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Analyzing the Linux Kernel Feature Model Changes Using
FMDiff

Nicolas Dintzner · Arie van Deursen · Martin Pinzger

Abstract Evolving a large scale, highly variable sys-
tems is a challenging task. For such a system, evolution
operations often require to update consistently both
their implementation and its feature model. In this con-
text, the evolution of the feature model closely follows
the evolution of the system. The purpose of this work is
to show that fine-grained feature changes can be used
to guide the evolution of the highly variable system.

In this paper, we present an approach to obtain fine-
grained feature model changes with its supporting tool
“FMDiff”. Our approach is tailored for Kconfig-based
variability models and proposes a feature change clas-
sification detailing changes in features, their attributes
and attribute values. We apply our approach to the
Linux kernel feature model, extracting feature changes
occurring in sixteen official releases. In contrast to pre-
vious studies we found that feature modifications are
responsible for most of the changes. Then, by taking
advantage of the multi-platform aspect of the Linux
kernel, we observe the effects of a feature change across
the different architecture-specific feature models of the
kernel. We found that between 10 and 50% of feature
changes impact all the architecture-specific feature mod-
els, offering a new perspective on studies of the evolu-
tion of the Linux feature model and development prac-
tices of its developers.
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1 Introduction

Software product lines are designed to maximize re-use
of development artefacts while reducing development
costs, through the identification and formalization of
what is common and variable between different mem-
bers of a product family [9]. Features, as configuration
units, represent functionalities or characteristics that
may be included in products of a product line. Avail-
able features are often formalized in a feature model, de-
scribing both the options themselves and their allowed
combinations. The choice of features to offer to cus-
tomers and their allowed configurations will influence
every step of the development of the product line: its de-
sign, architecture, implementation techniques, and ap-
plicable methods to instantiate products from a set of
assets (source code, scripts, resources) [9].

Over time, as a software product line evolves, fea-
tures are added, removed, or modified and the asso-
ciated assets should be updated accordingly. Software
product lines are often long lived systems and the com-
plexity of the system increases over time to the point
where evolution operations become error-prone and spe-
cific approaches and tools become necessary [39, 42,
44]. We can find in the literature accounts of the is-
sues arising during the evolution of such systems [1,
19, 42]. In a different domain, it has been shown that
the analysis of fine-grained source code changes facil-
itates software maintenance [14]. Encouraged by such
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2 Nicolas Dintzner et al.

results, we propose to explore a similar idea in the con-
text of highly variable software: observing the details of
the fine-grained evolution of a feature model to derive
information about the evolution of the system.

Feature model evolution has been extensively stud-
ied in the past [15, 26, 41, 44]. These studies provide
insights on which operations may occur on features,
detailed examples of transformations occurring on large
scale product lines - industrial and open source, and the
evolution of feature model structural metrics (number
of leaves, nodes, constraints). But it is interesting to
note that studies detailing feature evolution scenarios,
such as [21,25,30], tend to focus on transformation lead-
ing to (dis)appearance of complete features, not cov-
ering changes to existing features or constraints, leav-
ing us with little knowledge about the details of such
changes.

In this paper, we propose to elaborate and apply our
existing tool supported approach to extract and classify
fine-grained feature model changes in the Linux kernel
feature model [12]. While the Linux kernel is not a soft-
ware product line per se, it has the technical character-
istics of such systems, among which an explicit vari-
ability model, which we assimilate to a feature model
following the work by Sincero et al. [36,37], making this
system an interesting case of highly variable software.
We rely on our existing classification of feature changes,
based on the Kconfig language.1 We improved FMDiff,
the supporting tool, to extract a larger corpus of data
covering more than twenty architecture-specific feature
models applied for over sixteen releases of the Linux
kernel, from release 2.6.39 until release 3.14. We use
the collected data to draw lessons about the evolution
of the Linux kernel.

First, we are interested in discovering the frequent
change operations affecting the feature model that de-
velopers perform over time. This data will allow us
to see if the most commonly studied feature changes
are also the most common change operations occur-
ring on the features of Linux kernel. Several studies
(e.g., [17, 21, 27] ) quantified the addition and removal
of features in the Linux kernel over time or present
structural metrics of the kernel’s feature model, such
as the depth of feature structures or the number of leaf
features in each release, but despite being often stud-
ied more detailed information can be obtained. This
leads to our first research question: RQ1: What are the
most common operations performed on features in the
Linux kernel feature model? Over the studied time pe-
riod, we found that the most common feature change
operation on this system is also the one that is the

1 https://www.kernel.org/doc/Documentation/kbuild-
/kconfig-language.txt

least described by current research on variable system
evolution, namely the modification of existing features
(instead of merely adding or removing them).

Secondly, we know that the Linux kernel is designed
to support many different processor architectures, each
potentially differing widely from others in terms of sup-
ported features. In this study, we extract the Linux fea-
ture model on a per-architecture basis. While we study
the evolution of all of those models, some studies re-
strict themselves to the study of one of them to extrap-
olate their findings on others [21]. We also note that
developers working on the Linux feature model have,
except in trivial cases, no means to know which ar-
chitecture can be impacted by a feature change. We
use FMDiff to compare the evolution of those differ-
ent models, and answer the following research question:
RQ2: To what extent does a feature change affect all
architecture-specific feature models of the Linux kernel?
Our data shows that the different architecture feature
models follow very different evolution paths, and that
between 10 and 50% of feature changes affect all archi-
tectures depending on the release. This suggests that
extrapolation of observations done on the evolution of
one architecture-specific feature model should be con-
ducted with care, and points to a potential caveat in
the Linux development process.

The key contribution of this paper is FMDiff, an
approach to extract and automatically classify feature
model changes from the versioning history of Kconfig-
based feature models. Furthermore, the paper contributes
1) a feature model change classification scheme, focused
on Kconfig-based variability models; 2) the FMDiff tool;
3) two studies with the Linux kernel feature model
showing that changes to existing features constitute a
large proportion of feature changes of the Linux feature
model and showing that the evolution of architecutre-
specific feature models of Linux follow different evolu-
tion path.

The remainder of this paper is organized as follows.
Section 2 provides some background information on the
Linux kernel, its feature model, and the tools we rely
on to extract it. We present our feature change clas-
sification and its rationale in Section 3. FMDiff is in-
troduced and evaluated in Section 4. We illustrate the
capability of our tool in Section 5 by answering our two
research questions. We reflect on the use of FMDiff and
fine-grained feature changes in the context of the evo-
lution of highly variable systems and product lines in
Section 6. Section 7 presents related work. Finally, we
conclude this paper and elaborate on potential future
applications of FMDiff in Section 8.
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1 if ACPI
2
3 config ACPI_AC
4 tristate "AC Adapter"
5 default y if ACPI
6 depends X86
7 select POWER_SUPPLY
8 help
9 This driver supports the AC Adapter

10 object ,(...).
11
12 endif

Listing 1 Example of a feature declaration in Kconfig

2 Background: The Linux kernel variability
model

The approach described in this paper is based on the
extraction of feature models (FMs) declared with the
Kconfig language. In this section, we present general
information regarding the Kconfig language, the Linux
kernel that we used as a case study, and the model
transformation we perform on the Linux feature model
before analysis.

2.1 The Kconfig language

Kconfig is a variability modelling language used to de-
scribe configuration options (features) and their com-
position rules (cross-tree constraints). Listing 1 exem-
plifies the declaration of a configuration option in the
Kconfig language.

In this work, we assimilate configuration options de-
clared in the Kconfig language to features and the set of
options with their constraints to a feature model [37].
The models created using Kconfig will differ from more
standard feature models declared using FODA nota-
tion [18], but the constructs of both notations of can
be mapped to one another [34].

In the Kconfig language, features have at least a
name (following the config keyword on line 3) and
a type. The type attribute specifies what kind of val-
ues can be associated with a feature. A feature of type
Boolean can either be selected (with value y for ’yes’)
or not selected (with value n for ’no’). Tristate features
have a second selected state (m for ’module’), implying
that the features are selected and are meant to be added
to the kernel in the form of a loadable kernel module.
Finally, features can be of type integer (int or hex) or
type string. In our example, the ACPI_AC feature is of
type tristate (line 4). Features can also have default
values, in our example the feature is selected by default
(y on line 5), provided that the condition following the
if keyword is satisfied. The text following the type on

line 4 is the prompt attribute. It defines whether the
feature is visible in the configuration tools during the
configuration process. The absence of such text means
the feature is not visible.

Kconfig supports two types of dependencies. The
first one represents pre-requisites, using the depends
(or depends on) statement followed by an expression
of features (see line 6). If the expression is satisfied, the
feature becomes selectable. The second one, express-
ing reverse-dependencies, are declared by the select
statement. If the feature is selected then the target
of the select will be selected as well (POWER_SUPPLY
is the target of the select statement on line 7). The
select statement may be conditional. In such cases, an
if statement is appended. depends, select and con-
strained default statements are used to specify the
cross-tree constraints of the Linux kernel FM. A fea-
ture can have any number of such statements.

Furthermore, Kconfig provides the means to ex-
press constraints on sets of features, such as the if
statement shown on line 1. This statement implies that
all features declared inside the if block depend on the
ACPI feature. This is equivalent to adding a depends
ACPI statement to every feature declared within the if
block. Another possibility is to use choices. Such state-
ment provides constructs similar to “alternative” (1 of)
and “or” feature constraints (1 or more of) found in the
FODA feature modelling notation [18]. A choice itself
can also be subject to constraints and have dependen-
cies expressed using depends statement.

