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An intelligent leader-follower neural controller in
adverse observability scenarios

E. M. Lourenço1, M. Coppola1, and G. C. H. E. de Croon1

1Micro Air Vehicle Laboratory, Delft University of Technology

Abstract – A high-level neural controller for leader-follower
flight is presented. State of the art range-based relative local-
ization schemes that rely exclusively on onboard sensors present
an additional challenge to the leader-follower control problem
since they restrict the flight conditions that guarantee observ-
ability. This novel controller was developed over an evolution-
ary process in which the simulation environment resembled the
real-life constraints a group of MAVs would encounter. During
the learning stage, a group of three agents is used, where one
acts as a leader and flies a random trajectory, and the other two
act as followers guided by a candidate controller that dictates
the desired velocity commands. In the end, when equipped with
the best-evolved controller, the follower agents are able to show-
case a successful following behaviour that also enhances the ob-
servability of the system, although no observability metric was
included in evolution.

I INTRODUCTION

Micro Aerial Vehicles (MAV) have been one of the most
prominent subjects in aerospace. Compared to larger Un-
manned Aerial Vehicles (UAV), they are smaller and lighter,
therefore, more portable, less intrusive and safer to operate
around humans. These properties make them suitable for a
wide set of applications, such as surveillance and mapping
[8, 11, 10, 30], search and rescue missions in unknown en-
vironments [28, 7], or inspection and management of poten-
tially hazardous areas [21, 19, 2, 33].

Within this domain, there is also great interest in the study
and research of multi-agent systems and swarm robotics, as
their application can augment the value and potential of such
vehicles [29, 1, 30]. Indeed, running a swarm of MAVs,
instead of one alone, may upgrade the performance and ef-
ficiency of the aforementioned operations. By cooperating
with each other, agents can not only overcome their individ-
ual limitations, but also exploit their individual assets, while
reducing the execution time of their mission.

Nonetheless, deploying an autonomous team of MAVs
boosts additional challenges on top of the ones a single MAV
already faces. First, and foremost, in order to have a mini-
mum viable cooperation within the group, MAVs must have
knowledge about the relative localization of, at least, some of
its peers. The relative localization problem is one the scien-
tific community has tackled for a long time, with different so-
lutions being presented in the literature [6, 15, 5, 35, 16, 34].
However, in order to have the best generalization possi-

ble, MAVs must use exclusively onboard sensors to perform
the relative localization estimates, therefore, excluding any
method relying on external sources like a Global Naviga-
tion Satellite System (GNSS) or a Local Positioning System
(LPS). While GNSS can be reliable outdoors, it is not an op-
tion indoors due to signal distortions. Moreover, although
LPS can provide accurate measurements, it fails to meet the
paramount assumption of most exploratory operations: no
prior knowledge of the environment. Wireless range based
methods have been proposed and applied with some success
both in indoor and outdoor flight [15, 5, 16, 34]. Among their
benefits is, obviously, the fact that they do not require any ex-
ternal hardware, and that they also allow for inter-agent com-
munication, avoiding the need to use additional sensors for
that purpose, which would increase the weight and cost of the
overall system.

Guo et al. [16] have implemented an Ultra Wideband
(UWB) and odometry-based relative localization system for
a formation task within a group of MAVs. The range mea-
surements provided by UWB are fused with displacement in-
formation from each MAV, in order to estimate the relative
positions among the different agents. Nonetheless, the pro-
posed method requires that each MAV measures its own dis-
placement with respect to its initial position. If MAVs obtain
these displacement measurements through velocity integra-
tion, then the error will build up over time, which may affect
the accuracy of the filter.

In an alternative approach, Coppola et al. [5] proposed
a range-based relative localization filter that combines range
measurements, provided by Bluetooth technology, with head-
ing, velocity and height measurements, also provided by on-
board sensors. Following that work, van der Helm et al. [34]
proposed a similar range-based solution, facilitated by Ultra
Wideband technology, where the heading dependency is re-
moved, as it is known to be a unreliable source in many indoor
environments. Comparing both solutions, results showed that
the heading independent one is more likely to provide better
relative localization estimates. Nonetheless, that comes with
the cost of additional flight constraints, of which the most no-
table is not allowing for two agents to fly any kind of parallel
motion.

Taking into account these consequent flight constraints
that such relative localization solution implies, there is a logi-
cal question on whether its use may inherently hinder cooper-
ation between agents. Among the set of core tasks that groups
of MAVS should be capable of performing before taking part

1



in more complex applications is leader-follower flight.
Leader-follower flight is usually seen as a type of forma-

tion flight where, essentially, one MAV leads the way of one,
or more, follower MAV(s) [4]. One way to accomplish such
behaviour, is to define, beforehand, a fixed formation geom-
etry, so that each follower MAV knows where it should be
located relative to the leader [38, 3, 23]. However, this re-
sults in parallel velocity vectors, which will drive the relative
localization filter to unobservable states, compromising the
relative localization estimates and, therefore, sentencing the
formation task to failure.

An alternative approach, which pushes leader-follower
flight outside of the traditional formation flight scope and its
inherent observability issues, is to have each follower MAV
to follow the leader’s trajectory with a certain time delay, pro-
ducing a collective movement that resembles that of a snake.
van der Helm et al. [34] implemented such strategy with
groups of 2 and 3 MAVs, equipped with the heading inde-
pendent relative localization filter, and demonstrated through
flight experiments that leader-follower flight could be possi-
ble. Most of the time, MAVs were capable of avoiding un-
observable conditions and, even when they could not, they
were able to recover. However, this strategy has a couple
downsides. First, it is difficult to scale up, since it requires a
lot of past data values to be stored. Secondly, and most im-
portantly for the scope of this research, the trajectory of the
leader needs to be properly designed as to prevent possible
unobservable scenarios. For example, the leader’s trajectory
should not have long straight line segments, otherwise, the
velocity vectors of different MAVs would, again, be parallel.

In this work we study whether the use of learning meth-
ods can provide an alternative solution for the leader-follower
flight control problem when observability is not guaranteed.
Opposed to traditional behaviour-based control design, evo-
lutionary robotics and reinforcement learning allow agents to
develop their own control system in close interaction with the
environment. By doing so, the developer’s bias are taken out
of the loop, while the optimal solution is built. In the end,
leader-follower flight could be accomplished with a solution
that exhibits micro-behaviours the developer would not be
able to implement with traditional control laws, or that were
never considered in the first place.

Thus, the main contribution of this paper is a novel leader-
follower control architecture that is able to produce a success-
ful following behaviour on different scenarios, even when the
observability of the relative localization estimates is not guar-
anteed. The solution was evolved through an evolutionary
process, in which the leader-following task was simulated. As
previous work has proved [31], this architecture is suitable to
be implemented onboard MAVs with limited resources and
without relying on any external source.

The structure of the paper is organized as follows. First,
section II provides a brief overview of the relevant litera-
ture on relative localization (A), leader-follower flight (B)

and evolutionary robotics (C). Then, section III introduces
the leader-follower task the proposed solution aims to tackle.
After that, the evolutionary algorithm that was used to evolve
the controller is explained in section IV. Sections V and VI
present and discuss the results of the evolutionary process
and the ability of the evolved controller to succeed in dif-
ferent following scenarios. Finally, section VII summarizes
the conclusions of this work and offers remarks for future im-
provements.

II RELATED WORK

A Relative Localization

In the case where access to positional systems - such as
GNSS or LPS - is possible, it is straightforward for an agent
to find its position within the reference frame of the flying
environment. Assuming the different agents can communi-
cate among themselves, or that a central computer is instead
handling the data, the relative localization problem is directly
solvable because global positioning information is known
[24, 22]. However, in unknown indoor scenarios, these posi-
tional systems are typically not available. Therefore, in order
to have versatility and flexibility to different environments, it
is necessary that MAVs use relative localization methods that
rely exclusively on onboard sensors. Among the solutions
available in the literature, it is possible to make a distinction
between vision-based and signal-based methods.

The first class of methods, makes use of the robot’s cam-
era to solve this problem [12, 36, 35]. One of its main draw-
backs is the limited field of view of the cameras, which af-
fects the availability of the relative localization estimates. Al-
though solutions have been proposed to overcome this prob-
lem, they mostly come with the cost of increased weight or
motion constraints [36, 35]. Another issue is that lighting of
the environment influences the correct recognition of other
agents, and despite efforts to minimize that through the use
of LED markers [36, 35], it is still not sensible to ignore that
effect.

Opposed to vision-based methods, signal-based ones of-
fer an omni-directional solution, as they rely on the trans-
mission of a wireless signal between two agents in order to
obtain range measurements. Additionally, as communica-
tion is also needed, it is advantageous to build the relative
localization solution on top of existent communication hard-
ware, without any additional hardware costs. In most works,
the relative localization estimates are then the result of fus-
ing the range data with onboard ego-motion measurements
[15, 5, 20, 16, 34, 25]. Among the measurements used is
the orientation with respect to North, however, this is usually
measured with a magnetometer, which is subject to magnetic
disturbances. In order to better understand the impact of re-
moving a common heading reference, van der Helm et al. [34]
performed an observability analysis for a relative localization
system with and without the heading measurements. Results



showed that removing the heading measurement comes with
the cost of extended flight constraints. Especially relevant is
the fact that it seems to preclude formation flight, namely tra-
ditional leader-follower flight, due to the fact that MAVs are
not allowed to fly parallel motions. To solve this, the authors
proposed that the leader would fly along curved paths and that
the followers would follow this with a specific delay. There-
fore, the observability of the relative localization filter is de-
pendent on the leader’s trajectory. For instance, if the leader
flies a straight trajectory for long periods of time, the rela-
tive localization filters will diverge and the leader-follower
behaviour will not be possible to reproduce.

Nguyen et al. [25] also proposed a solution to overcome
the limitations of leader-follower flight with range-based rel-
ative localization methods. Typically, leader-follower flight
is composed of two types of agents: the leader and the fol-
lowers. They propose the addition of a third type of agent,
the orbiter, which tracks the leader with a predefined periodic
trajectory that aims to excite the observability of the system.
In this way, the regular followers can use orbiters as a refer-
ence and obtain more accurate relative localization estimates.
The downside of this approach is that one third of the group
needs to facilitate the others, by flying the predefined trajec-
tory. Hence, the feasibility of this method depends on the
application and resources available.

B Leader-Follower Flight

Leader-follower flight is most commonly seen as a sub-
class of formation flight where one agent leads the way of
one, or more, follower agents [4]. Usually, this is accom-
plished by establishing a fixed group formation geometry, and
then having each follower maintain the same relative position
to the leader over the flight [38, 3, 23]. A different approach,
that overcomes the parallel velocity issues of fixed formation
flight, is to have the followers fly the trajectory of the leader
with a certain time delay [34].

While these strategies define following in a different way,
the rationale behind the control laws that are employed to ac-
tually materialize the defined following behaviour are pretty
similar. Basically, a reference trajectory is defined for the fol-
lowers, and then the controller tries to minimize the positional
error, so that the desired following behaviour is produced. For
the first approach, the reference trajectory is simply a trans-
lation of the leader’s trajectory, which only depends on the
predefined relative position offsets. For the second, the ref-
erence trajectory is the same as the leader’s with a certain
time delayed applied. Different control methods have been
proposed to accomplish such laws.

Another important aspect of leader-follower flight im-
plementation is whether external resources are used, i.e. if
the agents have any interaction with other entities out of the
swarm. In decentralized methods, all the processing and de-
cision making is done individually by the agents or through
interaction between them, without communication with any

external entity. It is easy to realize that a fully decentralized
control strategy is more versatile and flexible than a central-
ized one. Nonetheless, it is also harder to implement, as the
computational resources are more scarce.

C Evolutionary Robotics

Traditional behaviour-based control design methods rely
on the designer to define the applicable control laws that gov-
ern the system to be controlled. This works extremely well for
behaviours that can be mathematically described. However,
this is not always the case, and designers end up implement-
ing control laws based on their own expectations and beliefs,
which may hinder the discovery of better fitting solutions.

An alternative approach is to use learning methods -
such as evolutionary robotics (ER) and reinforcement learn-
ing (RL) - which enable agents to develop their own con-
trol system by interacting with the task environment. While
ER and RL are built on different principles, they still share
a similar approach: ”agents obtain rewards/fitness values
while behaving in their environment, and we want to find
the policy/behaviour that corresponds to the maximum re-
ward/fitness” [9]. For the purpose of this work, it was de-
cided to employ an ER framework. The main reasons behind
the decision is that ER copes better with partial observability
and large continuous state-action spaces [9] when compared
with RL methods that rely on the Markov property.

Evolutionary robotics is a method that employs evolu-
tionary computation techniques to the design of autonomous
multi robots’ systems. In ER, robots are considered artificial
organisms that evolve their own control system (and possibly
body configuration) in close interaction with the environment,
without direct human interference, in order to produce func-
tional behaviours [26].

Evolutionary algorithms (EA) are the basis of any ER
approach. Despite the wide variety of EAs available, they
all share a common framework. Applying this framework
to ER, it all starts with the initialization of a random ini-
tial population of different artificial genotypes, each encod-
ing the robot’s control system (and morphology if desired).
Each of these genotypes is then decoded into a correspond-
ing robot that acts on the environment (through simulation
or real experiments) and the collective behaviour of the re-
sulting swarm is evaluated based on one, or multiple, pre-
defined fitness function(s). All population of artificial geno-
types follows this procedure and, based on performance, a
group of them will be selected to have the chance of repro-
ducing copies of their genotype through genetic variation op-
erations (mutation and/or recombination), generating the off-
spring. Next, this resulting offspring is subjected to the same
evaluation process that the parents’ population experienced,
and a new generation will be created by selecting individuals
from the parents’ and offspring’s population. The selection of
the new generation is usually done by giving a better chance
to fitter individuals to propagate their genotype. The new



generation follows this cycle, creating one generation after
another, until a stopping condition is met. In the end, ”good”
behaviours (as judged by the fitness function) survive over
different generations and ”bad” ones are discarded, through
an evolutionary cycle similar to the one driving natural evo-
lution.

A significant number of research work has focused on the
evolution of robot’s controllers through evolutionary robotics.
Frequently, artificial neural networks (ANN) are the state of
the art control architecture represented by artificial genotypes
[14, 32, 17, 27, 18, 31, 13]. Although the large increase of on-
board computational power available to robots only occurred
after the new millennium, the combination of ER and neural
controllers to teach a robot to accomplish specific tasks goes
far back. Floreano and Mondada [14] showed that it was pos-
sible to evolve a homing behaviour for a ground robot using a
recurrent neural network to control its trajectory. The recur-
rent connections of the neural network were vital for the suc-
cess of the solution, especially in situations where the robot
could become trapped. By providing information regarding
the states’ history, the controller was able to yield different
actions for the same sensory inputs. More recently, Scheper
and de Croon [31] successfully evolved a high-level neu-
ral network controller that allowed a swarm of three MAVs
to rearrange themselves in an asymmetric triangular shape.
The controller focus only on the formation task, therefore, it
is only responsible to output the velocity commands, while
a pre-existent inner loop controller guarantees stability and
translates those velocity values into angular velocity values of
the rotors. Despite evolving the controller in simulation, the
final solution was tested in real flight experiments in order to
validate the findings. The results were similar to what sim-
ulation suggested, and it was possible to conclude that there
was a reduced reality gap when passing from simulation to
real flight.

III LEADER-FOLLOWER TASK

This paper employs an evolutionary optimization process
aiming to develop a leader-follower behaviour of a homo-
geneous swarm of quadrotor MAVs, when the observability
of the relative localization estimates is not guaranteed. It is
assumed that the simulated MAVs are capable of measuring
their own height, therefore, the impact of the height measure-
ment on the filter observability is negligible [34].

The chosen leader-follower task is slightly different than
the ones already referred in B. Having a team of 3 MAVs,
one will act as the global leader (GL), therefore, deciding
which trajectory is the group flying. Then, one MAV will
follow the GL, while being followed by the third one. Thus,
the leader-follower controller is only implemented in two fol-
lowers MAVs, while the GL flies a pre-defined trajectory. A
visual representation of the task is provided in figure 1.

Ideally, the results could be scaled up for a swarm of N

Figure 1: Visual representation of the leader-follower task
with 3 MAVs. The Global Leader flies a random trajectory.
The 1st Follower follows the Global Leader. The 2nd Fol-
lower follows the 1st Follower.

MAVs, where one acts as the GL, N�2 act as both leader and
follower, and the last one of the group only acts as a follower.
In this way, there is no need to store the reference trajectory,
since it is propagated through the movement of the swarm.
Moreover, with this approach, one MAV only has to run one
relative localization filter (for the local leader), avoiding ex-
cessive computations and processing time.

A Control Scheme
There are different levels of control involved in au-

tonomous flight. On the one hand, there is lower level con-
trol, where the power of each propeller of the MAV is ad-
justed using a control law that, for instance, takes into account
a desired acceleration or velocity of the vehicle and trans-
lates it into the appropriate propellers’ power. On the other
hand, there is higher level control, wherein a wider view over
the goals of the system is assumed, in this case the leader-
follower flight, in order to determine the acceleration or ve-
locity values that promote that behaviour.

