general expectation that models capable of learning faster and more deeply, like
ResNet and Inception would be more vulnerable to backdoor attacks. One possible explanation is
that the combination of active learning and complex architectures changes the outcome of the attack,
perhaps due to the fact that active learning provides better generalization and robustness in the early
phases of learning. Additionally, it is known that creating a backdoor after the model has already been
partially trained is more difficult than when training from scratch, which might explain why ResNet and
Inception, which often benefits from deeper representations, shows more resistance in this setting.

Another visible outcome is the gap between CNN and ResNet performance for different datasets. For
instance, CNN on GTSRB at 75 poisoned samples achieved ≈90% ASR, while ResNet only reached
≈70%. One hypothesis is that the CNN model can overfit poisoned samples in this dataset more easily
since it has a less complex structure and less regularization, while ResNet is able to generalize better
and hence suppress the backdoor signal better. However, the class imbalance and higher number of
classes in GTSRB might also influence how effectively poisoned samples are integrated into training,
especially in a post-query clean-label setting, where the success of the attack depends on how often
the target class appears in the queried set. For Inception, the ASR increases with more poisoned
samples, but the difference between datasets is less strong than in the case of CNN and ResNet. For
MNIST, the ASR is relatively high, but less so than in the case of CNN or ResNet, which mirrors the
fact that Inception is more resilient to small-scale triggers on simpler datasets. For both GTSRB and
CIFAR-10, the ASR curves are essentially similar, with smooth rises and final ASR values close together.
This suggests that Inception’s architecture, in its ability to process multiscale features, responds more
similarly across datasets, with less dataset-dependent variability in susceptibility. Although this may be
evidence of more consistent generalization, it further suggests that once a trigger has been learned, it
can linger regardless of dataset difficulty.

Clean Accuracy Drop (CAD)
Although ASR results showed high attack effectiveness for certain settings, the classification accuracy
on clean data remained largely unaffected. As seen in Appendix B, Tables B.1–B.3, the clean accuracy
drop (CAD) was minimal, suggesting that the attacks were stealthy and did not compromise the general
performance of the model.

5.2. Results of Experiment 2
This section explains the result of Experiment 2, in which the subtrigger division and parameter adjust-
ment methods were tested together with the LIRA and WaNet triggers. The corresponding parameters
of the LIRA and WaNet triggers are: perturbation magnitude (ϵ), scaling factor (s), and number of trans-
formations (k). These parameters were varied to get a more complete overview of the effects of the
backdoor attack. In Appendix A, Tables A.4 and A.5 provide a full tabular summary of the ASR values
observed in this experiment.

ASR Evolution Across Active Learning Cycles
Figure 5.3 shows the ASR trends across the selected datasets and models for the trigger types eval-
uated in Experiment 2. Each curve in the subplots represents a specific trigger type, allowing the
comparative assessment of how ASR develops over time in response to active learning updates.
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Figure 5.3: ASR progression over active learning cycles for different models, datasets, and poisoning strategies.

Figure 5.3 shows clear differences in how the ASR progressed over the cycles for the global, subtrig-
ger, and progressive approaches. For the global triggers, it is evident that higher ASR results were
obtained, when compared to the subtrigger and progressive methods. This is expected, as the global
approach exposes the full-strength trigger from the beginning of training, giving the model ample time
to learn the backdoor signal reliably. For example, on Inception with GTSRB, global WaNet and LIRA
attained ≈100% ASR within the first 3 cycles, while sub-trigger WaNet and LIRA attained only ≈70-
90% ASR even at cycle 15. However, there are exceptions, such as in the ResNet, GTSRB setting,
where global LIRA underperforms compared to progressive and subtrigger WaNet in later cycles. This
can be attributed to the combination of dataset complexity and model depth: the 43 GTSRB classes re-
quire longer adaptation to distinguish subtle backdoor cues, and ResNet’s deeper structure may initially
resist overfitting to static global triggers, while benefiting more from gradually reinforced or diversified
poisoning signals. The subtrigger method, specifically, shows varied results and generally takes longer
than the global method to achieve a higher ASR value. This delay is due to the fact that the full trig-
ger is never shown to the model during training; only fragmented sub-parts are injected in separate
samples. As a result, the model must implicitly learn to associate these disjoint fragments with the
target class, which requires repeated exposure and makes the learning process slower and less stable.
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Furthermore, the progressive poisoning method also had intermediate performance with steady ASR
improvement that typically takes longer to converge. As the strength of the trigger increasingly grows
across the training iterations, it delays the point at which the backdoor reaches enough strength to
consistently affect predictions.

A comparison between WaNet and LIRA shows that LIRA obtains a higher ASR across all datasets
and model architectures. This result is true for almost all poisoning tactics used. The rationale behind
this lies in the inherent differences in the working mechanism of the two triggers: LIRA uses adver-
sarial attacks with careful design that move samples outside the decision boundary. Such attacks are
deeply intertwined with the model’s internal gradients, making them extremely effective—no matter the
size, fragmentation, or sequential usage. On the other hand, WaNet-based attacks show higher vari-
ability, especially on more complex datasets such as CIFAR-10, where the ASR remains lower and
less stable over cycles. This may be due to more complex datasets like CIFAR-10, where images are
noisy, textured, and contain much visual variation. The spatial warping in WaNet make it harder for
the model to reliably associate a single class, resulting in higher variability and lower stability in ASR
across cycles. The difference between WaNet and LIRA is especially noticeable in the subtrigger and
progressive poisoning methods, where LIRA obtains larger ASR values at a faster pace while WaNet
is slower to train to the same extent of attack efficacy. This is because WaNet’s trigger is based on
spatial transformations that when applied as subtriggers, the individual warped fragments may not be
visually or functionally significant enough to guide the model toward a consistent backdoor behavior.

A few notable outliers were observed in the ASR outcomes, especially in the progressive parameter
adjustment WaNet setups of CNN and ResNet with CIFAR-10. These specific setups showed low or
varying ASR across the cycles. This behavior can be caused by the interaction of the two different
backdoor methods. The progressive method gradually modifies trigger parameters across the cycles
(gradually increasing warping strength in WaNet). For CIFAR-10 with progressive WaNet, the low ASR
may be due to the high inter-class visual variability in the dataset, combined with the fact that early-
cycle perturbations in the progressive schedule may have been too subtle to be learned effectively as
a backdoor signal, leading to a failure in establishing the attack early on. Comparison across models
shows that the biggest difference is that Inception consistently had on average smaller ASR values and
more variability from cycle to cycle. Compared to CNN, which quickly reached high ASR, Inception’s
ASR increased slowly and was lower overall. This was clear in the subtrigger WaNet settings, where
ASR stayed significantly below the other models throughout the cycles. The ASR curves of Inception
also fluctuated more from cycle to cycle, indicating less stable learning of the backdoor trigger. Overall,
though Inception was less vulnerable to backdoor attacks, it also showed slower and less stable ASR
growth, which is different from the more regular pattern of CNN and ResNet.

ASR Dependence on the Number of Poisoned Samples
Figure 5.4 explores the relationship between number of poisoned samples and the final ASR (at cycle
15) for different trigger types, by datasets. The results disclose key highlights in ASR growth, based on
the number of poisoned samples and trigger types. In MNIST, ASR reaches almost 100% with very few
poisoned samples, for all strategies excluding the progressive approaches. This can be attributed to
the nature of the dataset: MNIST is composed of low-resolution grayscale images with digit classes that
are well-separated, and hence it is easy for even a limited number of poisoned samples to control the
model. Global and sub-trigger approaches can inject a strong and consistent backdoor signal from the
start, leading to the rapid saturation in ASR. In contrast, progressive strategies start at reduced trigger
strength and only increment by cycles, deferring the buildup of the poisoned signal, which explains their
slightly slower ASR increase.

For the GTSRB dataset, ASR increases with the number of poisoned samples, showing a peak for the
global WaNet approach. GTSRB is a more complex dataset: it contains 43 visually similar traffic sign
classes, most with minor variations, for which a stronger and stronger poisoning signal is required to
deceive the model consistently. The spatial warping used in WaNet is especially effective in GTSRB,
possibly due to its ability to mimic real-world image distortions (like camera blur or rotation), making
the trigger more ”natural” and harder to ignore during training. The global version of WaNet applies the
full-strength warping from the beginning, which explains its consistently superior performance in this
setting. In CIFAR-10 we observe a performance between MNIST and GTSRB, reflecting the impact of
the higher level of complexity and noise in the data set. CIFAR-10 is a dataset of natural images with
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Figure 5.4: Final ASR as a function of the number of poisoned samples for different datasets and poisoning
strategies.

high intraclass variability and low resolution (32x32 color images), this is possibly the reason for the
weakened poisoned signal in the case of the WaNet progressive approach. Furthermore, CIFAR-10
contains just 10 classes, but the high visual richness creates difficulties for generalizing to unknown
patterns, inclusive of subtle or dynamic triggers. Overall, progressive WaNet shows substantially lower
ASR growth than all the other strategies, highlighting that this attack is less effective over all datasets.
This can be attributed to the nature of the attack. Global and subtrigger approaches can inject a strong
and consistent backdoor signal from the start, leading to the rapid saturation in ASR. In contrast, pro-
gressive strategies start at reduced trigger strength and only increment by cycles, deferring the buildup
of the poisoned signal, which explains their slightly slower ASR increase.

5.2.1. Results of Progressive Parameter Adjustment
Figure 5.5 presents the results of the progressive parameter adjustment approach over active learning
cycles. The visualization is divided into subplots by dataset and each curve in the subplot represents a
different trigger (WaNet or LIRA). It is demonstrated how the progressive LIRA approach is consistently
more effective than the progressive WaNet approach over all the datasets. This difference can be
attributed to the nature of each attack. LIRA is based on adversarial perturbations that are crafted
using gradients that exploit the model’s vulnerabilities. When iteratively scaled up, such perturbations
are increasingly successful at shifting the decision boundary of the model towards the target class.
WaNet, however, relies on spatial warping of the input image, which, when applied with low intensity in
the early cycles, may not be strong enough to leave a meaningful imprint on the model. As the warping
intensity grows, it becomes more detectable but not necessarily better in terms of ASR.

Figure 5.5: ASR progression for different progressively adjusted poisoning strategies across datasets.

