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Abstract

The prosperity of the Internet-of-Things (IoT) imposes increasing demand on endpoint
microcontroller-based devices’ performance and energy efficiency. The MCUs are de-
manded to process the raw data acquired from the sensors with the integer-based
workload, such as digital signal processing (DSP) algorithms and quantized neural
network (QNN) inference. Currently, the Snitch system built around the tiny RV32I
Snitch core aims to achieve high performance in floating-point applications. Novel
hardware extensions have been implemented in its floating-point subsystem to achieve
high floating-point unit (FPU) utilization, such as stream semantic registers (SSRs) and
floating-point repetition (FREP) hardware loop. However, it only has RV32IM instruc-
tion set support for integer computation, which does not satisfy the increasing demand
from the integer workload we mentioned. In this work, we present a unified Snitch archi-
tecture with integer extensions targeting integer workload acceleration. Some existing
custom extensions to address performance bottlenecks in DSP and QNN applications
were proposed, which are Xpulpimg ISA and sub-byte single-instruction-multiple-data
(SIMD) ISA, respectively. Both extensions are built on the outdated version of Snitch in
another many-core system Mempool. In our work, we first integrated the DSP-oriented
ISA extension Xpulpimg and the sub-byte SIMD ISA extension into the mainline Snitch.
Then we extended the existing floating-point SSR to have integer support. To evaluate
the proposed extensions, we benchmarked the Snitch core complex (CC) with integer
matrix multiplication algorithms and compared the performance between the baseline
RV32IM Snitch and our extensions. A speedup of 5.9x, 22.6x, and 77.4X in terms of
MACs/cycle with respect to the baseline was measured for 32-bit, 8-bit and 4-bit data
sizes, respectively. Post-synthesis figures have been obtained from GlobalFoundries 22
nm technology for area and timing evaluations. Our integer extensions only introduced
12% area overhead compared with the original FP-capable Snitch CC, and they led to
no measurable impact in terms of the maximum effective frequency with FP extensions
enabled.
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Chapter

Introduction

In recent years we are experiencing the exponential growth of the Internet-of-Things
(IoT). Increasing demand for small and battery-powered IoT endpoint devices is im-
posed for various application domains, such as agriculture [1], health monitoring [2],
and smart home [3]. IoT requires the devices to interact with the environment and
communicate over a low-power wireless network after applying signal processing al-
gorithms [4]. Current IoT endpoint devices integrate multiple sensors and are built
around microcontroller units (MCUs). MCUs are efficient for controlling purposes and
processing data sampled from the sensors. Machine learning algorithms, including deep
learning algorithms, are widely deployed on IoT nodes as they empower the devices
with smart capabilities and provide efficient processing or classification of the raw data
acquired by sensors [5]. Modern deep neural network (DNN) applications are improved
to overcome the limitations in memory footprint and computing resources with quan-
tization methods. These techniques reduce the precision of the DNNs to 8-bit, 4-bit,
or even lower, incurring a limited or negligible loss in accuracy [6] [7], making DNNs
more suitable to run on endpoint platforms. With the ubiquitousness of these prominent
integer-based workloads, such as digital signal processing (DSP) and low-precision
machine learning algorithms, it is necessary to improve the performance of the hardware
for lower response latency and higher energy efficiency.

An explosion in the number of hardware accelerators customized to solve one particu-
lar problem efficiently has been observed [8] [9] [10] [11] [12] [13]. The accelerators are
great candidates to speed up certain tasks and enhance the performance of a general-
purpose system as described in [14]. However, they lack the programmability for all
kinds of flexible demand [15]. Single issue processor cores are very energy-efficient and
flexible. However, they suffer from the von Neumann bottleneck as they must explicitly
fetch and issue the load and store operations to feed their functional unit or accelerators.
Techniques to mitigate this issue, such as caching [16] and super-scalar out-of-order
pipelines [17], lead to either high hardware complexity or low energy efficiency. Snitch
is the in-house solution striving to address these challenges [18]. The Snitch ecosystem
is an in-house solution targeting energy-efficient, high-performance systems. It is built
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around the minimal RISC-V Snitch integer core, only about 15 kilo-gate equivalents in
size. It can optionally be coupled to accelerators such as a floating-point unit (FPU) or a
direct memory access (DMA) engine. Snitch’s floating-point subsystem is improved with
lightweight extensions, achieving almost 100% FPU utilization in many data-oblivious
problems with regular access patterns. However, there is still space to improve the
integer performance in the Snitch system as it only has base RISC-V integer ISA support
for integer computations.