It has been showed that it can be beneficial to evolve be-
haviours for complex tasks using a higher-level control law
with an underlying inner loop controller [31, 19]. Therefore,
it was decided to follow those findings and evolve a controller
that is only responsible for commanding the desired MAV’s
velocity setpoints, which are then achieved by the inner loop
controller. For this, it was considered that each MAV has an
inner loop controller that ensures stable performance of the
vehicle dynamics.

In this way, the evolved controller focuses exclusively
on optimizing the high level behaviour of following the vir-
tual leader, without worrying about all the dynamics of the



MAV. Moreover, as this stable inner loop control schemes are
widely available, it makes the system more robust to the re-
ality gap between the dynamics of the simulated system and
those of the real one [31]. It is worth mentioning that the
evolved controller is to be used by all swarm agents except
the GL, as this last one will fly a desired reference trajectory,
without any regard for a leader MAV. During the simulations,
the different GLs fly random trajectories.

The control architecture choice was an artificial neural
network (ANN) with one recurrent hidden layer. At a given
time step t, the output of the hidden layer neurons is a func-
tion of the weighted sum of the inputs at that time t, the bias
node, and the output of the hidden layer at time t � 1. The
recurrence in the hidden layer was employed so that the con-
troller can decide the velocity setpoints based not only on the
current situation, but also taking into account the recent past
values that led to it.

The number of input neurons of the network was varied
during the experiments in order to understand which com-
bination yielded the best results. In the end, 6 input neurons
were used. Regarding the hidden layer, it was decided to com-
pose it with 15 neurons, so that there was enough ”space” for
evolution to try and solve the complexities of the problem.
Moreover, bias nodes were added to both the input and hid-
den layers. In the last layer, there are 2 output neurons, that
will correspond to the desired velocity commands in the x and
y body frame. Because there is a maximum velocity allowed
(⌫max), the two outputs of the neural network controller are
scaled before being fed to the inner loop controller. All neu-
rons of the network use a tanh activation function, because
we want the output to be bounded between [-1,1]. Also, the
network weights values were limited to the interval [�2, 2],
except the bias’ weights which were constrained to a larger
interval, [�5, 5]. Figure 2 illustrates this neural network ar-
chitecture.

The six inputs of the neural network were chosen in order
to provide valuable information to the controller and help it
solve the leader-following problem. The first two inputs of
the network were the desired relative position of the MAV.
Ideally, the MAV should follow its leader ”from behind”, so
that the reference trajectory can be propagated through the
swarm. Therefore, r = [rx, ry]T was defined as:

r = p� v2 (1)

with p being the relative position between the following
MAV and its local leader, and v2 the velocity of the local
leader. The latter velocity, v2, is also an input to the network,
as well as the own velocity of the following MAV, v1. The
velocities were added with the reasoning that the controller
might be able to anticipate changes in the desired relative po-
sition, hence, acting more proactively rather than reactively.
In this way, the error propagation of the reference trajectory
through the swarm could possibly be minimized.

Figure 2: High-Level Velocity Controller

B High-Level Quadrotor Kinematic Model
Although this work only presents simulation results, it

was performed with the aim of later being applied in real-
world experiments. With this in mind, the Parrot ARDrone
2 quadrotor MAV kinematic model was used to simulate the
MAVs’ dynamics.

As previously referred, an inner loop controller is al-
ready implemented in all vehicles, and ensures a stable per-
formance, therefore, the high-level dynamics can be modelled
by a first-order system with time constant ⌧⌫ = 0.3636 [31]:

v̇ =


� 1

⌧⌫+�t
0

0 � 1
⌧⌫+�t

�
v +

 ux
⌧⌫+�tuy

⌧⌫+�t

�
⌫max (2)

where v = [vx, vy]T represents the linear velocity vec-
tor, u = [ux, uy]T is the output of the neural network con-
troller, �t is the discrete time step of the simulation, and
⌫max = 0.6m/s is the maximum velocity allowed for the pur-
pose of this work. The value of ⌫max was set by taking into



account the safety of future flight experiments. The value of
⌧⌫ is perturbed by ±5% for each vehicle, at the start of each
simulation, as recommended in Scheper and de Croon [31].

An additional advantage of using the high-level first-order
system to simulate the vehicles’ dynamics, is that it allows
for a larger simulation time step, �t (at least 10 times larger).
In this way, the computational effort of the simulator is sig-
nificantly reduced, making it more feasible to test different
alternatives and solutions.

C Relative Localization Filter
Like in van der Helm et al. [34], the Extended Kalman

Filter (EKF) provides the necessary heading independent rel-
ative localization estimates to each simulated MAV. The sys-
tem and measurement noise matrices are initialized based on
the correspondent expected noise values, but with a small ran-
dom perturbation of ±5% at the beginning of each simulation.
This is done in order to reduce the reality gap between simu-
lation and real flight experiments [31]. As for the initial state,
it is initialized with the real one, as to maximize the chances
of the filter converging at the start of the simulation, putting
the focus on the filter performance during the leader-follower
task. Consequently, the initial state covariance matrix is ini-
tialized as an identity matrix.

IV EVOLUTIONARY ALGORITHM

The evolutionary algorithm employed to evolve the afore-
mentioned controller follows the framework introduced in
section C. Given the fact that the controller has a fixed struc-
ture, i.e. the number of layers and respective neurons is de-
fined beforehand, the EA is responsible for optimizing the
value of the weights of the network (within the applicable
range). Moreover, an additional parameter, which represents
the refresh rate of the controller, is also optimized. The value
of this parameter can vary between 20Hz, 10Hz, 5Hz or 1Hz,
which are all multiples of the simulation time step, �t, equal
to 0.05 seconds.

With this being said, an initial population of 40 individ-
uals is generated. Each individual is represented by a vec-
tor of 363 elements (7 ⇥ 15 (connections between input plus
bias and hidden neurons) +15 ⇥ 15 (recurrent connections)
+16 ⇥ 2 (connections between hidden plus bias and output
neurons) +1 (controller rate)), randomly initialized within
the applicable ranges. Once initialized, each individual of
the primal population was implemented on the two followers,
which were then simulated, together with the global leader
agent, using the high-level dynamics introduced in B. In or-
der to avoid creating bias in the following behaviour, the three
MAVs are always initialized in a random position, at hover,
with a inter-distance between 1 and 1.5 meters. During ini-
tialization, a follower can be in front of its local leader. Ad-
ditionally, all MAVs are initialized with a zero heading.

One of the main difficulties of this work was to define a
proper way to evaluate good following behaviour. At the be-

ginning, we thought that it made sense to maximize both the
following performance and the observability of the relative
localization states. The first one, because the task is leader-
follower flight. The second, because the observability of the
relative localization filter also affects the following perfor-
mance. If the filter estimates’ errors are too large, then it is
impossible to be a good follower. However, the observability
metric used (the estimation condition number) was unable to
add additional value to the optimization because it provided
ambiguous information. Hence, we ended up maximizing
only the following performance, which was not a problem
because it is expected that a good following behavior is cor-
related with good observability of the system.

During a trial, each ”following” agent is first evaluated
individually using the coming set of equations:

findividual = frelative position (rp) ⇥ frelative angle (ra) (3)

frp =
1
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With pt being the relative position between a follower
MAV and its local leader, and ↵t being the smallest angle be-
tween the relative position and local leader’s velocity vectors,
at time t. Figure 3 illustrates pt and ↵t for a random motion
of a leader/follower pair, and figure 4 provides an overview of
the fitness function distribution for a specific leader motion.

Figure 3: p and ↵ at any given time t

Then, based on the individual performance of each fol-
lower, a final fitness function was defined:

ffinal = ffollower 1 ⇥ ffollower 2 (7)



Figure 4: Individual Fitness Function Values. The leader is
assumed to be at the origin (x = 0, y = 0), with velocity
v = (0,�1)

As the individual fitness values are always in the inter-
val [0, 1], the product was used in order to penalize situations
where followers had highly contrasting performances.

Looking at figure 4, stands out that evolution is optimiz-
ing controllers that enable a follower to keep a close distance
to the local leader, but not so much that a collision occurs
(equations 4 and 5); while doing it as aligned as possible
with the motion of the leader (equation 6). The last compo-
nent was introduced because preliminary work showed that
the controller tended to lead the follower to the side of its
local leader. When that happens, the reference trajectory of
the global leader is no longer stored in the swarm through the
motion of the followers, which can be fatal in scenarios where
the global leader is the only agent capable of autonomously
navigating through a cluttered room.

As for the variability component of the algorithm, fol-
lowing suggestions in the literature, mutation was the only
variation operator used, as it seems to be more effective when
dealing with real value genotypes [37]. Each parameter of
the genotype had a mutation probability of 10%. For the 362
genotype parameters corresponding to weights of the neural
network, mutation resulted in a perturbation of the previous
value by a value drawn from a Gaussian distribution. For pa-
rameter 363, which encoded the controller’s refresh rate, a
mutation meant that a random rate was drawn from the avail-
able options. Every member of the initial population expe-
riences mutation, therefore, the resulting offspring was also
comprised of 40 individuals. The offspring experienced the
exact same evaluation process described for the initial popu-
lation.

Once the evaluation ends, the population and offspring
were grouped together and ranked in descending order. Then,
the next generation is chosen through a round-robin tourna-
ment, in which each individual was compared against 8 oth-
ers, randomly chosen. For each time an individual had a
higher fitness then its random opponent, it would get a win.

In the end, the 40 individuals with more wins were selected
for the next generation, and the process would reiterate.

Over the evolutionary process, although the basic setup
of the evaluation remained the same, there were certain con-
ditions that changed. Essentially, the complexity of the task
gradually increased and, based on those increments, it is pos-
sible to identify three different evaluation stages.

1. In the first one, the simulation takes 90 seconds, each
genotype is evaluated through 3 different trials, and
only the performance of the agent that follows the GL
is taken into account through equation 3.

2. After the first follower agent starts showing some abil-
ity, there is a change in the fitness function and equation
7 is used, in order to evaluate the overall performance
of the group.

3. In the last stage, there are no changes to the fitness
function, however, the time of the simulation is in-
creased to 150 seconds, and the number of trials in-
creased to 5.

This staged evolution was implemented because it was
observed, in previous experiments, that focusing exclusively
on the first follower at early stages would speed up the opti-
mization process. An explanation can be offered by the fact
that in early generations the controller easily saturates, which
results in both followers moving in a straight line trajectory.
As a consequence, the straight line motion of the second fol-
lower can erroneously be interpreted as a perfect following
behaviour of the first follower’s straight line trajectory, which
is clearly not the case. Moreover, both the time of simulation
and the number of trials contributing to the final fitness value
were increased in order to get the best generalising solution
possible. Finally, it should be noted that in the different trials,
the GL always flies a random trajectory and, at least, one of
them promotes an unobservable scenario (straight line trajec-
tory). This random trajectory is achieved through velocity in-
crements/decrements in both magnitude and direction at ran-
dom time steps, with larger variations (which result in sharper
turns) being less probable. The reasoning behind choosing
random trajectories is that we wanted the followers to be able
to be successful in any type of trajectory, which augments the
potential applications of the solution.

V RESULTS

Figure 5 shows the progress of the evolved solutions over
different generations, namely the average fitness of the pop-
ulation and the best individual performance. The standard
deviation of the population fitness is also included in order to
make it easier to observe the variation in performance within
the population. It can be seen that a following behaviour was
quickly evolved during the first and beginning of the second
stages. After that, a less prominent learning curve is visible,



in which the performance increases slowly but steadily. Fi-
nally, when the third stage begins, the performance stops im-
proving and starts converging. This converging behaviour is a
result of changes in the time of the simulations and the num-
ber of trials per evaluation, which reduced possible variability
caused by favourable conditions (initialization or difficulty of
the trajectory to follow). Ideally, there would not be the need
to use different stages and the solutions would have more gen-
erations to evolve. However, because the simulation time per
generation could be quite high (from, approximately, 140 to
220 seconds depending on the stage), there was the need to
try to speed up the evolutionary process. The biggest reason
for such high generational time is the fact that running the
relative localization filters can be quite heavy (a simulated
task with the relative localization filters takes an average of
3.2 seconds, while one without the filters takes an average of
0.28 seconds).

Figure 5: Fitness progress of the average performance of the
population and best individual during evolution of the leader-
following controller. The different stages are clearly identi-
fied.

In order to validate the findings, the controller with the
highest fitness was further evaluated through different tests.
It is worth mentioning that the optimal controller rate of this
controller, and the majority of the final population of con-
trollers, is 10Hz. The first test tackles the task that the con-
troller experienced during the evolutionary process. In the
second test, the GL only flies straight line trajectories, so
that we can try to find an answer to the hypothesis that maxi-
mizing only the following performance also has the effect of
maximizing observability. Finally, the third test looks into the
scalability of the controller, by showing results for a larger
group of agents than the one used during evolution. Be-
cause we are primarily interested in the following behaviour
of the controller, the results will not take into account colli-
sion rates. A successful trial is one in which the individual
fitness value of both followers is at least higher than 0.5.

A General Test: GL flying random trajectories
This test consisted of 250 trials of 150 seconds, wherein

the initial conditions were varied and the global leader flew
different random trajectories. Figure 6 illustrates one of the

successful runs. Results show that 53% of the trials were
successful. When looking separately to the different follower
agents, it was observed that the first follower was able to be
successful in 95% of the runs, which highly contrasts with the
53% success rate of the second follower.
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Figure 6: Ground track of one successful run of leader-
follower flight when the Global Leader agent flies a random
trajectory.

B Observability Test: GL flying straight trajectories
In the second test, the three agents were again simulated

over 250 trials of 150 seconds, with different initial condi-
tions. This time, the GL flies different straight line trajecto-
ries, which are known to promote unobservability. Using the
same measure of success, results show that the task was com-
pletely successful in 38% of the trials. Figure 7 illustrates
one of these. Looking separately, the first follower was suc-
cessful in 84% of the trials, while the second follower was
only successful in 39%. Again, a significant difference can
be observed between both followers.
C Scalability Test: GL flying straight trajectories and one

extra follower
To assess how the evolved solution scales to a larger group

than the one used in the evolutionary environment, 250 ad-
ditional simulations were run for a group of four agents,
wherein the initial conditions were varied and the global
leader flew different random trajectories. As expected, the
two first followers show a success rate similar to the one pre-
sented in V. As for the third follower, it shows a 28% success
rate, which is an additional decrease when compared with that
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Figure 7: Ground track of one successful run of leader-
follower flight when the Global Leader agent flies a pure
straight line trajectory.

of the second follower. Nonetheless, looking at figure 8a, in
which the distribution of the individual performances of each
follower is shown, it is possible to see that its performance is
actually closer to that of the second follower than one might
expect if they only looked at the aforementioned success rate.
Moreover, figure 8b shows the distribution of all the range
values when combining all 250 trials. There, the similarity
between the performance of both agents stands out even fur-
ther.

Table 1 provides an overview of the success rates of the
different tests.

VI DISCUSSION

After presenting the different test results of the best
evolved controller, it is time to go further in the analysis.
This section starts by commenting the suggesting evidence
that the proposed solution is able to evolve a controller that
learns how to follow while steering itself from unobservable
states. Moreover, the scalability of the controller is tackled,
by showing some results for a larger group of agents than the
one used during evolution. And finally, the neural controller’s
preferential behaviour, as well as some failure cases, will be
discussed.

A General Test: GL flying random trajectories
The first test was done to validate the results of the evolu-

tionary process. Moreover, it provides insights into the main

(a) Individual Fitness of the different follower agents

(b) Range distribution between the leader-follower pairs

Figure 8: Summary of results for 250 trials of leader-follower
flight with three followers.

limitations of the evolved solution.
While the overall performance is in line with what was

expected (see final generations in figure 5), the significant dif-
ference between the performance of both followers suggests
that the great success of the first follower may compromise
the success of the second one. Looking into figure 6b, and
taking into account that most successful trials also exhibit a
similar behaviour, it seems to be that the optimal way to fol-
low a reference leader induces such a wobbly motion that it
consequently hinders others that want to follow it.

B Observability Test: GL flying straight trajectories

To understand whether there is an emergent behaviour
that helps the evolved controller steer away from unobserv-
able scenarios, it was decided to test it in a setup where the
global leader flies, with constant speed, a pure straight line
trajectory. Revisiting what has been said before, this type
of motion by a leader is prohibitive for any of the previously
proposed leader-follower solutions, as the observability of the
relative localization states is not guaranteed for a long period.

Although the results for this test are worse than those
yielded in the first one, they definitely attest the ability of the
controller to steer away from unobservable states in highly
challenging scenarios. In fact, only the first follower has a
leader flying a pure straight line trajectory, and its results



Test/Success Rate Overall First Follower Second Follower Third Follower
A 53% 95% 53% -
B 38% 84% 39% -
C 20% 95% 53% 28%

Table 1: Overview of the results

are remarkable. The inferior results of the second follower
seem to strengthen the hypothesis that the controller’s in-
duced wobbly motion may be detrimental for the overall
group performance. This hypothesis can be further tested
looking into the third test.

