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Abstract 
 

 The dynamic behavior of structural components can largely change in the presence of damages. 

Understanding this behavior is of particular importance for critical engineering systems, and in particular 

bridges. Damage identification methods forms a key objective in structural health monitoring of bridges so 

many researches have been conducted in this area. In this thesis, damage identification techniques on beam 

bridges under moving vehicle loads will be presented in order to produce useful conclusions about the 

assessment of existing bridges by investigating various numerical applications of different scenarios. 

The first objective of this thesis is to derive the analytical expressions needed to be able to predict  the dynamic 

response of many different cases of bridges so that as many real scenarios as possible can be treated. This 

means that these expressions would be used to investigate damaged beam bridges that can be modelled as 

an assembly of beams with any number of different material properties, any type of interface or boundary 

conditions and any number of cracks.  For this reason an approach to analyze the bridge as an assembly of 

𝑛 piecewise homogeneous damaged Euler-Bernoulli beams jointed at their edges, will be presented, using the 

generalized functions to obtain a single expression of the solution which depends on the 4 integration 

constants associated with the boundary conditions. The closed-form expressions of these 4 constants will be 

provided. Furthermore, in the presence of internal or externals springs, translational or rotational, additional 

constants representing the discontinuities have to be taken into account and are computed by considering 

one additional condition for each discontinuity. The feasibility of this approach and the corresponding 

analytical formulations is shown with two numerical applications that include all the different capabilities 

mentioned. Moreover, the implementation of these expressions in a deterministic approach for damage 

localization is presented, mainly as another example of the many possibilities of the use of analytical 

formulations instead of other approaches and as an introduction of the so called Inverse Problem with 

deterministic and probabilistic methods.  

The second objective concerns the optimization of damage identification on bridges by comparing different 

quantities that are evaluated while measuring the response of the bridge (direct monitoring) and the response 

of the moving vehicle when it passes along the bridge (indirect monitoring).  First, the governing equations for 

the dynamic response of these models are derived, considering the crack(s)  as a rotational spring, the bridge 

as an Euler-Bernoulli beam (or multiple with different properties) and the moving vehicle as a spring-mass 

system. In this manner, the dynamic response of the bridge is calculated (modal characteristics and 

displacement) as well as the one of the moving oscillator  (displacement and acceleration) and the reaction 

force acting on the surface of the beam from the moving vehicles. Numerical applications with different beam 

properties and different number of cracks  are performed, using MATLAB for the analytical expressions and 

SAP2000 for the finite element model, to derive the optimal quantity to be used for damage identification. 

Lastly, the results are validated by considering and comparing an alternative way of modelling crack, namely 

as a zone with reduced rigidity, for the same numerical examples, leading to the same conclusions about the 

crack(s) identification. 

Last but not least, the third objective of this thesis is to be able deal not only with the widely used time-

invariant damages, namely the always-open crack model, but also with time-variant damages and in this case 

with the switching crack model. To achieve this, the analytical expressions for the closed-form solutions of the 

mode shapes derived for the always-open crack are modified to be able to tackle the switching crack model 

by introducing a Boolean switching crack array which identifies open cracks, modelled as rotational springs. 

These new expressions would still be able to be used for any number of Euler-Bernoulli beams, any type of 

interface or boundary conditions and any number of switching cracks. Then, the governing equations for the 

dynamic response of this model are derived, considering the moving vehicles as moving masses in order to 
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validate the approach with numerical examples existing in the literature and then by introducing its new 

capabilities. Further, as the computational strategy has been validated, a comparison between time-variant 

and time-invariant damages is performed concerning crack identification, so that the reader would recognize 

the importance of understanding the dynamic behavior of different ways of modelling damage in  complicate 

engineering systems like bridges.  
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Chapter 1 

1. Introduction 
 

1.1  Background 
 

Damage identification forms a key objective in structural health monitoring. Specifically for bridges, visual 

inspection for maintenance purposes happens on a regular basis, with main objective the short and long-term 

structural integrity, safety and resiliency. But as visual inspection can be useful for detecting surface damages 

such as concrete spalling, corrosions of steel members or even partially failed components, it is limited at 

detecting embedded and/or minor cracks such as fatigue cracks, corrosion of embedded reinforcement and 

delamination.  That is the reason many state-of-the-art papers regarding the progress in the area of damage 

identification methods for bridge structures are published every year, and the theoretical developments, the 

laboratory-scale implementations and the full-scale experiments become more and more sophisticated and 

advanced. This master thesis is also one of these attempts to provide useful remarks, by providing results and 

conclusions that are validated, in the spectrum of structural damage detection, localization and quantification 

and condition assessment of bridges. 

Moreover, in the field of damage identification, there is an ongoing discussion about the way of considering 

the crack itself in structures. In literature, there are many different ways to treat damages in bridges making 

the need of robust identification techniques, able to localize and quantify crack(s) in every scenario, more 

important than ever. This is also because there are examples of damages like capillary cracks which can open 

or closed depending on the vibration amplitude and side where the damage is located (top or bottom fibers). 

In this thesis damages with both time-variant and time-invariant parameters would be considered, to predict 

the dynamic behavior of the bridge, as well as a comparison between them in terms of damage identification 

purposes. 

In the next sections, the already available knowledge about the process of the inspection of bridges and its 

limitations will be discussed as well as a comparison of direct and indirect monitoring which are linked with 

the objectives of this thesis about deriving the optimal quantity from all the available measurements.  Then, 

the ways of modelling and considering, in this thesis, the bridge, the vehicle loads and the damage would be 

explained, adding another final section about the assumptions and the limitations of the specific model. 

 

1.2 Inspection of the bridge 
 

As already noted visual inspection is really common when damage identification is concerned in bridges. But 

the visual inspection process can be [1]: 

• labor-intensive 

• costly 

• time consuming 

• many times unreliable because its inherent  reliance on the inspector’s judgment  
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These limitations leads to lack of effectivity of the inspection processes and combined with the alarming aging 

state of transportation infrastructures makes the bridge maintenance and operation problem really 

challenging. 

 

The solution comes from adding a new inspection paradigm that exploits the availability of sensor data and 

measurements, a strategy known as structural health monitoring. In this field the use of advanced transducers, 

data acquisition and transmission systems, signal processing techniques  and more, have introduced new 

capabilities for damage identification and remaining useful life prediction of bridges. These reasons led to the 

progress of physics and/or data-driven techniques enabling the decision-making process of advanced SHM 

systems that are also, nowadays, becoming economically viable [1]. One can say that SHM will play a crucial 

role in future management and of transportation infrastructure. 

 

1.3 Direct and Indirect Monitoring 
 

Another important discussion mentioned in a lot of papers in the literature and that a lot of researchers 

investigate is the decision of using measurements on the bridge (direct monitoring) versus on the vehicle 

(indirect monitoring). Advantages and disadvantages for each side could be find in a large number of different 

papers ([2], [3], [4]) and they are also summarized in this master thesis, comparing directly the two 

approaches. 

• Direct monitoring is more expensive and time-consuming than indirect monitoring as the equipment 

(e.g. sensors) should be ordered and then placed carefully along the bridge. 

• The understanding of the dynamic behavior of the bridge can be more clear with direct monitoring 

where lots of information can be recorded, in contrast with indirect monitoring where it is difficult to 

distinguish between the vehicle and the bridge induced vibrations. 

• With indirect monitoring it becomes more challenging to get a complete picture of the bridge behavior 

in contrast with direct monitoring where influence lines, eigenfrequencies and mode shapes could be 

provided understanding how the bridge responds to traffic loading. 

• The advantage of indirect monitoring is that the inspection can be on-going for a longer period and 

the same approach can be used for different bridges in contrast with direct monitoring where a 

different setup is needed for each one of them . 

• For both methods, another disadvantage is that the measurements might be ill-posed due to 

“external” factors (operational / environmental variability) that cause uncertainties in the response. 

The last point is important to be explored further as these factors, introducing uncertainties to the 

measurements, cause serious problems in the existing structural health monitoring techniques. In the paper 

[5] the effects of environmental and operational variabilities are explained. A few examples of them are 

mentioned below: 

Environmental variability caused from: 

• Temperature 

• Humidity 

• Wind 

Temperature, for example, affects not only the material stiffness, but also alters the boundary conditions of a 

system. Moreover, structures exhibit daily and seasonal temperature variations ( a 5% change in fundamental 
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frequency has been documented for bridges during the 24hours cycle and 10% seasonal changes in 

frequencies were repeatedly observed for years). Finally, when temperature falls below freezing point, 43-

76% variations have been documented. 

Operational variability caused from: 

• Ambient loading conditions 

• Operational speed 

• Mass loading 

In order to tackle these kind of uncertainties, data normalization was introduced, a procedure where data sets 

are normalized so that signal changes caused by environmental and operational variations can be separated 

from structural changes of interest.  

 Looking at the advantages and disadvantages of each approach, one should be really careful about the its 

limitations and whenever one of them is chosen, the corresponding precautions have to be taken into 

consideration. 

 

1.4 Problem statement 
 

Now, that a general overview about the reasons that make inspection challenging and damage identification 

techniques so important, has been provided, this section is dedicated to describe how the modelling of the 

bridge, the moving vehicles and the damage are considered in this thesis, in order to provide qualitative 

outcomes. Each one of these considerations was carefully selected after examining similar research topics in 

the literature, and they are described appropriately in the next paragraphs.  

1.4.1  Modelling of the bridge 
 

In the current thesis, the moving load-bridge interaction problem is treated by using the well-established 

model of an Euler-Bernoulli beam subject to moving vehicle loads. The governing equations that describe the 

dynamic response of the beam, taking into account time-varying mass, stiffness and damping matrices are 

presented in this work. Moreover, one novel thing of this master thesis will be the derivation of analytical 

expressions in order to be able to deal not only with the, commonly-used in the literature, simply supported 

beam-type bridges but with beams with increased complexity. The complexity rises by considering the bridge 

as one engineering system that can be modelled as an assembly of beams with different materials and cross-

sections, with internal rotational and/or translational springs and external translational springs at the 

interfaces. 

To be able to deal with multi-span beam-type bridges and overcome specific limitations like, (i) computational 

efficiency in dealing with any number of step changes in material and cross-section, (ii) taking into account 

efficiently internal and external springs at the discontinuities and (iii) numerical errors in the evaluation of 

high-order modes for jointed beams, the approach implemented in paper [6] will also be used in this project 

to derive the new analytical expressions for the mode shapes of the model under investigation. This is 

necessary as other widely-used methods are not able to overcome these limitations. Specifically, the “classic 

method” of considering an assembly of 𝑛 Euler-Bernoulli beams jointed at their edges is based on writing a 

set of 𝑛 governing equations and impose 4(𝑛 − 1) continuity conditions (one of each interface). As this 

approach needs the evaluation of 4(𝑛 − 1) integration constants, it gets  time-consuming when the number 

of the Euler-Bernoulli beams is increased. Another approach not able to tackle this type of problem efficiently 
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is the Finite Element Method (FEM) where the accuracy of the results will depend on the density of the mesh, 

and as a denser mesh is required for each interface, the computational effort is also increased when the 

number of discontinuities is increased. Furthermore, the above-mentioned approaches cannot be easily used 

for exploring the performance of different designs.  

Other approaches for evaluating the dynamic response of an assembly of Euler-Bernoulli beams with 

mechanical or geometrical discontinuities are, a “matrix approach” used in paper [7] to couple two separate 

uniform EB beams at the discontinuity by imposing specific continuity conditions but taking into account only 

ideal joints, a “transfer matrix” method used in paper [8] to evaluate the free vibration of jointed EB beams 

with step changes in cross-sections with ideal joints, a “lumped-mass” approximation used in paper [9] 

employing exact influence coefficients by defining some ad-hoc Green’s functions and solving efficiently the 

eigenvalue problem and the “element impedance” method in paper [10] where each beam section is modelled 

as a free-free section plus an input impedance at one end and an output impedance at the other, and then 

they are all coupled to form an overall stepped beam structure, a method which is computationally efficient 

as it avoids matrix operations of large dimensions. 

Moreover, it is worth noting that the evaluation of the natural frequencies can be affected by numerical 

instabilities due to the presence of the hyperbolic functions in the closed-form solutions of the free vibrations, 

to the point of being able to compute accurately up to 12 modes depending on the boundary conditions, see 

paper [11]. To overcome this limitation in this project, as it was described in the paper [12], the governing 

equations of each segment of the jointed EB beam with step changes in material properties will be written in 

its local coordinate systems and by coupling them with interface conditions at the interface points. In this 

manner (using local coordinate systems) the expression of the frequency determinant (characteristic 

equation) of the jointed beam is simplified and leads to largely avoiding numerical round-off errors and 

consequently improving the accuracy on the evaluation of the higher modes. 

To sum up, for the dynamic response of the jointed Euler-Bernoulli beam with step changes in material with 

rotational and translational internal springs and external translational springs at the interfaces, an approach 

using generalized functions and local coordinate systems will be used in order to obtain a singe expression of 

the solution (in terms of deflection or mode shapes) which depends only on 4 integration constants associated 

with the boundary conditions and one additional constant for each internal or external spring at the interfaces. 

All the closed-form expressions for the integration constants will be provided. 

 

1.4.2  Modelling of the vehicle 
 

As far as the moving vehicle load is concerned, there are, indeed, different ways to consider the moving vehicle 

in a model ( [14] ) and there are simple as well as other more advanced designs mentioned in the literature.  

One of them is like a moving concentrated force, which especially for the Finite Element Method might be the 

Figure 1. 1: Moving vehicle load as a concentrated force 
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simplest one but one can lose part of the physics of the model as the inertial effect is completely neglected 

(see figure 1.1).  

 

Another way of modelling the moving vehicle is like a mass moving on top of the surface of the bridge but also 

in this case the coupling stiffness with the beam tends to infinity and this does not corresponds precisely in 

the physics of the real problem. 

 

Lastly, one way of modelling the moving vehicle is as a sprung mass system (moving oscillator), where 

significant inertial of the vehicle is present and the coupling stiffness is also finite. In this case, the mass of the 

vehicle is not just sliding on top of the beam but it could be designed with an oscillatory motion at a desired 

frequency. 

 

In the current master thesis, the governing equations of motion for both modelling the vehicle as a moving 

mass and as a moving oscillator will be presented so that the reader will be able to judge from the results 

which model to follow for other investigations. 

 

1.4.3  Modelling of the crack 
 

The final part of the model concerns the way of modelling the damage in the Euler-Bernoulli beam. Also in this 

case there are different ways that one could find available in the literature. The presence of damage is often 

Figure 1. 2: Moving vehicle load as a moving mass 

Figure 1. 3: Moving vehicle load as a spring-mass system 
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tackled by using a discrete spring model ( [13] ). This model usually provides the best trade-off between model 

accuracy and computational cost compared to local stiffness reduction models and to 2D/3D Finite Element 

models which include crack initiation and propagation ( [15] ). On the other hands, using this model as in paper 

[16], which means modelling the crack as a massless rotational spring and writing the governing equations for 

each undamaged pieces between two consecutive cracks, the size of the problem increases with the number 

of cracks, since a set of continuity conditions need to be imposed at each crack location. The flexibility model, 

developed by [17], is used for other investigations like the one in [18], considering separately the conditions 

when the load is moving over the crack or over the undamaged section.  

In this master thesis modelling the crack as both a massless rotational spring and with a local reduction model 

will be treated in a manner, using analytical expressions, that make both approaches equally fast and accurate 

(see figures 1.4, 1.5). 

Damage could be treated with time-variant or time-invariant properties. The always-open crack model, widely 

adopted for engineering applications, belongs to the category of cracks with time-invariant parameters, and 

many methods of treating these cracks can be found in the literature. But the always open crack model can 

lead to inaccurate results in the presence of capillary cracks, which can be open or closed depending on the 

vibration amplitude and side where the damage is located (either bottom or top fibers). These time-variant 

parameters can be accounted by employing the switching crack model [19] or the breathing model [20]. While 

the former accounts for the closed crack condition and the residual cross section stiffness when the crack is 

open, the latter accounts for progressive variations of the cross section stiffness. 

In this master thesis the switching crack model will be implemented in Chapter 4, considering the crack as a 

rotational spring which can open or close depending on the elastic axial strain at the center of the crack. The 

differences of this model comparing it with the always-open crack model and the undamaged case are 

Figure 1. 5: Crack modelled as a rotational spring 

Figure 1. 4: Crack modelled as an influenced zone with reduced rigidity 
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presented in Chapter 4, as well as the comparison of this model when damage identification techniques are 

concerned. 

 

1.5 Assumptions  of the model 
 

In this section, according to the modelling part described above, the assumptions of the model are presented. 

These assumptions have been chosen carefully in order to simplify the model in specific parts, where it was 

needed, without the cost of deviating from realistic scenarios, leading to inaccuracies. Limitations, because of 

these assumptions are also included briefly, but a more detailed discussion about them is given in the last 

chapter of this thesis. The assumptions and limitations of the model are: 

• The surface of the bridge is considered as smooth, meaning the roughness of the bridge has not been 

considered in the governing equations of motion 

• The moving vehicle mass effect will not be taken into account as this would result into time-varying 

mode shapes which depend on the vehicle’s position, therefore not allowing the application of the 

mode superposition method 

• Given the relative small size of the interaction problem, the friction force is neglected 

• The vehicle is travelling with known direction and speed along the z-axis 

• The vibration of the beam occurs only in the transversal direction 

• The mass and the beam are always in contact 

Each one of the points describes an assumption either about the interaction of the moving vehicle and the 

bridge or the properties of the bridge and all of them contribute to the specifications of the model and the 

derivation of the equations that describe its motion.  

 

1.6 Research questions 
 

An introduction to the field of structural damage detection on bridges has been presented, including many of 

the existing limitations of structural health monitoring on bridges and the need of advanced methods to 

predict propagation of cracks or even failure of primary structural elements. Then, the way that the problem 

of damage identification on beam bridges under moving vehicle loads will be treated in this thesis, has been 

indicated by explaining how every part (bridge, damage, vehicle loads) will be modelled. Finally, assumptions 

and limitations of the model were also presented. 

Now, that the model became more clear and the research gaps due to all the uncertainties in the procedure 

are self-evident, the research questions that this thesis will focus on, in every chapter, are introduced. First, 

the main objective of the current master thesis, related to everything has already been said so far, is: 

“How to model and identify damages with time-variant and invariant parameters on multi-span beam-type 

bridges under moving vehicle loads modelled as a spring-mass system”. 

The main objective describes what would one important outcome of this thesis, which would be able to tackle 

damages with both time-variant and time-invariant parameters. Moreover, in this thesis, the number of 

different beam segments of different properties that describe the bridge will not be a problem, as well as the 

number of cracks and the boundary and interface conditions. All these specifications will be considered in the 
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derivation of the analytical expressions in the 2nd Chapter, in order to be able to deal with any possible real 

case scenario of a beam-type bridge. 

Throughout this thesis and in the process of answering the main research question, other research sub-

questions will also be answered in each Chapter. 

Chapter 2, “Dynamic response of damaged beams with time-invariant parameters under moving loads”: 

1) How to model the crack(s) in the Euler-Bernoulli beam? 

2) How to obtain a closed-form solution for the mode shapes for any number of cracks, multiple step 

changes in material, arbitrary boundary conditions and internal/external translational and rotational 

springs? 

3) How to improve the numerical stability (higher order modes) and accuracy of the closed form 

expressions? 

4) How to use only the closed-form solutions for the mode shapes to detect a crack? 

Chapter 3, “Cracks identification (location, intensity)”: 

1) Which is the optimal measured quantity to detect a crack? 

2) What would be the size of a crack with respect to the size of the cross section to be identifiable? 

3) Would the model of the crack affect the identification?  

4) Would the number of cracks affect the identification? 

5) Would the complexity of the beam-type bridge (varying rigidity) affect the identification? 

Chapter 4, “Dynamic response of beams with switching cracks under moving masses”: 

1) How to model the switching crack in the Euler-Bernoulli beam? 

2) How to exploit closed-form solutions of the mode shapes to account for the switching cracks? 

3) How to evaluate the open cracks distribution at a time instant?  

4) Are the always-open or always-closed crack distributions the boundaries for the switching crack 

model? 

5) What would be the differences in damage identification when using the switching crack model 

instead of the widely adopted always-open crack model? 

Each one of these questions demands a comprehensive answer that will be able to make the reader realize 

every aspect of the specific model and to also lead to an outcome that will provide useful knowledge in the 

field of structural damage detection that could be used for other similar future projects. 
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1.7 Report Structure 
 

This thesis report is divided into 4 main chapters and the final chapter about the discussions and conclusions 

of the whole thesis work. 

Chapter 1 explains the background of the research and states the problem of interest. Specifications about 

the modelling part and its assumptions are provided as well as the research goals and research questions that 

will be covered in this thesis work. 

Chapter 2 contains the entire procedure of the derivation of novel analytical expressions for the mode shapes 

of the model, in order to obtain a single expression of the solution which depends only on 4 integration 

constants associated with the boundary conditions and one additional condition for each external or internal 

spring at the discontinuities. Closed-form solutions of these 4 integration constants are also provided. Then, 

the new expressions are validated by comparing them with the results of two FE (Finite Element) models in 

SAP2000, achieving the accuracy needed. Finally, the same expressions are also used as a powerful tool in 

deterministic model updating and the so called Inverse Problem, in order to identify the location of a crack 

along a bridge, knowing only its intensity. The findings of this chapter are an example of the importance of 

using analytical expressions instead of only FE models, as a parameter investigation could be accomplished 

much faster and with the same accuracy and less computational effort.  

Chapter 3 focuses on the comparison of different quantities obtained after the direct and indirect monitoring 

of the bridge in order to conclude to the optimal one in terms of crack(s) identification. To do that, first the 

governing equations that describe the dynamic response of the model were derived, assuming the moving 

vehicles as spring-mass systems (oscillators) and then, the results of the modal characteristics of the bridge, 

the dynamic response of the beam-type bridge, the reaction force acting on top of the bridge because of the 

moving oscillator and the response of the oscillator itself (displacement, acceleration) were calculated for 

different numerical applications and compared. The conclusion in this chapter about the optimal quantity for 

crack identification, was tested not only for the widely-used simply supported beam with one crack, but for 

different ways of modelling the crack, for the presence of 2 cracks at different locations and for increased 

complexity of the model, meaning a multi-span beam-type bridge with different properties along the bridge. 

At the same time, while comparing the different quantities, a lot of damage scenarios (varying the depth of 

the crack) were tested so that a good estimation of the minimum depth of a crack to be identifiable along the 

bridge, was also presented.  

Chapter 4 exploits the analytical expressions already derived for the mode shapes, to account for cracks with 

time-variant parameters, in this case, the switching crack model. First, the governing equations that describe 

the dynamic response of the model were derived, assuming the moving vehicles as moving masses and then 

a computational strategy is presented that is able to deal with the opening/closing of the crack during the 

analysis by computing an open cracks distribution at every time instant. To accomplish that, a Boolean variable 

is introduced that specified if the crack is open or closed depending on the sign of the axial strain at the location 

of the crack. This computational strategy is first verified by comparing its results with the ones from FE models 

in SAP2000, and then it is used to compare the switching crack model with the undamaged case and the 

always-open crack model. Finally, the damage identification techniques presented in the 3rd Chapter are also 

used for the switching cracks, showing the importance of understanding  their behavior. 

