
Delft Center for Systems and Control

Deep Learning Based Image Seg-
mentation of RGB-D Data in
Warehouse Automation

Isa El Doori

M
as

te
ro

fS
cie

nc
e

Th
es

is

Deep Learning Based Image
Segmentation of RGB-D Data in

Warehouse Automation

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Isa El Doori

June 20, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

The ability to locate specific objects within images is an essential step in various computer
vision based engineering applications. Image segmentation is the task of dividing an image
into “segments” that are uniform as well as homogeneous with respect to some characteristics,
for example grey tone or texture as in Haralick et al.

This thesis seeks to perform image segmentation using a Deep Learning (DL) approach in the
area of warehouse automation, specifically focusing on an order picking use case of Vander-
lande Industries (VI). Generally in literature, DL algorithms for image segmentation are split
into two main classes: algorithms for RGB images and algorithms for RGB-D images. RGB
stands for the Red, Green, and Blue values of a pixel. RGB-D stands for the Red, Green,
Blue, and Depth values of a pixel. The depth value in this case differs from the RGB values
in that it does not give a value for a colour intensity, but rather it gives a value for physical
distance between the camera and the object it is capturing.

The challenge addressed by this thesis focuses on whether the introduction of depth data
results in a substantially better performance than using RGB-only images, based on a data-
set provided by VI. Also, this thesis looks into the maximum allowed deviation along the
X-axis in the registration of the depth data to the RGB images.

Two networks from literature were investigated and implemented in MATLAB for this pur-
pose: the SegNet architecture proposed by Badrinarayanan et al. and the FuseNet archi-
tecture proposed by Hazirbas et al. Through experiments we have found that, for this use
case, the introduction of complementary depth data leads to an improvement over the use of
RGB-only images. We also find that, for this use case, the maximum allowed deviation along
the X-axis in the registration of the depth data to the RGB images is approximately equal to
1.67 millimetres.

The results in this thesis seem to indicate that investing in acquiring an additional depth
band does have a positive effect on the accuracy of image segmentation for order picking in
warehouse automation.

Master of Science Thesis Isa El Doori

ii

Isa El Doori Master of Science Thesis

Table of Contents

Preface xi

Acknowledgements xiii

1 Introduction 1
1-1 Order picking process . 1
1-2 Image segmentation . 2
1-3 Problem statement . 3
1-4 Outline . 4

2 Background 5
2-1 What is image segmentation? . 5

2-1-1 Semantic image segmentation . 6
2-2 What is Deep Learning? . 6
2-3 Implemented algorithms . 11

2-3-1 The VGG-16 network . 12
2-3-2 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image

Segmentation [1] . 12
2-3-3 FuseNet: Incorporating Depth into Semantic Segmentation via a Fusion-

based CNN Architecture [2] . 16
2-3-4 Discussion . 18

3 Implementation 19
3-1 Camera setup . 19
3-2 Vanderlande Industries (VI) RGB-D data . 22

3-2-1 Pre-processing the depth information . 22
3-2-2 Pre-processing the RGB images and the labels 23
3-2-3 General structure of the data . 24

3-3 SegNet RGB-D implementation in MATLAB . 27
3-4 FuseNet implementation in MATLAB . 28

Master of Science Thesis Isa El Doori

iv Table of Contents

4 Experiments 31
4-1 Experiments of registered RGB-D data . 31
4-2 Experiments of unregistered RGB-D data . 32

5 Results and Discussion 35
5-1 Evaluation metrics . 35
5-2 Results of the experiments of registered RGB-D data 37
5-3 Results of the experiments of unregistered RGB-D data 39

6 Conclusions and Recommendations 55
6-1 Conclusions . 55
6-2 Recommendations for Future Work . 57

A Code to pre-process the data 59
A-1 Pre-process depth information . 59
A-2 Resize and crop all of the data . 60
A-3 Generate RGB-D data format . 61

B Code of the proposed networks 63
B-1 SegNet RGB-D MATLAB implementation . 63
B-2 FuseNet MATLAB implementation . 65

Bibliography 71

Isa El Doori Master of Science Thesis

List of Figures

1-1 Example of different types of computer vision tasks. From left to right this image
shows the different computer vision problems, i.e. Classification, Classification and
Localization, Object Detection, and Instance Segmentation. The first two tasks
can mostly be applied to single object problems, the second two tasks can mostly
be applied to multiple objects. Source: van Loon et al. [3]. 3

2-1 Where Deep Learning fits in the spectrum of Artificial Intelligence. According to
Patterson et al. [4], Deep Learning is a subset of the field of Machine Learning,
which is a subset of the field of Artificial Intelligence. This image gives us an idea
on how broad the field of Artificial Intelligence actually is. Source: Patterson et
al. [4]. 6

2-2 Unsupervised Learning algorithm. From the image we can see that raw data is sent
to be interpreted first before being sent to the algorithm. The interpretation in
this case will try to find relevant information or patterns. After some processing,
the unsupervised learning algorithm will product its output. Source: Smolyansky
et al. [5]. 7

2-3 Supervised Learning algorithm. From the image we can see that raw data is sent to
the algorithm. After the algorithm is done with it, a “supervisor” will compare the
output generated from the algorithm to the desired output. After some processing,
the supervised learning algorithm will produce its output. Source: Smolyansky et
al. [5]. 8

2-4 Reinforcement Learning algorithm. From the image we can see that raw data is
being sent to a feedback loop containing an agent and an environment. The agent
selects a certain algorithm that yields in the calculation of the best action that
could be taken. The action will be compared to the environment, which yields a
certain reward and a certain state that the system is in after applying the action.
Whenever the reward, and thus the state, are not desired, the agent chooses a
different approach. After the desired state has been reached, the reinforcement
learning algorithm produces its output. Source: Smolyansky et al. [5]. 8

Master of Science Thesis Isa El Doori

vi List of Figures

2-5 A Feedforward NN with a single hidden layer. x1, x2, and xp denote the inputs
given to the network. The connections from the input layer neurons to the hidden
layers neurons, v1 to vm all have certain weights, wh

11, to wh
pm. Also, the connec-

tions from the hidden layer neurons to the output layer neurons y1 to yn all have
certain weights wo

11 to wo
mn. The goal of the NN is to find the optimal weights

where the error between the output y1 to yn and the desired output yd
1 to yd

n is
minimal. Source: Babuska et al. [6] . 10

2-6 A multi-layer ANN and a single-layer recurrent ANN. The multi-layer ANN has
the same structure as a Feedforward NN, only with multiple hidden layers. The
recurrent ANN also has the same structure, with the main difference of it having a
feedback loop incorporated after each layer. This means that the output weights
of the neurons are also taken into account. The main objective remains the same
for both types, to find the optimal weights. Source: Babuska et al. [6] 11

2-7 The VGG 16-layer network proposed by Simonyan et al. [7]. The network consists
of six blocks of layers. The network begins with an input layer. The first two
blocks consist of two convolutional layers followed by a max pooling operation.
The third, fourth, and fifth blocks consist of three convolutional layers followed by
a max pooling operation. Each convolutional layer is followed by a ReLU operation.
The final block consists of three fully connected layers, which are followed by a
softmax operation yielding the output of the network. Source [8] 13

2-8 An illustration of the SegNet decoder. The labels “a”, “b”, “c”, and “d” correspond
to values in a feature map. SegNet uses the max pooling indices to upsample
(without learning) the feature map(s) and convolves them with a trainable decoder
filter bank [1]. 14

2-9 The SegNet architecture. There are no fully connected layers and hence it is only
convolutional. A decoder upsamples its input using the transferred pool indices
from its encoder to produce a sparse feature map(s). It then performs convolution
with a trainable filter bank to densify the feature map. The final decoder output
feature maps are fed to a soft-max classifier for pixel-wise classification [1]. . . . 15

2-10 Illustration of different fusion strategies at the second and third convolution blocks
of VGG 16-layer net. (a) The fusion layer is only inserted before each pooling layer.
(b) The fusion layer is inserted after each CBR block. [2]. 16

2-11 The FuseNet architecture proposed by Hazirbas et al. [2]. Colors indicate the layer
type. The network contains two branches to extract features from RGB and depth
images, and the feature maps from depth are constantly fused into the RGB branch,
denoted with the red arrows. In this architecture, the fusion layer is implemented
as an element-wise summation, demonstrated in the dashed box [2]. 17

3-1 The camera setup used to capture the data. 1: the dual camera setup, the blue
camera being the Ensenso camera for depth images, the black camera being the
iDS camera for RGB images. 2: the box with the products inside. 20

3-2 An RGB image captured by the iDS camera. We can see the box with products
inside. This is a raw image that has not been pre-processed. 21

3-3 A point cloud captured by the Ensenso stereo camera. The dots represent the
points captured by the camera. The intensity of the colour tells us more about
the physical distance between the camera and the objects. The darker the colour
intensity, the closer the object is to the Ensenso stereo camera. 21

3-4 The spatial Z-coordinates of a point cloud captured by the Ensenso stereo camera.
This is a gray scale image, the darker the pixel, the closer it is to the camera.
However, we can see certain dark spots within the image in locations where we do
not expect them. These locations are filled with Not a Number (NaN) values. . . 23

Isa El Doori Master of Science Thesis

List of Figures vii

3-5 After pre-processing: the spatial Z-coordinates of a point cloud captured by the
Ensenso stereo camera. This is a gray scale image, the darker the pixel, the closer
it is to the camera. This image has been resized to a resolution of 480× 360 and
has been further cropped to only consider the center of the box. 24

3-6 After pre-processing: an RGB image captured by the iDS camera. This image has
been resized to a resolution of 480 × 360 and has been further cropped to only
consider the center of the box. 25

3-7 After pre-processing: visual representation of a label image. This image has been
resized to a resolution of 480× 360 and has been further cropped to only consider
the center of the box. 25

3-8 A label image overlayed on an RGB image. The colours represent the class. Green
stands for the “complex object or undefined” class, light blue stands for the “sphere,
cylindrical, or flask” class, dark blue stands for the “cuboid or planar” class, and
yellow stands for the “environment” class. 27

3-9 The Bayesian SegNet architecture [9]. This figure shows the entire network archi-
tecture. The network encoder is based on the VGG-16 layer network proposed by
Simonyan et al. [7], with the decoder placing them in reverse order. The probabilis-
tic output is obtained from Monte Carlo samples of the model with dropout at test
time. Kendall et al. [9] take the variance of these softmax samples as the model
uncertainty for each class. This thesis will not concentrate on the probabilistic
output of this model, we are only interested in the network architecture. 29

4-1 A grey-scale image of an RGB image captured by the iDS RGB camera after pre-
processing. This will create a “fake” depth channel to feed to the network. . . . 32

4-2 Visual representation of a depth image that has been shifted by 40% along the
X-axis, using MATLAB, without replacing the zero-positions. 33

4-3 Visual representation of a depth image that has been shifted by 40% along the X-
axis, using MATLAB, with the zero-positions replaced by the mean of the maximum
values of the depth image. 34

5-1 The Intersect over Union (IoU) metric can be described as the area of overlap
between the true label and the predicted label divided by the total area of union
of the two labels. Source: [10] . 36

5-2 SegNet trained on RGB-only data. We can see that the network does not perform
as desired and under-segmentation occurs heavily. 40

5-3 SegNet network trained on RGB-D data. We can see that the network does not
perform as desired and under-segmentation occurs heavily. We can also see that
the under-segmentation that occurs in this case is less severe than the RBD-only
case. However, we can also see a little over-segmentation occurring in the bottom
right corner. 41

5-4 FuseNet network trained on RGB-only data. We can see that the network performs
almost as desired, with less under-segmentation occurring when comparing it to
the SegNet RGB-only, and SegNet RGB-D networks. Also, we can see that there
is no over-segmentation as in the case of the SegNet RGB-D network. 42

5-5 FuseNet network trained on RGB-D data. We can see that the network per-
forms almost as desired, with less under-segmentation occurring when comparing
it to the SegNet RGB-only, SegNet RGB-D. Under-segmentation is further reduced
compared to the FuseNet RGB-only networks. Also, we can see that there is no
over-segmentation as in the case of the SegNet RGB-D network. 43

5-6 SegNet network trained on RGB-only data. We can see that the network does not
perform as desired and under-segmentation occurs heavily. 44

Master of Science Thesis Isa El Doori

viii List of Figures

5-7 SegNet network trained on RGB-D data. We can see that the network does not
perform as desired and under-segmentation occurs heavily. We can also see that
the under-segmentation that occurs in this case is less severe than the RGB-only
case. 45

5-8 FuseNet network trained on RGB-only data. We can see that the network performs
almost as desired, with less under-segmentation occurring when comparing it to
the SegNet RGB-only, and SegNet RGB-D networks. 46

5-9 FuseNet network trained on RGB-D data. We can see that the network performs
almost as desired, with less under-segmentation occurring when comparing it to
the SegNet RGB-only, SegNet RGB-D, and the FuseNet RGB-only networks. . . 47

5-10 FuseNet network trained on RGB-only data. We can see that the network performs
almost as desired. However, over-segmentation does occur in some areas. 48

5-11 FuseNet network trained on RGB-D data. We can see that the network performs
almost as desired, with less under-segmentation occurring when comparing it to
the and the FuseNet RGB-only network. Also, we can see that there is no over-
segmentation as in the case of the FuseNet RGB-only network. 49

5-12 Visual representation of the global accuracy’s of the different shifts of the depth
data along the X-axis. These shifts occur from 0% to 100% shift along the X-axis
with a step-size of 10%. We can see that only a shift of 0% along the X-axis
performs better that using RGB-only data. Also, the results fluctuate in a manner
that it may seem that a bigger shift can result in a better performance. However,
we can also see from the curve fit that there is a downward trend in the performance. 51

5-13 Visual representation of the mean class accuracy’s of the different shifts of the
depth data along the X-axis. These shifts occur from 0% to 100% shift along the
X-axis with a step-size of 10%. We can see that only a shift of 0% along the X-axis
performs better that using RGB-only data. Also, the results fluctuate in a manner
that it may seem that a bigger shift can result in a better performance. However,
we can also see from the curve fit that there is a downward trend in the performance. 51

5-14 Visual representation of the mean Intersect over Union (mIoU) values of the differ-
ent shifts of the depth data along the X-axis. These shifts occur from 0% to 100%
shift along the X-axis with a step-size of 10%. We can see that only a shift of
0% along the X-axis performs better than using RGB-only data. Also, the results
fluctuate in a manner that it may seem that a bigger shift can result in a better
performance. However, we can also see from the curve fit that there is a downward
trend in the performance. 52

5-15 Visual representation of the global accuracy’s of the different shifts of the depth
data along the X-axis. These shifts occur from 0% to 10% shift along the X-axis.
We can see that shifts of 0% and 0.5% perform better than using RGB-only data. 52

5-16 Visual representation of the mean class accuracy’s of the different shifts of the
depth data along the X-axis. These shifts occur from 0% to 10% shift along the
X-axis. We can see that shifts of 0%, 0.5%, and 1% perform better than using
RGB-only data. 53

5-17 Visual representation of the mean Intersect over Union (mIoU) values of the dif-
ferent shifts of the depth data along the X-axis. These shifts occur from 0% to
10% shift along the X-axis. We can see that shifts of 0% and 0.5% perform better
than using RGB-only data. We can also see that a shift of 1% performs just as
well as using RGB-only data. 53

Isa El Doori Master of Science Thesis

List of Tables

2-1 The results of the proposed networks in terms of global accuracy, mean class
accuracy and the Intersect over Union (IoU) value. We can see that the FuseNet
architecture proposed by Hazerbas et al. [2] performs better in all three evaluation
metrics. An increase of 3.64% is observed in the global accuracy metric, an increase
of 3.54% is observed in the mean class accuracy metric, and an increase of 5.45%
is observed in the IoU metric. 18

5-1 The results of four different experiments in terms of global accuracy, mean class
accuracy and the intersect over union value. We can see that the FuseNet archi-
tecture trained on RGB-D data performs best in all three evaluation metrics. We
can also see that, in both RGB-only and RGB-D cases, the FuseNet architecture
performs better than the SegNet architecture in all three evaluation metrics. This
strengthens the notion that a late fusion method performs better than an early
fusion method. Finally, we can see that using RGB-D data in both the SegNet and
FuseNet architectures, the performance increases in all three evaluation metrics. . 37

5-2 The results of the FuseNet RGB-D network trained on the different shifts of the
depth data along the X-axis. The shifts occur from 0% to 100% shift with a step-
size of 10%. The results are evaluated in terms of global accuracy, mean class
accuracy and the intersect over union value. This table shows that only a 0%
shift along the X-axis performs better than using RGB-only data in the subsequent
evaluation metrics. This seems to indicate that the maximum shift we are looking
for lies between 0% and 10%. 39

5-3 The results of the FuseNet RGB-D network trained on the different shifts of the
depth data along the X-axis. The shifts occur from 0% to 10% shift by means
of systematically reducing the shift along the X-axis. This thesis has chosen to
evaluate the shifts 0%, 0.5%, 1%, 2%, 5%, and 10%. The results are evaluated in
terms of global accuracy, mean class accuracy and the intersect over union value.
We can see that a shift of 0% along the X-axis performs best in all three evaluation
metrics. However, a shift of 0.5% performs better than using RGB-only data in all
three evaluation metrics. 50

Master of Science Thesis Isa El Doori

x List of Tables

6-1 The results of four different experiments in terms of global accuracy, mean class
accuracy and the intersect over union value. We can see that the FuseNet archi-
tecture trained on RGB-D data performs best in all three evaluation metrics. We
can also see that, in both RGB-only and RGB-D cases, the FuseNet architecture
performs better than the SegNet architecture in all three evaluation metrics. This
strengthens the notion that a late fusion method performs better than an early
fusion method. Finally, we can see that using RGB-D data in both the SegNet and
FuseNet architectures, the performance increases in all three evaluation metrics. . 56

6-2 The results of the FuseNet RGB-D network trained on the different shifts of the
depth data along the X-axis. The shifts occur from 0% to 10% shift by means of
a random tree search. This thesis has chosen to evaluate the shifts 0%, 0.5%, 1%,
2%, 5%, and 10%. The results are evaluated in terms of global accuracy, mean
class accuracy and the intersect over union value. We can see that a shift of 0%
along the X-axis performs best in all three evaluation metrics. However, a shift of
0.5% performs better than using RGB-only data in all three evaluation metrics. . 57

Isa El Doori Master of Science Thesis

Preface

This thesis project came to be after speaking to both Vanderlande Industries and the Delft
University of Technology. A Machine Learning topic is not a topic often pursued by students
from DCSC. However, my will to carry out a project within the field of Artificial Intelligence,
and with the help from Vanderlande Industries, have made this project possible.