C Scalability Test: GL flying straight trajectories and one-
extra follower
Test number 3 provides interesting results that help us

draw several conclusions. First, the controller can be scaled
up to a larger group. However, it is recommended to only
scale up if the following performance expectations of the task
are lower enough to allow it. For instance, if the environ-
ment does not have a narrow flying area where constant obsta-
cle/wall avoidance is required. As seen before, the wobbling
behaviour induced by the controller is most likely the cause
for the drop in performance, since its effect is multiplied for
the third follower.

Moreover, the difference between the performance of the
first follower, and that of the other followers is more signifi-
cant than the difference between the second follower and the
third one. One of the main reasons for this is that the first fol-
lower is following a smooth trajectory (global leader), while
the others have a slightly more complicated task. For this rea-
son, it is more difficult to score in the angle component of the
fitness function (equations 3 and 6) for the other followers
than for the first one.

D Emergent Behaviour and Failure Pattern
It has already been established that the evolved controller

shows the ability to follow its leader, as well as to steer away
from unobservable scenarios. Now, it is time to go further
and try to analyze the optimized behaviour.

Looking closely into the output of the neural network con-
troller during the successful flights provided in figure 9a, it is
possible to see that, most of the time, it chooses a combination
of the maximum allowed (positive or negative) velocity com-
mands. Additionally, it can also be seen that there is a con-
tinuous swing between positive and negative values, which is
the main cause of the wobbling following behaviour that was
earlier mentioned. Figure 9b shows that phenomenon.

Equally interesting is the fact that this swing behaviour of
the velocity commands stops happening when the controller
is not able to follow. In fact, what happens instead, is that the
controller is so eager to correct its position, that it ends up
saturating its output to the same values - see figure 10b. By
doing so, it puts itself into a snowball effect, because this sat-

uration stimulates unobservability, which in turn degrades the
relative localization estimates, therefore, the ability to follow
the leader. Figure 10a reinforces this idea, by showing a 33%
increase in the occurrence of larger velocity command pairs.
The idea of adding the follower’s own velocity as an input
to the controller tried to offer an exit to this loop, however,
there is still room for improvement. What exactly triggers the
failure situation is, unfortunately, still not clear, hence, fur-
ther research should be carried, so that the solution can be
augmented to tackle it.

Finally, it should be noted that the controller also shows
an ability to recover from these failure situations. Figure 11
shows an example in which the first follower looses track of
the global leader and, later, is able to recover.

E Collisions
In Section V, results do not include the impact of colli-

sions because the major aim of this work is to evaluate the
following behaviour that was evolved when dealing with the
observability limitations already referred. Nonetheless, col-
lisions obviously have an impact in the real life success of
a leader-follower controller solution. If we were to include
those results, they would show that the controller tends to
over-approximate the follower agent towards its local leader,
which leads to too many potentially hazardous situations.
Moreover, it seems to be a bigger problem when the GL flies
random trajectories, compared with straight line ones. This
may be explained by the fact that, for the latter, the direction
of the trajectory is constant over time, therefore, there are less
unexpected turns (in successful following flights) that may
raise conflicts.

Figure 8b actually shows the tendency of the controller
to over-approximate to its local leader, which in a real world
scenario could lead to collisions. That is something that in the
future should be tackled by, for instance, moving the fitness
function a bit further from the leader (see figure 4), and/or
introducing a stopping condition in evolution when a colli-
sion occurs and penalise it during the evaluation phase. For
the scope of this work, where the intent was to study optimal
follower behaviours, the latter was not included.

VII CONCLUSION

In this paper a novel control architecture for leader-
follower flight is proposed. The evolved controller is able
to produce a following behaviour, while showcasing the abil-
ity to enhance the observability of the system. It is shown



(a) Heatmap of velocity commands for 150 different successful trials
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Figure 9: Evolved neural network controller behaviour.

that despite the limitations of the heading independent filter,
leader-follower flight is still possible, even when confronted
with a leader trajectory that was previously thought to be pro-
hibitive for such task.

Nonetheless, the wobbling behaviour that results from the
controller’s velocity commands is a double-edged sword. On
the one hand, it seems to give the follower the ability to steer
away from unobservable states, while on the other hand, it
complicates the task of an additional follower. Despite this,
the controller still shows a promising ability to be employed
in larger groups than the one used during the learning process.

Future work should necessarily tackle some identi-
fied flaws. First, the tendency of the controller to over-
approximate to its local leader needs to be fixed before exper-
imenting with real flights. Moving the fitness range compo-
nent further from the leader, i.e. penalize heavily any range
smaller than, for instance, 1m instead of 0.7m, could be a
solution. Otherwise, a collision stopping condition that pe-
nalizes the fitness function could be introduced in evolution.

(a) Heatmap of velocity commands for 50 different unsuccessful trials
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Figure 10: Controller behaviour for unsuccessful trials.

Another approach could be to implement a separate colli-
sion avoidance behaviour that overwrites the leader-follower
controller when facing potentially dangerous situations. Sec-
ondly, further research should be done to try to identify the
trigger of the failure situations, so that possible solutions that
anticipate them can be incorporated. Until then, a simple so-
lution could be to introduce an additional safety component
to the controller that avoids the saturation of its commands
by, for example, perturbing them by 20% whenever it finds
itself outputting the same commands for too long.
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Relative Localization

Autonomous navigation is influenced not only by the goals of the flight, but particularly by the sensors
available to the MAV so that it can perceive its environment in order to know what to do. Moreover, if the
goal is to achieve autonomous flight of a group of MAVs instead of only one, the task becomes increasingly
complex, since each MAV needs to account for additional dynamic elements within the environment. In
fact, the MAVs need to plan their trajectory considering, not only, the static environment, but also, the other
members of the group. Furthermore, if complex collective behaviours want to be explored, it is vital that an
agent has an accurate estimate regarding the relative position of its neighbours. For this reason, relative
localization is a high interest topic within the scientific community.

In the case where access to positional systems, such as GNSS or LPS, is possible, it is easier for an MAV
to find its position within the flying environment, therefore, enabling an easy relative localization estimate
within the global frame of reference, as long as the agents can communicate with each other. However, access
to these systems is not possible when flying in unknown indoor scenarios, which are the ones MAVs should
ultimately aim for. Hence, relative localization methods that only rely on on-board sensors must be explored.

In this chapter, an overview of different relative localization methods will be performed. First, in Section
1.1, a relative localization framework is introduced. Next, Section 1.2 discusses on-board based solutions
that can provide the required measurements for the aforementioned relative localization framework. Finally,
Section 1.3 reviews different sensor fusion approaches used in the literature, and Section 1.4 delves into depth
on the state of the art work this thesis aims to follow.

1.1. State of the Art Framework

The first step to solve the relative localization problem is defining which framework to follow in order to get
relative localization estimates. Depending on the framework that one decides to use, different relative pose
measurements may be needed.

The general ego-centric framework inspired in the work of Howard et al. [30] describes a method where
each robot can determine the pose of every other robot in a swarm, relatively to itself. Considering two MAVs,
Ri and R j , with body frames FBi

and FB j
, respectively, the full relative pose of R j with respect to Ri can be

defined as:

#»
P j i = [x j i , y j i , z j i ,¡ j i ,µ j i ,√ j i ], (1.1)

where x j i , y j i and z j i are the position of R j in FBi
. Further, ¡ j i , µ j i and √ j i are the roll, pitch and yaw of

FB j
with respect to FBi

.
However, it is possible to simplify the relative pose of R j with respect to Ri by using a variation of the

typical FBi
body frame: Hi . Hi can be defined as a horizontal body reference frame, i.e., the Z-axis remains

parallel to the earth-fixed North-East-Down (NED) reference frame, I. In this way, Equation 1.1 can be re-
arranged [69] with cylindrical coordinates as:

#»
P j i

cc
= [r j i ,h j i ,√ j i ], (1.2)
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where r j i is the absolute range between the origins of Hi and H j , see Equation 1.3; h j i is the height
between Ri and R j , see Equation 1.4; and √ j i is the orientation of R j with respect to Ri , see Equation 1.5.
This framework is illustrated in Figure 1.1.

r j i =
q

x
2
j i
+ y

2
j i
+ z

2
j i

(1.3)

h j i = h j °hi (1.4)

√ j i =√ j °√i (1.5)

Figure 1.1: Reference frame I (purple) is the earth-fixed NED frame (assumed to be inertial); reference frames H1 (blue) and H2 (orange)
are the horizontal body-fixed frames for drones 1 and 2, respectively [69].

Established the framework, two things stand out. First, the measurements that are required to produce
relative localization estimates: range, height difference and relative orientation. Secondly, inter-MAV
communication is highly recommendable to facilitate the computation of certain estimates. For instance,
consider that each drone is equipped to obtain its own height and heading via on-board sensors, such as a
pressure-sensor or a magnetometer, respectively. Then, by exchanging these measurements, each drone can
compute the corresponding relative estimates. As for the range, drones are not equipped with specialized
sensors to measure it, therefore, it is necessary to investigate which combination of on-board sensors and
methods can render it. Once again, inter-drone communication may prove to be vital.

1.2. On-Board Methods for Range Measurements

An overview of the different on-board methods that have been successfully used to obtain relative range
measurements will be performed in this section. As it was already referred, the solution this thesis aims to
develop excludes the use of any external source of information. Therefore, the use of external systems, like
Motion Capture Systems (MCSs) or Global Position System (GPS), to produce relative measurements will not
be discussed.

The following subsections will focus on the state of the art methods used in the literature. Both vision-
based and signal-based methods will be discussed, by providing a concise explanation on how they work,
their advantages and handicaps, as well as how they were applied for research purposes.
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1.2.1. Vision-based Methods

Vision-based methods make use of the video/image captured by a robots’ camera. There are different vision-
based methods that can provide useful measurements for the relative localization problem.

Starting with Simultaneous Localization and Mapping (SLAM) algorithms, these try to solve the problem
in which a mobile robot is placed in an unknown environment without any knowledge of its location and, over
time, tries to, simultaneously, incrementally create a map of its surroundings and estimate its own location
within this map.

Taking this approach into account, it is possible to have different robots collaborate with each other, by
communicating and sharing their cognition about the environment, and generate a shared map of the
environment while determining the position of each robot in the map [7, 29]. Carlone et al. [7] presents a
SLAM strategy for a multi robot system in which robots only exchange information when a rendezvous event
occurs. The robots are equipped with a camera, a custom visual marker, and a wireless communication
system. A similar solution is introduced in Hidayat et al. [29]. In this way, and using only on-board sensors, it
is possible to approximately replicate the scenarios in which a global reference frame is available, therefore,
facilitating the relative localization estimates.

In order to construct the map of the environment, the robot(s) must be equipped with sensors that allow
it to perceive the environment and obtain measurements from it. When cameras are employed as the sole
exteroceptive sensor, SLAM algorithms fall in the visual SLAM category. These methods are often
augmented with information from proprioceptive sensors, such as accelerometers and gyroscopes. Visual
SLAM methods are preferred because of their ability to obtain range information while retrieving other
environment’s characteristics, as colors and textures, that may be useful for other purposes. Furthermore,
cameras are relatively cheap and light, which is important for MAVs applications, for instance. Nonetheless,
cheap and light cameras that do not demand too much power also have problems (low camera resolution,
sensitivity to lighting, lack of textures) that negatively affect the quality of the resulting estimates, leading to
inconsistent maps that may endanger the exploration of collective behaviours of a group of MAVs. Moreover,
SLAM algorithms are computationally expensive, which is an additional handicap for their implementation
in this type of robots.

As referred, in SLAM methods cameras are used to obtain range information. Therefore, they can be an
option to simply retrieve the necessary range measurements for the relative localization framework
presented in Equation 1.2. A robot can derive range measurements by directly analyzing the images
captured by its own camera(s). Usually this involves two steps, recognizing the target robot and, using pixels
matching techniques and geometrical properties, estimate the desired range (and orientation, if one wants
to avoid the use of magnetometers). Because the recognition process may be overly demanding, some
authors suggest the addition of easily identifiable markers to the MAVs’ in order to facilitate it [16, 74, 75].

Walter et al. [74], for instance, proposes an outdoor solution where UAVs are equipped with Ultraviolet
(UV) Light-Emitting Diode (LED) markers and a suitable camera with specialized bandpass filters. The
active ultraviolet markers emit light in frequencies less familiar in nature, which assures better precision and
reliability against different conditions and environments, without compromising the cost, size and weight of
the overall system as well as the required computational load. Later [75], their work was extended by using
the Hough Transform to encode individual marker IDs in blinking patterns. This feature enables the
distinction between different UAVs and sets up an easier approach to filter out other light sources and its
reflections (non-blinking bright spots).

A different type of marker is proposed by Faigl et al. [16]. Instead of using LEDs, a circular marker formed
by two concentric circles of contrasting colours is attached to each robot. The results showed that relative
localization within a robotic swarm can be achieved with a good trade-off between detectability, precision
and computational power. However, by experimenting with the radius of the circles, it became clear that
smaller sizes of the pattern, despite favouring the practical deployment of the system, would affect negatively
the performance of the system. Moreover, this strategy comes with an additional limitation: the marker of
a target MAV needs to be in the field of view of the other’s camera in order to occur detection. This means
that it is not possible to guarantee continuous access to range measurements, which is vital for the relative
localization framework.

A complete different way of using cameras to produce range measurements is presented in Milano et al.
[45]. Robots are equipped with a light emitter and a camera, both pointing perpendicularly to the ceiling.
Hence, each robot can observe, on the ceiling, a map with its own position at the azimuth and the relative
position of the other robots, which allows to measure the relative pose among them. Despite the results
showing the effectiveness of the method for multi-robot tasks - rendezvous and formation control - in a group
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of ground robots in a controlled environment, its translation to unknown scenarios might be difficult since
it is built on several assumptions that will probably not hold true in most cases: robots need to move at the
same Y-plane, height of the ceiling is available (or can be estimated), and the ceiling is approximately flat.

Overall, all the aforementioned methods have limitations that raise concerns regarding their
applicability within a swarm of MAVs in an unknown indoor environment. First, they are computationally
expensive. Secondly, despite improvements with the use of LED markers [74, 75], they are still dependent on
the illumination and vision contrast of the environment. Moreover, the limited field of view of the cameras
can lead to restricted Line of Sight (LoS) operations. Finally, adding markers to facilitate the recognition
stage may affect the size and weight of the overall system, which is intended to be small, as well as
compromise the generalization of the method to other systems.

1.2.2. Signal-based Methods

Signal-based methods rely on the transmission of a signal between two MAVs and can be supported by
different hardware systems. These methods are usually divided into two main categories:

• Received Signal Strength (RSS), in which the range between a transmitter and a receiver is estimated
based on the signal strength.

• Time-based, in which the range between two antennas is estimated from measuring the signal
propagation time between them;

Received Signal Strength
The power of electromagnetic waves decreases over distance, hence, it is possible to calculate the distance
between a receiver and a transmitter based on the strength of the received signal. This can be achieved with
different technologies, e.g. Bluetooth or Ultra Wideband (UWB), when communicating a signal between two
antennas. Like any other signal, the estimated strength will have a noisy component which can be, for
instance, a consequence of reflections in the environment.

There are two main methods when using RSS to estimate distances for indoor localization purposes:
finger-printing and model-based. The first method requires a previous assessment of the environment,
since it uses multiple beacons - static or mobile - to build a map - finger-print - of the RSS distribution in an
environment. With that, position can be derived for a certain individual. It becomes clear that this method is
not suitable for the goals this thesis aims to achieve, as it is not compatible with operating in unknown
environments.

Regarding the second method, model-based, it entails the construction of a model of the propagation of
the signal that correlates RSS with distance. In Coppola et al. [8], a Bluetooth RSS based relative localization
scheme is developed in order to study collision avoidance strategies. The algorithm was tested with teams of
two and three UAVs, providing satisfying results for the range measurements and consequence localization
task. Despite proving to be an interesting solution, one of its drawbacks is that it is difficult to account for
multi-path interference, since the environment is unknown and there can be several different sources of
interference. Moreover, RSS has a limited maximum range, which affects the applicability of methods relying
on it.

Time-based Methods
The velocity of electromagnetic signals or sound waves in the air are well established values. With that
information, it is possible to estimate the distance between two devices by measuring the propagation time
of a signal transmitted between them. There are several time-based methods that may be employed for this
purpose:

• Time of Arrival (ToA), which measures the time it takes for a signal to travel from a transmitter to a
receiver. Then, the receiver can extract the range. Usually, these methods include another signal being
transmitted that acts as a trigger.

• Round-trip Time of Arrival (RToA), where a transmitter measures the time a signal takes to travel to a
receiver and back to it again. If the transmitter knows the processing time of the other device, it can
compute the range between them.
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• Time Difference of Arrival (TDoA), where a transmitter emits a signal that is received by at least three
receivers. If the position of the three receivers is known, the difference between their arrival times can
be used to perform trilateration and extract the localization of the transmitter.

The aforementioned methods are implemented in the literature using different technologies and
hardware. State of the art systems rely on radio-based technology, like UWB or Bluetooth, or sound-based
systems.

ToA methods alone do not have great value for this research, since if one MAV wants to measure the range
with respect to another, the one being targeted needs to send back information about the range, because only
the receiver can measure it. Thus, if communication in both ways is necessary, you might as well use RToA
methods, since they use this two-way communication scheme to compute better range estimates.

