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A method has recently been developed that employs multi-beam echo-sounder backscatter data to
both obtain the number of sediment classes and discriminate between them by applying the Bayes
decision rule to multiple hypotheses �Simons and Snellen, Appl. Acoust. 70, 1258–1268 �2009��. In
deep water, the number of scatter pixels within the beam footprint is large enough to ensure
Gaussian distributions for the backscatter strengths and to increase the discriminative power
between acoustic classes. In very shallow water ��10 m�, however, this number is too small. This
paper presents an extension of this high-frequency methodology for these environments, together
with a demonstration of its performance using backscatter data from the river Waal, The
Netherlands. The objective of this work is threefold. �i� Increasing the discriminating power of the
classification method: high-resolution bathymetry data allow precise bottom slope corrections for
obtaining the true incident angle, and the high-resolution backscatter data reduce the statistical
fluctuations via an averaging procedure. �ii� Performing a correlation analysis: the dependence of
acoustic backscatter classification on sediment physical properties is verified by observing a
significant correlation of 0.75 �and a disattenuated correlation of 0.90� between the classification
results and sediment mean grain size. �iii� Enhancing the statistical description of the backscatter
intensities: angular evolution of the K-distribution shape parameter indicates that the riverbed is a
rough surface, in agreement with the results of the core analysis.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3205397�
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I. INTRODUCTION

It is widely accepted that multi-beam echo-sounder
�MBES� data can be used to measure the bathymetry of riv-
ers, seas, and oceans. In addition, backscatter data acquired
from MBES systems are employed to obtain information
about the physical properties of the riverbed and seafloor.
The main advantage of the method is its high spatial cover-
age capability at limited costs. Proper analysis and subse-
quent interpretation of the backscatter data are still challeng-
ing problems. The ultimate goal of acoustic classification
methods is to remotely measure physical properties of the
surficial sediments such as porosity, permeability, and grain-
size distribution.

Methods exist that base the classification on the back-
scatter data from which the angular dependence has been
taken out. However, complications in eliminating the angular
dependence can arise, e.g., due to local bottom slopes and
the unknown MBES directivity pattern. In addition, there is
an intrinsic variation in the backscatter intensity with inci-
dent angle. To eliminate this angular dependence, one can,
for instance, apply Lambert’s law,1 which states that the in-
tensity of acoustic backscatter is proportional to the square of
the cosine of the incident angle �� /2−grazing angle�. Lam-
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bert’s law does not always correctly represent the angular
dependence. In fact, the statistical distribution of backscatter
data changes with incident angle, and therefore removing
only the mean values does not completely compensate the
angular effects.

In an earlier work, a method was proposed for the clas-
sification of the seabed sediment that accounts for backscat-
ter variability.2 The method, based on the Bayesian decision
rule, was applied to MBES backscatter data for the classifi-
cation in a test area in the North Sea with well-known lithol-
ogy. This method employs the backscatter strength collected
at a certain incident angle instead of studying the angular
behavior of the backscatter strength. The backscatter data
employed are the averaged backscatter strengths per beam,
i.e., obtained from averaging over backscatter strength for a
large number of signal footprints or scatter pixels. The clas-
sification is performed per angle, separately from other
angles, and hence it is considered to be an angle-independent
method. This method needs to be adopted when applied to
MBES data taken in very shallow waters.

There are two issues involved when applying a classifi-
cation method such as that described in Ref. 2 to very shal-
low water �e.g., riverbed� areas. The shallower water depths
correspond to smaller beam footprints, resulting in a smaller
number of scatter pixels per beam footprint. Because the
standard deviation of the averaged backscatter data is in-
versely proportional to the square root of the number of scat-

ter pixels, the averaged backscatter data are subject to higher
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ping-to-ping variability in shallow water areas. The discrimi-
nating power between sediments will accordingly decrease.
In addition, significant bottom slopes �e.g., up to 30°� exist in
river environments. These will affect the incident angle and
the backscatter data, and therefore the classification results.
In this contribution we elaborate these two issues in detail
and improve the above-mentioned classification method for a
river environment. The improved classification method will
be applied to a very shallow water river environment where
significant slopes occur.

This paper is built up as follows. Section II briefly re-
views previous work. In Sec. III, the MBES classification
method proposed in Ref. 2 is briefly described. The data
considered in Ref. 2 were acquired in an area where no sig-
nificant slopes exist. But, for the work described in this paper
the slope effects need to be accounted for. Simons and
Snellen2 used a single beam of all MBES beams available,
thereby employing only a small part of the available data.
Here we describe the extension of the method where almost
all MBES backscatter data are accounted for in the classifi-
cation. In Sec. IV we discuss our methodology to estimate
the bottom slopes using the precise bathymetry data and to
apply corrections to the backscatter data. Section V presents
the classification results applied to the MBES data of the
river Waal in The Netherlands. Extensive sediment grabbing
�analyzed for grain-size distribution� is also available, which
allows one to assess the performance of the classification
method. The acoustic classification results are correlated
with the mean grain sizes of the core data. Pearson and dis-
attenuated correlation coefficients will be compared. We fur-
ther study the problem with another class of distributions,
namely, non-Rayleigh distributions. The possible application
of the K-distribution for the classification of the data is as-
sessed. We conclude the paper in Sec. VI.

II. BACKGROUND AND PREVIOUS WORK

Many studies of remote sediment classification use side-
scan sonar systems and MBES systems3–7 and directly com-
pare backscatter data to the physical properties of sediments.
Recent studies showing that the high-frequency �e.g.,
�40 kHz as we use for our classification method� acoustic
backscatter data depend on the sediment physical properties
in general and the grain-size distribution, in particular, can be
found in Refs. 8 and 9. Our impression is that the low �in-
significant� correlation coefficient �in earlier studies� be-
tween the backscatter data and the mean grain size of sedi-
ments is due to the high variability of the backscatter data,
which attenuates the correlation coefficients.

Some research is going on in the field of self-organizing
maps �SOMs� and artificial neural networks �ANNs� applied
to the problem of seafloor classification using MBES back-
scatter data.10,11 More recent studies perform seabed classi-
fication using the ANN method that preserves the backscatter
angular information and incorporates both backscatter and
bathymetric data.12 The SOM is a type of ANN algorithm
based on unsupervised learning. It provides a tool for visu-
alizing the multidimensional numerical data to produce a

low-dimensional map. Also similar studies are ongoing in the
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field of angular range analysis �ARA� using multi-beam so-
nar systems.13,14 The method, based on the normalized
acoustic backscatter mosaic, aims to estimate the acoustic
impedance and roughness of the insonified area on the seaf-
loor. The methods described above adjust themselves to the
data without any explicit specification of the distributional
form for the underlying model.15 It is therefore difficult to
statistically interpret the classification results using such
methods.

The backscatter data change with the angle of incidence.
The angular dependence of the backscatter data can poten-
tially be used as a tool for classification.16,17 A problem in
this approach arises for areas where the seafloor type varies
along the swath. It is therefore difficult to discriminate be-
tween the angular variation and the real seafloor type varia-
tion along the swath. In addition, the approach requires a
good calibration of the MBES system, i.e., its sensitivity
should be equal for all steering angles. The classification
method described in Ref. 2 takes the data at a single angle
and it is considered to be less sensitive to the seafloor type
variation along the swath and the calibration of the MBES.

