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Summary

The work described in this report is part of the PhD project ’Computational
Fluid Dynamics for 3D multiphase flow instabilities’ sponsored by Shell, TNO
and Deltares. The project is meant to develop and validate a time-dependent,
three-dimensional numerical/physical model for immiscible two-phase flow in
pipe lines. This includes the extension of an existing algorithm in cartesian
coordinates into cylindrical coordinates to obtain a boundary-fitting grid. Care
should be taken to properly represent the interface between two immiscible
phases (such as gas and liquid) to obtain conservation of mass.

In this report the Mass Conserving Level Set (MCLS) method for the interface is
described and validated using a number of common benchmark test cases. The
MCLS method is a numerical method for the simulation of incompressible, im-
miscible two-phase flows based on an efficient algorithm that combines both the
Level Set (LS) method and the Volume of Fluid (VoF) method. The discretiza-
tion of the Navier-Stokes equations is analyzed and shown to be sufficiently
reliable and accurate. The interface representation is then tested through pro-
gressively more complex scenarios, starting with a bubble at rest, and concluding
with a long bubble rising through a vertical pipe. The overall performance is
satisfactory, and no significant obstacles have been encountered. Certain small
parts of the algorithm need further improvement, mainly due to accuracy and
robustness issues.

This work is part of the four year PhD project of the author at Delft University
of Technology, Department of Numerical Analysis. The report is a summary of
the work carried out in the first two years of the project.
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Chapter 1

Introduction

The numerical simulation of physical problems involving immiscible two-phase
flows (such as gas-liquid flow or liquid-liquid flow) generally relies on the use
of one of two methods to represent the sharp interface: the Level Set (LS)
method [Fedkiw and Osher, 2003] and the Volume of Fluid (VoF) method [Hirt
and Nichols, 1981]. The former method uses a contour of a higher dimensional
function to define the interface, i.e. for a fluid in some n-dimensional domain
Q, the interface I' consists of:

I'={x|é(x)=0, xcQ} (1.1)

for some scalar function ¢ :  — R. The function ¢ is advected by the under-
lying flow field u according to:
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5, T Ve=0 (1.2)

The VoF method involves a scalar function ¢ :  — [0, 1] which assigns to every
computational cell a number representing the volume fraction of one of the two
fluids in that cell. A value of ©» = 0 or v = 1 implies a cell filled by either of
the two fluids, while a cell with 0 < 1 < 1 is a mixed cell that is intersected by
the interface. Just as with the LS method, the function v is advected through:

N
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Y (w) (13)
where u is the underlying flow field. The reconstruction of the sharp interface as
well as determining the fluxes of i) has to be done by considering neighbouring
cells.

Both methods mentioned have clear advantages that explain their popularity:
the LS method is relatively easy to implement, also for higher dimensions, and
the reconstruction of the interface is elegant and nearly trivial. The VoF method
is volume-conservative and in general very robust. However, both methods also
come with serious drawbacks that may limit their use to incompressible flows:
the LS method is not volume-conservative, which should be an essential require-
ment for any incompressible fluid simulation. Even though the use of higher or-
der methods may improve conservation, long-term simulations will always suffer



from loss of volume of one or both fluids. The VoF method, although conser-
vative and robust, generally requires an elaborate algorithm to reconstruct the
interface and to calculate fluxes, which can become computationally expensive.
Additionally, in the absence of a sharp interface, properties like normals and
curvature are more difficult to determine than when using the LS method.

From the considerations above, it seems worthwile to construct an interface rep-
resentation method that combines the advantageous elements of both LS and
VoF method (easy interface reconstruction and volume conservation) and si-
multaneously avoids the mentioned drawbacks. Such attempts have resulted in
for example the CLSVOF method [Sussman and Puckett, 2000] and the MCLS
method [Van der Pijl et al., 2005], and more recently in the CLSMOF method
[Jemison et al., 2013]. Broadly speaking, all these methods use VoF values to
correct any volume loss by the LS method, thereby being formally conservative.

Shell, TNO and Deltares, who have requested the present project, are interested
in exploring the possibilities of advanced simulation tools for analyzing multi-
phase flow in pipeline systems. This includes the combined transport of gas/oil,
oil/water, or air/water. Therefore in the present project the existing algorithm
with the MCLS method for rectangular geometries using a cartesian grid has
been extended to circular pipe geometries using cylindrical coordinates. In this
report, the development of the latter approach is described. The cylindrical
MCLS method is tested and numerical convergence analysis is performed to
validate the various sub-algorithms. Some physical test cases for two-phase flow
are used to verify the capabilities of the implemented method. Furthermore op-
portunities are identified for further improvement. This work is part of the four
year PhD project of the author at Delft University of Technology, Department
of Numerical Analysis. The report is a summary of the work carried out in the
first two years of the project.



Chapter 2

Overview of the algorithm

The computational method used is the Mass Conserving Level Set approach
introduced by Van der Pijl et al. [2005]. Both LS and VoF methods are combined
to guarantee conservation of mass, whereas the use of only the LS method
unavoidably leads to mass loss. This chapter describes the method in cylindrical
coordinates.