1.1 Problem statement

Recently, some accelerator-based ISA extensions for Snitch have been explored: a subset
of the custom Xpulpv2 extension for DSP applications, namely Xpulpimg [19], and a set
of SIMD arithmetic instructions operating on packed sub-byte (4-bit) values [20]. Both
these extensions aim to boost the performance and energy efficiency of integer-based
workloads such as signal processing and low-/mixed-precision machine learning algo-
rithms. Another interesting hardware extension is known as Stream Semantic Registers
(SSRs) proposed in the Snitch system. It maps the ISA registers to memory streams,
which reduces the pressure on the processor to handle data loading, storing, and it-
erations. This extension also helps the Snitch system to achieve high functional unit
utilization in dense floating-point workloads [18].

However, there is no unified version of Snitch that consists of all of these useful exten-
sions. The Xpulpimg and sub-byte SIMD ISA extensions were implemented in another
Snitch-based many-core system called Mempool targeting image signal processing. In this
system, the outdated version of the Snitch core was used as a general-purpose control
processor and extended to support these ISA extensions for DSP algorithms. Meanwhile,
an integer processing unit (IPU) was implemented to process most performance-oriented
instructions introduced in these two ISA extensions as an accelerator. On the other hand,
the SSRs only support FPU in the mainline Snitch.

The need for fast and efficient integer data processing and the existing problems lead
to the following research questions:

* How can we define a unified Snitch architecture with available and possible integer
extensions for efficient processing of integer workloads?

* What are the performance benefits and cost of the potential integer extensions in Snitch?

1.2 Goals and methodology

We aim to create a unified Snitch system targeting integer performance to tackle the
above-mentioned problems with the following contributions:

¢ the integration of the existing Xpulpimg and sub-byte SIMD ISA extensions into
the mainline Snitch system;
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¢ the extension of the existing floating-point SSRs to support integer SSRs but main-
tain all the floating-point abilities, and the integration of the integer SSRs into the
mainline Snitch system;

¢ the evaluation of these integer extensions in terms of performance, area, and
timing. In particular, we measured the performance by software benchmarking
and collected the area and timing results from the post-synthesis results.

1.3 Overview

The remainder of this report is organized as follows: in Chapter 2, we first introduce the
background and the preliminary knowledge to follow our work’s description. Chapter 3
introduces our main contribution to this project, especially the hardware architecture
and its implementation. Chapter 4 describes our evaluation methodology and the results
in terms of software benchmarking and synthesis. We draw the final conclusion of the
project and identify the outlook for future work in Chapter 5.



Chapter

Background

This chapter will introduce the preliminary knowledge needed to understand the subse-
quent chapters of our work. We will first start to introduce the RISC-V instruction set
architecture (ISA) in Section 2.1. Then stream semantic registers (SSRs) that we will extend
for integer support, will be introduced in Section 2.2. Section 2.3 introduces the Snitch
system, which is the main hardware platform we will work on in this project. Section 2.4
introduces a Snitch-based many-core image signal processor Mempool. It was enhanced
with DSP-oriented ISA extensions that we will port to the mainline Snitch in our work.

2.1 RISC-V open ISA

Instruction set architecture (ISA) is an abstract model of a computer. It specifies the
behavior that how machine code can run on the hardware, and it is independent of the
characteristics of the hardware implementation, providing binary compatibility [21].
RISC-V is an instruction set architecture (ISA) conceived by developers at the University
of California, Berkeley, in 2010 [22]. It is a unique, even revolutionary innovation since
it is a common, free, and open-source ISA to which software can be ported, hardware
can be developed, and processors can be built to support it. This is in contrast to most
common ISAs, which were kept proprietary for either historical or business reasons,
such as x86, ARMv8 and AMD64. Although they are still widely used in industry and
academia, there are still disadvantages: they could preclude the creation and sharing
of full RTL implementations of them as they require commercial licenses from their
vendors, and they are complicated to fully implement in hardware [23]. Hence, the
emergence of the RISC-V ISA offers a new possibility to define and create computer
systems.