It is widely known that the backscatter data are subject
to statistical fluctuations.18–20 The classical Rayleigh distri-
bution is not applicable to backscatter data when the deter-
ministic number of scatterers within the signal footprint �also
called size of scatter pixel or ensonified area� is not large
enough and hence the central limit theorem does not hold.
Non-Rayleigh distributions such as K, Weibull, Rayleigh
mixture, or log-normal distributions occur when the condi-
tions of the central limit theorem are violated.20–24 Among
them the K-distribution provides a good fit to the skewed
distributions of experimental data for all sediment types.25–28

It also offers physical insights into the backscatter data.29,30

Previous studies have shown that the statistical characteris-
tics of backscatter data strongly depend on the incident
angle. More recent studies use angular evolution of the
K-distribution shape parameter as a tool for seafloor charac-
terization.31,32

III. ACOUSTIC CLASSIFICATION METHOD

A. Fluctuation of backscatter data

The MBES systems that typically operate at a few hun-
dred kHz permit seafloor backscatter imaging with high res-
olution. The echo amplitudes �here backscatter strength�
measured by the MBES can be employed for seafloor and
riverbed classification. Since the signal footprint Af �or scat-
ter pixel� is small compared with the beam footprint for
beams away from nadir, many scatter pixels are expected to
fall within the footprint of the receiving beam.

It is traditionally assumed that the backscatter intensity
of the ith scatter pixel in a beam, denoted by the random
variable I, is exponentially distributed,19 i.e., distributed as
chi-square with two degrees of freedom. This is based on
the validity of the central limit theorem where the number of
scatterers Ns inside the signal footprint is large enough. The
normalized amplitude �I has a Rayleigh distribution. The
corresponding backscatter strength in decibels obtained by

applying 10 log10 to the intensities I has a Gumbel
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distribution,33 which is a special case of the log-Weibull �or
Fisher–Tippett� distribution.34 The theory of Rayleigh distri-
butions is not applicable to backscatter data when the num-
ber of scatterers within the signal footprint is not large
enough and hence the central limit theorem does not hold
�see Sec. V D�.

The data employed for the classification method consist
of backscatter values �in decibels� per receiver beam, i.e.,
backscatter values obtained from averaging over N indepen-
dent scatter pixels. Such values—given for each beam
angle—are corrected for propagation loss, the area Af of the
signal footprint, and the local bottom slopes. Ping-to-ping
variability masks the influence of the seafloor type on the
backscatter strength. The averaged backscatter value is still
subject to statistical fluctuations. For large N’s, the averaged
backscatter is normally distributed �central limit theorem� for
one sediment class. The classification method described in
Ref. 2 fully employs this knowledge about the backscatter
strength probability density function �PDF�. It thus assumes
that both Ns and N are sufficiently large.

In very shallow water �depth typically 5 m� the number
of scatter pixels N is not large enough to use the central limit
theorem to ensure the Gaussianity of the averaged backscat-
ter strength. To ensure a Gaussian distribution of the back-
scatter strength, we here propose to use backscatter strengths
averaged over small surface patches �Sec. IV�. For further
characterization of the riverbed sediment we may alterna-
tively use the original backscatter intensities and apply the
K-distribution explained in Sec. V D. Both will be addressed
in this contribution.

B. Classification methodology

Let the backscatter intensity of the ith scatter pixel be
distributed as f I�I�, which is an arbitrary distribution �e.g.,
classically an exponential distribution�. When the number N
of the independent and identically distributed scatter pixels
�per beam footprint� is large enough, the central limit theo-
rem states that the averaged backscatter strength BS has a
Gaussian distribution. The classification approach, described
in great detail in Ref. 2 employs the averaged backscatter
data at a single beam angle. Without going into detail, the
method is summarized here and comprises the following
steps.

Step 1 (nonlinear curve fitting): The algorithm starts by
fitting r number of Gaussian PDFs, i.e., BS� fBS�BS�
=�i=1

r ciN�BS,�i ,�i
2�, to the histogram of measured back-

scatter strengths BS for a selected single angle. r is the num-
ber of sediment types. Each Gaussian PDF, with unknown
mean �i and variance �i

2, represents one sediment type. The
coefficients ci of the linear combination of the PDFs are not
known. This leads to the total number of unknown param-
eters as 3r �i.e., ci the contribution of individual PDFs, �i the
mean of PDFs, and �i the standard deviation of PDFs, i
=1, . . . ,r�.

Let the equally binned �e.g., with bin size of 0.5 dB�

backscatter strength at BS1, . . . ,BSm be denoted y=
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�n1 , . . . ,nm�T, where ni, i=1, . . . ,m is the frequency of the
samples in the bin. The model of observation equation can
then be written as

E�y� = A�x� = A�c,�,��, D�y� = Qy , �1�

where A�c ,� ,�� is expressed as an unknown linear combi-
nation of r Gaussian PDFs and the covariance matrix Qy

=diag�n1 , . . . ,nm� is based on the Poisson-distributed random
variables yi’s with variances ni’s. E and D are the expectation
and dispersion operators, respectively.

The nonlinear least-squares problem is formulated as

ĉ,�̂,�̂ = arg min
c,�,�

�y − A�c,�,���Qy
−1

2 , �2�

subject to the non-equality constraints c�0, �l����u,
and �l����u, where � · �Qy

−1
2 = � · �TQy

−1� · � and the subscripts

l and u denote the lower and upper bounds of the variables,
respectively. The nonlinear least-squares subject to bounds
on variables35 is used to obtain the �i’s and �i’s, and the
non-negative least-squares36 is used to obtain the contribu-
tions of the individual PDFs by constraining the coefficients
ci’s to be positive. �In the mathematical computer package,
MATLAB one may, respectively, use lsqnonlin.m and lsqnon-
neg.m.�

Because in practice the number r of the sediment types
is not known, it has also to be determined. The number r of
Gaussian PDFs can be determined by using a goodness of fit
criterion based on a chi-square distributed test statistic,

�2 = �ê�Qy
−1

2 = �y − A�ĉ,�̂,�̂��Qy
−1

2 ~ �2�m − 3r� , �3�

where ê is the least-squares residual vector, and m−3r is the
degrees of freedom. The curve fitting procedure is executed
in an iterative manner for different values of r �starting from
r=1� such that no further decrease in the test statistic is
observed by increasing the number of Gaussian PDFs. For
such a case and also the case when the test statistic falls
below a critical value �i.e., �	,�m−3r�

2 , with 	 the significance
level of the test� the procedure will be stopped.

Step 2 (identification of acoustic classes): For the clas-
sification, when we know the PDF for each seafloor type i,
we can apply the Bayes decision rule. We have r hypotheses
Hi, i=1, . . . ,r, and therefore there exist r possible decisions.
We choose the hypothesis that, given the backscatter obser-
vations, maximizes the likelihood function. The intersections
of the r Gaussian PDFs result in r non-overlapping accep-
tance regions. Each interval in backscatter strength now cor-
responds to one acoustic class �Fig. 1�.

Step 3 (assigning seafloor types): The goal is to corre-
spond the Gaussian distributions to the grain-size distribution
of the sediments. We need to assign a seafloor type to each of
the r acceptance regions �acoustic classes� obtained in Step
2. There might exist different ways to approach this goal.
One can, for instance, rely on the previous work,3,4,8,9,37

where the estimated �̂i’s can directly be associated with the
seafloor mean grain size. An alternative, followed in this
contribution, is to use the results from the core analysis for
comparison and to perform a correlation analysis afterward.