Furthermore, the choice of dataset also has an effect on the performance, showing especially high ASR
for the progressive LIRA in MNIST and CIFAR-10. The MNIST dataset, characterized by its grayscale
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and low-resolution images alongside just 10 distinctly separated classes, possesses a comparatively
simpler structural design. Such simplicity facilitates the effectiveness of even moderately robust trig-
gers, such as those generated by WaNet. Conversely, the GTSRB dataset comprises 43 traffic sign
classes, which introduces considerable inter-class similarity and real-world noise, potentially reducing
the efficacy of an individual evolving trigger. CIFAR-10 is particularly challenging for WaNet: it consists
of small, full-color natural images of highly diverse object categories. The poor performance of progres-
sive WaNet in CIFAR-10 and may be explained by the combination of factors: the color complexity, the
high-frequency content of natural images, and the low resolution all make spatial warping less distin-
guishable or learnable as a trigger. Additionally, the progressive intensity in WaNet may introduce
noise that the model fails to interpret as a meaningful signal tied to a target class. For further analysis,
Figure 5.6 and Figure 5.7 compare the ASR of different progressive triggers over cycles categorized
by model and dataset.

Figure 5.6: ASR over cycles for different trigger types,
by model.

Figure 5.7: ASR over cycles for different trigger types,
by dataset.

Figure 5.6 shows that CNN obtained higher ASR compared to ResNet models across all cycles, with
progressive LIRA performing better than progressive WaNet. Increased ASR scores reported in CNNs
over ResNet models could be a result of architectural variations in feature extraction and robustness.
Skip connections and deeper layers of ResNet are intended to learn hierarchical and higher-level repre-
sentations that can result in improved generalization and robustness against finer perturbations such as
those utilized in backdoor attacks. In contrast, CNNs may overfit more easily to the poisoned patterns,
especially when the poisoned signal is subtle or scattered across training cycles, as in progressive and
sub-trigger settings. For Inception, ASR progression was between ResNet and CNN for both progres-
sive WaNet and progressive LIRA triggers. Even though it was unable to keep pace with the higher
ASR of CNN, it outperformed ResNet in some cases, especially during the early to mid-cycles. As
with the other models, progressive LIRA consistently achieved higher ASR than progressive WaNet,
demonstrating its effectiveness across all architectures.

In Figure 5.7, the dataset variations reveal that MNIST reached an almost maximal ASR early on except
for the progressive approach, while the GTSRB dataset had gradual increases. Progressive LIRA
maintained the highest ASR compared to progressiveWaNet. The superior performance of progressive
LIRA over progressive WaNet across both architectures can be attributed to how each attack method
responds to gradual increases in trigger intensity. In LIRA, the perturbations are crafted based on
the model’s gradients. As the perturbation strength increases with each cycle, the poisoned signal
becomesmore pronounced and better aligned with themodel’s decision boundaries, thereby enhancing
the backdoor effect over time. By contrast, WaNet employs spatial warping; although greater warping
intensity can render the trigger more perceptible, it can simultaneously distort the input in manners
that impede learning over early cycles. This makes WaNet’s progressive adjustment less stable or
effective, particularly under clean-label constraints. The disparity in the ASR between GTSRB and
CIFAR-10, despite their shared characteristic as colored datasets, is most likely a consequence of
variations in class coarseness and visual complexity. The GTSRB dataset has 43 distinct classes, a
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number of which have subtle visual distinctions, thereby complicating the model’s ability to correctly link
a progressively reinforced but static trigger to a single target class. Additionally, the dataset includes
more real-world variability (lighting, blur, angle), which may interfere with the warping-based triggers
of WaNet or the fine-tuned perturbations of LIRA. In contrast, CIFAR-10 has fewer classes with more
distinct object categories, allowing a stronger trigger to more easily dominate the classification decision
as its intensity increases across cycles.

5.2.2. Results of Sub-trigger Division
Figure 5.8 and Figure 5.9 show the results of the sub-trigger division method over the used datasets
and models. The variation of ASR over the subtrigger configurations is depicted as well as the different
LIRA and WaNet triggers. These configurations are specifically the variations in perturbation strength
(ϵ), spatial transformation parameters (s-k), and the size of the sub-triggers (sub_size). Figure 5.8
displays the ASR distribution for sub-trigger poisoning, grouped by different hyperparameters. The left
plot presents the trends for ASR in the LIRA subtrigger, based on varying perturbation strength. The
right plot examines the ASR of the WaNet subtrigger under its own specific hyperparameters s and
k. For LIRA, a lower perturbation strength (eps=0.1) results in lower ASR results for almost all the
combinations. In contrast, increasing eps to 0.2 stabilizes ASR across models, but does not always
guarantee higher succes. For WaNet, changes in scaling factor (s) and kernel size (k) show that smaller
s values (0.2) lead to more variability in ASR.

Figure 5.8: ASR distribution for sub-trigger poisoning across different datasets and models.

Figure 5.9 further extends the analysis of sub-triggers by visualizing the impact of the sub-trigger size
on ASR. In the case of WaNet, the increase from 5 to 8 in size enhances the ASR in some instances
marginally, but at times introduces more variability. For instance, increasing LIRA’s sub-trigger size
from 5 to 8 improved ASR from 85% to 95% on Inception with MNIST. For WaNet, when combined
across training cycles, larger warped areasmay help themodel learn amore consistent backdoor signal,
but they can also lead to noisier gradients or conflicting spatial cues, especially in deeper models like
Inception that focus on spatial hierarchies, explaining the higher variability. In contrast, LIRA applies
adversarial perturbations that are fine-tuned to the model’s gradients and do not rely on spatial contigu-
ity. Increasing the size of each sub-trigger has less of a negative effect on LIRA, since the model learns
these perturbations independently, and their accumulation does benefit from a larger spatial footprint
in contrast to WaNet.



5.3. Results of Experiment 3 36

Figure 5.9: Impact of different sub-trigger configurations on ASR trends.

Clean Accuracy Drop (CAD)
Besides the ASR trends shown before, model accuracy on unpoisoned inputs was not significantly
impacted. The CAD values reported in Appendix B, Tables B.4 and B.5 confirm that the poisoning
strategies maintained relatively stable performance on clean data, reinforcing their subtlety.

5.3. Results of Experiment 3
This section presents the results of Experiment 3, the focus of the experiment was on clean label attacks
and their effects on active learning models. In this experiment the LIRA and WaNet triggers were con-
sidered again. Note that only the global (original) methods were considered and the parameters for the
LIRA and WaNet triggers were varied. For a complete breakdown of the ASR across the configurations
tested here, refer to Table A.6 in Appendix A.

ASR Evolution Across Active Learning Cycles
Figure 5.10 presents the evolution of ASR along active learning iterations for different poisoning tactics
in a clean-label attack, over a number of datasets and model configurations. The plot compares target-
only subtrigger LIRA, target-only subtrigger WaNet, target-only global LIRA, and target-only global
WaNet attacks. The analysis shows that global poisoning tended to achieve higher ASR than sub-
trigger techniques, especially on the MNIST and GTSRB datasets. For instance, CNN on MNIST with
global WaNet reached≈95% ASR, while with subtrigger WaNet it reached around≈60%. The low ASR
observed in certain situations may be due to the number of poisoned samples, which is sometimes not
sufficient to achieve a high level of attack effectiveness. Since clean-label attacks with postquery poi-
soning rely on corrupting only within the queried set, there are occasions when the amount of target
label samples in the selected batch is too low to significantly affect the model. This limitation is espe-
cially evident in GTSRB, likely due to the higher number of classes in the dataset. In addition, attacks
using WaNet show higher ASR trends compared to LIRA, indicating that some poisoning techniques
may be more vulnerable to the constraints imposed by clean-label poisoning.

In the clean-label poisoning setting, it is interesting to note that WaNet had better ASR trends than
LIRA, a result that is opposite to earlier findings in dirty-label settings where LIRA performed better.
This difference can be attributed to the nature of the clean-label constraint: LIRA relies on adversarial
perturbations that are specifically tailored to flip predictions at training time, a technique that can be less
effective when the label is not changed and the poisoning is limited to a small queried batch. In contrast,
WaNet introduces a universal warping-based trigger that affects the input distribution more consistently
across samples. This makes it more robust under clean-label constraints, particularly when the number
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Figure 5.10: ASR progression for different sub-trigger poisoning strategies across datasets.

of poisonable samples is limited. Thus, under these stricter conditions, the visual and structural nature
of the WaNet trigger may result in higher effectiveness despite LIRA’s usual advantage in more flexible
settings. In all datasets, CNN models consistently exhibit the highest ASR, particularly for MNIST and
CIFAR-10, against LIRA and WaNet attacks. This implies that CNN models are more vulnerable to
clean label attacks, most significantly in settings with simpler or more structured input distributions like
MNIST. Respectively, ResNet models illustrate the lowest ASR on GTSRB, particularly in the case
of subtrigger attacks, reflecting superior robustness, possibly as a result of the deeper structure and
residual connections. Inception models illustrate a more subtle pattern: they fail to achieve the same
ASR as CNNs, global triggers (particularly WaNet) working significantly better than subtrigger ones.

ASR Dependence on the Number of Poisoned Samples
Figure 5.11 shows the number of poisoned samples in each active learning cycle for various trigger
attack tactics in a clean-label setting. This figure illustrates that the poisoned samples, during the
training process influence the ASR patterns seen in Figure 5.10.
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Figure 5.11: Number of poisoned samples per cycle for different sub-trigger attack strategies.

The curves in the plots represent how the number of poisoned samples differs across cycles for each
combination. It reflects that there are variations in the selection of queried samples containing the
target label and therefore variations in how many samples are poisoned. The dotted line in each plot
represents the maximum possible number of poisoned samples per cycle, serving as a reference for
comparisons. It is shown that there are notable differences in the number of samples poisoned every
cycle on datasets, even more for GTSRB and MNIST. As seen in Figure 5.10, this probably contributes
to the low ASR seen in these datasets. On the other hand, the high ASR of CIFAR-10 in the clean-
label scenario, is consistent with the amount of poisoned samples every cycle. For certain models, like
ResNet on MNIST, the number of poisoned samples decreases, indicating that fewer target-labeled
samples are chosen later on, which may reduce the attack’s efficacy.

Clean Accuracy Drop (CAD)
In this clean-label attack scenario, although backdoor effectiveness varied, the clean data accuracy
remained relatively stable. Appendix B, Table B.6 indicate that the CAD remained modest across most
configurations, reflecting a limited impact on overall model accuracy.
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5.4. Results of Experiment 4
This section presents the results of Experiment 4, which focused on the comparison of pre-query and
post-query poisoning methods. For this experiment, the global versions of LIRA and WaNet were
considered, and the poison rate was varied. The experiment was carried out on the CNN model and
the three standard datasets that were used for the previous experiments. The ASR results discussed
in this section are also presented in tabular form in Appendix A, Table A.7.