Master of Science Thesis Isa El Doori

xii Preface

Isa El Doori Master of Science Thesis

Acknowledgements

I would like to thank my supervisor dr. ing. Raf Van de Plas for all of his assistance during
the entirety of this thesis project. Also, many thanks to all the people from Vanderlande
Industries for giving me the opportunity to work on a project that entails state-of-the-art
research and development within the industry. Special thanks to Mariana Goldak, Caglar
Saneras, and Martin Plantinga from Vanderlande Industries, who have supervised me on a
daily basis. I would also like to thank the many students from Vanderlande Industries and
the university which whom I have had many discussions on how to successfully conduct this
thesis project.

Delft, University of Technology Isa El Doori
June 20, 2019

Master of Science Thesis Isa El Doori

xiv Acknowledgements

Isa El Doori Master of Science Thesis

“A computer would deserve to be called intelligent if it could deceive a human
into believing that it was human.”
— Alan Turing

Chapter 1

Introduction

Warehouse automation has become one of the major focus points of automation companies,
such as Vanderlande Industries (VI). The rise of e-commerce models has sparked an uprise
in warehouse automation. The demand from consumers for products and fast delivery times
are at an all time high. According to an article from the Dutch Central Bureau of Statistics
(CBS), the online share of Dutch consumers has risen from 30% in 2007 to 79% in 2017 [11].
The same article also states that products not arriving on time is the most common problem
consumers face, with 24% of Dutch online consumers claiming they experienced a late delivery
of their ordered products. This has sparked a need of automatisation in warehouse processes.
These processes consist of every step from the moment an order arrives at a warehouse to
the actual shipping of the order to the consumer. In recent years, the use of cameras has
been significantly incorporated in warehouse automation processes. This thesis will address
one specific application of computer vision to the order picking process of the warehouse
automation process.

1-1 Order picking process

Whenever an order comes in at a warehouse, different processes are triggered. Depending on
how the warehouse has structured its products, the order will be processed and shipped to
the consumer. When considering a small warehouse containing only three products, products
A, B, and C, one can see how the processes unfold. Consider all of the products are placed
in three different trays, where each tray is filled with the same type of product and an order
comes in for products A and C. A human controller is available to physically grab one item
from tray A and one item from tray C and places them in a box ready for shipment. One
of the methods to automate this process is called order picking, where a robot recognises the
order, knows the products and their location within a tray, and picks-and-places the items
in a box ready for shipment. The main focus of this thesis is the recognition of the product
shapes and their locations within a tray by solving the image segmentation task using a Deep
Learning (DL) approach. In the next section, we will briefly discuss what image segmentation
and DL are.

Master of Science Thesis Isa El Doori

2 Introduction

1-2 Image segmentation

For various kinds of applications, it would be useful to know the location of specific objects
within images. Also, the type of object, and the primitive shape of the object can be important
information for these applications. As discussed in the previous section, an example of such
an application would be order picking at a warehouse, where one would like to know what
the location is of a specific product that needs to be picked. Also, autonomous driving
applications would be an example, where it is vital to know what the location of pedestrians
walking in front of the vehicles is. This task is often called the segmentation of images. Image
segmentation has been a computer vision problem for several decades. The term segmentation
was first used in Rosenfeld et al. [12]. However, others had been working on solving the
segmentation problem without explicitly calling it segmentation. For example, Roberts et
al. [13] developed an algorithm that detects edges of a three-dimensional solid in a two-
dimensional image. This means that everything inside these edges, or boundaries, belong to a
certain object. Over subsequent years, researchers had looked into the possibilities to solve the
image segmentation task automatically and in a supervised way. This means that for a certain
amount of example data, the desired output has to be known a priori. These techniques to
solve the task automatically are also known within the area of Artificial Intelligence (AI)
[14, 15]. According to Coleman et al. [15], the main issue of these AI techniques is that the
algorithms require several hours of computing power in the training phase, as the algorithms
are computationally expensive.

However, at the time of [15], it was just the beginning of the information age, with relatively
slow CPUs and a relative shortage of data. Both of these aspects are, in most cases, necessary
for these AI techniques to work properly. Digital advances since the time of [15] have been
made in terms of faster CPUs and GPU computing, where the calculations can be done in
parallel. Also, the internet has become a source of available data, with people uploading
millions of images every day. As discussed by Sakai et al. [14], supervised AI techniques need
a certain amount of example data to be known a priori. With the availability of datasets like
the ImageNet dataset [16], most researchers now have the tools and data to propose new AI
solutions to the Image Segmentation task. Specifically, in computer vision, Deep Learning
(DL) has gained popularity in recent years. Since [14] and [15], it has become generally
accepted that AI techniques can solve the image segmentation task with similar results as
other solutions. Therefore, it should not come as a surprise that DL would be able to solve
the image segmentation task as well. Furthermore, according to Sermanet et al. [17], DL
techniques are capable of solving other computer vision tasks with surprising results.

Even though image segmentation is an interesting task, the field of computer vision also
entails several other tasks that are related. One can look at most computer vision tasks as a
single task with several sub-steps [17]. One of the first steps or challenges within computer
vision is object recognition. Recognition is, as the name implies, the task of recognising the
object that is portrayed in the image. For example, if the algorithm receives an input image
of a cat, the algorithm needs to recognise it as a cat and classify the image as an image
that contains a cat. This task is often called image classification. The next step or challenge
within computer vision is object localisation. As the name implies, localisation is the task of
localising the object that is portrayed within the image. Continuing our example of the cat:
after the algorithm has classified the image as an image that contains a cat, it would then
declare boundaries to specify the approximate location of the cat in the image.

Isa El Doori Master of Science Thesis

1-3 Problem statement 3

Figure 1-1: Example of different types of computer vision tasks. From left to right this image
shows the different computer vision problems, i.e. Classification, Classification and Localization,
Object Detection, and Instance Segmentation. The first two tasks can mostly be applied to single
object problems, the second two tasks can mostly be applied to multiple objects. Source: van
Loon et al. [3].

Here, we can see that for object localisation, one usually needs to solve the image classification
problem first. The third step or challenge of the computer vision is object detection. Detection
is the task of detecting if there is an object portrayed in the image or not. Object detection
is basically the same as object localisation, with the additional step of localising all objects
present in an image and classifying them accordingly to their respective class, and defining
a background class when no object is present. Continuing our cat example: the detection
algorithm has to be able to tell us whenever nothing is portrayed in the image, and when a
cat is portrayed in the image, which usually means that it needs to localise the cat in the
image. Furthermore, whenever multiple object classes are present in the image, the algorithm
needs to be able to detect them as well [17]. Continuing to the next step brings us to image
segmentation. This time, it is not as obvious from the name as the previous three problems.
What image segmentation really is will be discussed in chapter 2 of this thesis. See Figure 1-1
for an example of these different kinds of computer vision problems.

1-3 Problem statement

As discussed in the previous section, it would be useful for the order picking process to
implement automated image segmentation. Generally in literature, the DL algorithms for
image segmentation are split into two classes: algorithms for RGB images and algorithms
for RGB-D images, where RGB stands for the Red, Green, and Blue values of a pixel, and
RGB-D stands for the Red, Green, Blue, and Depth values of a pixel. The depth value in this
case differs from the RGB values in that it does not give a value for a colour intensity, rather
it gives a value of a physical distance between the camera and the object it is capturing.

Together with Vanderlande Industries (VI), the following questions have been researched dur-
ing this thesis work:

Master of Science Thesis Isa El Doori

4 Introduction

• How does the use of RGB-D data affect the performance compared to the
usage of RGB-only data, applied to the VI dataset?

• How much deviation is allowed in the registration of the depth data to the
RGB data?

To answer these questions, this thesis will implement two different Deep Learning (DL) ar-
chitectures obtained from literature. These two networks are trained on data provided by
VI.

1-4 Outline

This thesis consists of five chapters. Chapter 2 will provide a theoretical background on image
segmentation, DL, and the DL architectures that are implemented during the thesis work. In
Chapter 3, this thesis shall explain the experimental setup, the data provided by VI, and how
the DL architectures were implemented. Chapter 4 will explain all of the different experiments
conducted during the thesis work. In Chapter 5, this thesis will discuss the results obtained
from the experiments conducted in Chapter 4. Finally, this thesis will have a conclusion in
Chapter 6.

Isa El Doori Master of Science Thesis

Chapter 2

Background

We have to establish a few items of general information before we can discuss the DL-specific
algorithms implemented in this thesis. This chapter will first discuss the definition of image
segmentation in section 2-1. Thereafter, we will discuss the definition and use of DL algorithms
in section 2-2. Finally, we will discuss the architectures of the implemented networks in section
2-3.

2-1 What is image segmentation?

In literature, there is no one single definition of image segmentation. For example, Rosenfeld et
al. [12] defines image segmentation to be the operation of singling out the appropriate picture
subsets, thus dividing the image into “segments”. Coleman et al. [15] gives a more strict
definition, these subsets also have to be homogeneous. A homogeneous segment is defined
by Coleman et al. [15] as a segment that is similar within itself. When a segment mostly
consists of a cat, for example, and partly consists of a dog, the segment would not homogeneous
according to Coleman et al. [15]. Haralick et al. [18] is even stricter, stating that regions
of an image segmentation should be uniform as well as homogeneous with respect to some
characteristics such as grey tone or texture. A uniform segment is defined by Haralick et al.
[18] as a segment that is identical within itself. When a segment consists of a cat, but contains
grey tones, for example, that are not similar to the grey tones of the segment in general, the
segment would not be uniform according to Haralick et al. [18]. A general observation
from the literature seems to be that the more research is done on image segmentation, the
stricter the definitions tend to become. The objective for Shi et al. [19], for example, is to
use the low-level knowledge attributes, such as consistency of brightness, colour, texture, or
motion, to sequentially come up with hierarchical partitions. Also, according to Rosenfeld
et al. [12], there is no one approach to the image segmentation task. More recent research,
however, primarily seems to be concentrated on a pixel-wise approach, e.g. [20, 21, 22, 23].
An approach is considered a pixel-wise approach when the proposed algorithm uses the pixel
attributes of the segments, e.g. grey scale, texture, brightness, colour, etc.

Master of Science Thesis Isa El Doori

6 Background

Figure 2-1: Where Deep Learning fits in the spectrum of Artificial Intelligence. According to
Patterson et al. [4], Deep Learning is a subset of the field of Machine Learning, which is a subset
of the field of Artificial Intelligence. This image gives us an idea on how broad the field of Artificial
Intelligence actually is. Source: Patterson et al. [4].

In this thesis, we will consider the definition of image segmentation provided by Haralick et
al. [18], since most of the solutions proposed by literature follow this definition. Also, for the
same reason, we will consider pixel-wise approaches to the image segmentation task.

2-1-1 Semantic image segmentation

The idea of semantics is, in most cases, to link a class label to the segmented object. Gener-
ally, semantics were introduced to the image segmentation task since DL gained popularity,
see chapter 1 and Figure 1-1. In general, there are very little classical image segmentation
algorithms available in literature that also define the semantic label of the segmented ob-
ject. This thesis will only consider semantic image segmentation when discussing the DL
approaches to the image segmentation task.

2-2 What is Deep Learning?

To put Deep Learning (DL) in context, Figure 2-1 illustrates the relationship between Artifi-
cial Intelligence (AI), Machine Learning (ML), and DL. As can be seen from Figure 2-1), DL
is a subset of the field of ML, which is in itself a subset of AI [4]. The field of AI is broad
and has a substantial history. This thesis will provide a short introduction here. To have an
idea of how machines can learn, we first need to take a look to what we mean by “learning”.
Different definitions have been given over the years. Mitchell et al. [24] defines a learning
algorithm as: “a computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”. A different definition, but still somewhat similar, is given
by Bekkerman et al. [25] as:

Isa El Doori Master of Science Thesis

2-2 What is Deep Learning? 7

Figure 2-2: Unsupervised Learning algorithm. From the image we can see that raw data is sent
to be interpreted first before being sent to the algorithm. The interpretation in this case will try to
find relevant information or patterns. After some processing, the unsupervised learning algorithm
will product its output. Source: Smolyansky et al. [5].

“a machine learning task (function) aims to identify (to learn) a function f : X −→ Y that maps
input domain X (of data) onto output domain Y (of possible predictions).” ML algorithms
can be broadly categorised into three main categories, Unsupervised, Supervised, or other
types of algorithms, on the basis of what kind of experience E they are allowed to use during
the learning process [26]. Unsupervised Learning algorithms mostly try to predict a certain
output using only input information. The algorithm learns what it perceives as underlying
properties of the input data-set. Different algorithms can be used to perform different tasks,
for example a k-means Iterative Fisher algorithm can be used for clustering tasks, trying to
divide the input data into different clusters that are “similar” [27]. Supervised Learning
algorithms mostly try to predict a certain output using input information, as well as a label
or desired target [26]. In contrast to unsupervised learning algorithms, which learn properties
the algorithm itself perceives as useful, a supervised learning algorithm attempts to learn the
specified target. It does this by minimising a certain error that it computes by comparing
the network’s output prediction to the desired target. The algorithm then adjusts its internal
model accordingly. A simple example would be a black-box system identification task, where
only the input and output of the system are known. Another example that can be solved
by using a DL approach, would be certain classification tasks. For example, Lee et al. [28]
make use of convolutional deep belief networks for audio classification, i.e. speech recognition.
To predict future inputs, a supervised DL algorithm can be used to replicate the system’s
behaviour. However, some ML algorithms do not just predict their output using a fixed data-
set. For example, Reinforcement Learning, interacts with an environment, so there is a
feedback loop between the learning system and its output [26]. See Figures 2-3, 2-2, and 2-4
for the visual representations of the supervised, unsupervised, and reinforcement Learning
algorithms respectively.

Master of Science Thesis Isa El Doori

8 Background

Figure 2-3: Supervised Learning algorithm. From the image we can see that raw data is sent
to the algorithm. After the algorithm is done with it, a “supervisor” will compare the output
generated from the algorithm to the desired output. After some processing, the supervised learning
algorithm will produce its output. Source: Smolyansky et al. [5].

Figure 2-4: Reinforcement Learning algorithm. From the image we can see that raw data is being
sent to a feedback loop containing an agent and an environment. The agent selects a certain
algorithm that yields in the calculation of the best action that could be taken. The action will be
compared to the environment, which yields a certain reward and a certain state that the system
is in after applying the action. Whenever the reward, and thus the state, are not desired, the
agent chooses a different approach. After the desired state has been reached, the reinforcement
learning algorithm produces its output. Source: Smolyansky et al. [5].