Finally, features can have the “option” attribute, al-
lowing the definition is a wide range of key/value pairs
associated with features. This is used to flag features
to be used in default (or generated) configurations for
instance - option with the key “def_conf_list”. Another
usage is to tune the module resolution mechanism, or
import additional variables.

Kconfig offers the possibility to define a feature hi-
erarchy using menus and menuconfigs. Those objects
are used to express logical grouping of features and or-
ganize the presentation of features in the kernel configu-
rator. The configurator may also rely on the dependen-
cies declared between features to create the displayed
hierarchy. Constrains defined on menus and menucon-
figs are applicable to all elements within. Menu can
have the “visible” attribute, associated with a Boolean
expression of features, complementing the “prompt” at-
tribute. More details about the Kconfig language can
be found in the official documentation.2

2 https://www.kernel.org/doc/Documentation/kbuild/kconfig-
language.txt
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2.2 The Linux kernel

An example of system relying on the Kconfig language
to manage its variability is the Linux kernel. Linux users
can tailor their own kernel with Menuconfig (among
other tools), the kernel configurator. This tool displays
available configuration options in the form of a tree,
and as the user selects or unselects options, the tree is
updated to show only options that are compatible with
the current selection.

Such tools use the textual descriptions of the Linux
features contained with Kconfig files as an input, and
provide a collection of selected features as an output,
in the form of a list of feature names. During the con-
figuration process, the configurator identifies the files
to include and the features to display, depending on
constraints expressed in those files. Constraints on file
selection, or selectability of features, are resolved using
naming convention based on feature names.

The choice of the target hardware architecture (e.g.,
X86, ARM, SPARC) does not follow this rule. Because
the choice of target architecture defines which file should
be read first, it uses another mechanism. The name of
the chosen architecture is defined during start-up (and
can be modified later on) and stored in a variable used
to build the first visualization of the FM ($SRCARCH,
visible in “./Kconfig”). If no target architecture is given
when starting the tool, it uses the architecture of the
machine on which it is run by default. As a result, no
parts of the Linux kernel FM represent the choice be-
tween architectures - while the architectures themselves
are present as features.

This becomes important when rebuilding the Linux
FM: without knowing which hardware architecture is
being considered, we do not know which files to consider
when rebuilding the FM. To avoid this problem, the
methodology commonly applied is to rebuild a partial
Linux FM per supported hardware architecture [21,23].
In this study, we use this specific approach when re-
building the Linux FMs and analyzing FM changes.

2.3 Feature model representation

A prerequisite to our approach is to be able to extract
feature definitions from Kconfig files. For this, we use
an existing tool, Undertaker, to translate Kconfig fea-
tures into an easier to process format [43]. This tool has
been used in the past for similar purposes. Undertaker
uses it to reformat the Kconfig model before using it
to determine feature presence conditions. It produces
a set of “.rsf” files, containing annotated triplets for-
matted according to the “Rigi Standard Format” [40].
Each file contains an architecture-specific FM, i.e. an

1 Item ACPI_AC tristate
2 Prompt ACPI_AC 1
3 Default ACPI_AC "y" "X86 && ACPI"
4 ItemSelects ACPI_AC POWER_SUPPLY "X86 && ACPI"
5 Depends ACPI_AC "X86 && ACPI"

Listing 2 Representation of the feature declaration of Listing 1
in .rsf format

instance of the Linux FM where the choice of hardware
architecture is predetermined.

Listing 2 shows the example of the feature declared
in Listing 1 in rsf triplets as output by Undertaker.

The first line shows the declaration of a feature
(Item) with name ACPI_AC and type tristate. The sec-
ond line declares a prompt attribute for feature ACPI_AC
and its value is set to true (1). The third line declares
the default value of the ACPI_AC feature, which is set
to y if the expression X86 && ACPI evaluates to true.
Line 4 adds a select statement reading when ACPI_AC is
selected the feature POWER_SUPPLY is selected as well,
if the expression X86 && ACPI evaluates to true. Fi-
nally, the last line adds a cross-tree constraint reading
feature ACPI_AC is selectable (depends) only if X86 &&
ACPI evaluates to true.

Undertaker eases feature extraction but modifies
their declaration. Among the applied modifications, two
are most important for our approach: first, Undertaker
flattens the feature hierarchy and then resolves fea-
tures depends statements. Concerning the flattening of
the hierarchy, Undertaker modifies the depends state-
ment of each feature to mirror the effects of its hier-
archy. For instance, Undertaker propagates surround-
ing if conditions to the depends statements of all fea-
tures contained in the if-block. This explains the ad-
dition of ACPI to the condition of the depends state-
ment on line 5 of Listing 2. Concerning the resolution
of depends statements, Undertaker propagates condi-
tions expressed in the depends statement of a feature to
its default and select conditions. This explains the
condition X86 && ACPI that has been added to the se-
lect (ItemSelects) and default value (Default) state-
ments. Such transformations will influence the results
of the comparison process and the interpretation of the
captured changes. However, it has to be noted that the
changes preserves the Kconfig semantics as described in
[33].

3 Change classification

As mentioned in Section 2, the Linux feature model is
expressed in Kconfig, describing both forward and back-
ward dependencies with the “selects” and “depends” state-
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Fig. 1 FMDiff 3-level feature model changes classification scheme.

ments. We aim at classifying feature changes occurring
in the Linux kernel feature model (FM), capturing as
accurately as possible the different changes that might
occur on its statement. Existing feature change classi-
fications [8,26] do not consider some specificities of the
Kconfig grammar (e.g. select relationships with condi-
tions). For this reason, we devise a new classification
scheme, based on existing work, but specifically tailored
for the Kconfig language.

We present a three level classification scheme of
feature changes, namely change category, change sub-
category, and change type. Each category describes a
feature change on a different level of granularity. Items
on each level are named based on the modified entity
(feature, statement and statement fragment), such as
a default statement, and the change operation ap-
plied i.e. addition (ADD), removal (REM), or modifica-
tion (MOD). Figure 1 depicts our change classification
scheme.

The first level, change category, describes changes at
a FM level. Here, features can be either added, removed,
or modified. The corresponding change categories are
ADD_FEATURE, REM_FEATURE, and MOD_FEATURE. In the
following, we abbreviate lower-level change types by
prefixing the feature property that can change with the
three change operations ADD, REM, and MOD.

The next level, change sub-category, describes which
property of the feature changed. We differentiate be-
tween attribute changes (i.e. type or prompt proper-
ties), and changes in the dependencies, default value,
and select statements. The corresponding twelve change
sub-categories are {ADD, REM, MOD}_ATTR, {ADD, REM,
MOD}_DEPENDS, {ADD, REM, MOD}_DEF_VAL, and {ADD,-
REM,MOD}_SELECT.

Finally, change types detail which attribute, or part
of a statement, is modified. The change types are:

– Attribute change types: we track changes occurring
on the type and prompt attributes. Combined with

the three possible operations, we have {ADD, REM,
MOD}_TYPE and {ADD, REM, MOD}_PROMPT.

– Depends statement change types: depends statements
contain a Boolean expression of features. We use a
set of change types describing changes occurring in
that expression, namely {ADD, REM, MOD}_DEPENDS_EXP.
In addition, we further detail these changes by record-
ing the addition and removal of feature references
(mentions of feature names) in the Boolean expres-
sion with the two change types {ADD,REM}_DEPENDS_REF.

– Default statement change types: default statements
are composed of a default value and a condition.
Both, the condition and the value can be Boolean
expressions of features. Default values can be either
added or removed recorded as {ADD, REM}_DEF_VAL
change types. Changes in the default statement con-
dition are stored as {ADD, REM, MOD}_DEF_VAL_COND.
Finally, we track feature references changes in the
default value using {ADD, REM}_DEF_VAL_REF and
in the default value condition using change types
{ADD, REM}_DEF_VAL_COND_REF.

– Select statement change types: select statements are
composed of a target and a condition which, if satis-
fied, will trigger the selection of the target feature.
Similar to the default statement change types, we
record {ADD, REM, MOD}_SELECT_TARGET changes.
Changes to the select condition are recorded as {ADD,
REM, MOD}_SELECT_COND. Finally, to track changes
in feature references inside a select condition, we use
the {ADD, REM}_SELECT_REF change types.

The three change categories, twelve change sub-categories
and twenty seven change types form a hierarchy allow-
ing us to classify changes occurring in FMs expressed
in the Kconfig language. Note that feature references
contained in depend statements, select statements, and
default value statements can only be added or removed
as reference is either present or not. This leaves us with
seven entities on which three operations are possible
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and three for which we will consider only two - for a
total of twenty seven change types.

As an example consider an existing feature with a
default value definition to which a developer adds a
condition. The change will be fully characterized by
the change category MOD_FEATURE and the sub-category
MOD_DEF_VAL, since the feature and default value decla-
ration already existed, and finally the ADD_DEF_VAL_COND
change type denoting the addition of a condition to
the default value statement, and a ADD_DEF_VAL_REF
change type for each of the features referenced in the
added default value condition.

Kconfig provides several additional capabilities, namely
menus to organize the presentation of features in the
Linux kernel configurator tool, range attribute on fea-
tures and options such as env, defconfig_list or modules.
We do not keep track of menu changes, but we do cap-
ture the dependencies induced by menus. Undertaker
propagates feature dependencies of menus to the fea-
tures a menu contains in the same way it propagates
if block constraints. Undertaker does not export the
range attribute of features, therefore we cannot keep
track of changes on this attribute and do not include
them in our feature change classification scheme. We
plan to address this issue in our future work. Further-
more, Undertaker does not export options such as env,
defconfig_list or modules and we cannot track changes
in such statements. But, because those options are not
properties of features and do not change their char-
acteristics, we consider the loss of this information as
negligible when studying FM evolution.