Three grab samples per kilometer �a total of 30 samples for
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10 km� have been taken for such comparison �see Sec. V C�.
Step 4 (quality assessment): The quality of the classifi-

cation algorithm can be assessed by calculating the decision
matrix of the multiple-hypothesis testing problem. This ma-
trix contains the probabilities of correct and incorrect deci-
sions. The decision matrix provides us with a measure for the
quality of the classification method. The probability of incor-
rect decision is proportional to the overlap area of the Gauss-
ian PDFs �Fig. 1�. If the probability of incorrect decision
decreases, the overlap area will decrease and consequently
the power of the discrimination �classification� will increase.

Step 5 (presentation and mapping): This final step of the
algorithm comprises the actual mapping, i.e., allocation of
seafloor type �e.g., a color� to all measured backscatter
strengths. As the MBES system provides a position to each
backscatter strength measurement, we can map seafloor type
versus position. For better presentation of the results, an in-
teractive three-dimensional data visualization system such as
FLEDERMAUS software can be used.38 It allows, for instance,
to further smooth the classification results by using a
weighted moving average method.

For the analysis described above, the backscatter
strengths per beam are assumed to have a Gaussian PDF. For
shallow water applications N might not be sufficiently large.
In addition, bottom slopes can be significant in the river en-
vironment considered in this paper. Therefore, two interme-
diate steps are added to the approach in Ref. 2. These steps
are as follows.

Step I (correcting and averaging procedure): This step is
performed before Step 1 to prepare the backscatter data �av-
erage over small patches and correct for local slopes� for the
classification method described above. In shallow water en-
vironments such as rivers, the number N of scatter pixels
inside the beam footprint is not large because N is propor-
tional to the water depth �Fig. 2�a��. The current application
of the classification method, to result in the normality resto-
ration by means of the central limit theorem, is based on the

FIG. 1. Three Gaussian PDFs �H1, H2, and H3� represent three sediment
classes. Intersection of consecutive PDFs gives non-overlapping acceptance
regions A1, A2, and A3. Also indicated are examples of probability of incor-
rect decision �12 and �21.
average backscatter values over the small surface patches.
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Each patch consists of a few beams in the across-track direc-
tion and a few pings in the along-track direction. It also
allows one to apply the slope corrections to the backscatter
data, namely, correction due to the changes in the area of the
signal footprint and correction due to the true beam grazing
angle. The details of this step are explained in Sec. IV.
Therefore, for angle 
 the “averaged corrected” �over
patches� backscatter data will be used.

Step II (combination of different angles): This step is
performed and iterated after Steps 1 and 2 to combine the
results from different angles. The methodology of Simons
and Snellen2 takes observations from one single angle only.
In practice, to use the full high-resolution mapping potential
of the method, we may consider multiple beams and indi-
vidually perform the classification. This consequently allows
one to obtain a continuous map over the whole area. The
classification method at angles close to nadir �e.g., 
=20°�,
however, becomes less efficient as the backscatter values of
different sediment types have values close to each other. One
remedy, followed in this contribution, is to first use the back-
scatter data at a few low grazing angles �e.g., reference
angles of 
=64°, 62°, 60°� and apply the classification
method. This analysis gives the number r of the sediment
types, the means �i, the variances �i

2, and the coefficients ci.
The nonlinear curve fitting in Step 1 is based on the bounds
on the variables. Based on this information, the curve fitting
procedure is then executed and extended to all other angles
ranging from 
=60°, 
=58° , . . ., 
=20°.

• For a fixed number r of the Gaussian PDFs, where r has
been determined from the application of the classification
method to the backscatter data of the low grazing reference
angles �say, 
=64, 62, 60°�.

• By obtaining a good initial guess for the mean parameters,
i.e., �i

0�i=1, . . . ,r�, of the backscatter data at the angle
under study. This is achieved by using the means �i�i
=1, . . . ,r� of the reference angles and equally shifted by
the differences between the mean backscatter values at the
angle under study �of entire histogram� and the mean back-

FIG. 2. �Color online� Across-track cross section �y-z plane� for signal
footprint of an oblique beam for three configurations: shallow water �a�,
non-flat bottom �b�, and deep water �c�.
scatter values at the reference angles.
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• By using more strict bounds �reduce bounds� on the mean
parameters �i�i=1, . . . ,r� for the classification of back-
scatter data at the angle under study �e.g., �i

l=�i
0−0.5 dB

and �i
u=�i

0+0.5 dB�. The bounds considered are still wide
enough to compensate for the angular dependence of the
statistical distributions for the backscatter data.

IV. LOCAL SLOPE CORRECTION

The significant local slopes of the riverbed will affect
the classification results. To compensate for these effects,
one has to estimate the along- and across-track slopes. MB-
ESs provide detailed bathymetry information from which the
local slopes can be estimated. This allows one to improve the
seabed classification results by applying the corrections to
the backscatter data. The literature has paid little attention to
the question of how such corrections should be estimated and
taken into account. We may refer, for example, to Ref. 13.
We develop a methodology that compensates for the effect of
bottom slopes, both in along- and across-track directions.
Such effects are of high importance especially for river en-
vironments as considered in this study. Two effects are dis-
cussed: �1� correction due to the changes in the ensonified
area �signal footprint� to which the backscatter data refers
and �2� correction due to the true beam grazing angle. Both
corrections can be applied when the along- and across-track
slopes of the seafloor �riverbed� are available. The least-
squares method is employed to estimate the local slopes us-
ing the precise bathymetry data.

A. Estimation of slopes

A discrete surface patch zi= f�xi ,yi�, i=1, . . . ,m includes
a few angles around the central beam angle �e.g., with devia-
tion of 1°�, where the angular dependence of the statistical
distribution of the backscatter data is negligible. Also, be-
cause the ping rate is high �40 Hz�, we may in addition in-
clude a set of neighboring pings to make a surface patch and
hence to be able to estimate the along- and across-track
slopes. This results in a window �e.g., 0.5�0.5 m2� that con-
tains, say, m=56 beams �Fig. 3�. The average backscatter
data and the average depth in this small patch will be used.
Using this strategy to divide the area under survey into small

FIG. 3. �Color online� Schematic surface patch at “nominal” incident angle
of 
, which consists of m=8�7=56 beams along- and cross-track direc-
tions.
surface patches and to use the average backscatter values, �a�
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one can compute the along- and across-track slopes and cor-
rect for the true grazing angle and the backscatter data; �b�
One can assure that the normality assumption is achieved by
means of the central limit theorem. This is a prerequisite for
using the classification method �see Sec. III�. �c� One can
decrease the variance and hence increase the discriminating
power between sediments. This makes the classification
method more discriminative.

A bi-quadratic function consisting of six unknown coef-
ficients is used to model �estimate� the surface patch. This
subsequently allows one to obtain the along-track �x� and
across-track �y� slopes

z = f�x,y� = a0 + a1x + a2y + a3x2 + a4y2 + a5xy . �4�

The least-squares method can be used to estimate the param-
eters of the polynomial, and a procedure called “data
snooping”39 can be used to test for the presence of outliers in
the bathymetry data �see below�. When the local surface is
small enough, further simplification of f�x ,y� is possible by
using a plane instead of a bi-quadratic polynomial �a3=a4

=a5=0�. The subsequent formulations can thus be simplified
accordingly.