Isa El Doori Master of Science Thesis

2-2 What is Deep Learning? 9

DL can be used in supervised, unsupervised, and reinforcement learning algorithms respec-
tively [29]. DL algorithms consists of so-called Deep Artificial Neural Networks, commonly
called Neural Networks (NNs). A standard Neural Network (NN) consists of many simple,
connected units called neurons, each producing a sequence of real-valued activations [26].
Input neurons get activated through sensors perceiving the environment, other neurons get
activated through weighted connections from previously active neurons [29]. Learning occurs
when the network has found certain weights that produce a desirable output. Generally, when
one talks about NNs, one is talking about Feedforward NNs. Feedforward is used here in the
sense that there is no closed loop between the layers. In the case where there are closed loops
between the layers, we generally speak about Recurrent Artificial Neural Networks (RNNs).
See Figures 2-5 and 2-6 for the visual representations of a Feedforward NN and a RNN respec-
tively. The goal of NNs is thus to find these weights that produce a desirable output [29]. The
problem of finding these weights can mathematically be put as an optimisation problem of
minimising an objective function. For example, the “XOR” problem discussed in [26], would
be minimising the objective function J(θθθ) = 1

4
∑

xxx∈X
(f∗(xxx) − f(xxx;θθθ))2, where xxx represent the

input values, and θθθ represent the parameters of the model. Goodfellow et al. [26] further
states that f(xxx;θθθ) could be a linear model with θ consisting of the weights www and b. Thus,
their model is defined by f(xxx;www, b) = xxx>www+b. By minimising the objective function J(θθθ) with
respect to www and b, Goodfellow et al. [26] is able to find the weights of the NN corresponding
to the “XOR” problem. There are different kinds of objective functions for different kinds of
tasks. Therefore, there are also different kinds of optimisation algorithms one can use to solve
these optimisation problems. The most used algorithms are the gradient-based algorithms,
such as the back-propagation algorithm [26].

There are different kinds of NNs for different kinds of tasks. The type of NNs mostly used in
image segmentation are Convolutional Neural Networks (CNNs), introduced by Fukushima et
al. [30, 31, 32] and put into practice by LeCun et al. [33]. Convolution is the act of applying
a filter, better known as a “kernel”, on a matrix for various types of feature extractions.
Different types of kernels extract different types of features. Therefore, the outputs of these
convolutional layers are called feature maps [26]. In addition to the convolutional layer,
the CNN architecture also entails a few other layers. The “Rectified Linear Unit” (ReLU)
layer replaces all negative values in the feature map by zero. This layer is mostly applied
directly after the convolutional layer, and the output of this layer is called the rectified feature
map. The “pooling” layer reduces the dimension of a feature map by only considering the
most important information and leaving out the rest. For example, a max-pooling layer
only considers the maximum value of a spatial window of the original feature map. A “fully
connected” layer is a traditional NN where all neurons of the previous layer are connected to
all neurons of the following layer. This operation is done in order to classify an input to a
specified output. In the case of image segmentation it is used to classify an input pixel to an
object class [26].

When all of these layers are combined, one can start training the network using the back-
propagation algorithm, for example [33]. However, the number of data used will mostly
determine the performance of the network. The first version of the GoogLenet network [34],
for example, uses 1.2 million images to train their network. Since available data can be scarce,
other training methods have become available, which do not require millions of images. The
method mostly used in image segmentation is Transfer Learning (TL).

Master of Science Thesis Isa El Doori

10 Background

x
1

...

y
1

x
p

v
m

y
n

h
id

d
en

 lay
er

o
u
tp

u
t lay

er
in

p
u
t lay

er

w
p

x
2

v
1

...

w
h

w
11

w
h

w
11

w
o

w
m

n
w

o

m

Figure
2-5:

A
Feedforward

N
N

with
a
single

hidden
layer.

x
1 ,
x

2 ,and
x

p
denote

the
inputs

given
to

the
network.

The
connections

from
the

input
layerneurons

to
the

hidden
layers

neurons,
v

1
to
v

m
allhave

certain
weights,

w
h11 ,to

w
hp
m
.
Also,the

connections
from

the
hidden

layer
neuronsto

the
outputlayerneurons

y
1
to
y

n
allhave

certain
weights

w
o11

to
w

om
n .

The
goalofthe

N
N

isto
find

the
optim

alweightswhere
the

errorbetween
the

output
y

1
to
y

n
and

the
desired

output
y

d1
to
y

dn
is
m
inim

al.
Source:

Babuska
et

al.
[6]

Isa El Doori Master of Science Thesis

2-3 Implemented algorithms 11

Multi-layer ANN

Single-layer recurrent ANN

Figure 2-6: A multi-layer ANN and a single-layer recurrent ANN. The multi-layer ANN has the
same structure as a Feedforward NN, only with multiple hidden layers. The recurrent ANN also
has the same structure, with the main difference of it having a feedback loop incorporated after
each layer. This means that the output weights of the neurons are also taken into account. The
main objective remains the same for both types, to find the optimal weights. Source: Babuska
et al. [6]

TL is the act of reusing knowledge attained from past, often related, tasks to make it easier
to learn a new task [35]. Following the cat example set in chapter 1 and Figure 1-1, TL would
be useful if one has a network available for the classification of the cat object class, but would
like to extend the network to also classify dogs. Since the new task is related to the old task,
i.e. the classification of animals, one does not need to train the network from scratch for both
classes. Also, using TL to retrain the existing network to classify the new class would in most
cases require less data [35].

2-3 Implemented algorithms

Now that we have established a background for image segmentation in general, we can start
exploring several DL image segmentation algorithms. As stated in section 2-2, DL can be
used in supervised, unsupervised, and reinforcement learning approaches [29]. This thesis will
only consider supervised learning approaches since unsupervised and reinforcement learning
approaches are generally not common in image segmentation. Generally in literature, the
approach of combining RGB and depth information into a CNN architecture is done by two
methods. “Early fusion” is the method of introducing a fourth channel at the beginning of the
architecture and modifying the architecture accordingly. Modifying the architecture in this
sense means that all of the layers of the existing architecture should be modified for a four-
channel input. How this is done differs from architecture to architecture. “Late fusion” or
some form of “late fusion” is the method of introducing a separate “branch” just for the depth
information and fusing the RGB and depth “branches” at some point, either by performing
concatenation, element-wise summation, or transformation [36, 37, 38, 2].

Master of Science Thesis Isa El Doori

12 Background

This thesis will also experiment with the idea of early vs. late fusion to determine what fusion
method will, in this use case, yield in a better performance. This is why the RGB network,
which is chosen to be implemented, is the SegNet architecture proposed by Badrinarayanan
et al. [1], and the RGB-D network that is chosen to be implemented is the FuseNet architec-
ture proposed by Hazirbas et al. [2]. FuseNet, in this case, very much resembles the SegNet
architecture, which is why these two are chosen.

According to Badrinarayanan et al. [1], most DL solutions to the image segmentation problem,
including the ones mentioned earlier, make use of somewhat similar architectures, namely
architectures based on the VGG 16-layer network [7]. This thesis will first discuss the VGG
16-layer network architecture in section 2-3-1. Afterwards, this thesis will discuss the SegNet
and the FuseNet architectures in sections 2-3-2 and 2-3-3 respectively. Finally, in section
2-3-4 we will discuss the results of these two networks on the SUNRGBD data-set.

2-3-1 The VGG-16 network

The VGG 16-layer network proposed by [7] is a network that is trained to classify 1000 different
objects classes. The VGG 16-layer network was also the runner-up in image classification and
the winner in object localisation of the 2014 ILSVRC competition [39]. Since then, a lot
of research has been done by others using the VGG 16-layer network as their core CNN
architecture. By making use of TL, which in this case consists of using the trained weights of
the VGG 16-layer network, researchers could train on different data-sets more easily and in a
less time consuming way than training their networks from scratch. Also, by extending this
existing pipeline, more complex tasks, such as the image segmentation task, could be solved.
For this reason, both networks that are going to be discussed in sections 2-3-2 and 2-3-3
have the VGG 16-layer network as their core architecture. The network consists of thirteen
convolutional and pooling layers, and three fully connected layers. The final layer acts as a
softmax layer that outputs a probability map of all the 1000 classes on which the network is
trained. The output of the network is the class of which the probability of it being contained
in the image is the largest. Figure 2-7 shows the detailed architecture of the VGG 16-layer
network.

2-3-2 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
Segmentation [1]

Badrinarayanan et al. [1] propose a semantic segmentation method by means of a decoder
network, which they call SegNet. This method differs from the deconvolution network pro-
posed by Noh et al. [40]. Also, the terminology used by Badrinarayanan et al. [1] differs
in that they do not call the first part of their network a convolution network, but they call
it an encoder network. Figure 2-9 shows the detailed network architecture of SegNet. If we
compare Figures 2-9 and 2-7, we can see that the encoder part of SegNet is nearly identical to
the VGG 16-layer network with the exception of the final three fully connected layers. Badri-
narayanan et al. [1] claim that this approach makes the SegNet network relatively smaller
and easier to train than other architectures that keep the fully connected layers, like the
convolution network proposed by [40].

Isa El Doori Master of Science Thesis

2-3 Implemented algorithms 13

Fi
gu

re
2-
7:

Th
e
VG

G
16
-la

ye
rn

et
wo

rk
pr
op

os
ed

by
Si
m
on

ya
n

et
al

.
[7
].

Th
e
ne
tw
or
k
co
ns
ist
s
of

six
bl
oc
ks

of
lay

er
s.

Th
e
ne
tw
or
k
be
gi
ns

wi
th

an
in
pu

tl
ay
er
.
Th

e
fir
st

tw
o
bl
oc
ks

co
ns
ist

of
tw
o
co
nv
ol
ut
io
na
ll
ay
er
s
fo
llo
we

d
by

a
m
ax

po
ol
in
g
op

er
at
io
n.

Th
e
th
ird

,f
ou

rt
h,

an
d
fif
th

bl
oc
ks

co
ns
ist

of
th
re
e
co
nv
ol
ut
io
na
ll
ay
er
s
fo
llo
we

d
by

a
m
ax

po
ol
in
g
op

er
at
io
n.

Ea
ch

co
nv
ol
ut
io
na
ll
ay
er

is
fo
llo
we

d
by

a
Re

LU
op

er
at
io
n.

Th
e
fin

al
bl
oc
k
co
ns
ist
s
of

th
re
e
fu
lly

co
nn

ec
te
d
lay

er
s,
wh

ich
ar
e
fo
llo
we

d
by

a
so
ftm

ax
op

er
at
io
n
yi
eld

in
g
th
e
ou

tp
ut

of
th
e
ne
tw
or
k.

So
ur
ce

[8
]

Master of Science Thesis Isa El Doori

14 Background

Figure 2-8: An illustration of the SegNet decoder. The labels “a”, “b”, “c”, and “d” correspond
to values in a feature map. SegNet uses the max pooling indices to upsample (without learning)
the feature map(s) and convolves them with a trainable decoder filter bank [1].

SegNet has an encoder network and a decoder network, followed by a classification layer, i.e.
a softmax layer, that performs a pixel-wise classification action. The encoder network consists
of the thirteen convolutional layers of the VGG 16-layer network. Badrinarayanan et al. [1]
chose to leave out the fully connected layers of the VGG 16-layer network in favour of keeping
higher resolution feature maps. This reduces the number of parameters of the network,
according to Badrinarayanan et al. [1]. Each encoder layer has an analogous decoder layer.
Hence, their decoder network also has 13 layers. For their decoder network, Badrinarayanan
et al. [1] propose to store the indices that were pooled from the encoder network to use in
the upsampling step of their decoder. Furthermore, Badrinarayanan et al. [1] state that the
appropriate decoder in the decoder network upsamples its input feature map by using those
memorized pooling locations, which produces a sparse feature map. That feature map is then
convolved with a trainable decoder filter to produce a dense feature map. See Figure 2-8
for a visual representation provided by Badrinarayanan et al. [1]. Note that this method of
the upsampling decoder proposed by [1] is very similar to the upsampling, unpooling, and
deconvolution method proposed by Noh et al. [40] a year earlier. Badrinarayanan et al. [1]
also acknowledges this. However, they claim that the DeconvNet architecture proposed by
[40] has a lot more parameterisation, needs more computational resources and is harder to
train end-to-end. According to [1], this is due to the fact that [40] do not disregard the fully
convolutional layers of the VGG 16-layer network. The results of SegNet on the SUNRGBD
dataset will be evaluated in section 2-3-4.

Isa El Doori Master of Science Thesis

2-3 Implemented algorithms 15

Fi
gu

re
2-
9:

Th
e
Se
gN

et
ar
ch
ite

ct
ur
e.

Th
er
e
ar
e
no

fu
lly

co
nn

ec
te
d
lay

er
s
an
d
he
nc
e
it
is
on

ly
co
nv
ol
ut
io
na
l.

A
de
co
de
r
up

sa
m
pl
es

its
in
pu

t
us
in
g
th
e
tr
an
sfe

rre
d
po

ol
in
di
ce
s
fro

m
its

en
co
de
rt

o
pr
od

uc
e
a
sp
ar
se

fe
at
ur
e
m
ap
(s
).

It
th
en

pe
rfo

rm
sc

on
vo
lu
tio

n
wi
th

a
tr
ai
na
bl
e
fil
te
rb

an
k

to
de
ns
ify

th
e
fe
at
ur
e
m
ap
.
Th

e
fin

al
de
co
de
ro

ut
pu

t
fe
at
ur
e
m
ap
s
ar
e
fe
d
to

a
so
ft-
m
ax

cla
ss
ifi
er

fo
rp

ix
el-

wi
se

cla
ss
ifi
ca
tio

n
[1
].

Master of Science Thesis Isa El Doori

16 Background

Figure 2-10: Illustration of different fusion strategies at the second and third convolution blocks
of VGG 16-layer net. (a) The fusion layer is only inserted before each pooling layer. (b) The
fusion layer is inserted after each CBR block. [2].

2-3-3 FuseNet: Incorporating Depth into Semantic Segmentation via a Fusion-
based CNN Architecture [2]

Hazirbas et al. [2] propose an encoder-decoder type network, much like the DeconvNet pro-
posed by [40] and the SegNet proposed by [1], which they call FuseNet. The proposed network
by [2] differs from the networks by [40] and [1] in the sense that they consider having two
encoder sections, i.e. a RGB encoder branch and a depth encoder branch. Figure 2-11 shows
the detailed architecture of FuseNet. When comparing Figures 2-11 and 2-9, one can see that
these networks are identical except for two particular aspects. One aspect is the additional
depth encoder section. Furthermore, Hazirbas et al. [2] also makes use of dropout layers,
which they derive from a network called Bayesian SegNet, proposed by [9]. Bayesian SegNet
is actually an extension of SegNet because of these dropout layers.

Kendall et al. [9] use this dropout layer to induce a Bayesian network, which will in turn,
so they claim, boost performance. However, since Hazirbas et al. [2] do not use the dropout
layers during test time, we will also disregard them for this review. The depth encoder
branch proposed by Hazirbas et al. [2] is basically the same type of encoder branch as the
RGB encoder branch. However, instead of a three-channel input, it expects a one-channel
input. Hazirbas et al. [2] thus only consider the physical distance between the camera and
the objects captured by the camera. Furthermore, Hazirbas et al. [2] normalise the depth
data to have its values lie between 0 and 255. This results in consistency of the data, since the
RGB values of an image also lie between 0 and 255. The RGB encoder branch and the depth
encoder branch are “fused” together by fusion layers that perform element-wise summation.
In order to enhance the RGB feature maps, making use of this kind of fusion means that
the discontinuities of the feature maps computed on the depth image are thus added into
the RGB feature maps. Hazirbas et al. [2] further propose two different implementations of
FuseNet; a dense fusion and a sparse fusion. A dense fusion is the network where there are
multiple fusion layers per convolution block, and a sparse fusion is the network with just a
single fusion layer convolution per block. These two network architectures are illustrated in
Figure 2-10. The results of the FuseNet network on the SUNRGBD dataset will be evaluated
in section 2-3-4.

Isa El Doori Master of Science Thesis

2-3 Implemented algorithms 17

Fi
gu

re
2-
11
:
Th

e
Fu

se
N
et

ar
ch
ite

ct
ur
e
pr
op

os
ed

by
H
az
irb

as
et

al
.
[2
].