Regarding our classification scheme, note that some
combinations of change category, sub-category, and change
types are not possible or do not occur in practice. For
instance, the change types denoting that a depends or a
select statement was added cannot occur together with
the change category REM_FEATURE denoting that the
feature declaration was removed. Some combinations
are also constrained by Kconfig, such as the change type
ADD_TYPE can only occur in the context of a feature cre-
ation, i.e. with the change category ADD_FEATURE.

Currently, our change classification does not explic-
itly describe more complex feature model changes e.g.
merge feature or move feature. Such changes can be
viewed as a combination of simple changes described by
our change classification. A merge operation would then
result in the deletion of a feature and probably changes
in the constraints of another one. The semantic of the
change operation is lost (we cannot know it was a merge
operation), but its effect on the FM itself is captured
in the form of a set of change types.

FMDiff

Model reconstruction

Model comparison

Change classification

Database

Kconfig feature extraction

Extracted architecture specific variability models

FM V1 FM V2

Model changes

Feature changes

Linux kernel repository

Process DataLegend:

1

2

3

4

Fig. 2 Change extraction process overview

4 FMDiff

In this section, we present our approach to automate
feature change extraction and the tool that supports
it: FMDiff. We then compare feature changes captured
by FMDiff and changes observed in the original model.
This allows us to evaluate the consistency of the changes
captured with our approach and verify that FMDiff pro-
vides more information than textual differencing.

4.1 FMDiff Overview

The main objective of FMDiff is to automate the ex-
traction of changes occurring on the Linux FM and clas-
sify those changes according to the scheme presented in
the previous section. The extraction of feature changes
is performed in several steps as depicted in Figure 2.

4.1.1 Feature model extraction

The first step of our approach consists in extracting
the Linux FM from Kconfig files. We first obtain the
Kconfig files of selected Linux kernel versions from its
source code repository.3 Next, we use the Undertaker
tool to extract architecture-specific FMs for each ver-
sion. Undertaker outputs one “.rsf” file per architecture
per version, in the format described in Section 2.

3 Official Linux kernel Git repository:
https://github.com/torvalds/linux
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Feature

Type (string)

Prompt (boolean)

Depends (string)

DependsReferences (list of strings)

Select Statement

Target (string)

Condition (string)

SelectConditionReferences (list of strings)

Default Statement

DefaultValue (string)

Condition (string)

DefaultValueReferences (list of strings)

DefaultValueConditionReferences (list of strings)

"contains"

"contains"

"contains"

FeatureModel

Architecture (string)

Revision (string)

0

*

0 *

0 *

Fig. 3 FMDiff feature metamodel

We perform a few noteworthy transformations when
loading rsf-triplets into FMDiff. The rsf-triplets contain
Kconfig choice structures, which are not always named
in the Kconfig files. They are automatically renamed
by Undertaker (e.g. CHOICE_32) guaranteeing the con-
sistency of the rsf representation. Because the naming
process is an automatic and does not depend on the con-
tent of choice, or its attributes, the same choice struc-
ture can be renamed differently in different versions.
As a consequence, we cannot rely on naming to iden-
tify uniquely and reliably evolving choice structures.
For those reasons, we ignore all choices when recon-
structing the feature model from “.rsf” files. Note that
the hierarchy constrains imposed by the choices are still
reported on the relevant features during the hierarchy
flattening process. However, we do lose information re-
garding mutually exclusive features.

Features can declare dependencies on those choice,
referring to them by their generated name. We replace
all choice identifiers in feature statements by CHOICE.
Doing this, we cannot trace the evolution of choice
structures but prevent polluting the results with changes
in the choice name generation order while we still are
able to track changes in feature dependencies on choices.

4.1.2 FMDiff feature model reconstruction

As a second step, we reconstruct FMs from two consec-
utive versions of a “.rsf” file. FMDiff compares FMs that
are instances of the meta-model presented in Figure 3.

FeatureModel represents the root element having
two attributes denoting the architecture and the ver-
sion of the FM. A FeatureModel contains any num-
ber of features represented as Feature. Each feature
has a name, type (Boolean, tristate, integer, etc.), and
prompt attribute. In addition, each feature contains a
Depends attribute representing the depends statements
of a Kconfig feature declaration. All features referenced
by the depends statement are stored in a collection of
feature names, called DependsReferences.

Each feature can have any number of Default -
Statements, containing a default value and its asso-

ciated condition. Furthermore, a feature can have any
number of Select Statements containing a select tar-
get and a condition. The condition of both statements
is recorded as string by the attribute Condition. The
features referenced by the condition of each statement
are stored in the collection DefaultValueReferences
or SelectReferences respectively.

The “.rsf” output also allows a feature to have multi-
ple depends statements but, in our meta-model, we al-
low features to have only one. In the case where FMDiff
finds more than one for a single feature, it concatenates
those statements using a logical AND operator. This pre-
serves the Kconfig semantics associated with multiple
depends statements.

It is possible for a feature to have two default value
statements, with the same default value (“y” for in-
stance) but with different conditions. In such cases, our
matching heuristic would be unable to distinguish be-
tween the two. The same is true for features that have
two select statements with the same target. To circum-
vent this problem, we concatenate conditions of default
statements with a logical OR operator if their respective
default values are the same. We do the same transfor-
mation for select statement conditions, for the same
reasons.

By using Undertaker and the rsf format as an input,
we make a trade-off. The simple structure of the “.rsf”
files facilitates the reconstruction of the Linux feature
model. The hierarchy flattening give us, locally on each
feature, additional information about constraints im-
posed by the hierarchy - allowing us to capture such
changes later on. On the other hand, we cannot cap-
ture all feature attributes, we lose some information
regarding choice structures - but preserve their induced
constraints, and regrouping default value statements
does not always respect Kconfig semantics. The conse-
quences of this choice on the approach and the collected
data are discussed in Section 6.

In the context of this study, we extended our dataset
by including in it every rebuilt architecture-specific fea-
ture model. Once we obtain the .rsf representation of a
Linux architecture specific model, we can proceed with
the change identification and extraction.

4.1.3 Comparing models

For the comparison of two FMs, FMDiff builds upon the
the EMF Compare4 framework. EMF Compare is part of
the Eclipse Modelling Framework (EMF) and provides
a customizable “diff” engine to compare models. It is
used to compare models in various domains, like inter-
face history extraction [31], or IT services modelling

4 http://www.eclipse.org/emf/compare/
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[13], and is flexible and efficient. EMF Compare takes
as input a meta-model, in our case the meta model
presented in Figure 3, and two instances of that meta-
model each representing one version of an architecture-
specific Linux FM. EMF Compare outputs the list of
differences between them.

The algorithm provided by EMF Compare is a two
step process: first a matching phase, and then a diff-
ing phase. The first step, the “matching” phase, iden-
tifies which objects are conceptually the same in the
two instances. The diffing step uses items considered to
be identical in two model instances to generate a list
of model differences. Both steps need to be specialized
for our study: we must provide matching rules, and a
translation from EMF model changes to feature model
changes.

To match features in two FMs, we rely on their name
only: two features in two models represent the same
concept if they have the same name. Note that this al-
lows us to match features even if their dependencies or
type have been modified. Similarly, we need to provide
rules to identify whether two default or select state-
ments are the same. For default value statements, we
use a combination of the feature name and the default
value. For select statements, we use the targeted feature
name and the feature name. Our choices of matching
rules have consequences on how differences are com-
puted. A renamed feature cannot be matched in two
models using our rules. Its old version will be seen as
removed, and the new one as added. Default or select
statements can only be matched if their associated fea-
ture and its default value (or select target respectively)
are the same in both models. Changes in default values
(select target) are captured as the removal of a default
value (select) statement and the addition of a new one.

During the second phase, the “diffing” EMF Com-
pare generates a list of the differences between the two
models, expressed using concepts from the FMDiff fea-
ture meta-model. For instance, a difference can be an
“addition” of a string in the DependsReferences at-
tribute of a feature. Another example is the “change”
of the Condition attribute of a Select Statement el-
ement, in which case EMF Compare gives us the old
and new attribute value.

4.1.4 Classifying changes

The last step of our process consists in translating the
differences obtained by EMF Compare into feature changes
as defined by our classification scheme.

The translation process comprises four steps. First,
we run through differences pertaining to the “contains”
relationship of the FeatureModel object to identify which

features have been added and removed, giving us the
feature change category. Then, we focus on differences
in “contains” relationships on each Feature to extract
changes occurring at a statement level, providing us
with the change sub-category. The differences in at-
tribute values of the various properties are then anal-
ysed to determine the change type. Finally, changes are
regrouped by feature name, creating for each feature
change the 3-level classification.

The results are stored in a relational database. We
record for each feature change: the architecture and ver-
sion of the FM in which the change occurred, the name
of the feature affected, the change classification, and
the old and new values of the attribute. We extract the
information per architecture-specific FM. We build one
database per architecture in which we store both the
changes and the FMs.

4.2 Evaluating FMDiff

FMDiff’s value lies in its ability to accurately capture
changes occurring on the Linux feature model (consis-
tency) and its ability to provide information that would
be otherwise difficult to obtain (interestingness). To
evaluate FMDiff with respect to those two aspects, we
compare it with the information on changes that we ob-
tained by manually analyzing the textual differences be-
tween two versions of Kconfig files. We consider FMDiff
data to be consistent if it contains all changes seen in
Kconfig files, and its data interesting if it provides more
information than what can be obtained using textual
differences. We start by describing the dataset used for
the evaluation, and then assess them separately.