The final chapter presents the discussions of the results and conclusions of the whole thesis work, where 

research questions are answered. Limitations and recommendations for future are also discussed. 

The following flowchart summarized the main thesis work: 
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 Figure 1. 6: Flowchart of the main thesis work 
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Chapter 2  

2. Dynamic response of damaged beams with time-invariant parameters 

under moving loads 
 

In this chapter the dynamic response of damaged beams with time-invariant parameters under moving loads 

will be examined by producing new analytical formulations for the dynamic characteristics of the model. These 

expressions are, indeed, novel in terms of similar research approaches in literature, and they will be used in 

this thesis as a tool for the investigation of damage identification techniques in the next chapters. 

Therefore, in this chapter, the entire procedure of the derivation of novel analytical expressions for the mode 

shapes of the model, in order to obtain a single expression of the solution which depends only on 4 integration 

constants associated with the boundary conditions and one additional condition for each external or internal 

spring at the discontinuities. Closed-form solutions of these 4 integration constants are also provided. Then, 

the new expressions are validated by comparing them with the results of two FE (Finite Element) models in 

SAP2000, achieving the accuracy needed. 

Finally, the same expressions are also used as a powerful tool in deterministic model updating and the so 

called Inverse Problem, in order to identify the location of a crack along a bridge, knowing only its intensity. 

The findings of this chapter are an example of the importance of using analytical expressions instead of only 

FE models, as a parameter investigation could be accomplished much faster and with the same accuracy and 

less computational effort.  

It is important to derive analytical expressions for this problem as we can handle with: 

• Parameter investigation (different designs much faster than FEM). 

 

• Avoid remodeling, remeshing (denser mesh close to each crack, discontinuity). 

 

• Less computational effort (FEM could be time-consuming). 

 

• FEM limitations in handling switching cracks (time-varying) – to be explained further in next chapters. 

 

Meanwhile, in this chapter, the following research sub-questions will be answered: 

• How to model the crack(s) in the Euler-Bernoulli beam? 

• How to obtain a closed-form solution for the mode shapes for any number of cracks, multiple step 

changes in material, arbitrary boundary conditions and internal/external translational and rotational 

springs? 

• How to improve the numerical stability (higher order modes) and accuracy of the closed form 

expressions? 

• How to use only the closed-form solutions for the mode shapes to detect a crack? 
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2.1 How to obtain a closed-form solution for the mode shapes for any number of cracks, 

multiple step changes in material and arbitrary boundary conditions? 
 

Main objective: A single expression of the solution which depends only on 4 integration constants associated 

with the boundary conditions. 

Steps: 

1. Consider ways to deal with the numerical errors / instabilities and time-consuming solutions 

2. Closed-form expressions of these 4 constants will be derived 

3. The solution will be verified using the Finite Element Method 

 

Natural frequencies and mode shapes of Euler-Bernoulli beams with multiple cracks: 

Let’s consider the governing equation describing the response of the ith EB beam with uniform flexural rigidity, 

cross-section and density at its local coordinate system zi,, with length Li, so that, 0 ≤ zi ≤ Li: 

𝜕2

𝜕𝑧𝑖
2 [𝐸𝐼(𝑧𝑖)

𝜕2𝑢(𝑧𝑖 , 𝑡)

𝜕𝑧𝑖
2 ] + 𝜌𝑖𝐴𝑖

𝜕2𝑢(𝑧𝑖 , 𝑡)

𝜕𝑡2
= 0 

Eq.  1 

The mode superposition method can be applied by considering the mode shapes of a damaged beam as: 

𝑢(𝑧𝑖 , 𝑡) = ∑ 𝛷𝑖,𝑟(𝑧𝑖)𝑞𝑖,𝑟(𝑡)   

∞

𝑟=1

 
Eq.  2 

where 𝛷𝑖,𝑟(𝑧𝑖) is the 𝑟th mode shape of the ith damaged beam with open cracks and 𝑞𝑖,𝑟(𝑡) is the 𝑟th 

generalized coordinate. Considering a modal truncation: 

𝑢(𝑧𝑖 , 𝑡) ≅ ∑ 𝛷𝑖,𝑟(𝑧𝑖)𝑞𝑖,𝑟(𝑡)

𝑁

𝑟=1

 
Eq.  3 

  

Figure 2. 1: Euler-Bernoulli beam with multiple step changes in material and multiple cracks 
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Where N is the number of modes which are included  in the modal expansion and a sufficient number should 

be included to minimize the error in the response calculation. As a rule-of-thumb N can be chosen as twice 

the number of modes that would be excited by the load acting on the beam. 

Substituting in the governing equation: 

∑[𝐸𝐼(𝑧𝑖)𝛷𝑖,𝑟
′′ (𝑧𝑖)𝑞𝑖,𝑟(𝑡)]

′′
+

𝑁

𝑟=1

𝜌𝑖𝐴𝑖 ∑ 𝛷𝑖,𝑟(𝑧𝑖)𝑞̈𝑖,𝑟(𝑡)

𝑁

𝑟=1

= 0 
Eq.  4 

The flexibility model is now introduced to the transversally vibrating damaged beam. The dimensionless 

bending flexibility of the beam: 

𝐸𝐼̃(𝑧𝑖) =
𝐸𝐼(𝑧𝑖)

𝐸𝐼𝑖,0

 
Eq.  5 

 where 𝐸𝐼𝑖,0 is a convenient reference value of the flexural stiffness of the 𝑖th beam, is defined as: 

𝐸𝐼̃(𝑧𝑖)
−1 = 1 + ∑ 𝛼𝑖,𝑗𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

 
Eq.  6 

 where 𝑛 is the number of cracks, the 𝑗th one occurring at the abscissa 𝑧𝑖̅,𝑗, 𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗) is the Dirac delta 

function centered at the 𝑗th crack position; 𝛼𝑖,𝑗  is a parameter related to the severity of the damage at 𝑧𝑖 =

𝑧𝑖̅,𝑗 and is given as: 

𝛼𝑖,𝑗 =
𝐸𝐼𝑖,0

𝐾𝑖,𝑗

 
Eq.  7 

 where 𝐾𝑖,𝑗 is the elastic stiffness of the rotational spring of the 𝑗th crack of the 𝑖th beam. 

Back to the governing equation, after simple multiplications, this equation [1] can be rewritten for each r-

mode 

[𝐸𝐼(𝑧𝑖)𝛷̃𝑖,𝑟
′′ (𝑧𝑖)]

′′

𝜌𝑖𝐴𝑖𝛷̃𝑖,𝑟(𝑧𝑖)
= −

𝑞̈𝑖,𝑟(𝑡)

𝑞𝑖,𝑟(𝑡)
= 𝜔𝑖,𝑟

2  
Eq.  8 

 Since one ratio is a function of 𝑧𝑖  only and the other one is a function of 𝑡 only, both of them must be equal 

to a positive constant 𝜔𝑖,𝑟
2  which is the square value of the natural frequency related to the 𝑟th mode shape. 

Therefore, the two differential equations that we obtain are: 

𝑞̈𝑖,𝑟(𝑡) + 𝜔𝑖,𝑟
2 𝑞𝑖,𝑟(𝑡) = 0 Eq.  9 

[𝐸𝐼(𝑧𝑖)𝛷̃𝑖,𝑟
′′ (𝑧𝑖)]

′′
− 𝜔𝑖,𝑟

2 𝜌𝑖𝐴𝑖𝛷̃𝑖,𝑟(𝑧𝑖) = 0 Eq.  10 

The latter equations can be rewritten considering the flexibility model of crack as: 

[𝐸𝐼̃(𝑧𝑖)𝛷̃𝑖,𝑟
′′ (𝑧𝑖)]

′′
− 𝛽𝑖,𝑟

4 𝛷̃𝑖,𝑟(𝑧𝑖) = 0 Eq.  11 

 where, 

𝛽𝑖,𝑟
4 =

𝜔𝑖,𝑟
2 𝜌𝑖𝐴𝑖

𝐸𝐼𝑖,0

 
Eq.  12 
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2.1.1 Undamaged case: Consider the case of an assembly of Euler-Bernoulli beams with no 

damages 

In this case: 𝐸𝐼̃(𝑧𝑖) = 1 , therefore the governing equation [Eq. 1]  is rewritten as: 

[𝛷̃𝑖,𝑟
′′ (𝑧𝑖)]

′′
− 𝛽𝑖,𝑟

4 𝛷̃𝑖,𝑟(𝑧𝑖) = 0 Eq.  13 

 And its well-known solution as a combination of trigonometric and hyperbolic functions is: 

𝛷̃𝑖,𝑟(𝑧𝑖) =
𝐶𝑖,𝑟

(1)

2
(𝑐𝑜𝑠(𝛽𝑖,𝑟𝑧𝑖) + 𝑐𝑜𝑠ℎ(𝛽𝑖,𝑟𝑧𝑖)) +

𝐶𝑖,𝑟
(2)

2𝛽𝑖,𝑟

(𝑠𝑖𝑛(𝛽𝑖,𝑟𝑧𝑖) + 𝑠𝑖𝑛ℎ(𝛽𝑖,𝑟𝑧𝑖))

−
𝐶𝑖,𝑟

(3)

2𝛽𝑖,𝑟
2 (𝑐𝑜𝑠(𝛽𝑖,𝑟𝑧𝑖) − 𝑐𝑜𝑠ℎ(𝛽𝑖,𝑟𝑧𝑖)) −

𝐶𝑖,𝑟
(4)

2𝛽𝑖,𝑟
3 (𝑠𝑖𝑛(𝛽𝑖,𝑟𝑧𝑖) − 𝑠𝑖𝑛ℎ(𝛽𝑖,𝑟𝑧𝑖)) 

Eq.  14 

 which could be derived by computing the Laplace transform and then its inverse. 

The coefficients 𝐶𝑖,𝑟
(1)

, 𝐶𝑖,𝑟
(2)

, 𝐶𝑖,𝑟
(3)

, 𝐶𝑖,𝑟
(4)

 are the 4 integration constants dependent on 𝛽𝑖,𝑟 and which can be 

computed by imposing 4 boundary conditions of the 𝑖th beam 

In the case of an assembly of beams, the 4 integration constants and the frequency parameter of the mode 

shape of each 𝑖th beam can be expressed as a function of the preceding beam by explicitly enforcing the 

continuity conditions at each interface. As a result each mode shape of the jointed beam depends only on 4 

constants and 𝑚 frequency parameters (being 𝑚 the mode number). Moreover, each frequency parameter  

𝛽𝑖,𝑟 will be expressed as function of the natural frequencies 𝜔𝑟 of the entire jointed beam. 

To derive the recursive expression of the 4 constants using generalized functions: 

𝛹̃𝑖,𝑟(𝑧𝑖) = 𝛷̃𝑖,𝑟
′ (𝑧𝑖) Eq.  15 

𝛭̃𝑖,𝑟(𝑧𝑖) = −𝐸𝐼𝑖𝛷̃𝑖,𝑟
′′ (𝑧𝑖) Eq.  16 

𝑇̃𝑖,𝑟(𝑧𝑖) = −𝐸𝐼𝑖𝛷̃𝑖,𝑟
′′′(𝑧𝑖) Eq.  17 

where 𝛹̃𝑖,𝑟(𝑧𝑖) the slope; 𝛭̃𝑖,𝑟(𝑧𝑖) the bending moment; 𝑇̃𝑖,𝑟(𝑧𝑖) the shear force. 

Now, with the enforcement of the continuity conditions at each interface in terms of the mode shape 

deflection, the slope, the bending moment and shear force: 

𝛷̃𝑖,𝑟(𝑧0,𝑖) = 𝛷̃𝑖+1,𝑟(0) Eq.  18 

𝛹̃𝑖,𝑟(𝑧0,𝑖) = 𝛹̃𝑖+1,𝑟(0) Eq.  19 

𝑀̃𝑖,𝑟(𝑧0,𝑖) = 𝑀̃𝑖+1,𝑟(0) Eq.  20 

𝑇̃𝑖,𝑟(𝑧0,𝑖) = 𝑇̃𝑖+1,𝑟(0) Eq.  21 

 Which enables to reduce the 4N unknown coefficients (where N the number of the modes taken into account) 

to 4 unknown coefficients which can be found by imposing the 4 boundary conditions only: 

𝐶𝑖+1,𝑟
(1)

=
1

2𝛽𝑖,𝑟
3 (𝛽𝑖,𝑟

3 𝐶𝑖,𝑟
(1)

𝛤𝑖,𝑟
(1)

+ 𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(2)
𝛤𝑖,𝑟

(3)
+ 𝛽𝑖,𝑟𝐶𝑖,𝑟

(3)
𝛤𝑖,𝑟

(2)
+ 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(4)
) 

Eq.  22 

𝐶𝑖+1,𝑟
(2)

=
1

2𝛽𝑖,𝑟
2 (𝛽𝑖,𝑟

3 𝐶𝑖,𝑟
(1)

𝛤𝑖,𝑟
(4)

+ 𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(2)
𝛤𝑖,𝑟

(1)
+ 𝛽𝑖,𝑟𝐶𝑖,𝑟

(3)
𝛤𝑖,𝑟

(3)
+ 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(2)
) 

Eq.  23 
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𝐶𝑖+1,𝑟
(3)

=
1

2𝛾̃𝑖𝛽𝑖,𝑟

(𝛽𝑖,𝑟
3 𝐶𝑖,𝑟

(1)
𝛤𝑖,𝑟

(2)
+ 𝛽𝑖,𝑟

2 𝐶𝑖,𝑟
(2)

𝛤𝑖,𝑟
(4)

+ 𝛽𝑖,𝑟𝐶𝑖,𝑟
(3)

𝛤𝑖,𝑟
(1)

+ 𝐶𝑖,𝑟
(4)

𝛤𝑖,𝑟
(3)

) 
Eq.  24 

𝐶𝑖+1,𝑟
(4)

=
1

2𝛾̃𝑖

(𝛽𝑖,𝑟
3 𝐶𝑖,𝑟

(1)
𝛤𝑖,𝑟

(3)
+ 𝛽𝑖,𝑟

2 𝐶𝑖,𝑟
(2)

𝛤𝑖,𝑟
(2)

+ 𝛽𝑖,𝑟𝐶𝑖,𝑟
(3)

𝛤𝑖,𝑟
(4)

+ 𝐶𝑖,𝑟
(4)

𝛤𝑖,𝑟
(1)

) 
Eq.  25 

 where the functions 𝛤𝑖,𝑟
(1)

, 𝛤𝑖,𝑟
(2)

, 𝛤𝑖,𝑟
(3)

, 𝛤𝑖,𝑟
(4)

 are defined as: 

𝛤𝑖,𝑟
(1)

= 𝑐𝑜𝑠(𝛽𝑖,𝑟𝐿𝑖) + 𝑐𝑜𝑠ℎ(𝛽𝑖,𝑟𝐿𝑖) Eq.  26 

𝛤𝑖,𝑟
(2)

= 𝑐𝑜𝑠ℎ(𝛽𝑖,𝑟𝐿𝑖) − 𝑐𝑜𝑠(𝛽𝑖,𝑟𝐿𝑖) Eq.  27 

𝛤𝑖,𝑟
(3)

= 𝑠𝑖𝑛ℎ(𝛽𝑖,𝑟𝐿𝑖) + 𝑠𝑖𝑛(𝛽𝑖,𝑟𝐿𝑖) Eq.  28 

𝛤𝑖,𝑟
(4)

= 𝑠𝑖𝑛ℎ(𝛽𝑖,𝑟𝐿𝑖) − 𝑠𝑖𝑛(𝛽𝑖,𝑟𝐿𝑖) Eq.  29 

 and the dimensionless quantity: 

𝛾̃𝑖 =
𝐸𝐼𝑖+1

𝐸𝐼𝑖

 
Eq.  30 

The locations (𝑧0,𝑖) are the ones of the discontinuities along the length of the beam, the points that separates 

two beams of uniform flexural rigidity, cross-section and density. 

In the case of an assembly of Euler-Bernoulli beams, the time-dependent deflection of the jointed beam was 

given as: 

𝑊(𝑧, 𝑡) =  𝑊1(𝑧1, 𝑡) + ∑[𝑊𝑖(𝑧, 𝑡) − 𝑊𝑖−1(𝑧, 𝑡)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑖=2

 
Eq.  31 

 Since 𝑊𝑖(𝑧, 𝑡) can be expressed as the sum of the product of the mode shapes and the generalized 

coordinates, the Heaviside’s unit step function will affect only the mode shapes.  

So, the 𝑟th mode shape of the jointed Euler-Bernoulli beam is expressed as: 

𝛷̃𝑟(𝑧) =  𝛷̃1,𝑟(𝑧) + ∑[𝛷̃𝑖,𝑟(𝑧 − 𝑧0̅,𝑖−1) − 𝛷̃𝑖−1,𝑟(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑖=2

 
Eq.  32 

 where, 𝑧1 = 𝑧, 𝑧2 = 𝑧 − 𝑧0̅,1 ,…., 𝑧𝑖 = 𝑧 − 𝑧0̅,𝑖−1 

In the same manner the slope 𝛹̃𝑖,𝑟(𝑧) = 𝛷̃𝑖,𝑟
′
(𝑧), the bending moment 𝑀̃𝑖,𝑟(𝑧) = −𝐸𝐼𝑖𝛷̃𝑖,𝑟

′′
(𝑧) and the shear 

force 𝑇̃𝑖,𝑟(𝑧) = −𝐸𝐼𝑖𝛷̃𝑖,𝑟
′′′

(𝑧) are given for the 𝑟th mode shape of the whole jointed EB beam as: 

𝛹̃𝑟(𝑧) =  𝛹̃1,𝑟(𝑧) + ∑[𝛹̃𝑖,𝑟(𝑧 − 𝑧0̅,𝑖−1) − 𝛹̃𝑖−1,𝑟(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑖=2

 
Eq.  33 

𝛭̃𝑟(𝑧) =  𝛭̃1,𝑟(𝑧) + ∑[𝛭̃𝑖,𝑟(𝑧 − 𝑧0̅,𝑖−1) − 𝛭̃𝑖−1,𝑟(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑖=2

 
Eq.  34 

𝛵̃𝑟(𝑧) =  𝛵̃1,𝑟(𝑧) + ∑[𝛵̃𝑖,𝑟(𝑧 − 𝑧0̅,𝑖−1) − 𝛵̃𝑖−1,𝑟(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑖=2

 
Eq.  35 
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2.1.2 Damaged case: Consider the case of an assembly of Euler-Bernoulli beams with damages 

In this case,  𝐸𝐼̃(𝑧𝑖)−1 = 1 + ∑ 𝛼𝑖,𝑗𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗)𝑛
𝑗=1 , therefore the governing equation is defined as: 

[𝐸𝐼̃(𝑧𝑖)𝛷̃𝑖,𝑟
′′ (𝑧𝑖)]

′′
− 𝛽𝑖,𝑟

4 𝛷̃𝑖,𝑟(𝑧𝑖) = 0 Eq.  36 

 Considering the 𝑖th beam the following procedure is used.  First a double integration of the governing 

equation yields: 

[𝐸𝐼̃(𝑧𝑖)𝛷̃𝑖,𝑟
′′ (𝑧𝑖)] − 𝛽𝑖,𝑟

4 𝛷̃𝑖,𝑟
[2](𝑧𝑖) = 𝐶𝛢𝑧 + 𝐶𝐵 Eq.  37 

 where 𝐶𝛢, 𝐶𝐵 are two unknown integration constants, while 𝛷̃𝑖,𝑟
[𝑚](𝑧𝑖) stands for the primitive (or anti-

derivative) of order 𝑚  of 𝛷̃𝑖,𝑟(𝑧𝑖) given by 𝑚 consecutive indefinite integrations. By setting:  

𝑊𝑖̃(𝑧𝑖) = 𝛽𝑖,𝑟
4 𝛷̃𝑖,𝑟

[2](𝑧𝑖) − 𝐶𝛢𝑧 − 𝐶𝐵  Eq.  38 

 which leads to rewrite the governing equation as: 

[𝐸𝐼̃(𝑧𝑖)𝑊̃𝑖,𝑟
′′′′(𝑧𝑖)] − 𝛽𝑖,𝑟

4 𝑊̃𝑖,𝑟(𝑧𝑖) = 0 Eq.  39 

 or equally, 

[1 + ∑ 𝛼𝑖,𝑗𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

]

−1

𝑊̃𝑖,𝑟
′′′′(𝑧𝑖) − 𝛽𝑖,𝑟

4 𝑊̃𝑖,𝑟(𝑧𝑖) = 0 

Eq.  40 

𝑊̃𝑖,𝑟
′′′′(𝑧𝑖) = [1 + ∑ 𝛼𝑖,𝑗𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

] 𝛽𝑖,𝑟
4 𝑊̃𝑖,𝑟(𝑧𝑖) 

Eq.  41 

 By applying the Laplace Transform in a specific 𝑟th mode shape to simplify the notation: 

𝑠4ℒ〈𝑊̃𝑖(𝑧𝑖)〉 − 𝑊̃𝑖
′′′(0) − 𝑠𝑊̃𝑖

′′(0) − 𝑠2𝑊̃𝑖
′(0) − 𝑠3𝑊̃𝑖(0) = ℒ 〈[1 + ∑ 𝛼𝑖,𝑗𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

] 𝛽𝑖
4𝑊̃𝑖(𝑧𝑖)〉 

Eq.  42 

 where ℒ〈∎〉 stands for the Laplace’s transform operator; while 𝑠 is the Laplace’s variable associated with the 

dimensionless abscissa 𝜁𝑖. Isolating the term 𝑈̃𝑖(𝑠) = ℒ〈𝑊̃𝑖(𝑧𝑖)〉 and introducing the integration constants 

𝐶1 = 𝑊̃𝑖(0), 𝐶2 = 𝑊̃𝑖
′(0), 𝐶3 = 𝑊̃𝑖

′′(0) and 𝐶4 = 𝑊̃𝑖
′′′(0), leads to: 

𝑈̃𝑖(𝑠) =
1

𝑠4 − 𝛽𝑖
4 {𝑠3𝐶1+𝑠2𝐶2 + 𝑠𝐶3+𝐶4 + ∑ 𝛽𝑖

4𝛼𝑖,𝑗𝑒−𝑧𝑖,𝑗𝑠

𝑛

𝑗=1

𝑊̃𝑖(𝑧𝑖̅,𝑗)} 

Eq.  43 

 Inverse Laplace transform leads to: 

𝑊̃𝑖(𝑧𝑖) =
1

2𝛽𝑖
3

[𝛽𝑖(𝐶1𝛽𝑖
2 − 𝐶3) 𝑐𝑜𝑠(𝛽𝑖𝑧) + 𝛽𝑖(𝐶1𝛽𝑖

2 + 𝐶3) 𝑐𝑜𝑠ℎ(𝛽𝑖𝑧) + (𝐶2𝛽𝑖
2 + 𝐶4) 𝑠𝑖𝑛ℎ(𝛽𝑖𝑧)

+ (𝐶2𝛽𝑖
2 − 𝐶4) 𝑠𝑖𝑛(𝛽𝑖𝑧)]

+
𝛽𝑖

2
∑ 𝛼𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)[𝑠𝑖𝑛ℎ(𝛽𝑖(𝑧𝑖  −  𝑧𝑖̅,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖(𝑧𝑖  −  𝑧𝑖̅,𝑗))]

𝑛

𝑗=1

ℋ(𝑧𝑖  −  𝑧𝑖̅,𝑗) 

Eq.  44 

 To obtain the mode shape function with open cracks, the second derivative is calculated as: 
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𝛷̃𝑖(𝑧𝑖) =
1

2𝛽𝑖

[𝛽𝑖(𝐶3 − 𝐶1𝛽𝑖
2) 𝑐𝑜𝑠(𝛽𝑖𝑧𝑖) + 𝛽𝑖(𝐶1𝛽𝑖

2 + 𝐶3) 𝑐𝑜𝑠ℎ(𝛽𝑖𝑧𝑖) + (𝐶2𝛽𝑖
2 + 𝐶4) 𝑠𝑖𝑛ℎ(𝛽𝑖𝑧𝑖)

+ (𝐶4 − 𝐶2𝛽𝑖
2) 𝑠𝑖𝑛(𝛽𝑖𝑧𝑖)]

+
𝛽𝑖

3

2
∑ 𝛼𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)[𝑠𝑖𝑛ℎ(𝛽𝑖(𝑧𝑖  −  𝑧𝑖̅,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖(𝑧𝑖  −  𝑧𝑖̅,𝑗))]ℋ(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

 

Eq.  45 

 where, 

𝑊̃𝑖(𝑧𝑖̅,𝑗) =
1

2𝛽𝑖
3 [𝛽𝑖(𝐶1𝛽𝑖

2 − 𝐶3) 𝑐𝑜𝑠(𝛽𝑖𝑧𝑖̅,𝑗) + 𝛽𝑖(𝐶1𝛽𝑖
2 + 𝐶3) 𝑐𝑜𝑠ℎ(𝛽𝑖𝑧𝑖̅,𝑗) + (𝐶2𝛽𝑖

2 + 𝐶4) 𝑠𝑖𝑛ℎ(𝛽𝑖𝑧𝑖̅,𝑗)

+ (𝐶2𝛽𝑖
2 − 𝐶4) 𝑠𝑖𝑛(𝛽𝑖𝑧𝑖̅,𝑗)]

+
𝛽𝑖

2
∑ 𝛼𝑖,𝑘𝑊̃𝑖(𝑧𝑖̅,𝑘)[𝑠𝑖𝑛ℎ(𝛽𝑖(𝑧𝑖̅,𝑗  −  𝑧𝑖̅,𝑘)) − 𝑠𝑖𝑛(𝛽𝑖(𝑧𝑖̅,𝑗  −  𝑧𝑖̅,𝑘))]

𝑗−1

𝑘=1

ℋ(𝑧𝑖̅,𝑗  −  𝑧𝑖̅,𝑘) 

Eq.  46 

 Considering the same procedure for an assembly of jointed Euler-Bernoulli beams, but in this case with the 

presence of damages, the unknown integration constants will be reduced from 4𝑁 to 4 unknown coefficients, 

by enforcing the continuity conditions at each interface in terms of the mode shapes, which can be solve by 

imposing the boundary conditions. 