ASR Dependence on the Number of Poisoned Samples
Figure 5.12 shows how the ASR progresses over cycles for both pre-query and post-query poisoning
approaches. Note that the lines in each plot represent the unique poison rates and trigger type combi-
nations. For this experiment, the global LIRA and WaNet trigger methods were used, as well as poison
rates of 1% and 5%. The evolution of the ASR is shown over 15 active learning cycles for pre-query
and post-query poisoning attacks against the MNIST, the GTSRB, and the CIFAR-10 data sets. A
clear pattern is seen where the post-query poisoning reaches higher and more stable ASR levels than
pre-query poisoning, notably through the latter cycles. This can be explained by the nature of post-
query poisoning: the attacker poisons only those samples that the model has already selected based
on its uncertainty, ensuring that every poisoned sample is used in retraining. In contrast, pre-query
poisoning injects poisoned data into the pool before selection. Since the active learning query strategy
is unaware of which samples are poisoned, there is no guarantee that the poisoned samples will be
selected, leading to underexposure or inconsistent learning of the backdoor pattern, especially in early
cycles. This effect accumulates across cycles, contributing to the lower and less stable ASR observed
in pre-query settings.

Figure 5.12: ASR progression for pre-query and post-query poisoning across datasets, trigger methods and
poison rates.

For the MNIST dataset, pre-query poisoning shows high fluctuations in ASR through the first cycles,
notably with the use of the WaNet trigger. This is likely due to MNIST’s low visual complexity: the
images are simple and uniform, so slight perturbations introduced by the WaNet warping (especially
in early cycles) may be too subtle to be reliably learned unless the samples are actually queried. If
those poisoned samples are missed in pre-query, the model does not easily link the trigger to the
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target label. Contrary, the post-query poisoning remains high right from the start because the poisoned
samples are guaranteed to be queried and used for model updates, allowing the backdoor to be learned
consistently from the first cycle onward. For instance, in MNIST, post-query WaNet reached ≈100%
ASR, while pre-query fluctuated around ≈60–100%. For the CIFAR-10 and the GTSRB data sets,
the post-query poisoning reaches a high and steady ASR earlier than the pre-query poisoning does,
with higher variability before settling. This is because these datasets are visually more complex and
diverse than MNIST, so learning a consistent backdoor pattern requires repeated and reliable exposure
to poisoned examples. In the pre-query setting, the uncertainty-based selection may omit poisoned
samples or introduce them sporadically, causing convergence of the backdoor to be delayed. The
post-query approach avoids this by targeting exactly those samples where the model is most uncertain,
so that poisoned inputs are conspicuous and will likely affect training.

In addition, the poisoning rate significantly impacts the robustness and performance of ASR. A review
across all the data sets indicates a high poisoning rate of 5% generally causes higher and steadier ASR
values compared with 1% poisoning, shown most prominently in the pre-query context, where lower
poisoning rates cause increased variability across many cycles. On the contrary, post-query poisoning
shows a consistent effect regardless of the poisoning level, with minimal fluctuations across the cycles.
That is because even with fewer poisoned samples, the attacker forces them directly into the queried
set, so they will always be part of the training procedure. Therefore, while the absolute number of
poisoned samples fluctuates from 1% to 5%, their impact per cycle is always maximized in post-query
poisoning, which is responsible for the more stable and efficient ASR evolution.

Clean Accuracy Drop (CAD)
The comparison of pre-query and post-query poisoning revealed some differences in ASR, yet the
model’s classification accuracy on clean samples was not drastically affected. As shown in Appendix B,
Table B7 B.7, the CAD remained low, underscoring the covert nature of the attacks.



6
Discussion

This chapter provides an in-depth analysis of the outcomes obtained from experiments conducted in
this research work. The obtained findings are described in relation to the existing literature and highlight
significant contributions of this research. Moreover, effective defense mechanisms against backdoor
attacks in active learning and the initial framework to research these vulnerabilities are addressed.

6.1. Addressing the Research Questions
RQ1: Backdoor Attack Settings and AL parameters

Experiment 1 was conducted to answer RQ1 by exploring the effect of different backdoor attack pa-
rameters on ASR. The study demonstrates that the type of trigger that is selected for the backdoor
attack greatly affects its effectiveness. From the results, larger triggers are generally more likely to
produce a higher ASR than smaller subtle triggers. However, the larger triggers can cost the attack in
terms of stealthiness, making it more detectable. This aligns with current literature, such as [20], where
the visibility of the trigger is normally sacrificed against detectability. Interestingly, when the special-
ized pattern trigger was employed, no difference in ASR was found with respect to the large trigger,
suggesting that while complexity in trigger design may have some effect, size remains the dominant
factor in determining ASR. Meaning that it has a greater effect on the feature space, embedding itself
more solidly in the learned decision boundaries and making it more likely that backdoor activation will
succeed.

As for the poisoning methods, there is a clear difference in terms of effectiveness. The certainty poison-
ing method obtained the highest ASR, followed by random poisoning and uncertainty poisoning. The
previous statement indicates that in the AL process, where the most uncertain samples are typically
queried, the poisoning of the most certain samples among them becomes the most efficient attack
strategy. This can be explained by the fact that highly certain samples are more likely to be learned
confidently and retained by the model, making them ideal carriers for the backdoor signal. When these
confidently predicted (but poisoned) samples are added to the training set, the model reinforces the
backdoor pattern more strongly. In contrast, uncertain samples may be more ambiguous or noisy,
leading to weaker integration of the backdoor trigger during training. This result turned out to be a first
contribution to the field, as it proposes an attack strategy that exploits unique characteristics of the
active learning pipeline.

As is expected for backdoor attacks, higher poisoning rates increased the ASR. The percentage of
poisoned samples is calculated based on the queried set size and not on the entire pool set. Even with
a smaller poisoning percentage, a significant ASR improvement is observed, corroborating the fact that
minimal poisoning can have a dramatic impact on active learning pipelines. Interestingly, the results
reveal that relatively low numbers of poisoned samples are needed to achieve high ASR, especially
for the MNIST and GTSRB data sets. This shows how these data sets are somewhat susceptible
to backdoor attacks. The number of active learning cycles is another crucial element in the observed
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ASR progression. For nearly all the different dataset-model combinations in Experiment 1, the first 5-10
cycles see the greatest leap in ASR, afterwards the ASR almost remains constant. The aforementioned
shows that the attack was most effective in the earliest phases of training, likely because the model is
still learning its internal representations and is more vulnerable to the impact of new data. As training
continues and the model becomes increasingly confident and stable in its predictions, the impact of
additional poisoned samples diminishes, hence the plateau in ASR that we observe in later cycles.
This particular finding is relevant for the creation of defense mechanisms in AL, as it indicates that
countermeasures should be targeted at these early active learning cycles.

It is shown that clean-label backdoor attacks can achieve a relatively high ASR, especially in the case
of the CIFAR-10 dataset, where the ASR was found to be even higher than that of MNIST. This is inter-
esting since previous experiments indicated that CIFAR-10 is comparatively more resistant to backdoor
attacks. The success of the CIFAR-10 dataset can be explained by the fact that it has a balanced class
distribution, which increases the likelihood that the target class appears frequently in the queried set.
Since the attack in this experiment relies on post-query poisoning with clean labels, its effectiveness
depends on the number of target class samples present in the queried set. In datasets like GTSRB,
which have class imbalance and a larger number of classes, fewer target class samples may be avail-
able per query batch, limiting the number of poisoned samples and resulting in a lower ASR compared
to CIFAR-10. Both the sub-trigger method and the global methods for LIRA and WaNet were analyzed
in clean label serrings. The ASR of these methods was as expected, considering the amount of poi-
soned samples that were actually used. The clear disadvantage of clean-label poisoning in this study’s
setting is that the number of poisoned samples for the retraining of the model can not be guaranteed.
Clean-label backdoor attacks poison samples from one particular target class in the queried set. There-
after, the number of available samples can be significantly less than in standard poisoning approaches
due to the label constraint. This could limit the effectiveness of an attack when insufficient poisoned
samples are queried in the AL pipeline. One potential solution for the aforementioned limitation can
be the utilization of diversity-based poisoning techniques, in which the querying will be more evenly
spread across classes. This could reduce sparse target class samples in the queried set and improve
ASR for clean-label poisoning.

Interestingly, [21] proposes Density-based Representative Sampling (DRE) to improve robustness
against adversarial data manipulations. DRE tries to maintain a balance between the queried set and
the entire data pool [21]. Therefore, it could be interesting to explore whether the introduction of clean-
label attacks decreases the mitigation performance or not. Another way to increase the success of
clean-label attacks could be the use of pre-query poisoning, while ensuring that the poisoned samples
have a higher chance of being selected in AL. This could be done through optimization of the visual or
feature-based characteristics of the trigger itself, thus enhancing its impact while not sacrificing label
integrity. Pre-query poisoning, as demonstrated in [60], solves the limitation of the post-query strategy,
where the number of available target-class samples for poisoning may be small.

RQ2: How do different datasets and model architectures in computer vision influence the sus-
ceptibility of active learning frameworks to backdoor attacks?
All the experiments addressed in a way RQ2 through evaluating model architecture and dataset com-
plexity impact on ASR in active learning models. The results outline differences in ASR development
based on dataset-model selection. The used dataset within active learning plays a crucial role in attack
effectiveness. Among the tested datasets, the simplest dataset, MNIST, achieved the maximum av-
erage ASR for almost all trigger type and poison method combinations (excluding the ResNet model).
The attack easily approached 100% ASR in the first active learning rounds of poisoning, indicating the
susceptibility of simple datasets to backdoor attacks. For the GTSRB dataset, ASR was also relatively
high, but less than that observed for MNIST. In contrast, CIFAR-10 obtained the lowest ASR (excluding
clean label attacks) and exhibited significant variation across active learning cycles. This indicates that
while backdoor attacks remain powerful for more complex datasets, their effectiveness decreases with
the complexity of the data. Furthermore, the lower ASR of CIFAR-10 proves that models that have
been trained on more diverse and detailed image distributions are more resistant to poisoning attacks
within active learning settings.