2.1 Interface representation

The LS function is used to implicitly define the location of the interface. After
advection with the flow field during a time step, the newly located interface will
in general not enclose the same amount of fluid as at the previous time level,
which in time can ultimately lead to complete loss of one of the fluids present
initially. To quantify the volume loss during a time step, the LS function is
linearized in every computational cell as:

B(x) & d(x) = B(x0) + Vo(x0) - (x — Xo), (2.1)

where xg is the location of the cell center. Then for the linearized LS func‘gion
¢, an analytical expression is used to calculate the associated VoF value % in
every cell, such that:

¥(x0) = f((x0), Vo (x0) (2.2)
Notice that, except for rounding errors, this expression is exact. Hence after
every time step, a VoF value 1[) can be obtained based on the advected LS
function. Then there is in addition to the LS function also a VoF function v
that is advected with the flow from the beginning on, and this VoF value will
serve as a reference based on the knowledge that its advection is achieved in a
conservative manner. The calculated VoF values v are now cellwise compared to
the reference values 1, and the difference |1(xo) — 1h(xq)| serves as the primary
indicator of the accuracy of volume conservation. If the difference is smaller
than a user-defined value €, the interface advection was accurate enough. If
not, corrective action needs to be taken as too much volume is apparently lost
during the advection of the interface in that particular cell.
The correction process (or ’coupling’ of the LS and VoF functions) provides a
LS function ¢(xo) which satisfies:

|£(6(x0), Vé(x0)) — $(x0)| < €. (2.3)



This is achieved through Newton iterations on expression 2.3. Since é(xo) and
Vo(x0) are coupled (the latter being calculated as the central difference of the
former), the algorithm incorporates two nested iterations.

2.2 Implementation of interface jump conditions

Under the assumption of a sharp interface representation in combination with
incompressible flow, jump conditions at the interface can be derived [Liu et al.,
2000]. Although formally the density p and the viscosity u are constants within
each fluid, i.e:

p = pe<o+H(9)(pg=>0— py<o) (2.4)
poo= pg<o+ H(P)(1e>0 — pg<o) (2.5)

choosing only the viscosity p to be continuous across the interface leads to the
following single interface condition:

[p] = ok (2.6)
where [-] is the jump operator, o the surface tension coefficient and x the local
interface curvature (twice the mean curvature in 3D). The classic Continuous
Surface Force (CSF) model [Brackbill et al., 1992] transforms the jump into a
body force which is added to the momentum equations. In addition, the jump
is mollified by a smoothed Heaviside function to only contibute in a narrow
band around the interface. Although robust and proven in practise, its use
in combination with non-uniform grids can lead to difficulties in choosing the
bandwidth of the mollifier and inaccuracy when two interfaces become close. In
this project, one of the aims is to minimize the number of user-defined input
parameters.

The Ghost Fluid Method (GFM) [Liu et al., 2000] treats the jumps in a sharp
fashion, and therefore removes the necessity of any smearing parameters. Be-
cause of the smoothed viscosity there is no jump in the gradient of the pressure.
The GFM then provides an alternative way of discretizing the pressure jump
in the momentum equations by incorporating the jump in the Poisson equation
through an additional term on the right hand side without altering the stencil
of the Laplacian. This allows any black box solver to be used for the Poisson
equation and avoids tedious alterations during construction of the Laplacian
matrix (or the associated matrix-vector product).

Because of the attractive property of the GFM that no problem-specific param-
eters are required as compared to the CSF approach, the former is chosen and
implemented as surface tension model. As a temporary concession, the viscosity
is kept continuous across the interface to simplify implementation. Although
this is formally not a complete implementation of the GFM, it is frequently used
in practise and proved reliable.

2.3 Accuracy of the interface representation

The use of a cell-wise linearized LS function as interface representation intro-
duces a projection error in the estimation of the associated VoF value, compared



to the VoF value of the true LS function. The linearization suggests that this
error is O(1/N?), and a simple test to verify this comprises a spherical bubble
centered in a cylindrical domain with zero initial velocity. The fluid properties
inside and outside the bubble are equal, and since there is no fluid movement,
the sphere will stay at its initial position. The initial LS function ¢ for a sphere
with radius R =1 is given by:

O(r,0,z) = =14+ /12 + 22, {(r0,2) | 0<r<20<6<2rm,-2<z<2}

(2.7)
Since this function cannot be exactly represented by the discretization, errors
will be made when calculating the gradient of ¢ required for the function f to
calculate the associated VoF value. Besides round off effects, no further errors
are expected since the function calculates associated VoF values of linearized
LS functions exactly. The accuracy is measured by calculating the error € be-
tween the exact volume of the sphere and the calculated volume V,,,,, after the
projection onto the computational grid, i.e:
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e(N) = 3

- Vapp?" (N)

: (2.8)

where the approximated volume is a function of the degrees of freedom N.
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Figure 2.1: Accuracy of the function f(¢, Vo).

From figure 2.1 it follows that the error in approximation of the enclosed volume
is indeed O(1/N?).



Chapter 3

Validation of the flow field

The physical domain of the problem is fixed as a straight cylinder. To be able to
use fast existing methods, the boundary fitting cylindrical coordinate system:

L L
{(T,G,Z)’TZO,OS9<27T,—2§Z§2} (3.1)

is chosen to form a computational grid. The staggered configuration places
the velocities u = (u,,up,u,) at the cell faces, and the pressure p, the LS
function ¢ and the VoF function % in the cell centers. The Navier Stokes
equations are discretized using finite difference techniques described in Morinishi
et al. [2004]. Tt is claimed that in the absence of viscosity, the discretization is
(kinetic) energy-conserving, but numerical investigation has shown that this is
untrue. This is caused by a non-consistent discretization of a limit-derived radial
momentum equation at the pole where r = 0. Instead, an averaging procedure
is used as was done by Eggels [1994], where the radial velocity w.(0,6,z) at
r = 0 is defined by:

ur(Ar, 0, 2) —u.(Ar, 0 + 7, 2)

ur(0,0,2) = 5 , 0<6<2m,—

N
N

<z<

(3.2)
Using a projection method, the set of non-linear momentum equations dis-
cretized in space can be denoted by:

* _ 4am 1
S T ) 4 GO =0, (33)
p 2

where all superscript indices represent time evaluations. Here G is the discrete
gradient operator and f contains all remaining convective, viscous and body
force terms. The pressure p, together with the LS function ¢, the VoF function
v and the density p = p(¢) are staggered in time, implying that they are formally
evaluated at semi-levels n £+ % in time. Equation 3.3 is linearized using Newton
linearization and solved by a GMRES algorithm to find a tentative velocity u*.
A Poisson equation is solved for an updated pressure p”+% by a CG algorithm
with an Incomplete Cholesky preconditioner:

D(p6umh) = 5P+ (5667 h) . G

prz
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where D is the discrete divergence operator. The presence of the divergence
of the pressure at the previous semi-time step n — % in the right hand side of
the Poisson equation above is due to its presence in the momentum equation
3.3. For single phase flows, the pressure term on the right hand side of the
Poisson equation would generally be moved to the left hand side to form (by
linearity) an equation for a pressure correction (p’”% — p”’%) instead of the
pressure at the new time. This is however only possible if the density p remains
constant in time, which is clearly not the case for multiphase flows. Finally,
the tentative velocity u* is made divergence-free using the newly found pressure
p"*2 through:

1 1 1 1 1
n+l _ o = n+s\ n—z
W = (W;G(p H- 6l H) (35)

which yields the new velocity vector u™*!.

3.1 Analysis of the temporal discretization

The set of semi-discrete momentum equations:
Ou 1

E = _C(u) + V(ua Ps /U) - 7G(p) + f7 (36)
p

where u is the unknown velocity vector, C(u) the convective part, V(u, p, p)

the viscous part and f any remaining body force is integrated in time using the
Implicit Midpoint rule, given by:

At At
yn+1 =y" + Atk with k=f (tn + 5 y"+ 2k) (3.7)

for any ordinary differential equation y’ = f(¢,y). To this end, the first step is
to solve the non-linear equation:

At At G(pn—z
k=—C (u" + 2k) +V (u” + 5k p”+%,un+é> - Eﬁ_;) +£" (3.8)

Notice the inclusion of the pressure term at the previous time level. The viscous
operator V is linear, so that we can rewrite the evaluation as a matrix-vector
product:

At At
v (“ ok Pn'+%,u"+é> = (V) (", 1™+ (VIR ) (39)

where V is now a matrix. The convective operator C' however is non-linear, and
Newton linearization is used to obtain two matrices Cy and C; such that:

C(u) = Cy + Cru+ O(At?), (3.10)

where the right hand side again contains only a matrix-vector product. Hence,
the convective term can by linearity be written as:

A A
C (u + ;k) = Co+Ch (11 + ;k> +O(Ar) (3.11)

Co + Cru+ %ClkJrO(At?) (3.12)

11



With this second order linearization, expression 3.8 is approximated by:

At At 1 1 1 1
(I 0 2V<p"+w”+2>) k = —Co—Cru"+ (Vur)(pth, )
G (313
pre

This linear system is solved using the GMRES algorithm, after which scaled
addition to the previous velocity vector yields the predictor velocity u*. One
could choose to further iterate on k for increased stability, but experience has
shown no significant improvement while computational cost increases profoundly
since each iteration adds an additional non-linear solve per time step. Therefore
equation 3.13 is solved only once and the solution of the linearized system is
assumed to be close enough to the solution of the non-linear system of equation
3.8.

3.2 Validation of the time integration method

The implementation of the time integration method is validated using an ana-
lytical solution of the viscous flow equations known as the Lamb-Oseen vortex.
It represents an axisymmetric rotational flow that decays through viscous dis-
sipation. The analytical velocity profile is given by:

F ’7‘2

up(r, z,t) =0, ug(r, z,t) = — (1 — e*m> , uz(r,z,t) =0, (3.14)
27r

where T is the circulation and v the kinematic viscosity. From the velocities it

follows immediately that the flow is divergence-free, and the pressure p satisfies:
10 2
~9P _ Y (3.15)
por r

Since the velocity at ¢t = 0 is unbounded near r = 0, the simulation is set to start

at t = 2 seconds when the velocity profile is smooth and bounded. The problem

is solved on the domain {0 < r < 1,—-0.5 < z < 0.5} discretized uniformly by

19 x 19 computational cells. The initial conditions of the flow field are given by:

u'r‘(’riazkao) :07 u@(rivzkvo)

r?
(1—6_4-103-2> , u (1, 25, 0) = 0,

(3.16)
for a flow with viscosity ¥ = 1073 m?/s and circulation ' = 1 m?/s. The
Dirichlet boundary conditions for the velocity are the exact solution values,
while for the pressure homogeneous Neumann conditions exist at z = —0.5 and
z = 0.5, and the non-homogeneous Neumann condition of expression 3.15 at
r=1.