For the linear model of observation equations E�z�=Aa,
the least-squares estimate of the vector of unknown coeffi-
cients a= �a0 , . . . ,a5�T is

â = �ATQz
−1A�−1ATQz

−1z , �5�

where A is the known m�6 design matrix �its ith row is
Ai= �1 xi yi xi

2 yi
2 xiyi��, z= �z1 , . . . ,zm�T is an m-vector of

depth measurements, and Qz=�2I is the covariance matrix of
z, with �2 the variance of the data and I an identity matrix.
Note that for this special structure of Qz=�2I �independent
and identically distributed errors�, Eq. �5� simplifies to â
= �ATA�−1ATz. It indicates that the unknown coefficients a
can be estimated independent of the �un�known variance of
the data. The least-squares estimate of the variance compo-
nent is �̂2= êTê / �m−6�, where ê=Aâ−z is the m-vector of
the least-squares residual.40 The covariance matrix of the un-
known coefficients a is given as: Qâ= �̂2�ATA�−1. Also the
covariance matrix of the residuals is Qê= �̂2�I−A�ATA�−1A�.

The data snooping procedure39 for the detection, identi-
fication, and adaptation of possible outliers and anomalies in
the measurements can be applied in an iterative manner to
screen the observations from the presence of such errors. The
normalized entries of the residual vector ê, i.e., ŵi= êi /�êi

�i
runs from 1 to m�, is a test statistic used for data snooping. In
this statistic, �êi

= �Qê�ii
1/2 is the standard deviation of the

least-squares residuals obtained as the square root of the ith
diagonal entry of Qê. The test statistic wi has a standard
normal distribution when �2 is known. It has a Student t
distribution when �2 is unknown. When the test for observa-
tion i is rejected, one may conclude that observation i is
affected by some extraordinary large errors. By letting i run
from 1 to m, one can screen the data on the presence of
potential outliers in the individual observations. The test sta-
tistic wmax �one value out of m values: wmax=max�wi�, i
=1, . . . ,m� that has the largest �in absolute sense� value re-

fers to the observation which is most likely corrupted with a
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outlier. The corresponding observation is excluded from the
list of observations and the same procedure is applied for
identifying yet other potential outliers.

The estimated bathymetry data, which express the esti-

mated local surface, are ẑ= f̂�x ,y�=Aâ. At point �x ,y� the

partial derivatives of ẑ= f̂�x ,y� with respect to x, âx

= f̂ x�x ,y�= â1+2â3x+ â5y, and with respect to y, ây = f̂ y�x ,y�
= â2+2â4y+ â5x, give the tangent planes �or slope� at these
two directions. We may now obtain the average local slopes
at the discrete points 1 , . . . ,m as

âx =
1

m
�
i=1

m

f̂x�xi,yi�, ây =
1

m
�
i=1

m

f̂y�xi,yi� , �6�

for along- and across-track, respectively. The average angles
	x and 	y that the tangent plane makes with the positive x
and y axes are 	x=tan−1 ax and 	y =tan−1 ay, respectively.
The least-squares method can provide us with the precision
of the estimates. The covariance matrix of the estimates â is
Qâ= �ATQz

−1A�−1. One can thus obtain the standard deviation
of ax and ay, and hence the standard deviation of 	x and 	y.

Finally, a practical comment on the coordinates transfor-
mation is in order. For the local surfaces usually the geo-
graphic coordinates north �N� and east �E� in the Universal
Transverse Mercator �UTM� coordinate system are available
and not directly the vessel frame coordinates x and y. These
two sets of coordinate systems can be transformed to each
other using the transformation

	x

y

 = 	 cos 	 sin 	

− sin 	 cos 	

	N

E

 , �7�

where 	 is the heading angle of the vessel. One way to
estimate the along- and across-track slopes is to transform
the coordinates to the vessel frame system using Eq. �7� and
use the previous formulation. An alternative is to estimate
the slopes in the E-N system �i.e., âN= â1�+2â3�N+ â5�E and
âE= â2�+2â4�E+ â5�N� and then transform them into the x-y
system using �Appendix A�

âx = âN cos 	 + âE sin 	 ,

ây = − âN sin 	 + âE cos 	 . �8�

This equation is similar to the transformation of Eq. �7�.
Therefore, one can either transform the coordinates first and
then estimate the slopes in the vessel frame system, or esti-
mate the slopes first and then transform them using Eq. �8�.

B. Grazing angle correction

Suppose that the local surface is estimated as ẑ= f̂�x ,y�.
The average local slopes âx and ây of the surface are given
by Eq. �6�. The normal vector to this surface patch is �the
gradient of the surface�

n� = �âx ây − 1�T = �tan 	x tan 	y − 1�T. �9�

On the other hand, the nominal receiving-beam direc-
tion, which is based on the flat surface in the z-y plane, is

T T
m� = �0−cos  sin � = �0−sin 
 cos 
� , where 
 is the nomi-
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nal incident angle and =� /2−
 is the grazing angle �see
Fig. 2�. The angle between the two vectors n� and m� is the
true incident angle and is given as

cos 
t =
n� · m�

�n���m� �
=

sin  + ay cos 

�1 + ax
2 + ay

2
. �10�

This equation can thus be used to obtain the true grazing
angle �t=90−
t� when both the along- and across-track
slopes are available. In a special case when ax=0 it follows,
with ay =tan 	y, from Eq. �10� that 
t=90− �+	y� and
hence t=+	y.

C. Backscatter correction

Another correction due to the local slopes ax and ay is
the fact that the signal footprint �ensonified area� will change
if the surface is not flat. We now aim to correct the backscat-
ter data for the local bottom slopes. The backscattering
strength is obtained from the echo signal using the sonar
equation1

BS�
� = EL�
� − SL�
� + 2TL − 10 log Af�
� , �11�

where EL is the echo level, SL is the source level, TL is the
transmission loss, and Af is the true area of the signal foot-
print. The relation between true area Af and nominal area Af�
�based on a flat surface� is Af =�Af�, where � is a scaling
factor. This results in log Af�
�=log Af��
�+log ��
�. The
correction C=−10 log��
� is then obtained as a function of
local slopes in along- and across-track directions.

For angles away from, nadir the area Af� is given as1

Af��
� =
cTR�x

2 sin 

=

cTR�x

2 cos 
, �12�

where �x is the beam aperture in the along-track direction
and  is the grazing angle. The term �y =cT /2 sin 
 is the
across-track resolution �size of the scatter pixel� of the back-
scatter imaging, and �x=R�x is the along-track resolution.
When there exist significant bottom slopes, the area of the
signal footprint may be modified to �Fig. 2�

Af�
� =
cTR�x

2 sin�
 − 	y�cos 	x
. �13�

The term cos 	x in the denominator of the preceding equa-
tion indicates that the area is always larger in the along-track
direction. This however, does not hold for the across-track
direction as it depends on 
. The correction C=
−10 log ��
� is then

C = 10 log� sin�
 − 	y�cos 	x

sin 

� , �14�

which is expressed in decibels. We now assume that the local
slopes 	x and 	y are uncorrelated and have the same standard
deviation �	. Application of the error propagation law41 to
the linearized form of Eq. �14� gives the standard deviation

of the correction as
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�C =
10 �	

ln 10
�tan2� + 	y� + tan2 	x�1/2, �15�

which is obtained in decibels. One can further simplify this
equation by using the approximate values of 	x=0 and 	y

=0 as

�C =
10 cot 
�	

ln 10
. �16�

Equation �16� shows that the correction is not significant at
low grazing angles, but it may not be neglected at high graz-
ing angles.