As the name suggests, RISC-V ISA makes use of a reduced instruction set computer
(RISC) design. RISC-V is actually a family of related ISAs, and there are four base ISAs
currently:

e RV32I: It is the base 32-bit integer ISA with 32 registers (x0-x31). Each register is
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32-bit wide. Register x0 is hardwired with all bits to 0, while the other 31 registers
are general-purpose. The instruction encoding in RV32I is 32 bits fixed in length
and must be aligned on a four-byte boundary in memory. It includes integer
computation, control transfer, load and store, memory ordering, environment call
and break points, and HINT instructions.

¢ RV32E: It is a subset variant of RV32I to support small microcontrollers with only
16 integer registers.

e RV6AI: It is the 64-bit variant of RV321.
e RV128I: It is the 128-bit variant of RV32I.

The RISC-V ISA has high modularity and flexibility to support various application
scenarios, from power-efficient embedded processors to high-performance processors.
It can be extended with instruction set extensions based on a base integer ISA to pro-
vide additional functionalities. Table 2.1 lists some standard extensions proposed in
[22]. Apart from the standard extensions, RISC-V also supports independently devel-
oped extensions from developers of academia and industry. It allows users to develop
highly specialized custom accelerators for important application domains and also build
prototypes for pushing the boundaries of cutting-edge research.

Extension Purpose

M Integer multiplication and division
A Atomic instructions

F Single-precision floating-point

D Double-precision floating-point

Q Quad-precision floating-point

L Decimal floating-point

C Compressed instructions

B Bit manipulation

J Dynamically translated languages
T Transactional memory

P Packed-SIMD

\% Vector operations

Zicsr Control and status register
Counters  performance counters and timers
Zifencei Instruction-fetch fence

Zam Misaligned atomics

Ztso Total store ordering

Table 2.1: Standard RISC-V instruction set extensions [22]

A significant benefit of using RISC-V is that all cores, whether based on the basic
open-source RISC-V ISA or in-house designs, will meet the exact RISC-V specification,
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ensuring the ability to use a standard software toolchain. Hence, the RISC-V ecosystem
is necessary to make this open-source ISA thrive. The ecosystem components are diverse,
spreading across all layers from low-level firmware and compilers to a fully functional
operating system kernel, applications, and design and verification tools. They are
essential to ensure the success of RISC-V.

2.2 Stream semantic registers (SSRs)

Stream semantic registers (SSRs) are an ISA extension proposed in [24] to accelerate
data-oblivious problems [25]. The fundamental idea of this extension is to map registers
to memory streams, so that load and store instructions that follow affine access patterns
are converted to register read /writes [24]. Their high-level architecture and integration
into a RISC-V floating-point subsystem are demonstrated in Figure 2.1. In this example,
three floating-point registers are mapped to three SSR lanes so that the register read and
write requested can be sent to either the FPU register file or rerouted to the SSR streamer.
The SSR streamer consists of a switch mapping accesses to the selected architectural
registers to the targeted SSR lanes for memory streams. The address generators are
used to emit affine address patterns for the memory streams in advance via a memory-
mapped configuration interface between the processor core and the streamer. The FIFO
inside each SSR lane can decouple the response data from memory and hide the memory
access latency. Each SSR lane can be put into either read or write mode. In read mode,
the address generator can be configured to generate an address pattern based on the
loops in the program, and then data is fetched from memory and stored in the FIFO;
in write mode, the address generator can tag each data written into the FIFO with an
address and send it to the memory system.

SSR Streamer ~

—>

v L -
5 3
FPU Regfile — 1| 3
—> 3

AAA +++ vYY -

\ / —
\ | —

Figure 2.1: SSR architecture

The usage of SSRs follows a simple sequence:

1. Configuring the address pattern;

2. Enabling the SSRs by writing to a control and status register (CSR);
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3. Computation;
4. Disabling the SSRs at the end of the program;

The configuration registers of the SSR streamer are memory mapped and can be accessed
by the processor via load and store instructions, sitting inside each address generator.
They can be set according to the nested loop dimensions, the increment strides of the
address pointers, and the stream direction (read or write). There is a repeat configuration
register that allows each data loaded from memory to be emitted to the core multiple
times, which is useful if a value loaded from memory needs to be used as an operand
multiple times. This programming model also allows the programmer to switch between
conventional register file usage and stream semantics on-the-fly.