The results are calculated with different values of the time step At and compared
at time ¢ = 27 seconds. In addition, a reference solution u,..¢ is calculated with
a much smaller time step. Before comparing, the reference solution is subtracted
from all solutions to remove any significant contribution of the error in spatial
discretization. Figure 3.1 shows the supremum- and ¢2-norm of both the velocity

27r;
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Figure 3.1: RMS- and maximum error of the velocity and the pressure field.

and the pressure field as a function of the magnitude of the time step At. The
norms are defined as:

Ip=preflls =D 1iAriAO; Azk|piji—pres, |’y IP—Preflloo = SUD [Dijr—Pref,,. |
1,5,k %7,

(3.17)
The results show second order accuracy for the velocity in the fo-norm, which
corresponds with the theoretical accuracy of the Implicit Midpoint method. The
pressure also appears to be second order accurate in this norm, although there
is little theoretical basis to justify this. For general flows though, the pressure
should have at least first order accuracy. In the supremum norm, both velocity
and pressure show first order convergence. It is likely that disturbances occur
near the polar axis at » = 0, which are suppressed by the jacobian in the fo-norm

but dominate the supremum norm.

3.3 Summary

A description was given of the discretization in time of the Navier Stokes equa-
tions. A projection scheme is used, where the Implicit Midpoint method is
selected to calculate a tentative velocity field. The non-linear equation is lin-
earized using second order Newton linearization, and subsequently solved using
a GMRES algorithm. Then a Poisson equation is solved to update the pressure
field, where a preconditioned CG solver is used, and the result is used to create
a new divergence-free velocity field. The simulation of a Lamb-Oseen vortex
reveals that both velocity and pressure are of order O(At?) when evaluated in
the fo-norm, but only O(At) is achieved in the supremum norm. Note that the
considered test problem represents single phase flow only, i.e. there is no inter-
face with a pressure jump. Test cases with two-phase flow will be considered in
the next chapter.

13



Chapter 4

Test case 1: a stationary
bubble with high surface
tension

In the previous section, the velocity field was validated as a single-phase flow
without any contact interface. In multi-phase flows on the other hand, the pres-
ence of a second fluid induces complex behaviour of the flow variables at the
interface. Formal jump conditions for incompressible flows with an infinitessi-
mally thin interface can be derived [Liu et al., 2000], which are sharply modelled
by the GFM. This test case is meant to validate the implementation of these
interface conditions on a stationary bubble that is subjected to a high, uniform
surface tension. Results will be compared with Denner and van Wachem [2014].

4.1 The presence of parasitic currents

A confined domain is assumed with two fluid phases in equilibrium separated
by a sharp interface. No gravity is present, and both the location and the shape
of the interface remain stationary through a pressure jump [p] = pop — p1 that is
balanced by surface tension through the Young-Laplace relation:

[p] = ok, (4.1)

where o is the surface tension coefficient and x the local interface curvature.
With zero initial velocities, the configuration described above is a stationary
solution of the Navier Stokes equations. For these initial conditions, the mo-
mentum equations reduce to:

ou 1

— 4+ -Vp=0, u(x,0)=0 4.2

G (x,0) (42)
together with the interface jump condition equation 4.1. To guarantee station-
ary behaviour of the solution at the discrete level, it follows from equation 4.2
that the numerical treatment of the pressure term is pivotal: if at any point in
time the pressure term is not identically zero, the momentum equations induce

14



velocities which are commonly called 'parasitic’ or ’spurious currents’. Their
existence is the result of several purely numerical errors.

e The jump condition (4.1) requires the calculation of the local curvature
k of the interface. In LS methods, this quantity follows from the finite

difference discretization of:
Vo >
=V (= 4.3
(194 “3)

where ¢ is the LS function. Clearly, the discretization will contain a
truncation error.

e In the finite difference context, curvature values are often calculated at
fixed locations (usually at the cell centers). However, most surface tension
models require the actual curvature at the interface, and therefore this
value has to be approximated. It seems that there is no universally agreed
upon way to do this approximation yet as it also depends on the surface
tension model used. In the GFM however, the curvature is required at
the interface, and it is obtained by linear interpolation in the coordinate
directions. This generally introduces an interpolation error.

e The momentum equations can be considered as a dynamical system:

ou

5 = .. (14)
For a generic discretization of the system it is not a priori clear what level
of stability the resulting system will possess. Initially, the system is given
by expression 4.2, but any erroneously induced velocity after one time
step complicates the system since the convective and diffusive parts of the
momentum equations start contributing. This signifies the importance of
the initialization of the pressure field p and the treatment of the pressure
jump ok at the interface. One could define the pressure throughout the
domain if its values are known a priori, which is generally not the case.
A different option is to calculate its values by solving a Poisson equation
like equation 3.4, and in the MCLS method this is done using a PCG
solver. Since it is generally too expensive to solve up to machine precision,
a residual value is used as stopping criterium, and therefore it can not
be expected that the pressure term is identically zero in this case: even
though perhaps small initially, in time its contribution may grow and cause
increasing parasitic velocities.

Hence, the major errors come from the discretization and interpolation of the
curvature, and from the pressure field initialization. These sources will be in-
vestigated further.

4.2 Computational results

We will consider both two- and three-dimensional cases, which will be computed
in polar and cylindrical coordinates respectively. The aim of the test is to val-
idate the implementation of the surface tension model (GFM) by investigating
the discretized equation 4.2.

15



4.2.1 A stationary interface in 2D

We start by considering a two-dimensional case of a circular bubble in a polar
domain. The bubble has radius R = 1 and the domain is:

{(r,0) | 0<r<2,0<86<2r}. (4.5)
The LS function ¢ is initialized as:
d)(rv 0) =-1+ T, (46)

and the circle contains fluid 0 and is surrounded by fluid 1. The density ratio
po/p1 can vary, but for simplicity the viscosity ratio po/p1 is kept constant at
1.