The results in this scenario are: 

𝐶𝑖+1,𝑟
(1)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 (𝐶𝑖,𝑟

(1)
𝛤𝑖,𝑟

(1)
+

1

𝛽𝑖,𝑟

𝐶𝑖,𝑟
(2)

𝛤𝑖,𝑟
(3)

+
1

𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(3)
𝛤𝑖,𝑟

(2)
+

1

𝛽𝑖,𝑟
3 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(4)
) + 𝛱𝑖,𝑟

(1)
 

Eq.  47 

𝐶𝑖+1,𝑟
(2)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 (𝛽𝑖,𝑟𝐶𝑖,𝑟

(1)
𝛤𝑖,𝑟

(4)
+ 𝐶𝑖,𝑟

(2)
𝛤𝑖,𝑟

(1)
+

1

𝛽𝑖,𝑟

𝐶𝑖,𝑟
(3)

𝛤𝑖,𝑟
(3)

+
1

𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(2)
) + 𝛱𝑖,𝑟

(2)
 

Eq.  48 

𝐶𝑖+1,𝑟
(3)

=
1

2
(𝛽𝑖,𝑟

2 𝐶𝑖,𝑟
(1)

𝛤𝑖,𝑟
(2)

+ 𝛽𝑖,𝑟𝐶𝑖,𝑟
(2)

𝛤𝑖,𝑟
(4)

+ 𝐶𝑖,𝑟
(3)

𝛤𝑖,𝑟
(1)

+
1

𝛽𝑖,𝑟

𝐶𝑖,𝑟
(4)

𝛤𝑖,𝑟
(3)

) + 𝛱𝑖,𝑟
(3)

 
Eq.  49 

𝐶𝑖+1,𝑟
(4)

=
1

2
(𝛽𝑖,𝑟

3 𝐶𝑖,𝑟
(1)

𝛤𝑖,𝑟
(3)

+ 𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(2)
𝛤𝑖,𝑟

(2)
+ 𝛽𝑖,𝑟𝐶𝑖,𝑟

(3)
𝛤𝑖,𝑟

(4)
+ 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(1)
) + 𝛱𝑖,𝑟

(4)
 

Eq.  50 

 where the functions 𝛤𝑖,𝑟
(1)

, 𝛤𝑖,𝑟
(2)

, 𝛤𝑖,𝑟
(3)

, 𝛤𝑖,𝑟
(4)

 are defined again as: 

𝛤𝑖,𝑟
(1)

= 𝑐𝑜𝑠(𝛽𝑖,𝑟𝐿𝑖) + 𝑐𝑜𝑠ℎ(𝛽𝑖,𝑟𝐿𝑖) Eq.  51 

𝛤𝑖,𝑟
(2)

= 𝑐𝑜𝑠ℎ(𝛽𝑖,𝑟𝐿𝑖) − 𝑐𝑜𝑠(𝛽𝑖,𝑟𝐿𝑖) Eq.  52 

𝛤𝑖,𝑟
(3)

= 𝑠𝑖𝑛ℎ(𝛽𝑖,𝑟𝐿𝑖) + 𝑠𝑖𝑛(𝛽𝑖,𝑟𝐿𝑖) Eq.  53 

𝛤𝑖,𝑟
(4)

= 𝑠𝑖𝑛ℎ(𝛽𝑖,𝑟𝐿𝑖) − 𝑠𝑖𝑛(𝛽𝑖,𝑟𝐿𝑖) Eq.  54 

 and the dimensionless quantities: 

𝛾̃𝑖 =
𝐸𝐼𝑖+1

𝐸𝐼𝑖

 
Eq.  55 

𝛿𝑖 =
𝛽𝑖+1

𝛽𝑖

 
Eq.  56 

 Moreover, the functions 𝛱𝑖,𝑟
(1)

, 𝛱𝑖,𝑟
(2)

, 𝛱𝑖,𝑟
(3)

 and  𝛱𝑖,𝑟
(4)

 are defined as: 
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𝛱𝑖,𝑟
(1)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 [∑ {𝛼𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖 [𝑠𝑖𝑛ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

2
∑ {𝛼𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑠𝑖𝑛ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  57 

  

 

  

where 𝑛𝑖 and 𝑛𝑖+1, are the number of cracks for the 𝑖th and (𝑖 + 1)th beam respectively. 

Finally, ℋ(𝑧𝑖) denotes the Heaviside unit step function (which also corresponds to the primitive of the Dirac 

delta function centered at zero): 

ℋ(𝑧𝑖) = 𝛿𝑖
[1](𝑧𝑖) = ∫ 𝛿(𝜉𝑖)𝑑𝜉𝑖

𝜁

−∞

= {

0, 𝑧𝑖 < 0;
1

2
,  𝑧𝑖 = 0; 

1, 𝑧𝑖 > 0.

 

Eq.  61 

 

2.1.3 Numerical application (2.1) – Step changes in material:  
 

𝛱𝑖,𝑟
(2)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 [∑ {𝛼𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖

2 [𝑐𝑜𝑠ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) − 𝑐𝑜𝑠(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

2

2
∑ {𝛼𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑐𝑜𝑠ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) − 𝑐𝑜𝑠(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  58 

𝛱𝑖,𝑟
(3)

=
1

2
[∑ {𝛼𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖

3 [𝑠𝑖𝑛ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) + 𝑠𝑖𝑛(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

3

2
∑ {𝛼𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑠𝑖𝑛ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) + 𝑠𝑖𝑛(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  59 

𝛱𝑖,𝑟
(4)

=
1

2
[∑ {𝛼𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖

4 [𝑐𝑜𝑠ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) + 𝑐𝑜𝑠(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

4

2
∑ {𝛼𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑐𝑜𝑠ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) + 𝑐𝑜𝑠(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  60 

Figure 2. 2: Numerical application (2.1) - Model 
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The first numerical application, in order to examine the validity of the proposed expressions, is a simply 

supported beam with three different segments, each one of them described by a different density and Young’s 

modulus, and a single crack at the middle. The properties of the beam-type bridge are: 

 

 

All the beams have a square cross-section of sides ℎ = 20 𝑐𝑚 and the crack has a depth of 𝑑2,1 = 0.15 𝑐𝑚 

located at the 2nd beam at the location 𝑧2 = 5 𝑚. This means that the equivalent stiffness coefficient is equal 

to  𝐾2,1 = 8000 kN m , and the corresponding damage parameter is equal to 𝑎2,1 = 3.33.  

Boundary Conditions: 

𝛭̃𝑟(0) = 𝛷̃𝑟(0) = 0 Eq.  62 

𝛭̃𝑟(𝐿) = 𝛷̃𝑟(𝐿) = 0 Eq.  63 

To verify the results of the eigenfrequencies and the mode shapes, a Finite Element (FE) model has been built 

in SAP2000, by applying a release partial fixity at the crack location. The results of the five first 

eigenfrequencies for both the Undamaged and Damaged case are: 

 

 

The results are compared to those yielded by SAP2000, together with the percentage error, defined as: 

Table 2. 1: Numerical application (2.1) - Properties of the model 

Properties Beam 1 Beam 2 Beam 3 

Length [m] 10 10 10 

Density [kg/m3] 7800 7400 7000 

Young’s modulus [kN/m2] 2.10x108 2.00x108 1.90x108 

Table 2. 2: Numerical application (2.1) - Eigenfrequencies from Proposed Expressions and SAP2000 – Undamaged case 

Eigenfrequencies 
Undamaged case 

Proposed expressions 
(rad/sec) 

SAP2000 (rad/sec) Error (%) 

1 3.2914 3.2900 -0.0425 

2 13.1672 13.1661 -0.0083 

3 29.6257 29.6157 -0.0337 

4 52.6675 52.6002 -0.1279 

5 82.2940 82.2205 -0.0894 

Eigenfrequencies 
Damaged case 

Proposed expressions 
(rad/sec) 

SAP2000 (rad/sec) Error (%) 

1 2.9766 2.9755 -0.0369 

2 13.1671 13.1635 -0.0273 

3 27.1896 27.1770 -0.0463 

4 52.6676 52.6201 -0.0898 

5 76.3745 76.2489 -0.1647 

Table 2. 3: Numerical application (2.1) - Eigenfrequencies from Proposed Expressions and SAP2000 – Damaged case 

𝜀(%) = (
𝜔𝑆𝐴𝑃2000 − 𝜔𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝜔𝑆𝐴𝑃2000

) ∗ 100 Eq.  64 
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where 𝜔𝑆𝐴𝑃2000 is the frequency yielded by SAP2000, while 𝜔𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 is the one obtained with the proposed 

method. 

The results are in a very good agreement with an error below 0.05% for the first 3 eigenfrequencies and below 

0.15% for the 4th and the 5th eigenfrequencies. SAP2000 uses the finite element approach, which provides 

approximated values of the natural frequencies even if a dense mesh is considered. This means that the 

proposed expression, that were derived in this thesis project, can predict accurately the eigenfrequencies of 

this model and consequently of any other similar model with different parameters or number of segments or 

number of cracks or different boundary conditions. As expected, the 2nd and the 4th eigenfrequencies are 

hardly affected by the presence of the crack, as the crack is located close to the point where the deflection is 

always zero (in this case it is not exactly at the middle because of the step changes in material of the bridge). 

Next step will be to verify the mode shapes, normalized so that the maximum deflection would be equal to 

one(1). The first 5 mode shapes are presented, calculated with both SAP2000 and the proposed expressions, 

for the Undamaged case as well as the Damaged case.  

The results for the shape of the mode shapes with the proposed expressions seem to coincide with the ones 

calculated from the finite element model in SAP2000. For the 1st , the 3rd and the 5th mode shape a kink is 

present exactly at the location of the crack, being the main difference with the Undamaged case. This kink is, 

of course, more and more noticeable when the intensity of the crack increases. In this case that the depth of 

the crack is equal to 75% of the beam’s height, the difference with the Undamaged case is easily noticed. 

Another difference, for the 3rd and the 5th mode shapes, is the location of the maximum deflection. For the 

Undamaged case the maximum value of deflection is located at Beam (3) with the minimum value of Young’s 

modulus, as for the Damaged case that value is observable at the location of the crack, indicating the critical 

location of the bridge. For the remaining mode shapes, namely the 2nd and the 4th , are the same for the 

Undamaged and the Damaged cases for the same reason explained before for the eigenfrequencies. 
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Figure 2. 3: Deflection of the first 5 mode shapes - Comparison: Proposed expressions - SAP2000 
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2.2 How to obtain a closed-form solution for the mode shapes for any number of cracks, 

multiple step changes in material, arbitrary boundary conditions and internal/external 

translational and rotational springs? 
 

2.2.1 Main objective: A single expression of the solution which depends only on 4 integration 

constants associated with the boundary conditions and one additional condition for each external or 

internal spring at the discontinuities. 
Steps: 

1. Closed-form expressions of these 4 constants will be derived 

2. The solution will be verified using the Finite Element Method 

 

Natural frequencies and mode shapes of Euler-Bernoulli beams with multiple cracks and flexible 

boundary and interface conditions: 

 

Consider now a jointed damaged Euler-Bernoulli beam with step changes in flexural stiffness with arbitrary 

boundary conditions, rotational and/or translational internal springs and/or external translational springs at 

the interface points. The procedure need now to be particularized to include the presence of internal 

translational, internal rotational and along-axis external translational springs which cause unknown variations 

of  𝛷̃𝑖,𝑟(𝑧0,𝑖), 𝛹̃𝑖,𝑟(𝑧0,𝑖), 𝑇̃𝑖,𝑟(𝑧0,𝑖) at the interface points. These unknown variations can be expressed as 

𝛥𝛷𝑖,𝑟,  𝛥𝛹𝑖,𝑟  and 𝛥𝑇𝑖,𝑟 meaning that the coefficients 𝐶1,𝑟
(1)

, 𝐶1,𝑟
(2)

. 𝐶1,𝑟
(3)

, 𝐶1,𝑟
(4)

, 𝛥𝛷𝑖,𝑟, 𝛥𝛹𝑖,𝑟 𝛥𝑇𝑖,𝑟 are evaluated by 

imposing the 4 boundary conditions together with one continuity condition for each spring. 

The internal rotational springs (stiffness 𝑘𝑟,𝑖), internal translational springs (stiffness 𝑘𝑡,𝑖),  along-axis external 

translational springs (stiffness 𝑘̅𝑡,𝑖) at the discontinuity interfaces can be expressed as: 

𝑀̃𝑖,𝑟(𝑧0,𝑖) = 𝑘𝑟,𝑖𝛥𝛹𝑖,𝑟 Eq.  65 

𝑇̃𝑖,𝑟(𝑧0,𝑖) = 𝑘𝑡,𝑖𝛥𝛷𝑖,𝑟 Eq.  66 

Figure 2. 4: Jointed EB beam with multiple step changes in material, arbitrary boundary conditions, along-axis  springs 
and internal rotational and translational springs at the discontinuities 
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 The continuity conditions at the interfaces, in this case, can be expressed in terms of the mode shape 

deflection, the slope, the bending moment and the shear force as: 

𝛷̃𝑖,𝑟(𝑧0,𝑖) + 𝛥𝛷𝑖,𝑟 = 𝛷̃𝑖+1,𝑟(0) Eq.  68 

𝛹̃𝑖,𝑟(𝑧0,𝑖) + 𝛥𝛹𝑖,𝑟 = 𝛹̃𝑖+1,𝑟(0) Eq.  69 

𝑀̃𝑖,𝑟(𝑧0,𝑖) = 𝑀̃𝑖+1,𝑟(0) Eq.  70 

𝑇̃𝑖,𝑟(𝑧0,𝑖) +  𝛥𝑇𝑖,𝑟 = 𝑇̃𝑖+1,𝑟(0) Eq.  71 

 Following the same procedure to derive the expressions of the constants, they can now be found as: 

𝐶𝑖+1,𝑟
(1)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 (𝐶𝑖,𝑟

(1)
𝛤𝑖,𝑟

(1)
+

1

𝛽𝑖,𝑟

𝐶𝑖,𝑟
(2)

𝛤𝑖,𝑟
(3)

+
1

𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(3)
𝛤𝑖,𝑟

(2)
+

1

𝛽𝑖,𝑟
3 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(4)
) + 𝛱𝑖,𝑟

(1)
 

Eq.  72 

𝐶𝑖+1,𝑟
(2)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 (𝛽𝑖,𝑟𝐶𝑖,𝑟

(1)
𝛤𝑖,𝑟

(4)
+ 𝐶𝑖,𝑟

(2)
𝛤𝑖,𝑟

(1)
+

1

𝛽𝑖,𝑟

𝐶𝑖,𝑟
(3)

𝛤𝑖,𝑟
(3)

+
1

𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(2)
) + 𝛱𝑖,𝑟

(2)
−

𝛥𝑇𝑖,𝑟

𝛽𝑖+1,𝑟
4 𝐸𝐼𝑖+1

 
Eq.  73 

𝐶𝑖+1,𝑟
(3)

=
1

2
(𝛽𝑖,𝑟

2 𝐶𝑖,𝑟
(1)

𝛤𝑖,𝑟
(2)

+ 𝛽𝑖,𝑟𝐶𝑖,𝑟
(2)

𝛤𝑖,𝑟
(4)

+ 𝐶𝑖,𝑟
(3)

𝛤𝑖,𝑟
(1)

+
1

𝛽𝑖,𝑟

𝐶𝑖,𝑟
(4)

𝛤𝑖,𝑟
(3)

) + 𝛱𝑖,𝑟
(3)

+ 𝛥𝛷𝑖,𝑟 
Eq.  74 

𝐶𝑖+1,𝑟
(4)

=
1

2
(𝛽𝑖,𝑟

3 𝐶𝑖,𝑟
(1)

𝛤𝑖,𝑟
(3)

+ 𝛽𝑖,𝑟
2 𝐶𝑖,𝑟

(2)
𝛤𝑖,𝑟

(2)
+ 𝛽𝑖,𝑟𝐶𝑖,𝑟

(3)
𝛤𝑖,𝑟

(4)
+ 𝐶𝑖,𝑟

(4)
𝛤𝑖,𝑟

(1)
) + 𝛱𝑖,𝑟

(4)
+ 𝛥𝛹𝑖,𝑟 

Eq.  75 

 It looks like that all the expressions are similar with the aforementioned procedure and the constants 

 𝐶1,𝑟
(2)

. 𝐶1,𝑟
(3)

, 𝐶1,𝑟
(4)

 are characterized with an additional term related to the local variation. In a similar fashion, 

other types of discontinuities can be treated, introducing additional terms to the expressions of the constants. 

Similarly with the previous procedure, the mode shape expression is used to evaluate the characteristic 

function and consequently each natural frequency and the corresponding mode shape. The system of 

equations, now, that need to solved is of 4 + 𝑚 equations, being 4 the number of boundary conditions and 𝑚 

equations for the 𝑚 unknown variations at the interfaces. 

Taking into account local reference system, numerical instabilities due to the presence of the hyperbolic 

functions in the evaluation of high order modes are reduced as it will be shown in the following numerical 

application. 

2.2.2 Numerical application (2.2) – Step changes in material, external/internal translational and 

rotational springs:  
The second numerical example consists of a beam-type bridge with three different concrete segments with a 

set of different parameters for each one of them. In this case, arbitrary boundary conditions will be examined 

(fixed left end and flexible right end), as well as the presence of more than one crack (2 cracks along the 1st 

Beam) and internal translational and rotational springs at the interface points. 

𝛷̃𝑖,𝑟(𝑧0,𝑖) = −
 𝛥𝑇𝑖,𝑟

𝑘̅𝑡,𝑖

 
Eq.  67 
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All the beams have a square cross-section of sides ℎ = 50 𝑐𝑚 and the cracks have a depth of 𝑑1,1 = 0.30 𝑐𝑚 

and 𝑑1,2 = 0.30 𝑐𝑚 located at the 1st Beam at the location 𝑧1̅,1 = 2.5 𝑚 and 𝑧1̅,2 = 5 𝑚. This means that the 

equivalent stiffness coefficient for both crack is equal to  𝐾1,1 =  𝐾 1,2 = 55357.14  𝑘𝑁 𝑚, and the 

corresponding damage parameter is equal to 𝑎1,1 = 𝑎2,2 = 2.92.  

Boundary conditions: 

Interface conditions:  

𝑇̃𝑟(𝑧0,𝑖) = 𝑘𝑡,1𝛥𝛷1,𝑟 Eq.  80 

𝑀̃𝑟(𝑧0,𝑖) = 𝑘𝑟,1𝛥𝛹1,𝑟 Eq.  81 

 where: 𝑘𝑡𝑒,1 = 100200
𝑘𝑁

𝑚
; 𝑘𝑡,1 = 150

𝑘𝑁

𝑚
 ; 𝑘𝑟,1 = 270

𝑘𝑁

𝑚
   

It is expected that the 2 cracks located at 𝑧1̿,1 = 2.5 𝑚 and 𝑧1̿,2 = 5𝑚 would change all the values of the 

eigenfrequencies this time as well as the shape of the mode shapes. 

The results of the five first eigenfrequencies for both the Undamaged and Damaged case are: 

 

 

Properties Beam 1 Beam 2 Beam 3 

Length [m] 7.5 7.5 7.5 

Concrete Type C25/30 C20/25 C20/25 

Density [kg/m3] 2548.54 2548.54 2548.54 

Young’s modulus [kN/m2] 3.10x107 3.00x107 2.90x107 

Table 2. 4: Numerical application (2.1) - Properties of the model 

𝛷̃𝑟(0) = 0 Eq.  76 

𝛹̃𝑟(0) = 0 Eq.  77 

𝑀̃𝑟(𝐿) = 0 Eq.  78 

𝛷̃𝑟(𝐿) = −
𝑇̃𝑟(𝐿)

𝑘𝑡𝑒,1

 
Eq.  79 

Figure 2. 5: Numerical application (2.2) - Model 
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The results are compared to those yielded by SAP2000, together with the percentage error, defined as: 

𝜀(%) = (
𝜔𝑆𝐴𝑃2000 − 𝜔𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝜔𝑆𝐴𝑃2000

) ∗ 100 Eq.  82 

 where 𝜔𝑆𝐴𝑃2000 is the frequency yielded by SAP2000, while 𝜔𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 is the one obtained with the proposed 

method. 