SSRs aim to improve functional unit (FU) utilization. In RISC architecture like RISC-V,
the FU utilization is poor: integer ALUs and FPUs are rarely kept busy in every cycle.
They only need to process one computation in a few cycles. The micro-architecture
changes to tackle this issue do not come for free and are usually expensive, such as out-
of-order superscalar [26], complex instruction set computer (CISC) machines [16], vector
processors [27], and VLIW cores [28]. SSRs eliminate explicit load and store instructions
by encoding them into a subset of the processor’s registers, increasing the proportion of
instructions for useful work, especially computations. It is also a lightweight extension
that leaves the existing instructions in the ISA untouched but allows them to leverage
data streams with highly flexible usage.

2.3 The Snitch ecosystem

The Snitch ecosystem was first proposed in [18]. It provides a RISC-V cluster as a base
for multicore systems targeting high-performance computing and high energy efficiency.
It is built around the minimal Snitch integer core, only 15 kGE in size and supports the
entire integer base RV32I instruction set architecture. The core is a general purpose,
single-stage, single-issue, in-order design, aiming to maximize energy efficiency and
minimize area footprint [18].

The design principle of the Snitch core is to achieve high flexibility and compute-
to-control ratio with a small area overhead. Therefore, a generic accelerator interface
was implemented in the Snitch core based on an AXI-like handshake, offloading entire
32-bit performance-oriented RISC-V instructions into various accelerators. This interface
has two independent channels: one request channel for forwarding an instruction
with up to three operands, and one response channel to write back the results [18].
This accelerator interface was extended with an arbiter to support different hardware
extensions for various application domains at the CC’s hardware abstraction level. For
example, a SIMD-capable 64-bit FPU was coupled to the core to form a core complex
(CC) supporting single- and double-precision floating-point extensions. And a cluster
DMA was added to the default Snitch cluster which connects to a 512-bit system bus for
data transfer between the cluster tightly coupled data memory (TCDM).
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Figure 2.2 shows the hierarchical architecture of a Snitch cluster with default config-
urations. A Snitch integer core and a floating-point subsystem (FPSS) form a CC. The
FPSS consists of a 64-bit FPU, a load-store unit (LSU), an SSR streamer with three SSR
lanes, a register file and an instruction decoder. Also, an FPU instruction sequencer
enabling the floating-point repetition (FREP) hardware loop is integrated between the
core and the FP-SS. It can buffer new instructions offloaded by the Snitch core and allows
us to loop over a given number of instructions a given number of times, by repeatedly
emitting them to the FPSS. The core itself can continue working on the instruction stream
with the FPSS working in parallel. The SSRs and FREP hardware extensions help the
Snitch achieve a high compute-to-control ratio and FPU utilization, making the system
a competitive candidate for high-performance floating-point applications. Table 2.2
gives a dot-product example of how SSRs and FREP improve performance: the left
code solves the problem without, the right with SSRs and FREP extensions. The only
essential operation for computation is fmadd in both cases. The left vanilla FPSS needs
six instructions per hot loop due to loads, index incrementation and branching. While
the right code configures the SSRs ft0 and ft1 to redirect the stream vectors with a
one-time setup and runs only fmadd in the FREP loop.

Baseline SSRs and FREP
dotp: fld  £ft0, 0(a0) call ssr_setup_ft0
fld ft1, 0(al) call ssr_setup_ftl
fmadd.d ft2, ft0, ft1, ft2 frep reps, 1, 0b1001, 4
addi a0, a0, 8 fmadd.d ft2, ft0, ft1, ft2
addi al,al, 8
bne a0, t0, dotp

Table 2.2: Assembly code improvement of a dot-product hot loop from the baseline to
the SSRs and FREP extensions

By default, four CCs are grouped together to form a Snitch hive, an instruction cache,
and a MULDIV are shared among them. Integer multiplication and division instructions
can be offloaded to this shared MULDIV through the accelerator interface of the Snitch
core. This design choice aims to share expensive and uncommonly used resources [29].
Two hives with a shared TCDM memory and some peripherals form a cluster. The
system can be expanded further with multiple clusters and low-level system memory
connected by a wide system crossbar for more intensive workloads. The cluster is highly
parameterized. Hence different topologies are available for various purposes.
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2.4 Mempool system