In terms of the models, they exhibit varying degrees of susceptibility to backdoor attacks. From Experi-
ment 1, the CNNmodels reach high ASRwithin shorter time across datasets when compared to ResNet
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models. ASR for CNN models increases steeply in the first 5-10 active learning cycles, with stabiliza-
tion near 100% for MNIST and GTSRB datasets. In ResNet models ASR increases slower, particularly
for CIFAR-10, where the ASR remains much lower throughout the learning process. However, even for
simpler datasets such as MNIST and GTSRB, ResNet models reach high ASR in later cycles, though
at a slightly lower rate than CNN models. This may be related to the influence of the active learning
loop on model capacity. More complicated models like ResNet have more parameters, and therefore
new, subtle patterns such as backdoor triggers may hardly impact overall behavior within a short period.
It may therefore require more training effort to insert new ”knowledge”, like a backdoor. On the other
hand, smaller models like CNNs can be easily controlled and are more prone to forget earlier patterns;
thus they are more susceptible to rapid backdoor injection during early cycles. The Inception model
showed mixed results across the experiments. In Experiment 1, it achieved relatively high ASR on
MNIST, even outperforming CNN and ResNet in some poisoning settings. This shows that Inception
is more vulnerable in complex datasets, most likely due to the fact that it is capable of extracting mul-
tiscale features, thus being able to learn even stealthy backdoor patterns. On GTSRB and CIFAR-10,
however, its ASR was lower and less consistent, especially with random and uncertainty poisoning. In
Experiment 2, which tested sub-trigger and progressive poisoning methods, Inception underperformed
compared to CNN and ResNet, especially with sub-progressive WaNet, where its ASR was low across
cycles consistently. This indicates that Inception is less reactive to fragmented or progressing triggers
and performs better when the entire trigger is shown early.

RQ3: How can backdoor attacks employing sub-trigger division and parameter progression be
designed to exploit vulnerabilities in active learning pipelines, and how do their impacts com-
pare to standard backdoor techniques?

Experiment 2 was designed to answer RQ3, which focuses on the progressive parameter adjustment
and sub-trigger method in terms of effectiveness. These experiments produced a considerably higher
ASR than those seen in Experiment 1. However, the sub-trigger and parameter adjustment methods
showed a small difference in ASR to their global counterparts. This means that besides the trigger type,
the proposed techniques can be considered as good alternatives to static methods. By incrementally
introducing the backdoor over multiple active learning cycles, the progressive approaches might be
able to evade detection mechanisms more effectively than global triggers. Recent work by [35] shows
that adversarial retraining and robust active learning techniques can defend against poisoning-based
attacks in AL. One possible reason why progressive approaches could serve as a good counterpart to
adversarial retraining is that they introduce the backdoor signal more subtly and gradually, potentially
avoiding the sharp changes in loss or gradients that adversarial retraining mechanisms are designed
to detect and suppress. Whether progressive parameter adjustment and sub-trigger methods would
remain undetectable with the use of adversarial retraining as a defense is uncertain. Future research
may compare these methods’ detectability with that of baseline global trigger methods’ detectability.
Experiment 2 highlights the possibility of increased stealthiness of the progressive sub-trigger division
and parameter adjustment methods. One main contribution of this study is showing that it is possible
to divide triggers and poison data with its small individual subcomponents. Moreover, at the inference
stage all the subcomponents can be combined to trigger the backdoor while obtaining high ASR. It can
be worthwhile to examine the detectability of these mechanisms in comparison to conventional global
trigger methods for determining whether they provide a substantial breakthrough in evading detection
mechanisms.

The progressive parameter adjustment in WaNet had the worst performance in Experiment 2. The
hypothetical reason for this bad performance is that the initial perturbations in WaNet are not strong
enough for the attack to persist in subsequent stages. If the attack is not affecting the model initially,
it may not develop into a strong backdoor over the cycles. The progressive parameter adjustment
in LIRA does not show the same weaknesses as WaNet. The LIRA approach has high ASR overall,
meaning that its progressive implementations are more effective at introducing the backdoor gradually
without impacting the attack’s effectiveness, possibly due to LIRA directly manipulating feature space
representations in such a way that the model is more capable of internalizing the backdoor pattern more
consistently even under minimal early poisoning. In comparison to WaNet’s image-space perturbations
that are likely too subtle in early phases to be learned appropriately. The results provide evidence that
sub-trigger and progressive parameter adjustment methods can be effective alternatives to standard
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global poisoning methods. Though their ASR improvements over traditional techniques are not signif-
icant, their stealthy growth potential is something to investigate further. The ability of these methods
to gradually add backdoor patterns during active learning cycles without sacrificing high ASR is a valu-
able insight into how backdoor attacks can be optimized. Future work could examine the detectability
of these techniques in order to evaluate their value in realistic adversarial situations.

RQ4: What is the impact of pre-query and post-query backdoor attacks on active learning models
in computer vision?
Experiment 4 explored the differences in active learning pipelines between the pre-query and post-
query poisoning techniques. Post-query poisoning shows higher and more uniform ASR across all
datasets, following the results. This is likely because the attacker poisons the samples after the model
selects them to guarantee that they’re used in training. However, this approach assumes a high level
of access to the model’s internal querying process, making it less realistic in many real-world attack
scenarios. By contrast, pre-query poisoning, as used in the Double-cross paper [60], reflects a more
practical threat model in which the attacker can only poison the unlabeled data pool. However, since
selection is based on model uncertainty, poisoned samples may not be chosen, especially in early
cycles, leading to lower and more variable ASR. The results also show that higher poisoning rates are
necessary to achieve reasonable effectiveness in the pre-query setting, as they increase the chance
that at least some poisoned samples are selected. To make pre-query attacks more useful in a real-
world scenario, future studies could look to design triggers that make a sample more probable to be
queried. These triggers could incrementally increase model uncertainty and thus make the poisoned
samples preferable for the active learner to incorporate them better in the learning process. In summary,
post-query poisoning is stronger and suitable for extensive studies, while pre-query poisoning is more
covert and realistic but requires more careful design and greater poisoning rates to be effective.

6.2. Implications for Defense Strategies
The experimental findings of this thesis have clear consequences for defense mechanism design and
tuning in AL pipelines regarding backdoor attacks. This research confirms that the early active learning
cycles are especially vulnerable to backdoor poisoning. Therefore, AL pipelines must prioritize defense
mechanisms in the initial iterations. A few of the techniques that could be used are: sanitizing data at
the start of training or auditing samples by using tools like Spectral Signatures [57] or Activation Clus-
tering [9]. Observing model behavior can be used to catch anomalies early on before the poisoned
samples are internalized by the model. Secondly, model architectures influence vulnerability, showing
the need for model specific defenses. Small models like CNNs were discovered to be more susceptible
to backdoor attacks in initial iterations, while models like ResNet or Inception required more training
for the attack to be successful. Consequently, lightweight warning systems may suffice for CNNs, but
richer feature monitoring and layered defensesmay be required for larger models. Third, a major insight
from the study in [60] is that anomaly-based filtering defenses, which are effective in other contexts,
may directly conflict with the goals of active learning. AL pipelines intentionally select “uncertain” data
points, often the same data that anomaly filters would discard. Removing such samples can greatly de-
grade AL’s effectiveness and learning trajectory [60]. Future research must resolve this by developing
detection methods that distinguish between useful anomalies and maliciously crafted ones.

Another finding is the effectiveness of clean-label and progressive/subtrigger backdoor attacks, which
are inherently harder to detect. Clean-label poisoning evades standard label consistency checks and
sub-trigger or progressivemethods introduce the backdoor gradually, avoiding sudden spikes in training
loss or prediction shifts. Temporal analysis methods observing the model’s internal representations
across AL iterations are needed for this. For example, measuring the feature activations or attention
maps over time may help flag slow evolving corruption patterns before they fully become a functional
backdoor. Lastly, educating human annotators on trigger detection may be promising in hybrid settings,
especially for clean-label attacks where human annotators are unaware of malicious intent. However,
the feasibility of this approach is limited by the imperceptibility of many modern triggers.
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6.3. Proposed Framework for Analyzing Backdoor Attacks in AL
Based on the insights obtained from this thesis, a preliminary framework is put together to systemati-
cally analyze backdoor attacks within active learning (AL) pipelines. This framework has three major
components:

1. Attack Surface and Poisoning Strategy Characterization
Before evaluating backdoor attacks, one must map where and how the attacker can interfere with
the AL pipeline. This involves identifying the attack timing (pre-query or post-query), the type of label
manipulation (clean-label or label-flipping), and the degree to which the trigger is perceivable or visi-
ble. Triggers may be static and obvious, or incrementally added and practically invisible. In addition,
poisoning mechanisms vary in sample choice criteria, ranging from random and uncertainty-based to
certainty-based. The knowledge of the attacker about the pipeline also influences the attack surface.
All these factors together provide a systematic basis for investigating the feasibility, stealth, and effec-
tiveness of different attack scenarios in active learning.

2. Trigger Effectiveness and Persistence Analysis
These properties assess how well a backdoor trigger continues to work with iterations of adversarial
learning, it helps predictably at test time, and evades detection successfully. Several metrics, such
as ASR improvement, visibility of the trigger, and interaction with specific dataset-model combinations,
help quantify the resilience and stealth of different trigger approaches.

3. Dataset and Model Sensitivity Layer
Here, the framework explores the interaction of dataset complexity and model architecture in terms
of their influence on vulnerability to backdoor attacks. Specifically, simple datasets like MNIST, when
combined with CNNs, show high vulnerability early on; in contrast, more complex models like ResNet
on datasets like CIFAR-10 show lagged but still high vulnerability.

6.4. Contributions
The aim of this thesis was to widen the understanding of backdoor attacks in the domain of computer
vision within active learning trained models. The research contributed to the security of these type of
models, by presenting the following main contributions:

• Demonstrating how the active learning pipeline could be exploited by backdoor attacks on com-
puter vision model training.

• Investigating the impact of attack parameters (trigger type, injection rate, poisoning method, and
query size) on the effectiveness and stealth of backdoor attacks in AL.

• Investigating how the different model and dataset choices affect the AL system and make it more
vulnerable to backdoor attacks.

• Illustrating how techniques, such as sub-trigger splitting and parameter adjustment, can be uti-
lized in the field of backdoor attacks to exploit some weaknesses.

• Testing the impact of clean label attacks and their relevance to active learning trained models.
• Suggest different methods to mitigate backdoor attacks in active learning based on the obtained
results and highlights of the study.

• Creating an awareness of security threats related to active learning and promoting the formulation
of detection and mitigation plans specific to the recognized vulnerabilities.