The eigenfrequencies found from the proposed expressions, derived in this thesis project, are in a very good 

agreement with the ones calculated using a FEM model in SAP2000. Specifically, the error for almost all the 

eigenfrequencies is below 0.5%, and this is only because in SAP2000 the approximated values of the natural 

frequencies are calculated, even if a dense mesh is considered. This means that the analytical expressions 

proposed in this thesis can also predict the eigenfrequencies of more complicate beam-type bridges, meaning 

multiple cracks, flexible boundary conditions and along-axis external and/or internal translational and 

rotational springs at the discontinuities. 

Next step will be to also verify the mode shapes, normalized so that the maximum deflection is equal to one(1). 

The results of the modal displacements for both the Undamaged and Damaged cases are presented: 

Table 2. 5: Numerical application (2.2) - Eigenfrequencies from Proposed Expressions and SAP2000 – Undamaged case 

Table 2. 6: Numerical application (2.2) - Eigenfrequencies from Proposed Expressions and SAP2000 – Damaged case 

Eigenfrequencies 
Undamaged case 

Proposed expressions 
(rad/sec) 

SAP2000 (rad/sec) Error (%) 

1 6.227 6.263 0.5748 

2 32.328 32.457 0.3974 

3 35.449 35.397 -0.1469 

4 107.053 107.095 0.0392 

5 197.028 196.677 -0.1785 

Eigenfrequencies 
Damaged case 

Proposed expressions 
(rad/sec) 

SAP2000 (rad/sec) Error (%) 

1 5.980 6.009 0.4826 

2 27.615 27.711 0.3464 

3 34.853 34.814 -0.112 

4 107.051 106.810 -0.2256 

5 153.249 153.252 0.0019 

Figure 2. 6: Deflection 1st Mode shape - Comparison: Proposed expressions - SAP2000 
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Figure 2. 9: Deflection 2nd Mode shape - Comparison: Proposed expressions - SAP2000 

Figure 2. 8: Deflection 3rd Mode shape - Comparison: Proposed expressions - SAP2000 

Figure 2. 7: Deflection 4th Mode shape - Comparison: Proposed Expressions - SAP2000 
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In this numerical application, again, the proposed expressions for the mode shapes can accurately predict the 

modal response as the results coincide with the ones found using a FEM model in SAP2000. A denser mesh 

was used, as mentioned before, close to the cracks and the discontinuities in order to be able to predict the 

results as accurate as possible. In contrast with the Numerical application (1), now all the mode shapes are 

affected due to the presence of the 2 cracks in the 1st Beam. Specifically, for each one of them, at the locations 

of the cracks 𝑧1̿,1 = 2.5 𝑚 and 𝑧1̿,2 = 5𝑚, there is a change in curvature because of the local reduction of 

flexural rigidity. These changes depend mainly on the intensity of the cracks, and for a crack’s depth of 60% 

the beam’s height as the cracks in this example, they are easily recognizable, meaning that the Damaged mode 

shapes should always be considered really carefully. 

All in all, considering the results of both numerical applications, deriving in this chapter the analytical 

expressions for the mode shapes, it was achieved to predict really fast and with accuracy, the dynamic 

characteristics of a beam-type bridges with: 

✓ Any number of step changes in material properties. 

✓ Any number of cracks per beam/segment. 

✓ Any type of boundary and interface conditions (flexible boundary conditions, along-axis springs and 

internal rotational and translational springs at the discontinuities). 

The next section is about using the same expressions in deterministic model updating methods and the so 

called Inverse Problem. Model updating can be achieved with analytical expressions in a more efficient way 

and that is the reason they are so commonly used in this field. An example of determining the location of a 

crack, knowing only its intensity, will follow by minimizing a cost function.  

Figure 2. 10: Deflection 5th Mode shape - Comparison: Proposed Expressions - SAP2000 
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2.3 Inverse Problem- Model updating  
 

2.3.1 How to use only the closed-form solutions for the mode shapes to detect a crack? 
In this final part, an introduction of the concepts of model updating and the so called “inverse problem” is 

presented so that the importance of the findings of this project, as well as the other damage identification 

techniques is properly demonstrated. The main objective of the Finite Element model updating is to modify 

the parameters of a FE model such as its output corresponds better with experimental observations of the 

structural behavior. But modifying the model in any FE software is a task which needs computational time and 

effort from the user. Every time changes are applied to the model, might be the properties of the beam or the 

crack(s) or the moving load(s), redesigning is needed as well as remeshing with proper attention. On the other 

hand, using analytical expressions that have been proven to accurately produce the results coming from any 

FE model, could be used to adjust the parameters as many times as needed quite faster. This is also the reason 

parametric design and the use of programming have been really efficient and useful tools for Structural Health 

Monitoring as well as many other engineering applications. 

Inverse problems like model updating and structural health monitoring may be considered as optimization 

problems, although a characteristic feature of the inverse problems is that they may be ill-posed. In reality, 

the errors that might be present and give rise to inaccuracies in the model predictions should be considered 

in order to achieve accurate results. That is the reason the use of probabilistic model updating techniques are 

really common in the field of SHM to take into account the possible uncertainties coming modelling errors, 

measurement noise, environmental causes and many more. The reader is advised to search in the literature 

probabilistic approaches using probability density functions (PDF) to the uncertain parameters to end up in 

the “posterior” PDF which contains both the uncertainty of the prior information as well as the uncertainty in 

the experimental data. 

Moreover, there are also deterministic model updating methods, where the objective is to determine a set of 

model parameters, associated with a certain physical model, using information contained in some 

experimental data. The optimal set of model parameters minimized the misfit between experimental data and 

model predictions, which is measured by a cost function [26]. 

In this project, a vibration-based model updating will be followed in order to show the importance of the so 

called “prior” knowledge coming from the use of analytical expressions to damage localization. Usually, one 

can produce this “prior” knowledge with analytical expressions by modifying the parameters as many times 

as possible in order to adjust the real measurements with one set of these parameters used. In this case, the 

same will happen making use of the expressions for the eigenfrequencies, derived in the beginning of this 

thesis, for a complicate beam-type damaged beam. The cost function is now modified as: 

𝐺(𝑎, 𝑠) = ∑ (
𝛥𝜔𝑖(𝑎, 𝑠)

𝜔𝑖
𝑈 −

𝛥𝜔𝑒𝑖

𝜔𝑒𝑖
𝑈 )

2

𝑖

 
Eq.  83 

The solution as mentioned before will come by minimizing the cost function as: 

𝐺̃(𝑠) = 𝑚𝑖𝑛 𝐺(𝑎, 𝑠) Eq.  84 

where, 𝑎 is the damage parameter described in equation [7] and 𝑠 is the location of the crack. 

In the first part of the summation in the expression of the cost function,  
𝛥𝜔𝑖(𝑎,𝑠)

𝜔𝑖
𝑈  , concerns the values coming 

from the analytical expressions derived in this project, where the nominator is equal to the difference of the 

eigenfrequency coming from the damaged beam and the one from the undamaged beam and the 
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denominator is equal to the natural frequency of the undamaged beam. The second part of the summation, 
𝛥𝜔𝑒𝑖

𝜔𝑒𝑖
𝑈 , describe exactly the same quantities but concerns the values from the experiments of a real scenario. 

2.3.2 Deterministic Model Updating – Problem statement 

Numerical application (2.3) – Step changes in material – Sensitivity Analysis:  

 

The properties of the model of this numerical application are the same with the ones of the numerical 

application (1.1).  

The aim of this example is to predict the location of the crack, assumed to be somewhere in the second beam 

segment (Beam 2), knowing only its intensity a priori. To accomplish that, the cost function as described before 

should be minimized in order to predict the location. As far as the second part of the summation in the cost 

function is concerned, because there are no experimental data/measurements available, the results coming 

from SAP2000 and the Finite Element Method will be used as pseudo-experimental data/measurements to 

test the reliability of this optimization procedure. These are: 

 

FEM results Damaged Undamaged 
ω1= 2.9755 3.29 
ω2= 13.1635 13.1661 
ω3= 27.177 29.6157 
ω4= 52.6201 52.6002 
ω5= 76.2489 82.2205 

 

Now, concerning the values coming from the analytical expressions, a sensitivity analysis will be performed, 

where the natural frequencies will be found for 3 different damage parameters 𝑎 and 9 different locations 

along Beam 2. This means that for each mode shape and eigenfrequency 27 values will be collected, something 

that analytical expressions makes it possible in an easy and really fast manner, in contrast with FE model 

updating where 27 different analyses should take place, correcting it every time.  

Table 2.7: Numerical application (2.3) – Pseudo-experimental measurements 

Figure 2. 11: Numerical application (2.3) – Model definition 
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In figure [2.12] the first 5 modal shapes of Beam 2 as part of the whole beam-type bridge are presented, 

normalized so that the maximum modal amplitude is equal to 1, in order to give a first impression of which of 

them will change, more or less, by placing the crack at a random location. 

 

Now in figure [2.13] the results of the sensitivity analysis are presented, showing in the vertical axis the 

percentage of the difference of the damaged and the undamaged case, over the value of the undamaged state 

for each set of damage parameter and crack location, 
𝛥𝜔𝑖(𝑎,𝑠)

𝜔𝑖
𝑈 , and in the horizontal axis the normalized crack 

location 𝑧/𝐿, where 𝐿 is the total length of the bridge. 

Three damage parameters 𝑎 are considered for a different depth of the crack, as: 

• 𝑑2,1 = 0.14 𝑐𝑚 -> 𝐾2,1 = 11868 kN m -> α2,1=1.36 

• 𝑑2,1 = 0.15 𝑐𝑚 -> 𝐾2,1 = 8000 kN m -> α2,1=3.33 

• 𝑑2,1 = 0.16 𝑐𝑚 -> 𝐾2,1 = 5000 kN m -> α2,1=5.93 

Nine different points were considered for the location of the crack at Beam 2: 

𝑧2 = 1 − 9 𝑚 

Figure 2. 12: Modal amplitude of the 2nd Beam for the first 5 mode shapes 
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As expected, when the damage parameter increases or equally the depth of the crack increases, then the 

modal amplitudes also increase. Moreover, it is observed once again that when the crack is located at the 

midpoint, the changes of the 2nd and the 4th natural frequency are equal to zero for every damage case. The 

same applies for the 5th mode shape where there are nodal points at the normalized location 0.4 and 0.6 of 

the total length of the beam so they also remain unaffected when the crack is located at these points. 

The next figures will indicate the solution of minimizing the cost function for each location using a different 

number of mode shapes every time (where 𝑖 : the number of eigenfrequency considered). Specifically, figure 

[2.14] where the values of all the 5 first mode shapes were considered in the summation in the formula of the 

cost function, the value when of 𝐺(𝑎, 𝑠) is qual to zero at the midpoint. This is exactly the point where the 

crack is located when the model of SAP2000 was considered and its results were used as pseudo-experimental 

data. This means that the localization of the damages was accomplished successfully by only knowing “a priori” 

its intensity. 

Figure [2.14] shows that the same conclusion can be derived from only using the 1st , the 3rd and the 5th mode 

shapes as they are the only ones affected by a crack at the midpoint in contrast of using different combinations 

of mode shapes, that make localization less feasible. 

Figure 2. 12: Sensitivity Analysis - The percentage of the difference of the damaged and undamaged eigenfrequency 
for the first 5 mode shapes versus the normalized crack location of the 2nd Beam 
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To conclude, the crack’s location using a deterministic model updating approach was accurately predicted 

knowing beforehand its intensity, thanks to the use of the analytical expressions of the eigenfrequencies that 

made the procedure of modifying the parameters easier and faster. Another remark was that by increasing 

the number of mode shapes considered, the possibility for accuracy is also increased as mode shapes contain 

Figure 2. 13: Cost function versus the normalized crack location for the 2nd Beam using a different number of 
eigenfrequencies (i) 
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nodal points that makes the identification of the crack more difficult. Finally, for the case that both location 

and intensity are unknown, or the uncertainties should be included in the analysis, then probabilistic model 

updating approaches should be considered to judge about the characteristics of the damage (localization, 

quantification). 
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Chapter 3  

3. Dynamic response of beam-type damaged bridges with time-invariant 

parameters under moving loads - Cracks identification (location, intensity) 
 

In this chapter, crack identification techniques will be presented in order to be able to draw conclusions about 

the optimization of the process and understand the differences from different quantities taken from indirect 

and direct monitoring. Moreover, to compare different ways of modelling damages by testing the same 

models but with different properties for the crack(s). Finally, to propose damage identification techniques that 

would not be affected when the complexity of the model increases, meaning the step changes in material that 

was discussed extensively in the previous chapter. 

Overall, the research sub-questions that will be discussed in this chapter are: 

• Which is the optimal measured quantity to detect a crack? 

• What would be the minimum depth of a crack to be identifiable? 

• Would the model of the crack affect the identification?  

• Would the number of cracks affect the identification? 

• Would the complexity of the beam-type bridge (varying rigidity) affect the identification? 

It is important to note that the realization of this chapter was only possible by deriving the new analytical 

expressions for the mode shapes in the previous chapter. One reason for that is by using these expressions in 

MAPLE and MATLAB, parameter investigation can be accomplished and many different damage scenarios 

could be tested in order to produce, as accurate as possible, results and conclusions. Another reason is that 

for examining the coupled problem of the moving vehicle and the bridge, it requires the calculation of the 

dynamic characteristics of the bridge and this is also demonstrated in the governing equations derived in this 

chapter and include the formula of the modal deflection. Finally, by using these expressions it was also possible 

to compare different ways of modelling the crack as they were derived in order to be able to consider any 

number of different beam segments and could be used as such to model the crack as a separate segment 

(influenced zone because of the presence of the crack) with different properties (reduced rigidity) than the 

rest of the bridge. 
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3.1 Governing equations 
 

In the following part, as the way to deal with multiple step changes in material and stiffness has already be 

discussed and in order to simplify the notation, a homogeneous Euler-Bernoulli beam is considered, with 

length 𝐿, mass density 𝜌, cross-section with area 𝐴, modulus of elasticity 𝐸, second moment of inertia 𝐼 and 

equivalent viscous damping coefficient 𝜇. The governing equations for the dynamic response of beam-type 

damaged bridges with time-invariant  parameters under moving loads will be derived, in order to be able to 

answer the research questions for crack identification (see also [27] ). 

The equation of motion is given as: 

𝐸𝐼
𝜕4𝑢(𝑧, 𝑡)

𝜕𝑧4
+ 𝜌𝛢

𝜕2𝑢(𝑧, 𝑡)

𝜕𝑡2
+ 𝜇

𝜕𝑢(𝑧, 𝑡)

𝜕𝑡
= ∑ 𝐹𝑗(𝑧, 𝑡)

𝑛

𝑗=1

 
Eq.  85 

 At the right hand side of the equation the vehicle is represented by a moving oscillator with mass 𝑚𝑗, viscous 

damping 𝑐𝑗 and elastic stiffness 𝑘𝑗. The summation term indicates that more than one oscillators might be 

present along the bridge, and they are supposed to be in permanent contact with the road surface. 

Moreover, the loading is equal to: 

𝐹𝑗(𝑧𝑖 , 𝑡) = 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑓𝑗(𝑡)𝛿(𝑧 − 𝑣𝑗𝑡) Eq.  86 

 where 𝑡 and 𝑧 denote the time and the spatial coordinate measured along the axis of the beam, 

respectively; 𝑣𝑗 is the moving speed of the oscillator; 𝑧𝑗,0 is the initial position of the moving oscillator at 𝑡 =

0; 𝑈[1 − (𝑧𝑗,0 + 𝑣𝑗𝑡)] being the unit step function so that 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)] = 0 when the oscillator reach 

the end of the bridge, meaning (𝑧𝑗,0 + 𝑣𝑗𝑡) > 𝐿, and 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)] = 1 while the oscillator moves along 

the bridge;      𝑓𝑗 is the reaction force transmitted by the 𝑗th oscillator and is located at the instantaneous 

position 𝑧𝑗(𝑡) = (𝑧𝑗,0 + 𝑣𝑗𝑡) and its expression will be given below. 

The solution of the governing equation could be obtained once again considering the classical modal analysis, 

as: 

Figure 3. 1: Euler-Bernoulli beam with step changes in material and multiple cracks, subjected to moving vehicle loads 
modelled as spring-mass systems 
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𝑢(𝑧, 𝑡) = ∑ 𝛷𝑟(𝑧)𝑞𝑟(𝑡)

∞

𝑟=1

 
Eq.  87 

 where 𝛷𝑟(𝑧) is the 𝑟th undamped mode shape of the damaged beam with the always-open cracks and 𝑞𝑟(𝑡) 

is the 𝑟th generalized coordinate. 

and an approximation of the solution considering a modal truncation: 

𝑢(𝑧, 𝑡) ≅ ∑ 𝛷𝑟(𝑧)𝑞𝑟(𝑡)

𝑁

𝑟=1

 
Eq.  88 

 Important to mention is that in order to calculate the dynamic response, for the mode shapes in the 

aforementioned formulas, the analytical expressions derived in this thesis project will be used for both the 

Undamaged and Damaged cases of the bridge. 

Now, similarly with the moving mass, substituting in the equation of motion, pre-multiplying both sides of the 

governing equation by 𝛷𝑟(𝑧) and integrating with respect to 𝑧 between 0 and 𝐿, the following expression with 

the time-dependent generalized coordinates is obtained: 

𝑞̈𝑟(𝑡) + 2𝜁𝑟𝜔𝑟𝑞̇𝑟(𝑡) + 𝜔𝑟
2𝑞𝑟(𝑡) = ∑ 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑓𝑗(𝑡)𝛷𝑟(𝑣𝑗𝑡)

𝑛

𝑗=1

 
Eq.  89 

 where the mode expression after using the Dirac delta properties is equal to: 𝛷𝑟(𝑣𝑗𝑡); 𝜁𝑟 is the modal damping 

ratio and it will be assumed constant in all vibration modes. 

The mode shape expression included in the equation above is orthonormal with respect with the mass per 

unit length 𝜌𝛢. This is just one of the most common procedure of scaling the modes, as well as scaling the 

modes such that the maximum value of the amplitude is unitary. This means that there is a free choice on the 

way of normalizing the eigenmodes as the final solution to the force problem is independent of the chosen 

method of normalization. 

 

The equation of motion of the 𝑗th moving oscillator, in terms of absolute displacement is given as: 

𝑚𝑗𝑢̈𝑣,𝑗(𝑡) = −𝑐𝑗[𝑢̇𝑣,𝑗(𝑡) − 𝑢̇𝑤,𝑗(𝑡)] − 𝑘𝑗[𝑢𝑣,𝑗(𝑡) − 𝑢𝑤,𝑗(𝑡)] Eq.  90 

  

where 𝑢𝑣,𝑗(𝑡) and 𝑢𝑤,𝑗(𝑡) are the absolute displacements of the lumped mass 𝑚𝑗 and of the ideal point wheel, 

respectively.  

 

The interaction force of the 𝑗th moving oscillator 𝑓𝑗(𝑡), will depend on both the spring-dashpot system and 

the weight of the oscillator and it can be expressed as: 
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𝑓𝑗(𝑡) = 𝑚𝑗𝑔 + 𝑘𝑗[𝑢𝑣,𝑗(𝑡) − 𝑢𝑤,𝑗(𝑡)] + 𝑐𝑗[𝑢̇𝑣,𝑗(𝑡) − 𝑢̇𝑤,𝑗(𝑡)] ⇒ Eq.  91 

𝑓𝑗(𝑡) = 𝑚𝑗[𝑔 − 𝑢̈𝑣,𝑗(𝑡)] Eq.  92 

 where 𝑔 is the intensity of the surrounding gravitational field. 

Assuming that there is no loss of contact between the moving oscillators and the surface of the bridge, the 

compatibility condition should hold at every instantaneous position 𝑧𝑗(𝑡) of every oscillator, according to the 

relationship: 

𝑢𝑤,𝑗(𝑡) = [𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑢(𝑧, 𝑡)]|
𝑧=𝑧𝑗(𝑡)

= 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑢(𝑧𝑗(𝑡), 𝑡)] Eq.  93 

 Moreover, the time derivative of the absolute displacement of the displacement of the wheel of the 𝑗th 

moving oscillator 𝑢𝑤,𝑗(𝑡), is calculated as: 

𝑢̇𝑤,𝑗(𝑡) = [
𝑑

𝑑𝑡
(𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑢(𝑧, 𝑡))]|

𝑧=𝑧𝑗(𝑡)
⇒ 

Eq.  94 

𝑢̇𝑤,𝑗(𝑡) =
𝜕 (𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑢(𝑧, 𝑡))

𝜕𝑡
|

𝑧=𝑧𝑗(𝑡)

+ 

+𝑧̇𝑗(𝑡)
𝜕 (𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑢(𝑧, 𝑡))

𝜕𝑧
|

𝑧=𝑧𝑗(𝑡)

⇒ 

Eq.  95 

 𝑢̇𝑤,𝑗(𝑡) = 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)] [
𝜕(𝑢(𝑧,𝑡))

𝜕𝑡
|

𝑧=𝑧𝑗(𝑡)
+ 𝑧̇𝑗(𝑡)

𝜕(𝑢(𝑧,𝑡))

𝜕𝑧
|

𝑧=𝑧𝑗(𝑡)
] 

Eq.  96 

  

Now, modifying the expressions above in terms of the generalized coordinates in accordance with the mode 

superposition method, we obtain: 

𝑢𝑤,𝑗(𝑡) = [𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)] ∑ 𝛷𝑟(𝑧𝑗(𝑡))𝑞𝑟(𝑡)

𝑁

𝑟=1

]|

𝑧=𝑧𝑗(𝑡)

 
Eq.  97 

Figure 3. 2: Definition of the Reaction force 
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𝑢̇𝑤,𝑗(𝑡) = 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)] [∑ 𝛷𝑟(𝑧𝑗(𝑡))𝑞̇𝑟(𝑡)

𝑁

𝑟=1

+ 𝑧̇𝑗(𝑡) ∑ 𝛷𝑟
′(𝑧𝑗(𝑡))𝑞𝑟(𝑡)

𝑁

𝑟=1

] 
Eq.  98 

 where the prime means the total derivative with respect to 𝑧, as: 

𝛷𝑟
′(𝑧𝑗(𝑡)) =

𝜕𝛷𝑟(𝑧(𝑡))

𝜕𝑧
|

𝑧=𝑧𝑗(𝑡)
 

Eq.  99 

 After the last calculations, the expression governing the motion of the oscillators, for every single mode 𝑟, 

can be rewritten as: 

𝑚𝑗𝑢̈𝑣,𝑗(𝑡) + 𝑐𝑗𝑢̇𝑣,𝑗(𝑡) + 𝑘𝑗𝑢𝑣,𝑗(𝑡) = [𝑐𝑗𝑏𝑗,𝑟(𝑡) + 𝑘𝑗𝑎𝑗,𝑟(𝑡)]𝑞𝑟(𝑡) + 𝑐𝑗𝑎𝑗,𝑟(𝑡)𝑞̇𝑟(𝑡) Eq.  
100 

 where 𝑏𝑗(𝑡) and 𝑎𝑗(𝑡) are defined in order to simply the expression, as: 

𝑎𝑗,𝑟(𝑡) = 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝛷𝑟(𝑧𝑗(𝑡)) Eq.  
101 

𝑏𝑗,𝑟(𝑡) = 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑧̇𝑗(𝑡)𝛷𝑟
′(𝑧𝑗(𝑡)) Eq.  