2.4.1 Mempool architecture

Mempool is a 32-bit many-core RISC-V system with 256 cores sharing a large pool of
Scratchpad Memory [30]. Figure 2.3 presents an overview of the Mempool architecture.
It consists of four local groups. Each group can communicate with other groups via
butterfly network-on-chip. There are 16 tiles within each group as shown in the left part
of Figure 2.3. The tiles are the base of Mempool’s hierarchy. It consists of four Mempool
core complex (CC), an L1 TCDM with 16 banks, and a 4-way L1 instruction cache as
depicted in Figure 2.4. Each Mempool CC is built based on the vanilla Snitch core with
RV32IMA ISA. And the core is coupled with an accelerator for integer multiplication
and divisions. Similarly, tiles can also communicate with others within a local group via
butterfly networks. Mempool can achieve high parallelism thanks to its architectural
pattern, which makes it also a competent candidate for multimedia applications such as
image processing.

TTIIeBZT Tile33 - TTIIeﬂ I)-TIIE 48 -

[ Northeast s
N E
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[ tomn ]
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Il Il; - Group2 g Group3
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i ; Group 0 ! Group 1
Tile1 ‘g Tiled g Tile5 =

Tiles 0-15 Tiles 16-31

Figure 2.3: Architecture of the Mempool cluster [30]. The left shows a detailed view
of the local group, the right presents the entire cluster formed by four local
groups.

2.4.2 Xpulpimg ISA and sub-byte SIMD ISA extensions

Recently, Mempool is enhanced with the Xpulpimg ISA extension [19], which is a subset of
the Xpulp custom RISC-V ISA for digital signal processing (DSP). The Xpulp instruction
set was developed with the aim of helping the RISC-V processors proposed in [31] to
achieve similar performance as the state-of-the-art proprietary-ISA-based MCUs for IoT
applications.

10
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Figure 2.4: Architecture of Mempool tiles [30]

Xpulpimg ISA extension consists of the following parts [19]:

* Generic arithmetic and logic operations for DSP computations: such as absolute
value, comparison, clip, sign- or zero-extension, immediate branching, etc.
¢ Extended addressing modes for load and store operations:

— Post-increment mode: the actual address is computed at the same time as
the memory accesses. It is updated by doing an addition between the base
address and an offset stored in a register or the sign extension of an immediate,
and the final address is written back to the registers.

- Register-register mode: the actual address is computed as the sum of the
offset and the base address. In this case, both the offset and the base address
are stored in registers.

¢ Multiply-accumulate (MAC) operations;

® 16- or 8-bit packed SIMD operations that support three execution modes:
— vectorial that uses two vectors from two registers;
— scalar that uses one vector and one scalar from two registers;

— immediate scalar that uses one vector and one scalar, the vector comes from
the register while the scalar is in immediate format.

In addition, there are different types of operations, such as generic arithmetic
operations, sum-dot-product, bit manipulation, and shuffle operations.

This extension is selected and implemented based on the impact of the extended
instructions on the software concerned with the image processing domain. For example,

11
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dot-product operations on 16-bit or 8-bit input data are demonstrated to be suitable for
media processing applications, which leads to high speedups [32] [33].

The Xpulpimg extension was implemented based on an outdated version of the Snitch
core. In order to support these new instructions, the Snitch core was extended in a
parameterized style to maintain its original extensibility without introducing extra area
overhead on the baseline Snitch. The Xpulpimg extensions can be enabled or disabled to
achieve an Xpulpimg-capable Snitch or a vanilla RV32IMA Snitch. The Xpulpimg ISA
extension is an accelerator-based extension that most instructions are executed inside
the accelerator instead of the Snitch core. This helps to maintain the extensibility of
Snitch. Hence, the related hardware modifications mainly consist of two parts: the Snitch
core and an Integer Processing Unit (IPU) as an accelerator. First, the Snitch core was
extended to support new instructions and new addressing modes, which involve the
decoding logic, the integer register file, the scoreboarding control logic, the write-back
control logic, etc. Then, many arithmetic instructions in Xpulpimg were executed inside
the IPU considering the modularity of the Snitch core. The IPU was connected to the
Snitch core through the accelerator interface. It receives the instructions offloaded from
the core, decodes these instructions, and sends the results back to the core.