Curvature discretization error As the LS function is linear in polar co-
ordinates, it should hold that the numerical values of the right hand side of

equation 4.3 (calculated in the cell centers) are exact up to machine precision
due to vanishing discretization error (central differences). To verify this, we

consider the error ¢(N):
Vo Vo
N)=|V-| == -V ==
“) H (lwl) <V¢|>

where N is the degrees of freedom. Since the exact value is 1/r, the error is

calculated as:
Vo )
v [ —=
(w4

1. the error € is not dependent on the number of degrees of freedom (in the
absence of truncation error).

(4.7)

numerical exact !l Ly

Ng N, 1

g T

j=1i=1

It is expected that:

2. the magnitude of the error is around machine precision.

Figure 4.1 shows the behaviour of € for increasing degrees of freedom. It is
clear that indeed the magnitude of € lies near machine precision and exhibits no
significant dependence on N.

Curvature interpolation error The GFM requires the curvature x at the
interface to determine the pressure jump. The interface curvature is determined
by interpolation of curvature values between cell centers in the coordinate direc-
tion to the interface location. The values of the LS function ¢ act as indicator
of the presence of an interface; if ¢(x;) - ¢(zi41) < 0 then it must follow that
an interface lies in the interval (x;,z;y1). Using linear interpolation of the LS
function, the interface location is found as:
x |¢4]

—- = 0<z< Az, 4.9
Az~ o+ 16l (4.9)

16
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Figure 4.1: Accuracy of curvature discretization.

so that the curvature in this interval can be calculated as:

_ Kil®ipa| + Kiga[94]

|pi| + |Pig1l

where ¢; = ¢(x;) for ease of notation. The procedure is repeated analogously
in the other coordinate directions. Given the intial LS function as in equation
4.6, it should follow that because of its linearity in the radial coordinate the
calculated location of the interface is exact: this can be verified by substitution
into equation 4.9. However, since this expression is only implicitly used to derive
equation 4.10, the calculated curvature will not be exact as linear interpolation
of the true solution:

(4.10)

1
Kk(r) = — (4.11)

r
has an interpolation error of O(1/N?). To verify the interpolation of the cur-
vature, and therefore the accuracy of the pressure jump at the interface, the

following error is considered:

€<N) = HU"{|numerical - Ufi|ewact||oo s (4.12)

where 0&|numerical 18 the calculated pressure jump according to equation 4.10
but using ezact values for the cell centered curvatures k; so that the error is
dominated by the interpolation error. The exact jump is calculated as:

OK|ezact = % (4.13)

Figure 4.2 confirms that the error in the calculated pressure jump due to inter-
polation is O(1/N?) as expected. Repeating the test using calculated values for
the cell centered curvatures k; gives virtually indistinguishable results, which is
to be expected from the results of the previous section.

17
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Force balance error Focusing on the momentum equation (4.2) now, the
question arises of how to initialize the pressure field p. As mentioned, the
pressure field needs to be such that:

%Vp =0, p] =0k (4.14)

holds numerically as to prevent velocities from originating. Expression 4.14 is
occasionally called the initial "force balance’ for a stationary solution (although
usually in the context of the CSF model, see Denner and van Wachem [2014] and
Meland et al. [2007]): the pressure difference should be balanced by the surface
tension. The importance of a correct force balance stems from the experimental
observation that existing parasitic velocities are very difficult to prevent from
growing in time, let alone be suppressed by the numerical model: it appears
that keeping the velocities bounded in time is at present the best one can do.
Because of this observation, one should at least aim to prevent their existence
during initialization of the flow field.

The easiest way to initialize p is to provide the pressure values, but this of course
requires knowledge of the initial pressure field. This can often only be done for
relatively simpel geometries. For more general cases, the initial pressure can be
calculated by solving the Poisson equation 3.4. Assuming an initial divergence-
free velocity field, one further neglects the pressure term at the previous time
so that the pressure follows from the Laplace equation:

1

v.<lvpé>__o (4.15)
pE

with appropriate boundary conditions (generally homogeneous Neumann, or

non-homogeneous Neumann in case gravity is present). Notice that due to
the staggering in time of the computational quantities, the pressure p and the
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density p are formally evaluated at semi-time steps while the velocities are
evaluated at integer time steps. A serious drawback of this approach, however,
is the fact that the numerical solution of equation 4.15 is obtained using only
finite precision (depending on the tolerance chosen for the iterative solution
algorithm), and therefore the accuracy of equation 4.14 is uncertain. It can be
argued however that this accuracy is highly dependent on the solver accuracy.
To validate the accuracy of the initial force balance, the following tests are
considered (based on Denner and van Wachem [2014]):

1. To validate the global implementation of the projection method described
in section 3, both the initial pressure p(x,0) and the pressure jump ok are
prescribed as:

_ )73, 0(x,0)<0 I
p(x,0) = {0’ 6(x.0)> 0’ ok =1T3 5 = 36.5 (4.16)

The latter assures that through the GFM both:

1 1

are satisfied identically, and so no solver action is expected from the pro-
gram since the numerical solution is satisfied by the initial conditions.

2. The ultimate test is to calculate the initial pressure field using the Poisson
equation 4.15, and calculate the pressure jump ok based on the initial LS
function. This is the procedure followed in a general situation without
any knowledge of the initial pressure field. For a fixed number of degrees
of freedom, the accuracy of the Poisson solver should dominate the error.
In Denner and van Wachem [2014] it is suggested that the magnitude of
the parasitic currents may be a function of the density ratio pg/p; or the
time step At, and so these are also varied between simulations.