For the near nadir beams �high grazing angles with 

0�, the area Af� of a flat surface is given as

Af� = R2�x�y , �17�

where �y is the beam aperture in the across-track direction.
With the presence of bottom slopes, the area Af at normal
incidence is modified as

Af =
R2�x�y

cos 	x cos 	y
. �18�

V. RESULTS AND DISCUSSIONS

A. Experiment description

The river Waal is the main distributary branch of river
Rhine flowing to the central Netherlands for about 80 km. It
is a major river that serves as the main waterway connecting
the Rotterdam harbor and Germany for commercial activi-
ties. Along several parts of this river, the bottom is subsiding.
Since the subsidence varies along the river, dangerous shoals
can occur. Appropriate sediment suppletion—it is a stable
layer of concrete blocks—is planned to counteract the sub-
sidence and to keep the riverbed more stable. To monitor the
suppletion effectiveness, regular MBES measurements are
planned, allowing for simultaneous estimation of bathymetry
and sediment composition.

In October 2007, as a first step, MBES measurements
were acquired at the Waal, accompanied with extensive sedi-
ment grabbing. The MBES used for the measurements is a
Kongsberg EM3002, which was hull-mounted at a depth of
70 cm in the water. It typically works at a frequency of
300 kHz for shallow water �1–150 m�. The depths of the
area under survey range from 2 to 10 m. The EM3002 sys-
tem used has a single sonar head with left and right trans-
ducers. Other technical specifications of this system are as
follows: �1� The pulse length is 150 �s. �2� The maximum
number of beams per ping is 254. �3� The maximum ping
rate is 40 Hz. �4� The maximum angular coverage is 130°.
�5� The beamwidth is 1.5° �1.5° at nadir. �6� The beam
pattern is equidistant or equiangular. �7� The transducer ge-
ometry is mills cross.

The bathymetry of this study area is shown in Fig. 4.
Except for the flat area �sediment suppletion to prevent de-
formation in the outer part of the bend� in the middle of the
area, the river exhibits significant bottom slopes. This section

presents the results of the acoustic sediment classification
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based on the methodology developed in Secs. IV and III. To
assess the MBES classification results, a comparison is made
with the analysis of the grab samples.

B. Acoustic classification results

We now apply the classification method of Sec. III to the
above-described set of backscatter data. Figure 5 shows the
histogram along with its best Gaussian fit for the original
backscatter values at 
=60° and 
=62°. The two Gaussian
PDFs indicate that there exist two sediment types for the
riverbed. Note that a third PDF was also found which has a
small contribution of 0.3%. This third PDF is likely due to
the heterogenity in the sediments or the violation of the nor-
mality assumption because we deal with a small number of
scatter pixels per beam footprint. One may consider to apply
the classification method based on these results.

There are, however, two issues that need to be ad-
dressed: �1� water depths are very shallow and �2� significant
bottom slopes exist. The low depth results in a small number
of scatterers within the signal footprint �Ns is low� and a
small number of scatter pixels per beam footprint �N is low�.
In both cases, the central limit theorem is not valid, and
consequently neither is the normality assumption of the
backscatter data. These will affect the classification results.
Also, the lower water depths correspond to higher ping-to-
ping variability and hence higher fluctuation for backscatter
data. Therefore, the discriminating power of the classifica-
tion decreases as the two Gaussian PDFs are highly over-
lapped �Fig. 5�. The second issue is the bottom slopes, which
can significantly affect the backscatter data and the grazing
angle.

One way out of this dilemma is to increase the number
of samples for each beam considered �Secs. IV and III�. This
is achieved by including more angles around the central
beam angle �e.g., with deviation of 1° as 
−1° �
�
+1°�.
For such close angles, the angular dependence of the back-
scatter distribution can be ignored. One can also average
over a few consecutive pings �e.g., 7 pings� because the ping
rate �40 Hz� is high in shallow water. This results in a small
surface patch that contains, say, 56 beams �Fig. 3�. The av-
eraged corrected �over patches� backscatter data will then be
used.

The number of bottom types is unknown and needs to be
determined according to the method described in Sec. III B.
This is achieved by increasing the number of Gaussian func-
tions to well describe the histogram of the averaged back-
scatter strength values after applying the slope corrections
and averaging over the small patches. Figure 6 shows a plot
of test statistic �2 in Eq. �3� versus the number r of the
Gaussian PDFs. The value of r at which either the test sta-
tistic falls below the critical value or no further significant
decrease in test statistic is obtained is the optimal value for r.
This value is set to be r=3 �Fig. 6�, which is the “estimated”
number of bottom types based on the acoustic data.

Figure 7 shows the histogram and its best Gaussian fit
for the averaged backscatter values. Three Gaussian PDFs,
indicating three acoustic classes, are identified. The previ-

ously detected small PDF �Fig. 5� is averaged out over the
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small patches and it is not detectable anymore. However, a
new PDF �a third one� is now detected and the Gaussian PDF
distributions are better separated. The histograms are more
peaked than those in Fig. 5, indicating lower variance and
higher discriminating power. Also, the left tail of the histo-

FIG. 4. Bathymetry map of river Waal, The Netherlands; km 92
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FIG. 5. �Color online� Histograms �light bar� of original measured backscat-
ter data, its three Gaussians �solid line�, and its best fit �dashed line� at
angles 
=62° �top� and 
=60° �bottom� over the whole area; left and right
transducers; number of Gaussians r=3 �third PDF is very small and located

at �3=−10 dB�.
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gram is now longer �left-skewed�, indicating that the mass of
the distribution is concentrated on the right hand side. The
contributions of the PDFs are roughly 5%, 40%, and 55%. It
is worthwile mentioning that the classification method is in-

0 �km 0 refers to a bridge in Constance, Switzerland �Ref. 42��.
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FIG. 6. �Color online� Normalized �ratio of test statistics to their corre-
sponding critical values� chi-squared test statistic versus number r of Gauss-
ian PDFs. Dashed lines indicate critical values which are set to one for
normalized statistics; left and right transducers; data used at angles 
=62°
0–93
�top� and 
=60° �bottom�.
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dependent of the absolute values of the backscatter data. One
may, for instance, think of the angular dependence of the
backscatter data or the intrinsic difference between the back-
scatter data of the left and right transducers due to MBES
transducer calibration effects.

FIG. 8. Acoustic classification map of Waal river �km 920–930� obtained fro
been applied and results put in a single map. The frames on top indicate a z

−25 −20 −15 −10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

BS (dB)

n i

Left Transducer

−25 −20 −15 −10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

BS (dB)

Right Transducer

−25 −20 −15 −10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

BS (dB)

n i

−25 −20 −15 −10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

BS (dB)

FIG. 7. �Color online� Histograms �light bar� of averaged �over small sur-
face patches� backscatter data corrected for local slopes, its three Gaussians
�solid line�, and its best fit �dashed line� at angles 
=62° �top� and 
=60°
�bottom� over the whole area; left and right transducers; number of Gauss-
ians r=3.
correlation of 0.75 is obtained between acoustic sediment classification and mean
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To explore the full high-resolution mapping potential of
the method, one may consider to use multiple beams instead
of only one �Sec. III B, Step II�. The ultimate goal of the
acoustic classification method is to obtain a continuous map
over the whole region, as for the bathymetry map. The clas-
sification map obtained from the averaged backscatter data
using beam angles at 
=64° ,62° , . . . ,20° is shown in Fig. 8
in which the three sediment classes are presented by the col-
ors red, yellow, and green. The green represents low values,
the yellow represents intermediate values, and the red repre-
sents high values for the backscatter data. At a typical angle

=60°, the acceptance regions are as follows: �−� to
−18� dB �Class I�, �−18 to −16.25� dB �Class II�, and
�−16.25 to +�� dB �Class III�.