In Lin et al. [39], acoustic signals are used in order to estimate the relative pose of a team of mobile robots
through a RToA method. The robots emit custom sound waveforms that enable both robot identification and
range estimation. Moreover, in Guo et al. [24] and later in Guo et al. [25], a RToA method is implemented in
order to collect range measurements for a UWB-based localization filter for UAVs navigation. Furthermore,
in van der Helm et al. [70], a range-only relative localization strategy is developed, based on RToA UWB range
measurement. Results showed that the distribution of the ranging error throughout flights of two MAVs is
close to a Gaussian distribution around a mean ranging error of about °6.4cm.

Despite the good results, similarly to RSS range measurements, time-based methods are also sensitive to
multi-path interference that may cause ambiguity. With this in mind, there are several extensions of the basic
RToA method that account for this possibility and decrease the worst case scenario error [37, 46]. Obviously,
this extensions come with a computational cost, thus, it is a decision of the designer to determine if there
is indeed a need to implement them, or if the accuracy of the regular range measurements is already good
enough.

With respect to TDoA methods, they mostly require the use of fixed beacons with a well-known position,
in order to obtain range measurements. Therefore, their value for this research is scarce. Nonetheless,
Kohlbacher et al. [36] proposes a relative localization sensor system for swarm applications, using UWB to
obtain ranging measurements with a TDoA method. Each agent is equipped with a tetrahedral antenna
array with UWB sensors that enables the application of TDoA to measure the relative range (and orientation)
of other agents. Although the addition of an antenna array is not ideal, because it increases the size and
weight of the system, depending on the applications it might represent a great solution, since it only weights
56g.

It is important to add, regarding the specific use of acoustic systems, that they are negatively affected by
other sounds that may occur in the environment, which can be problematic when tackling most scenarios.
On the other hand, radio-frequency based systems, have a great advantage in versatility. They can be used,
not only, to obtain range measurements, but also, to communicate between agents [70]. This is a powerful
asset, as mentioned in Section 1.1, since it erases the need of having a different system on-board to handle
communication tasks, reducing the weight of the overall system.

Within radio technology, UWB is becoming the preferred option within localization systems, since it has
several advantages when compared with others, such as Bluetooth, Wifi or ZigBee. First, it can operate in a
wide range of frequencies, which helps overcoming multi-path issues and dealing with interference from
other signals. Moreover, it has a wide communication range, as long as communication speed can be
sacrificed, providing flexibility for different swarm applications. Finally, indoor environments are often
populated with obstacles for communication between agents, however, with UWB this is not a big problem,
since it has favourable material penetrating properties, when compared with other wireless technologies.

Having examined the different methods and technologies that are used on-board robots in order to obtain
range measurements, it is time to discuss how can one use range, height difference and relative orientation
measurements to build a relative localization system for a group of mobile robots.

1.3. Sensor Fusion

Sensor Fusion is the combining of sensory data or data derived from sensory data such that the resulting
information is in some sense better than would be possible when these sources were used individually [15].
In a real scenario, measurements and states are stochastic, i.e., they are subject to unexpected noise that
leads to biased estimates, reducing the quality of the derived dynamics models. By combining different
sensory data from different sensors, it is possible to mitigate this noise and improve the accuracy of state
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estimates. Actually, it has already been stated that sensor fusion between relative ranging and relative
motion measurements leads to better results for the relative localization estimates. In this case, the
strengths of inertial sensors - high sample rates and short term accuracy - are combined with those of, for
instance, UWB - stable accuracy over time; in order to overcome the weaknesses of both: bias drift for
inertial sensors and lower short term accuracy for UWB.

Great part of the researches in the literature that use UWB to produce range measurements does not fit
the interests of this thesis, since fixed beacons with well-known locations are used to obtain a localization
estimate through trilateration. Nonetheless, they are worth mentioning in this section as they are an
example of how sensor fusion of UWB ranging measurements with other sensory data can improve the final
localization estimate.

In fact, in González et al. [23], the problem of robot localization using UWB range measurements and
trilateration is addressed by using a Particle Filter to combine different measurements from the UWB
beacons and robot odometry. Moreover, a probabilistic model for the UWB ranges within different
environments is derived, in order to correct for the possible errors due to multi-path effects. The proposed
solution was validated through different scenarios, proving its feasibility. Using trilateration in a similar way
[48], an Extended Kalman Filter (EKF) was implemented to fuse UWB range measurements and IMU ones in
order to improve localization estimates. After some test flights, the Root Mean Square Error (RMSE) of the
localization estimate in the x-y plane was 0.123m and in altitude was 0.345m.

The trilateration algorithm is again used in Guo et al. [24]. An EKF is implemented to achieve highly
accurate position and velocity estimates from UWB range measurements. Later [25], the work was extended
to tackle the UWB based Relative Localization problem for a team of UAVs. Using, again, an EKF to fuse UWB
range and self-displacement measurements, relative localization estimates were achieved for a group of three
flying UAVs.

Continuing with the relative localization problem for a team of MAVs, in Coppola et al. [8], an EKF is used
to combine Bluetooth RSSI range measurements, ultrasonic sensor height measurements, magnetometer
heading measurements, and Lucas-Kanade based optical flow velocity measurements to perform relative
localization. In a test flight with two drones, the RMSE of the relative range estimates was 1.18m, whereas for
relative heading estimates the RMSE was 0.77rad. Following this work, van der Helm et al. [70] replaced
Bluetooth RSSI with UWB in order to obtain the range measurements. Moreover, because magnetometer
measurements are usually noisy, the dependency on heading measurements was removed, and the impact
of this removal on the relative localization estimates was investigated. In the end, an EKF solution was
implemented as to combine range, velocity and height measurements. When flying two drones in a
leader-follower strategy, with a maximum distance of 5.2m between themselves, the relative localization
mean error was 22.6cm, whereas the maximum error was 75.8cm, confirming that dropping the
magnetometer measurements would indeed not spoil the relative localization estimates. Since this solution
[70] does not require extra hardware, and hence is promising even for MAVs, it will be the one this thesis
aims to follow and, if possible, improve. With this in mind, the following section will delve deeper on this
study and provide further details regarding its development and implementation.

1.4. State of the Art Work

In order to find a control solution for the problem of high risk of collisions between teams of MAVs, Coppola
et al. [8] first introduced a Bluetooth-based relative localization scheme. The proposed localization strategy
combines relative range measurements, provided by Bluetooth technology, with three on-board states:
velocity, height and orientation. Following this work, van der Helm et al. [70] proposed a similar solution
with only a couple changes. First, the range measurements would be performed by UWB technology, for the
reasons already explored in the end of section 1.2.2. And secondly, the orientation measurements would not
be available, because magnetometers’ readings are easily affected by interference, which might spoil the
relative localization estimates, especially in unknown indoor scenarios. The new scheme was tested with an
EKF and the results corroborated the hypothesis that a range-only relative localization filter provides a
better performance than a filter that also has access to orientation measurements, even for small magnetic
perturbations.

The following sections review the nonlinear system that was proposed [70] to describe the relative
localization problem, as well as the EKF implemented to combine the different sensor measurements and
perform the state estimation task, in order to execute simulations and real flight experiments.
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1.4.1. Nonlinear System Description

Recalling the framework and reference frames introduced in Section 1.1, and considering MAV 1 wants to
estimate the relative position of a different MAV 2, then, this relative position can be denoted by vector p =
p2 °p1, as seen in Figure 1.1. Additionally, the difference in heading between two MAVs can be represented
by √21 =√2 °√1, and the yaw rates by ri . Moreover, the linear velocities and accelerations in frame Hi with
respect to frame I, expressed in frame Hi , i = 1,2, can be defined as vi and ai . Lastly, since Hi is a horizontal
reference frame and MAVs have direct access to height measurements, height will not be included in the
system description, so as to simplify the problem. This simplification leads to all linear variables being 2D
vectors.

Having introduced the variables of interest, the complete state, x, and the inputs, u, of the system can be
defined by:
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Then, the continuous time state can be defined by:
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With R being the 2D rotation matrix from frame H2 to H1:

R = R(√21) =
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And matrices S1 and S2 being the skew-symmetric matrix equivalent of the cross product for the 2D
scenario. Matrix Si can be defined as:

Si = Si (ri ) =
∑

0 °ri

ri 0)

∏
, i = 1,2 (1.11)

It is worth mentioning that variables ai and ri , for i = 1,2, are inputs of the system, to which MAV 1 has
access to by means of its own accelerometer and gyroscope data, as well as MAV 2 data transmitted by an
UWB signal.

1.4.2. Filter Design

The most famous type of filter used in signal processing applications, from radio systems to robotics, is the
Kalman filter (KF). The main idea behind it is the calculation of a weighted average between the measured and
the predicted state, where the weight, called Kalman gain, depends on the uncertainty in the measurement.
One of the limitations of the KF is that it only works for linear systems. However, in the real world, the system
and measurement equations are mostly nonlinear. Under this scenario, the Extended Kalman Filter (EKF)
can be used to estimate the state vector.

The presented relative localization framework is employed through an EKF. The reason to do so is
because the way the state-space system was described 1.4.1 fits directly into the way the EKF is structured,
since the EKF also utilizes a state differential model and an observation model. Therefore, one can just apply
Equations 1.8 and 1.9, respectively. Nonetheless, the EKF has additional parameters that must be tuned: the
system and measurement noise matrices, the initial state and initial state covariance matrix. Regarding the
first two matrices, the system and noise ones, they can be tuned accordingly to the expected noises that



26 1. Relative Localization

result from experiments. In these experiments, the perceived states and the on-board measurements are
collected, together with their true values, so that later they can be analysed, in order to figure out what the
noise values should be. Regarding the initial state conditions, the EKF is initialized with values similar to the
real ones, otherwise the filter can be difficult to converge, due to the uncertainty of certain states’ regions.
Consequently, the initial state covariance matrix should be initialized with small values (∑ 0.1).

1.4.3. Observability

Despite yielding good results, this relative localization filter comes with the cost of extended flight conditions
constraints that must be met in order to guarantee the observability of the system and, as a consequence,
the relative localization estimates. If the state becomes unobservable, then the filter will most likely start
diverging, compromising the safety of the MAVs.

With this in mind, Chapter 2 will dive further into the topic of observability in range based relative
localization systems.



�
Observability in Range Based Relative

Localization Systems

The main goal of a relative localization scheme is that a robot Ri is able to track the relative position of another
robot R j . When a filter is used to fuse different sensory data, variables that are not measured directly may
become observable. This is the case in case detailed within Section (1.4), where the filter does not have any
sensor that provides orientation measurements. Nonetheless, as a consequence, the observable subspace
of the system is also reduced, which means that in practice MAVs must comply to certain flight conditions
in order to guarantee the convergence of the filter. This constraint may or may not restrict the individual
movement of the MAVs, compromising the exploitation of particular collective behaviours that are essential
to all collaborative missions. Thus, it becomes important to understand how the direct measurements of
range-only relative localization schemes impact the observability of the system states.

This chapter starts by introducing the theoretical concept of local weak observability - Section 2.1, which
is the state of the art tool used to evaluate the observability of nonlinear systems. Then, Section 2.2 performs
an overview of observability in range-based relative localization frameworks, as well as its practical
implications. Finally, Section 2.3 discusses the possibility of quantitatively assessing the observability of a
system over time, which may be helpful to better understand the real impact of uncertainty in relative state
estimation.

2.1. Local Weak Observability

Before introducing the concept of local weak observability [28], one should recall what observability means.
First, let’s introduce the notion of indistinguishable states. Two states x0, x1 are indistinguishable if, at every
time t ∏ t0 and for each admissible input function u(t ), y(t , t0, x0,u(t )) = y(t , t0, x1,u(t ). Then, one can say
that state x0 is observable if the set of indistinguishable states from x0 is empty. Finally, a system is considered
observable if every state x of the state space is observable [28]. However, this take on the observability of a
system does not necessarily indicate that the initial conditions of a state are distinguishable for every input.
In fact, this is only possible to imply for linear systems, where the output can be written as a function of the
initial state and the input.

In nonlinear systems, one can evaluate observability through an analytical tool called local weak
observability. This property is the combination of two others: local observability and weak observability.
The first one states that two states are locally observable if their evolution allow to immediately distinguish
between them. On the other hand, if it is possible to distinguish a state x0 from the states belonging to its
neighbourhood, the system is said to be weakly observable. Therefore, one can argue that a system is locally
weakly observable if y(t , x0(t ),u(t )) and y(t , x1(t ),u(t )) are different for two different states in the same
neighbourhood x1(t ), x2(t ); t > t0 and any admissible input function u(t ). The latter property can be
inferred easily by performing some algebraic tests, which is the reason to its popularity among researchers.

Considering a generic non-linear state-space system
P

defined by:

27
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ẋ = f (x,u) (2.1)

y = h(x) (2.2)

With the state vector x 2Rn , an input vector u 2Rl , and an output vector y 2Rm .
And defining the Lie derivatives of the output function as:
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and ≠ is the Kronecker product.

Conclusions regarding the local weak observability of the system can be drawn by applying the
observability rank condition. The latter states that

P
is locally weakly observable if matrix O is full rank [28].

This is known as sufficient condition for observability. O is defined as:
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2.2. Observability in Range Based Relative Localization Systems

All type of systems may have limited access to global localization measurements. It can happen not only
with MAVs and ground robots, but also with Autonomous Underwater Vehicles (AUV). For this reason, the
observability issues related to range-based relative localization solutions have been widely investigated.

Antonelli et al. [1] investigates how the motion of AUVs can be driven in order to avoid unobservable
states. First, when linearizing the model and analysing its observability matrix, they realized that a null
angular velocity from the vehicle performing localization results in a rank 2 matrix. Moreover, if both
vehicles are aligned along the same vertical axis and the vehicle being localized has null roll and pitch
angles, the matrix has rank 1. This has influence on a typical underwater movement: diving. Additionally, for
this specific maneuver, not even local weak observability could be guaranteed. With this information, they
implemented a new diving maneuver, where the vehicle being localized descends with an helix path, as to
maintain observability. Furthermore, they realized that another typical cooperative movement, when the
vehicles navigate with same speed and direction, would lead the system into unobservable scenarios.
Consequently, they implemented a new translational movement where the vehicle being localized makes
use of a sinusoidal velocity. These unobservability scenarios are also confirmed in Arrichiello et al. [2].

Additionally, Cornejo and Nagpal [9] discusses the existence of two degenerate motions featured in
range-only systems: flip ambiguity and rotation ambiguity. The first emerges when two robots follow a
linear trajectory, not necessarily parallel. In this case it is not possible, with only range measurements, to
establish on which side a robot is with respect to the other. To solve this issue, relative orientation and
velocity measurements must be used. The second motion is similar to the translational maneuver already
discussed in the AUVs case. If one robot replicates the motion of another robot, relative bearing becomes
unobservable, unless relative orientation measurements are available.

van der Helm et al. [69] goes a step further and performs a study over the differences in observability of a
relative localization filter with and without a common heading reference. First, when heading measurements
were available, the results mentioned in the AUVs case were also confirmed. Moreover, it was concluded that



2.3. Observability Measures 29

at least one of the vehicles must be moving to render the system observable, which has direct influence in
MAVs hovering, for instance. For the case where only range measurements were available, the removal of
the relative heading measurements results in a system that requires at least one extra Lie derivative in the
range observation to make the system locally weakly observable. Therefore, the condition that guarantees
full relative observability of the system are more complex. Nonetheless, some intuitive conditions could be
identified. Again, the vehicles can not move along the same vertical axis. Moreover, both MAVs need to be
moving - either through a non-zero velocity or non-zero acceleration - contrary to the system with heading
measurements, where only one needed to be moving. Additionally, they cannot fly in parallel regardless of
their speed, unless one of them is simultaneously accelerating; as opposite to the case with heading readings,
where they can move in parallel if they do it with different velocities. Despite being difficult to evaluate the
full observability condition for the case with no heading measurements, a numerical analysis for a particular
set of velocities and accelerations, as well as an analysis of data from a leader-follower flight with two MAVs
were performed. The latter showed that only a small percentage of the data - 4.75% for the flight with only
on-board measurements - is unobservable. Moreover, it was concluded that the system could easily recover
from short periods of unobservability, and that these did not have a great influence on the relative localization
error.

In order to deal with the constraints of relative localization schemes based on range measurements,
Nguyen et al. [49] presents an innovative solution. Their goal is to implement a leader-following control
strategy on a team of MAVs, using a relative localization filter that fuses range measurements and odometry
sensors. To overcome the challenges previously mentioned in this section, they propose a cooperative
estimation-control framework for a leader-follower task. In addition to the leader and the followers, there
are other agents called orbiters, which mission is to continuously maintain a flying trajectory that
guarantees the convergence of the filter for itself and the other agents. The method is validated through
simulation results for a group of six MAVs (one leader, 3 followers and two orbiters), and then successfully
implemented in real flying experiments qith three MAVs (one of each). Despite the efficacy of the method,
its efficiency can be questioned, since one third of the system is basically just repeatably flying the same
trajectory. Moreover, the scalability of the method might be challenging, since in order to grow the "usable"
system (leader and folowers) by two, one needs to always add an additional orbiter, increasing the airspace
density, therefore, the probability of collisions. This can be critical in narrow indoor spaces.