7
Limitations and Future Work

There are several limitations of this work that are important to consider. First of all, the experiments
were conducted in a closed environment with pre-defined datasets and model architectures, and thus
such behavior might not be exactly comparable to real world applications. The impact of backdoor
attacks and countermeasures may rely on the data distribution, more complex neural architectures,
and active learning pipelines in real-world scenarios. Second, while in this study various backdoor
attack strategies were explored, adaptive adversarial strategies with dynamic adaptation to deployed
defenses were not considered. Attackers could adaptively modify poisoning strategies over time, and
therefore real-world adversarial settings are more difficult than those considered here. Furthermore,
pre-query poisoning strategies, where sample selection is poisoned before querying, were not exhaus-
tively explored, even though they have been shown to enhance the efficiency of such attacks.

Moreover, this study is primarily based on computer vision tasks, where data characteristics such as
spatial structure and pixel correlations allow for backdoor attacks that exploit subtle visual triggers.
Domains like natural language processing or speech recognition show different representations, such
as text tokens or audio signals. Therefore, the attack and defense mechanisms in the scenario of
backdoor attacks may be significantly different. Attack vectors and defenses designed for computer
vision are not immediately relevant to these other areas and need to be adapted to each domain and
explored further. Future work must explore how active learning based backdoor vulnerabilities manifest
in those domains. Finally, computational constraints limited the scope of experimentation, particularly
in scaling up active learning iterations and testing with a broader variety of model architectures.

Future work must focus on expanding knowledge about backdoor attacks using a broader set of data,
models, and deep learning frameworks to achieve generalization. Investigating adversarial tactics that
adapt to countermeasures will provide more light on general resilience to attacks in real-world settings.
Besides this, employing stronger safeguard mechanisms such as differential privacy, adversarial train-
ing or anomaly detection could improve the security of active learning models. Further research into
the role of human annotators in active learning, especially in high-risk applications such as medical
imaging and autonomous systems, could allow for more effective security measures to be created.
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Conclusion

This thesis investigated the vulnerability of active learning pipelines to backdoor attacks in computer
vision. It was demonstrated that the intrinsic properties of the iterative nature of active learning, its
reliance on small sets of labeled data, and sample selection processes can be exploited by attackers to
embed backdoors effectively even in covert situations. Analysis indicates that some attack parameters,
such as the size of a trigger, mechanism of poisoning, and injection time, constitute a core function
in determining the attacks success rate. Simpler models and data are more susceptible to attacks,
especially at the start of active learning cycles. Clean-label attacks and incremental mechanisms of
poisoning also become very difficult to prevent because they can potentially evade normal means of
detection.

Among the most important contributions of this work is the exploration of progressive triggers and sub-
trigger partitioning techniques that introduce the backdoor signal progressively across a sequence of
active learning cycles. These methods have proved to be effective alternatives to global attacks with
the additional benefit of flexibility and show that the cyclical nature of active learning can be exploited
by attackers. This contribution enhances an overall sense of security vulnerabilities in active learning
systems and acts as a foundation for stronger defenses. An initial analysis framework was proposed
for determining and grouping threats in active learning to make future work better at protecting against
these vulnerabilities. In general, this thesis points out the requirement of security-oriented design in
active learning, particularly for critical applications like autonomous vehicles, surveillance, and medical
imaging.
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9
Ethical Considerations

This thesis examined backdoor attacks in active learning to identify vulnerabilities and develop miti-
gation plans. All experiments were conducted in a closed environment and did not impact real-world
applications or the operation of AI systems. The study followed responsible AI principles such as trans-
parency, reproducibility, and ethical use of the data obtained. The aim was to improve the security of
active learning trained models rather than make it simpler for adversaries to abuse it. Moreover, only
public datasets were used, and the results were presented with a defensive point of view.

In addition, this study highlighted the importance of the trustworthiness and safety of machine learn-
ing systems. This research went along with ethical guidelines in artificial intelligence research and
in cybersecurity, alerting the dangers that active learning trained models might bring. This is espe-
cially important in critical real-world applications such as autonomous systems and the healthcare field.
In summary, this study contributed to building safer artificial intelligence applications. The knowledge
gained will support better strategies toward protecting active learning models against emerging security
threats.
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A
Tables of ASR Results

Tables A.1, A.2 and A.3 present the results of Experiment 1, evaluating the final (last cycle) attack
success rate (ASR) over different query sizes. The tables summarize the ASR for various models and
datasets at different poison rates. The results are further divided by poison method and trigger type.

Table A.1: Results of experiment 1 showcasing the final ASR of the model with poison rates of 1% and 5% over
a query size of 500 samples.

MNIST
CNN

GTSRB
CNN

CIFAR10
CNN

MNIST
ResNet

GTSRB
ResNet

CIFAR10
ResNet

MNIST
Inception

GTSRB
Inception

CIFAR10
Inception

Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Poison Method
Random 93.12 97.15 61.33 86.18 8.98 37.76 76.81 65.46 16.00 71.81 7.55 11.46 68.21 69.49 44.32 66.46 70.33 76.30

Certainty 90.18 98.43 70.30 86.01 8.25 54.08 3.74 83.68 8.99 65.25 9.49 92.57 85.65 85.63 26.82 53.04 86.54 89.95

Uncertainty 85.10 97.72 63.65 88.21 8.22 16.02 2.57 29.94 13.14 62.77 6.23 5.31 76.88 88.28 61.28 67.30 44.50 59.24

Trigger Type
Specialized 91.73 98.82 81.49 99.77 5.87 33.28 21.37 42.86 5.25 66.74 8.75 35.36 76.41 80.77 70.42 84.49 61.77 68.91

Big 91.80 97.59 55.85 85.44 12.60 43.42 32.45 88.38 27.90 70.15 7.18 36.65 76.75 81.78 48.55 82.17 65.97 87.36

Simple 84.87 96.90 57.94 75.19 6.97 31.16 29.31 47.85 4.98 62.94 7.34 37.33 77.59 80.84 13.45 20.15 73.62 69.22

Table A.2: Results of experiment 1 showcasing the final ASR of the model with poison rates of 1% and 5% over
a query size of 1000 samples.

MNIST
CNN

GTSRB
CNN

CIFAR10
CNN

MNIST
ResNet

GTSRB
ResNet

CIFAR10
ResNet

MNIST
Inception

GTSRB
Inception

CIFAR10
Inception

Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%
Poison Method

Random 96.04 99.41 74.50 88.65 11.51 63.27 28.61 90.28 28.33 80.12 5.98 12.03 70.00 68.32 34.23 67.66 64.60 64.31

Certainty 95.90 99.67 71.42 89.19 14.41 79.83 38.01 93.44 21.32 82.79 13.43 84.94 87.16 88.86 34.57 62.55 75.93 89.55

Uncertainty 93.30 98.96 69.65 89.10 7.87 30.61 16.17 25.40 18.61 41.73 7.47 6.09 76.96 89.86 33.01 70.36 48.52 59.49

Trigger Type
Specialized 96.10 99.20 88.29 99.63 7.49 64.46 4.11 57.73 11.99 74.36 10.71 35.18 78.55 81.83 74.86 87.05 59.39 68.56

Big 94.21 99.23 66.70 88.50 13.72 57.83 70.26 84.93 38.31 76.35 7.61 34.31 78.97 81.43 3.85 94.01 68.32 68.09
Simple 94.93 99.61 60.59 78.80 12.58 51.42 8.42 66.46 17.95 53.93 8.58 33.57 76.60 83.78 17.73 23.70 61.34 76.68
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Table A.3: Results of experiment 1 showcasing the final ASR of the model with poison rates of 1% and 5% over
a query size of 1500 samples.

MNIST
CNN

GTSRB
CNN

CIFAR10
CNN

MNIST
ResNet

GTSRB
ResNet

CIFAR10
ResNet

MNIST
Inception

GTSRB
Inception

CIFAR10
Inception

Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Poison Method
Random 96.56 99.54 86.03 96.33 16.48 72.77 37.37 91.38 25.67 79.12 5.05 18.65 70.46 69.45 43.99 65.43 57.28 64.65

Certainty 96.59 99.41 85.58 95.10 21.23 89.76 42.66 97.47 32.79 94.62 21.99 80.53 88.14 90.43 34.87 54.56 85.51 91.75

Uncertainty 93.67 97.70 80.68 94.91 11.20 33.14 16.79 19.37 18.69 45.47 4.67 7.23 76.18 84.16 47.32 72.08 48.23 53.83
Trigger Type
Specialized 96.25 99.13 98.96 99.99 12.20 78.55 12.35 65.45 10.37 71.07 7.48 29.82 80.19 80.02 83.80 84.13 65.05 79.03

Big 94.99 98.75 81.78 97.08 19.21 62.17 66.59 77.87 42.62 77.77 13.66 42.32 79.03 83.85 25.37 80.60 59.76 67.51

Simple 95.58 98.78 71.55 89.27 17.51 54.95 17.89 64.90 24.16 70.37 10.57 34.27 75.57 80.17 17.01 27.34 66.21 63.70

Table A.4 and A.5 present the final (last cycle) ASR results of Experiment 2 over different query sizes. In
this experiment the subtrigger division and parameter progressionmethodswere tested. The results are
categorized into three groups: Global, Subtrigger, and Progressive poisoning methods. The different
triggers were the WaNet and the LIRA trigger and their unique parameters s, k, eps and ss (sub-size)
were varied in this experiment.