4.2.1 Data set

Using Git, we can navigate in the history of the Linux
FM and extract snapshots that will be used for later
comparison. It has been shown that the Linux FM is
modified for corrective reasons during a release cycle
[17, 21]. To avoid comparing feature model that might
not be consistent with implementation, or simply do
not reflect what was initially intended by the developer
(a bug), we chose to compare only tagged releases. We
noticed that few feature model changes were operated
between the first release candidate version of a kernel
and its last stable revision. For those reasons, we believe
sufficient details can be obtained by extracting changes
between stable official releases.

For all releases of the Linux Kernel from 2.6.28 to
3.14, we rebuild 26 architecture-specific FMs. We ex-
tract the changes occurring in 16 releases, over a time
period of 3 years (from March 2011 for 2.6.38 to April
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2014 for 3.14). This range of releases covers the first re-
lease supported by our infrastructure (Undertaker) up
to the latest available release at the time of the study.

Between release 2.6.38 and 3.14, five new architec-
tures were introduced (Unicore32 in 2.6.39, Openrisc
in 3.1, Hexagon in 3.2, C6X in 3.3, and arm64 in 3.7).
We include those architectures in our study to capture
the effects of the introduction of new architectures on
the Linux FM. We extract the feature history of 21
architectures present in version 2.6.38 and follow the
addition of new architectures, for a total of 26 in 3.14.
Our dataset contains 2,734,353 records describing the
history of the Linux kernel FM.

4.2.2 Consistency

As mentioned in Section 4, the extraction and recon-
structions of the Linux FM affects the data at our dis-
posal during the comparison process, preventing us from
obtaining certain types of changes (choices, range at-
tributes,...). But, those exceptions aside, all other fea-
ture changes that can be observed in Kconfig files his-
tory should be also visible in FMDiff dataset. Changes
not meeting this criteria would be signs of inconsis-
tencies between the two representations of the same
changes. To evaluate the consistency of the captured
changes, we verify that a set of feature changes observed
in Kconfig files are also recorded by FMDiff.

Method : we randomly pick twenty five Kconfig files
from different sub-systems (memory management, drivers,
and so on) modified over five releases. We then use the
Unix “diff” tool to manually identify the changed fea-
tures.

Because FMDiff captures feature changes per ar-
chitecture, we first determine in which architecture(s)
those feature changes are visible. Then, we compare
Kconfig files diff’ with the feature changes captured by
FMDiff for one of those architectures. We pick archi-
tectures in such a way that all architectures are used
during the experiment.

For each feature change, FMDiff data 1)matches the
Kconfig modification if it contains the description of all
feature changes - including attribute and value changes;
2) partially matches if FMDiff records a change of a
feature but that change differs from what we found out
by manually analyzing the Kconfig files; 3) mismatches
if the change is not captured by FMDiff.

A partial or mismatch would indicate that FMDiff
misses changes, hence the more full matches the more
consistent FMDiff data is. We also take into account
that renamed features will be seen in FMDiff as “added”
and “removed”.

Results: In the selected twenty five modified Kcon-
fig files, 51 features were touched. 48 of those feature
changes could be matched to FMDiff data, described
by 121 records of our database. A single partial match
was recorded, caused by an incomplete “.rsf” file. A de-
fault value statement (def_bool_y) was not translated
by Undertaker in any of the architecture-specific “.rsf”
files. In two cases, the FMDiff changes did not match
the Kconfig feature changes. In both cases, developpers
removed one declaration of a feature that was declared
multiple (2) times, with different default values, in dif-
ferent Kconfig files. In FMDiff, a change in the feature
default value was recorded, which is consistent with
the effect of the deletion on the architecture-specific
FM. Based on this, we argue that FMDiff accurately
described this change.

Over our sample of feature changes, FMDiff did cap-
ture all the changes occurring in “.rsf” files. Moreover,
a large majority (94%) of Kconfig file changes were re-
flected in FMDiff’s data. In the remaining cases, FMDiff
still captures accurately the effects of Kconfig file changes
on Linux FM. We conclude, based on our sample, that
the dataset obtained with FMDiff is consistent with re-
spect to the changes occurring on the Linux FM.

4.2.3 Interestingness

Developers and maintainers of the Linux kernel often
work on features. Changes on features might affect the
ones they work on, or their direct dependencies. To
identify such changes, textual differencing tools in com-
bination with repository history navigation facilities can
be used (such as GitK for Git repositories). Inspired by
the work of Ying et al. [46], we propose here to compare
the information that can be obtained by textual differ-
ences and using FMDiff to evaluate the interestingness
of the collected data. We will consider that FMDiff pro-
vides “interesting” information for developers and main-
tainers if it makes available information otherwise dif-
ficult to obtain.

Method : We trace 100 feature changes randomly se-
lected from the FMDiff dataset to the Kconfig file mod-
ifications that caused them. For each change, we deter-
mine the set of Kconfig files of both versions of the
Linux FM that contain the modified feature. We then
perform the textual diff on these files and manually an-
alyze the changes. If the diff cannot explain the feature
change recorded by FMDiff, we move up the Kconfig
file hierarchy and analyze the textual differences of files
that include this file via the source statement.

The comparison between FMDiff changes and Kcon-
fig file changes can either 1) match if the change can be
traced to a modification of a feature in a Kconfig file;
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2) indirectly match if the change can be explained by
a Kconfig file change but the feature or attribute seen
as modified in the Kconfig file is not the same as the
one observed in FMDiff data; or finally 3) mismatch if
it cannot be traced to a Kconfig file change.

We observe an indirect match when a FMDiff change
is the result of Undertaker propagating dependency
changes onto other feature attributes or onto its sub-
features (e.g. when a depends statement is modified on
a parent feature). Here, indirect matches indicate that
FMDiff captures side-effects of changes made on Kcon-
fig files, more difficult to observe using textual differ-
ences.

Results: Among the hundred randomly extracted
changes, four were modifications of feature Boolean ex-
pressions, adding or removing multiple feature refer-
ences. We traced each reference addition/removal sep-
arately, resulting in 108 tracked feature changes.

We successfully traced 107 changes out of 108 back
to Kconfig files changes. A single mismatch was found,
involving a choice statement that could not be explained;
but the change was consistent with the content of Undertaker’s
output. We obtained 26 matches, 79 indirect matches
and finally 2 features were renamed and those changes
were successfully captured as deletion and creation of a
new feature. Among the indirect matches, 61 are due to
hierarchy expansion and 18 due to depends statement
expansion on other attributes.

The large number of indirect matches is explained
by an over-representation in our sample of changes in-
duced by the addition of new architectures. Architec-
tures are added by creating, in an architecture-specific
folder (e.g. /arch), a Kconfig file referring existing generic
Kconfig files in other folders (e.g. /drivers). Hence, we
observe feature additions in an architecture-specific FM
without modifications to feature declarations.

79 feature changes captured by FMDiff could not
be directly linked to feature changes in Kconfig files
but to changes in the feature hierarchy or other feature
attributes. We argue that even if FMDiff data does not
always reflect the actual modifications performed by
developers in Kconfig files, it captures the effect of the
changes on the Linux FM. In fact, those 79 indirect
matches indicate that FMDiff data contain more infor-
mation than what can be obtained from the textual dif-
ferences between two versions of the same Kconfig file,
where such effects need to be reconstructed manually.

5 Using FMDiff to Understand Feature
Changes in the Linux Kernel Feature Model

FMDiff captures changes occurring on features of the
Linux kernel and stores each individual change in a

1 select count(distinct feature_name)
2 from fine_grain_changes
3 where revision='v3.0'
4 and change_category='MOD_FEATURE '

Listing 3 Example of query on FMDiff data: modified features
in release 3.0

database. Thanks to this format, we can easily query
the gathered information to study the evolution of the
kernel feature model (FM) over time. We use this infor-
mation to identify the most common change operations
performed on features and study the pervasiveness of
feature changes across the multiple architecture-specific
FMs of the kernel, and to answer the research questions
as raised in the introduction.

5.1 High-level view of the Linux FM evolution

FMs, as central elements of the design and maintenance
of SPLs, have attracted substantial attention over the
past few years in the research community. For example,
several studies describe practical SPL evolution scenar-
ios related to FM changes [25, 30, 32], focusing mostly
on addition and removal of features. An open question,
however, is whether the changes commonly studied are
also the most frequent ones on large scale systems. This
leads us to our first research question, which we answer
using FMDiff data. RQ1: What are the most common
operations performed on features in the Linux kernel
feature model?

Let us consider the highest level of changes that
FMDiff captures: addition, removal and modification
of features. We use our database to query, for a given
architecture, features that were changed during a spe-
cific release. Listing 3 shows an example of such query,
giving us the number of features modified during re-
lease 3.0 for a single architecture. We compute, for six-
teen releases, the total number of changed features and
the number of modified, added and removed features in
each architecture-specific FM; using only the first level
of our change classification. To obtain an overview of
the changes occurring in each release, we average num-
ber of modified, added, and removed features per archi-
tecture.

As shown in Figure 4, during release 3.0, the aver-
age number of feature changes in architecture-specific
FMs were 722. About 70% of those changes are modi-
fications of existing features, 22% are additions of new
features, and only about 8% of those changes are fea-
ture removals. Note that the total number of architec-
tures taken into account varies over time. In Figure 4,
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Fig. 4 Evolution of the feature change category distribution (averaged over architectures)

the number of architectures used for the computation
of the graph is noted in parenthesis above each column.