The first test case in which both the initial pressure and the jumps are prescribed
results in no solver action in the predictor equation nor in the pressure Poisson
equation, as was expected. This implies that for exact initial conditions, the
algorithm performs as expected, and after one time step a velocity magnitude
of [[ull|., = 0.0 is found.

For the second test case, the values of |[u!||z_. and the initial pressure difference
error:

Ap - Apewact
e(Ap) = | ——— 4.18
( p) Apezact ( )
are calculated with the following parameters:
N =800, Apezact = 36.5 (4.19)

Table 4.1 shows the magnitude of the velocity and pressure difference after one
time step when the pressure is calculated by solving a Poisson equation. In this
case, the value of the initial jump ok is provided and is exact. With a relatively
low solver tolerance (= 10712), this yields very small results, for both time steps
and for all density ratios.
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Table 4.1: Velocity and pressure difference after one time step with exact pres-
sure jump.

[u'flz. €l 2o

po/p1 | At=10"3s At=10%s [ At=10"%s At=10"%s
10° [ 7.689-10" 7.689-10"1® | 1.225-10"12 1.224.10" 12
10% | 1.749-10~'7  1.743-10720 | 3.504-10~1 3.309-10"15
106 | 2.539-10~1 2.539-10722 | 2.920-10~® 2.920-10"1°
10° | 1.887-10722 1.887-10725 | 3.893-10"16 3.893.101¢

Table 4.2 shows the results of the originally implemented algorithm without
any exact input values. The pressure jump is now calculated, and this has a
significant effect on the resulting pressure difference. Clearly the inaccuracy of
the curvature determination starts to dominate the error now. The parasitic
velocities on the other hand stay very small, at about the same magnitude as
with prescribed pressure jump. There appears to be a linear dependency on
the density ratio, in both the magnitude of the induced velocities and pressure
difference.

Table 4.2: Velocity and pressure difference after one time step with calculated
pressure jump.

|z lellz..

po/p1 | At=10"3s At=10C%s [ At=10"2s At=10"Fs
10° [ 1.294-107™ 1.298-10"17 [ 2.506-10~3  2.506 - 10>
103 | 7.735-10"Y7  7.735-10720 | 2.506- 1073  2.506 - 1073
108 | 2.651-1071  2.651-10722 | 2.506- 102  2.506 - 103
109 | 1.848-10722 1.848.107%° | 2.506-10~2  2.506 - 1073

4.2.2 A stationary interface in 3D

In the 3D cylindrical coordinate system:

L L
{(T,Q,Z)‘O§T§2,0§9<27r2§z§2}, (4.20)

the LS function associated to a sphere with radius R = 1 centered around the

origin is given by:
d(r,0,2z) = =1+ /12 4 22 (4.21)

The LS function in 3D is no longer linear in its coordinates and therefore there
will be an additional truncation error from the curvature discretization that was
absent in the 2D circular case. To analyse the behaviour of parasitic currents in
3D, the test case of table 4.2 without any prescibed or exact values is repeated.
The results are shown in table 4.3.

The results are similar to the 2D case, with a constant magnitude for the pres-
sure difference, but the dependence on the density ratio makes that for smaller
density differences the velocities become significant.
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Table 4.3: Velocity and pressure difference after one time step with calculated
pressure jump.

[u']r.. €l Lo

po/p1 | At=103s At=10C%s | At=10"3s At=10"Cs
100 1.741-107° 1.741-1078 1.107 - 1073 1.107 - 1073
10> | 5.397-1077 5.397-107'° | 1.133-107% 1.133-103
10 | 5.573-1071° 5573-10713 | 1.133-10% 1.133-1073
10° 5.573-10713  5.573-10716 | 1.133-1073 1.133-1073

4.3 Summary

Parasitic currents are (and have been) a recurring problem in both LS and VoF
methods. Their existence is caused by several reasons, but in general the in-
accuracy in the curvature calculation is the most contributing factor. Using
a systematic approach, it is shown that curvature approximation and interpo-
lation are both second order accurate. In addition, through the simulation of
a stationary bubble (of which the exact curvature is known) it is shown that
the MCLS method in combination with the GFM deals very well with spurious
velocities.
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Chapter 5

Test case 2: a rising bubble
in a vertical circular pipe

This test case comprises the motion caused by buoyancy of an initially spherical
inclusion through a cylinder filled with fluid. A typical physical example is a
rising gas bubble in a water column. Little theoretical data has been derived for
this case; most results concern the shape and terminal rise velocity of the bubble
[Joseph, 2003, Bozzano and Dente, 2001]. Therefore, validation of computations
is generally achieved through comparison with experimental results.

5.1 Important flow parameters

The behaviour of the rising gas bubble is characterized by various flow param-
eters, including the E6tvos number Fo (also known as the Bond number), the
Morton number Mo and the Reynolds number Re. For this geometry, they are
defined as:

pigD? g piD|ul
= Mo = R

) e= , (5.1)

Fo =3
g pP1o iy

where p; and p; are the density and viscosity of the liquid phase respectively,
g the gravitational acceleration, D = 2rg the initial bubble diameter, o the
surface tension coefficient and u the terminal rise velocity. An experimental
relation between these three parameters for a rising bubble was given by Grace
[1973] (see figure 5.1).