Co
lo
rs

in
di
ca
te

th
e
lay

er
ty
pe
.
Th

e
ne
tw
or
k
co
nt
ai
ns

tw
o
br
an
ch
es

to
ex
tr
ac
tf
ea
tu
re
sf
ro
m

RG
B
an
d
de
pt
h
im

ag
es
,a

nd
th
e
fe
at
ur
e
m
ap
sf
ro
m

de
pt
h
ar
e
co
ns
ta
nt
ly

fu
se
d
in
to

th
e
RG

B
br
an
ch
,d

en
ot
ed

wi
th

th
e
re
d

ar
ro
ws

.
In

th
is
ar
ch
ite

ct
ur
e,

th
e
fu
sio

n
lay

er
is
im

pl
em

en
te
d
as

an
ele

m
en
t-
wi
se

su
m
m
at
io
n,

de
m
on

st
ra
te
d
in

th
e
da
sh
ed

bo
x
[2
].

Master of Science Thesis Isa El Doori

18 Background

Global Mean IoU
SegNet [1] 72.63% 44.76% 31.84%
FuseNet [2] 76.27% 48.30% 37.29%

Table 2-1: The results of the proposed networks in terms of global accuracy, mean class accuracy
and the Intersect over Union (IoU) value. We can see that the FuseNet architecture proposed
by Hazerbas et al. [2] performs better in all three evaluation metrics. An increase of 3.64%
is observed in the global accuracy metric, an increase of 3.54% is observed in the mean class
accuracy metric, and an increase of 5.45% is observed in the IoU metric.

2-3-4 Discussion

The two network architectures discussed in the previous sections are evaluated on the SUN-
RGBD dataset. This data-set has been chosen as the benchmark for this review since the
results of some of these networks on the SUNRGBD dataset have been made available by
Badrinarayanan et al. [1] for its own architecture. The same is true for the FuseNet archi-
tecture proposed by Hazirbas et al. [2]. The results are grouped by three metrics: the global
accuracy, the mean class accuracy, and the intersect over union value. The global accuracy is
the percentage of correctly classified pixels, the mean class accuracy is the average of class-
wise accuracy, and the Intersect over Union (IoU) value is the average value of the intersection
of the prediction and the true regions over the union of them. These evaluation metrics are
defined as:

Global = 1
N

∑
c

TPc, c ∈ 1...K

Mean = 1
K

∑
c

TPc

TPc + FPc
, c ∈ 1...K

IoU = 1
K

∑
c

TPc

TPc + FPc + FNc
, c ∈ 1...K

In these formulas, K denotes the total number of classes, c denotes the class number, N
denotes the total number of annotated pixels, TP denotes the pixels that are labeled as
positive for the class and truly are positive for the class, FP denotes the pixels that are
labeled as positive for the class, but actually are not being part of that class, and FN denotes
the pixels that are labeled as negative for the class, but actually are part of that class.

The results of the network architectures are presented in Table 2-1. From this table, we can
clearly see that the addition of the depth data does indeed improve the performance of the
network. The global accuracy improves by 3.64%, the mean class accuracy improves by 3.54%,
and the IoU improves by 5.45%. We can also see that the FuseNet architecture proposed by
Hazirbas et al. [2] performs better in general. It is important to note, however, that the
results of the SegNet architecture displayed in Table 2-1 are based on RGB-only data. The
architecture has not been trained on RGB-D data and thus it would not (yet) be possible to
conclude whether late fusion in this case would perform better than early fusion. This thesis
will thus conduct its own experiment in chapter 4.

Isa El Doori Master of Science Thesis

Chapter 3

Implementation

This thesis will further cover the implementation of the proposed architectures in sections
2-3-2 and 2-3-3 respectively. We will first cover the camera setup used to capture all of the
images in section 3-1. Afterwards, in section 3-2, we will cover the structure of the data
used to train the networks. Finally, we will explain how the networks were implemented in
MATLAB, in sections 3-3 and 3-4 respectively.

3-1 Camera setup

The camera setup used to capture the data can be seen in Figure 3-1. It consists of a dual
camera setup, one camera to capture the RGB images, and one camera to capture the depth
data. The camera used to capture the RGB images is an RGB camera, made by the iDS-
imaging company, that captures the images at a resolution of 1600×1200 pixels and outputs a
regular RGB image. The camera used to capture the depth data is an Ensenso stereo camera
that captures the data at a resolution of 1280 × 1024 points. The Ensenso camera does not
output a regular image, its output consists of a point cloud containing the spatial X-, Y-,
and Z-coordinates of what it is capturing. See Figures 3-2 and 3-3 for an example of an RGB
image captured by the iDS camera and a point cloud captured by the Ensenso stereo camera
respectively.

Looking at Figure 3-1, we can see how the cameras are set up. The two cameras are located at
point one in Figure 3-1 and are pointed downwards to point two in Figure 3-1. The cameras
are set up next to each other, with the iDS RGB camera hanging a little lower than the
Ensenso stereo camera. Point two in Figure 3-1 denotes the location of the objects.

The way these cameras are set up introduces the issue that the images are not captured
within the same reference frame. Also the fact that the two cameras do not capture the
images within the same aspect ratio, i.e. 3:4 for the iDS camera and 4:5 for the Ensenso
stereo camera, makes that a spatial registration of the data is needed. Luckily, the software
of the Ensenso camera already has a function to calibrate multiple camera setups.

Master of Science Thesis Isa El Doori

20 Implementation

Figure 3-1: The camera setup used to capture the data. 1: the dual camera setup, the blue
camera being the Ensenso camera for depth images, the black camera being the iDS camera for
RGB images. 2: the box with the products inside.

Isa El Doori Master of Science Thesis

3-1 Camera setup 21

Figure 3-2: An RGB image captured by the iDS camera. We can see the box with products
inside. This is a raw image that has not been pre-processed.

Figure 3-3: A point cloud captured by the Ensenso stereo camera. The dots represent the points
captured by the camera. The intensity of the colour tells us more about the physical distance
between the camera and the objects. The darker the colour intensity, the closer the object is to
the Ensenso stereo camera.

Master of Science Thesis Isa El Doori

22 Implementation

3-2 Vanderlande Industries (VI) RGB-D data

The data that is captured by the camera setup specified in section 3-1 needs to be pre-
processed before it can be used in the experiments. Before the pre-processing begins, this
thesis will make the following assumptions:

• The RGB images and the depth data are registered to each other.

• The data has been labeled accordingly.

Furthermore, the code to each pre-processing step can be found in Appendix A. This thesis
will first cover the pre-processing of the depth data in section 3-2-1. Afterwards, we will cover
the pre-processing of the RGB images and the labels in section 3-2-2. Finally, in section 3-2-3
we will summarize how the data has been structured.

3-2-1 Pre-processing the depth information

As stated in section 3-1, the Ensenso stereo camera outputs point cloud data containing
the spatial X-, Y-, and Z-coordinates of the objects it is capturing. Since only the depth
information is relevant for this thesis, we disregard the spatial X- and Y-coordinates. When
considering only the spatial Z-coordinates of the point cloud data, one can plot it as an
image as can be seen in Figure 3-4. It is important to note that the X- and Y-coordinates
in Figure 3-4 are not the same as the spatial X- and Y-coordinates captured by the Ensenso
stereo camera. Rather, they are pixel-coordinates that correspond to the points the camera
has captured. Figure 3-4 is a gray scale image, where the intensity reports the physical
distance between the object and the camera. The darker a pixel is, the closer it is to the
camera. One observation that can be noticed from Figure 3-4 is that there are some dark
spots in the figure where one does not expects to see them. These locations were originally
filled with Not-a-Number (NaN) values. These NaN values exist because the Ensenso camera
cannot find a depth value for every pixel. However, since NNs are not designed to handle
NaN inputs, we fill these NaN positions with alternative values. There are several methods
to accomplish this. In this thesis, we choose to fill these NaN positions by means of linear
interpolation between the non-NaN values.

The next step to pre-process the depth data is to consider the resolution of the newly obtained
depth image. The chosen resolution for this thesis is 480 × 360 pixels, which corresponds to
the same resolution used by Badrinarayanan et al. [1] during the training of their proposed
SegNet architecture. One can input a higher resolution image in a NN. However, it would
make the system computationally expensive, it would increase training time, and it would
require hardware that was not available to us. Originally, the resolution of the registered gray
scale depth image is at 1600× 1200 pixels. Thus, after filling all the NaN positions, we want
to reduce the resolution of the gray scale image to the desired resolution of 480× 360 pixels.
The re-sizing of the image has been done by means of a nearest-neighbours interpolation
approach instead of a bi-cubic interpolation approach mostly used in the re-sizing of RGB
images. Linear of bi-cubic interpolation approaches tend to adjust the values of the depth
image during the re-sizing operation.

Isa El Doori Master of Science Thesis

3-2 Vanderlande Industries (VI) RGB-D data 23

Figure 3-4: The spatial Z-coordinates of a point cloud captured by the Ensenso stereo camera.
This is a gray scale image, the darker the pixel, the closer it is to the camera. However, we can see
certain dark spots within the image in locations where we do not expect them. These locations
are filled with Not a Number (NaN) values.

However, since we only want to re-size while preserving the depth values, the nearest-neighbours
interpolation approach is implemented in order to preserve as much information as possible.

Finally, we wish to extract only the most important information of the image. In Figure 3-2
we can see that the image does not only contain the area we wish to segment, which is the
bottom of the box, but also a lot of unnecessary information such as the table, the boundaries
of the box the objects are in, etc. To make it “easier” for the system, this thesis has chosen
to disregard all of the unnecessary areas and focus only on the objects that lie on the bottom
of the box. Thus, the depth images have been cropped to a resolution of 335 × 230 pixels.
Note that this operation is not the same as re-sizing the images. Figure 3-5 shows the final
result of a depth image after pre-processing.

3-2-2 Pre-processing the RGB images and the labels

The RGB images and their corresponding labels require less pre-processing than the depth
information, since the the iDS RGB camera produces a satisfactory RGB image. The RGB
images and their corresponding labels just need to be re-sized and cropped in the same manner
as we did with the depth information.

The approach mostly used in the re-sizing of RGB images is the bi-cubic interpolation ap-
proach and thus we will not deviate from the default. Therefore, the RGB images have been
re-sized from a resolution of 1600 × 1200 pixels to 480 × 360 pixels by means of a bi-cubic
interpolation approach.

Master of Science Thesis Isa El Doori

24 Implementation

Figure 3-5: After pre-processing: the spatial Z-coordinates of a point cloud captured by the
Ensenso stereo camera. This is a gray scale image, the darker the pixel, the closer it is to the
camera. This image has been resized to a resolution of 480× 360 and has been further cropped
to only consider the center of the box.

The corresponding labels, however, have been re-sized from a resolution of 1600× 1200 pixels
to 480× 360 pixels by means of a nearest-neighbours interpolation approach. In contrast to
a nearest-neighbours interpolation approach, a bi-cubic interpolation approach can yield to
wrong labels in the re-sized image. Therefore, this approach has been chosen for the same
reason as for the depth information, namely to preserve as much information as possible.

Both the RGB images and their corresponding labels have been cropped to a resolution of
335× 230 pixels in the same manner as we did with the depth information. Figures 3-6 and
3-7 show the final results of an RGB image and its corresponding label after pre-processing.

3-2-3 General structure of the data

Now that we have pre-processed all of the data, we can assign the data to their corresponding
classes. The data consists of 790 RGB-D images, which are stored as 790 different matrices
of dimensions [H×W ×C], where H denotes the height of the image, W denotes the width of
the image, and C denotes the number of channels. In our case the matrices are of dimensions
[230× 335× 4]. The first three channels denote the RGB image and the final channel denotes
the gray scale depth image.

The data is split between a set that is used for training and a set that is used for validation
with a ratio of 75% and 25% for training and validation respectively.

Isa El Doori Master of Science Thesis

3-2 Vanderlande Industries (VI) RGB-D data 25

Figure 3-6: After pre-processing: an RGB image captured by the iDS camera. This image has
been resized to a resolution of 480×360 and has been further cropped to only consider the center
of the box.

Figure 3-7: After pre-processing: visual representation of a label image. This image has been
resized to a resolution of 480× 360 and has been further cropped to only consider the center of
the box.

Master of Science Thesis Isa El Doori

26 Implementation

The classes, and thus their corresponding labels, represent the primary shape of the objects.
In total, the objects have seven different classes. However, some of the classes are grouped
together as they can be perceived as similar. The seven classes are:

• Environment

• Cuboid

• Planar

• Sphere

• Cylindrical or flask

• Complex shape

• Undefined

The new classes become:

• Environment, e.g. the bottom of the box.

• Cuboid or planar, e.g. a box of cereal or a pack of batteries

• Sphere or cylindrical or flask, e.g. a ball, a can of soda, or a bottle of soda.

• Complex shape or undefined, e.g. a bag of chips or a stuffed animal.

These classes have labels 0,1,2, and 3 for the “Environment”, the “Cuboid or planar”, the
“Sphere or cylindrical or flask”, and the “Complex shape or undefined” classes respectively.
See Figure 3-8 for an example of a labeled image and the data overlayed on each other.

Furthermore, in order to answer one of the problem statements explained in section 1-3, we
want to unregister the depth images and the RGB images manually. This way we can assess
the difference between registered data and unregistered data. The way this is done is by
shifting the depth image along the X-axis. The percentage of shift is explained in more detail
in Chapter 4.

Finally, a simple data-augmentation is applied to the images due to our lack of training
samples. Data-augmentation is the act of transforming the data in order to increase the
number of training samples. It is necessary to apply data-augmentation when one does not
have enough data to train a network. We chose to apply a random translation and rotation
along the X- and Y-axes and a random reflection along the X-axis. The randomness of the
translations, rotations, and the reflection makes each new image unique and ready for use
during training.

The data is now ready to be trained on the NN architectures.

Isa El Doori Master of Science Thesis

3-3 SegNet RGB-D implementation in MATLAB 27

Figure 3-8: A label image overlayed on an RGB image. The colours represent the class. Green
stands for the “complex object or undefined” class, light blue stands for the “sphere, cylindrical,
or flask” class, dark blue stands for the “cuboid or planar” class, and yellow stands for the
“environment” class.

3-3 SegNet RGB-D implementation in MATLAB

As discussed in Chapter 1, the networks are implemented using MATLAB. The code can be
found in Appendix B-1. It is relatively straigtforward to implement a SegNet architecture in
MATLAB, since MATLAB has a version of SegNet built in its source code. To implement
SegNet as proposed by Badrinarayanan et al. [1], one could use the

segnetLayers(imageSize, numClasses,model)

function of MATLAB. This function expects mainly three input variables. The first input
variable is the size of the data, or the image size. The second input variable is the number of
different classes, or labels. The third input variable is what model the SegNet network should
be initialised to. When setting the image size as having three channels, i.e. [H,W, 3], where
H denotes the height of the image, W denotes the width of the image, and 3 denotes the Red,
Blue, and Green channels respectively. Also, when setting the model as the “vgg16′′ model,
one would obtain the network as proposed by Badrinarayanan et al. [1].

However, our focus is on implementing the SegNet architecture with a four channel input
based on early fusion. This means that the input layer and the first convolutional layer of
the SegNet network have to change. The input layer as it originally is expects the data to be
of shape [H ×W × 3]. In our new input layer, the expected structure of the data would be
of shape [H ×W × 4], the fourth channel denoting the depth data.

Master of Science Thesis Isa El Doori

28 Implementation

As for the first convolutional layer, the parameters that have to be changed are: the expected
channel size and the weights matrix. The current expected channel size is set at three, this
is because of the previous input layer channelling a three-channel input to the convolutional
layer. Since the new input layer channels a four-channel input to the convolutional layer,
this value should be set at four. Furthermore, the current weights matrix is structured as
a [3 × 3 × 3 × 64] matrix. One should read this structure as 64 different 3 × 3 kernels that
are applied to all of the three channels. Since we have an additional fourth channel, the new
weights matrix should be structured as a [3× 3× 4× 64] matrix. In other words, 64 different
3× 3 kernels that are applied to all of the four channels. We have filled the weights matrices
appropriately. As for all of the kernels that are going to be applied to the first three channels,
doing nothing to those values would be the best choice as to not lose the information learned
by the pre-trained VGG-16 layer network. In other words, for those channels we would like to
retain their Transfer Learning (TL) property. As for the fourth channel kernels, many values
can be filled in for those weights. However, since we wished to retain TL for the first three
channels, we have chosen the same for the fourth channel as well. This is done by averaging
the weights of the first three kernels. Suppose matrices W 1

1 , W 1
2 , and W 1

3 are the first out
of 64 3 × 3 kernels that are applied to the first three channels. Taking the average of these
three weight matrices yields in the average of the pre-trained VGG-16 weights for the first
3x3 kernels. The idea is that this way, one could end up with 64 different 3× 3 kernels that
can be applied to the depth data, while retaining the TL property.