Over the 14 studied releases, on average per archi-
tecture, creation of new features accounts for 10 to 50%
of feature changes. Deletion of features accounts for 5 to
20% of all feature changes and modification of existing
features accounts for 30 to 80% of all feature changes.

In this case, modifications of existing features in-
clude modification of their “depend statement”. Such
statements are affected by direct developer action (edi-
tion of the feature attribute in a Kconfig file), or by
changes in the feature hierarchy, as the hierarchy is used
during FM extraction (see Section 2).

With this information, we can answer our first re-
search question. Modifications of existing features ac-
count, on average, for more than 50% of the feature
changes in most releases (13 out of 16), making them
the most frequent high-level feature change occurring
on the Linux kernel FM. This clearly shows that mod-
ifications of existing features is a common operation
during the evolution of the Linux FM compared to
the other changes (adding and removing features). This
conclusion above is specific to certain types of represen-
tations of FMs. In the most common FODA notation,
cross-tree constraints refer to features, but are attached
to a FM rather than to the features themselves. A mod-
ification to a cross-tree constraint is arguably different

than a feature modification. In this specific case, be-
cause cross-tree constraints are part of the definition of
a given, well-specified feature, we can make such claim.

5.2 Evolution of architecture-specific FMs

In this section, we compare the evolution of the different
architecture-specific FMs. Our aim is to assess how sim-
ilar their evolution is and answer our second research
question: RQ2: To what extent does a feature change
affect all architecture-specific FMs of the kernel?

5.2.1 Motivation

The Linux kernel feature model (FM) has been exten-
sively studied as an example of highly variable system.
In order to analyse the evolution of its FM, a common
assumption is that all hardware architecture-specific
FMs supported by the kernel evolve in a similar fash-
ion [21]. This implies that observations made on a sin-
gle architecture can be, and are, extrapolated to the
entire kernel. Such approaches are justified by the fact
that the different architectures share up to 60% of their
features [11], and that the growth rate of architecture-
specific FMs are similar [21]. By comparing the evolu-
tion of the different architecture-specific FMs, we see
under which condition such extrapolations hold.
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We propose here to observe the evolution of those
feature models in regard to the development practices
applied by developers. The Kconfig file structure makes
a clear distinction between features that are meant to
be used for a single architecture (organized in a sub-
folder of the main “arch” directory), and the others.
This provides guidance to developers during mainte-
nance, about where to declare those very specific fea-
tures. However, every subsystem of the kernel (memory,
file system, drivers,...) can contain architecture specific
features.

In practice, when a change is applied to a configura-
tion option in a Kconfig file, there is no guarantee that
this change is affecting all architecture-specific FMs
in a similar way. Concrete examples of such changes
can be found by browsing through the Linux kernel
source code repository history. During release 3.0, fea-
ture ACPI_POWER_METER was removed and re-
placed by SENSORS_ACPI_POWER contained in an-
other code module.5 We can observe that the ACPI_-
POWER_METER feature is removed from the file “/drivers-
/acpi/Kconfig” file, and that SENSORS_ACPI_POWER
is added to “/drivers/hwmon/Kconfig”. The same change
is captured by FMDiff in the form of the removal of
ACPI_POWER_METER and the addition of SENSORS_-
ACPI_POWER. Using our database, we can observe
that the removal of the ACPI_POWER_METER only
affected two architectures: x86 and IA64. However, the
addition of SENSORS_ACPI_POWER can be seen in
x86, IA64, and ARM. Given the commit message, it is
unclear whether this was the expected outcome or not.
The change does not seem to have been reverted since
then.

Another example is the addition of an existing fea-
ture to an existing architecture-specific FM. Also in re-
lease 3.0, feature X86_E_POWERSAVER pre-existing
in the X86 architecture was added to other architec-
tures and its attribute modified. By searching the Git
history, we identified the commit6 removing this feature
from “arch/x86/kernel/cpu/cpufreq/Kconfig” and mov-
ing it to “drivers/cpufreq/Kconfig.x86” with a modifi-
cation to “drivers/cpufreq/Kconfig” to include the new
file, with a guard statement checking the selection of the
X86 feature. Using FMDiff data, we can observe that
in release 3.0, the depend statement and select condi-
tion attributes of these features were modified in X86
(adding references to the X86 feature) in the X86 FM
as a result of a change in the feature’s hierarchy. How-
ever, it is, for instance, also seen as added in ARM and
other architecture-specific FMs.

5 commit: 7d0333
6 commit: bb0a56

Such changes can be problematic as a thorough test-
ing practice would require validating a change for all
architectures. The first level of verifications that devel-
opers can use is simply to compile a specific configu-
ration. Errors in the Linux feature model often result
in errors during compiling certain configurations [1].
When a developer modifies the behaviour or capabil-
ities of the kernel for multiple architectures, he needs
to “cross-compile” their modifications and ensure that
the modifications behave appropriately on all of them.
This is also true when a modification of the FM affects
an architecture-specific feature, or if an architecture-
specific change is applied to a feature. However, the
cross-compilation process is non-trivial.7

Even with a specific tool chain, it appears that cross-
compilation is inconsistently done during the develop-
ment process as reported by the Linux development
team in commit messages, such as

“Untested as I don’t have a cross-compiler.” 8

“We have only tested these patchset on x86 plat-
forms, and have done basic compilation tests us-
ing cross-compilers from ftp.kernel.org. That means
some code may not pass compilation on some ar-
chitectures.” 9

or this message posted by Linus Torvalds in the
Linux kernel mailing list

“I didn’t compile-test any of it, I don’t do the
cross-compile thing, and maybe I missed some-
thing.” 10

We find ourselves in a situation in which, follow-
ing a feature modification, identifying the impact across
architectures is non-trivial, and cross-compilation, the
first mean to validate such changes, is not applied con-
sistently. There are many developers working on the
kernel, and a few not cross-compiling might not affect
the quality of the end-product. However, if we consider
a practical evolution scenario, a change will affect only
certain combinations of features. If a developer does
not cross-compile, then, others will have to know which
configurations were affected in order to validate them
on different platforms. Considering the number of con-
figurations of the kernel, we can wonder how likely it
is for others to test the appropriate configurations. But
if such cross-architecture feature changes are rare, such
practices would be reasonably safe.

7 Linux cross-compilation manual:
http://landley.net/writing/docs/cross-compiling.html

8 commit: 2ee91e
9 commit: cfa11e

10 https://lkml.org/lkml/2011/7/26/490
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Fig. 5 Extracting feature changes affecting all architectures

The comparison of the evolution of the different
architecture-specific feature models of the Linux ker-
nel allows us to assess the validity of extrapolations of
observations based on feature changes of one architec-
ture to others, and reflect on the development practices
mentioned above.

5.2.2 Methodology

To analyse the discrepancy between the evolution of
the different architecture-specific FMs, we compare the
changes occurring on the features of the different FMs
during the same release. We proceed as shown in Fig-
ure 5.

We first identify which features were changed in all
architectures for a given release. This is achieved by
querying all changes of all architecture-specific FMs for
a given release from the FMDiff database. Then, we iso-
late unique feature names from that set. We obtain a
first list of feature names (marked as “1” in Figure 5).
We split that set into two: features that are seen as
changed in FMDiff data in all architecture-specific FMs,
and those that are seen changed in only some architec-
tures. This gives us the feature sets marked as “2.1” and
“2.2” in Figure 5.

Using the set of features that appear in all architecture-
specific FM changes, we compare the change categories
associated with those features. This way, we check whether
the main change operation (add/remove/modify) is the
same on that feature in all architecture-specific FMs.
Once again, we split the initial set of features in two:
those that have the same change category in all archi-
tectures (set “3.1”) and those that have different change
categories (set “3.2”).

We continue in a similar fashion by comparing the
change category, sub category, change type and attribute
change, always starting with the set of feature changes
common to all architectures. Ultimately, we obtain the
number of features that are seen as changed exactly
in the same way in all architectures (set “6.1” in Fig-
ure 5). We repeat those steps for all available releases
in the FMDiff dataset.

The comparison process is different when compar-
ing feature changes based on attribute value changes,
as this comparison is not sensible for all attributes. Be-
cause of the flattening of the Linux feature hierarchy,
the same feature can have different attribute values (de-
pend statements for instance) in different architecture-
specific FMs. If a change is performed on such a state-
ment, checking if the old and new values of a feature at-
tribute are the same in different architectures will yield
negative results: the value is different to start with, so
even if the same change is applied, attribute values re-
main different.

This applies to all attributes consisting of Boolean
expression of features: depend statements, select and
default value conditions: 9 out of the 27 change types
we identified in Section 3. Those attributes are ignored
during the construction of the last sets (“6.1” and “6.2”).
Because we capture changes in feature references on
those attributes, we can still identify if a change affected
such attributes in a similar fashion in all architectures.
In fact, comparing these attribute changes would re-
quire to perform a semantic differencing on those at-
tributes, rather than the textual comparison we do at
the moment. We defer this to future work.

5.2.3 Experimental setup

To answer our second research question using the method-
ology just described, we consider the following architecture-
specific FMs: alpha, arm, arm64, avr32, blackfin, c6x,
cris, frv, hexagon, ia64, m32r, m68k, microblaze, mips,
mn10300, openrisc, parisc, powerpc, s390, score, sh, sparc,
tile, unicore32, xtensa, and finally, x86. We remove from
the set of considered changes, all changes caused by
the introduction of a new architecture. For instance,
when the architecture C6X is introduced in release 3.3,
we observe in our dataset the creation of this FM and
the creation of all of its features. During our compar-
ison, all features will be seen as added in the C6X
architecture-specific FM, introducing a large number
of architecture-specific changes while in reality, the fea-
tures have not been touched. To avoid this, we only
include an architecture-specific FM one release after its
initial introduction.