There is another sub-byte SIMD ISA extension applied to Mempool. This ISA extension
is a part of the XpulpNN ISA extension [20], which was proposed to accelerate quantized
neural network (QNN) inference on MCUs. It extended the packed SIMD operations in
Xpulpimg to support lower bit-width (i.e. 4-bit). As Xpulpimg ISA supports 16-bit and
8-bit SIMD instructions, a SIMD unit was implemented inside the IPU in Mempool. And
the sub-byte SIMD ISA was integrated into the IPU in another branch of the Mempool
system.

Besides the hardware required for these ISA extensions, the infrastructure of Mempool
system was also extended to support these new features. In particular, the pulp-gcc
compiler [34] was extended to have complete support for the programmability of these
custom ISA extensions.

2.5 Conclusion

In this chapter, we explained the necessary background knowledge for this project. First,
we introduced the RISC-V open-source ISA along with its extensions. Next, SSRs are
presented as a custom RISC-V extension to improve FU utilization, which we will extend
to enhance the integer FU utilization in our work. Then, we introduced the hardware
platform we will work on in this project, the Snitch cluster, and its detailed architecture
was explained. Finally, another RISC-V system Mempool was introduced. Mempool
was improved for ISP purposes with the ISA extensions, namely Xpulpimg and sub-byte
SIMD. We are interested in porting them to the mainline Snitch and exploring their
impact.

12
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Hardware Architecture

The hardware implementation of the integer extensions for Snitch is our major contri-
bution in this project. Our main hardware target is the Snitch core complex (CC) in the
mainline repository, which is the smallest unit of repetition in the mainline Snitch system.
At CC’s abstraction level, the Snitch core can be enhanced with additional hardware
extensions to support different application domains. Our hardware implementation
mainly consists of two parts:

¢ Xpulp ISA integration: includes Xpulpimg sub-byte SIMD ISA extension
¢ Integer SSRs support

As described in Section 2.4.2, Xpulpimg ISA is a partial implementation of the Xpulp
ISA. It is a DSP-oriented ISA extension developed in the mainline Mempool system. An
integer processing unit (IPU) was introduced as an accelerator for all the performance-
oriented instructions from Xpulpimg. The sub-byte SIMD ISA is a partial implementation
of the XpulpNN ISA to accelerate computation on 4-bit data with the SIMD approach.

In order to integrate these ISA extensions into the mainline Snitch, we followed
the methodology proposed in [19] by extending the baseline Snitch core in terms of
the decoding logic, the integer register file, and some control logic. In addition, we
integrated the IPU into the Snitch CC as an accelerator. Figure 3.1 gives an overview of
the modifications involved for the Xpulp ISA extensions.

The integer SSRs support is an extension of the existing floating-point SSR. We kept
all the existing floating-point data features while adding integer data features in the
SSR streamer, and the SSR streamer was shared between the integer and floating-point
datapath. The general architectural changes we brought for the integer SSR extension
are shown in Figure 3.2. We first extended the Snitch core to have a stream interface for
data exchange using SSRs. Then a control and status register was added in the core for
the activation of the SSR. Some necessary control logic changes were also implemented.
Finally, we extended the modules inside the SSR streamer: a switch to direct streams
from either the FPSS or the Snitch core to the targeted SSR lanes; SSR lane to generate
address patterns and fetch data from memory. The detailed hardware architecture of the

13
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Snitch

Memory
Interface

Instruction Register - ALU
Fetch

Accelerator
Interface

Figure 3.1: Block diagram of the modifications for Xpulp ISA extensions. We introduced
architectural or logic changes in blocks shown in green. While the existing
modules we did not touch are marked in blue.

SSR Streamer

SSR lane 0

Switch

Figure 3.2: Block diagram of the modifications for the integer SSR extension. We intro-
duced architectural or logic changes in blocks shown in green. While the
existing modules we did not touch are marked in blue.
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Xpulpimg and sub-byte SIMD ISA extensions and the architectural implementation for
integer SSRs in the Snitch CC are introduced in the following sections.