This network could, however, be prone to over-fitting. This is because of the fact that the data
that is available to our experiments is scarce, while there are a lot of trainable parameters
within this network. This network architecture already contains Batch Normalization and
ReLU operations after each convolutional layer to tackle the over-fitting problem. Our concern
is that perhaps this would not be enough due to the size of the implemented network compared
to the relatively small data-set we possess. That is why for this thesis, we have chosen to add
dropout layers to the architecture. According to Srivastava et al. [41], dropout operations
offer an easy way to prevent over-fitting. The idea of dropout operations is to randomly
“drop”, or disregard, certain neurons and their connections during training [41]. This will in
turn restrict neurons to accustom too much to each other. The authors of Badrinarayanan
et al. [1] have also made this choice in a different paper proposed by Kendall et al. [9], in
the network called Bayesian SegNet. This network applies dropout layers after the third,
fourth, and fifth max pooling operations and before the first, second, and third up-sampling
operations. This network architecture can be seen in Figure 3-9. In this thesis, we have
chosen to follow this architecture of dropout layer placement.

3-4 FuseNet implementation in MATLAB

As can be seen in Figure 2-11, the FuseNet architecture proposed by Hazirbar et al. [2] has
two encoder branches and a single decoder branch. The first encoder branch handles the
RGB images and the second encoder branch handles the depth data. The code can be found
in Appendix B-2. The first aspect of the implementation of this network within MATLAB is
how to handle the input. The RGB encoder branch expects a [H ×W × 3] input, where H
denotes the height of the RGB image, W denotes the width of the RGB image, and 3 denotes
the Red, Blue, and Green channels of the image.

Isa El Doori Master of Science Thesis

3-4 FuseNet implementation in MATLAB 29

Fi
gu

re
3-
9:

Th
e
Ba

ye
sia

n
Se
gN

et
ar
ch
ite

ct
ur
e
[9
].

Th
is

fig
ur
e
sh
ow

s
th
e
en
tir
e
ne
tw
or
k
ar
ch
ite

ct
ur
e.

Th
e
ne
tw
or
k
en
co
de
r
is

ba
se
d
on

th
e

VG
G-
16

lay
er

ne
tw
or
k
pr
op

os
ed

by
Si
m
on

ya
n

et
al

.
[7
],
wi
th

th
e
de
co
de
r
pl
ac
in
g
th
em

in
re
ve
rs
e
or
de
r.

Th
e
pr
ob

ab
ili
st
ic

ou
tp
ut

is
ob

ta
in
ed

fro
m

M
on

te
Ca

rlo
sa
m
pl
es

of
th
e
m
od

el
wi
th

dr
op

ou
t
at

te
st

tim
e.

K
en
da
ll

et
al

.
[9
]t
ak
e
th
e
va
ria

nc
e
of

th
es
e
so
ftm

ax
sa
m
pl
es

as
th
e
m
od

el
un

ce
rt
ai
nt
y
fo
r
ea
ch

cla
ss
.
Th

is
th
es
is

wi
ll
no

t
co
nc
en
tr
at
e
on

th
e
pr
ob

ab
ili
st
ic

ou
tp
ut

of
th
is

m
od

el,
we

ar
e
on

ly
in
te
re
st
ed

in
th
e
ne
tw
or
k

ar
ch
ite

ct
ur
e.

Master of Science Thesis Isa El Doori

30 Implementation

Whereas the depth encoder branch expects a [H ×W × 1] input, where H denotes the height
of the depth image, W denotes the width of the depth image, and 1 denotes the depth chan-
nel. Unfortunately, one cannot have two different input layers within MATLAB. Therefore,
another method to handle the input data had to be found in order to implement this network
in MATLAB. One such method is to have a single input layer, where the input is of shape
[H ×W × 4], where H denotes the height of the RGB-D data, W denotes the width of the
RGB-D Data, and 4 denotes the Red, Blue, Green, and depth channels of the data. This
input is directed to two different convolutional layers, where the weights of both of these
layers are frozen. “Frozen” in this sense means that the weights cannot change when training
the network. The parameters of the first convolutional layer are chosen as: three different
1 × 1 kernels with a stride of one, the number of expected channels is four, and the weights
matrix is defined as

 1 0 0 0
0 1 0 0
0 0 1 0

 .
The output of this convolutional layer would be the first three channels of the input layer,
which in this case is the entire RGB image.
The parameters of the second convolutional layer are chosen as: one 1 × 1 kernels with a
stride of one, the number of expected channels is four, and the weights matrix is defined as

[
0 0 0 1

]
.

The output of this convolutional layer would be the final channel of the input layer, which in
this case is the entire depth image.
The depth encoder branch of the FuseNet architecture differs from the encoder branch pro-
posed by Kendall et al. [9] in two locations. The first convolutional layer of the depth encoder
branch differs and the depth encoder branch does not have a max-pooling and dropout oper-
ations after the last convolutional layers. The first convolutional layer of the depth encoder
branch expects a one-channel input. This thesis will make use of the same arguments and
methodology as discussed in section 3-3 to produce this convolutional layer. However, instead
of a four-channel convolutional layer proposed in section 3-3, an averaging operation is done
and only these weights are used for the layer. In other words, the first convolutional layer of
the depth encoder branch would be the same as the first convolutional layer as proposed in
section 3-3, where the first three channels are disregarded.
The RGB encoder branch of the FuseNet architecture differs from the encoder branch proposed
by Kendall et al. [9] in five locations. As discussed in section 2-3-3, the branches are “fused”
together by means of element-wise summation of the feature maps. To implement this in
MATLAB, before each max-pooling operation an addition layer is introduced. The inputs
to these addition layers are the final ReLU layers before each max-pooling operation in both
branches. The output of these addition layers is the element-wise summation of both inputs,
which is directed to the max-pooling operations of the RGB encoder branch.
As for the decoder branch, this branch does not differ from the decoder branch proposed by
Kendall et al. [9]. Therefore, the implementation of this branch is the same as discussed in
section 3-3.

Isa El Doori Master of Science Thesis

Chapter 4

Experiments

We now define the different experiments that were conducted within this thesis project. The
experiments conducted can be divided into two groups. The first group of experiments is
the training of the RGB-D data where the depth data and the RGB images are registered
to each other. The second group of experiments is the training of the RGB-D data where
the depth data and the RGB images are not registered to each other. With the first group
of experiments, this thesis will try to tackle the first problem statement as stated in section
1-3, where we would like to know what the benefits are of using RGB-D as compared to using
RGB-only data. With the second group of experiments, this thesis will try to tackle the
second problem statement as stated in section 1-3, where we would like to know how much
deviation in the registration of the depth data and the RGB images will still yield a result
better than using RGB-only data. This chapter will discuss the first group of experiments in
section 4-1, and the second group of experiments in section 4-2.

4-1 Experiments of registered RGB-D data

This thesis has conducted a total of four experiments with regard to the first problem state-
ment as stated in section 1-3. These experiments are straight-forward and are conducted
by training the two different networks on the available data. We will evaluate the results in
chapter 5 of this thesis.

Experiment one: Training SegNet RGB-D network using RGB-only data In this first
experiment, we want to train the SegNet RGB-D network implemented in section 3-3 using
RGB-only data. As specified in section 3-3, this network expects a four-channel input. Since
RGB-only data contains three channels, we have chosen to add a grey-scale image of the data
as its fourth channel. A grey-scale image contains the same information as an RGB image,
only averaged to one channel. This way, we do not “give” the network more information,
we only “give” it the same information twice. See Figure 4-1 for an example of a grey-scale
image. In other words, we create a “fake” depth image to feed to the network.

Master of Science Thesis Isa El Doori

32 Experiments

Figure 4-1: A grey-scale image of an RGB image captured by the iDS RGB camera after pre-
processing. This will create a “fake” depth channel to feed to the network.

Experiment two: Training SegNet RGB-D network using registered RGB-D data In this
second experiment, we want to train the SegNet RGB-D network implemented in section 3-3
using registered RGB-D data. This experiment is straight-forward in the sense that nothing
should be done additionally to conduct this experiment.

Experiment three: Training FuseNet RGB-D network using RGB-only data In this third
experiment, we want to train the FuseNet RGB-D network implemented in section 3-4 using
RGB-only data. As specified in section 3-4, this network expects a four-channel input. The
same method as the first experiment is applied, i.e. the fourth channel of the data contains
an averaged grey-scale image of the data.

Experiment four: Training FuseNet RGB-D network using RGB-D data In this fourth
experiment, we want to train the FuseNet RGB-D network implemented in section 3-4 using
registered RGB-D data. This experiment is straight-forward in the sense that nothing should
be done additionally to conduct this experiment.

4-2 Experiments of unregistered RGB-D data

This thesis has conducted a total of two experiments with regard to the second problem
statement as stated in section 1-3. These experiments are also straight-forward and are
conducted by training only the FuseNet network on the available data. In Chapter 5, it will
become clear why we intentionally left out the SegNet architecture for this experiment. We
will evaluate the results in Chapter 5 of this thesis.

Isa El Doori Master of Science Thesis

4-2 Experiments of unregistered RGB-D data 33

Figure 4-2: Visual representation of a depth image that has been shifted by 40% along the
X-axis, using MATLAB, without replacing the zero-positions.

Experiment one: Shifting the depth image along the X-axis from 0% and 100% with a
step size of 10% In this first experiment, we want to train the FuseNet RGB-D network
implemented in section 3-4 using a variety of unregistered depth data. This thesis has chosen
to first look at the big picture by shifting the depth data along the X-axis from 0% shift to
100% shift with a step size of 10%. The shift 1is done using the MATLAB function

imtranslate.

This function will translate the image with a specified value. The main issue with using this
MATLAB function is that the values in the shifted locations are replaced by zero. An unreg-
istered image tends to look similar to a registered image. However, as can be seen in Figure
Figure 4-2, this operation does not simulate a true unregistered depth image. Therefore,
these zero-locations are replaced by the mean of the maximum values of the depth data. The
MATLAB command of this value would be

mean(max(Depth_Image)).

Figure 4-3 shows that this operation yields in a better simulation of an unregistered image.
Remember that the higher the value of a pixel within the depth image, the higher the physical
distance between the object and the camera. Taking the mean of the maximum values of the
depth data would thus correspond to replacing the zero-locations by the average value of
the bottom of the box the objects are located in. Figure 4-2 shows an example of a depth
image that is shifted 40% along the X-axis without replacing the zero-positions, and Figure 4-3
shows an example of a depth image that is shifted 40% along the X-axis with the zero-positions
replaced by the mean of the maximum values of the depth image.

Master of Science Thesis Isa El Doori

34 Experiments

Figure 4-3: Visual representation of a depth image that has been shifted by 40% along the
X-axis, using MATLAB, with the zero-positions replaced by the mean of the maximum values of
the depth image.

Experiment two: Shifting the depth image along the X-axis from 0% and 10% by system-
atically reducing the shift along the X-axis In this second experiment, we want to train the
FuseNet RGB-D network implemented in section 3-4 using a different variety of unregistered
depth data. This time, we will focus on the maximum allowed shift along the X-axis where
the performance would still be better than using RGB-only data. We chose to evaluate the
network by systematically decreasing the shift along the X-axis, between 0% and 10% shift,
until we found the maximum allowed deviation.

Isa El Doori Master of Science Thesis

Chapter 5

Results and Discussion

This chapter will evaluate all of the results obtained from the different experiments as stated
in Chapter 4. This chapter will first discuss the evaluation metrics used to evaluate the
results in section 5-1. The results of the first group of experiments conducted in section 4-1
concerning the first problem statement as stated in section 1-3 will be evaluated and discussed
in section 5-2. Finally, the results of the second group of experiments conducted in section
4-2 concerning the second problem statement as stated in section 1-3 will be evaluated and
discussed in section 5-3.

5-1 Evaluation metrics

This thesis has chosen three evaluation metrics to evaluate the results of the different experi-
ments. Before we can specify these evaluation metrics, we want to look at a general structure
of a confusion matrix. A confusion matrix is a matrix that specifies all of the correctly
classified and incorrectly classified values, its general structure looks like:

[
True Positives (TP) False Positives (FP)
False Negatives (FN) True Negatives (TN)

]

The matrix can be read as: TP denotes all of the pixels that are classified to a class, say
cuboid, and that truly belong to that class. FP denotes all of the pixels that are classified to
a class, say cuboid, but that actually belong to a different class, say cylinder. FN denotes all
of the pixels that are classified to a different class, say cylinder, but that actually belong to
the real class, say cuboid. TN denotes all of the pixels that are classified to a different class,
say cylinder, and that actually belong to that class.

Using the values extracted from the confusion matrix, we can now look at the three different
evaluation metrics.

Master of Science Thesis Isa El Doori

36 Results and Discussion

Figure 5-1: The Intersect over Union (IoU) metric can be described as the area of overlap
between the true label and the predicted label divided by the total area of union of the two labels.
Source: [10]

All of the evaluation metrics used in this thesis can be derived from this confusion matrix.
The first evaluation metric used in this thesis is the global accuracy. It can be calculated
from the confusion matrix as

Global accuracy = 1
N

∑
c

TPc, c ∈ 1...K, (5-1)

where N denotes the total number of pixels within an entire data-set, K denotes the total
number of classes, c denotes the class number, and TP denotes the True Positive values.

The second evaluation metric used in this thesis is the mean class accuracy. It can be calcu-
lated from the confusion matrix as

Mean class accuracy = 1
K

∑
c

TPc

TPc + FNc
, c ∈ 1...K, (5-2)

where K denotes the total number of classes, c denotes the class number, TP denotes the
True Positive values, and FN denotes the False Negative values. Note that this formula is
the same as calculating the recall.

The final evaluation metric used in this thesis is the mean Intersect over Union (mIoU). It
can be calculated from the confusion matrix as

mIoU = 1
K

∑
c

TPc

TPc + FPc + FNc
, c ∈ 1...K, (5-3)

where K denotes the total number of classes, c denotes the class number, TP denotes the
True Positive values, FP denotes the False Positive values, and FN denotes the False Negative
values. Of these three evaluation metrics, the IoU metric can be visualised as can be seen in
Figure 5-1. The IoU metric can also be calculated as the total area of overlap between the
true label and the predicted label divided by the total area of union of the two labels.

Isa El Doori Master of Science Thesis

5-2 Results of the experiments of registered RGB-D data 37

Global accuracy Mean class accuracy mIoU
SegNet RGB + “fake” depth 73.99% 73.57% 48.69%

SegNet RGB-D 76.00% 73.63% 50.50%
FuseNet RGB + “fake” depth 85.54% 80.75% 64.13%

FuseNet RGB-D 87.04% 83.96% 66.56%

Table 5-1: The results of four different experiments in terms of global accuracy, mean class
accuracy and the intersect over union value. We can see that the FuseNet architecture trained on
RGB-D data performs best in all three evaluation metrics. We can also see that, in both RGB-only
and RGB-D cases, the FuseNet architecture performs better than the SegNet architecture in all
three evaluation metrics. This strengthens the notion that a late fusion method performs better
than an early fusion method. Finally, we can see that using RGB-D data in both the SegNet and
FuseNet architectures, the performance increases in all three evaluation metrics.

5-2 Results of the experiments of registered RGB-D data

As stated in section 3-2-3, the available data has been split in 75% training data and 25%
validation data. The split is done such that the data has been divided randomly, this way we
avoid most biases the network can learn. The results of the four experiments can be found in
Table 5-1.

From these values we can see that when we used the real RGB-D data in both the SegNet
and the FuseNet architectures, we achieve better results than using RGB-only data (Fusenet:
global accuracy of 87.04% when training with RGB-D data as compared to 85.54% when
training with RGB-only data, mean class accuracy of 83.96% when training with RGB-D data
as compared to 80.75% when training with RGB-only data, and mIoU of 66.56% when training
with RGB-D data as compared to 64.13% when training with RGB-only data. SegNet: global
accuracy of 76.00% when training with RGB-D data as compared to 73.99% when training
with RGB-only data, mean class accuracy of 73.63% when training with RGB-D data as
compared to 73.57% when training with RGB-only data, and mIoU of 50.50% when training
with RGB-D data as compared to 48.69% when training with RGB-only data). Although the
performance of the networks is only a couple of percent better in all three evaluation metrics,
the improvement seems consistent. Just as Hazirbas et al. [2] has shown, the addition of depth
data does seem to bring improvement to the performance of the network (Fusenet: global
accuracy increase of 1.5% when training with RGB-D data, mean class accuracy increase
of 3.21% when training with RGB-D data, and mIoU increase of 2.43% when training with
RGB-D data. SegNet: global accuracy increase of 2.01% when training with RGB-D data,
mean class accuracy increase of 0.06% when training with RGB-D data, and mIoU increase
of 1.81% when training with RGB-D data).