SERG Dintzner et al. – Analysing Feature Model Changes using FMDiff

TUD-SERG-2015-004 13



14 Nicolas Dintzner et al.

Fig. 6 Example of architecture evolution comparison for release
2.6.39

For analysis purposes, we isolate the intermediate
results so that features that evolved differently in dif-
ferent architectures can be isolated and the differences
later manually reviewed. The analysis is performed us-
ing R scripts, directly querying the FMDiff database.
The scripts are available in our code repository.11

5.2.4 Results

By applying the methodology described in Section 5.2.2
for a single release, we obtain the information depicted
in Figure 6. We can read this figure as follows: in re-
lease 2.6.39, 1016 features were changed. Out of those,
284 are seen as changed in all architectures (generic),
while 732 are seen as changed in only some of them
(architecture-specific). 281 of the features changed in
all architectures have the same change category. 3 of
them have different change categories in different archi-
tectures. This occurs when a feature is seen as added
in an architecture-specific FM and modified in others
for instance. 269 features have the same change cate-
gory and change subcategory in all architecture-specific
FMs, 12 do not. This occurs when features with differ-
ent attributes in different FMs are deleted for instance.
All those 269 changed features have the same change
type and their attributes are changed in the same way
in all architectures. Finally, we can see that out of 1016
changed features, only 269 changed in the exact same
way in all architecture-specific FMs.

We apply the same methodology for all 16 official
releases of the Linux kernel, and compile the results in
Table 1. In this table, each release column is read like
the diagram depicted on Figure 6, presenting the num-
ber of changed features affecting all (generic) or some

11 https://github.com/NZR/Software-Product-Line-Research

(arch-specific) architecture-specific FMs, decomposed
by change operation granularity - touched, change cat-
egory, sub-category, types and down to attribute value.
From this table, we learn the following.

First, the total number of changed features in each
release, shown in the second row of Table 1, is very
variable. Over the studied period of time, the release
with the smallest amount of changed features is 3.1,
with only 567 changed features, and the release with the
largest number of changed features is release 3.11, with
4556. If we consider that the Linux kernel feature model
contains approximately 12,000 features; in each release
between 4 and 38% of the total number of features is
touched.

Secondly, the difference between the evolution of
architecture-specific FMs lies in the features being changed,
not in the nature of the change applied. We can see in
Table 1 that for each release, the largest difference be-
tween the number of generic and architecture-specific
feature changes is found at the highest comparison level:
a feature is touched in all architectures if it is seen as
added, removed, or modified in all architectures - re-
gardless of the exact change type (as shown in the third
row of Table 1).

Finally, no features have architecture-specific change
type and attribute value changes. In all releases, the
number of architecture-specific change types and at-
tribute value changes is zero. If a feature saw its state-
ments changed in the exact same way in all architec-
tures, then, according to our dataset, the details of
those changes will be the same in all architectures as
well (change type and attribute value).

As mentioned in Section 5.2.2, we do not isolate
changes made to all attributes. This causes small dis-
crepancies in the values shown in Table 1. For instance
in release 3.4, we can see 257 features that have the
same change type in all architectures but 252 with the
same attribute changes in all architectures and 0 with
different attribute changes. In this release, five features
saw their attributes modified in slightly different ways
in different architectures, however none of those at-
tributes are tracked - relating only to Boolean expres-
sion of features. Such features are removed from the
dataset before the comparison of attribute values, hence
the potential drop in the number of features during this
step.

The number of observed changed features in release
3.11 is surprisingly high compared to other releases.
The architecture that changed the most during this re-
lease is the CRIS (Code Reduced Instruction Set) ar-
chitecture. By manually inspecting the changes using
Git and our dataset, we found a commit12 modifying
12 commit: acf836
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Release 2.6.39 3.0 3.1 3.2
Number of changed features 1016 1020 567 2361

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 284 732 600 420 213 354 931 1430

Change category 281 3 600 0 212 1 922 9
Sub category 269 12 596 4 202 10 921 1
Change type 269 0 596 0 202 0 921 0
Attr. value 269 0 596 0 202 0 921 0

Release 3.3 3.4 3.5 3.6
Number of changed features 946 778 1103 823

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 232 714 274 504 455 648 298 525

Change category 231 1 265 9 435 20 287 11
Sub category 228 3 257 8 434 1 285 2
Change type 228 0 257 0 434 0 285 0
Attr. value 228 0 252 0 432 0 281 0

Release 3.7 3.8 3.9 3.10
Number of changed features 1385 963 1773 1299

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 415 970 299 664 1042 731 430 869

Change category 412 3 292 7 1034 8 428 2
Sub category 406 6 284 8 1029 5 420 8
Change type 406 0 284 0 1029 0 420 0
Attr. value 403 0 283 0 1024 0 417 0

Release 3.11 3.12 3.13 3.14
Number of changed features 4556 1406 620 704

generic arch-specific generic arch-specific generic arch-specific generic arch-specific
Touched 615 3941 678 728 329 291 379 325

Change category 380 235 678 0 329 0 378 1
Sub category 375 5 678 0 328 1 378 0
Change type 375 0 678 0 328 0 378 0
Attr. value 370 0 674 0 326 0 374 0

Table 1 Quantitative comparison of generic and “architecture-specific” feature changes

1 (...)
2 -source "drivers/char/Kconfig"
3 +source "drivers/Kconfig"
4
5 source "fs/Kconfig"
6
7 -source "drivers/usb/Kconfig"
8 (...)

Listing 4 Extract of the diff of file “/arch/cris/Kconfig” in
release 3.11

the CRIS architecture configuration file (/arch/cris/K-
config). The modification, shown in Listing 4, removed
the inclusion of a specific set of drivers and replaced it
by the inclusion of all standard drivers. This is a ma-
jor contributor to the number of added features in the
CRIS architecture-specific FM.

Finally, we consolidate our results in Table 2. For
each release, we present the total number of changed
features and the percentage of those features that are
seen as changed exactly in the same way in all architecture-

Linux Kernel
release

Total number
of changed
features

% of changed features
affecting all architec-
tures

2.6.39 1016 26.47
3.0 1020 58.43
3.1 567 35.62
3.2 2361 39.00
3.3 946 24.10
3.4 778 32.39
3.5 1103 39.16
3.6 823 34.14
3.7 1285 29.09
3.8 963 29.38
3.9 1773 57.75
3.10 1299 32.10
3.11 4556 8.12
3.12 1406 47.93
3.13 620 52.58
3.14 704 53.12

Table 2 Evolution of the ratio of feature changes impacting con-
sistently all architectures supported by the Linux kernel
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specific FMs. We can read Table 2 as follows: in release
3.12, 47.93% of the 1406 changed features were seen as
changed consistently in all architecture-specific FMs of
the Linux kernel.

5.2.5 Architecture-specific evolution

With the gathered data, we can answer our second re-
search question. RQ2: To what extent does a feature
change affect all architecture-specific FMs of the ker-
nel?

The data shown in Table 2 highlight that for a spe-
cific feature change in a release, it is very likely that this
feature change affects only certain architecture-specific
FMs. In that sense, observations related to FM evo-
lution obtained by the study of a single architecture-
specific FM cannot be generalized to all architectures,
or help draw conclusions on the evolution of the over-
all Linux FM. Table 1 emphasizes that most feature
changes might not even be seen in other architectures.
It is interesting to note that, during release 3.11, while
4556 features were changed during the release, the aver-
age number of changed features per architecture is 681
(see Figure 4). This further supports our assumption
that architecture-specific FMs evolve differently.

Table 1 also shows that if a feature is seen as changed
in all architectures, in a large majority of cases, the
change applied to the feature is the same. A good exam-
ple of this is release 3.12, where among the 678 changed
features that affected all architectures, all had the same
change category, change subcategory, change type and
attribute changes. In other cases, when there are dis-
crepancies between how a changed feature affects dif-
ferent architectures, the discrepancy is in the change
category : a feature is seen as modified in one architec-
ture and added to another. In release 3.11 where 615
changed features affected all architectures, 235 had in-
consistent change categories across architecture-specific
FMs. This matches our observation regarding the ad-
dition of many drivers to the CRIS architecture FM in
Section 5.2.4.

To conclude and answer RQ2, we can say that rela-
tively few feature changes affect all architecture-specific
FMs of the Linux kernel. We also note that a large ma-
jority of changes affecting all architecture-specific FMs
affect them in the exact same way.

6 Discussion

The main objective of this paper is to support the main-
tenance and evolution of large scale software product
lines (SPLs). We first reflect on the capabilities of FMD-
iff, the nature of the captured information, the results

of our data analysis. Then, we continue by discussing
the threats to validity of this study.

6.1 Fine-grained feature changes

Thanks to Undertaker hierarchy and attribute expan-
sion, FMDiff not only captures changes visible in Kcon-
fig files, but also the side effects of those changes (indi-
rect matches). It makes explicit FM changes that would
otherwise only be visible by manually expanding de-
pendencies and conditions of features and feature at-
tributes. Such an analysis requires expertise in the Kcon-
fig language as well as in-depth knowledge of Linux fea-
ture structures. As mentioned in Section 4.2, FMDiff
captures accurately a large majority of feature changes
applied to the Linux kernel FM. Using FMDiff, feature
changes are stored as lists of statement changes with the
attribute values before and after the change (following
our classification). Developers and maintainers modify-
ing Kconfig files can use our tool to assess the effect of
the changes they perform on the feature hierarchy. By
querying FMDiff data, they can obtain the list of fea-
ture changes between their local version and the latest
release. This will give them insight on the spread of a
change by answering questions such as “which features
are impacted? ” and “should this feature be impacted? ”.
Moreover, developers can follow the impact of changes
performed by others on their subsystem, by looking at
changes occurring on features of their sub-system.