Table A.4: Results of experiment 2 showcasing the final ASR of the model with poison rates of 1% and 5% over
a query size of 1000 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR
1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Global
LIRA (eps=0.2) 89.99 99.99 88.81 97.29 88.04 97.82 98.21 99.28 23.56 63.81 39.61 99.42 99.32 99.12 87.90 82.07 99.21 96.78

WaNet (s=0.5, k=8) 89.87 99.99 47.99 66.62 50.66 58.15 62.25 68.24 75.24 93.30 26.95 58.00 98.97 98.97 57.75 71.58 82.60 80.72

Subtrigger
LIRA (eps=0.1, ss=5) 99.94 99.89 80.27 95.17 76.00 94.27 99.38 99.98 31.18 59.10 37.32 98.82 87.29 87.13 71.49 71.60 95.54 99.35

LIRA (eps=0.2, ss=5) 99.70 99.97 80.10 95.56 81.97 96.01 98.43 99.88 26.88 58.78 30.80 97.87 87.37 85.59 72.85 73.42 99.68 65.17

LIRA (eps=0.1, ss=8) 99.30 100.0 78.95 93.47 80.26 97.94 97.72 99.96 22.11 44.27 36.04 98.18 87.76 99.18 71.53 71.54 78.45 99.03

LIRA (eps=0.2, ss=8) 99.99 99.98 81.09 94.86 81.64 97.20 99.18 99.97 22.25 53.08 39.64 89.46 88.40 96.48 71.49 72.27 99.10 99.36

WaNet (s=0.2, k=4, ss=5) 99.98 99.92 82.75 94.83 87.32 96.28 99.52 100.0 26.82 66.42 38.24 97.05 74.07 75.38 85.42 82.98 79.84 79.56

WaNet (s=0.2, k=4, ss=8) 98.60 99.96 78.95 96.61 85.66 96.91 96.48 100.0 34.57 74.01 43.92 98.73 75.25 71.68 84.38 97.46 79.61 67.44

WaNet (s=0.2, k=8, ss=5) 99.83 99.99 81.48 97.16 86.89 94.79 97.94 99.85 33.19 66.74 48.12 98.15 74.72 77.21 74.12 57.60 78.88 80.90
WaNet (s=0.2, k=8, ss=8) 98.48 99.98 83.07 94.66 82.52 95.14 97.67 99.69 24.64 68.33 41.82 98.25 75.36 71.54 96.48 86.50 79.47 79.79

WaNet (s=0.5, k=4, ss=5) 99.66 100.0 83.15 93.62 82.79 95.06 98.00 99.91 30.07 65.35 33.17 99.83 73.61 73.48 89.78 96.73 79.80 81.20

WaNet (s=0.5, k=4, ss=8) 99.97 99.95 86.92 96.96 84.37 94.43 97.30 99.89 24.53 62.13 36.58 99.91 75.07 70.67 95.82 82.12 75.17 80.80

WaNet (s=0.5, k=8, ss=5) 99.72 100.0 74.45 95.75 88.86 95.56 99.45 99.67 28.02 50.72 47.49 91.32 76.10 76.63 98.55 96.99 73.89 80.12

WaNet (s=0.5, k=8, ss=8) 99.85 99.99 81.86 97.68 77.18 95.44 99.43 99.96 34.14 77.07 41.43 99.31 70.62 73.54 81.71 86.00 78.55 74.53

Progressive
LIRA (eps=0.2) 89.99 99.99 88.81 97.29 88.04 97.82 98.21 99.28 23.56 63.81 39.61 99.42 99.32 99.12 87.90 82.07 99.21 96.78
WaNet (s=0.5, k=8) 89.87 99.99 47.99 66.62 50.66 58.15 62.25 68.24 75.24 93.30 26.95 58.00 98.97 98.97 57.75 71.58 82.60 80.72
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Table A.5: Results of experiment 2 showcasing the final ASR of the model with poison rates of 1% and 5% over
a query size of 1500 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR
1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Global
LIRA (eps=0.2) 89.99 99.99 88.81 97.29 88.04 97.82 98.21 99.28 23.56 63.81 39.61 99.42 99.30 99.08 84.88 77.59 99.14 96.00

WaNet (s=0.5, k=8) 89.87 99.99 47.99 66.62 50.66 58.15 62.25 68.24 75.24 93.30 26.95 58.00 74.90 64.55 57.10 72.05 78.48 76.05

Subtrigger
LIRA (eps=0.1, ss=5) 99.94 99.89 80.27 95.17 76.00 94.27 99.38 99.98 31.18 59.10 37.32 98.82 87.30 86.97 71.59 71.47 94.53 99.40

LIRA (eps=0.2, ss=5) 99.70 99.97 80.10 95.56 81.97 96.01 98.43 99.88 26.88 58.78 30.80 97.87 87.43 85.91 72.85 73.42 99.68 56.48

LIRA (eps=0.1, ss=8) 99.30 100.0 78.95 93.47 80.26 97.94 97.72 99.96 22.11 44.27 36.04 98.18 87.96 99.22 71.59 71.36 73.15 98.96

LIRA (eps=0.2, ss=8) 99.99 99.98 81.09 94.86 81.64 97.20 99.18 99.97 22.25 53.08 39.64 89.46 88.49 95.93 71.72 72.36 99.18 99.24

WaNet (s=0.2, k=4, ss=5) 99.98 99.92 82.75 94.83 87.32 96.28 99.52 100.0 26.82 66.42 38.24 97.05 74.83 74.41 87.66 85.63 79.73 79.48

WaNet (s=0.2, k=4, ss=8) 98.60 99.96 78.95 96.61 85.66 96.91 96.48 100.0 34.57 74.01 43.92 98.73 75.96 72.17 86.88 97.44 79.61 64.38

WaNet (s=0.2, k=8, ss=5) 99.83 99.99 81.48 97.16 86.89 94.79 97.94 99.85 33.19 66.74 48.12 98.15 74.85 77.07 74.04 52.07 79.30 80.76
WaNet (s=0.2, k=8, ss=8) 98.48 99.98 83.07 94.66 82.52 95.14 97.67 99.69 24.64 68.33 41.82 98.25 75.04 72.15 97.00 88.72 79.39 79.72

WaNet (s=0.5, k=4, ss=5) 99.66 100.0 83.15 93.62 82.79 95.06 98.00 99.91 30.07 65.35 33.17 99.83 73.68 73.44 87.67 95.91 79.52 80.87

WaNet (s=0.5, k=4, ss=8) 99.97 99.95 86.92 96.96 84.37 94.43 97.30 99.89 24.53 62.13 36.58 99.91 74.65 70.64 94.78 80.79 75.75 81.10

WaNet (s=0.5, k=8, ss=5) 99.72 100.0 74.45 95.75 88.86 95.56 99.45 99.67 28.02 50.72 47.49 91.32 75.57 77.60 98.79 97.49 73.52 79.87

WaNet (s=0.5, k=8, ss=8) 99.85 99.99 81.86 97.68 77.18 95.44 99.43 99.96 34.14 77.07 41.43 99.31 71.19 73.52 81.26 84.56 78.54 74.62

Progressive
LIRA (eps=0.2) 89.99 99.99 88.81 97.29 88.04 97.82 98.21 99.28 23.56 63.81 39.61 99.42 99.30 99.08 84.88 77.59 99.14 96.00
WaNet (s=0.5, k=8) 89.87 99.99 47.99 66.62 50.66 58.15 62.25 68.24 75.24 93.30 26.95 58.00 74.90 64.55 57.10 72.05 78.48 76.05

Table A.6 presents a comprehensive overview of Experiment 3, in which clean-label attacks are tested.
In the table, the results are categorized by trigger type and all the important parameters for the Lira and
WaNet triggers are included.

Table A.6: Results of experiment 3 showcasing the final ASR of the model with poison rates of 2% and 5% over
a query size of 1500 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR Final ASR
2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5%

2% 5%
Global
LIRA (eps=0.2) 63.95 78.61 14.69 21.60 80.62 91.37 1.61 13.95 0.04 0.04 55.64 88.70 100.0 74.96 56.40 59.27 100.0 100.0
WaNet (s=0.5, k=8) 90.70 95.13 29.92 43.72 88.42 92.47 30.75 60.53 19.22 27.41 54.50 90.97 50.80 91.04 49.23 51.83 99.93 100.0
Subtrigger
LIRA (eps=0.1, ss=5) 34.03 65.96 12.63 16.02 80.36 89.36 7.33 21.30 0.37 0.37 62.42 97.82 46.28 48.15 1.57 3.12 66.29 100.0
LIRA (eps=0.2, ss=5) 60.85 55.60 15.65 10.04 80.03 90.81 3.64 17.72 0.05 0.08 58.13 98.27 47.00 47.38 3.16 3.25 100.0 100.0
LIRA (eps=0.1, ss=8) 55.11 75.25 14.09 17.74 69.03 89.68 11.66 26.59 0.19 0.11 59.98 97.91 47.11 46.52 3.16 3.90 87.29 100.0
LIRA (eps=0.2, ss=8) 48.13 59.71 13.06 13.98 76.13 89.59 3.98 11.28 0.17 0.21 54.83 99.12 45.67 49.87 3.18 3.18 100.0 100.0
WaNet (s=0.2, k=4, ss=5) 44.89 69.45 12.40 17.46 84.12 94.12 7.28 28.56 0.07 0.07 72.63 88.83 48.19 48.37 3.44 1.88 100.0 100.0
WaNet (s=0.2, k=4, ss=8) 68.85 58.05 24.32 19.92 81.67 87.95 4.13 14.24 0.46 0.37 58.03 92.58 46.79 47.35 3.18 3.34 100.0 100.0
WaNet (s=0.2, k=8, ss=5) 51.39 56.23 13.76 11.47 86.16 94.59 12.52 18.17 0.32 0.19 65.06 88.74 46.61 48.22 3.68 3.68 100.0 90.82
WaNet (s=0.2, k=8, ss=8) 63.05 67.60 15.31 16.04 80.06 89.73 7.78 25.00 0.34 0.28 34.49 99.55 46.04 46.61 2.65 3.67 100.0 100.0
WaNet (s=0.5, k=4, ss=5) 53.47 67.34 20.31 25.80 76.41 93.58 6.64 16.46 0.13 0.08 77.37 90.04 46.44 47.94 1.02 2.90 100.0 99.50
WaNet (s=0.5, k=4, ss=8) 86.91 55.88 8.63 11.66 82.62 88.64 8.84 22.46 0.26 0.16 48.53 95.27 46.17 49.80 3.62 3.65 100.0 100.0
WaNet (s=0.5, k=8, ss=5) 48.39 71.89 16.76 16.42 86.47 89.42 4.90 35.05 0.06 0.07 56.34 73.32 47.03 49.48 1.90 3.27 100.0 100.0
WaNet (s=0.5, k=8, ss=8) 72.40 65.33 14.44 15.81 82.57 90.19 5.06 24.67 0.05 0.14 66.92 89.74 47.32 46.23 3.72 3.79 97.07 100.0

Table A.7 presents a complete overview of the results of Experiment 4, which focuses on pre and
post-query poisoning in AL. The results are categorized by trigger type and poison rates.
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Table A.7: Results of experiment 4 showcasing the final ASR of the model for the pre-query and post-query
approaches. Results are categorized by trigger methods (Lira and WaNet) and poison rates of 1% and 5% over a

query size of 1500 samples.