Also, when comparing the result of both SegNet experiments to both FuseNet RGB-D experi-
ments, we can see that the FuseNet architecture performs considerably better in all evaluation
metrics (RGB + “fake” depth: global accuracy increase of 11.55% when training with the
FuseNet architecture, mean class accuracy increase of 7.18% when training with the FuseNet
architecture, and mIoU increase of 15.44% when training with the FuseNet architecture.
RGB-D: global accuracy increase of 11.04% when training with the FuseNet architecture,
mean class accuracy increase of 10.33% when training with the FuseNet architecture, and
mIoU increase of 16.06% when training with the FuseNet architecture).

Master of Science Thesis Isa El Doori

38 Results and Discussion

This seems to indicate that late fusion could be a wiser choice than early fusion. This result
has shown us that the intuition of [36, 37, 38, 2] was correct in the sense that late fusion can
be a better way to incorporate the depth data to the network architecture.

However, another way that we can evaluate the results of these networks is by means of
a visual approach. Here, we will show a couple of examples of images that were fed to
these differently trained networks and discuss what we see goes right or wrong. In image
segmentation there is generally a problem that is caused by the fact that there is no knowledge
of the contents of an image a priori. This means that the systems cannot determine beforehand
how many segments are required in a particular image. The problem gets divided into two
cases: “under-segmentation”, which happens when parts of the image that actually belong to
different objects, or to an object and the background, are assigned to the same segment; and
“over-segmentation”, which occurs when parts of the image belonging to a single object are
split apart by the algorithm [42].

Figures 5-2, 5-3, 5-4, and 5-5 show the results of one particular image when fed through
the four different networks. Each figure is split into the ground truth image (left) and the
predicted image (right). Also, each label is colour-coded into four different colours. Yellow
corresponds to the “Environment” class, dark blue corresponds to the “Cuboid or Planar”
class, light blue corresponds to the “Sphere or Cylinder or Flask” class, and green corresponds
to the “Complex Object or Undefined” class. Figures 5-2, 5-3, 5-4, and 5-5 demonstrate that
under-segmentation occurs heavily in all cases. However, we can also see that the FuseNet
architecture (Figures 5-4 and 5-5) has much less under-segmentation than the SegNet archi-
tecture (Figures 5-2, and 5-3) in both data-sets.

When comparing the SegNet architecture trained on RGB-only data and trained on RGB-
D data (when comparing Figures 5-2 and 5-3), we can see that in the case of RGB-D data
(Figure 5-3) the network suffers from over-segmentation on the bottom right corner. However,
the under-segmentation is still reduced. This means that using RGB-D data can help the
network to perceive the objects somewhat better. In the case of FuseNet trained on RGB-D
data compared to the FuseNet trained on RGB-only data (Figure 5-4 compared to Figure 5-
5), we can see that only the under-segmentation has been reduced. This also helps in our
statement that using RGB-D data can improve the network. Also, we would like to point out
that the manner of under-segmentation in the SegNet networks, as can be seen by Figures
5-2 and 5-3, can probably be explained due to the early fusion method.

Looking at a different example, Figures 5-6, 5-7, 5-8, and 5-9 show an image, containing a
single object, that has been fed to the networks. This example shows the difference between
the SegNet and the FuseNet architectures at its core. We can see from Figures 5-6 and 5-7
that the SegNet architecture suffers highly from under-segmentation, even when adding depth
information. We can also see from Figures 5-8 and 5-9 that the FuseNet architecture suffers
less from under-segmentation. That is why the experiments conducted in section 5-3 were
only conducted by training the FuseNet architecture. This result further supports the notion
that a late fusion method might perform better than an early fusion method.

As a final example, Figures 5-10 and 5-11 show yet another image that has been fed to the
networks. However, this example highlights a difference between using RGB-only images and
RGB-D data while training the FuseNet architecture. Figure 5-10 shows that the FuseNet
network trained on RGB-only images slightly suffers from over-segmentation in some cases.

Isa El Doori Master of Science Thesis

5-3 Results of the experiments of unregistered RGB-D data 39

Global accuracy Mean class accuracy mIoU
FuseNet RGB-D 0% shift 87.04% 83.96% 66.56%
FuseNet RGB-D 10% shift 85.05% 79.41% 62.76%
FuseNet RGB-D 20% shift 85.19% 77.12% 61.85%
FuseNet RGB-D 30% shift 83.22% 72.49% 56.34%
FuseNet RGB-D 40% shift 84.32% 78.84% 61.55%
FuseNet RGB-D 50% shift 84.70% 79.06% 61.01%
FuseNet RGB-D 60% shift 81.73% 71.31% 55.66%
FuseNet RGB-D 70% shift 85.13% 74.67% 60.08%
FuseNet RGB-D 80% shift 83.35% 78.34% 58.36%
FuseNet RGB-D 90% shift 83.45% 72.37% 58.06%
FuseNet RGB-D 100% shift 84.99% 76.57% 61.47%
FuseNet RGB + “fake” depth 85.54% 80.75% 64.13%

Table 5-2: The results of the FuseNet RGB-D network trained on the different shifts of the
depth data along the X-axis. The shifts occur from 0% to 100% shift with a step-size of 10%.
The results are evaluated in terms of global accuracy, mean class accuracy and the intersect over
union value. This table shows that only a 0% shift along the X-axis performs better than using
RGB-only data in the subsequent evaluation metrics. This seems to indicate that the maximum
shift we are looking for lies between 0% and 10%.

Figure 5-11, on the other hand, shows that the FuseNet network trained on RGB-D data does
not suffer from over-segmentation in this case. This does not mean that the FuseNet network
trained on RGB-D data does not suffer from over-segmentation. This example is just to show
that in some cases, the use of RGB-D data can improve the network in contrast to RGB-only
images.

5-3 Results of the experiments of unregistered RGB-D data

We have seen in section 5-2 that the FuseNet architecture performs significantly better in all
three performance metrics than the SegNet architecture. For this reason, as stated in section
4-2, we will only evaluate the FuseNet network for the following experiments. Also, as stated
in section 4-2, the experiment is done in two phases. The first phase is shifting the depth
image along the X-axis from 0% to 100% shift with a step-size of 10%. The result of this
phase can be found in Table 5-2. As we can see from Table 5-2, the FuseNet RGB-D network
trained with 0% shift performs best of all of the experiments. However, we also notice that
none of the networks trained on shifted depth data performs better than the RGB-only case.
Figures 5-12, 5-13, and 5-14 visualise these results. Looking at these figures, while none of
the networks trained on shifted data performs better than the RGB-only case, there is a
large fluctuation between the results that differs from shift-to-shift. We do not have a clear
explanation for this observation. However, when looking at a curve fit, we can see that there
is still a downward trend in all three of the evaluation metrics the larger the shift along the
X-axis gets.

Now that we have seen that, in general, there is a downward trend the larger the shift along
the X-axis gets, we can zoom in between 0% and 10% shift to truly determine the maximum
allowed deviation in the un-registration of the depth data.

Master of Science Thesis Isa El Doori

40
Results

and
D
iscussion

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-2: SegNet trained on RGB-only data. We can see that the network does not perform as desired and under-segmentation occurs
heavily.

Isa
ElD

oori
M
asterofScience

Thesis

5-3
Results

ofthe
experim

ents
ofunregistered

RGB-D
data

41

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-3: SegNet network trained on RGB-D data. We can see that the network does not perform as desired and under-segmentation occurs
heavily. We can also see that the under-segmentation that occurs in this case is less severe than the RBD-only case. However, we can also see
a little over-segmentation occurring in the bottom right corner.

M
asterofScience

Thesis
Isa

ElD
oori

42
Results

and
D
iscussion

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-4: FuseNet network trained on RGB-only data. We can see that the network performs almost as desired, with less under-segmentation
occurring when comparing it to the SegNet RGB-only, and SegNet RGB-D networks. Also, we can see that there is no over-segmentation as in
the case of the SegNet RGB-D network.

Isa
ElD

oori
M
asterofScience

Thesis

5-3
Results

ofthe
experim

ents
ofunregistered

RGB-D
data

43

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-5: FuseNet network trained on RGB-D data. We can see that the network performs almost as desired, with less under-segmentation
occurring when comparing it to the SegNet RGB-only, SegNet RGB-D. Under-segmentation is further reduced compared to the FuseNet RGB-only
networks. Also, we can see that there is no over-segmentation as in the case of the SegNet RGB-D network.

M
asterofScience

Thesis
Isa

ElD
oori

44
Results

and
D
iscussion

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-6: SegNet network trained on RGB-only data. We can see that the network does not perform as desired and under-segmentation
occurs heavily.

Isa
ElD

oori
M
asterofScience

Thesis

5-3
Results

ofthe
experim

ents
ofunregistered

RGB-D
data

45

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-7: SegNet network trained on RGB-D data. We can see that the network does not perform as desired and under-segmentation occurs
heavily. We can also see that the under-segmentation that occurs in this case is less severe than the RGB-only case.

M
asterofScience

Thesis
Isa

ElD
oori

46
Results

and
D
iscussion

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-8: FuseNet network trained on RGB-only data. We can see that the network performs almost as desired, with less under-segmentation
occurring when comparing it to the SegNet RGB-only, and SegNet RGB-D networks.

Isa
ElD

oori
M
asterofScience

Thesis

5-3
Results

ofthe
experim

ents
ofunregistered

RGB-D
data

47

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-9: FuseNet network trained on RGB-D data. We can see that the network performs almost as desired, with less under-segmentation
occurring when comparing it to the SegNet RGB-only, SegNet RGB-D, and the FuseNet RGB-only networks.

M
asterofScience

Thesis
Isa

ElD
oori

48
Results

and
D
iscussion

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-10: FuseNet network trained on RGB-only data. We can see that the network performs almost as desired. However, over-segmentation
does occur in some areas.

Isa
ElD

oori
M
asterofScience

Thesis

5-3
Results

ofthe
experim

ents
ofunregistered

RGB-D
data

49

(a) Ground truth labels vs. the predicted labels overlayed on the original RGB image

(b) Original RGB image

Figure 5-11: FuseNet network trained on RGB-D data. We can see that the network performs almost as desired, with less under-segmentation
occurring when comparing it to the and the FuseNet RGB-only network. Also, we can see that there is no over-segmentation as in the case of
the FuseNet RGB-only network.

M
asterofScience

Thesis
Isa

ElD
oori

50 Results and Discussion

Global accuracy Mean class accuracy mIoU
FuseNet RGB-D 0% shift 87.04% 83.96% 66.56%
FuseNet RGB-D 0.5% shift 85.95% 82.85% 64.81%
FuseNet RGB-D 1% shift 85.39% 83.12% 64.19%
FuseNet RGB-D 2% shift 85.14% 78.78% 63.38%
FuseNet RGB-D 5% shift 84.16% 74.76% 58.90%
FuseNet RGB-D 10% shift 85.05% 79.41% 62.76%

FuseNet RGB + “fake” depth 85.54% 80.75% 64.13%

Table 5-3: The results of the FuseNet RGB-D network trained on the different shifts of the
depth data along the X-axis. The shifts occur from 0% to 10% shift by means of systematically
reducing the shift along the X-axis. This thesis has chosen to evaluate the shifts 0%, 0.5%, 1%,
2%, 5%, and 10%. The results are evaluated in terms of global accuracy, mean class accuracy
and the intersect over union value. We can see that a shift of 0% along the X-axis performs best
in all three evaluation metrics. However, a shift of 0.5% performs better than using RGB-only
data in all three evaluation metrics.

The method used in this second phase of the experiment to determine this maximum allowed
deviation is to systematically reduce the shift along the X-axis until we found the maximum
allowed deviation. The results of this second phase can be found in Table 5-3. Also, Figures
5-15, 5-15, and 5-15 visualise the results of Table 5-3. This thesis has chosen to first look at
a 5% shift along the X-axis. From Table 5-3 and the Figures 5-15, 5-16, and 5-17 we can see
that this is too much shift. Afterwards, we looked at 2% shift along the X-axis. Again, from
Table 5-3 and the Figures 5-15, 5-16, and 5-17 we see that is still too much shift. We chose
to than look at a shift of 1% along the X-axis. Looking at Table 5-3 and the Figures 5-15,
5-16, and 5-17, we can see that we are getting closer. The final shift this thesis has looked at
is a shift of 0.5% along the X-axis.

From Table 5-3 and Figures 5-15, 5-16, and 5-17 we can say that the maximum allowed
shift along the X-axis of the depth data would be 0.5%. This value corresponds to a shift
of one pixel of the depth image. When scaling back the image to its original size it would
correspond to a shift of three pixels along the X-axis. As stated in section 3-1, we have the
spatial X-coordinates of the objects available.

Thus, we can translate these three pixels to be correspondent to 1.67 millimetres of shift along
the X-axis. In other words, the maximum allowed shift along the X-axis where the results
are still better than the RGB-only case would be 1.67 millimetres.

Isa El Doori Master of Science Thesis

5-3 Results of the experiments of unregistered RGB-D data 51

Figure 5-12: Visual representation of the global accuracy’s of the different shifts of the depth
data along the X-axis. These shifts occur from 0% to 100% shift along the X-axis with a step-size
of 10%. We can see that only a shift of 0% along the X-axis performs better that using RGB-only
data. Also, the results fluctuate in a manner that it may seem that a bigger shift can result in a
better performance. However, we can also see from the curve fit that there is a downward trend
in the performance.

Figure 5-13: Visual representation of the mean class accuracy’s of the different shifts of the
depth data along the X-axis. These shifts occur from 0% to 100% shift along the X-axis with
a step-size of 10%. We can see that only a shift of 0% along the X-axis performs better that
using RGB-only data. Also, the results fluctuate in a manner that it may seem that a bigger shift
can result in a better performance. However, we can also see from the curve fit that there is a
downward trend in the performance.

Master of Science Thesis Isa El Doori

52 Results and Discussion

Figure 5-14: Visual representation of the mean Intersect over Union (mIoU) values of the different
shifts of the depth data along the X-axis. These shifts occur from 0% to 100% shift along the
X-axis with a step-size of 10%. We can see that only a shift of 0% along the X-axis performs
better than using RGB-only data. Also, the results fluctuate in a manner that it may seem that a
bigger shift can result in a better performance. However, we can also see from the curve fit that
there is a downward trend in the performance.

Figure 5-15: Visual representation of the global accuracy’s of the different shifts of the depth
data along the X-axis. These shifts occur from 0% to 10% shift along the X-axis. We can see
that shifts of 0% and 0.5% perform better than using RGB-only data.

Isa El Doori Master of Science Thesis

5-3 Results of the experiments of unregistered RGB-D data 53

Figure 5-16: Visual representation of the mean class accuracy’s of the different shifts of the
depth data along the X-axis. These shifts occur from 0% to 10% shift along the X-axis. We can
see that shifts of 0%, 0.5%, and 1% perform better than using RGB-only data.

Figure 5-17: Visual representation of the mean Intersect over Union (mIoU) values of the different
shifts of the depth data along the X-axis. These shifts occur from 0% to 10% shift along the
X-axis. We can see that shifts of 0% and 0.5% perform better than using RGB-only data. We
can also see that a shift of 1% performs just as well as using RGB-only data.

Master of Science Thesis Isa El Doori

54 Results and Discussion

Isa El Doori Master of Science Thesis

Chapter 6

Conclusions and Recommendations

6-1 Conclusions

This thesis started with two problem statements, they are:

• How does the use of RGB-D data affect the performance compared to the
usage of RGB-only data, applied to the VI dataset?

• How much deviation is allowed in the registration of the depth data to the
RGB data?

We have given a general background on what image segmentation is. We have also given a
general background on DL and the use of DL-specific algorithms in image segmentation. We
eventually chose two DL specific algorithms from literature to implement, i.e. SegNet pro-
posed by Badrinarayanan et al. [1], and FuseNet proposed by Hazirbas et al. [2]. Afterwards,
this thesis has gone through its implementation pipeline, i.e. how the data was structured
given raw data, and how the algorithms were implemented. Through experiments conducted
during this thesis project, we can now answer these two questions.