Despite the aforementioned limitations, it is important to state that the observability rank condition
only provides binary information regarding the observability of the system. However, it would be interesting
to have a quantitative indication about how observable a particular system is, as it would allow a better
understanding into what influences and drives uncertainty in practice. Moreover, this would possibly allow
the exploration of control solutions that take advantage of observability information to model the behaviour
of robots. The next section introduces observability measures that can be used to overcome this issue.

2.3. Observability Measures

At this point, certain conditions under which a range-based relative localization filter is (un)observable have
been discussed. However, not only are these conditions insufficient to represent all the possible scenarios,
but also this type of analysis does not provide information on the degree of observability of the system.

Imagine that a group of robots equipped with a range-based relative localization filter could also measure,
in real time, the degree of observability of the system. Then, they could possibly leverage this information and
steer themselves into situations where observability is maximized.

For nonlinear systems, the condition that yields local weak observability is a full rank observability matrix
as the one from Equation 2.6. It is well known that a matrix is full rank if its determinant is different than
zero, which is why in the previous section those conditions were easily drawn. Looking at the combination
of variables that result in a null determinant can be pretty straightforward, depending on the complexity of
the system. Therefore, it would be intuitive to look at the determinant of the matrix as a measure of how
observable the system is: if the determinant is close to zero, then the system is close to being unobservable.
However, it would be wrong. The determinant of a matrix does not provide a good measure of how close a
matrix is to being singular [2]. In fact, looking at its singular values would be a much more valuable solution
[22]. Following this line of thought, it is possible to quantify the unobservability of the system using either the
unobservability index, ª, or the estimation condition number, ∏:

ª= 1
æmi n

(2.7)
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∏= æmax

æmi n
(2.8)

The first metric expresses the least observable mode of the system and provides a worst-case observability
measure. The second, describes the range of observability in the system. Large values of ª or ∏ are correlated
with higher unobservability. Ideally, when dealing with the condition number ∏, we are interested in values
close to 1.

These two measures can be obtained and used in real time. In fact, they have been previously used to
develop observability-based controllers [13, 41, 62] or adaptive filters, capable of recovering from
unobservable situations [32, 35, 42]. Nonetheless, because of the limited computational power available
within MAVs, it is necessary to investigate whether computing these metrics in real time is actually feasible.
If not, one could explore the possibility of using other metrics, based on the intuitive cases that can be
extracted from the non-null determinant condition (Section 5.7). Usually, the variables necessary for this
calculations can be obtained almost directly from the on-board sensors, then it depends on how many
calculations must be performed to get the metrics. As always, a thorough investigation is the key to
understand where additional value can be obtained.

Having finished the discussion around relative localization frameworks, which are the basis for any
attempt of successfully achieving collaboration between MAVs, it is time to discuss how to design and
implement this collaboration. The next chapter introduces the concept of swarm robotics and discusses the
different design methods that can make it reality.
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Swarm robotics is an approach to the coordination of a large number of robots, inspired by the emergent
collective behaviours found in nature. The great marvel of nature swarms, and the reason why they serve as
inspiration for swarm robotics researches, is their ability to emerge robust, scalable and flexible group
behaviours. Despite the lack of individual abilities or special talents shown by single individuals, nature
swarms exhibit highly advanced behaviours when working together. For instance, if one thinks about
termites colonies, it is hard to realise how such small and limited creatures can successfully build huge
complex mounds. A single termite would never be able to accomplish such thing, yet there are impressive
mounds spread worldwide that show the colonies ability to work together towards a greater goal.

By taking inspiration from biological swarms, swarm robotics is interested in applying its principles to
solve problems with groups of simple low cost robots with limited resources. By having each individual
follow simple local rules, without any communication with a centralized entity, a desired collective and
complex behaviour should emerge. As a consequence of the methods’ decentralization, solutions are
scalable to different group sizes, robust to single robot failures and flexible to different tasks and
environments.

Section 3.1 discusses the different design methods that can be followed to develop such collective
behaviours within a group of robots. In the end, Section 3.2 briefly elaborates on the leader-following
problem.

3.1. Design Methods

Design is the stage during which the control system is developed. Unlike other scientific and engineering
methods, there is no rule of thumb to the development of decentralized collective complex behaviours,
since it is not a trivial problem. Nonetheless, these design methods can be separated into two categories [6]:
behaviour-based design and automatic design.

Behaviour-based design is the traditional approach to develop swarm robotics systems. First, the
designer tries to decompose the desired global behaviour into simpler individual behaviours and local
interactions within the overall system. Then, having determined what local control rules originate the global
behaviour, the designer tries to implement them in each robot and, through an iterative process, adjusts
them until the desired final collective behaviour or task is accomplished. Depending on the complexity of
the problem, and the objectives the designer wants to achieve, this design technique may be preferential
since there are mathematical models for a large variety of specific simple behaviours. Nonetheless, the
complex nonlinear connections between most local control rules and the global behaviour, makes this
design technique a difficult job and heavily dependent on the designer’s beliefs and ideas, since the
implemented control rules directly reflect them.

An alternative to this design method is to focus on the robotic system as a whole, instead of trying to
decompose it in smaller rules and trying to implement them. Automatic design methods trust robots to learn
what local rules and behaviours lead to the desired collective behaviour or task. Thereby, exploiting these
methods reduces the influence of the designer in the final solution. This assures a better exploration of the
solution space and promotes the emergence of more complex behaviours that the designer could never think
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of or could never implement given its nonlinearity nature. Automatic design methods can be further divided
into two categories: evolutionary robotics (ER) and multi-robot reinforcement learning (RL).

A thorough review of behaviour-based and automatic design methods, as well as examples of main
contributions present in the literature, will follow.

3.1.1. Behaviour-based design methods

Behaviour-based design is the method where the designer manually develops the individual behaviour of
the single robots, which then produces the collective behaviour of the swarm. Usually, it is a trial and error
process, in which the individual control rules are adjusted and improved until the desired collective
behaviour is achieved. In this section different state-of-the-art behaviour-based strategies for groups of
robots will be reviewed.

One of the most known behaviour-based methods in swarm robotics is the Boid model [56]. It is a
distributed behavioural model that draws inspiration from biological collective behaviours as the ones from
a flock of birds, a herd of land animals, or a school of fish. In its basic framework, each individual, or boid, in
the group follows three simple rules: collision avoidance, velocity matching and flock centering. The first
one is straightforward, a boid should avoid collisions with neighbour flockmates. Additionally, it should try
to match the velocity of its closest flockmates and attempt to stay close to them. Each simple rule is
implemented locally and generates an acceleration input, with a certain magnitude and direction.
Therefore, there are always three independent suggestions about the motion of the boid, since each rule
generates an acceleration request. It was shown through experiments, that simply weight-averaging these
requests would yield a final acceleration that resulted in a reasonable flight performance. Nonetheless, when
critical situations appear, such as imminent collisions, conflicts must be solved. In these cases, each simple
behaviour might provide opposite acceleration requests which would cancel each other out, and led the
boid to continue in the same direction. To overcome this issue, a prioritized acceleration allocation strategy
was implemented, so that when the accumulated magnitude of the accelerations surpasses a threshold
value, only the prioritized acceleration is activated, since it is the one with more pressing demands. This
model can also be augmented with other rules, for instance, for obstacle avoidance. Although it works well
for simple simulated models, it is hard to guarantee that its implementation in real life agents will yield such
results, not only because their dynamics are significantly more complex, but also because the way the final
acceleration vector is calculated does not seem to be robust. Nonetheless, the Boid model still serves as
inspiration as can be further improved using evolutionary robotics, as it will be discussed in the next section.

Coppola’s work [8] develops an on-board collision avoidance behaviour for a group of MAVs, based on
the Collision Cone (CC) framework [19, 76]. This framework uses the concept of collision cone as the set of
all velocities of an agent that are predicted to lead to a collision with an obstacle somewhere in the future.
In a team of MAVs, each single agent builds a collision cone for all the other agents and, if at a certain time
an agent’s velocity belongs to the set of velocities of any collision cone, a clockwise search is started in order
to establish the desired escape velocity. The escape strategy is rather simple, but it poses the advantage of
having a predictable escape route that prevents possible conflicts when two agents are trying to avoid each
other, since they are both looking to continue their motion to their own right side. For instance, in CC based
avoidance methods that choose the desired escape velocity by minimizing the change in velocity, two agents
facing each other may end up continuing their motion towards each other by selecting the same escape route.
The method was later validated through simulations and implemented in real flight experiments in order
to evaluate the efficiency of the avoidance behaviour. Depending on the application, this kind of strategy
may be the best to follow. If the available airspace is wide enough for the group of MAVs and we simply
want a straightforward mechanism to avoid collisions, then it is probably more efficient to use this type of
control strategy as a complement to the main controller that guides the MAVs. However, if there are airspace
constraints or the goals of the mission require the MAVs to fly in proximity, it may be better to develop a more
extensive controller that inherently avoids collision situations, which may be easier to do with automatic
methods.

In [70], van der Helm implements an on-board leader-follower behaviour control strategy, for a system
with several flight constrains that affect its observability, as already discussed in Section 2.2. Since a lot of
research over leader-follower flight relies on the development of fixed geometrical formations [57, 68], that
constraint could be an obstacle to the development of a leader-follower behaviour control strategy. To
overcome this problem, van der Helm came up with a strategy where the followers fly a delayed version of
the leader’s trajectory, instead of maintaining a relative fixed position. By doing so, there will always be
relative motion between the leader and each follower, unless a straight line trajectory is adopted by the
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leader, guaranteeing the observability of the system. The leader-follower control law was designed on top of
the stable inner loop control already running on board of the MAVs. In this way, the leader-follower
behaviour is accomplished by having a control law that outputs velocity commands to the inner loop
control, taking into account the follower’s positional error regarding the delayed position of the leader. Flight
experiments validated the control strategy, and the results show that leader-follower behaviour could be
achieved for teams of two and three MAVs without largely compromising the observability of the system.
Despite the good results, this strategy presents a major obstacle to scaling up the system: it requires too
much memory to store the trajectory of the leader.

Thinking about this last example, probably there are other ways in which the followers can replicate the
trajectory of the leader without the need to explicitly program them to do it in a pre-specified way. Moreover,
by letting the MAVs figure out their environment and how it relates to their goal, they may be able to
understand that the success of their performance is directly related to that of the filter, therefore, coming up
with a following behaviour that inherently guarantees its observability. Possibly one that addresses
situations that are not comprised in the ones already discussed. The next section introduces automatic
design methods, namely evolutionary robotics and multi-robot reinforcement learning, that are known for
promoting intelligence in robotic systems.

3.1.2. Automatic design methods

As said before, the use of automatic design methods enables the development of behaviours without the
direct influence of the developer. Within this class, there are two sub-classes: evolutionary robotics and
multi-robot reinforcement learning. In this section, both will be discussed, with particular focus on ER.

Evolutionary Robotics: Evolutionary robotics is a method that employs evolutionary computation
techniques [14] to the design of autonomous multi robots’ systems. In ER, robots are considered
autonomous artificial organisms that evolve their own control system (and body configuration) in close
interaction with the environment, without human intervention [50], in order to produce functional
behaviours.

Evolutionary algorithms (EA) are the basis of any ER approach. Despite the existence of different variants
of EA, they all share a regular framework, which will be further detailed.

Given a population of individuals within some environment that has limited resources, competition for
those resources forces natural selection [14], which, consequently, causes an increase of the fitness of the
population. Establishing a fitness function to be maximised/minimized, one can randomly create a set of
candidate solutions, with different artificial genotypes, that can be evaluated. The best candidates are
chosen from these fitness values, and will be used to seed the next generation, through recombination
and/or mutation, producing a set of new candidates, called the offspring. The individuals from the offspring
will be evaluated and, then, will compete for a place in the next generation. This process is iterated until a
stopping condition is met - a good enough candidate is found, the population fitness increase steadies, or a
computational limit is reached. The global scheme of an EA follows in Algorithm 1.

Algorithm 1 Evolutionary Algorithm Pseudocode
1: INITIALIZE population with random candidate solutions;
2: EVALUATE each candidate;
3: while TERMINATION CONDITION is not satisfied do
4: 1 SELECT parents;
5: 2 RECOMBINE pairs of parents;
6: 3 MUTATE the resulting offspring;
7: 4 EVALUATE new candidates;
8: 5 SELECT individuals for the next generation;
9: end

Translating this framework to ER, it all starts with the initialization of a random initial population of
different artificial genotypes, each encoding the robot’s control system (and morphology). Each of these
genotypes is then decoded into a corresponding robot that acts on the environment (through simulation or
real experiments) and the collective behaviour of the resulting swarm is evaluated based on a pre-defined
fitness function. All population of artificial genotypes follows this procedure and, based on performance, a
group of them will be selected to have the chance to generate copies of their genotype through genetic
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variation operations (mutation and/or recombination), generating the offspring. Next, this offspring follows
the same evaluation process that the parents’ population did, and individuals from the parents’ population
and the offspring will be selected for a new generation. The new generation follows this cycle, creating one
generation after another, until a stopping condition is met. In the end, "good" behaviours survive over
different generations and "bad" ones are discarded, through an evolutionary cycle similar to the one driving
natural evolution. A visual representation of an ER framework for a leader-follower task with a group of
MAVs is given in Figure 3.1.

Figure 3.1: Evolutionary Robotics framework example. Inspired by an example provided in Eiben et al. [14]

There are two major drivers of evolutionary systems: variation operators (mutation and recombination)
that assure diversity within the population and enhance a better exploration of the solution space; and
selection (of parents and next generation) which boosts the rise of the population fitness by giving a better
chance to fitter individuals genotype to be propagated. Moreover, the stochastic nature of these operators
augments the search for global optimal solutions, rather than local. For instance, when recombination or
mutation occurs, the choice of which pieces of the genotype will be recombined or mutated is random.
Likewise, the selection process is not deterministic (unless the developer wants it to be), i.e., all individuals
have an opportunity to become a parent or survive (fittest individuals will have better odds though). This
stochastic essence is of the utmost importance, in order to guarantee diversity and a broad exploration of
the solution space. At the same time, the fact that fittest individuals have a better chance of being
propagated to next generations, assures the exploitation of the most promising solutions.

There is freedom in deciding which controller architecture to evolve. One can decide to use a fix
structure and just optimize its parameters, or let the evolutionary process evolve both the architecture and
the parameters. This choice will influence how the genotypes are defined. With the increase of on-board
computation power available, feed-forward artificial neural networks (ANN) have become one of the state of
the art control architectures represented by artificional genotypes [33, 59]. This can be explained by ANN’s
inherent ability to smoothly map highly nonlinear functions, making it suitable not only for low-level
controllers, but also for high-level ones.

For instance, Izzo et al. [33] proposes a decentralized control architecture for satellite formation flying.
The controllers are homogeneous across the group of satellites and do not rely on any individual
characteristic of the satellites, which allows for the exchange of satellites at any time. The main goal is to
achieve a triangular formation and, using an evolutionary robotics approach, two neural network
controllers are evolved: one to tackle the translational kinematics, i.e., it outputs velocity commands; and
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the other to deal with the attitude kinematics, outputting the desired angular velocity commands. After
implementation in a simulated swarm of three satellites, the analysis of the results showed that the evolved
ANN controllers converge to an asymmetrical triangular formation that ends up in one of two locations in
space, using equilibrium points of the coupled system. Leveraging these equilibrium points to accomplish
the desired task is not intuitive, therefore, a tradition behaviour-based approach would probably not render
such results.

A similar task is evolved in Scheper and de Croon [59]. Moreover, a comparison study between evolved
low-level and high-level controllers is presented. The goal is for a swarm of MAVs to arrange itself in an
asymmetric triangular shape. In both cases a feed-forward ANN was employed and is homogeneous across
all MAVs. In the low-level controller case, there is a need to not only achieve the desired formation, but also
guarantee stable flight, therefore, the controller is responsible to directly command the angular velocity of
the rotors of each MAV, by receiving information from both its own flight stability and the formation task. In
opposition, the high-level controller works on top of an inner loop control architecture that already
guarantees the stability of the system, therefore, only focusing on the formation task. In this case, the ANN is
responsible to output velocity commands and only takes into account the distance to other swarm
members. The low-level behaviour, despite good results in simulation, was not capable of showing such
efficacy in real flight, with the MAVs quickly loosing stability. This disparity between simulation and real
experiments is known as the reality gap, and can be one of the main challenges in ER approaches. However,
the successful results of the evolved high-level controller, showing an emerging behaviour where the
formation always converges to the same orientation in both simulation and real flight experiments, validate
the hypothesis that abstraction of the inputs and outputs of the controller can be a valuable tool to bridge
this gap and evolve robust behaviours.