102 

 where 𝑧̇𝑗(𝑡) is the velocity of the 𝑗th moving oscillator when in contact with the bridge at every time step 𝑡, 

equal with 𝑣𝑗 when the oscillator’s speed is constant. 

In the same manner, upon substitution of the expression of the motion at the ideal wheel point we can rewrite 

the expression of the interaction force, in terms of beam’s modal coordinates, as: 

𝑓𝑗(𝑡) = 𝑚𝑗𝑔 + 𝑘𝑗[𝑢𝑣,𝑗(𝑡) − 𝑎𝑗,𝑟(𝑡)𝑞𝑟(𝑡)] + 𝑐𝑗[𝑢̇𝑣,𝑗(𝑡) − 𝑎𝑗,𝑟(𝑡)𝑞̇𝑟(𝑡) − 𝑏𝑗,𝑟(𝑡)𝑞𝑟(𝑡)] Eq.  
103 

 Finally, upon substitution of the expression of the interaction force in the equation of motion of the beam, 

we can also rewrite it in the modal space, as: 

𝑴̂(𝑡)𝒒̈(𝑡) + 𝑫̂(𝑡)𝒒̇(𝑡) + 𝑲̂(𝑡)𝒒(𝑡) = 𝑭̂(𝑡) Eq.  
104 

where 𝑞(𝑡) is a 𝑁-dimensional array collecting the 𝑞𝑟(𝑡), while the modal damping 𝑫̂(𝑡) and stiffness 𝑲̂(𝑡) 

matrices are given by a constant term, arising from the beam plus a time-varying term due to the passage of 

the moving oscillators, as: 

𝑫̂(𝑡) = 𝑫̅ + 𝛥𝑫(𝑡) Eq.  
105 

𝑲̂(𝑡) = 𝑲̅ + 𝛥𝑲(𝑡) Eq.  
106 

 In this case, the modal mass is equal to: 

|𝑴̂(𝑡)|
𝑟𝑠

= 𝛿𝑟𝑠 Eq.  
107 

 It can be easily shown that each entry of 𝑫̂(𝑡) and 𝑲̂(𝑡) matrices is given by: 
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|𝑫̂(𝑡)|
𝑟𝑠

= 2𝜁𝑟𝜔𝑟𝛿𝑟𝑠 + ∑[𝛷𝑟(𝑣𝑡) 𝑐𝑗  𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝛷𝑟(𝑣𝑡)]

𝑛

𝑗=1

 
Eq.  
108 

|𝑲̂(𝑡)|
𝑟𝑠

= 𝜔𝑟
2𝛿𝑟𝑠 + 

+ ∑ 𝛷𝑟(𝑣𝑡) [𝑘𝑗 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝛷𝑟(𝑣𝑡) + 𝑐𝑗  𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝑧̇𝑗(𝑡)𝛷𝑟
′(𝑣𝑗𝑡)]

𝑛

𝑗=1

 

Eq.  
109 

 Lastly, the right hand side of the equation of motion is equal to: 

𝑭̂(𝑡) = 𝑈[𝐿 − (𝑧𝑗,0 + 𝑣𝑗𝑡)]𝛷𝑟(𝑣𝑡)[𝑚𝑗 𝑔 + 𝑐𝑗𝑢̇𝑣,𝑗(𝑡) + 𝑘𝑗𝑢𝑣,𝑗(𝑡)] Eq.  
110 

 Notice, of course, that the motion of the bridge and the vehicles (moving oscillators) are coupled. The solution 

of their expressions can be found with the help of any suitable step-by-step algorithm, in our case with the 

unconditionally stable Newmark’s β-method integration scheme which is described with the equations below: 

𝑴𝑢̈ + 𝑪𝑢̇ + 𝑲𝑢 = 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  Eq.  
111 

Using the extended mean value theorem: 

𝑢̇𝑛+1 = 𝑢̇𝑛 + 𝛥𝑡 𝑢̈𝛾 Eq.  
112 

𝑢̈𝛾 = (1 − 𝛾)𝑢̈𝑛 + 𝛾𝑢̈𝑛+1,        0 ≤ 𝛾 ≤ 1 Eq.  
113 

 𝑢𝑛+1 = 𝑢𝑛 + 𝛥𝑡 𝑢̇ + 0.5 𝛥𝑡2 𝑢̈𝛽 Eq.  
114 

𝑢̈𝛽 = (1 − 2𝛽)𝑢̈𝑛 + 2𝛽𝑢̈𝑛+1,        0 ≤ 2𝛽 ≤ 1 Eq.  
115 

For the unconditionally stable Newmark integration scheme, 𝛾 = 0.5 and  𝛽 = 0.25 

3.2 Which is the optimal measured quantity to detect a crack? What would be the 

minimum depth of a crack to be identifiable? 
 

In order to answer which is the optimal measured quantity to detect a crack, a sensitivity analysis is needed 

investigating the results of: 

• Oscillator’s Response - 𝑢𝑣,𝑗(𝑡), 𝑢̈𝑣,𝑗(𝑡) 

• Beam’s Response - 𝑢(𝑧, 𝑡) 

• Reaction force - 𝑓𝑗(𝑡) 

• Eigenfrequencies - 𝜔𝑖,𝑟 

Meaning that the optimal measurement will be found by looking at the changes of the Undamaged and 

Damaged cases of the bridge, specifically at the moving oscillator’s response (displacement, acceleration) , at 

the beam’s response and its modal characteristics and at the reaction force acting from the ideal point wheel 

of the moving oscillator to the surface of the bridge. 
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Numerical application (3.1) –  Investigation of different damage scenarios:  

Without further delay the numerical application is presented, where its results will be discussed in detail in 

order to draw conclusions about crack(s) identification. It concerns a simply-supported damaged bridge with 

one crack at the middle, located at the bottom side of the cross-section. The values of the moving oscillator, 

of the bridge and of the crack are presented on the tables below. 

As far as the crack is concerned, 6 different crack’s depth were considered ranging from 2% to 20% of the 

beam’s height, to be able to recognize the starting value, or equally the minimum intensity, where the crack 

will be identifiable. For each case the damage parameter (α) as well as the value of the stiffness of the 

rotational spring (representing the crack) are mentioned on the table below. 

. 

 

 

 

  

 

 

 

Table 3. 1: Numerical application (3.1) - Properties of the beam 

Properties Length 
- L (m) 

Density  - ρ 
[kg/m3] 

Cross-sectional 
area – A (m2) 

Young’s 
modulus - Ε 

(GPa) 

damping 
ratio - ζ 

Second moment 
of inertia – I (m4) 

Beam 100 13842.7 1.44 207 0.025 0.174 

Table 3. 2: Numerical application (3.1) - Properties of the moving oscillator 

Properties Mass -m (kg) Damping – c 
(Ns/m) 

Stiffness -k (N/m) Speed – v (m/s) 

Oscillator 1000 25130 3.96x106 11.1 

Table 3. 3: Numerical application (3.1) - Properties of the crack 

Properties Location - 
𝑧̅ (m) 

Depth d (m) – All 
cases 

Equivalent stiffness - K 
(kN/m)  x10-6 – Αll cases  

Damage parameter – α 
(m-1) – Αll cases 

Crack 50 0.024 / 0.06 / 0.096 
/ 0.132 / 0.18 / 0.24 

655.18 / 250.08 / 148.88 / 
102.95 / 70.36 / 48.05 

0.055 / 0.144 / 0.242 / 
0.350 / 0.512 / 0.749 

Figure 3. 3: Numerical application (3.1) - Model 
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As the conclusions of this project need to be as accurate as possible, a fairly large bridge was considered (𝐿 =

100 𝑚), then the mass of the moving oscillator (𝑚 = 1000 𝑘𝑔) is less than the average mass of a car 

(𝑚 ≅ 1500 𝑘𝑔)  and its velocity 𝜈 = 11.1
𝑚

𝑠
 ≈ 40

𝑘𝑚

ℎ𝑟
 is less than the average speed of a car and also the one 

that cause smaller displacements at the bridge.  

This is also indicated in the next figure where at the vertical axis the maximum deflection of the bridge at the 

midpoint was calculated for 3 different values of the moving oscillator’s speed,  𝜈 = 11.1
𝑚

𝑠
, 𝜈 = 22.2

𝑚

𝑠
≈

80
𝑘𝑚

ℎ𝑟
 and 𝜈 = 33.3

𝑚

𝑠
≈ 120

𝑘𝑚

ℎ𝑟
  and at the horizontal axis the position of the moving oscillator is plotted until 

it reaches the end of the bridge. 

 

From figure [3.4] the effect of using a different speed for the moving vehicle is observed, as far as the midpoint 

displacement of the bridge is concerned at least, when increasing the velocity the displacement increases as 

well until a threshold value where the vehicle is going so fast , reaching the end of the bridge much quicker, 

that there is no time for the bridge to deform. That is the reason that for 𝜈 = 33.3
𝑚

𝑠
 the maximum midpoint 

deflection is less than the one when using 𝜈 = 33.3
𝑚

𝑠
.  Another way to explain it is that for 𝜈 = 22.2

𝑚

𝑠
 the 

vehicle is present for 50% more time (≈ 4.5 𝑠𝑒𝑐) at the bridge than for the case of 𝜈 = 33.3
𝑚

𝑠
 (≈ 3.0 𝑠𝑒𝑐). 

Knowing now all the values of the properties of the damage, the bridge and the vehicle all the results will be 

discussed in order to find the optimal quantity to detect crack(s).  

Starting with the eigenfrequencies of the bridge, the values for the 5 first modes are presented, for the 

Undamaged and all the Damaged cases (different crack depth), calculated by solving the expressions of the 

free vibrations problem and verified with a corresponding model in SAP2000. 

 

Figure 3. 4: Numerical application (3.1) - Midpoint Deflection versus Position of the moving oscillator - Sensitivity 
analysis for the speed of the moving oscillator 
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Mode 
number 

Undamaged Damaged 
d/h=2% 

Damaged 
d/h=5% 

Damaged 
d/h=8% 

Damaged 
d/h=11% 

Damaged 
d/h=15% 

Damaged 
d/h=20% 

1 1.3243 1.3235 1.3224 1.3211 1.3196 1.3175 1.3145 

2 5.2972 5.2972 5.2972 5.2972 5.2972 5.2972 5.2972 

3 11.9187 11.9122 11.9016 11.8901 11.8775 11.8587 11.8314 

4 21.1889 21.1889 21.1889 21.1889 21.1889 21.1889 21.1889 

5 33.1076 33.0895 33.0603 33.0284 32.9937 32.9421 32.8679 
Table 3. 4: Numerical application (3.1) - Eigenfrequencies for different Damage cases 

By looking at the results, a reduction of the 1st , the 3rd and the 5th value is presented for each damaged case 

and as expected that reduction increases proportionally with the increase of the crack’s depth or equally with 

the increase of the intensity of the crack. Because of the location of the crack, exactly at the midpoint of the 

bridge, the values of the 2nd and the 4th eigenfrequency remain the same for each and every case.  

Looking at the maximum value for the crack dept, equal to 20% of the beam’s height, the differences 

(
𝐷𝑎𝑚𝑎𝑔𝑒𝑑−𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
∗ 100) for the 1st , the 3rd and the 5th eigenfrequency are −0.74% , −0.73% and 

, −0.72%  respectively. 

On the other hand, these differences could not really be used to indicate that a crack is present or not as they 

are so small that any other possible reason can also be the cause for the same reduction. These causes were 

discussed in the introduction of this project and they are the reason why such small reductions could not be 

the optimal quantity for crack identification that this project is aiming to find.  

Moving now to the dynamic response of the beam, the midpoint displacement will be plotted for every time 

moment, until the moving oscillator reaches the end of the bridge.  

Figure 3. 5: Numerical application (3.1) - Midpoint Deflection versus Position of the moving oscillator - Damage cases 
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As expected, the values of the midpoint displacement increase as the crack’s depth increases varying, but not 

so much, from the Undamaged case. While the maximum value is present close to the time-moment that the 

moving oscillator reach the crack (𝑧 = 50𝑚), that observation depends mainly, as presented before, on the 

velocity of the vehicle and not so much on the location of the crack. Another way to see this, is by plotting the 

difference of the midpoint displacement of each Damaged case with the Undamaged one (𝐷𝑎𝑚𝑎𝑔𝑒𝑑 −

𝑈𝑛𝑎𝑚𝑎𝑔𝑒𝑑). 

Figure 3. 7: Numerical application (3.1) - Midpoint deflection (Difference with Undamaged case) versus Position 
of the moving oscillator – Damage cases 

Figure 3. 6: Numerical application (3.1) - Reaction force versus Position of the moving oscillator- Damage cases 
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Again, in figure [3.6] there is not a clear indication that the crack is located at the midpoint of the bridge, thus 

the beam’s dynamic deflection could not be the optimal quantity for crack identification that this project is 

aiming to find. 

Moving now to the next measurement which is the reaction force, as presented in figure [3.7] and with the 

equation [92] that defines it,  figure [3.7] is a plot showing the variation of the reaction force when the 𝑗th 

vehicle moves along the beam from the static force of the same vehicle (𝑓𝑗,𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑚 ∗ 𝑔 = 1000 ∗ 9.81 =

9810 𝑁) for the Undamaged and every Damaged case. 

Figure [3.7] follows the same notion as the beam’s displacement with the larger values located close to the 

midpoint, but in order to draw conclusions about what is happening at the location of the crack, another plot 

with the difference of the reaction force of each Damaged case with the Undamaged one (𝐷𝑎𝑚𝑎𝑔𝑒𝑑 −

𝑈𝑛𝑎𝑚𝑎𝑔𝑒𝑑) is presented. 

 

Looking at Figure [3.8] it seems that the reaction force is  a valuable quantity for crack identification as there 

are clear fluctuations of its values, starting exactly when the moving vehicle reach the location of the crack 

(𝑧 = 50𝑚),  and lasting for a small period of time until the curve becomes again as smooth as it was before. 

These fluctuations depend on the intensity of the crack or equally on the value of the stiffness of the rotational 

spring (representative of the crack) and are more observable, of course, as the crack’s depth increases. It 

seems that for the specific properties of the bridge and the oscillator, the cracks with a depth/height ≥ 5% 

could be identified having the measurements of the reaction force, where height is the one of the cross-section 

of the bridge. 

Moving to the moving oscillator’s dynamic response, the displacement 𝑢𝑣,𝑗(𝑡) will be first presented for the 

Undamaged and all the Damaged cases (different crack depths). 

 

Figure 3. 8: Numerical application (3.1) - Reaction Force (Difference with Undamaged case) -  versus the Position of the 
moving oscillator – Damage cases 
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Again, the displacement of the vehicle follows the same notion as the midpoint displacement curve but with 

a slightly higher values and going back almost to zero when the vehicle reach the end of the bridge in contrast 

with the beam that still vibrates. Now, the difference of the oscillator’s displacement of each Damaged case 

with the Undamaged one (𝐷𝑎𝑚𝑎𝑔𝑒𝑑 − 𝑈𝑛𝑎𝑚𝑎𝑔𝑒𝑑) is presented. 

Figure 3. 9: Numerical application (3.1) - Oscillator's Displacement versus Position of the moving oscillator - 
Damage cases 

Figure 3. 10: Numerical application (3.1) - Oscillator's Displacement (Difference with Undamaged case)  versus 
the Position of the moving oscillator - Damage cases 
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In figure [3.10] looking at each curve for each Damaged case, a kink is observed exactly at the middle of the 

bridge (𝑧 = 50𝑚) where the crack is located. That sudden change of curvature was expected by modelling 

the crack as a rotational spring where a drop of flexural rigidity is present. Like before, that kink is more and 

more observable and can easier be a sign of crack identification when the depth of the crack increases, and in 

this case for a depth/height ≥ 8%, the measurements could be used to identify the crack(s), where height is 

the one of the cross-section of the bridge. 

Finally, the last quantity that will be discussed in this project to find the optimal measurement to detect 

crack(s) is the moving oscillator’s acceleration 𝑢̈𝑣,𝑗(𝑡). Figure [3.11] shows the Undamaged as well as all the 

Damaged cases (different crack depth) for the vehicle’s acceleration until it reaches the end of the bridge. 

 

Figure 3. 11: Numerical application (3.1) - Oscillator's Acceleration versus the Position of the moving oscillator – Damage 
cases 

For the first time the graphs with the total values and not with the difference with the Undamaged case, 

already make clear where the crack is located. It is observed that there is a clear high increase of the values 

exactly at the location of the crack (𝑧 = 50𝑚), and the fluctuations last for approximately  0.5 𝑠𝑒𝑐, given the 

fact that the speed of the vehicle is 𝜈 = 11.1
𝑚

𝑠
. These changes will be more clear in the next figure where the 

difference of the oscillator’s acceleration of each Damaged case with the Undamaged one (𝐷𝑎𝑚𝑎𝑔𝑒𝑑 −

𝑈𝑛𝑎𝑚𝑎𝑔𝑒𝑑) is presented. 
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As expected, in figure [3.12] it becomes even more obvious that there is a sudden increase of flexibility at 

the middle of the bridge, indicating the presence of a crack. It also seems that the vehicle’s acceleration is 

the most sensitive quantity considering that the values calculated at the location of the crack for the 

Damaged cases are multiple times the value of the Undamaged case being much more clear than any other 

observation in all the other results. The value of the intensity of the crack, in this case, that could be 

identified given that the real measurements are known, is for a ratio of crack’s depth/height ≥ 2%, where 

height is the one of the cross-section of the bridge. 

• Which is the optimal measured quantity to detect a crack? 

By performing a sensitivity analysis for a simply-supported beam-type damaged bridge with one crack at the 

midpoint, different measurements were examined in order to answer which one will be the most sensitive for 

crack identification. After comparing the results for 6 different crack intensities the optimal measured quantity 

to detect a crack found to be the acceleration of the moving oscillator. The values of the minimum depth of a 

crack found to be identifiable by each one of the measurements, are mentioned below showing which are the 

most valuable to use. 

• What would be the value of the depth of a crack to be identifiable? 

The values mentioned here were calculated carefully and presented above with figures. It is important to say 

that even that these values were found for the specific problem and the specific properties of the bridge, 

vehicle and damage, the main conclusions about the optimal measured quantity and which would be the 

approximate minimum depth of the crack to be identifiable, are still valid for other models with different 

properties. 

The calculated ratio d/h, namely crack depth over the height of the cross-section of the bridge, for each 

measurement so that the crack will be identifiable is: 

 

Figure 3. 12: Numerical application (3.1) - Oscillator's Acceleration (Difference with undamaged case) versus Position of 
the moving oscillator – Damage cases 
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• Eigenfrequencies ≈ d/h> 15% 

• Reaction force: ≈ d/h=5% 

• Oscillator’s Displacement ≈ d/h=8% 

• Oscillator’s Acceleration ≈ d/h=2% 

 

3.3 Would the model of the crack affect the identification?  
 

In this section a different way of modelling the crack will be discussed in order to examine if the main 

conclusions found before are still valid and that the findings of this thesis project about crack identification 

hold for different ways of considering the damage in a bridge. In this way all the suggestions and 

recommendations of this project will be more valuable and could be used for other investigations without the 

dependence of the modelling of the damage. 

All the results calculated before concerned modelling the damage as a rotational spring at the location of the 

crack with a stiffness 𝐾𝑟 calculated with an empirical formula. The new way of modelling the damage is with 

a zone with a specific length (𝑡) with reduced flexural rigidity (𝐸𝐼) due to the presence of the crack. The two 

methods of modelling the crack are presented in figure [3.13], rotational spring (top) and a zone with reduced 

flexural rigidity (bottom). 

 As it has also been done considering the crack as a rotational spring, the analytical expressions of the mode 

shapes derived in the first part of this thesis will also be used for the new way of modelling the crack. In this 

case, only the expressions for the Undamaged case are important, solving the model in a stepwise manner. In 

fact, the same way of solving that was used for the bridge with step changes in material will also be used here, 

by considering now separately a beam segment with a different flexural rigidity than the rest of the bridge (a 

reduced one to be precise) with a length equal to (𝑡), representative of the zone influenced by the presence 

of the crack. The fact that this approach could be used makes even more important and helpful the analytical 

expressions for the mode shapes derived in the first part, as they are able to consider accurately  any number 

of these step changes in material in bridges. 

Figure 3. 13: Different ways of modelling a crack: Translational spring (top) - Influenced zone (bottom) 



49 
 

3.3.1 How could we obtain the same changes at the eigenfrequencies from the 2 methods? 

Influence zone (t) equal to? 
The value of the influence zone (t) is, indeed, a matter of discussion as it is really difficult to measure precisely 

the part (the length) of the bridge that is affected by one and only crack. Before using an empirical value and 

in order to get a first impression about the differences of the two ways of modelling the crack, the value of 

the influence zone (t) needed to achieve almost the same changes at the eigenfrequencies, will be measured. 

Specifically, the ratio of the influence zone over the beam’s height (𝑡/ℎ) will be calculated to get a sense of 

the physical model. 

As far as the numerical example of the simple supported beam with one crack located at the midpoint is 

concerned, using the analytical expressions derived in the beginning of this thesis project, after a number of 

repetitions for the value (𝑡), almost identical eigenfrequencies were found for the 2 different ways of 

modelling the crack for 6 different crack’s depth scenarios (from 2% to 20% of the beam’s height). 

 

 

The conclusion is that the influence zone was calculated equal to 65%-75% of the beam’s height, depending 

on the damaged case considered, meaning that for d/h=2% the influence zone (𝑡) over the crack’s depth (𝑑) 

is equal to 37.5 and for d/h=20% it is equal to 3.25. Knowing that it is not realistic that a length of 37.5 times 

the depth of the crack will be affected by such a small crack, the new method of modelling the crack (namely 

with a the zone of reduced rigidity - 𝐸𝐼) will lead to less sensitive identification results for the same measured 

quantities found before (reaction force, vehicle’s acceleration etc.). This conclusion will be, of course, verified 

in the next pages where for the same model the results of the measurements for the 2 ways of modelling the 

crack will be compared and discussed. 

3.3.2 Numerical application (3.2) - Comparison of different ways of modelling the crack  
The first step will be to verify the computational strategy followed for the two different methods of modelling 

the crack, namely as a rotational spring placed at the crack’s location or as an influenced length of the beam 

with decreased rigidity. This will be achieved by comparing the results of the Undamaged case that should 

coincide, as they describe the same physical model without the presence of any crack or a part with reduced 

rigidity. 

 

Mode 
number 

Undamaged Damaged 
d/h=2% => 
t/h=75% 

Damaged 
d/h=5%=> 
t/h=75% 

Damaged 
d/h=8%=> 
t/h=75% 

Damaged 
d/h=11%=> 

t/h=75% 

Damaged 
d/h=15%=> 

t/h=75% 

Damaged 
d/h=20%=> 

t/h=75% 

1 1.3243 1.3235 1.3224 1.3212 1.3198 1.3175 1.3145 

2 5.2972 5.2972 5.2972 5.2972 5.2972 5.2972 5.2972 

3 11.9187 11.9120 11.9020 11.8912 11.8783 11.8585 11.8324 

4 21.1889 21.1889 21.1889 21.1889 21.1889 21.1889 21.1889 

5 33.1076 33.0891 33.0613 33.0305 32.9962 32.9417 32.8707 

Table 3. 5: Eigenfrequencies for different Damage cases - Comparison of different ways of modeling the crack 
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. 