How does the use of RGB-D data affect the performance compared to the usage of RGB-
only data, applied to the VI dataset? We have seen from the four experiments conducted
during this thesis work that the introduction of depth data affects the performance in a
positive manner. This thesis has chosen to evaluate the performance of the algorithms using
thee different evaluation metrics, i.e. global accuracy, mean class accuracy, and mean Intersect
over Union (mIoU). Table 6-1 shows the results of the two networks implemented with the two
different data-sets. From Table 6-1 we can see that the introduction of depth data increases
the performance in all three evaluation metrics in both network architectures.

Master of Science Thesis Isa El Doori

56 Conclusions and Recommendations

Global accuracy Mean class accuracy mIoU
SegNet RGB + “fake” depth 73.99% 73.57% 48.69%

SegNet RGB-D 76.00% 73.63% 50.50%
FuseNet RGB + “fake” depth 85.54% 80.75% 64.13%

FuseNet RGB-D 87.04% 83.96% 66.56%

Table 6-1: The results of four different experiments in terms of global accuracy, mean class
accuracy and the intersect over union value. We can see that the FuseNet architecture trained on
RGB-D data performs best in all three evaluation metrics. We can also see that, in both RGB-only
and RGB-D cases, the FuseNet architecture performs better than the SegNet architecture in all
three evaluation metrics. This strengthens the notion that a late fusion method performs better
than an early fusion method. Finally, we can see that using RGB-D data in both the SegNet and
FuseNet architectures, the performance increases in all three evaluation metrics.

However, we can see that the FuseNet architecture, using RGB-only data or using RGB-D
data, performs significantly better than the SegNet architecture. This implies that the addition
of depth data by performing late fusion might perform better than by performing early fusion.
This proposed idea is further encouraged when looking at visual examples. We saw that,
in contrast to the FuseNet architecture, the SegNet architecture highly suffers from under-
segmentation in a lot of cases. The SegNet architecture suffered from under-segmentation
even in simpler cases. However, this does not mean that the FuseNet architecture does not
suffer from under-segmentation. It suffers from it in a lighter manner. Also, when looking
at visual examples, we see that the FuseNet architecture trained on RGB-only data suffered
from over-segmentation in some cases, whilst the FuseNet architecture trained on RGB-D
images did not. This also strengthens our results.

How much deviation is allowed in the registration of the depth data to the RGB data? We
have seen from the experiments conducted during this thesis work on shifting the depth data
along the X-axis that the performance of the network starts to deviate from its unaltered
performance. Again, this thesis has chosen to evaluate the performance of the algorithms
using thee different evaluation metrics, i.e. global accuracy, mean class accuracy, and mean
Intersect over Union (mIoU). Table 6-2 shows the results of the different shifts along the
X-axis. These shifts were established by systematically reducing the shift along the X-axis.
From Table 6-2 we can see that the network trained on the unaltered depth data performs
best in all three evaluation metrics. However, we wanted to know how much deviation is
allowed in the registration such that the performance, in all three evaluation metrics, would
still be considered better than the performance of using RGB-only data. Table 6-2 shows
that a deviation of 0.5% along the X-axis accomplishes this result, while a deviation of one%
does come close. We can thus conclude that the maximum allowed deviation along the X-
axis would be 0.5%, which corresponds to a shift of 1 pixel of the depth data. This shift of
one pixel, when translated back into its original image size, corresponds to a shift of 1.67
millimetres in the real world.

Isa El Doori Master of Science Thesis

6-2 Recommendations for Future Work 57

Global accuracy Mean class accuracy mIoU
FuseNet RGB-D 0% shift 87.04% 83.96% 66.56%
FuseNet RGB-D 0.5% shift 85.95% 82.85% 64.81%
FuseNet RGB-D 1% shift 85.39% 83.12% 64.19%
FuseNet RGB-D 2% shift 85.14% 78.78% 63.38%
FuseNet RGB-D 5% shift 84.16% 74.76% 58.90%
FuseNet RGB-D 10% shift 85.05% 79.41% 62.76%

FuseNet RGB + “fake” depth 85.54% 80.75% 64.13%

Table 6-2: The results of the FuseNet RGB-D network trained on the different shifts of the depth
data along the X-axis. The shifts occur from 0% to 10% shift by means of a random tree search.
This thesis has chosen to evaluate the shifts 0%, 0.5%, 1%, 2%, 5%, and 10%. The results are
evaluated in terms of global accuracy, mean class accuracy and the intersect over union value. We
can see that a shift of 0% along the X-axis performs best in all three evaluation metrics. However,
a shift of 0.5% performs better than using RGB-only data in all three evaluation metrics.

6-2 Recommendations for Future Work

Even though during the entirety of this thesis project we tried to work as complete as possible,
due to time constraints, a couple of aspects were disregarded.

The first issue we would like to recommend for further investigation is the tuning of the hyper-
parameters of the network. Currently, these parameters, such as the learning rate, the batch
size, the number of training iterations, etc., were chosen on the basis of simple experiments.
We would recommend a more extensive hyper-parameter tuning for the future.

Also, we have tried to reduce the possibility of the networks being over-fitted by designing the
network using Batch Normalisation, Rectified Linear Unit (ReLU), and dropout operations to
reduce over-fitting. However, no experiment to validate that the networks were over-fitted or
not was conducted. This was not done mainly because of the fact that there was not enough
data for us to work with. We would recommend a validation of the over-fitting problem for
the future by gathering more data.

Finally, as for the shifts in the depth data, we have only shifted the depth data along the
X-axis in one direction. For future work, we would recommend experimenting with the shift
along the X-axis in both directions. Also, shifts along the Y-axis and rotations along the
Z-axis should be experimented with to fully assess the robustness of the registration problem.

Master of Science Thesis Isa El Doori

58 Conclusions and Recommendations

Isa El Doori Master of Science Thesis

Appendix A

Code to pre-process the data

This Appendix contains all of the code to pre-process the raw data captured by the Ensenso
stereo camera and the iDS RGB camera.

A-1 Pre-process depth information

1 % This code is to preprocess the PCD files to only get the depth map
2 % Also, this code gives every depth map a unique name
3 % This is necessary since all of the PCD files received from Fizyr have
4 % the exact same name.
5
6 % Add Inpaint_nans folder to workspace
7 addpath (’..\Include\Inpaint_nans\Inpaint_nans’)
8
9 % Gather all of the folders

10 AllFolders = dir (fullfile (’C:\Git\students -assignments\
SemanticSegmentation\MATLAB\Images\Fizyr_example\data*’)) ;

11
12 % Initialize FolderNames variable
13 FolderNames = cell (length (AllFolders) , 1) ;
14 for i = 1 : length (AllFolders)
15 % Fill in the FolderNames variable to contain all of the folders
16 % we are going to look into
17 FolderNames (i) = {fullfile (AllFolders (i) . folder , AllFolders (i) . name) } ;
18 end
19
20 for j = 1 : length (FolderNames)
21 % Read current folder
22 FolderName = FolderNames{j } ;
23 % Navigate to ’resources ’ folder where the image is located in
24 fileFolder = fullfile (FolderName , ’resources’) ;
25 % Find all .png images

Master of Science Thesis Isa El Doori

60 Code to pre-process the data

26 dirOutput = dir (fullfile (fileFolder , ’*.png’)) ;
27 % Initialize the fileNames variable
28 fileNames = cell (length (dirOutput) , 1) ;
29 for m = 1 : length (dirOutput)
30 % Fill in the fileNames variable to contain the path to all of the
31 % images we want to rename
32 fileNames (m) = {fullfile (dirOutput (m) . folder , dirOutput (m) . name) } ;
33 end
34 for k=1:length (fileNames)
35 % Read current filename
36 fname = fileNames{k } ;
37 % Read current PCD file
38 ptCloud = pcread (fname) ;
39 % Consider only the depth information
40 Z_value=double (ptCloud . Location (: , : , 3)) ;
41 % Use the inpain_nans function to fill in all of the NaN values
42 Z_value = inpaint_nans (Z_value , 2) ;
43 % Normalize the depth map to be between 0 and 1
44 normZ_value = Z_value − min (Z_value (:)) ;
45 normZ_value = normZ_value . / max (normZ_value (:)) ;
46 % Convert depth map to uint8 , this will make it between 0 and 255
47 normZ_value = im2uint8 (normZ_value) ;
48 % Change the name to have a unique name
49 name = strcat (’181204_’ , AllFolders (j) . name , ’_depth.png’) ;
50 % Save the depth map in the ’FolderName ’ folder
51 imwrite (normZ_value , fullfile (FolderName , name))
52
53 end
54 end

A-2 Resize and crop all of the data

1 %% Resize and crop the data acoordingly
2 % (Can be incoporated in previous for loop), for testing purposes did

them
3 % seperately.
4
5 fileFolders = fullfile (’C:\Git\students -assignments\SemanticSegmentation\

MATLAB\Images\Containers&Bags_PCD_example’) ;
6 Outputdirectory = dir (fullfile (fileFolders , ’*.png’)) ;
7 fileNames = {Outputdirectory . name } ;
8 % For every depth map: resize to [360 480]
9

10 for l=1:length (fileNames)
11 ImageName = fileNames{l } ;
12 Image = imread (ImageName) ;
13 ResizedImage = imresize (Image , [3 6 0 480] , ’nearest’) ;
14 CroppedImage = ResizedImage (3 1 : 2 6 0 , 8 1 : 4 1 5 , :) ;
15 imwrite (ResizedImage , fullfile (’C:\Git\students -assignments\

SemanticSegmentation\MATLAB\Images\Containers&Bags_PCD_example’ ,
ImageName))

16 end

Isa El Doori Master of Science Thesis

A-3 Generate RGB-D data format 61

A-3 Generate RGB-D data format

1 % This code generates RGB-D .mat files
2
3 %% Store RGB images in 4 channel matrix
4
5 % Locate all the RGB files from the specified folder
6 addpath (’..\Images\generate_4channel_example\RGB’)
7 fileFolderRGB = fullfile (’C:\Git\students -assignments\

SemanticSegmentation\MATLAB\Images\generate_4channel_example\RGB’) ;
8 dirOutputRGB = dir (fullfile (fileFolderRGB , ’*.png’)) ;
9 fileNamesRGB = {dirOutputRGB . name } ;

10
11 TestImage = imread (fileNamesRGB {1}) ;
12
13 [Height , Width , ~] = size (TestImage) ;
14
15 numberFiles = length (fileNamesRGB) ;
16
17 NumberChannels = 4 ;
18
19 ImageTrainData = uint8 (zeros (Height , Width , NumberChannels , numberFiles)) ;
20
21 for k=1:length (fileNamesRGB)
22 % Read RGB image
23 CurrentImage=fileNamesRGB{k } ;
24 Image=imread (CurrentImage) ;
25 % Store RGB image in first 3 channels of the 4-channel matrix
26 ImageTrainData (: , : , 1 , k) = Image (: , : , 1) ;
27 ImageTrainData (: , : , 2 , k) = Image (: , : , 2) ;
28 ImageTrainData (: , : , 3 , k) = Image (: , : , 3) ;
29 end
30
31 %% Store Depth images in 4 channel matrix
32
33 % Locate all the depth files from the specified folder
34 addpath (’..\Images\generate_4channel_example\depth’)
35 fileFolderDepth = fullfile (’C:\Git\students -assignments\

SemanticSegmentation\MATLAB\Images\generate_4channel_example\depth’) ;
36 dirOutputDepth = dir (fullfile (fileFolderDepth , ’*.png’)) ;
37 fileNamesDepth = {dirOutputDepth . name } ;
38
39 for i=1:length (fileNamesDepth)
40 % Read depth image
41 CurrentDepth=fileNamesDepth{i } ;
42 Depth=imread (CurrentDepth) ;
43 % Store depth image in the 4th channel of the 4-channel matrix
44 ImageTrainData (: , : , 4 , i) = Depth (: , :) ;
45 end
46
47 %% Save every 4 channel image in a mat format
48

Master of Science Thesis Isa El Doori

62 Code to pre-process the data

49 for l = 1 : length (fileNamesRGB)
50 FileName=fileNamesRGB{l } ;
51 img = ImageTrainData (: , : , : , l) ;
52 name = strcat (FileName (1 : end−3) , ’mat’) ;
53 save (fullfile (’C:\Git\students -assignments\SemanticSegmentation\

MATLAB\Images\generate_4channel_example\mat’ , name) , ’img’)
54 end

Isa El Doori Master of Science Thesis

Appendix B

Code of the proposed networks

This Appendix contains the implemented networks. Section B-1 contains the code of the
implemented SegNet RGB-D network, and section B-2 contains the code of the implemented
FuseNet network.

B-1 SegNet RGB-D MATLAB implementation

1 imageSize = [2 3 0 , 3 3 5 , 4] ; numClasses = 4 ;
2 SegNetRGBD_Network = segnetLayers ([imageSize (1 , 1) , imageSize (1 , 2) , 3] ,

numClasses , ’vgg16’) ;
3
4 averageWeights = single (zeros (3 , 3 , 64)) ;
5
6 for i = 1:64
7 averageWeights (: , : , i) = (SegNetRGBD_Network . Layers (2 , 1) . Weights

(: , : , 1 , i) + SegNetRGBD_Network . Layers (2 , 1) . Weights (: , : , 2 , i) +
SegNetRGBD_Network . Layers (2 , 1) . Weights (: , : , 3 , i)) /3 ;

8 end
9

10 newWeights = single (zeros (3 , 3 , 4 , 64)) ;
11
12 for i = 1:64
13 newWeights (: , : , 1 : 3 , i) = SegNetRGBD_Network . Layers (2 , 1) . Weights (: , : , : ,

i) ;
14 newWeights (: , : , 4 , i) = averageWeights (: , : , i) ;
15 end
16
17 newBias = double (zeros (1 , 1 , 64)) ;
18 conv4dlayer = convolution2dLayer (3 ,64 , ’Name’ ,’conv4d’ ,’Padding’ , [1 1] , ’

BiasLearnRateFactor’ , 0 , ’WeightL2Factor’ , 0) ;
19 conv4dlayer . Weights = newWeights ;
20 conv4dlayer . Bias = newBias ;

Master of Science Thesis Isa El Doori

64 Code of the proposed networks

21
22 newInput = imageInputLayer ([2 3 0 , 3 3 5 , 4] , ’Name’ ,’newinputImage’) ;
23
24 dropout1 = dropoutLayer (0 . 5 , ’Name’ ,’dropout1’) ;
25 dropout2 = dropoutLayer (0 . 5 , ’Name’ ,’dropout2’) ;
26 dropout3 = dropoutLayer (0 . 5 , ’Name’ ,’dropout3’) ;
27 dropout4 = dropoutLayer (0 . 5 , ’Name’ ,’dropout4’) ;
28 dropout5 = dropoutLayer (0 . 5 , ’Name’ ,’dropout5’) ;
29 dropout6 = dropoutLayer (0 . 5 , ’Name’ ,’dropout6’) ;
30
31 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’inputImage’ ,’

conv1_1’) ;
32 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’conv1_1’ ,’

bn_conv1_1’) ;
33
34 SegNetRGBD_Network = removeLayers (SegNetRGBD_Network , ’inputImage’) ;
35 SegNetRGBD_Network = removeLayers (SegNetRGBD_Network , ’conv1_1’) ;
36
37 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , newInput) ;
38 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , conv4dlayer) ;
39 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , dropout1) ;
40 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , dropout2) ;
41 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , dropout3) ;
42 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , dropout4) ;
43 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , dropout5) ;
44 SegNetRGBD_Network = addLayers (SegNetRGBD_Network , dropout6) ;
45
46 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’newinputImage’ ,’

conv4d’) ;
47 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’conv4d’ ,’

bn_conv1_1’) ;
48
49 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’pool3/out’ ,’

conv4_1’) ;
50 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’pool3/out’ ,’

dropout1’) ;
51 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’dropout1’ ,’conv4_1

’) ;
52
53 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’pool4/out’ ,’

conv5_1’) ;
54 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’pool4/out’ ,’

dropout2’) ;
55 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’dropout2’ ,’conv5_1

’) ;
56
57 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’pool5/out’ ,’

decoder5_unpool/in’) ;
58 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’pool5/out’ ,’

dropout3’) ;
59 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’dropout3’ ,’

decoder5_unpool/in’) ;
60

Isa El Doori Master of Science Thesis

B-2 FuseNet MATLAB implementation 65

61 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’decoder5_relu_1
’ ,’decoder4_unpool/in’) ;