In general, a correlation between the bathymetry and the
classification results is observed �Figs. 4 and 8�; the deeper
the depth is, the larger the backscatter values are, and hence
the coarser the sediments will be. That is what we would
expect, and intuitively ground truth the classification results
�see Sec. V C�. Note, however, that there exist also shallow
water areas where the sediment is coarse grained �compare
Fig. 4 with Fig. 8�. That is an indication for the absence of
any depth-dependent artifacts or unmodeled effects in the
backscatter data.

To further elaborate on the performance of the classifi-

ckscatter at 
=64° ,62° , . . . ,20°. For each angle separate classification has
in of classification results for areas where grab samples have been taken. A
m ba
oom-
grain size from core analysis.
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cation method, the averaged backscatter data over the south-
ern part of a smaller area where the east component lies
between 151 000 and 153 350 m—the stable flat area in Fig.
4—is now considered. The corresponding histogram along
with two Gaussian PDFs is shown in Fig. 9. The left tails of
the histograms are now shorter than those in Fig. 7. The two
detected PDFs coincide with the results of the classification
map using the three PDFs over the whole river �Fig. 8, two
classes can be seen in this area�.

C. Correlation with core analysis

The ultimate goal of MBES data analysis is to transform
the backscatter classification results into estimates of seafloor
sediment properties such as mean grain size. The goal of the
sediment grab sampling and grain-size analysis is to evaluate
the potential correlation between the mean grain size and the
results from acoustic classification. A total number of 29
grab samples taken at the central axis of the river and at both
sides �70 m apart from the central path� were collected and
analyzed for grain-size distribution. There exist 25 samples
which fall inside the survey area. The grab samples were
washed, dried, and sieved through a series of mesh sizes
ranging from 30 to 0.1 mm. The sieve sizes were converted
into � �phi� units43 using the equation �=−log2 d, where d is
diameter of grain in millimeters. Note that fine sediments
have large � values. Based on the comparison with the
acoustic classification results, it can be concluded that the
areas of high backscatter values correspond to gravel and
lower backscatter values correspond to sand.

We now make a comparison between the classification
results and the mean grain size of the samples. Our strategy
is to use the results of the core analysis for comparison and
to perform a correlation analysis afterward. The mean grain
sizes were sorted from fine to coarse sediment. Considering
the grab samples as an unbiased representative for the whole
area, the percentages of 5%, 40%, and 55% were then ap-
plied to the 25 samples. This corresponds to 1, 10, and 14
samples, respectively for sand, gravelly sand, and sandy
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FIG. 9. �Color online� Histograms �light bar� of averaged �over small sur-
face patches� backscatter data at 
=62° �top� and 
=60° �bottom� over the
stable flat area; left and right transducers; number of Gaussians r=2.
gravel areas. The classification results show good overall
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agreement with the ground truth information obtained from
the core analysis �Fig. 8 zoom-in part, and Fig. 10�a��. Most
of the differences belong to the areas where the grab samples
are in the boundary region of two classes. The dependence of
acoustic backscatter techniques on sediment physical proper-
ties is examined using the Pearson correlation coefficient as
well as a disattenuated correlation �Appendix B� between
mean grain size of the samples and the classification results.

Due to the river currents’ interaction with bottom sedi-
ments, the rivers are dynamic environments and hence sedi-
ment distribution can be highly heterogeneous. Ground truth-
ing our classification results from core analysis of the
sediments is prone to a few sources of uncertainty, of which
we mention five. �i� Positioning error of the grab samples
which is considered to be about 4–5 m: this issue is ad-
dressed in this section. �ii� The complexity inherent in ascer-
taining whether a single sample is representative of a larger
region:3 this originates from the heterogeneity of the river
sediment distribution. �iii� A finite number of grab samples
when assigning sediment types to acoustic classes, e.g., the
percentage of the Class I �green� is 5% which leads to just
one sample �if any� from 25 samples. �iv� Large standard
deviation of backscatter data due to the shallowness of water,
which leads to a small beam footprint: this has been ac-
counted for, to a large extent, because of the averaging pro-
cedure. �v� Considering other physical properties of sedi-
ments rather than just the mean grain size. We can also use
the full grain-size distribution and perform similar compari-
son.

We examine the potential correlation between classifica-
tion results and the mean grain size. Larger grain sizes are
expected to produce stronger backscatter for sandy and grav-
elly sediment. The Pearson correlation coefficient �Eq. �B7��
between the mean grain size and the results of the classifi-
cation is 0.75. It indicates a high positive correlation �it is
negatively correlated with � values�. The uncertainties �er-
rors� mentioned above underestimate the correlation coeffi-
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FIG. 10. Mean grain size from individual grab samples versus classification
results �a�. Disattenuated correlation coefficient �compensated for position
error� between classification results and mean grain size of grabs �b�. Note
that � scale has been inverted and positive correlation means that higher
backscatter data are obtained over coarser sediment.
cient below the level it would have reached if the measure-

Amiri-Simkooei et al.: Riverbed sediment classification 1733

e or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



ments had been precise. Such uncertainties can be accounted
for in the correlation coefficient, which gives rise to the di-
sattenuated correlation coefficient �see Appendix B�. This
correlation coefficient indicates whether the correlation be-
tween two data sets is low�er� because of measurement error
or because the two sets are really uncorrelated. Therefore, if
the measure for the uncertainties is available �for example, if
it is estimated by an independent method�, one can then ob-
tain the disattenuated correlation coefficients.

To see how significantly the aforementioned effects im-
pact the correlation coefficients, the effect of position errors
of the samples is assessed. The disattenuated correlation is
given by Eq. �B9�, where its disattenuation coefficient � is
obtained from Eq. �B10�. Based on the data themselves, one
cannot estimate the measurement errors �ex

and �ey
�varia-

tion within the sub-populations�. Variation in the sediment
composition �due to sediment heterogeneity� versus position
can be simulated using the classification results in the fol-
lowing way: �i� consider randomly a large number of points
with their true positions and classification results, �ii� simu-
late the position error and add it up with the true position,
�iii� look at the classification results at the simulated point,
and �iv� obtain its difference with the classification results at
the true positions and hence its standard deviation �ex

. A
positive trend for the disattenuated correlation is observed
versus position error �Fig. 10�b��. The correlation coefficient,
when taking the 5 m position error into account, increases
from 0.75 to 0.90. Note, however, that the disattenuated cor-
relation is an indication for the presence of measurement
errors and not a substitute for precise measurements. Future
work can use and apply a similar correlation analysis to the
grain-size distribution of the sediments.

D. K-distributed backscatter intensity

1. Background

The classical Rayleigh distribution theory is not appli-
cable when the number of scatterers within the signal foot-
print is not large enough to apply the central limit theorem.
This theory is not applicable, at least, when �1� the seafloor
and hence seafloor data are rough, �2� the number of scatter-
ers within the signal footprint is not large enough, �3� the
number of scatterers is a random variable with high variance,
and �4� the assumption of independent and identically dis-
tributed scatterers is violated.