MNIST
CNN

GTSRB
CNN

CIFAR10
CNN

Final ASR Final ASR Final ASR

1% 5% 1% 5% 1% 5%

Prequery

LIRA (eps=0.2) 86.78 62.22 53.74 85.61 81.47 79.41

WaNet (s=0.5, k =4) 98.60 99.91 62.81 89.61 50.95 75.10

Postquery

LIRA (eps=0.2) 99.72 99.96 75.43 87.15 87.72 97.29

WaNet (s=0.5, k =4) 99.98 100.0 86.51 96.57 89.30 98.22



B
Tables of CAD Results

Tables B.1, B.2 and B.3 present the results of Experiment 1, evaluating the final (last cycle) clean
accuracy drop (CAD) over different query sizes. The tables summarize the CAD for various models
and datasets at different poison rates. The results are further divided by poison method and trigger
type.

Table B.1: Results of experiment 1 showcasing the final CAD of the model with poison rates of 1% and 5% over
a query size of 500 samples.

MNIST
CNN

GTSRB
CNN

CIFAR10
CNN

MNIST
ResNet

GTSRB
ResNet

CIFAR10
ResNet

MNIST
Inception

GTSRB
Inception

CIFAR10
Inception

Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Poison Method
Random -0.0011 -0.0001 0.0243 0.0268 -0.0025 0.0221 -0.0216 -0.0041 -0.0626 -0.0714 0.0012 0.0032 -0.0245 -0.0252 0.1988 0.1836 0.0044 0.0193

Certainty -0.0008 -0.0002 0.0308 0.0406 0.0039 0.0369 -0.0027 0.1603 -0.0516 -0.0178 0.0138 0.1992 -0.0287 -0.0134 0.1893 0.2051 -0.0082 -0.0003

Uncertainty -0.0008 0.0003 0.0307 0.0313 0.0039 0.0101 -0.0036 -0.0047 -0.0808 -0.0477 -0.0161 0.0145 -0.0254 -0.0051 0.1935 0.2210 0.0012 0.0296

Trigger Type
Specialized -0.0009 -0.0005 0.0152 0.0239 0.0018 0.0154 -0.0097 0.1013 -0.0774 -0.073 -0.0003 0.0755 -0.0256 -0.0162 0.3380 0.3467 0.0026 0.0172

Big -0.0006 0.0008 0.0248 0.0368 -0.0041 0.0262 -0.0086 -0.0055 -0.0581 -0.0716 -0.0051 0.0655 -0.0271 -0.0084 0.0165 0.0129 -0.0041 0.0172

Simple -0.0012 -0.0003 0.0458 0.038 0.0076 0.0276 -0.0096 0.0557 -0.0595 0.0077 0.0043 0.076 -0.0259 -0.0192 0.0108 -0.0021 -0.0012 0.0138

Table B.2: Results of experiment 1 showcasing the final CAD of the model with poison rates of 1% and 5% over
a query size of 1000 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Poison Method
Random 0.0017 0.0009 0.0149 0.0522 -0.014 -0.0029 0.0067 0.0003 -0.1064 -0.0866 -0.0085 -0.0068 0.0064 0.0042 0.109 0.1209 -0.0227 0.0105

Certainty 0.001 0.0016 0.0168 0.0423 0.0007 0.0573 0.0127 0.3271 -0.1246 0.1154 0.0328 0.2643 0.006 0.0128 0.1389 0.1382 -0.0086 -0.0306

Uncertainty 0.0012 0.0013 0.0255 0.0326 -0.0156 -0.0014 0.0007 -0.0011 -0.0689 0.0055 -0.0077 0.0015 0.0049 0.0202 0.1039 0.1156 -0.0156 -0.0013

Trigger Type
Specialized 0.0013 0.0013 0.0165 0.0321 -0.0145 0.0184 0.0157 0.1724 -0.0842 -0.0068 0.0156 0.0932 0.0029 0.0143 0.3297 0.3421 -0.024 -0.0049

Big 0.0016 0.0012 0.0338 0.0327 -0.0103 0.0142 -0.0045 -0.0021 -0.1084 -0.0118 0.0058 0.08 0.0078 0.0092 0.0018 0.0101 -0.0199 -0.0127

Simple 0.001 0.0013 0.0069 0.0623 -0.0041 0.0204 0.009 0.156 -0.1073 0.053 -0.0049 0.0859 0.0066 0.0137 -0.0051 0.0055 -0.003 -0.0038
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Table B.3: Results of experiment 1 showcasing the final CAD of the model with poison rates of 1% and 5% over
a query size of 1500 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Poison Method
Random -0.0002 0.001 0.0450 0.0207 0.0002 0.0189 0.0041 0.0031 0.0851 0.1307 0.0137 0.0208 -0.0032 -0.0003 0.1184 0.0721 0.0211 0.0235

Certainty -0.001 0.0006 0.0363 0.0350 0.0391 0.0899 0.0948 0.1824 0.1449 0.6631 0.1078 0.3199 -0.0015 0.0140 0.0714 0.0872 -0.0044 0.0142

Uncertainty -0.0001 -0.0003 0.0315 0.0428 -0.0104 0.0047 0.0061 0.0027 0.0612 0.0551 0.0071 0.0113 0.0018 0.0158 0.0835 0.0948 0.0084 0.0285
Trigger Type
Specialized -0.0006 -0.0003 0.0383 0.0249 0.0064 0.0295 0.0482 0.0828 0.1049 0.2850 0.0335 0.1157 -0.0013 0.0117 0.2667 0.2534 -0.0004 0.0265

Big -0.0001 0.0011 0.0336 0.0353 0.0160 0.0428 0.0045 -0.0001 0.0908 0.2487 0.0624 0.1140 0.0020 0.0112 -0.0019 0.0035 0.0140 0.0040

Simple -0.0006 0.0005 0.0409 0.0383 0.0065 0.0412 0.0523 0.1056 0.0955 0.3153 0.0327 0.1222 -0.0036 0.0067 0.0083 -0.0029 0.0115 0.0357

Table B.4 and B.5 present the final (last cycle) CAD results of Experiment 2 over different query sizes.
In this experiment the subtrigger division and parameter progression methods were tested. The results
are categorized into three groups: Global, Subtrigger, and Progressive poisoning methods.

Table B.4: Results of experiment 2 showcasing the final CAD of the model with poison rates of 1% and 5% over
a query size of 1000 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Global
LIRA (eps=0.2) -0.001 -0.0001 0.0203 0.0486 -0.0153 -0.0092 0.0005 -0.0009 0.0172 0.0321 -0.0131 0.0043 0.0058 0.0061 0.006 -0.0053 0.017 0.009

WaNet (s=0.5, k=8) -0.0009 0.0 0.0047 0.0052 -0.0134 -0.0108 -0.0001 -0.0005 -0.0254 0.0071 -0.0002 -0.0007 0.0058 0.0152 0.0008 -0.0007 -0.0231 0.0072

Subtrigger
LIRA (eps=0.1, ss=5) -0.0014 0.0011 0.0295 0.0112 -0.0112 -0.0172 0.0007 -0.0003 -0.0061 0.0135 -0.0827 -0.0905 0.0024 0.0073 0.0155 0.0278 0.037 0.0389

LIRA (eps=0.2, ss=5) -0.0015 -0.0003 0.035 0.01 -0.0079 -0.0065 -0.0003 -0.0009 0.0563 0.0389 -0.0916 -0.09 0.0009 -0.0018 0.0188 0.0055 0.0126 0.0207

LIRA (eps=0.1, ss=8) -0.0019 0.0015 0.0423 0.0375 -0.0099 -0.0166 -0.0013 -0.0007 0.0182 0.0089 -0.1364 -0.0816 0.0068 0.0027 0.0238 0.0285 0.0263 0.0246

LIRA (eps=0.2, ss=8) -0.0002 0.0003 0.0092 0.042 0.0006 -0.0017 -0.0014 -0.0001 -0.0299 0.0228 -0.097 -0.0789 0.0053 0.0147 0.0158 -0.0031 0.0027 0.0219

WaNet (s=0.2, k=4, ss=5) -0.0008 -0.0022 0.0404 0.0369 -0.0145 -0.0017 -0.0021 -0.0006 -0.0363 0.0185 -0.0102 -0.024 0.0023 0.0026 -0.0023 -0.0081 0.0253 -0.0002

WaNet (s=0.2, k=4, ss=8) 0.0003 -0.0009 0.0234 0.0421 -0.014 0.0018 -0.0013 -0.0006 -0.0248 0.0518 0.01 0.0019 0.0054 0.0032 -0.0025 0.0064 0.0217 0.0113

WaNet (s=0.2, k=8, ss=5) -0.0017 -0.0002 -0.0112 0.0019 -0.0175 -0.001 -0.0002 0.0001 0.0151 0.0027 -0.0081 -0.0097 0.0042 0.0072 0.0372 -0.009 -0.0084 -0.0109

WaNet (s=0.2, k=8, ss=8) -0.0019 -0.0006 0.0053 0.0347 -0.0128 -0.005 0.0003 -0.001 -0.0209 0.039 -0.0117 -0.0108 0.0018 0.0088 -0.0073 -0.0013 -0.0103 -0.0322

WaNet (s=0.5, k=4, ss=5) -0.0004 -0.001 -0.0178 0.0259 -0.0271 -0.0052 0.0001 -0.001 0.0363 -0.005 -0.0055 -0.0135 0.002 0.0039 -0.0067 0.0028 0.0105 0.0157

WaNet (s=0.5, k=4, ss=8) -0.0002 -0.0008 0.0056 0.0291 -0.0321 -0.0072 -0.0017 0.0007 -0.0139 -0.0364 -0.0106 -0.0199 0.0032 0.0056 0.0028 -0.0014 -0.0261 0.0231

WaNet (s=0.5, k=8, ss=5) -0.0007 0.0008 -0.0072 0.058 -0.0185 -0.0027 -0.001 0.0007 -0.0221 -0.0266 -0.0118 -0.014 0.0017 0.0122 0.0003 0.0066 -0.0248 -0.0012

WaNet (s=0.5, k=8, ss=8) -0.0012 0.0004 0.0277 0.0214 -0.0079 0.0013 -0.0008 -0.0009 0.045 0.002 0.0075 -0.0049 0.0047 0.0159 0.0378 0.0122 -0.0115 -0.0152

Progressive
LIRA (eps=0.2) -0.001 -0.0001 0.0203 0.0486 -0.0153 -0.0092 0.0005 -0.0009 0.0172 0.0321 -0.0131 0.0043 0.0058 0.0061 0.006 -0.0053 0.017 0.009