62 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’decoder5_relu_1’ ,’
dropout4’) ;

63 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’dropout4’ ,’
decoder4_unpool/in’) ;

64
65 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’decoder4_relu_1

’ ,’decoder3_unpool/in’) ;
66 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’decoder4_relu_1’ ,’

dropout5’) ;
67 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’dropout5’ ,’

decoder3_unpool/in’) ;
68
69 SegNetRGBD_Network = disconnectLayers (SegNetRGBD_Network , ’decoder3_relu_1

’ ,’decoder2_unpool/in’) ;
70 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’decoder3_relu_1’ ,’

dropout6’) ;
71 SegNetRGBD_Network = connectLayers (SegNetRGBD_Network , ’dropout6’ ,’

decoder2_unpool/in’) ;

B-2 FuseNet MATLAB implementation

1 imageSize = [2 3 0 , 3 3 5 , 4] ; numClasses = 4 ;
2 FuseNet_Matlab_Network = segnetLayers ([imageSize (1 , 1) , imageSize (1 , 2) , 3] ,

numClasses , ’vgg16’) ;
3
4 averageWeights = single (zeros (3 , 3 , 64)) ;
5
6 for i = 1:64
7 averageWeights (: , : , i) = (FuseNet_Matlab_Network . Layers (2 , 1) . Weights

(: , : , 1 , i) + FuseNet_Matlab_Network . Layers (2 , 1) . Weights (: , : , 2 , i) +
FuseNet_Matlab_Network . Layers (2 , 1) . Weights (: , : , 3 , i)) /3 ;

8 end
9

10 newWeights = single (zeros (3 , 3 , 1 , 64)) ;
11
12 for i = 1:64
13 newWeights (: , : , 1 , i) = averageWeights (: , : , i) ;
14 end
15
16 newBias = double (zeros (1 , 1 , 64)) ;
17 conv1dlayer = convolution2dLayer (3 ,64 , ’Name’ ,’conv1d’ ,’Padding’ , [1 1] , ’

BiasLearnRateFactor’ , 0 , ’WeightL2Factor’ , 0) ;
18 conv1dlayer . Weights = newWeights ;
19 conv1dlayer . Bias = newBias ;
20
21 channel1Weights = single (zeros (1 , 1 , 4)) ;
22 channel1Weights (1 , 1 , 4) = 1 ;
23 conv1channellayer = convolution2dLayer (1 , 1 , ’Name’ ,’conv1channel’ ,’

WeightLearnRateFactor’ , 0 , ’BiasLearnRateFactor’ , 0 , ’WeightL2Factor’ , 0) ;
24 conv1channellayer . Weights = channel1Weights ;

Master of Science Thesis Isa El Doori

66 Code of the proposed networks

25
26 channel3Weights = single (zeros (1 , 1 , 4 , 3)) ;
27 channel3Weights (1 , 1 , 1 , 1) = 1 ; channel3Weights (1 , 1 , 2 , 2) = 1 ;

channel3Weights (1 , 1 , 3 , 3) = 1 ;
28 conv3channellayer = convolution2dLayer (1 , 3 , ’Name’ ,’conv3channel’ ,’

WeightLearnRateFactor’ , 0 , ’BiasLearnRateFactor’ , 0 , ’WeightL2Factor’ , 0) ;
29 conv3channellayer . Weights = channel3Weights ;
30
31 newInput = imageInputLayer (imageSize , ’Name’ ,’newinputImage’) ;
32
33 dropout1 = dropoutLayer (0 . 5 , ’Name’ ,’dropout1’) ;
34 dropout2 = dropoutLayer (0 . 5 , ’Name’ ,’dropout2’) ;
35 dropout3 = dropoutLayer (0 . 5 , ’Name’ ,’dropout3’) ;
36 dropout4 = dropoutLayer (0 . 5 , ’Name’ ,’dropout4’) ;
37 dropout5 = dropoutLayer (0 . 5 , ’Name’ ,’dropout5’) ;
38 dropout6 = dropoutLayer (0 . 5 , ’Name’ ,’dropout6’) ;
39
40 depthLayers = FuseNet_Matlab_Network . Layers (3 : 4 4 , 1) ;
41
42 for i = 1 : length (depthLayers)
43 Name = depthLayers (i , 1) . Name ;
44 Name = strcat (Name , ’_depth’) ;
45 depthLayers (i , 1) . Name = Name ;
46 end
47
48 dropoutdepth1 = dropoutLayer (0 . 5 , ’Name’ ,’dropoutdepth1’) ;
49 dropoutdepth2 = dropoutLayer (0 . 5 , ’Name’ ,’dropoutdepth2’) ;
50
51 addition1 = additionLayer (2 , ’Name’ ,’addition1’) ;
52 addition2 = additionLayer (2 , ’Name’ ,’addition2’) ;
53 addition3 = additionLayer (2 , ’Name’ ,’addition3’) ;
54 addition4 = additionLayer (2 , ’Name’ ,’addition4’) ;
55 addition5 = additionLayer (2 , ’Name’ ,’addition5’) ;
56
57 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’

inputImage’ ,’conv1_1’) ;
58 FuseNet_Matlab_Network = removeLayers (FuseNet_Matlab_Network , ’inputImage’

) ;
59
60 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , newInput) ;
61 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , conv1dlayer) ;
62 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network ,

conv1channellayer) ;
63 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network ,

conv3channellayer) ;
64 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropout1) ;
65 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropout2) ;
66 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropout3) ;
67 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropout4) ;
68 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropout5) ;
69 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropout6) ;
70 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , depthLayers) ;
71 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropoutdepth1) ;

Isa El Doori Master of Science Thesis

B-2 FuseNet MATLAB implementation 67

72 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , dropoutdepth2) ;
73 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , addition1) ;
74 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , addition2) ;
75 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , addition3) ;
76 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , addition4) ;
77 FuseNet_Matlab_Network = addLayers (FuseNet_Matlab_Network , addition5) ;
78
79 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

newinputImage’ ,’conv3channel’) ;
80 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

conv3channel’ ,’conv1_1’) ;
81
82 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

newinputImage’ ,’conv1channel’) ;
83 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

conv1channel’ ,’conv1d’) ;
84 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’conv1d’ ,’

bn_conv1_1_depth’) ;
85
86 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’pool3/

out’ ,’conv4_1’) ;
87 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’pool3/out’

,’dropout1’) ;
88 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’dropout1’ ,

’conv4_1’) ;
89
90 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’pool4/

out’ ,’conv5_1’) ;
91 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’pool4/out’

,’dropout2’) ;
92 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’dropout2’ ,

’conv5_1’) ;
93
94 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’pool5/

out’ ,’decoder5_unpool/in’) ;
95 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’pool5/out’

,’dropout3’) ;
96 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’dropout3’ ,

’decoder5_unpool/in’) ;
97
98 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’

decoder5_relu_1’ ,’decoder4_unpool/in’) ;
99 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

decoder5_relu_1’ ,’dropout4’) ;
100 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’dropout4’ ,

’decoder4_unpool/in’) ;
101
102 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’

decoder4_relu_1’ ,’decoder3_unpool/in’) ;
103 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

decoder4_relu_1’ ,’dropout5’) ;
104 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’dropout5’ ,

’decoder3_unpool/in’) ;

Master of Science Thesis Isa El Doori

68 Code of the proposed networks

105
106 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’

decoder3_relu_1’ ,’decoder2_unpool/in’) ;
107 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

decoder3_relu_1’ ,’dropout6’) ;
108 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’dropout6’ ,

’decoder2_unpool/in’) ;
109
110 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’

pool3_depth/out’ ,’conv4_1_depth’) ;
111 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

pool3_depth/out’ ,’dropoutdepth1’) ;
112 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

dropoutdepth1’ ,’conv4_1_depth’) ;
113
114 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’

pool4_depth/out’ ,’conv5_1_depth’) ;
115 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

pool4_depth/out’ ,’dropoutdepth2’) ;
116 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

dropoutdepth2’ ,’conv5_1_depth’) ;
117
118 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’relu1_2

’ ,’pool1’) ;
119 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’relu1_2’ ,’

addition1/in1’) ;
120 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

relu1_2_depth’ ,’addition1/in2’) ;
121 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’addition1’

,’pool1’) ;
122
123 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’relu2_2

’ ,’pool2’) ;
124 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’relu2_2’ ,’

addition2/in1’) ;
125 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

relu2_2_depth’ ,’addition2/in2’) ;
126 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’addition2’

,’pool2’) ;
127
128 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’relu3_3

’ ,’pool3’) ;
129 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’relu3_3’ ,’

addition3/in1’) ;
130 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

relu3_3_depth’ ,’addition3/in2’) ;
131 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’addition3’

,’pool3’) ;
132
133 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’relu4_3

’ ,’pool4’) ;
134 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’relu4_3’ ,’

addition4/in1’) ;

Isa El Doori Master of Science Thesis

B-2 FuseNet MATLAB implementation 69

135 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’
relu4_3_depth’ ,’addition4/in2’) ;

136 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’addition4’
,’pool4’) ;

137
138 FuseNet_Matlab_Network = disconnectLayers (FuseNet_Matlab_Network , ’relu5_3

’ ,’pool5’) ;
139 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’relu5_3’ ,’

addition5/in1’) ;
140 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’

relu5_3_depth’ ,’addition5/in2’) ;
141 FuseNet_Matlab_Network = connectLayers (FuseNet_Matlab_Network , ’addition5’

,’pool5’) ;

Master of Science Thesis Isa El Doori

70 Code of the proposed networks

Isa El Doori Master of Science Thesis

Bibliography

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation,” in https://arxiv.org/abs/1511.00561v3,
eprint arXiv:1511.00561, 2016.

[2] C. Hazirbas, M. Ma, C. Domokos, and D. Cremers, “Fusenet: Incorporating depth into
semantic segmentation via fusion-based cnn architecture,” in ACCV, 2016.

[3] R. van Loon, “Machine learning explained: Understanding supervised, unsupervised, and
reinforcement learning,” in http://bigdata-madesimple.com/machine-learning-explained-
understanding-supervised-unsupervised-and-reinforcement-learning/, 2018.

[4] J. Patterson and A. Gibson, Deep Learning: a practitioner’s approach. O’Reilly Media,
Inc., 2017.

[5] E. Smolyanski, “The basics of video object segmentation,” in https://techburst.io/video-
object-segmentation-the-basics-758e77321914/, 2017.

[6] R. Babuska, “Knowledge based control systems lecture notes,” in TU Delft DCSC Lecture
Notes, 2018.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in https://arxiv.org/abs/1409.1556v6, eprint arXiv:1409.1556, 2014.

[8] M. Loukadis, J. Cano, and M. O’Boyle, “Accelerating deep neural networks on low power
heterogeneous architectures,” in 11th International Workshop on Programmability and
Architectures for Heterogeneous Multicores, 2018.

[9] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian segnet: Model uncer-
tainty in deep convolutional encoder-decoder architectures for scene understanding,” in
https://arxiv.org/abs/1511.02680v2, eprint arXiv:1511.02680, 2016.

[10] A. Rosebrock, “Intersection over union (iou) for object detection,” in
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-
detection/, 2016.

Master of Science Thesis Isa El Doori

72 Bibliography

[11] N. van Toorn, “Netherlands in eu top 5 online shopping,” in https://www.cbs.nl/en-
gb/news/2018/38/netherlands-in-eu-top-5-online-shopping, 2018.

[12] A. Rosenfeld, “Picture processing by computer,” ACM Computing Surveys (CSUR),
vol. 1, no. 3, pp. 147–176, 1969.

[13] L. G. Roberts, “Machine perception of three-dimensional solids,” MIT Thesis, 1963.

[14] T. Sakai, M. Nagao, and T. Kanade, “Computer analysis and classification of pho-
tographs of human faces,” in Proc. First USA-JAPAN Computer Conference, pp. 55–62,
1972.

[15] G. B. Coleman, “Image segmentation by clustering,” USCIPI report 750, 1977.

[16] O. Russakovsky, J. Denh, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei, ImageNet Large Scale Visual
Recognition Challenge, ch. All. eprint arXiv:1409.0575, 2014.

[17] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,” CoRR,
vol. abs/1312.6229, 2013.

[18] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,” Computer Vision,
Graphics, and Image Processing 29, 100-132(1985), 1985.

[19] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, pp. 888–905, Aug. 2000.

[20] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 16, pp. 641–647, June 1994.

[21] S. A. Hojjatoleslami and J. Kittler, “Region growing: A new approach,” IEEE Transac-
tions on Image Processing, vol. 7, pp. 1079–1084, July 1998.

[22] A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode seeking,” Computer
Vission - ECCV 2008, vol. 5305, 2008.

[23] S. S. Al-amri, N. V. Kalyankar, and S. D. Khamitkar, “Image segmentation by using
threshold techniques,” Journal Of Computing, vol. 2, no. 5, pp. 83–86, 2010.

[24] T. M. Mitchel, Machine Learning. McGraw-Hill Companies, Inc., 1997.

[25] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up Machine Learning. Cambridge
University Press, 2012.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[27] D. Clausi, “K-means iterative fisher (kif) unsupervised clustering algorithm applied to
image texture segmentation,” Pattern Recognition, vol. 35, pp. 1959–1972, 2002.

[28] H. Lee, Y. Largman, P. Pham, and A. Ng, “Unsupervised feature learning for audio clas-
sification using convolutional deep belief networks,” in Advances in Neural Information
Systems, vol. 22, NIPS, 2009.

Isa El Doori Master of Science Thesis

http://www.deeplearningbook.org
http://www.deeplearningbook.org

73

[29] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

[30] K. Fukushima, “Neural network model for a mechanism of pattern recognition unaffected
by shift in position - neocognitron,” Trans. IECE, vol. J62-A(10), pp. 658–665, 1979.

[31] K. Fukushima, “Neocognitron: A self-organizing neural network for a mechanism of
pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4,
pp. 193–202, 1980.

[32] K. Fukushima, “Artificial vision by multi-layered neural networks: Neocognitron and its
advances,” Neural Networks, vol. 37, pp. 103–119, 2013.

[33] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Backpropagation applied to handwritten zip code recognition,” Neural Computation,
vol. 1, pp. 541–551, 1989.

[34] C. Szegedy, W. Lie, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabbinovich, “Going deeper with convolutions,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
pp. 1–9, 2015.

[35] L. Yang, S. Hanneke, and J. Carbonell, “A theory of transfer learning with applications
to active learning,” Machine Learning, vol. 90, pp. 161–189, 2012.

[36] S.-J. Park, K.-S. Hong, and S. Lee, “Rdfnet: Rgb-d multi-level residual feature fusion
for indoor semantic segmentation,” in The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[37] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning rich features from rgb-
d images for object detection and segmentation,” Computer Vision âĂŞ ECCV 2014,
vol. 8695, 2014.

[38] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in CVPR, IEEE, 2015.

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual
recognition challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[40] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmenta-
tion,” in https://arxiv.org/abs/1505.04366v1, eprint arXiv:1505.04366, 2015.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, 2014.

[42] F. Estrada, Advances in Computational Image Segmentation and Perceptual Grouping.
Department of Computer Science, University of Toronto, 2005.

Master of Science Thesis Isa El Doori

74 Bibliography

Isa El Doori Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements

	Main Matter
	Introduction
	Order picking process
	Image segmentation
	Problem statement
	Outline

	Background
	What is image segmentation?
	Semantic image segmentation

	What is Deep Learning?
	Implemented algorithms
	The VGG-16 network
	SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation Badrinarayanan2016
	FuseNet: Incorporating Depth into Semantic Segmentation via a Fusion-based CNN Architecture Hazirbas2016
	Discussion

	Implementation
	Camera setup
	Vanderlande Industries (VI) RGB-D data
	Pre-processing the depth information
	Pre-processing the RGB images and the labels
	General structure of the data

	SegNet RGB-D implementation in MATLAB
	FuseNet implementation in MATLAB

	Experiments
	Experiments of registered RGB-D data
	Experiments of unregistered RGB-D data

	Results and Discussion
	Evaluation metrics
	Results of the experiments of registered RGB-D data
	Results of the experiments of unregistered RGB-D data

	Conclusions and Recommendations
	Conclusions
	Recommendations for Future Work

	Appendices
	Code to pre-process the data
	Pre-process depth information
	Resize and crop all of the data
	Generate RGB-D data format

	Code of the proposed networks
	SegNet RGB-D MATLAB implementation
	FuseNet MATLAB implementation

	Back Matter
	Bibliography