The extraction of fine-grained feature changes al-
lowed to show that modification of existing features was
a very frequent change occurring on the Linux feature
model. If we look at previous research on the evolu-
tion of highly variable systems [17, 21, 25, 27, 30], we
can see that the focus is put mostly on scenarios lead-
ing to the apparition or removal of features (such as
add, remove, merge, or split). In the context of Linux,
extending those studies to cover the modification of ex-
isting features would be beneficial. The data collected
by FMDiff will help in such endeavours, pinpointing in-
stances of such scenarios in this history of Linux kernel
FM.

6.2 Architecture specific evolution

The comparison of architecture-specific FMs evolution
showed us that those FMs evolved differently. The pro-
portion of feature changes affecting all architectures
varies between releases from 10 to more than 50%. We
also see that, if a change affects all architectures, in
almost every cases, the change is the same in all archi-
tectures. This limits the validity of extrapolating ob-
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servations about FM evolution from one architecture
to others. However, it is interesting to note that, once
we determine that a change is visible in all architec-
tures, we can safely assume that the modification is the
same. Future studies of the Linux kernel feature model
evolution using a similar feature model reconstruction
technique should be clear about the studied architec-
tures, as this will influence the results.

For this study, we focused on feature changes that
affected exactly all architectures. An alternative would
have been to identify clusters of architectures evolving
more similarly than others. For instance, we can imag-
ine that the evolution of the ARM has more in common
with the ARM64 architecture than the X86. Then, it
would be possible to extrapolate observations, not to
all, but to a well defined set of architecture-specific
FMs. The data collected during this study could be of
use to identify such clusters.

The amount of changes affecting all architectures
puts us at odd with respect to the development prac-
tices of the Linux developers. On the one hand, our data
shows that feature changes visible in all architectures
occur in every release, in large proportion. On the other
hand, in Section 5.2, we show anecdotal evidence that
developers are not inclined to cross-compile. We can
assume that the delivered assets compile - at least for
the architecture on which the developer was working.
With more than 13,000 features, the number of possi-
ble configurations of the kernel is immense. Given that
modifications to features will only affect specific con-
figurations, only the developers and experts will know
which configurations should be tested. So the changes
might remain untested and a faulty feature could be
delivered. Then, if this happens, the criticality of such
problems will depend on how frequently this feature is
used on the various platforms. We have to keep in mind
that as long as the feature is not mandatory for a sys-
tem, the problem can simply be fixed by not including
it in the configured kernel image. Perhaps such errors
are not critical nor frequent enough to warrant the use
of much heavier testing practices.

Nonetheless, as shown by our data, cross-architecture
feature changes occur frequently. In such situations, de-
velopers do not seem to have the means to identify
which architectures might be affected by their changes,
and do not consistently test. A tool, such as FMDiff,
can capture the impact of feature changes across archi-
tectures. With this additional information, developers
would have a better view of how often their modifica-
tions affect different architectures, making them more
aware to such situations. If they wish to cross-compile
their code, then FMDiff would give them a list of the
impacted architectures to consider first.

6.3 Threats to Validity

Construct validity We first discuss the methods we used
to extract changes from the Linux kernel feature model
and their impact on the usage of the resulting data to
reflect on the evolution of the Linux kernel FM.

A threat to the validity of our study is the represen-
tativeness of changes observed on a transformed version
of the Linux FM when reasoning about its evolution.
After extracting the Linux FM using Undertaker, the
hierarchy is flattened and the constraints propagated
on feature attributes. As a consequence, the changes
captured by FMDiff include the edits performed by de-
velopers on Kconfig files as well as their consequences
on the other features of the model. After the model
transformation, we cannot differentiate between devel-
oper edits in the Kconfig files (human operation) and
the propagated effect of those changes on other features.
Following this, we transform the Undertaker model into
an EMF model for comparison purposes, further mod-
ifying the data we use for this study. We argue that
both developer edits and their propagated effects are
relevant for the study of the evolution of the Linux FM.
The transformation performed by Undertaker adheres
to the Kconfig semantics as described in [33] (except
for the “range” attribute, which is not extracted). This
comforts us in the idea that the transformed model in
the “.rsf” format produced by Undertaker can be used
as a mean to study the evolution of the Linux FM. The
model transformation from “.rsf” to EMF does not pre-
serve the semantics of the Kconfig language, as we do
not keep track of the order of certain attributes (such
as default statements), and we do not consider CHOICE
elements. Our dataset cannot be used to reflect on the
evolution of the allowed configurations of the Linux ker-
nel: we cannot tell which configurations were added or
removed by looking at the feature changes captured
by FMDiff. But, as we have shown in Section 4.2, the
changes captured by FMDiff are consistent with the
changes observed in Kconfig files. For those reasons,
we are confident that the gathered data can be used
to observe and reflect on feature changes occurring in
Kconfig models.

Over time, the Kconfig language has evolved, and
modifications to the constructs of the language should
influence our change classification and comparison pro-
cess. We did not take this into account for this study
and we might miss new attributes or attempt to capture
information no longer relevant. This constitutes our sec-
ond threat to validity. To mitigate the effects of poten-
tial language evolution, we restricted the scope of re-
leases we studied. Release 2.6.38, the first of our study,
is the oldest release for which our version of Under-
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taker was able to extract all architecture-specific FMs.
We extended the scope of releases from there up to the
most recent release at the time of writing (3.14). Using
Git, we manually inspected the history of the Kcon-
fig parser and grammar in the Linux repository (the
“./scripts/kconfig” folder). We found a minor modifica-
tion to value attribute (long integer allowed on value
based features for instance).13 We also found modifica-
tions to the allowed values on feature attribute “option”
14 as mentioned in Section 2, irrelevant in the context
of this study. The other changes occurring during the
studied releases were, as far as we can see, modifica-
tions to Kconfig internals, with no impact on the infor-
mation captured by FMDiff. We have to consider that
for a study over a longer period of time, we would have
to take into account those changes, adapt the tool and
classification in accordance to the evolution of the lan-
guage.

As reported in Section 3 and mentioned here, in-
formation is lost during the model transformation and
comparison process. The third threat to validity we con-
sider is the influence of the missing information on our
validity of the resulting dataset. The “range” feature
attribute is not extracted and as such not used dur-
ing comparison. CHOICE structures, present but with a
specific naming convention, are removed from our in-
termediate model. However, the range attribute is not
used widely (less than 170 occurrences in 3.10 kernel,
for over 12,000 features) and for this reason we do not
believe that this influenced our results or conclusions.
During our manual evaluation of FMDiff, we found no
occurrence of changes on CHOICE structures, comforting
us in the idea that this is not a common change. But we
assume that such changes can occur and would be over-
looked by FMDiff. Changes to CHOICE structure would
impact the contained features - the hierarchy flattening
transformation ensures this. While we do not capture
CHOICE changes, we can still observe their effects on
features. For those reasons, we believe the loss of infor-
mation has a minimal impact on our observations but
must be taken into account for further analysis.

Internal validity With those limitations in mind, we
reflect on the limits of our conclusions on the evolution
of the Linux FM.

A threat to the internal validity of our study is
the effect of the hierarchy flattening transformation on
the number of observed feature modifications. When a
Menu, Menuconfig, Choice, or If construct is modi-
fied by developers, changes to its dependencies will be
reflected on the features it contains. As direct conse-
quence, we will observe more feature modifications than

13 commit: 129784ab
14 commit: 6902dccfda

if we looked at the actual edits performed by the devel-
opers, increasing the number of observed modifications
of existing features. We would argue here first that the
modifications do occur: the features are indeed modi-
fied, but indirectly. In that sense, the captured infor-
mation is accurate, and does reflect the actual state
of features in the feature model. Considering the over-
whelming majority of modification of existing features
in certain releases (more than 70% in release 3.7), we
believe that our conclusion holds: feature modifications
are, if not the most, at least a very common type of
change on every observed release.

Concerning the comparison of architecture-specific
FMs, we can question the model reconstruction process.
The fact that a feature is included in an architecture-
specific FM does not necessarily mean that the feature
is selectable (dead feature). We might observe cross-
architecture feature changes, that, in practice, do not
affect the possible configurations of architecture-specific
kernel images. As we do not take this into account, this
constitutes the second threat to the internal validity
of this study: a number of cross-architecture feature
changes we observe in our dataset do not affect the al-
lowed configurations described by those FMs. As men-
tioned as a threat to construct validity, our change ex-
traction cannot capture semantic changes occurring on
Kconfig-based systems. For this study, we restrict our-
selves to capturing syntactic changes on features and
offering a different view of those changes, leaving the
semantic interpretation of the changes to experts. We
consider in this study that a change to a non-selectable
(but present and declared) feature could actually lead
to making it selectable and should be reported and
accounted for as a cross-architectural change, despite
their potential lack of effects on the configurations of
the architecture specific FM. For this reason, the ab-
sence of distinction between selectable and non-selectable
features in our approach does not influence our con-
clusion. However, this further supports the fact that
FMDiff data should not be used to reflect on the pos-
sible configurations of the system, but only on feature
changes.

External validity We now reflect on the generaliz-
ability of our approach and its applicability in different
contexts.