Indeed, the figures [3.14] , [3.15] showing the moving vehicle’s acceleration (modelled as spring-mass system) 

and the reaction force acting on top of the beam, verify that the plots for the two cases coincide. 

Figure 3. 15: Numerical application (3.2) - Verification of the models with a different way of modelling the crack – 
Oscillator’s Acceleration Undamaged case 

Figure 3. 14: Numerical application (3.2) -  Verification of the models with a different way of modelling the crack - 
Reaction Force – Undamaged case 
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Now, that the computational strategy followed is verified for both cases, the Damaged scenario should be 

compared in order to draw conclusions about the sensitivity of the identification techniques used in the 

previous numerical examples, about the new way of modelling the crack. The next three figures [] , [] indicate 

the most sensitive measurements derived from the motion of the vehicle (acceleration and displacement) and 

the reaction force, only for the case of 𝑑/ℎ = 15%, so that it will be more easy to compare the new method 

for a specific Damage scenario. Important to mention, that for all the numerical examples to follow the value 

of the influence zone will be equal to 3 times the crack’s depth (𝑡 = 3𝑑), meaning that the length influenced 

by the crack will be 1.5 times its depth for each of its side.  

Figure 3. 16: Numerical application (3.2) - Reaction Force (Difference with Undamaged case) versus Position of the 
moving oscillator – d/h=0.15 

Figure 3. 17: Numerical application (3.2) - Oscillator's Displacement (Difference with undamaged case) versus 
Position of the moving oscillator – d/h=0.15 
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Looking at the figures [3.16] , [3.17], [3.18] the assumption that was mentioned above, meaning that with the 

new way of modelling the crack the identification is less sensitive, is verified. The figures indicate the values 

of these quantities when calculating their difference with the Undamaged case in order to be able to 

distinguish the location of the crack. For each plot with the “orange” color, that represents the method of 

modelling the crack as a length with reduced rigidity, all the values are smaller than the ones of the first 

method (when the crack is modelled as a rotational spring). In addition, all the signs that were mentioned 

before for identification purposes, namely the fluctuations of the reaction force and the vehicle’s acceleration 

or the abrupt change of curvature at the graph of the vehicle’s displacement, are all now less sensitive when 

reaching the location of the crack. 

Figure 3. 18: Numerical application (3.2) - Oscillator's Displacement (Difference with undamaged case)  versus 
Position of the moving oscillator – d/h=0.15 

Figure 3. 19: Numerical application (3.2) - Oscillator's Acceleration (difference with undamaged case)  versus Position of 
the moving oscillator - d/h=0.02 
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It seems that by representing the crack just as a length of reduced rigidity, can be used again for identification 

purposes but the sensitivity of the results would be more dependent on the intensity of the damage, meaning 

that smaller cracks might be less or, worse, not at all identifiable. On the other hand, modelling the crack as a 

rotational spring exactly placed at the location of the crack will cause such a change of the momentum that 

could be even visible for really small cracks, as proved before for the case of the vehicle’s acceleration. Exactly 

this, is visible in figure [3.19] where the Damaged case of the minimum crack depth under investigation is 

considered (𝑑/ℎ = 2%). Even in this case, as far as the rotational spring is concerned there is a noticeable 

disruption the time-moment the moving vehicle reach the location of the crack in contrast with the new 

method where these fluctuations are so small that could not be used for crack(s) identification anymore.   

 

What would be the value of the depth of a crack to be identifiable? 

As the new way of modelling the crack leads to less sensitive identification measurements, a new minimum 

intensity for each quantity after a number of repetitions, thanks to the analytical expressions derived in this 

project. The new calculated ratio d/h, namely crack depth over the height of the cross-section of the bridge, 

for each measurement so that the crack will be identifiable is: 

• Eigenfrequencies ≈ d/h> 35% 

• Reaction force: ≈ d/h=8% 

• Oscillator’s Displacement ≈ d/h=10% 

• Oscillator’s Acceleration ≈ d/h=5% 

As it has already been proved, all these values are higher than the ones found for the case of modelling the 

crack with a rotational spring. 

 

3.4 Would the number of cracks affect the identification? 
 

Numerical application (3.3) – Two cracks present:  

This numerical application is about the same physical model (same properties of the beam and the moving 

vehicle) of the numerical application [3.1] but with the important change of adding another crack in order to 

test if the identification will be affected by the number of cracks present along the beam. Specifically, one 

crack is located at 𝐿/3 with a ratio 𝑑/ℎ = 15%, and one more is located at 2𝐿/3 with a ratio 𝑑/ℎ = 10%. All 

the values needed for the 2 ways of modelling the cracks are presented in Table [3.6], namely the value of the 

stiffness of the rotational spring and the damage parameter for the first method and the value of the influence 

zone for the second one. 

  

Properties 
Crack 

Location - 
𝑧̅ (m) 

Depth - 
d (m)  

Equivalent stiffness - 
K x10-6 (kN/m)  

Damage parameter – 
α (m-1)  

Influence zone – 
t 

(m) 

1 33.3  0.18 48.05 0.749 0.54 

2 66.6 0.132 70.36 0.512 0.396 

Table 3. 6: Numerical application (3.3) - Properties of the cracks 
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For this model, only the results coming from the moving vehicle’s acceleration will be plotted, being the 

most sensitive measurement as it was found before, but also because it is now important to prove if the 

identification methods still hold and not which is the optimal measurement for it. 

In figure [3.21] and [3.22] the total values of the oscillator’s acceleration and their difference with the 

Undamaged case are plotted, respectively. Both figures contain the graphs of both ways of modelling the crack 

in the analysis, to compare them. 

 

Figure 3. 20: Numerical application (3.3) – Model definition 

Figure 3. 21: Numerical application (3.3) - Oscillator's Acceleration versus Position of the moving oscillator - 2 cracks 
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Figure 3. 22: Numerical application (3.3) - Oscillator's Acceleration (Difference with undamaged case) versus Position of 
the moving oscillator - 2 cracks 

Looking at the results, when the moving vehicle reach each one of the crack, there are large fluctuations 

present at the graphs, indicating the location of the damage for both methods. Again, the difference of the 2 

methods is that the one concerning a length of reduced rigidity close to each crack, is less sensitive than the 

one of a rotational spring representing each crack. Another difference is that, even if the location of the 

crack(s) is more clear for the method with the rotational spring, the differences with the Undamaged case 

after passing the first crack are smaller than the other method, because of the fact that the rotational spring 

concerns a specific point of the beam and after a while the values always tend to return to the values of the 

Undamaged case. 

All in all, it is noticed that the validity of the identification still holds for more than one crack present along the 

beam and all the conclusions already mentioned before about the measurements could be used for any 

number of cracks. 

 

3.5 Would the complexity of the beam-type bridge (varying rigidity) affect the identification? 
 

Numerical application (3.4):  

In this numerical application the identification of the crack will be tested for the case of increased complexity 

as far as the bridge is concerned. Specifically, as it was also done before in this project, the case of a beam-

type bridge with step changes in material will be considered, for the model of a simply-supported bridge with 

one crack at the midpoint. The values of the measurements will be found for both methods in order to validate 

the identification without the dependence of the way of modelling the crack.  

Note that for the case of the “reduced stiffness” method, 5 different beam segments are considered, and the 

solution will come from a stepwise use of the analytical expressions of the mode shapes derived for the 
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Undamaged case, just with a different value of length and rigidity. Again the influence zone (t) will be equal to 

3 times the depth of the crack. The properties of the model are presented below. 

 

 

 

 

 

Table 3. 7: Numerical application (3.4) - Properties of the Beams 

Properties Beam 1 Beam 2 Beam 3 

Length [m] 100/3 100/3 100/3 

Density [kg/m3] 7800 7400 7000 

Young’s modulus [kN/m2] 2.10x108 2.00x108 1.90x108 

Properties Mass -m (kg) Damping – c 
(Ns/m) 

Stiffness -k (N/m) Speed – v (m/s) 

Oscillator 1000 25130 3.96x106 11.1 

Table 3. 8: Numerical application (3.4) - Properties of the moving oscillator 

Properties 
 

Location - 
𝑧̅ (m) 

Depth - 
d (m)  

Equivalent stiffness - 
K x10-6 (kN/m)  

Damage parameter – 
α (m-1)  

Influence zone – 
t 

(m) 

Crack 50  0.132 70.36 0.512 0.396 

Table 3. 9: Numerical application (3.4) - Properties of the crack 

Figure 3. 23: Numerical application (3.4) - Model definition 
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Figure 3. 24: Numerical application (3.4) - Oscillator's Displacement (Difference with undamaged case) versus Position of 
the moving oscillator – d/h=0.10 

 

Figure 3. 25: Numerical application (3.4) – Reaction Force (Difference with undamaged case) versus Position of the 
moving oscillator – d/h=0.10 
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Figures [3.24], [3.25] indicate that the identification of the location of the crack still holds for a beam-type 

bridge with increased complexity, namely three different beam segments with different properties. Again, 

using the “reduced stiffness” method the values are smaller when comparing the difference with the 

Undamaged case, and the results are generally less sensitive when the moving vehicle passes on top of the 

location of the crack. 

 

 

Figure 3. 26: Numerical application (3.4) - Oscillator's Acceleration (Difference with undamaged case) versus Position of 
the moving oscillator – d/h=0.10 

The same applies for the vehicle’s acceleration in Figure [3.26], the one that found to be the most sensitive 

measurement, where an abrupt disruption of the values is present exactly at the location of the crack, 

indicating the loss of rigidity due to the damaged material. 

To sum up, using the governing equations derived in this thesis project and the novel analytical expressions 

for the mode shapes combined with the knowledge of the optimal measurement for identification purposes 

and the minimum crack depth that is identifiable, it is possible to deal with any beam-type bridge with any 

number of step changes in material and/or any number of cracks. This makes the findings of this research 

extremely useful for crack(s) identification and could be used for the structural health monitoring of existing 

bridges, with the proper knowledge and judgement of the people involved. 
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Chapter 4  

4. Dynamic response of beams with switching cracks under moving 

vehicle loads  
 

In this chapter, the dynamic response of beam-type bridges with switching cracks under moving vehicle loads 

will be discussed in order to investigate models with crack(s) with time-variant properties. To do that, the new 

analytical expressions derived in Chapter 2 will be modified, by introducing a Boolean variable, to be able to 

account for the opening/closing of one or more cracks along the bridge. Then, a computational strategy is 

presented which describes the procedure to calculate the dynamic response of such models, incorporating 

new terms as “transition instant” and “open cracks distribution” that are explained thoroughly in this chapter.  

Furthermore, the computational strategy is verified by comparing the results from MATLAB, where the new 

analytical expressions were used, with the results from a finite element model in SAP2000. The outcomes of 

these analyses agree with the existing research in literature and at the same time improve the capabilities of 

the model because of the nature of the analytical expressions to be able to deal with any type of beam bridge. 

Finally, as predicting the dynamic response of damages with time-varying properties is now possible, it is 

calculated and compared with the response coming from the widely adopted always-open crack model and 

with the undamaged model to draw conclusions about the main differences between crack(s) with time-

variant or time-invariant properties and how these affect the damage identification techniques examined in 

the previous chapter. 

All in all, the research sub-questions to be discussed in this chapter, are: 

• How to model the switching crack in the Euler-Bernoulli beam? 

• How to exploit closed-form solutions of the mode shapes to account for the switching cracks? 

• How to evaluate the open cracks distribution at a time instant?  

• Are the always-open or always-closed crack distributions the boundaries for the switching crack 

model? 

• What would be the differences in damage identification when using the switching crack model 

instead of the widely adopted always-open crack model? 
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4.1 How to model the switching crack in the Euler-Bernoulli beam? 
 

In this part, the way that the switching crack will be incorporated in the governing equations of an Euler-

Bernoulli beam, will be discussed.  

Consider first the case of a damaged beam, with cracks specified by a vector 𝜦𝑖 with entries 𝜆𝑖,𝑗 equal to 1 if 

the 𝑗th crack is open, or 0 if the 𝑗th crack is closed (undamaged), so that the transversal deflection of the 𝑖th 

beam is indicated with 𝑢(𝑧𝑖, 𝑡, 𝜦𝑖). 

Now, the mode superposition method can be applied by considering the mode shapes of the 𝑖th beam 

damaged beam as: 

𝑢(𝑧𝑖 , 𝑡, 𝜦𝑖) = ∑ 𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)

∞

𝑟=1

 
Eq.  
116 

 where 𝛷𝑖,𝑟(𝑧𝑖, 𝜦𝑖) is the 𝑟th mode shape of the 𝑖th damaged beam with open cracks specified  by the vector 

𝜦𝑖 and 𝑞𝑖,𝑟(𝑡) is the 𝑟th generalized coordinate. Considering a modal truncation: 

𝑢(𝑧𝑖 , 𝑡, 𝜦𝑖) ≅ ∑ 𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)

𝑁

𝑟=1

 
Eq.  
117 

 Where N is the number of modes which are included  in the modal expansion and a sufficient number should 

be included to minimize the error in the response calculation. 

Substituting in the governing equation: 

∑[𝐸𝐼(𝑧𝑖)𝛷𝑖,𝑟
′′ (𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)]

′′
+

𝑁

𝑟=1

𝜌𝑖𝐴𝑖 ∑ 𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞̈𝑖,𝑟(𝑡)

𝑁

𝑟=1

= 0 
Eq.  
118 

 The flexibility model is now modified for switching cracks which considers a crack as open or closed depending 

on the sign of the elastic axial strain calculated at the crack center and the side where the crack is located. The 

dimensionless bending flexibility of the beam, is now defined as: 

𝐸𝐼̃(𝑧𝑖)−1 = 1 + ∑ 𝛼𝑖,𝑗𝜆𝑖,𝑗𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

 
Eq.  
119 

 where 𝑛 is the number of cracks, the 𝑗th one occurring at the abscissa 𝑧𝑖̅,𝑗, 𝛿(𝑧𝑖 − 𝑧𝑖̅,𝑗) is the Dirac delta 

function centered at the 𝑗th crack position; 𝜆𝑖,𝑗 is the so-called switching crack variable that is a Boolean 

variable which takes the values of 1 if the crack is open and 0 if the crack is closed;  𝛼𝑖,𝑗 is a parameter related 

to the severity of the damage at 𝑧𝑖 = 𝑧𝑖̅,𝑗. 

The transition from open to closed in the static analysis of jointed damaged Euler-Bernoulli beams is expressed 

as: 

𝜆𝑖,𝑗 = {
0, 𝜀𝑖̃,𝑗 ≤ 0 

1, 𝜀𝑖̃,𝑗 > 0 
 

Eq.  
120 

 where 𝜀𝑖̃,𝑗 is the elastic axial strain at the 𝑗th crack of the 𝑖th beam (positive if the fibre at the center of the 

crack is stretching; negative if it is compressing), which is given by: 

𝜀𝑖̃,𝑗 =
𝑁(𝑧𝑖̅,𝑗)

𝐸𝐴𝑖,0

+
𝑀(𝑧𝑖̅,𝑗)

𝐸𝐼𝑖,0

𝑦̅𝑖,𝑗  
Eq.  
121 
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where 𝑁(𝑧𝑖̅,𝑗) is the axial force at 𝑧𝑖 = 𝑧𝑖̅,𝑗 (which is positive in tension and negative in compression); 𝐸𝐴0 is 

the axial rigidity (where 𝐴0 is the undamaged cross-sectional area); 𝑀(𝑧𝑖̅,𝑗) is the bending moment about the 

neutral axis; 𝑦̅𝑖,𝑗 is the distance between the neutral axis and the 𝑗th crack at the 𝑖th beam: When 𝑦̅𝑖,𝑗 > 0, 

the 𝑗th crack occurs at the bottom side of the 𝑖th beam and it tends to open when the 𝑖th beam is sagging, 

while the opposite happens when 𝑦̅𝑖,𝑗 < 0.  When all 𝜆𝑖,𝑗 parameters are equal to 0, then an assembly of 

uncracked Euler-Bernoulli beams is considered and when all the parameters are set to 1, the always open 

cracks model is considered.  

In the absence of axial loading, the elastic axial strain can be written as: 

𝜀𝑖̃,𝑗 =
𝑀(𝑧𝑖̅,𝑗)

𝐸𝐼𝑖,0

𝑦̅𝑖,𝑗  
Eq.  
122 

 where 𝑀(𝑧𝑖̅,𝑗) = −𝐸𝐼(𝑧𝑖,𝑗)𝑢′′(𝑧𝑖,𝑗) = −𝐸𝐼(𝑧𝑖,𝑗) ∑ 𝛷𝑖,𝑟
′′ (𝑧𝑖̅,𝑗, 𝜦𝑖)𝑞𝑖,𝑟(𝑡)𝑁

𝑟=1  

 

4.2 How to exploit closed-form solutions of the mode shapes to account for the switching 

cracks? 
 

In order to produce the closed-form expressions for the mode shapes in the case of the switching crack model, 

the expressions derived in the first part can be modified including now the Boolean variable 𝜆𝑖,𝑗. 

This means that for the damaged case with the switching crack model the analytical expressions for the mode 

shapes are given as: 

𝛷̃𝑖(𝑧𝑖 , 𝜦𝑖) =
1

2𝛽𝑖

[𝛽𝑖(𝐶3 − 𝐶1𝛽𝑖
2) 𝑐𝑜𝑠(𝛽𝑖𝑧𝑖) + 𝛽𝑖(𝐶1𝛽𝑖

2 + 𝐶3) 𝑐𝑜𝑠ℎ(𝛽𝑖𝑧𝑖) + (𝐶2𝛽𝑖
2 + 𝐶4) 𝑠𝑖𝑛ℎ(𝛽𝑖𝑧𝑖)

+ (𝐶4 − 𝐶2𝛽𝑖
2) 𝑠𝑖𝑛(𝛽𝑖𝑧𝑖)]

+
𝛽𝑖

3

2
∑ 𝛼𝑖,𝑗𝜆𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)[𝑠𝑖𝑛ℎ(𝛽𝑖(𝑧𝑖  −  𝑧𝑖̅,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖(𝑧𝑖  −  𝑧𝑖̅,𝑗))]ℋ(𝑧𝑖 − 𝑧𝑖̅,𝑗)

𝑛

𝑗=1

 

Eq.  
123 

 where, 

𝑊̃𝑖(𝑧𝑖̅,𝑗) =
1

2𝛽𝑖
3 [𝛽𝑖(𝐶1𝛽𝑖

2 − 𝐶3) 𝑐𝑜𝑠(𝛽𝑖𝑧𝑖̅,𝑗) + 𝛽𝑖(𝐶1𝛽𝑖
2 + 𝐶3) 𝑐𝑜𝑠ℎ(𝛽𝑖𝑧𝑖̅,𝑗) + (𝐶2𝛽𝑖

2 + 𝐶4) 𝑠𝑖𝑛ℎ(𝛽𝑖𝑧𝑖̅,𝑗)

+ (𝐶2𝛽𝑖
2 − 𝐶4) 𝑠𝑖𝑛(𝛽𝑖𝑧𝑖̅,𝑗)]

+
𝛽𝑖

2
∑ 𝛼𝑖,𝑘𝜆𝑖,𝑘𝑊̃𝑖(𝑧𝑖̅,𝑘)[𝑠𝑖𝑛ℎ(𝛽𝑖(𝑧𝑖̅,𝑗  −  𝑧𝑖̅,𝑘)) − 𝑠𝑖𝑛(𝛽𝑖(𝑧𝑖̅,𝑗  −  𝑧𝑖̅,𝑘))]

𝑗−1

𝑘=1

ℋ(𝑧𝑖̅,𝑗  −  𝑧𝑖̅,𝑘) 

Eq.  
124 

 The same applies for the analytical expressions derived for the unknown integration constants, found by 

enforcing the continuity conditions at each interface point. The only differences, that indicate the presence of 

switching cracks and not the always-open cracks, are the functions 𝛱𝑖,𝑟
(1)

, 𝛱𝑖,𝑟
(2)

, 𝛱𝑖,𝑟
(3)

 and  𝛱𝑖,𝑟
(4)

, which are now 

given as: 

𝛱𝑖,𝑟
(1)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 [∑ {𝛼𝑖,𝑗𝜆𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖 [𝑠𝑖𝑛ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

2
∑ {𝛼𝑖+1,𝑗𝜆𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑠𝑖𝑛ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) − 𝑠𝑖𝑛(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  
125 
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𝛱𝑖,𝑟
(2)

=
1

2𝛾̃𝑖,𝑟𝛿𝑖,𝑟
4 [∑ {𝛼𝑖,𝑗𝜆𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖

2 [𝑐𝑜𝑠ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) − 𝑐𝑜𝑠(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

2

2
∑ {𝛼𝑖+1,𝑗𝜆𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑐𝑜𝑠ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) − 𝑐𝑜𝑠(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  
126 

𝛱𝑖,𝑟
(3)

=
1

2
[∑ {𝛼𝑖,𝑗𝜆𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖

3 [𝑠𝑖𝑛ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) + 𝑠𝑖𝑛(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

3

2
∑ {𝛼𝑖+1,𝑗𝜆𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑠𝑖𝑛ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) + 𝑠𝑖𝑛(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  
127 

𝛱𝑖,𝑟
(4)

=
1

2
[∑ {𝛼𝑖,𝑗𝜆𝑖,𝑗𝑊̃𝑖(𝑧𝑖̅,𝑗)𝛽𝑖

4 [𝑐𝑜𝑠ℎ (𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗)) + 𝑐𝑜𝑠(𝛽𝑖(𝐿𝑖  −  𝑧𝑖̅,𝑗))]}

𝑛𝑖

𝑗=1

]

−
𝛽𝑖+1

4

2
∑ {𝛼𝑖+1,𝑗𝜆𝑖+1,𝑗𝑊̃𝑖+1(𝑧𝑖̅+1,𝑗) [𝑐𝑜𝑠ℎ (𝛽𝑖+1(𝑧𝑖̅+1,𝑗)) + 𝑐𝑜𝑠(𝛽𝑖+1( 𝑧𝑖̅+1,𝑗))]}

𝑛𝑖+1

𝑗=1

 

Eq.  
128 

  

 where 𝑛𝑖 and 𝑛𝑖+1, are the number of cracks for the 𝑖th and (𝑖 + 1)th beam respectively. 
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4.3 Dynamic response of beam-type bridges with switching cracks under moving vehicle 

loads 
 

4.3.1 Governing equations 

 

Figure 4. 1: Euler-Bernoulli beam with step changes in material and multiple cracks, subjected to moving vehicle loads 
modelled as moving masses 

Equation of motion for an Euler-Bernoulli beam: 

𝜕2

𝜕𝑧𝑖
2 [𝐸𝐼(𝑧𝑖)

𝜕2𝑢(𝑧𝑖 , 𝑡)

𝜕𝑧𝑖
2 ] + 𝜌𝑖𝐴𝑖

𝜕2𝑢(𝑧𝑖 , 𝑡)

𝜕𝑡2
= 𝐹(𝑧𝑖 , 𝑡) 

Eq.  
129 

 where the loading is equal to: 

𝐹(𝑧𝑖 , 𝑡) = 𝑚(𝑔 − 𝑎𝑖,𝑡)𝛿(𝑧𝑖 − 𝑣𝑡) Eq.  
130 

 where the Dirac delta function 𝛿(𝑧𝑖 − 𝑣𝑡) accounts for the position of the mass on the 𝑖th beam and therefore 

it specifies the excitation point, 𝑚𝑔 is a constant force corresponding to the weight of the moving mass, 𝑚𝑎𝑖,𝑡 

is a dynamic force due to the moving mass where 𝑎𝑖,𝑡 is the transverse acceleration of the moving mass which 

is given by: 

𝑎𝑖,𝑡 = (
𝜕2

𝜕𝑡2
𝑢(𝑧𝑖 , 𝑡) + 2𝜈

𝜕2

𝜕𝑧𝑖𝜕𝑡
𝑢(𝑧𝑖 , 𝑡) + 𝑣2

𝜕2

𝜕𝑧𝑖
2

𝑢(𝑧𝑖 , 𝑡)) 
Eq.  
131 

 The first term on the right hand side is the vertical component of the acceleration, the second term is the 

Coriolis acceleration and the last term corresponds to the centripetal acceleration of the moving mass. 