A different approach that revisits the topic of self-organizing flocks is presented in Vásárhelyi et al. [72].
Instead of manually defining the flocking model parameters, they use evolutionary robotics to optimize the
model. The goal is to ensure that large flocks of autonomous MAVs smoothly navigate in confined spaces
without conflicts. The model combines several rules: local repulsion of nearby agents, velocity alignment of
nearby agents and interaction with walls and obstacles. All this rules result in velocity vectors that are
summed up, together with a self-propelling velocity term, into a final desired velocity that the flock agent
will follow. The optimization of the 11 parameters that govern these rules represents the mission of the
evolutionary process. In order to accomplish its goals, the evolutionary process uses a single-valued fitness
function that is the product of five different sub-functions (valued from 0 to 1), each evaluating a specific
previously defined coherence or avoidance metric. The evolved swarm behaviour was numerically tested
and proved to remain stable under realistic conditions for significant flock sizes. Additionally, the coherence
of the collective behaviour seemed undisturbed even near obstacles. Moreover, and contrary to most
existing flocking models in the literature, they were able to validate the model on-board real MAVs, by
performing an experiment with a swarm of 30. It would have been impossible to achieve the same results if
the developer had decided to choose the parameters through trial and error. This conclusion adds evidence
to the advantages of using evolutionary methods to develop significant collective behaviours.

Multi-Robot Reinforcement Learning: Reinforcement Learning is a goal oriented computational
approach to learning from interaction, inspired by human learning. The usual RL problem is based on a
simple interaction between two entities: an agent and the environment (see Figure 3.2).

Figure 3.2: Reinforcement Learning framework [66]

Using the classical control nomenclature, the environment can be defined as the system to be controlled.
However, in RL, the environment provides the agent with not only information about its current state, but
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also a reward signal, indicating the positive, or negative, impact that a certain action At produced. On the
other hand, the agent is defined as the controller. By receiving feedback from the environment, it can learn
how to properly control the overall system, through the development of an optimal policy that maps states to
actions.

In a more formal way, at each time step t , the agent and environment interact and the agent obtains the
environment’s state, St 2 S (with S being the set of all possible states). Then, taking St into account, it selects
an action, At 2 A(St ) (with A(St ) being the set of all actions available in state St ). In the next time step, as a
consequence of At , the agent gets into a new state, St+1, and receives a numerical reward, Rt+1 2R.

The main difference between single and multi-robot systems in RL is present in the environment. When
RL is applied to multi-robot systems, there are other robots that belong to the environment and are also
adapting their behaviour, which makes it harder to rely on the traditional RL frameworks.

One of the main challenges for many real world applications is the fact that the state and action states are
continuous and have high dimensionality, therefore, it is not possible to store the policy for each state.

Matarić [43] addresses the first issue in its work. To deal with the high dimensionality problem, the action
space is reduced to single behaviours (introduced a priori into the system), and the state space is reduced by
defining a set of conditions that are necessary and sufficient to trigger those behaviours. Then, robots learn
how to appropriately map those conditions to the available behaviours implemented. The obvious question
mark around this approach is that the available local behaviours that the robots can adopt are manually
designed, which yields the same disadvantages already discussed in section 3.1.1.

Another solution to deal with that problem is to use function approximators that are able to generalize
over the continuous state and action spaces. Shang and Sun [61] presents a distributed policy gradient
reinforcement learning method using a feed-forward artificial neural network as the function approximator.
The method is applied to a group of three ground robots, in a leader-follower task, for both discrete and
continuous action spaces. In the discrete case, the output of the ANN is simply one of three actions, while in
the continuous case it is the mean value and standard deviation of the translational and rotational velocities.
The discrete case, where both linear and circular trajectories are tracked, shows good results, nonetheless,
the controllers of the different agents are heterogeneous which hampers the scalability and flexibility of the
method for larger groups. Moreover, the continuous space case, where the agents follow linear trajectories,
does not provide good results, discouraging the application of the method for even more complex systems.

Furthermore, RL assumes the environment exhibits a Markov property, i.e., the environment’s response
at a time step t + 1 can be predicted from the state and action representations at t [66]. Nonetheless, this
assumption is far from being true in the leader-following task with only on-board measurements. There are
solutions proposed in the literature that deal with this problem, but they will not be reviewed in this report.

Conclusions: Evolutionary robotics seems like the best option to apply in order to accomplish the goals
of this thesis. Most work around high-level collaborative behaviours without manual design lies under this
method, and some of its results are encouraging. Unlike RL, the higher dimension of the state space does not
represent a problem, and its fitness based nature provides a great tool, if properly defined, to evaluate the
overall performance of the system and explore multi-objective tasks.

3.2. Leader-Following Task

From the literature, it seems that there are two main strategies to accomplish a leader-following behaviour
within a team of robots. The first, basically defines a fixed formation, or a fixed distance offset, which the
followers try to keep over time, while the leader moves. The second, has the followers fly a different delayed
version of the leader’s trajectory. One can argue that the first strategy is more related to formation flight than
to leader-following, however, it is less expensive than flying a delayed trajectory since it does not require the
on-board storage of an array of positions. There are two immediate solutions that come to mind to overcome
the latter concern. One could be to only store the position at each 5 seconds, for instance, and then the
follower could perform polynomial regression of the trajectory and directly apply it on the controller. The
other, could be to have the leader trajectory distributed over the followers, i.e., if each follower flies with an
accumulated 5 seconds delay depending on its position, the leader would store its trajectory over the last 5
seconds, the first follower would store the leader’s trajectory over the last 5 to 10 seconds, and so on.

Another possibility, that is somewhere between the two already mentioned, would be to have the followers
follow the leader within a certain combination of radial ranges, i.e., there are no fixed relative positions, as in
formation flight, but the followers need to be at a distance between, for example, 0.8 m and 1.6 m from the



3.2. Leader-Following Task 37

leader, regardless of the direction. Depending on the applications it may be a good solution. Nonetheless, for
an hypothetical case where the leader is the only agent able to perform obstacle avoidance, it would be ideal
to keep the trajectories as similar as possible, as in the flight delay scenario.

Future work will necessarily come back to the discussion of this section.





�
Evolutionary Robotics

Inspired by the Darwinian principle of biological evolution, evolutionary robotics can reduce the designer’s
influence by trusting that the evolutionary process can drive the generation of better robotics systems. One
of the problems when designing autonomous robots is that the desired robot behaviour is a dynamical
process resulting from interactions between robot’s body and mind, and its environment. Manual design
only addresses part of this process, and is highly influenced by the designer’s beliefs, which prevents the
individuals from exploring all the solution space and derive possible more suitable behaviours the designer
did not thought of. Moreover, this type of problems are commonly subject to a set of complex constraints
and objectives, that is difficult for a designer to work with. ER can better cope with these challenges, first, by
taking the designer out of the loop while including interactions between robot(s) and its environment and,
second, by evaluating the performance with high level fitness functions that can explore good solutions in
complex spaces. Undoubtedly, one of the great achievements of ER is demonstrating that sophisticated
evolved robot control structures (e.g. neural networks) can produce functional behaviours in autonomous
robots Nelson et al. [47] and replace the traditional manual design.

After the brief introduction in Section 3.1.2, this chapter frames the problem at hands into the ER
framework, and further discusses its technical implementation details.

4.1. How does ER fit the problem statement?

As already mentioned, this thesis follows the state of the art work in Coppola et al. [8], van der Helm et al. [69].
It aims to develop an autonomous leader-follower controller architecture that maximizes observability, and is
suitable to be implemented on-board small MAVs with limited resources and without relying on any external
source. Therefore, the literature review of ER will focus mainly on the evolution of autonomous controller’s
solutions for MAVs and other ground robots.

There is freedom in deciding which controller architecture to explore. Nonetheless, most of the work
combining ER with autonomous vehicles adopts feed-forward artificial neural networks (ANN) [17, 27, 31,
53, 59, 63]. Additionally, there is research that explores the use of behaviour-based architectures, such as
behaviour trees [60, 67].

ANNs are inspired by the biological neural networks that drive humans’ brain. There are two types of
ANN: feed-forward and recurrent, depending on if the flow of data is only in one direction or is allowed to
loop back, respectively. Feed-forward ANNs consist in a set of interconnected neurons where, in its simplest
form, each neuron i can be mathematically described as:

yi = fi

µ
nX

j=1
wi j x j °µi

∂
(4.1)

being yi the output of neuron i , fi the activation function of the neuron, wi j the connection weight
between neuron j and i , x j the jth input to the neuron, and µi the bias of the neuron. A graphic
representation is presented in figure 4.1. By connecting different neurons, within different layers, it is
possible to generate an ANN of any complexity (e.g. figure 4.2).

39
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Figure 4.1: Single neuron connection

Figure 4.2: Feed-forward ANN with 3 input neurons, one hidden layer with 5 neurons, and 2 output neurons

With the increase of on-board computational power available, ANNs have become one of the state of the
art control tools used by researchers working in the field of evolutionary robotics. This can be explained
by its inherent ability to smoothly map highly nonlinear functions, making it suitable not only for low-level
controllers, but also for high-level ones (where certain tasks or behaviours are evolved). For instance, the
work from Scheper and de Croon [59], already discussed in Section 3.1.2, shows how evolutionary robotics
coupled with neural controllers can be employed successfully to evolve higher-level behaviours within a team
of MAVs.

Another good example is presented in Howard and Kendoul [31], in which a neural network is employed
in a quadcopter landing task. Using optical flow theory, the authors designed a neural controller that is
responsible for controlling the MAV’s thrust, by having as inputs the desired and actual time-to-contact to
the landing target (as well as their derivatives).

Furthermore, ANN’s design flexibility enables the possibility of evolving both the connection weights and
the network architecture, which provides evolution with better chances to exploit emerging behaviours and
dynamics that researchers may have not envisioned. In fact, this inspired the development of a method called
NeuroEvolution of Augmenting Topologies (NEAT) [65]. NEAT shows how it is possible to both optimize and
complexify neural network solutions through evolution, which ultimately reduces the designer influence and
enhances the resemblance with biological evolution. With the purpose of developing a proof-of-concept
study for intelligent vehicles that autonomously navigate along motorways van Willigen et al. [71], NEAT
was employed to evolve controllers for such task. In this particular case, the neural network controller was
not responsible for developing any low-level behaviour, instead, its output was simply the action the vehicle
should perform, which would activate a different controller. Despite being only a proof-of-concept study, the
simulation results were encouraging, since the evolved controller outperformed the human drivers model
used in traffic flow modelling.

A different control architecture that also appears in the literature coupled with evolutionary robotics is
one that relies on the construction of Behaviour Trees (BT). BTs became renowned in the computer game
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industry as a tool to model the behaviour of non-player characters. Later, due to their ability to create
complex behaviours with simple sub-behaviours in a modular fashion, they started to be applied as a
control framework for MAVs and other robots [60, 67].

BTs are rooted tree structures, composed of hierarchical nodes (root, control flow and execution nodes)
that direct the flow of decision making. For each pair of connected nodes, the one from where the connection
starts is called parent, and the other is called child. Every BT starts with a root node, which does not have any
parent, only children. Control flow nodes, usually composite nodes, have one parent and at least one child.
Finally, execution nodes, typically condition and action nodes, have one parent and no child. Figure 4.3
illustrates the structure of a BT, highlighting node types [58].

Figure 4.3: Graphical representation of a Behaviour Tree [58]

The flow of the decision making within BTs starts from the root, which sends ticks to its children (this
tick acts like a trigger to the nodes, enabling their execution). When the execution of one node is allowed, it
returns a status to its parent: running if its execution is still going, success if it achieved its goal, or failure if it
failed to achieve its goal. Ticks are sent from the left to the right, i.e. not all children are triggered at the same
time. This framework implies that not all nodes are evaluated in every tick, yielding a prioritized execution
flow.

The basic control flow nodes are selectors or sequences. Considering ticks are sent from the left to the
right, they run each of their children in turn, and when the task of its first child is finished, depending on
the status returned, the control flow node decides whether to execute the next child or not. Selector nodes,
basically, execute the first child that does not fail. This means that if one if its child returns success, it will also
return success, or if all children return failure, it will return failure. As for sequence nodes, they will return
failure when one of its children fails, or success if all of them return success. It is important that the execution
nodes are organized in the right way (for selectors’ children, the most important to the left, and for sequences’,
the correct sequence should be applied).

Because BTs don’t have a fix depth, the more control flow nodes are created, the more sub-behaviours
can be explored. A good example of this capability is presented in Scheper [58]. The authors used BTs and
evolutionary learning to enable a 20g flapping wing MAV - the DelFly Explorer [10] - to perform a fly-through-
window task using only its limited on-board resources. The results were promising, and the final genetically
optimised BT used to control the MAV in this task is depicted in figure 4.4.

Figure 4.4: Graphical representation of a BT genetically optimised for the fly-through-window task. The different colours highlight the
different stages of the flight, i.e. different sub-behaviours [58]

Additionally, BTs’ modular structure facilitates an iterative development where new sub-trees can be
added without affecting the already existent ones, which makes it possible to continuously improve a certain
behaviour or ability to perform tasks. In fact, in Ogren [52], it is proposed to implement a BT framework as
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the decision making system for a combat UAV. It is stated that BTs modularity and reusability are especially
suitable for the design of UAV guidance and control systems, not only because the tree structure facilitates
the transition between UAV flight states and the task of (re-)designing the system, but also because they
increase the interpretability of the overall algorithm.

Despite the aforementioned advantages, which should not in any way be undervalued, it seems that BTs
are a better option as an overall decision making entity, instead of acting directly as a controller. For instance,
in a group of MAVs, each MAV could be equipped with a BT based entity that activates specific controllers
depending on the task it intends to perform (collision avoidance, following a target, hovering, etc). On the
other hand, because of their ability to map highly nonlinear functions, ANN seem like a better option to
employ as the controller for tasks such as leader-follower.

4.1.1. Inputs and Outputs of the Controller

Since this thesis focus on the development of a higher-level task, leader-following, it makes sense that the
controller is exclusively dedicated to this mission. Therefore, it will run on top of a inner-loop controller that
guarantees stable flight, just as the example from [59]. The output of the high-level controller is taken as an
input by the inner-loop one, and there are different possibilities to choose from. The most intuitive option is
to output the velocity setpoints which are then given to the inner-loop controller as velocity commands.

As for the inputs, in order to evolve some following behaviour, the controller needs to have information
regarding the trajectory to be followed. This can be done in different ways: using the relative position of the
leader; using the relative position of the desired trajectory; or using an error measure regarding the desired
relative position. Moreover, if observability is to be maximized, one can also incorporate observability
measures, as discussed in Section 2.3, into the controller’s input. This could possibly lead the controller to
reactively steer towards more favourable observability situations, or proactively avoid unobservable
scenarios. Additionally, variables like relative velocity could also be added to the input, as to provide
information regarding the relative motion of the vehicles, which could help the controller anticipate
changes in the relative positioning, and become more proactive towards changes of direction in the leader’s
trajectory. If the only spacial measure for the input is the relative position, than it will always be waiting for
its changes to react, leading to more aggressive maneuvers.

4.2. Representation, Mutation and Recombination

The main observation from genetics is that each individual is a dual entity: its phenotypic characteristics are
represented at a genotypic degree Eiben et al. [14]. Essentially, this means that all individual’s characteristics
are encoded in a set of genes. For this reason, the definition of the genetic representation is of the utmost
importance, because it needs to be meaningful and interpretable in order to produce a valid solution.

There are different options to choose from and the decision depends, ultimately, of the application
domain and the resources available. It is different to represent an ANN or a BT; additionally, it is different to
evolve connection weights of an ANN or both connection weights and architecture design.

Furthermore, the genetic representation choice also affects the way recombination and mutation will be
performed and its influence in the evolutionary process, therefore, one should take it into account when
deciding which variation operators to use and how to apply them.

Despite the existence of numerous alternatives, in this review only Binary Representation and Real-Valued
Representation will be explored, since these are the most used in the literature, especially when dealing with
the controller architectures already introduced.

4.2.1. Binary Representation

One of the earliest and most frequently used representations is the binary one, where the genotype consists
of a string of binary digits. This form of representation is more often employed with discrete distributions of
values, rather than continuous.

Mutation
The most common mutation operator for binary representations, considers each bit separately and allows it
to flip value with a a probability (usually small) pm . This guarantees the stochastic nature of this operation,
since the number of changes depends on the random numbers that are drawn. Figure 4.5 illustrates an
example of bitwise mutation.
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Figure 4.5: Bitwise mutation for binary representations ([14])

Recombination
The main methods of recombination for binary representations start from two parents that originate two
children. The three most used methods (one-point, n-point, uniform crossover) are built on the same logic.
Since one-point and uniform crossover can be derived from n-point crossover, it is sufficient to explain the
later. Essentially, the chromosome is divided into n+1 segments of adjacent genes (using n crossover points),
and the offspring is created by taking alternative segments from the parents. An example of n-point crossover
with n = 2 is showed in figure 4.5.

Figure 4.6: n-point crossover with n = 2 ([14])

4.2.2. Real-valued Representation

On the other hand, there are problems where one needs to represent genes as values from a continuous
distribution. This is usually the case when morphological physical quantities like the different sizes of a
certain component of the design. Additionally, one of the most used cases in the literature is when neural
networks are employed as controllers and ER evolves the weights of the neural connections. It is important to
underline that, although this representation is called real-valued, in fact it should be referred to as floating-
point representation, since the precision of real values is limited in computational applications. In summary,
an individual will be represented by a vector < x1, ..., xk > with xi 2R.

Mutation
For real-valued representations, the most common mutation methods use the same position-wise mutation
probability logic that binary representations use. Then, instead of flipping values, they are changed randomly
within a limited domain. Depending on whether the mutation operator samples a random new value, or a
random value to add to the current one, floating-point mutation methods can be divided into two categories:
uniform or nonuniform mutations.