Statistical analysis of backscatter intensity typically
deals with fitting a set of theoretical distributions to see
which one describes the data best. Non-Rayleigh distribu-
tions can better fit the skewed distributions and provide new
parameters for characterization. It is widely accepted to use
the K-distribution when the classical Rayleigh distribution is
not applicable to backscatter amplitudes.24–27,29 The
K-distribution is

f I�I� =

2�N�

�
��N+��/2

I�N+�−2�/2

������N�
K�−N�2�N�

�
I� , �19�

where � is the scale parameter, � is the shape parameter, N is

the multi-look parameter �i.e., the number of scatter pixels in
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the beam footprint�, and K�−N is the modified Bessel function
of the second kind. The K-distribution results from two in-
dependent � -distributed random variables. It has the advan-
tage of being able to reproduce the classical distributions.
For a given N, the K-distribution tends to the gamma distri-
bution when the shape parameter increases to infinity ��
→��. In a special case when N=1, it then reduces to the
exponential distribution.

The maximum likelihood estimation method is usually
applied to estimate the parameters � and � of the
K-distribution.44,45 An alternative is based on the method of
moments.46 We use a method which is based on the least-
squares principle: fitting a curve to the histogram of the data
in a least-squares sense �similar to Sec. III B, Step 1�. Such
estimates are first of all independent of the distribution of the
data, second they are unbiased, and third they give the best
possible precision �minimum variance� for the unknown pa-
rameters of the distribution.

The parameters � and � of the K-distribution depend on
the incident angle. The K-distribution has proved to be a
promising and useful model for the backscattering statistics
in MBES and side-scan sonar data.31,32 Also the
K-distribution is of particular interest because its shape pa-
rameter is related to physical descriptors �e.g., spatial density
of scatterers� of the seafloor.29,30 Our application of the
K-distribution is to further study the problem of riverbed
characterization using the original backscatter intensities
�without averaging�. The angular evolution of the shape pa-
rameter � is, in particular, investigated.

2. Results

The K-distribution is compared to the experimental PDF
of the original backscatter intensities. Figure 11 shows typi-
cal graphical examples of the observed backscatter intensi-
ties along with their least-squares fit. The goodness of fit
criterion ��2 values, similar to those in Eq. �3�� are as fol-
lows. For left transducer they are �2=242 and �2=209 at 

=62° and 
=60°, respectively. For right transducer they are
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FIG. 11. �Color online� Measured histograms of backscatter intensity �solid
black line� and statistical K-distribution �dashed light line� fitting; left and
right transducers; 
=62° �top�, 
=60° �bottom�.
� =333 and � =280 at 
=62° and 
=60°, respectively �see
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Fig. 6�. The critical value is only 1.43. This indicates that the
fit is not good enough because of large �2 values, which is a
further indication for having more than one sediment types
�this came out of the Gaussian fitting�.

The angular evolution of backscattering statistics via the
evolution of one parameter, the shape parameter � in Eq.
�19�, of the K-distribution is now investigated. Its estimate is
based on the least-squares curve fitting using the simulta-
neous estimation of the shape parameter � and the scale pa-
rameter �. The results for � are shown in Fig. 12. The angu-
lar evolution of the shape parameter � coincides with the
findings of Refs. 31 and 32. For the intermediate incident
angles, the shape-parameter values are low. At high incident
�low grazing� angles, the increase is due to the extension of
the beam footprint, which includes a greater number of scat-
terers; the central limit theorem applies, and the
K-distribution tends to an exponential distribution �and cor-
respondingly the Rayleigh distribution for amplitude�.

The results given in Ref. 32 show a point where the
functional behavior of the shape-parameter curves �i.e., �
=��
�� reverse for soft sediments, and that the rough seafloor
does not seem to exhibit this transition angle. They indicate
that the riverbed can be considered to be a rough surface �we
cannot see such transition point here as the shape parameter
increases with 
�. We have already identified that the river
sediment composition is formed primarily of coarse sand and
gravel. This makes sense because the grain size of the sedi-
ment is a major contributor to the surface roughness.

We also observe that the shape parameters, in the stable
flat area, are significantly smaller than their corresponding
values in the entire area �Fig. 12�. This can be considered as
the effect of the bottom slopes, which is not seriously present
in the flat area. The strong local slope variation as a normally
distributed random variable will further increase the shape
parameter of the K-distribution. Therefore, the K-distribution
tends to an exponential distribution as in a Rayleigh rever-
beration process.

VI. SUMMARY AND CONCLUSIONS

Riverbed sediment classification using MBESs, back-
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FIG. 12. �Color online� Angular evolution of shape parameter � of
K-distribution for entire area and flat area.
scatter data is a promising approach. The degree to which

J. Acoust. Soc. Am., Vol. 126, No. 4, October 2009

Downloaded 27 Feb 2012 to 131.180.130.114. Redistribution subject to ASA licens
different bottom types can be discriminated using the back-
scatter data depends on the following. �i� Geoacoustical fea-
tures of the bottom types: an obvious effect is on the mean
and variance of the backscatter data. �ii� Measurement con-
figuration such as beam grazing angle, water depth, pulse
length, and number of scatterers in the signal footprint: such
issues usually affect the distribution of the backscatter data.
�iii� The presence of local slopes of the seafloor. In principle,
the backscatter data should be corrected for bottom slopes.
The differential slopes might, however, significantly affect
the distribution parameters.

This contribution presented a methodology to use the
�very� high-frequency MBES backscatter data for the sedi-
ment classification in very shallow water applications �depth
of 2–10 m�. The MBES used is an EM3002, typically work-
ing at 300 kHz with the maximum 254 number of beams.
However, there is no restriction regarding the capability of
the method for other water depths and frequencies. This
method employs the MBES backscatter data to obtain the
number of classes and to discriminate between them by ap-
plying the Bayes decision rule for multiple hypotheses. This
is achieved by fitting a series of Gaussian PDFs to the back-
scatter strength histogram. Since the classification is done
per beam, the method is independent of the possible incor-
rect calibration effects and the angular behavior of the back-
scatter data.

The performance of the method was tested by using the
backscatter data acquired in the river Waal, The Netherlands.
Extensive sediment grab samples analyzed for the grain-size
distribution were used to evaluate the performance of the
classification results. The following aspects of the research
are highlighted.

• Shallow water depths result in small beam footprints and
hence a small number of scatter pixels per beam. That
makes the backscatter data highly variable and conse-
quently the classification method becomes less efficient. To
increase the discriminating power of the classification re-
sults, we used an averaging procedure over small surface
patches 0.5�0.5 m2. The high resolution bathymetry data
provide precise bottom slope corrections to convert the
arrival angle of the signal into the true incident angle, and
the high resolution backscatter data allow one to reduce the
statistical fluctuation in backscatter strength.

• We performed a correlation analysis. The dependence of
acoustic backscatter classification on sediment physical
properties was verified by using Pearson �0.75� and disat-
tenuated �0.90� correlation coefficients between the classi-
fication results and sediment mean grain size. The disat-
tenuated correlation gives an indication for the effects of
measurement errors that attenuate the correlation below the
level it would have reached had the measurements been
precise.