The solution was obtained, considering a modal truncation, as: 

𝑢(𝑧𝑖 , 𝑡, 𝜦𝑖) ≅ ∑ 𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)

𝑁

𝑟=1

 
Eq.  
132 

 where the deflection of the beam is given as a linear combination of time-dependent modal amplitudes and 

spatially-dependent mode shapes. The mode shapes calculated above were found considering an assembly of 

undamped beams, ignoring the presence of the moving object, since its mass is usually much lower than that 
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of the beam. If that was not the case, it would result to time-dependent mode shapes varying as the mass 

position is changing and therefore not allowing the application of the mode superposition method. 

Substituting the solution in the governing equation we obtain: 

∑[𝐸𝐼(𝑧𝑖)𝛷𝑖,𝑟
′′ (𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)]

′′
+

𝑁

𝑟=1

𝜌𝑖𝐴𝑖 ∑ 𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞̈𝑖,𝑟(𝑡)

𝑁

𝑟=1

= 𝐹(𝑧𝑖 , 𝑡) 
Eq.  
133 

 where the loading term is rewritten as: 

𝐹(𝑧𝑖 , 𝑡) = 𝑚 [𝑔 − ∑ 𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞̈𝑖,𝑟(𝑡)

𝑁

𝑟=1

− 𝑣2 ∑ 𝛷𝑖,𝑟
′′ (𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)

𝑁

𝑟=1

− 2𝜈 ∑ 𝛷𝑖,𝑟
′ (𝑧𝑖 , 𝜦𝑖)𝑞̇𝑖,𝑟(𝑡)

𝑁

𝑟=1

] 𝛿(𝑧𝑖 − 𝑣𝑡) 
Eq.  
134 

 Next step will be multiplying each term with 𝛷𝑖,𝑠(𝑧𝑖, 𝜦𝑖) and integrating along the length of the 𝑖th beam: 

∑ ∫ 𝛷𝑖,𝑠(𝑧𝑖 , 𝜦𝑖)[𝐸𝐼(𝑧𝑖)𝛷𝑖,𝑟
′′ (𝑧𝑖 , 𝜦𝑖)𝑞𝑖,𝑟(𝑡)]

′′
𝐿𝑖

0

𝑑𝑧𝑖 +

𝑁

𝑟=1

𝜌𝑖𝐴𝑖 ∑ ∫ 𝛷𝑖,𝑠(𝑧𝑖 , 𝜦𝑖)𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑞̈𝑖,𝑟(𝑡)𝑑𝑧𝑖

𝐿𝑖

0

𝑁

𝑟=1

= ∫ 𝛷𝑖,𝑠(𝑧𝑖 , 𝜦𝑖)𝐹(𝑧𝑖 , 𝑡)𝑑𝑧𝑖

𝐿𝑖

0

 

Eq.  
135 

 As the mode shape between two successive cracks can be described as that of the undamaged beam, the 

mode shape of a damaged beam can be considered as a superposition of the mode shapes of undamaged 

beams. Meaning, the orthogonality properties of the damaged beam mode shapes with respect to the mass 

and the stiffness hold, so that: 

𝜌𝑖𝐴𝑖 ∫ 𝛷𝑖,𝑠(𝑧𝑖 , 𝜦𝑖)𝛷𝑖,𝑟(𝑧𝑖 , 𝜦𝑖)𝑑𝑧𝑖

𝐿𝑖

0

= 𝑴𝑖,𝑟𝛿𝑟𝑠 
Eq.  
136 

∫ 𝛷𝑖,𝑠(𝑧𝑖 , 𝜦𝑖)[𝐸𝐼(𝑧𝑖)𝛷𝑖,𝑟
′′ (𝑧𝑖 , 𝜦𝑖)]

′′
𝑑𝑧𝑖

𝐿𝑖

0

= 𝑲𝑖,𝑟𝛿𝑟𝑠 
Eq.  
137 

 where 𝛿𝑟𝑠 is the Kronecker delta which is defined as: 

𝛿𝑟𝑠 = {
0, 𝑖𝑓 𝑟 ≠ 𝑠

 
1, 𝑖𝑓 𝑟 = 𝑠

 
Eq.  
138 

 and 𝑴𝑖,𝑟, 𝑲𝑖,𝑟 are respectively the modal mass and stiffness of the 𝑖th damaged beam and its 𝑟th damaged 

beam mode. These matrices are related as: 

𝑲𝑖,𝑟 = 𝜔𝑖,𝑟
2 𝑴𝑖,𝑟  Eq.  

139 

where 𝜔𝑖,𝑟 is the 𝑟th natural frequency of the 𝑖th damaged beam. After calculations we obtain for the 𝑟th 

beam mode of each 𝑖th damaged beam : 

𝑞̈𝑖,𝑟(𝑡) + 𝜔𝑖,𝑟
2 𝑞𝑖,𝑟(𝑡) =

1

𝛭𝑖,𝑟

∫ 𝛷𝑖,𝑠(𝑧𝑖 , 𝜦𝑖)𝐹(𝑧𝑖 , 𝑡)𝑑𝑧𝑖

𝐿𝑖

0

 
Eq.  
140 

 which represents a set of coupled second order differential equations. 

Considering a jointed EB beam with step changes in flexural stiffness, cross-section and density, these 

variations could be expressed with the generalized functions: 
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𝐸𝐼(𝑧) =  𝐸𝐼1(𝑧) + ∑[𝐸𝐼𝑖(𝑧 − 𝑧0̅,𝑖−1) − 𝐸𝐼𝑖−1(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑟=2

 
Eq.  
141 

𝐴(𝑧) =  𝐴1(𝑧) + ∑[𝐴𝑖(𝑧 − 𝑧0̅,𝑖−1) − 𝐴𝑖−1(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑟=2

 
Eq.  
142 

𝜌(𝑧) =  𝜌1(𝑧) + ∑[𝜌𝑖(𝑧 − 𝑧0̅,𝑖−1) − 𝜌𝑖−1(𝑧 − 𝑧0̅,𝑖−2)]𝐻(𝑧 − 𝑧0̅,𝑖−1)

𝑁+1

𝑟=2

 
Eq.  
143 

 These formulas are expressed the same way as the time-dependent deflection of the jointed beam 𝑊(𝑧, 𝑡) 

and the 𝑟th mode shape 𝛷̃𝑟(𝑧).  Moreover, because of expressing each of the 4 constants and frequency 

parameters of the mode shape of each 𝑖th beam as a function of the preceding beam by explicitly enforcing 

the continuity conditions at each interface, the mode shape of the entire jointed EB beam depends only on 4 

constants. Lastly, each frequency parameter 𝛽𝑖,𝑟 will be expressed as a function of the natural frequencies 𝜔𝑟 

of the entire EB beam.  

Consequently, all the expressions above as well as the orthogonality properties hold and the subscript 𝑖 can 

be disregarded, like: 

𝑞̈𝑟(𝑡) + 𝜔𝑟
2𝑞𝑟(𝑡) =

1

𝛭𝑟

∫ 𝛷𝑠(𝑧, 𝜦)𝐹(𝑧, 𝑡)𝑑𝑧
𝐿

0

 
Eq.  
144 

 and of course the solution is given as: 

𝑢(𝑧, 𝑡, 𝜦) ≅ ∑ 𝛷𝑟(𝑧, 𝜦)𝑞𝑟(𝑡)

𝑁

𝑟=1

 
Eq.  
145 

 where the right hand side can be obtained using the Dirac delta properties with the following expressions: 

1

𝛭𝑟

∫ 𝛷𝑠(𝑧, 𝜦)𝐹(𝑧, 𝑡)𝑑𝑧
𝐿

0

=

=
𝑚

𝛭𝑟

𝛷𝑠(𝑣𝑡, 𝜦) [𝑔 − ∑ 𝛷𝑟(𝑣𝑡, 𝜦)𝑞̈𝑟(𝑡)

𝑁

𝑟=1

− 𝑣2 ∑ 𝛷𝑟
′′(𝑣𝑡, 𝜦)𝑞𝑟(𝑡)

𝑁

𝑟=1

− 2𝜈 ∑ 𝛷𝑟
′(𝑣𝑡, 𝜦)𝑞̇𝑟(𝑡)

𝑁

𝑟=1

] 

Eq.  
146 

 Re-arranging the terms, the governing equations of motion can written as: 

𝑴̂(𝑡)𝒒̈(𝑡) + 𝑫̂(𝑡)𝒒̇(𝑡) + 𝑲̂(𝑡)𝒒(𝑡) = 𝑭̂(𝑡) Eq.  
147 

 where 𝑞(𝑡) is a 𝑁-dimensional array collecting the 𝑞𝑟(𝑡), while the modal mass 𝑴̂(𝑡), damping 𝑫̂(𝑡) and 

stiffness 𝑲̂(𝑡) matrices are given by a constant term, arising from the beam plus a time-varying term due to 

the moving mass, as: 

𝑴̂(𝑡) = 𝑴̅ + 𝛥𝜧(𝑡) Eq.  
148 

𝑫̂(𝑡) = 𝑫̅ + 𝛥𝑫(𝑡) Eq.  
149 
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 It can be easily shown that each entry of 𝑴̂(𝑡), 𝑫̂(𝑡) and 𝑲̂(𝑡) matrices is given by: 

|𝑴̂(𝑡)|
𝑟𝑠

= 𝛿𝑟𝑠 +
𝑚

𝛭𝑟

𝛷𝑠(𝑣𝑡, 𝜦)𝛷𝑟(𝑣𝑡, 𝜦) Eq.  
151 

|𝑫̂(𝑡)|
𝑟𝑠

= 0 +
2𝜈𝑚

𝛭𝑟

𝛷𝑠
′(𝑣𝑡, 𝜦)𝛷𝑟(𝑣𝑡, 𝜦) 

Eq.  
152 

|𝑲̂(𝑡)|
𝑟𝑠

= 𝜔𝑟
2𝛿𝑟𝑠 +

𝜈2𝑚

𝛭𝑟

𝛷𝑠
′′(𝑣𝑡, 𝜦)𝛷𝑟(𝑣𝑡, 𝜦) 

Eq.  
153 

 and for the time-varying force vector  

|𝑭̂(𝑡)|
𝑟

=
𝑚𝑔

𝛭𝑟

𝛷𝑟(𝑣𝑡, 𝜦) Eq.  
154 

 Finally the equation of motion of the 𝑟th mode is given by: 

[1 +
𝑚

𝛭𝑟

𝛷𝑟(𝑣𝑡, 𝜦)𝛷𝑟(𝑣𝑡, 𝜦)] 𝑞̈𝑟(𝑡) +
2𝜈𝑚

𝛭𝑟

𝛷𝑟
′(𝑣𝑡, 𝜦)𝛷𝑟(𝑣𝑡, 𝜦)𝑞̇(𝑡) + 

+ [𝜔𝑟
2 +

𝜈2𝑚

𝛭𝑟

𝛷𝑟
′′(𝑣𝑡, 𝜦)𝛷𝑟(𝑣𝑡, 𝜦)] 𝑞𝑟(𝑡) =

𝑚𝑔

𝛭𝑟

𝛷𝑟(𝑣𝑡, 𝜦) 

Eq.  
155 

 Considering the equation of motion, the situation of |𝑴̂(𝑡)|
𝑟𝑠

= 𝛿𝑟𝑠, |𝑫̂(𝑡)|
𝑟𝑠

= 0, |𝑲̂(𝑡)|
𝑟𝑠

= 𝜔𝑟
2𝛿𝑟𝑠 and 

𝜦 = 𝟎, then the governing equation of an undamaged beam under a moving force is recovered, while if 𝜦 =

𝟏, then the governing equation of a multi-cracked beam under a moving force is recovered.  

The problem can also be generalized by considering the effects of 𝑝 moving masses each with constant velocity 

𝑣𝑗 starting from the abscissa 𝑧𝑚𝑗
, being 𝑗 = 1. . 𝑝. The mass that takes longer to get to the end of the beam is 

mass 1, and this mass defines the duration of the transient analysis 𝑡𝑓 = (𝐿 − 𝑧𝑚1
)/𝑣1. In this case: 

|𝑴̂(𝑡)|
𝑟𝑠

= 𝛿𝑟𝑠 + ∑
𝑚𝑗

𝛭𝑟

𝛷𝑠 (𝑧𝑚𝑗
+ 𝑣𝑗𝑡, 𝜦) 𝛷𝑟 (𝑧𝑚𝑗

+ 𝑣𝑗𝑡, 𝜦)

𝑝

𝑗=1

𝑈 [1 − (𝑧𝑚𝑗
+ 𝑣𝑗𝑡)] 

Eq.  
156 

|𝑫̂(𝑡)|
𝑟𝑠

= 0 + ∑
2𝑣𝑗𝑚𝑗

𝛭𝑟

𝛷𝑠
′ (𝑧𝑚𝑗

+ 𝑣𝑗𝑡, 𝜦) 𝛷𝑟 (𝑧𝑚𝑗
+ 𝑣𝑗𝑡, 𝜦)

𝑝

𝑗=1

𝑈 [1 − (𝑧𝑚𝑗
+ 𝑣𝑗𝑡)] 

Eq.  
157 

|𝑲̂(𝑡)|
𝑟𝑠

= 𝜔𝑟
2𝛿𝑟𝑠 + ∑

𝜈𝑗
2𝑚𝑗

𝛭𝑟

𝛷𝑠
′′ (𝑧𝑚𝑗

+ 𝑣𝑗𝑡, 𝜦) 𝛷𝑟 (𝑧𝑚𝑗
+ 𝑣𝑗𝑡, 𝜦)

𝑝

𝑗=1

𝑈 [1 − (𝑧𝑚𝑗
+ 𝑣𝑗𝑡)] 

Eq.  
158 

|𝑭̂(𝑡)|
𝑟

= ∑
𝑚𝑗𝑔

𝛭𝑟

𝛷𝑟 (𝑧𝑚𝑗
+ 𝑣𝑗𝑡, 𝜦)

𝑝

𝑗=1

𝑈 [1 − (𝑧𝑚𝑗
+ 𝑣𝑗𝑡)] 

Eq.  
159 

 where U [1 − (𝑧𝑚𝑗
+ 𝑣𝑗𝑡)] is the Unit Step function that switches off the contribution of the moving masses 

that reach the end of the beam. Specifically, the U [1 − (𝑧𝑚𝑗
+ 𝑣𝑗𝑡)] is equal to 1 when (𝑧𝑚𝑗

+ 𝑣𝑗𝑡) ≤ 1, zero 

otherwise. 

 

𝑲̂(𝑡) = 𝑲̅ + 𝛥𝑲(𝑡) Eq.  
150 
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4.3.2 How to evaluate the open cracks distribution at a time instant?  
In this part it will be explained how to deal with cracks with time-variant parameters, meaning how to be able 

to evaluate at any time instant if the crack will be open or closed so that the corresponding analytical 

expression of the mode shapes for the Damaged or the Undamaged case will be considered in the analysis. To 

answer this question, two terms should be explained, which are the “cracks distribution” and the “transition 

instant”.  

In order to exploit closed-form solutions of the mode shapes to account for the switching cracks, a vector 𝜦𝑖 

with entries 𝜆𝑖,𝑗 equal to 1 if the 𝑗th crack is open (damaged), or 0 if the 𝑗th crack is closed (undamaged) was 

added to the analytical expressions for each one of the beam segments of the bridge. If all the cracks are 

considered as always open during the passage of the moving vehicles, the open crack distribution specified 

inside the vector 𝜦 is not changing. In the case of cracks with time-variant parameters, depending on the axial 

strain of the beam at the location of the damage, this vector can change at every possible time-step of the 

analysis causing the opening/closing of one or more cracks. This means, that for every time-step of the 

analysis, using an unconditionally stable integration scheme, the vector 𝜦(𝑡) is apparently time-dependent 

and describes a unique crack distribution, meaning a set of entries 𝜆𝑖,𝑗 with values 0 or 1, specifying the 

condition of each one of the cracks (open or closed). 

As an example, in figure [4.2] the variation of cracks distribution of a beam with three switching cracks is 

shown. Consider the flexural vibration of the Euler-Bernoulli beam, subject to moving vehicles from time 𝑡0 =

0 to 𝑇 = 19𝛥𝑡. Because of the effect of the moving vehicles, the damaged beam will start vibrating 

transversally and the induced deformed shape at each time step may produce the opening/closing of each of 

the 3-cracks acting along the beam. There will be a set of time intervals 𝛥𝑡𝑗 which begin at the time instant 𝑡𝑗 

during which the open cracks distribution is unchanged. The cracks distribution associated with a particular 

time interval is then described by a vector 𝜦𝛥𝑡𝑗
= 𝜦(𝑡𝑗). Once a change in cracks distribution is observed a 

new vector 𝜦𝛥𝑡𝑗+1
 is computed. 

Back to the example in figure [4.2], initially (𝑡0 = 0 ) all the crack are closed . The time window is subdivided 

into 19 constant subintervals Δt. At this time window, three transition instants and therefore three time 

intervals with fixed cracks distribution were obtained, 𝜦𝑡0, , 𝜦𝑡1 and  𝜦𝑡2. The first transition instant 𝑡0 

Figure 4. 2: Example of variation of cracks distribution of a beam with three switching cracks over time 
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corresponds to the undamaged case, while 𝑡1 and 𝑡2 are characterized  by 1 open crack and 2 open cracks, 

respectively. Specifically, at 𝑡1 = 5𝛥𝑡 the opening of a crack at the midpoint (𝑧1̅ = 𝐿/2) occurs, where the 

𝜦𝑡1 − 𝜦𝑡0 ≠ 𝟎 and that is exactly the reason it is called a transition instant. It means that when the transition 

instant occurs, the current linear analysis has to be stopped and a new transient analysis with a 𝜦𝑡1 cracks 

distribution has to be considered. That is why the problem can be considered as a sequence of linear transient 

analysis, each of which is characterized by a specific open cracks distribution. The same applies for the 

transition instant 𝑡2 = 11𝛥𝑡 where the closing of the crack at the midpoint and the opening of two cracks at 

𝑧1̅ = 𝐿/3  and 𝑧2̅ = 2𝐿/3 occur. Of course, 𝜦𝑡2 − 𝜦𝑡1 ≠ 𝟎, and a new cracks distribution ( 𝜦𝑡2) has to be 

considered. 

As a new transient analysis might begin at different time steps, it requires continuity conditions to be enforced. 

At each transition instant 𝑡𝑗, two continuity conditions have to be enforced in terms of displacement and 

velocity response with the cracks distribution before (𝜦𝛥𝑡𝑗
) and at the transition instant (𝜦𝛥𝑡𝑗+1

) : 

𝑢 (𝑧, 𝑡𝑗, 𝜦𝛥𝑡𝑗
) = 𝑢 (𝑧, 𝑡𝑗 , 𝜦𝛥𝑡𝑗+1

) Eq.  
160 

𝑢̇ (𝑧, 𝑡𝑗, 𝜦𝛥𝑡𝑗
) = 𝑢̇ (𝑧, 𝑡𝑗 , 𝜦𝛥𝑡𝑗+1

) Eq.  
161 

 These continuity conditions can be used to evaluate the initial conditions for a new linear transient analysis 

with fixed cracks distributions. 

 

4.3.3 Are the always-open or always-closed cracks distributions the boundaries for the switching 

crack model? 
In this part, the transient analysis of damaged Euler-Bernoulli beams with switching cracks subject to moving 

vehicles will be performed in order to understand if the always-open or always-closed cracks distribution are 

the boundaries of this model. It is really important to actually observe the differences of the switching crack 

model with the well-known damaged model of always open cracks, to be also able to use identification 

techniques for time-variant damages.  

4.3.3.1 Numerical application (4.1) – One switching crack located at the midpoint:  

This numerical application concerns the same model described in the paper [21], a simple-supported beam 

with one crack at the midpoint and at the bottom side of the beam, subject to a moving mass acting on top, 

in order to verify the computational strategy followed in this thesis project using the unconditionally stable 

Newmark integration instead of the unconditionally stable step-by-step numerical scheme based on the use 

of the transition matrix, that was used in the paper. 

Figure 4. 3: Numerical application (4.1) - Model definition 
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The computational strategy followed for the transient analysis of damaged slender beams with switching 

cracks subject to moving masses requires the following steps (also mention in [21]): 

1. At 𝑡0 = 0 all the cracks can be assumed to be closed or alternatively an initial crack distribution can 

be assigned, 𝜦𝑡0. 

2. If the undamaged crack distribution is considered so that 𝜦𝑡0 = 𝟎, then the analytical expressions for 

the mode shapes and the corresponding natural frequencies of the undamaged beam are computed. 

The response of the undamaged beam subject to moving masses is then calculated. Alternatively, the 

mode shapes and corresponding natural frequencies are calculated using the expressions of the 

damaged beam. 

3. The strain 𝜀𝑖̃,𝑗  at the center of the 𝑗th crack is computed and the Boolean variable 𝜆𝑖,𝑗(𝑡) is determined 

for each time step of the analysis (starting from 𝑡0𝜆𝑖,𝑗() and listed in the array that specified the 

open/closed status of the 𝑛 cracks. 

4. The first transition instant 𝑡1 occurs when 𝜦𝑡 ≠ 𝜦𝑡0 and the transient linear analysis has to be stopped. 

5. A new mode shape basis is calculated with 𝜦𝑡1 , and the continuity conditions at the transition instant 

𝑡1 are enforced to produce a new set of initial conditions for the second transient linear analysis. 

6. The second linear analysis with fixed mode shape basis with 𝜦𝑡1 is performed in the next time interval. 

The response of the damaged beam will be calculated using the mode shapes given by the expressions 

for the damaged case. 