WaNet (s=0.5, k=8) -0.0009 0.0 0.0047 0.0052 -0.0134 -0.0108 -0.0001 -0.0005 -0.0254 0.0071 -0.0002 -0.0007 0.0058 0.0152 0.0008 -0.0007 -0.0231 0.0072

Table B.5: Results of experiment 2 showcasing the final CAD of the model with poison rates of 1% and 5% over
a query size of 1500 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Global
LIRA (eps=0.2) -0.0011 -0.0006 0.0347 0.0303 0.0065 0.0157 -0.0008 -0.0006 0.0505 0.0421 0.0081 0.0172 0.0016 -0.0028 -0.0015 -0.0038 0.0065 0.0157

WaNet (s=0.5, k=8) -0.0004 -0.0002 0.0261 0.0013 -0.0009 0.0076 0.0004 0.001 0.0339 0.0348 0.0213 0.0281 -0.0006 0.0135 0.0105 -0.0132 -0.0009 0.0076

Subtrigger
LIRA (eps=0.1, ss=5) -0.0005 0.0007 0.0423 0.0506 0.0035 0.0081 -0.0 -0.0 0.0502 0.0847 -0.0312 -0.0474 -0.0062 -0.002 0.0145 0.0141 -0.0395 0.0248

LIRA (eps=0.2, ss=5) -0.001 -0.0001 0.0293 0.0253 0.0014 0.0181 -0.0004 -0.0007 0.0962 0.0676 -0.036 -0.0529 0.0024 0.0024 -0.0045 -0.0088 0.0062 0.0177

LIRA (eps=0.1, ss=8) -0.0022 -0.0003 0.0318 0.0342 0.0041 0.0159 0.0002 0.0006 0.0484 0.0721 -0.0522 -0.0246 -0.0072 -0.004 -0.013 -0.0029 0.0367 0.006

LIRA (eps=0.2, ss=8) -0.0004 -0.0004 0.0234 0.0452 0.0123 0.0298 0.0006 -0.0004 0.0444 0.1167 -0.0493 -0.0113 -0.0014 0.0037 0.0019 0.0307 -0.0183 0.0141

WaNet (s=0.2, k=4, ss=5) -0.0001 -0.0005 0.0267 0.0249 0.0211 0.0278 0.0003 0.0013 0.0547 0.082 0.0128 0.016 -0.002 -0.0028 0.0324 -0.0136 -0.0197 -0.0195
WaNet (s=0.2, k=4, ss=8) -0.0004 -0.0002 0.0357 0.0322 0.0003 0.0132 -0.0005 -0.002 0.0211 0.0332 -0.0019 0.0105 -0.0071 -0.0061 -0.0155 0.0056 -0.0193 0.0046

WaNet (s=0.2, k=8, ss=5) -0.0005 0.001 0.0106 0.0338 0.0013 0.0195 0.0004 -0.0011 0.0338 0.0439 0.0167 0.0078 -0.0002 -0.0028 -0.017 -0.0034 -0.0034 0.0428

WaNet (s=0.2, k=8, ss=8) -0.0008 0.0009 0.0515 0.0257 0.0055 0.0031 -0.0009 -0.0006 0.0563 0.0394 0.0059 0.015 -0.0003 0.0048 -0.0234 -0.0204 -0.0067 0.0029

WaNet (s=0.5, k=4, ss=5) -0.0015 -0.0005 0.0123 0.0469 -0.0057 0.0141 -0.0005 0.0035 0.0387 0.0342 0.0161 0.0126 -0.007 -0.0037 -0.0145 -0.0143 -0.0483 0.0291

WaNet (s=0.5, k=4, ss=8) -0.0003 -0.0006 0.0054 0.0115 -0.0059 0.0118 -0.0005 0.0006 0.0278 0.0815 0.0122 0.0144 -0.004 -0.0052 -0.0196 -0.0203 0.0116 -0.0152

WaNet (s=0.5, k=8, ss=5) 0.0007 -0.0002 0.0183 0.0303 0.0164 0.0174 -0.0001 0.0006 0.0317 0.0532 0.0052 -0.0053 -0.0004 -0.0029 -0.0094 0.0189 -0.0202 0.0056

WaNet (s=0.5, k=8, ss=8) -0.0017 -0.0015 0.0163 0.0224 -0.005 0.0197 -0.0008 0.0002 0.0412 0.0272 0.0202 0.0147 0.0019 -0.0031 0.0543 0.0031 0.004 0.0109
Progressive
LIRA (eps=0.2) -0.0011 -0.0006 0.0347 0.0303 0.0065 0.0157 -0.0008 -0.0006 0.0505 0.0421 0.0081 0.0172 0.0016 -0.0028 -0.0015 -0.0038 0.0249 0.0077

WaNet (s=0.5, k=8) -0.0004 -0.0002 0.0261 0.0013 -0.0009 0.0076 0.0004 0.001 0.0339 0.0348 0.0213 0.0281 -0.0006 0.0135 0.0105 -0.0132 -0.0006 0.0135

Table B.6 presents a comprehensive overview of Experiment 3, in which clean-label attacks are tested.
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In the table, the results are categorized by trigger type and all the important parameters for the Lira and
WaNet triggers are included.

Table B.6: Results of experiment 3 showcasing the final CAD of the model with poison rates of 2% and 5% over
a query size of 1500 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN MNIST ResNet GTSRB ResNet CIFAR10 ResNet MNIST Inception GTSRB Inception CIFAR10 Inception
Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD Final CAD

2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5%

Global
LIRA (eps=0.2) 0.0059 0.0085 -0.023 -0.0531 -0.018 -0.0162 0.0006 0.0030 -0.0175 -0.0175 -0.0057 0.0221 -0.0066 0.0024 -0.0015 -0.0038 -0.018 -0.0162

WaNet (s=0.5, k=8) 0.0008 0.0107 -0.031 -0.0299 -0.0177 -0.0178 0.0055 0.0154 0.0220 0.0160 0.0053 0.0154 0.0030 -0.0059 0.0336 0.0336 -0.0177 -0.0178

Subtrigger
LIRA (eps=0.1, ss=5) 0.0027 0.0103 -0.0385 -0.0276 -0.018 -0.0061 0.0006 0.0128 -0.0183 -0.0224 0.0090 0.0114 -0.0011 -0.0045 0.1058 0.0168 -0.018 -0.0061
LIRA (eps=0.2, ss=5) 0.0041 0.0104 -0.0264 -0.0377 -0.0048 -0.0066 0.0157 0.0140 0.0200 0.0275 0.0028 0.0125 -0.0001 0.0047 0.0284 0.0128 -0.0048 -0.0066

LIRA (eps=0.1, ss=8) 0.0035 0.0096 -0.0316 0.0020 -0.016 -0.0108 0.0053 0.0048 -0.0073 0.0014 -0.0014 0.0195 -0.0026 -0.0007 -0.013 -0.0029 -0.016 -0.0108

LIRA (eps=0.2, ss=8) 0.0027 0.0067 -0.0083 0.0048 -0.0242 -0.0056 -0.0011 0.0028 -0.0124 -0.0325 -0.0022 0.0036 -0.0062 -0.0032 0.0330 0.0453 -0.0242 -0.0056

WaNet (s=0.2, k=4, ss=5) 0.0030 0.0105 -0.0356 -0.0537 -0.0070 0.0047 -0.0071 0.0140 -0.0107 0.0064 0.0107 0.0207 -0.0051 -0.0054 0.0050 0.0355 -0.0070 0.0047

WaNet (s=0.2, k=4, ss=8) 0.0040 0.0081 -0.0162 -0.0176 -0.0169 -0.0048 -0.0017 -0.0062 0.0183 0.0078 0.0042 0.0125 -0.0003 0.0010 -0.0237 0.0119 -0.0169 -0.0048

WaNet (s=0.2, k=8, ss=5) 0.0015 0.0099 -0.0145 -0.0236 -0.0214 -0.014 -0.0062 0.0128 0.0161 0.0395 -0.0187 0.0291 -0.0047 -0.0001 -0.036 0.0045 -0.0214 -0.014

WaNet (s=0.2, k=8, ss=8) 0.0035 0.0132 -0.0366 -0.0051 -0.0145 0.0059 0.0068 0.0094 0.0019 -0.0033 0.0163 0.0069 -0.0002 0.0084 0.0451 0.0354 0.0332 0.0344
WaNet (s=0.5, k=4, ss=5) 0.0030 0.0102 -0.0583 -0.0418 -0.017 -0.0021 0.0074 0.0086 -0.0103 -0.0158 0.0176 0.0088 -0.0038 0.0016 -0.0165 -0.0111 -0.0170 -0.0021

WaNet (s=0.5, k=4, ss=8) -0.0011 0.0104 -0.0454 -0.0284 -0.0208 -0.0015 -0.0012 0.0016 0.0042 0.0143 -0.0041 -0.0049 -0.0022 -0.0047 -0.0055 -0.0235 -0.0208 -0.0015

WaNet (s=0.5, k=8, ss=5) 0.0024 0.0103 -0.0096 -0.0389 -0.0077 -0.0062 0.0056 0.0135 -0.0139 -0.0185 -0.0122 0.0257 -0.0011 -0.0036 0.0111 -0.0217 -0.0077 -0.0062

WaNet (s=0.5, k=8, ss=8) 0.0026 0.0075 -0.0334 -0.0146 -0.0026 -0.001 -0.0028 0.0035 0.0285 0.0014 -0.0052 -0.0085 -0.0005 -0.0021 0.0121 0.0121 0.0047 0.0041

Table B.7 presents a complete overview of the results of Experiment 4, which focuses on pre and
post-query poisoning in AL. The results are categorized by trigger type and poison rates.

Table B.7: Results of experiment 4 showcasing the final CAD of the model for the pre-query and post-query
approaches. Results are categorized by trigger methods (LIRA and WaNet) and poison rates of 1% and 5% over

a query size of 1500 samples.

MNIST CNN GTSRB CNN CIFAR10 CNN

Final CAD Final CAD Final CAD

1% 5% 1% 5% 1% 5%

Prequery

LIRA (eps=0.2) 0.0158 0.0256 0.2075 0.3203 0.0448 0.0585
WaNet (s=0.5, k=4) 0.0129 0.0125 0.1645 0.2218 0.0274 0.0837

Postquery

LIRA (eps=0.2) 0.0066 0.0087 0.1110 0.1353 -0.0053 0.0092
WaNet (s=0.5, k=4) 0.0052 0.0074 0.0995 0.0922 0.0011 0.0146
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