5.2 Computational results

Initially, the results from Denner and van Wachem [2014], van Sint Annaland
et al. [2005] and Mukundakrishnan et al. [2007] were used for comparison be-
cause of the detailed description of the test case and the clear presentation of
the obtained results. However, a sensitivity analysis revealed that the influence
of the rectangular channel walls used in all three of the studies made the com-
parison with the cylindrical MCLS results invalid due to the dominating wall
effects. To obtain a physically comparable situation (if at all possible), it is
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Figure 5.1: Grace chart relating bubble shape and Eotvos, Morton and Reynolds
numbers. From Grace [1973].

a priori unclear what the associated cylinder radius R should be for a given
channel width. Especially for relatively narrow geometries, choosing R as the
radius of the circumscribed circle or as the radius of the inscribed circle generally
gives a significantly different terminal rise velocity, with the channel result lying
somewhere in between. Based on this observation, different (and less detailed)
validation material was used where the domain consists of a cylinder [Cirilo and
Castelo, 2011], [Liu et al., 2013], [Chakraborty et al., 2013].

Following Chakraborty et al. [2013], we consider a spherical bubble of radius
ro = 0.5 m in an axi-symmetrical domain of radius R = 4 m and length H =
8 m. The centre of the bubble is initially located at four bubble radii from
the bottom. Five cases are considered with different combinations of Edtvos
and Morton numbers, and the simulated results are compared with the results
from Chakraborty et al. [2013] and experimental results from Bhaga and Weber
[1981]. There is a time step constraint due to the surface tension:

NN (CETAT
- dro

: (5.2)

where ds is the length of the largest face of a computational cell. The flow is
initially at rest, and a no-slip condition for the velocity holds on all walls. The
LS function ¢ is initialized as:

o(r,z) = f% + /24 (z—2)2% (5.3)
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The quantity of interest is the terminal Reynolds number Re as defined in ex-
pression 5.1. Table 5.1 shows the different test cases that represent different
regions of the Grace chart in figure 5.1. The column headed by Re., contains
the experimental results from Bhaga and Weber [1981], and the column headed
by Re,.s contains the numerical results from Chakraborty et al. [2013] (presum-
ably on 200 x 400 or 400 x 800 grids). The last column contains the numerical
results of the MCLS method.

Table 5.1: Terminal rise velocities for five difference bubble cases.

Bubble regime ‘ Eo ‘ Mo ‘ Recgp ‘ Rerey ‘ Rencrs
Spherical 0.971 [ 1.26-107 1.8 1.74 1.65
Oblate ellipsoid 10 1.0 - 1072 11.0 10.8 11.1
Oblate ellipsoid disk-like | 32.2 | 8.2-107% 55.3 53.4 51.0
Oblate ellipsoidal cap 116 1.31 20.4 19.5 18.9
Spherical cap 39.6 6.5-1072 19.6 19.0 19.1

The MCLS results were obtained for two grids, one with 100 x 200 cells and
the second containing 200 x 400 cells. The time step satisfies expression 5.2 for
both grids. The results shown are from the 200 x 400 cells computation.
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Figure 5.2: Reynolds number in time for the oblate ellipsoidal cap case. Notice
the decrease in amplitude of the oscillations with grid refinement.
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The rise velocity |u| is determined through:

fQ ’L/)(X, t)dX Zl Piri Ar;
with w(x,t) the continuous velocity component in the direction of the gravity

vector, w; its discrete representation in cell 4, 1; the VoF value in cell ¢ and
the computational domain.

(5.4)

The MCLS results occasionally show a slight oscillation in the rise velocity in
time (see figure 5.2). The oscillations, however, stay bounded, and the ampli-
tude decreases with refinement in space and time. The phenomenon is more
pronounced in cases of high surface tension, and further investigation is needed
to explain this behaviour. Many similar methods also exhibit oscillatory rise
velocities. Regardless of this effect, table 5.1 shows that the MCLS results
are very close to the numerical results of Chakraborty et al. [2013] and to the
experimental results.

5.3 Summary

The rising bubble test case shows that the MCLS method is very well capable
of simulating a large variety of gas bubbles in a stagnant column. Both high-
and low surface tension cases are predicted with reasonable accuracy, which
validates the implementation of the surface tension algorithm. This test also
shows the importance of the validation material: the domain geometries have
to be exactly equal to objectively compare the resulting physical behaviour of
the bubbles, especially for relatively narrow domains. But even for relatively
wide domains one has to be cautious, as the literature provides different rules-
of-thumb for the bubble radius to domain width ratio for which the walls are
no longer considered to have influence on the terminal rise velocity.
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Chapter 6

Test case 3: Taylor bubble

The final test case considered comprises the rise of a long gas bubble through
a cylindrical pipe known as a Taylor- or Dumitrescu bubble. In practise this
configuration is often found in vertical risers, and it is therefore an important
test case for the simulation of slug flow. As for the rising bubble case, the main
interest lies in the rise velocity of the bubble. Also of interest are the thickness
of the falling film between the bubble and the pipe wall [Llewellin et al., 2012],
and the wake of the bubble [Kang et al., 2010, Bugg and Saad, 2002]. The
simulations presented in this section were carried out with the axi-symmetric
version of the code.

6.1 Analytical results for the rise velocity

From as early as 1940 on, theoretical research has yielded several succesful
approaches for the construction of a model that predicts the rise velocity of long
bubbles in stagnant liquids. Dumitrescu [1943] derived under certain simplified
conditions that the Froude number Fr, defined as:
Fr= Ut .1

NGT (6.1)
where u; is the terminal rise velocity, g the gravitational acceleration and d the
reference length, should remain constant. He found a value of F'r = 0.351. Oth-
ers have found values of Fr = 0.328 [Davies and Taylor, 1950] and F'r = 0.303
[Brown, 1965] respectively [Kang et al., 2010]. In the literature the analytical
solution of Dumitrescu is considered to be very accurate, in the limit of small
liquid viscosity, small gas density, and small surface tension.