7. The strain 𝜀𝑖̃,𝑗  at the center of the 𝑗th crack is computed again and the Boolean variable 𝜆𝑖,𝑗(𝑡) is 

determined for each time step of the analysis (starting from 𝑡1𝜆𝑖,𝑗() 

8. 𝑡2 occurs when 𝜦𝑡 ≠ 𝜦𝑡1 

9. A new transient analysis has to be performed by considering the new mode shape basis with 𝜦𝑡2 and 

new initial conditions 

10. Steps 7, 8 and 9 are repeated until the last moving mass reached the end point of the damaged beam 

Properties Length - L 
(m) 

Density - ρ 
[kg/m3] 

Cross-sectional 
area – A (m2) 

Young’s modulus - 
Ε (GPa) 

Second moment 
of inertia – I (m4) 

Beam 20 7800 0.04 206 1.33*10-4 

Table 4. 1: Numerical application (4.1) - Properties of the Beam 

Table 4. 2: Numerical application (4.1) - Properties of the moving mass 

Properties Mass -m (kg) Speed – v (m/s) 

Moving mass 1000 5 

Table 4. 3: Numerical application (4.1) - Properties of the crack 

Properties Location - 𝑧1̅ (m) Depth d (m)  Equivalent stiffness - 
K (kN/m)  

Damage parameter – 
α (m-1)  

Crack 10 0.15 8240 3.33 
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These steps will be followed in this numerical application to produce the dynamic response of the damaged 

beam. Moreover, the same model will be designed in SAP2000 in order to verify the computational strategy 

followed in this thesis project with the Finite Element Method with SAP2000. This will happen, examining the 

always open crack model, as there is a limitation on using SAP2000 for damages with time-variant parameters 

like the switching crack model. The crack was modelled in SAP2000 by applying a release partial fixity at the 

crack’s location. 

 

The results in figure [4.4] are expressed in terms of the ratio of the dynamic deflection at the midpoint to the 

static deflection due to the mass acting on the midpoint, 𝑢/𝑢𝑠𝑡𝑎𝑡𝑖𝑐,𝑚𝑎𝑥, versus the normalized position of the 

moving mass, 𝑣𝑡/𝐿. The static deflection at the midpoint of simply supported beam loaded by the weight of 

the mass is given by (𝜌𝛢0𝐿3)/(48𝐸𝐼0) , where 𝛢0 is the undamaged cross-sectional area and 𝐸𝐼0 is the 

reference value of the flexural stiffness with 𝐼 being the second moment of inertia. 

It looks like the results coming from the proposed approach, using the unconditionally stable Newmark 

integration scheme, and the values coming from SAP2000 show a perfect agreement. This means that the 

proposed expressions could accurately produce the dynamic response of a damaged beam subject to a moving 

mass, as it was verified using a detailed model with the Finite Element Method. For the analysis, the time 

variable has been subdivided in 700 time intervals, each of duration 0.0057 sec. 

In the same figure, the results obtained for the always open crack are compared to the undamaged results, 

indicating that the presence of a single crack produces larger amplitudes. In particular, the maximum 

dimensionless deflection has increased from 1.075 (undamaged) to 1.603 (always open crack). 

Figure 4. 4: Numerical application (4.1) - Dimensionless transverse deflection versus Normalized position of the moving 
mass – Comparing results from MATLAB and SAP2000 for the undamaged and always-open crack model 
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Moreover, the values coming from the analytical expressions for the eigenfrequencies were also validated in 

SAP2000. The first four natural frequencies are equal to: 

 

 

 

 

 

As expected, only the first and the third natural frequencies are affected by the crack. The second and the 

fourth mode shapes have a nodal point at the center of the beam, as it has been already mentioned before, 

where the crack is located, so they remain unchanged. 

Next step will be to deal with the switching crack model, to compare with the results coming from the always 

open or closed crack. The crack will be considered closed at 𝑡0 and then for each time step of the analysis its 

open/close status will be tested. Moreover, both top and bottom locations are considered. 

 In figure [4.5] the dynamic response of the damaged case when considering the switching crack located at the 

top side is plotted. It is observed that the plot of the switching crack model coincide with the plot of the 

undamaged case. This happens because of the two transition instants 𝑡1 and 𝑡2 found during the analysis. At 

the transition instant 𝑡1 the crack opens and at the transition instant 𝑡2 the crack closes again, meaning that 

for the rest of the analysis where the mass is moving on top of the beam, the crack remains closed and the 

analytical expressions of the undamaged case are used. That is the reason the graph coincide with the one of 

the always-closed crack. 

Table 4. 4: Numerical application (4.1) - Eigenfrequencies Undamaged and Damaged case 

Eigenfrequencies 
 

Undamaged (rad/sec) Damaged (rad/sec) 

1 7.32 6.34 

2 29.28 29.28 

3 65.89 58.71 

4 117.135 117.135 

Figure 4. 5: Numerical application (4.1) - Dimensionless transverse deflection versus Normalized position of the 
moving mass – Comparing results from MATLAB and SAP2000 for the undamaged and always-open crack model 
and the switching crack  located at the top side of the beam 
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This means that for the case under investigation (crack at the top side of the beam), employing the always 

open crack model would largely overestimate the transversal vibration. 

In figure [4.6], the dynamic response of the damaged case where the switching crack is located at the bottom 

side of the beam is plotted, and this time it coincides with the one of the always-open crack. This happens 

because the transition instants even if they are again two, they occur at different time steps, and the crack 

remains open for a longer time interval (almost during the whole analysis) leading to a transverse deflection 

conforming with the one obtained if the crack is considered always opened. 

It can be concluded, as stated in [21] that for this case of a simply-supported damaged beam: (i) The crack 

produces larger deflections, (ii) the side where the crack is located significantly affects the response and (iii) 

the open crack and undamaged solutions provide, respectively, the upper and lower bounds of the transversal 

vibration. 

It is, indeed, really interesting to also examine the case of multiple cracks present along the beam or multiple 

masses acting on top of the beam or what changes if flexible boundary conditions are considered, but all of 

these cases are already presented in [21]. The main conclusions of this research were that: 

• The always open crack assumption, widely adopted for many engineering applications, may 

overestimate or underestimate the transverse response of a damaged beam with switching cracks 

under moving masses. Therefore it cannot be used as an upper bound on the results yielded by the 

switching crack model under multiple moving masses 

 

Figure 4. 6: Numerical application (4.1) - Dimensionless transverse deflection versus Normalized position of the 
moving mass – Comparing results from MATLAB and SAP2000 for the undamaged and always-open crack model and 
the switching crack  located at the bottom side of the beam 
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• Including elastic constraints can yield significantly different results compared to the widely adopted 

simply-supported beam model under a moving mass 

• The side where the crack is located can largely affect the response of the damaged beam under moving 

masses 

• The response of a beam with switching cracks under moving masses is not always bounded by the 

always-open crack model and by the undamaged case; this can be caused by the effect of multiple 

masses or by the presence of multiple cracks 

Moreover, what will be accomplished in this thesis project that has not been presented, is to derive the 

dynamic response of a damaged beam with switching cracks subject to moving masses, when the complexity 

of the beam is increased. Actually, the concept of three different beam segment with different properties will 

again be used in this part. The reason that this will be possible are the new analytical expressions for the mode 

shapes derived in the first part of this project, aiming to be able to deal with any number of step changes in 

material along the beam. 

 

4.3.3.2 Numerical application (4.2) – Step changes in material – Switching crack at the midpoint:  

 

 

 

 

 

Properties Beam 1 Beam 2 Beam 3 

Length [m] 10 10 10 

Density [kg/m3] 7800 7400 7000 

Young’s modulus [kN/m2] 2.10x108 2.00x108 1.90x108 

Table 4. 5: Numerical application (4.2) - Properties of the beams 

Table 4. 6: Numerical application (4.2) - Properties of the moving mass 

Properties Mass -m (kg) Speed – v (m/s) 

Moving mass 1000 5 

Figure 4. 7: Numerical application (4.2) – Model definition 
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A simple-supported beam-type bridge is considered with three different beam segments with different 

properties. One crack is located at the midpoint and one mass is acting on top of the bridge. In figure [4.8] the 

results coming from MATLAB using the analytical expressions for the always open crack model and the 

undamaged case and the results coming from SAP2000 from a detailed model solved with the finite element 

method, seems to be in perfect agreement. Again, as expected, one singe crack is enough to cause quite larger 

deflections than the undamaged case. 

Following now the same computational strategy for solving problems with the switching crack model, the 

results from both top and bottom location of the crack are considered. The graphs are again expressed in 

terms of the ratio of the dynamic deflection at the midpoint to the static deflection due to the mass acting on 

the midpoint, 𝑢/𝑢𝑠𝑡𝑎𝑡𝑖𝑐,𝑚𝑎𝑥, versus the normalized position of the moving mass, 𝑣𝑡/𝐿. 

In figure [4.8] the case of the crack located at the top side of the beam is considered. As happened with the 

previous numerical application the plot of the switching crack model coincide with the plot of the undamaged 

case. In this case there is no transition instant observed, meaning that the crack remains closed for the whole 

analysis, because of the higher value of bending rigidity 𝐸𝐼 in the first beam segment. 

Properties Location - 𝑧2̅ (m) Depth d (m)  Equivalent stiffness - K 
(kN/m)  

Damage parameter – 
α (m-1)  

Crack 5 0.15 8000 3.33 

Table 4. 7: Numerical application (4.2) - Properties of the crack 

Figure 4. 8: Numerical application (4.2) - Dimensionless transverse deflection versus Normalized position of the 
moving mass – Comparing results from MATLAB and SAP2000 for the undamaged and always-open crack model  
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Figure 4. 10: Numerical application (4.2) - Dimensionless transverse deflection versus Normalized position of the 
moving mass – Comparing results from MATLAB and SAP2000 for the undamaged and always-open crack model 
and the switching crack  located at the top side of the beam 

Figure 4. 9: Numerical application (4.2) - Dimensionless transverse deflection versus Normalized position of the 
moving mass – Comparing results from MATLAB and SAP2000 for the undamaged and always-open crack model 
and the switching crack  located at the bottom side of the beam 
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In figure [4.9] the case of the crack located at the bottom side of the beam is considered. Two transition 

instants are observed now, 𝑡1 where the crack opens and 𝑡2 where the crack closes again. This means that the 

crack remains open for quite a large part of the analysis, so that the plot of the switching crack model now 

coincide with the one of the always open crack model. 

There are no new findings comparing to the last numerical application but it was important to notice that the 

computational strategy presented, including the analytical expressions derived in this project, is able to deal 

with any case of beam-type damaged bridge with both time-variant and time-invariant damage parameters. 

The next numerical application will compare these two categories of damage in terms of identification 

purposes. 

 

4.4 What would be the differences in damage identification when using the switching 

crack model instead of the widely adopted always-open crack model? 
 

This part is, indeed, really important as it sums up all the findings of this thesis project in order to deal once 

again with the main research question “How to model and identify damages with time-variant and invariant 

parameters on beam-type bridges under moving vehicle loads”. Until now, numerical applications have been 

done to prove which would be the optimal measured quantity to detect crack(s), what would be the minimum 

depth of a crack to be identifiable, and other examples to test different ways of modelling the crack or to 

increase the complexity of the beam-type bridge. Then, the analytical expressions for the mode shapes were 

modified to be able to deal with damages with time-variant parameters, introducing a Boolean array which 

indicates a constant crack distribution for every time step of the analysis. Now it is time to test the switching 

crack model using the knowledge derived from the identification of the crack for the always-open crack model. 

The question is, what would change as far as the crack identification is concerned when using the switching 

crack model instead of the widely considered always-open crack model. 

Numerical application (4.3) – One switching crack located at the midpoint – Moving vehicle load as 

a spring mass system:  

The properties for this numerical application are a combination of using the beam and damage properties of 

the numerical application [4.1], mentioned in [21] but now instead of a moving mass, the vehicle is 

represented as spring-mass system in order to be able to derive its motion as well as the reaction force acting 

on top of the beam, measurements that are useful for the crack identification, as it has been shown. 

Figure 4. 11: Numerical application (4.3) - Model definition (left): crack located at the bottom side, (right): crack 
located at the top side 
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For a beam-type bridge with the specific properties, using again a spring-mass system as the moving vehicle 

instead of a moving mass, the switching crack model and the always-open crack model will be compared as 

far as the damage identification techniques are concerned. Both top and bottom side of the beam as the 

location of the crack will be considered, as it has been done before and it was proven that the location could 

really affect the results. Specifically, for the already found as the optimal measured quantity for crack 

identification purposes, the moving vehicle’s acceleration, the results of its difference with the undamaged 

case for the time-variant and time-invariant crack parameter, are presented in the figure below: 

Properties Length - 
L (m) 

Density - 
ρ [kg/m3] 

Cross-sectional area 
– A (m2) 

Young’s modulus - 
Ε (GPa) 

Second 
moment of 

inertia – I (m4) 

Beam 20 7800 0.04 206 1.33*10-4 

Table 4. 8: Numerical application (4.3) - Properties of the beam 

Table 4. 9: Numerical application (4.3) - Properties of the moving oscillator 

Properties Mass -m (kg) Damping – c 
(Ns/m) 

Stiffness -k (N/m) Speed – v (m/s) 

Oscillator 1000 25130 3.96x106 5 

Properties Location - 𝑧1̅ (m) Depth d (m)  Equivalent stiffness - 
K (kN/m)  

Damage parameter – 
α (m-1)  

Crack 10 0.15 8000 3.33 

Table 4. 10: Numerical application (4.3) - Properties of the crack 

Figure 4. 12: Numerical application (4.3) - Oscillator's Acceleration versus Position of the moving oscillator – Compare 
different locations for the crack (top/bottom side of the beam) 
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Figure [4.12] contains, indeed, really important and useful remarks for the identification of crack(s) with time-

variant parameters. When the crack is considered as located at the top side of the crack, there is not even one 

indication that there is a crack present along the beam at all.  When the crack is considered as located at the 

bottom side of the beam, the abrupt fluctuations that were also there for the always-open crack model, could 

be observed exactly when the moving vehicle passes on top of the location of the crack. This means that when 

one or more cracks belong to the category of damages with time-dependent parameters, mainly because of 

one or more vehicles moving on top of the beam and causing time-dependent transversal vibrations, the 

location of these cracks is really crucial because it could lead wrong estimations about the structural condition 

of the bridge, and even if it is damaged there would be no sign of identification. 

One reason that these results were more or less expected, comes by looking at the expressions of the 

governing equations that describe these time-dependent problems of a beam subject to moving vehicle loads. 

What really separates the damaged and the undamaged condition of the beam are the entries of the modal 

matrices that are included in the equation of motion. The differences of the two conditions come from 

considering the analytical expressions of the mode shapes, 𝛷𝑟(𝑣𝑡), for the damaged or undamaged state of 

the beam, that were derived at the beginning of this thesis project. When the transition instants indicate that 

the crack will be open almost for the whole analysis (as it is happening for the case of the crack located at the 

bottom side of the beam) then the mode shapes considered will be the ones of the damaged scenario, so also 

the moving spring-mass system will move on top of a damaged beam and the damage will be identifiable. 

When the transition instants indicate that the crack will be closed almost for the whole analysis (as it is 

happening for the case of the crack located at the top side of the beam) then the mode shapes considered will 

be the ones of the undamaged scenario, so also the moving spring-mass system will move on top of a 

undamaged beam and there would be no way of identifying the damage. 

To sum up, understanding the behavior of damaged beams with cracks with time-variant parameters subject 

to moving vehicle loads is really important for damage identification. All the main conclusions mentioned here 

and in the paper [21] about the switching crack model and the identification of switching cracks should be all 

considered in the field of structural health monitoring of bridges to be able to make accurate and safe 

suggestions about their integrity. 
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Discussions and Conclusions  
 

Results discussion 
 

The damage identification techniques for beam-type bridges under moving vehicle loads have been 

investigated. In order to accomplish that, new analytical expressions for the mode shapes have been derived 

so that the dynamic response of such models could be calculated in an efficient manner. In these expressions, 

one can possibly deal with bridges with any number of step changes in material, any number of cracks, 

arbitrary boundary conditions, along-axis springs and internal rotational and translational springs at the 

discontinuities, making them a powerful tool for the calculation of the dynamic response of damaged beam 

bridges. The expressions have been validated with the results of Finite Element models in SAP2000. 

Then, using the analytical expressions, it was possible to investigate fast and accurately different damage cases 

(varying the depth of the crack)  to provide, at the end, valuable conclusions about crack dentification 

techniques. The quantities coming from the measurements from direct and indirect monitoring were 

compared to find the most sensitive one. Then, the optimal quantity has been tested in a different way of 

modelling the crack and in a model with step changes in material, so that the proposed method is valid for all 

these different scenarios.  

Finally, damages with time-variant properties have been investigated, proposing a computational strategy that 

is able to deal with such models and which was verified again with the results from SAP2000. This strategy is 

based on checking the open cracks distribution at each time step of the analysis, identifying the “transition 

instants”. It is a process which requires enforcing continuity conditions at each transition instant in order to 

account for the change in the mode shape basis. The reason why this strategy was developed, corresponds to 

the main objective of this thesis, which is “How to model and identify damages with time-variant and invariant 

parameters on multi-span beam-type bridges under moving vehicle loads modelled as a spring-mass system”. 

In this section, each one of the research sub-questions that have been formed in the Introduction part, and its 

corresponding answer, will be discussed. 

In order to derive the new analytical expressions for a closed-form solution of the mode shapes, the question 

was:  

• How to improve the numerical stability (higher order modes) and accuracy of the closed form 

expressions? 

That was achieved by making use of generalized functions and local coordinate systems to decrease the 

expression of the frequency determinant of the jointed Euler-Bernoulli beam and lead to a large elimination 

of numerical round-off errors on the evaluation of high-order mode shapes. 

While comparing different quantities for damage identification purposes, it was found that: 

• Which is the optimal measured quantity to detect a crack? 

The optimal measured quantity to detect crack(s) found to be the moving vehicle’s acceleration, as it is by far 

the most sensitive one to changes in momentum that occur when the vehicle passes by the location of a crack. 

Other quantities like the reaction force or the oscillator’s displacement are also affected at the point that the 

vehicle reaches the location of the crack but not as much as its acceleration. Changes in the dynamic 

characteristics (eigenfrequencies, mode shapes) of the beam bridge itself are also affected when damage(s) 

are present but these values are not so sensitive either.  
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• Would the model of the crack affect the identification?   

There is, indeed, a discussion in the literature about the way damages should be modelled. The main objective 

is how close to reality is each one of these considerations and to aim for the best trade-off between model 

accuracy and computational cost. In this thesis, two ways of modelling the crack have been considered, an 

influenced zone (a relatively small segment of the beam) with reduced rigidity because of the presence of the 

crack (a method developed first and it is considered to capture the physics of the real scenario) and a discrete 

spring crack model using a massless rotational spring to represent each crack. The damage identification 

techniques presented in this thesis, as well as the new analytical expressions derived, can be used for both 

models with the same accuracy and without computational cost. 

• What would be the size of the crack with respect to the size of the cross section to be identifiable?  

Would the number of cracks affect the identification?  Would the complexity of the beam-type bridge 

(varying rigidity) affect the identification? 

As far as the size of the crack to be identifiable is concerned, it is a relatively difficult question to give a generic 

answer which holds in every case.  In this thesis, considering the specific type of models, described throughout 

all the different chapters, and their limitations, different lower bounds calculated for each quantity, and 

different values for each one of these quantities when the way of modelling the crack is changing (see 

corresponding values in Chapter 3). Furthermore, the remarks of the damage identification techniques 

discussed in this thesis, are not affected in the presence of more cracks or when the complexity of the bridge 

increases, making the findings of this project more useful and robust. 

In order to be able in this thesis to deal with models with cracks with time-variant properties, the questions 

and answers were: 

• How to model the switching crack in the Euler-Bernoulli beam?  How to exploit closed-form solutions 

of the mode shapes to account for the switching cracks? 

These questions have been answered by modifying the analytical expressions for the mode shapes, derived in 

Chapter 2, by introducing a Boolean array which represent the crack distribution for each time-step of the 

analysis, specifying which crack(s) are open or closed at every time instant. These new expressions have been 

validated and they are able to incorporate the switching crack model in every type of beam model (models 

with increased complexity as presented in Chapter 2). An precise computational strategy has been proposed 

and is based on checking the open cracks distribution at each time step of the analysis, identifying the 

“transition instants”. 

• Are the always-open or always-closed crack distributions the boundaries for the switching crack 

model? 

The boundary conditions, the presence of multiple cracks or multiple moving vehicles are the ones that found 

to define what would be the upper and lower bounds of the switching crack model. Another really important 

characteristic is the location of the crack (bottom or top side of the beam) that plays a crucial role in the 

dynamic behavior of the time-variant damage.  

• What would be the differences in damage identification when using the switching crack model 

instead of the widely adopted always-open crack model? 

What was found, and it was also an important conclusion to answer the main objective of this thesis, is that 

the location of the crack is also important as far as the crack identification techniques are concerned because 

there are cases that the crack, even present in the beam, can not be detected at all, in any of the quantities 

considered in this thesis (see numerical application 4.3). This happens because the opening of a crack in the 



81 
 

switching crack model depends on the value of the axial strain at the specific location and at the center of the 

crack, which means that if the external loads (coming from the vehicles) are not enough to lead to stretching 

of the fibers at that point, the crack will be considered as always-closed, and cannot be identified.  

To sum up, all these research sub-questions were answered throughout this thesis and that was mainly 

accomplished thanks to the new analytical expressions derived in Chapter 2, that lead to fast and accurate 

results, surpassing the limitations of Finite Element models like handling cracks with time-varying parameters, 

remodeling and remeshing whenever a new model is considered leading to high computational cost for 

parameter investigation.   

 

Limitations 
 

An introduction about the assumptions of the model was given in chapter 1.5, which are necessary to derive 

all the equations presented in this thesis and have been made because of the specific research scope, 

restrictions regarding to computational cost or the compliance with the theories. Even if the conclusions of 

this thesis would not have been considerably changed if considering these limitations, it is important to note 

that: 

• The surface of the bridge is considered as smooth, meaning the roughness of the bridge has not been 

considered in the governing equations of motion. There are other papers in literature examining 

different roughness profiles ( [22], [23] ) and especially their influence on the vehicle’s acceleration 

which is the most sensitive one. The effect of road roughness can also be alleviated by means of 

filtering techniques, modifying the vehicle’s damping, dual connected vehicles, consideration of 

ongoing traffic and more ( [24] ) . 

• Vehicle’s acceleration, which found to be the optimal quantity for damage identification purposes is 

not so easy to be extracted from real measurements. There is an on-going research about how to deal 

with environmental and operational uncertainties that have not been addressed and incorporated in 

the models of this thesis, which is also related to how and where to instrument the vehicle (sensor 

placement). An interesting paper [24] that includes and explains briefly many different approaches for 

the simulation, the laboratory tests and the field investigation of the specific problem is highly  

recommended.  

 

Future Recommendations 
 

Possible future works could improve the damage identification techniques for cracks with both time-variant 

or time-invariant properties, presented in this thesis, by using probabilistic model updating approaches to be 

able to include the uncertainties of the measurements. This can be accomplished by using probability density 

functions (PDF) to the uncertain parameters to end up in the “posterior” PDF which contains both the 

uncertainty of the prior information as well as the uncertainty in the experimental data ( [25] ). The new 

analytical expressions derived in Chapter 2 of this thesis could be used also in these approaches. 
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