• We considered the backscattered intensity statistics using
the K-distribution to further study the riverbed character-
ization. Angular evolution of the K-distribution shape pa-
rameter indicated that the Waal riverbed is indeed a rough
surface. It is in agreement with the ground truth informa-

tion from the core analysis.
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APPENDIX A: COORDINATE TRANSFORMATION

The linear model of observation equations in the vessel
coordinate system x-y is

E�z� = Aa , �A1�

where z is the bathymetry data, A is the m�6 design matrix
of the form

A = �1 X Y X2 Y2 XY� , �A2�

or, written out as

A = �1 x1 y1 x1
2 y1

2 x1y1

] ] ] ] ] ]

1 xm ym xm
2 ym

2 xmym
� , �A3�

and a is the unknown coefficients of the bi-quadratic poly-
nomial. The least-squares estimate of a is

â = �ATQz
−1A�−1ATQz

−1z . �A4�

Another parametrization of the above system of obser-
vation equations is based on the UTM coordinate system
�north N and east E�

E�z� = A�a�, �A5�

where

A� = �1 N E N2 E2 NE� . �A6�

The prime � indicates that the terms are now defined in the
new coordinate system. The least-squares estimate for a� is

â� = �A�TQz
−1A��−1A�TQz

−1z . �A7�

One can simply show that the design matrices A and A�
are related using the transformation A=A�T, where T is a 6
�6 regular matrix of the form

T = �
1 0 0 0 0 0

0 cos 	 − sin 	 0 0 0

0 sin 	 cos 	 0 0 0

0 0 0 cos2 	 sin2 	 −1
2 sin 2	

0 0 0 sin2 	 cos2 	 1
2 sin 2	

0 0 0 sin 2	 − sin 2	 cos 2	

� ,

�A8�
with the inverse
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T−1 = �
1 0 0 0 0 0

0 cos 	 sin 	 0 0 0

0 − sin 	 cos 	 0 0 0

0 0 0 cos2 	 sin2 	 1
2 sin 2	

0 0 0 sin2 	 cos2 	 −1
2 sin 2	

0 0 0 − sin 2	 sin 2	 cos 2	

� ,

�A9�

where 	 is the heading angle of the vessel. Substituting A
=A�T in Eq. �A4� gives the relation between the least-
squares estimates â and â� as

â = T−1�A�TQz
−1A��−1A�TQz

−1z = T−1â� �A10�

or

�
â0

â1

â2

â3

â4

â5

� = �
â0�

â1� cos 	 + â2� sin 	

â2� cos 	 − â1� sin 	

â3� cos2 	 + â4� sin2 	 + 1
2 â5� sin 2	

â3� sin2 	 + â4� cos2 	 − 1
2 â5� sin 2	

â4� sin 2	 − â3� sin 2	 + â5� cos 2	

� . �A11�

Equations âx= â1+2â3x+ â5y and ây = â2+2â4y+ â5x with
x=N cos 	+E sin 	, y=E cos 	−N sin 	, and Eq. �A11�
simplify to

âx = �â1� + 2â3�N + â5�E�cos 	 + �â2� + 2â4�E + â5�N�sin 	 ,

�A12�

ây = �â2� + 2â4�E + â5�N�cos 	 − �â1� + 2â3�N + â5�E�sin 	 ,

�A13�

or simply

âx = âN cos 	 + âE sin 	 , �A14�

ây = âE cos 	 − âN sin 	 , �A15�

where âN= â1�+2â3�N+ â5�E and âE= â2�+2â4�E+ â5�N are the es-
timated slopes in the north and east directions, respectively.

APPENDIX B: DISATTENUATED CORRELATION
COEFFICIENT

Consider the data set x= �x1 , . . . ,xm�T and y=
�y1 , . . . ,ym�T, as a realization of the following random vari-
ables: x� i=�x+�xi

+exi
and y� i=�y +�xi

+eyi
, where the �’s rep-

resent the mean values, the �’s represent variation between
sub-population, and the e’s represent variation within the
sub-populations �measurement error�. The underline indi-
cates randomness. The variances of the components �xi

, �yi
,

exi
, and eyi

are assumed to be ��x

2 , ��y

2 , �ex

2 , and �ey

2 , respec-
tively. The �x and �y are assumed to be correlated ���x�y
�0�, but the measurement errors ex and ey are assumed to be
uncorrelated ��exey

=0�. The above formulas can be written in

a matrix notation as
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	x�

y�

 = 	�x

�y

 + 	1 0 1 0

0 1 0 1

�

�x

�y

ex

ey

� , �B1�

with the covariance matrix of

D��
�x

�y

ex

ey

�� = �
��x

2 ��x�y
0 0

��x�y
��y

2 0 0

0 0 �ex

2 0

0 0 0 �ey

2
� . �B2�

Application of the variance propagation law47 gives the co-
variance matrix of �x� ,y��T as

D�	x�

y�

� = 	��x

2 + �ex

2 ��x�y

��x�y
��y

2 + �ey

2 
 . �B3�

If we have a series of m samples of random variables x and
y, written as xi and yi, where i=1, . . . ,m, then the variances
�x

2=��x

2 +�ex

2 and �y
2=��y

2 +�ey

2 and the covariance �xy =��x�y

can be estimated using the following linear model of obser-
vation equations:

E�	x�

y�

� = 	u 0

0 u

	�x

�y

 , �B4�

with the covariance matrix

D�	x�

y�

� = 	 �x

2I �xyI

�xyI �y
2I

 , �B5�

where u= �1,1 , . . . ,1�T is a summation vector. The least-
squares estimates of �x

2, �y
2, and �xy are then40,48

�̂x
2 = �x − x̄�T�x − x̄�/�m − 1� ,

�̂y
2 = �y − ȳ�T�y − ȳ�/�m − 1� ,

�̂xy = �x − x̄�T�y − ȳ�/�m − 1� , �B6�

where x̄= �1 /m��i=1
m xi and ȳ= �1 /m��i=1

m yi are the sample
means. The Pearson correlation coefficient �sample correla-
tion� can then be used to estimate the correlation between x
and y:49

�xy =
�̂xy

��̂x
2�̂y

2
=

�̂�x�y

���̂�x

2 + �̂ex

2 ���̂�y

2 + �̂ey

2 �
. �B7�

When two data sets x and y are correlated, measurement
errors underestimate the correlation coefficient. Measure-
ment error can be accounted for in a correlation coefficient,
which gives rise to the correlation coefficient disattenuated
of measurement error

�xy
d =

�̂�x�y

��̂�x

2 �̂�y

2
. �B8�

Disattenuated correlation coefficient indicates whether the

correlation between two data sets is low because of measure-

J. Acoust. Soc. Am., Vol. 126, No. 4, October 2009

Downloaded 27 Feb 2012 to 131.180.130.114. Redistribution subject to ASA licens
ment error or because the two sets are really uncorrelated.
Note that Eq. �B6� gives �̂x

2 and �̂y
2, and not separately �̂�x

2 ,
�̂ex

2 , �̂�y

2 , and �̂ey

2 . If the measurement errors are available �for
example, if they are estimated by an independent tool such as
simulation�, one can account for them and obtain the disat-
tenuated correlation coefficients. The relation between Pear-
son correlation coefficient and its disattenuated one is

�xy = ��xy
d , �B9�

where � is the attenuation coefficient

� =
��x

��y

����x

2 + �ex

2 ����y

2 + �ey

2 �
. �B10�

How well the variables are measured affects the correlation
of x and y. The correction for attenuation shows the correla-
tion as if one measures x and y without errors.
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