6.2 Computational results

A bubble is initially placed at a quarter length of a closed pipe segment with
length-to-diameter ratio of 8 : 1. The walls are all no-slip, and the requirement
5.2 determines appropriate values for the magnitude of the time step At. It
was demonstrated in Kang et al. [2010] that variation in surface tension has a
much more profound effect on the rise velocity and tail shape than variation
in density- and viscosity ratios. Therefore, to verify the correct simulation of a
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Taylor bubble, four cases are considered in which the surface tension coefficient o
varies. Common dimensionless parameters are the E6tvos number, the Reynolds
number and the variable of interest, the Froude number, which represents the
dimensionless rise velocity. The former two are defined as:

D2
Fo= pg , Re

o M

where p; and p; are the density and viscosity of the liquid phase respectively, g
the gravitational acceleration, D = 2r( the initial bubble diameter, o the surface
tension coefficient and w the terminal rise velocity. Table 6.1 summarizes the
case parameters in decreasing surface tension magnitude. Note that the Eotvos
number and the Reynolds number are input parameters for the simulation,
whereas the Froude number is the result of the simulation (i.e. the scaled
bubble velocity). The simulations were done on a single grid of 20 x 160 cells
without much refinement because of robustness issues.

Table 6.1: Parameters of the four cases in figure 6.1.

case H grid ‘ Fo ‘ Re Fr
1 20 x 160 | 40 1-1072% [ 0.273
20 x 160 | 100 | 1.56 - 1072 | 0.325
20 x 160 | 200 | 1.25-10"! | 0.334
20 x 160 | 400 1-102 0.338

2
3
4

Even though the theoretical values from section 6.1 do not incorporate the effect
of surface tension, it seems that a small amount of surface tension is necessary
to produce a stable bubble. Table 6.1 shows that for decreasing surface tension,
the Froude number moves towards the theoretical value of 0.351.

The reduction of surface tension has a significant effect on the shape of the
bubble, in particular the lower end. Figure 6.1 shows a snapshot of the four
cases. With relatively high surface tension, the bubble has a rather flat or
even convex tail. As the magnitude of the surface tension decreases, the lower
end becomes more and more concave, and at some point a phenomenon close
to a Taylor-Rayleigh instability can be observed protruding from below. This
eventually leads to break up of some small pockets of the bubble, but with too
little surface tension, the core of the bubble may even get penetrated and a
complete breakup follows.

6.3 Summary

The axi-symmetric version of the MCLS code is quite convenient to calculate
appropriate test cases like the Taylor bubble, that generally require relatively
fine meshes to capture the complex structure of the wake. Until now, only some
basic investigation has been done on the capacity of the code to qualitatively
simulate a Taylor bubble, which has turned out to be satisfactory. The resulting
Froude numbers correspond well with theoretical values.

27



(a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Figure 6.1: Snapshot of Taylor bubble for the four cases. Number of cells used
is 20 x 160.
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Chapter 7

Conclusions and
recommendations

The new algorithm with the Mass Conserving Level Set (MCLS) method in
cylindrical coordinates has been subjected to three dynamical test cases of in-
creasing complexity to validate the implementation of various components and
algorithms. In addition, the underlying flow field is assessed in a convergence
study. It was shown that the time integration of the spatially discretized Navier
Stokes equations is O(At?) when considered in the fo-norm, which corresponds
to the analytical estimate of the Implicit Midpoint method. When evaluated in
the sup-norm, the convergence drops to O(At), most likely due to perturbations
near the axis r = 0.

The implementation of the Ghost Fluid method (GFM) as surface tension model
was validated by considering the key elements of the algorithm separately. Both
the curvature calculation and interpolation are O(1/N?) with N the amount of
degrees of freedom. The tolerance of the Poisson solver plays only a minor role,
as the inaccuracy in the pressure jump (i.e. the determination of the curvature
at the interface) dominates the magnitude of spurious currents. With exact
jump values, the MCLS code performs very well with velocities around machine
precision. With calculated jump values, the error in pressure difference becomes
much larger, and the velocities increase but (depending on the density ratio) re-
main at acceptable values. The overall performance of the surface tension model
is therefore satisfactory, but improvements should include the determination of
the curvature at the interface to obtain more accurate jump values.

The rising bubble case tests the ability of the MCLS algorithm to replicate a
well-documented physical experiment. The main quantity of interest, which is
the terminal rise velocity, is found to be very close to both reference calculations
and experimental values for a large variety of bubble shapes. The results vali-
date the implementation of the interface representation and the surface tension
model of the MCLS computational code. The appearance of small oscillations
for cases with high surface tension however requires further investigation to be
able to trace their origins.
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Also a single Taylor bubble in a vertical pipe has been simulated as a first step
to the modelling of slug flow. Recognizing that the surface tension significantly
influences the shape and stability of the bubble, four cases have been considered
with fixed density and viscosity but with varying values of the surface tension.
It is found that a stable bubble can be obtained for various combinations of
Edtvos and Reynolds numbers. Partial breakup is observed with very small
surface tension. The corresponding rise velocity of the bubble, expressed as
the Froude number, approaches a theoretically predicted value for vanishing
viscosity and surface tension.
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