The first threat to the external validity of this ap-
proach is the use of a specific Kconfig-centered change
classification. Our feature change classification is tightly
linked to the Kconfig language, and would be difficult
to re-use in other contexts. However, Kconfig is used
in a number of highly variable systems [6], all of which
could re-use directly our change classification.
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The second threat to the external validity is the lack
of application of FMDiff on other systems than Linux.
The implementation of FMDiff ties us to a specific type
of system. Moreover, the Kconfig-based change classi-
fication has a pervasive effect on the different compo-
nents of the tool, making adaptation potentially compli-
cated. But the approach presented in this paper could
be applicable to highly variable systems having an ex-
plicit variability model, as often found in the software
product line domain for instance. While the Linux ker-
nel is not a software product line, it does have the main
technical characteristics of such systems [36] hinting
that our approach could be applicable in this larger
context. Existing feature change classifications [8, 26]
can be adapted, as we did in this work, to match other
feature notations. Then, one will have to adapt the fea-
ture model comparison process to support that new
classification. Previous work on feature models showed
that their maintenance can be complex and error prone
[5, 15]. With an approach such as FMDiff, it would be
possible to extract new information about the evolution
of the features using already existing artefacts, at the
cost of adapting our tool.

Finally, the last threat to the external validity of our
study concerns the Linux-specific character of the com-
parison of the evolution of architecture-specific FMs.
While not all SPLs are affected by the hardware archi-
tecture they run on, we can often find a set of high-level
features that can be used to define “sub-product lines”
as we did using the architectures with the Linux kernel
FM. In such cases, one can apply the methodology pre-
sented in this work to analyze the co-evolution of those
different “sub-product lines”. For instance, in the auto-
motive domain, one can use this approach to identify
which feature changes affected the variability model of
the “sport”,“city” and “family” variants of a car, where
each variant is a product line on its own. Such view of
the effect of changes can be of use in area other than
the Linux kernel.

7 Related work

The idea of using features as first-class entities during
highly variable system development and evolution has
been considered many times in the past. Using features
as evolutionary units is a key concept of the feature-
oriented development paradigm [4]. Existing approaches
also propose to manage the evolution of large variability
models by describing series of delta in terms of features
[7,45]. Finally, several studies highlight the relationship
between the evolution of a SPL implementation and its
feature model in open-source projects [30] and in in-
dustrial contexts [16]. While not directly related to our

work, those studies exemplify the role feature changes
play in the evolution of complex systems.

In the context of this work, we designed a new fea-
ture change classification scheme, similar to what can
be found in other studies. In [32], Seidl proposes a clas-
sification of evolution scenarios on SPLs based on the
impact of feature-changes on the mapping between fea-
tures and other models (class diagram), as a mean to
preserve a consistent mapping between features and
model elements. Furthermore, in the work of Neves et
al. on the safe evolution of SPLs [25], we can observe
that the change scenarios described in this work inter-
twine evolution of the variability model and its imple-
mentation. Finally, in [28], Passos et al. envision that
adopting a feature-oriented view on software evolution
could enable easier traceability, analysis and generally
facilitate evolution management. All of those studies
comfort us in the idea that feature evolution is tightly
coupled to the evolution of its associated product line,
and as a consequence that the evolution of the feature
model reflects the evolution of the product line as a
whole; the main idea behind of our study.

Several FM change classifications have been pro-
posed in the past. In his thesis, Paskevicius describes
[26] several transformations that can be applied to a
FM. Similarly, FM change patterns have been identified
by Alves et al. in [3] and Neves et al. in [25]. In his study
of the co-evolution of models and feature mapping [32],
Seidl also describes a set of operations applied to FMs.
Thüm et al. [44] classify feature changes based on their
impact on the possible products that can be generated
from the FM - a change can increase or decrease the
number of products that can be obtained from a prod-
uct line. More recently, Passos et al. [29, 30] compiled
a catalogue of the evolution patterns occurring specifi-
cally on the Linux kernel. We did not use those classifi-
cations in our study for two main reasons. First, accord-
ing to She et al. [35] a depends statement can either be
interpreted as a cross-tree constraint or a hierarchy re-
lationship. As a consequence, we cannot automatically
decide how a depend statement should be mapped to
more standard FODA notation [18] and reuse the ap-
propriate change classifier. Secondly, FMDiff is able to
capture changes in feature attributes which are not con-
sidered by these classifications.

Variability models can become very large, and the
complexity of the relationships between features can
make the manual analysis of feature changes extremely
complicated [44]. To mitigate this, several variability
model differencing techniques were designed to facili-
tate change comprehension. In [2], Archer et al. present
two differencing approaches for feature models: syntac-
tic and semantic, suggesting that the semantic approach
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would yield more actionable results than the syntactic.
The syntactic approach amounts to textual differences
and, in the case of Linux, this information is already
available to developers through the use of the Git diff-
ing toolset. In the semantic approach, the output can
either be sets of configurations or partial feature models
describing the sets of configurations that were possible
before the evolution and are invalid now, or vice-versa.
Although this might be possible, the number of fea-
tures in the Linux kernel might be problematic for ex-
isting semantic differencing approaches [22, 24]. FMD-
iff performs a semi-structured diff operation: we pre-
serve the features and their statements, and perform
textual comparison at an attribute level. This approach
provides additional benefits compared to textual differ-
ences since using our approach, a developer can visu-
alize the effect of a hierarchy change on its features,
and observe the spread of the changes across architec-
tures. However, with this approach we cannot obtain
the semantic differences and provide information about
changes in allowed configurations and cannot express
feature model changes in terms of features - we express
them in terms of feature changes.

The Linux kernel has been used as an example of an
evolving highly variable system many times in the past.
Israeli et al. show in [17] that the Linux kernel evolu-
tion follows some of Lehman’s laws of software evolu-
tion [20], namely the continuing growth by measuring
the number of lines of code over time. Lotufo et al.
[21] study the evolution of the Linux kernel variability
model over time through FM structural metrics evo-
lution (model size, number of leaves, etc.). They show
in their study that the number of features and con-
straints increases over time, but also that maintenance
operations are performed to keep the complexity of the
variability model in check. However, they do not pro-
vide details on change operations, nor ways to capture
them in an automated way.

In order to study the Linux Kernel FM structure,
properties, and evolution, several research teams have
developed tools to reconstruct a FM from Kconfig files.
LVAT [35] and Undertaker [10,38,42] are the main ex-
amples of such tools. We chose to rely on Undertaker
for its convenient wrapping of kconfigdump, allowing
us to use the same tools that are also used by the Linux
kernel development team. LVAT could have allowed us
to capture the feature hierarchy. However, kconfigdump
flattening of the hierarchy facilitated capturing feature
hierarchy changes through changes of depends state-
ments.

In recent work, Passos et al. built a dataset of fea-
ture changes of Linux [27]. Focusing only on addition
and removal of features, this dataset relates feature

changes, commit information, and file changes. In com-
parison, FMDiff captures feature changes but does not
use nor rely on commit information and file change de-
tails. We have shown that modifications played a major
role in the evolution of the Linux FM, and for this rea-
son the dataset built using FMDiff appears to be more
suited to describe in details the evolution of the Linux
FM.

8 Conclusion

The main contribution of our work is an approach to ex-
tract and classify changes from the history of a Kconfig-
based feature model. Our approach is based on a ded-
icated feature change classification scheme, focused on
the Kconfig language, describing feature changes at dif-
ferent levels of granularity. Using this classification, we
can describe changes occurring on features, feature at-
tributes, and feature attribute values.

As a second contribution, we proposed both the
FMDiff tool, automating our approach, as well as the
dataset we built during this study. We showed that the
data obtained with this tool is consistent with changes
observed in the Kconfig model, and provides more com-
prehensive information about feature changes than what
could be obtained using textual differences. We used our
tool to extract feature model changes occurring in six-
teen releases of the Linux kernel, building a structured
and detailed history of the Linux kernel FM evolution.

We used the FMDiff dataset to explore the evolution
of the Linux kernel feature model. Our findings regard-
ing the evolution of this model constitute our last two
contributions, highlighting the informative value of fine-
grained feature changes and approaches such as FMDiff.

We identified the most common feature change op-
erations occurring on the Linux kernel feature model,
namely modification of existing features. We suggest
this might give a different orientation to future research
as this type change is under-represented in current re-
search on feature model evolution.

We also relied on FMDiff data to compare the evo-
lution of the different architecture-specific FMs of the
Linux kernel. This allowed us to show that the differ-
ent architectures evolved differently, and that feature
changes affecting multiple architectures were common.
Based on this information, we made the following two
observations. First, we pointed out that future research
on the evolution of the Linux kernel FM should specify
which architectures were studied, as observations made
on a small subset of architecture-specific FMs are not
generalizable to all of them without careful considera-
tion. We then show that the gathered information al-
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lows to reflect on the development practices of the ker-
nel developers with respect to multi-architecture devel-
opment processes.

We believe that the information captured by FMDiff
can be used to facilitate maintenance operations. The
dataset built using FMDiff could be used to link the
evolution of variability models with the evolution of
their implementation. Modifications of feature depen-
dencies captured by our approach could be valuable in-
formation when observing changes in code dependen-
cies for instance. Another possibility would be to ex-
plore the relationship between the fine-grained changes
and delta-oriented approaches used in the management
of product lines, where our representation of changes
could be of use. While we have shown here that feature
changes do not equally affect all architecture-specific
feature models of the Linux kernel, a subset of the
architecture-specific FMs might evolve similarly. The
identification of such groups of architecture-specific FMs
would allow us to refine the extent to which conclusions
drawn from the observation of a single architecture-
specific FMs can be generalized.
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