For uniform mutation methods, the values of the new vector are simply drawn uniformly randomly from
the defined limited range. Regarding nonuniform mutation, these methods are arranged in order to, usually,
induce smaller changes. Instead of simply sampling the new values from the chosen domain, the new value
is obtained by adding the current value and a value drawn randomly from a Gaussian distribution with zero
mean and a pre-defined standard deviation (constraining this resulting value to the limited domain). In this
case, the value of the standard deviation regulates the extent of the perturbation, e.g. larger values will
enhance larger changes. Another way to explore this type of mutation is to apply mutation to all genes (pm =
1) and draw the standard deviation according to some distribution.

Additionally, there are nonuniform mutation methods, called self-adaptive, where the standard
deviations which control the extent of the changes are also included in the genotype. In this way, standard
deviations are not set by the designer, but rather undergo variation and selection, co-evolving with the
solutions. This results in individuals being evaluated, not only based on their performance on the given
problem, but also on their ability to create good offspring.

An alternative to the Gaussian distribution could be the Cauchy distribution, which has an higher
probability of generating larger changes.
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Recombination
There are three main options to condute recombination with real-valued representations. First, there is
discrete recombination, similar to n-point crossover in binary representation recombination, where the
parents’ vectors are segmented and the two children will be the combination of both parents. Then, there is
arithmetic recombination, which can have different implementations, but basically the value of each gene
in the offspring vectors will lie between those of the parents (zi =Æxi + (1°Æ)yi with al pha 2 [0,1]. Finally,
it is possible to use blend recombination, where the values of each gene of the children will be close to that
of one of the parents, but may be larger or smaller.

4.3. Population Management

In the latest section, the variation operators that affect the population and drive the evolutionary process were
addressed. These operators act on the population to create a offspring population that, typically, combines
new properties with others inherited from the first one, producing novel candidate solutions to be evaluated.
As a result, in the end of each iteration, there are two populations: the initial one and its offspring. However,
replicating what happens in nature, not all individuals can survive and be part of the next generation. Hence,
it is important to define how the population is managed during the evolutionary cycle, since it will affect
when and how selection takes place and, therefore, the outcome of the evolutionary process.

There are two population management models: the generational and the steady-state. In the generational
model, an initial population of µ individuals is created, from which parents are selected based on relative
fitness. Then,∏ offspring are created, by applying the previous introduced variation operators, and evaluated.
In the end of each cycle, the complete population is replaced by µ individuals of the offspring (again, based
on relative fitness), which will be the next generation. In this model, the number of created offspring, ∏ can
be the same or larger than the size of the population µ. In the steady-state model, the first stage is similar
to the generational model, but then the population is not completely changed at once. Instead, ¥(< µ) old
individuals are replaced by ¥ new ones, from the offspring.

The population management models discussed above rely on fitness based selection to decide which
solutions may generate copies of their genotype, and which solutions will survive to the next generation.
This was already expected, since it follows the general evolutionary framework earlier presented in algorithm
1. The fitness based selection concept can be explained in two different steps: fitness evaluation of every
candidate solution and selection of solutions considering this evaluation. The first step will be discussed in
the following section, and the second one will be approached in the next after.

4.4. Fitness Functions and Multi-Objective Optimization

Through this chapter, the need to evaluate the different genotypes of the population, in order to compare
their suitability for the problem, has been mentioned. This evaluation is performed with the help of fitness
functions. A fitness function is, basically, a tool to evaluate the ability of the different artificial genotypes,
when decoded into a simulated or real entity, to perform a certain task, or behaviour, one desires to produce.
Essentially, it represents the requirements to which the population should adapt to, by being the source of
selection. If one thinks about the engineering perspective, it is a representation of the task to be solved,
however, in a more technical point of view, it is a function that assigns a quality measure to genotypes [14].

Furthermore, it was highlighted that when designing control systems with great complexity, traditional
methods have trouble dealing with the myriad of constraints and unpredictable dynamics between robot
and environment. Whilst the choice of a proper fitness function poses a huge advantage for ER techniques, it
is not a straightforward decision. In fact, the ability to successfully evolve intelligent robots is fundamentally
influenced by the choice of a suitable fitness function that is capable of promoting good behaviours, without
the need of specifying the low-level implementation details.

Additionally, this complexity means ER deals mostly with multi-objective problems, which translates into
the existence of different fitness functions that need to be taken into account when comparing the fitness
of each candidate solution. The difficulty here is that this type of problems, typically, have a set of optimal
solutions Deb et al. [12], rather than a single one. Therefore, it is also imperative to make a good choice about
the method used to compare the relative fitness of the population.

Because of the undeniable importance of fitness in the success of ER strategies, and the fact that designing
the right fitness functions, as well as finding the most optimal solution, are not trivial problems, these are
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highly investigated topics within ER that will be further investigated.

4.4.1. Fitness Functions Classes

Taking into consideration the level of influence the designer has in the robot’s behaviour, by incorporating
pre-conceived ideas or a priori knowledge related with the interaction robot-environment, it is possible to
define classes for fitness functions [47] - table 4.1.

Fitness Function Class A priori knowledge included
Training data fitness functions (for use with training data sets) Major
Behavioural fitness functions High
Functional incremental fitness functions Moderate-high
Tailored fitness functions Moderate
Environmental incremental fitness functions Moderate
Competitive and co-competitive selection Low
Aggregate fitness functions Minor

Table 4.1: Fitness Function Classes [47]

These different types of fitness functions influence the result of the evolutionary cycle in different ways,
since they have different evaluation criteria. An explanation concerning the potential different fitness
functions that can be used, as well as a review of examples of their application in the literature will follow, in
order to provide a better understanding on how different fitness functions may guide evolution towards
different results.

Behavioural and Functional Incremental Fitness Functions
Behavioural fitness functions are task-specific functions that measure the way the robot acts, without
accounting for the end result, i.e. the goal(s) of the task. These functions are, usually, a combination of
different sub-functions that measure simple behavioural features which the robot should be able to evolve.

For ground wheeled robots, these kind of fitness functions have been widely used in order to develop
controllers capable of, for instance, obstacle avoidance. Banzhaf et al. [4], Floreano and Mondada [20], Lund
and Miglino [40], Matellán et al. [44], Nordin et al. [51]. For this particular task, authors, usually, opt to base
the fitness of the robots on local motor behaviours (e.g. wheels velocity) and sensors’ feedback (e.g. activation
of sensors), instead of measuring the task completion itself. Banzhaf et al. [4] evolved three other behaviours,
by combining different sub-functions, each accounting for a different behaviour.

In Jakobi [34], obstacle avoidance in legged robots was evolved. The behavioural fitness function
subdivides the task in four smaller ones, which are mutual exclusive between them. When one smaller task
is on-going, a corresponding sub-function will evaluate the fitness of the robot at that given task and, in the
end, the overall function will be a combination of these four sub-functions. Once gain, local motor
behaviours and sensors’ feedback was the basis for fitness assessment.

One of the main difficulties in ER is that, if a task it too complex, it may happen that all controller’s
candidate solutions, right from the initialization moment, are restrained to a sub-minimal optimal level.
Thus, the fitness function will fail to drive the selective pressure towards a promising direction. Functional
incremental fitness functions can overcome this problem by augmenting the fitness function through the
evolutionary process, until a final desired controller is obtained. First, it starts by evolving a simple
competence and, once it is evolved, the fitness function will change or be augmented to account for a new
and more complex behaviour. Functional incremental functions are, usually, comprised of behavioural
ones.

There are several applications of this type of function in the literature [5, 18, 26, 38, 54], which demonstrate
the viability of such approach. In Harvey et al. [26], ER was used to develop a robot’s neural network controller,
equipped with a camera, capable of moving towards a triangular target placed on a white wall while avoiding
a rectangular one. Their experiment used a three stage functional incremental fitness function. The first
sub-function applied consisted on the sum of the distance between the robot and the wall opposite to the
target. When fitness converged, a new sub-function was used and evolution continued with a new population
derived from the fittest individual of the population evolved with the first sub-function. The second sub-
function consisted on the sum of the distance to the target over the course of the overall try. Similarly, a third
fitness function was applied, measuring the distance to both the triangular and rectangular target.
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The main characteristic, and often the most criticized, of the behavioural functions previously described
is that they are built to select behaviours the designer assumes will provide good solutions. Going back to
the work of Floreano and Mondada [20], where a neural network controller was evolved for a robot to
navigate while avoiding obstacles, it is possible to understand what behavioural features the designer
believed would provide good avoidance: higher velocities (mean(vl , vr )), engaging in forward/backward
motion (1°

p
|vl ° vr |) and turning when facing forward obstructions (1° si r ). In this case, selection will

drive the population towards those behaviours, beliefs the designer is convinced can produce obstacle
avoidance ability, instead of evolving the robots to actually avoid obstacles intrinsically, which should be the
goal. Moreover, though functional incremental fitness functions may overcome some limitations of purely
behavioural ones, they do it at the expense of increasing the designer’s influence since he/she decides what
the search path on the robot’s controller solution space will be.

Tailored fitness functions
One way to reduce the designer’s influence is by combining behaviour terms with aggregate ones, using
tailored fitness functions. Aggregate terms evaluate if a certain task was accomplished, regardless of the
particular behaviours employed to perform it. Take the example of a drone capable of charging its own
battery with solar energy, i.e. in the case of low battery it should be able to fly towards an illuminated area
(assume the drone is equipped with the necessary sensors to measure light exposure). A potential fitness
function could contain an aggregate term that rewards the controller if the drone arrives to a light source,
independently of the sensor-actuator mapping behaviours that were used to perform the task. Additionally,
the function could contain a second behavioural term minimizing the velocity of the drone during the task.
This second term, unlike the first, represents an assumption about a behaviour that could benefit the drone
to accomplish its final goal, which is not necessarily the case.

Another option in tailored fitness functions is to use a term that measures partial completion of the task,
instead of only measuring the total completion, like aggregate terms do. In the latter example, imagine that
instead of the reward for reaching the light source, a new term would assign a scaled value depending on how
close the drone flew to the light source. Contrary to the aggregate term, the new one involves some a priori
knowledge about the environment, because it implies that being closer to the final goal is inherently better,
which might not be true in a environment with constraining conditions, like obstacles or wind.

Aggregate Fitness Functions
Finally, there is a type of fitness functions that can significantly reduce the human bias transmitted to the
robot: aggregate fitness functions. These, only look at the high level success or failure of a robot trying to
complete a task, without judging how it was done.

In Scheper and de Croon [59], when trying to evolve a controller so that MAVs are able to reproduce a
desired formation regardless of the initial conditions, the authors opted to use aggregate functions in order
to evaluate the population. One of the functions evaluated if the correct formation was completed, by
analysing the distances between MAVs, and other evaluated if the flight was stable by checking the time of
the simulation (if a collision occurred, the simulation would be interrupted).

One of the problems that might occur when using this type of functions can be the lack of competence
shown by all the solutions in the initial population. In this case, when the initialization process only
produces poor candidate solutions, the chances of any of them completing the task are indubitably small,
which prevents the success of the evolutionary process.

Nonetheless, if one wants to generate solutions for more complex challenges, aggregate fitness functions
seem to be the best option, since they enable the discovery and evolution of new complex behaviours. One
might argue that behavioural functions are, basically, an optimization of human designed robots. On the
contrary, aggregate fitness functions enable the evolution or learning of truly intelligent behaviour.

Because of the high expectations around the potential of aggregate fitness functions, and in order to
tackle its possible handicap, it was proposed to combine them with tailored ones. In the beginning of the
evolutionary cycle, a tailored fitness function could be used to evolve robots until the point where they can
actually accomplish the proposed task. Then, an aggregate fitness function is applied in order to let
intra-population competition do its job and, possibly, evolve solutions not envisioned by human designers,
that could actually be more successful.
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4.4.2. Multi-Objective Optimization

The examples discussed above, regardless of the type of fitness functions they use, have one thing in common:
the problem requires more than one goal - fitness function - to optimize. This poses a challenge because
instead of having only one optimal solution, the problem will have a set of optimal solutions, also known as
Pareto-optimal solutions.

One may think that the simplest way to deal with it would be to combine all fitness functions into a single
one. However, this obliges the designer to define a relative importance between the different fitness functions
- do they have different weights, how much different? Moreover, different fitness functions may have different
ranges, one may range from 0 to 1, and another from 0 to 100, which makes the first meaningless if both are
combined equally. These two simple examples show how practically unfeasible it is to find the right balance
in transforming a multi-objective problem into a single-objective one.

To overcome this, several multi-objective evolutionary algorithms have been proposed Deb et al. [12],
Fonseca et al. [21], rey Horn et al. [55], Srinivas and Deb [64], Zitzler and Thiele [77]. One of the most used
algorithms in the literature is called Fast Nondominated Sorting Genetic Algorithm (NSGA-II) Deb et al. [12].
Basically, it uses two different stages in order to produce the final fitness ranking of all possible solutions: fast
nondominated sorting and crowding distance sorting.

The first one, nondominated sorting, divides the population into different nondomination levels. To
achieve this, all solutions are compared against each other in order to determine if one dominates the other
or not. Assuming there are M fitness functions, a solution x1 is said to dominate a solution x2 (x1 π x2) if the
following two conditions are met simultaneously Deb [11]:

• f j (x1)7 f j (x2) for all j = 1,2, ..., M .

• f
j̄
(x1)/ f

j̄
(x2) for at least one j̄ 2 {1,2, ..., M }.

The operator /, as in f1(x1)/ f1(x2), means that x1 is better than x2 on the fitness function f1 (works
with both minimization or maximization functions). Using these dominance relations, it is possible to build
different nondominated solution sets. Within a population P , the nondominated set of solutions P

0 is that
whose solutions are not dominated by any other of the set P Deb [11]. With this in mind, and considering all
the solution space S, fast nondominated sorting separates S into different non-dominated levels F1,F2, ...,Fl ,
with F1 being the first nondominated set, also called Pareto-optimal front, therefore, the one with best fitness
level.

After that, within every nondominated set, crowding distance sorting is applied in order to rank
solutions based on their proximity with others. This sorting is done by computing, for every possible
solution, the density of other solutions in its neighborhood. This means that solutions which have less
performance similarities with others will have a better ranking, enhancing diversity elitism during evolution.

The overall NSGA-II scheme is illustrated in figure 4.7.The solution space St includes both the initial
population Pt and its offspring Ot , at time t .

Figure 4.7: NSGA-II Deb et al. [12]

This works aims to solve both the leader-following task and the observability limitations of the relative
localization filter, therefore, multi-objective optimization will have a major role in evolving solutions that are



48 4. Evolutionary Robotics

successful for this scenario. In order for this to happen, appropriate fitness functions must be defined for
promoting successful behaviours and discourage weak ones.

For leader-following, we should recall that we are interested in a collective behaviour. Therefore, if we
are evolving an homogeneous controller for the entire group of MAVs, its fitness will be a combination of the
overall performance of the group. For instance, if we are interested in formation following, the fitness of each
MAV can be evaluated by simply computing in real time the error between the actual position of the MAV and
its desired one (according to the formation), and then use that evaluation to get a final grade for each MAV.
Then, one can average their performance and get the final fitness or, more interesting, get the product of the
performances (forcing each individual performance to be between 0 and 1) as the final fitness. In this way we
avoid the situation where some agents perform really well, and others perform terrible, since the worst case
scenario will be penalizing the best one. On the other hand, if we are interested in the delayed scenario, the
same logic can be used, only changing the real time reference to which the MAVs’ positions are compared.
Additionally, we should probably have a function that penalizes eventual collisions within MAVs, since they
endanger any type of prospective collaboration.

Regarding observability, again, the observability measures introduced in Section 2.3 can be assessed in
real-time for each filter. Then, the final fitness can be obtained by looking, for example, into the proportion
of time that a filter has a estimation condition number ∏ lower/higher than a certain threshold. Or, instead of
using that measure, one can opt to simply look at the more intuitive degenerative motions and see how often
they occur. There are a lot of possibilities and some trial and error will probably take place.

4.5. Selection

As referred in Section 3.1.2, selection is one of the main drivers of evolution. It affects the overall diversity and
fitness of the population by deciding, based exclusively on individual fitness, which individuals can, on the
one hand, generate copies of their genotype and, on the other hand, survive to the next generation.

At this point, a review on the design of fitness functions already took place, as well as their optimization in
order to get an appropriate ranking for all the population based on relative fitness. Thus, it is time to analyse
how selection can use this, or other, fitness based ranking to push evolution in the direction of finding the
best optimal solution. Literature is vast on different ways to undertake selection, therefore, a broad overview
of the most relevant methods will take place.

4.5.1. Parent Selection

Parent selection decides which individuals of the population are allowed to become parents. These parents
undergo variation (4.2) and create offspring. Usually, parent selection is a probabilistic process, since better
ranked solutions - higher fitness - have better chances of becoming parents than those with lower quality.
This probabilistic approach enhances improvements on the overall quality of the population over different
generations, while assuring the search for an optimal solution is not too greedy and aims for a global
optimum, rather than a local.

Ranking Probability and Roulette Wheel Selection
Ranking selection uses a fitness based ranking of the population to assign selection probabilities to every
individual. The probability distribution can be linearly or exponentially decreasing, depending on how much
selection pressure is desired. In a population of size µ, rankings are usually built from number 1 to µ. To help
with formality, lets instead number the ranks so that it indicates how many worse solutions there are in the
population (best one has rank µ°1 and the worst has rank 0). Then, one can use the following equations to
design a linear (equation 4.2) or exponential (equation 4.3) distribution:

Psell i n(i ) = 2°s

µ + 2i (s°1)
µ(µ°1) ,1 < s ∑ 2, (4.2)

where s is a parametrisation variable that can adjust the selection pressure;

Psele xp (i ) = 1°e
°i

c
, (4.3)

with c being a properly chosen normalisation factor that forces the sum of probabilities to be the unity.
After setting the likelihood, Psel (i ), of each solution i , from the population, being selected for variation,

selection needs to actually take place. Ideally, the number of any solution in the parents population would be
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given by the multiplication of its selection probability with the size of the desired population. However, this
is not feasible in practice because the parents population is finite and these numbers would be non-integers.
Therefore, it is necessary to sample from the probability distribution.

To do so, the roulette wheel algorithm as been widely applied. It uses a cumulative probability
distribution, [a1, a2, ..., aµ] such that ai =

P
i

1 Psel (i ) and aµ = 1. Then, if the parents population has size ∏, ∏
random values are drawn from [0,1] and depending on which i th cumulative probability position they
belong to, the corresponding individuals are selected.

Though it seems conceptually simple and effective, it has been noticed that roulette wheel does not
provide an accurate sample of the distribution. Usually, because of the computational power available,
populations are not significant large, therefore, it is more difficult to have an accurate representation of the
probability distribution.

To overcome this misrepresentation, the Stochastic Universal Sampling (SUS) algorithm Baker [3] can be
used. It uses the same cumulative probability distribution, however, instead of drawing ∏ random values, it
draws one random value in the range [0, 1

∏ ]. Then, the cumulative probability position of the drawn value will
correspond to the first selected individual. After, the drawn value is increased by 1

∏ , resulting in a value from
which its cumulative probability distribution position will select the second parent. This logic of increasing
by an amount 1

∏ and selecting the parent corresponding to that cumulative probability distribution position
continues until ∏ selections are made. In this way, it is guaranteed that the number of parents corresponding
to a certain individual i from the population is, at least, the integer part of ∏£Psel (i ).

Tournament Selection
Tournament Selection is a simpler operator that does not require any calculations to be performed. Instead,
it only needs an ordering relation, like a ranking, to compare any two individuals. For this reason, it is fast
to implement. Basically, if one wishes to select ∏ parents, ∏ tournaments will occur. For each tournament, k

individuals are chosen randomly and compared against each other, with the best being selected.
With this algorithm, the probability of a solution being selected depends on its rank in the population, the

size of the tournament (the larger it is, the higher it is the probability that the tournament integrates better
ranked individuals, increasing the selection pressure) and whether chosen individuals are replaced or not (if
there is no replacement, the probability to select lower ranked individuals also decreases).

Additionally, instead of having a deterministic tournament where the best individual in the tournament
is always chosen, one can also introduce parameter p (p < 1) that represents the probability of choosing the
best ranked individual. Since the decrease of p will increase the chances of worst candidate to be chosen, it
consequently decreases the selection pressure.

4.5.2. Survivor Selection

Survivor selection is similar to parent selection, since it also distinguishes individuals based on their quality.
However, like showed in algorithm 1, it is applied later in the evolutionary cycle, as it is only used after the
generation of the offspring population. It reflects the population management model of the evolutionary
strategy in place, and because the size of the population usually does not change, it is necessary to decide
which individuals from the current and offspring populations are allowed to belong to the next generation.

The algorithms presented for parent selection can still be used for survivor selection, nonetheless, other
methods have been suggested and are widely present in the literature.

There are survivor selection algorithms that rely on the age of the individuals and do not take into account
their fitness. If a generational population model is used, this approach makes sense. For instance, in the
simple genetic algorithm [73] all individuals are selected as parents and undergo mutation (no recombination
occurs), creating one offspring each (∏=µ). In the end, all parents are replaced by their offspring, so that each
individual only exists during one generation.

This kind of strategy can also be used with steady-state models, especially because they prevent
convergence to local optimum and suit problems where the fitness functions become more complex during
evolution. Having a population of size µ, ∏ offspring are produced to replace the oldest ∏ individuals of µ in
the next generation, assuming ∏< µ. In this case it is important to have a good parent selection pressure, so
that possible optimal solutions are not lost. Another way to avoid optimal solutions to get lost is through
elitism. It works similar to the latter described algorithm, with an extra detail. A trace of the best solution in
the population is kept and, in the case where it is one of the ∏ oldest solutions and no offspring has better
quality, it is kept in the next generation and one of the offspring solutions is discarded. These examples rely
on having an offspring smaller than the population (∏ < µ), but there can be the case where this does not
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happen. In (µ,∏) Selection, ∏ > µ offspring are generated from a population of µ parents. For the next
generation, all parents are discarded and the top µ children will form the next generation. Most ER problems
are multimodal, therefore, this latest method is a promising option to search for a global optimum.

Round-Robin Tournament Selection
Another tournament-based strategy for selection is round-robin. Essentially, the population and the offspring
are grouped together, and every individual is compared against q , randomly chosen, others. For every q

tournament, an individual gets a "win" if it is better than its opponent. In the end, the µ individuals with
more wins are selected for the next generation. This algorithm can also be used for parent selection, and
likewise the tournaments presented in that subsection, the parameter q influences the chances of having
less-fit solutions in the next generation.
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Preliminary Results

In this chapter, the implementation of a preliminary evolutionary robotics approach to the leader-follower
problem within a group of MAVs will take place. Moreover, its results will be presented and analysed.

To demonstrate the capabilities of this design method, two high-level controllers were evolved in
simulation. First, Section 5.1 discusses the optimized task that was tackled. Then, Section 5.2 describes the
kinematic model of the MAVs implemented in the evolutionary process as well as other simulation’s
parameters of interest. Section 5.3 introduces the control scheme used in the experiment, and is followed by
Section 5.4 with implementation details over the evolutionary process. Finally, Section 5.5 presents the
results of the optimization.

5.1. Leader-Follower Task

The proposed evolutionary robotics approach is tasked with developing an autonomous leader-follower
behaviour for a group of three MAVs. As a starting point, it is desired that the group movement resembles
that of a snake, i.e., there is one MAV leader following a random trajectory, a second MAV following the
leader, and a third one following the second. Basically, all MAVs, except the last one, have both leading and
following roles.

MAVs are able to acknowledge the relative position of other members of the group by making use of a
range-based relative localization scheme implemented through an EKF. The relative localization estimates
are heading independent, and the parameters of the filter were chosen in accordance to previous experiments
held in [70], in order to approximate the real life scenario. The filter runs at 50 Hz.

Additionally, each MAV is considered to have a inner loop controller that ensures stable performance of
the vehicle dynamics, therefore, the evolved controllers are only responsible for commanding the velocity
setpoints of the MAVs. Then, this velocity is achieved by the inner loop controller. There is one main reasons
that motivated this approach: instead of focusing in all the dynamics of a MAV, the controller is only
responsible for optimizing the high level behaviour, which is the aimed goal. Also, this helps making the
system more robust to the reality gap between the dynamics of the simulated system and those of the real
one.

5.2. High Level Quadrotor Kinematic Model

The Parrot ARDrone 2 quadrotor MAV is the most popular choice within MAVLab for real-world experiments,
therefore, the simulated dynamics were implemented based on those of this quadrotor. Since it is considered
that each drone is already equipped with a stable inner loop controller, the model can be described as a
second-order system with != 14.52 and ª= 58.65 [17]:
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With x = [ẍ, ÿ , ẋ, ẏ , x, y]T ; vmax set to 0.5 m/s, and ux and uy the outputs of the high-level controller. The
model runs in simulation with a timestep of 0.001 s and integration is performed with Runge-Kutta
integration methods.

5.3. Controller

A feed-forward artificial neural network (FFANN) with one hidden layer was selected to perform the desired
control task. All neurons are activated by a tanh activation function, and the network weights were
constrained to the range [°2,2]. Furthermore, bias nodes were added to the input and hidden layers, with
the respecting weights constrained to the range [°5,5].

The FFANN controller has 4 input neurons (plus the bias node), rx ,ry ,¢vx and ¢vy . The first two
represent the relative distance in the x and y axis of the horizontal body frame, and are directly obtained
from the relative localization filter - See Equation 1.6. The other two, ¢vx and ¢vy , represent the difference
in velocity in those same axis, and can be computed from the velocity states of the filter, since each MAV has
knowledge regarding its own velocity and that of another MAV from the group - See Equation 1.6.

As for the hidden layer, it was decided to have 15 neurons plus one bias node. There was no scientific
argument behind this choice, it was purely instinctive. Lastly, it was already mentioned that the output of
the evolved controller are the velocity commands for the inner loop structure. Therefore, the output layer
consists of 2 output neurons, that yield ux and uy . These velocity setpoints are within the range [°1,1] and
are then translated into velocity commands by multiplying its value with vm ax. Figure 5.1 illustrates the
architecture of the FFANN controller.

Figure 5.1: High-Level Velocity Controller Architecture used in this Preliminary Experiment
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5.4. Evolutionary Algorithm

It was already mentioned that this research aims to evolve a high-level controller that promotes a leader-
follower behaviour while enhancing observability. Additionally, the FFANN architecture of the controller was
previously introduced. Therefore, the evolutionary process is responsible for optimizing the interconnecting
neural weights of the controller. With this in mind, a population of 100 individuals was randomly (within
the applicable range) generated. Each individual is represented by an artificial genotype that consists of a
numerical array (real-valued representation). Two controllers are evolved together, one for the first MAV of
the group, from here on referred to as the leader, and one for the other two MAVs, from here on referred to as
the followers. Therefore, each individual’s genotype encodes two controllers through a numerical array that
concatenates the values of the interconnecting neural weights of both networks.

Once initialization takes place, all individual genotypes were simulated using the kinematic model
introduced in Section 5.2 - it was used a time step of 0.001 s. The three MAVs are initialized hovering at the
same height with a random x and y position within a 3.5 diameter circle, separated by a minimum distance
between vehicles of 1 m. All trials take 60 seconds, and each genotype was evaluated over three trials, as to
reduce any possible randomness effect. The performance was evaluated by applying a set of two fitness
functions to be maximized:

f1 =
P

N

i
©M AVi

N
(5.2)

f2 =
Q

N

i
©M AVi

(5.3)

With

©M AVi
=

R
tmax

t=0 ¡r ang ei
(t )d t

tmax
(5.4)

And ¡r ang e being defined at every time step according to the following rules:

¡r ang ei
(t ) =

8
><
>:

1 i f 0.8 < r ang e_to_leader < 1.6
0 i f r ang e_to_l eader < 0.8

1
r ang e_to_leader 2 i f 1.6 < r ang e_to_leader

(5.5)

Basically, ¡r ang ei
evaluates each i th leader-follower distance (in this case there are three: the leader (l)

following the random trajectory (rt), the first follower (1f) following the leader, and the second follower (2f)
following the first one) with a value from 0 to 1. 0 means the drones are too close, therefore at risk of
colliding, and 1 means the follower is at the perfect distance from its leader. In the end of each trial, those
values are averaged over the full trial, and an objective metric over each following behaviour is obtained:
©M AVl ,r t

,©M AV1 f ,l and©M AV2 f ,1 f
. Then, the two fitness scores are simply the average and the product of these

metrics, and are bounded to the range [0,1]. After the three trials, each genotype final fitness values are the
averages over those trials.

The two fitness functions were chosen this way so that, on the one hand, evolution accounts for the
average following behaviour of the three MAVs ( f 1); and, on the other hand, it forces all MAVs to
demonstrate good following behaviour, since the worts case scenario will spoil the positive impact of the
other two ( f2).

Once evaluated, the initial population produces an offspring. Mutation was the only evolutionary
operator used, since it seems to be the best option when dealing with real-value genotype representations
[59]. Each genotype had a 10% probability of being mutated. Nonuniform mutation was applied, by simply
inducing a random perturbation (Gaussian) on the original value, while constraining the values to the
applicable ranges already mentioned. Then, the offspring is evaluated in the same way its parenting
population was. Once both the initial population and its offspring are evaluated, they are combined together
and ranked through the NSGA-II (see 4.4.2). With the ranking established, selection is done by having a
Round Robin Tournament of eight randomly selected individuals (see 4.5.2, where the most successful ones
survive to the next generation. After that, the cycle reiterates by having the population deliver an offspring,
which will be evaluated, and so on.
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Figure 5.2 shows the population average performance over the different generations of the evolutionary
process. It shows that fitness gradually increases until it approximately stabilizes after the 700th generation.
The average fitness values of the top 10 solutions is 0.92 and 0.77.

Figure 5.2: Average Population Fitness over the Evolutionary Process

5.5. Preliminary Results

In the end of the evolutionary cycle, the eight best ranked controllers were further validated during 100 trials
of 90 seconds, with varying initial conditions. Then, the one that performed best was additionally simulated
over 250 trials of 90 seconds. Some results that are obtained from the latter 250 trials will be presented next.

First, before analysing if the following behaviour was indeed achieved, let’s take a look at the performance
of the relative localization filters throughout the simulated trials, since it is what allows the MAVs to actually
sense its leaders. Each MAV has its own filter which estimates the relative localization of its local leader. The
probability distribution of the localization estimates errors are shown in Figure 5.3. In red, the median of the
distributions is shown, and it can be seen that the relative localization estimates are quite reliable, with 50%
of the time showing an error lower than approximately 0.25 for all MAVs.

In the simulations, the filter is initialized close to the true initial conditions and the measurements were
randomly perturbed by sampling values from a normal distribution with mean= 0 and standard deviation=
0.2. Therefore, the main source of error for the localization estimates should be caused by the unobservability
issues due to the lack of a heading reference.

Having verified that the relative localization estimates are trustworthy, let’s move on to assessing if the
evolved controllers accomplish the main goal of the experience: achieve leader-follower behaviour for a
group of three simulated MAVs. Figure 5.4 shows the range values of each MAV with regard to its local leader.
The MAV that acts as an leader shows a great ability to follow the random trajectory, as 87% 0f the time it is
within a distance between 0.8 and 1.6. The first follower also shows a good ability to follow its leader,
spending 71% of the time within the previously mentioned range. Finally, the second follower shows the
worst performance, only being within the aforementioned range 51% of the time. Despite the difference in
performance between the first and second follower, we can still say that the leader-follower behaviour was
indeed evolved through the controllers. Nonetheless, we can also observe a gradual drift in performance
that propagates backwards, similar to the effect that happens in traffic jams where the start and stop of a
vehicle can generate long queues by the propagation of an increasing start and stop time over the queue.

This deterioration can also be seen in figure 5.5, which shows the distribution of the metric©M AVi
for the

different MAVs. Again we can notice that performance drifts backwards.
Figure 5.6 shows the distribution of the fitness scores over the different trials, and we can see that the

results are not in accordance with the steady fitness values of the evolutionary cycle. This was already
expected from the results presented in the two figures above. In fact, we can conclude that the solution does
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Figure 5.3: Localization Estimate Error Distribution for the different MAVs. Median in red.

not generalize well. One of the causes for this can be easily identified: during the evolutionary process all
solutions are only evaluated in three trials, which evidently is not enough. Future work should constantly
evaluate the surviving population and not only its offspring, in order to assure that the evolved solutions are
not a product of beneficial initial conditions.

After evaluating the ability of the system to adopt a leader-follower behaviour, it is time to assess the
observability of the system while doing so. As mentioned before, because of the lack of heading
measurements, the states of the filter are only fully observable if the MAVs’ movement respects certain
constraints. This directly affects the relative localization estimates, which is the basic tool that enhances any
group behaviour, therefore, it is desired that the MAVs are capable of avoiding unobservable situations.
Using the concept of estimation condition number ∏, introduced in Section 2.3, Figure 5.7 shows its
distribution over the experiment. The smaller the value of ∏, the more observable the system, however,
without having a comparison study that serves as benchmark for the observability of the system, it is hard to
draw conclusions on whether the evolved behaviour takes observability into account. Moreover, since this
experiment did not include observability measures neither in the controller’s input, or in the fitness
functions, it is hard to expect that any observability-based behaviour was evolved. Future work should take
this into account.

As a last note, it is worth mentioning that the biggest obstacle of this experiment was its computational
load. For future work, the kinematic model should be replaced by a first order system, as in the work of
Scheper and de Croon [59], and the EKF should be run at a lower frequency. By doing so, the use of a larger
time step in simulation is possible since the time constant of the system is large. Moreover, this type of
abstraction has provided great results in overcoming the gap from simulation to real flight, which is ultimately
what we would like to achieve.
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Figure 5.4: Range Distribution for the different MAVs. Vertical lines signal the ranges of 0.8 and 1.6.

Figure 5.5: Performance Distribution for the different MAVs. Median in red.
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Figure 5.6: Fitness Distribution for the overall system. Median in red.

Figure 5.7: Condition Number Distribution. Median in red.
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