3.1 Xpulpimg ISA integration

The first part of our hardware implementation is integrating the Xpulpimg ISA into
the mainline Snitch. Xpulpimg ISA extension was developed in the mainline Mempool
system to improve the integer workloads’ performance in digital signal processing and
exploit general-purpose parallelism in the ISP domain.

Mempool system is built based on the outdated version of Snitch core. Thus, the
methodology to port Xpulpimg to the mainline Snitch follows a similar approach as
described in [19]. We took the mainline IPU module as an IP and connected it to the
accelerator interface of the Snitch core, and some modifications were added to the Snitch
core to support this new ISA extension.

We ported the Xpulpimg into the Snitch core in a parameterized style according to
[19]. This method keeps the extensibility of the Snitch core and does not introduce extra
area overhead when the extension is not necessary for the specific application domain.

To support Xpulpimg ISA, we modified the following logic of the Snitch core:

¢ the decoding logic;

¢ the integer register file;

¢ the scoreboarding and write-back control logic;
¢ the logic connected to the load-store Unit(LSU).

First, the decoding logic was extended to support all the instructions introduced in
Xpulpimg ISA. Also, the accelerator interface is prepared at this stage to exchange data
via an AXI-like handshake between the core and the IPU: the IPU should be selected as
the accelerator target to offload instructions through arbitration. Then the valid from the
core is asserted if the instruction is valid and the core is not stalled by others. Finally,
the operands and the instruction encoding are sent to their corresponding ports on the
accelerator interface. In addition, we added the decoding of a new 5-bit immediate field
for immediate branching instructions in Xpulpimg. The original branch mechanism
in RISC-V compares the content of two registers [35]. However, immediate branching
instructions compare the content of a register with this new 5-bit immediate [19]. This
immediate field shares the same encoding space as rs2, and it is sign-extended before
being sent to the ALU [19]. The output of the ALU is used to determine whether to take
the branch.

An additional reading port was added to the integer register file, as many arithmetic
instructions in Xpulpimg need to read from register rd as a third source operand, such
as MAC operation, SIMD sum-dot-product operations, SIMD shuffles, and bit insert
operations. The scoreboading logic was extended at this point to consider rd as a
third source register. This modification can detect the potential read-after-write (RAW)
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hazards of rd. In the floating-point datapath, the third operand port of the accelerator
interface connects the address bus of the LSU inside the Snitch core and the LSU inside
the FPU for load/store operations. However, since we need to send three operands from
the integer register file to the IPU for Xpulpimg instructions, we muxed the port for
the third operand of the accelerator interface: it selects rd when the instructions need
the content of rd only, otherwise, it is wired to the LSU as the original. On the other
hand, this extra read port is also necessary for the register-register store instructions. For
example, the instruction p.sb rs2, rd(rs1!) uses rd as a third source operand to store
the register offset and also a destination register. Also, since rd is used as the second
source operand, while rs2 is used as the data source for the store operation, we extended
the scoreboarding to also detect the hazards of rs2.

31 24 20 19 15 11 7 0
| | rs2 | rsl | | rd/rs3 | |

Instruction encoding Immediate

Register File ’
rs2
B
rd/rs3 |
3 > AU o

rsl

LSU data

LSuU
address

A

write-back

|
post-
increment?

LSU result

—_———— = — — —

opB selection

Figure 3.3: Block diagram of the modifications for extended load /store instructions, the
third operand, and the post-increment mechanism [19]

Figure 3.3 shows the hardware modifications required for the extended load and
store instructions. In post-incrementing load /store instructions, rs1 is utilized for two
purposes: it stores the base address as a source register; it stores the address after
the post-incrementing update as a destination register. Therefore, we extended the
scoreboarding logic and the write-back control logic to consider rs1 as a destination
register for post-incrementing instructions. This helps to detect the RAW hazards of
rs1. We also muxed the register write-back port of rd with rs1 to avoid introducing a
large area overhead, since the retirement of a post-increment instruction on rs1 and the
retirement of a basic RV32I instruction are mutually exclusive [19].

We extended the logic that feeds the address to the LSU. Originally, the actual address
is hardwired to the output of the ALU since the load/store instructions in RV32I use
the ALU to compute the actual address for memory accesses. However, in the register-
register addressing mode, the actual address is computed at the same time as the issuing,
and the results are written back to rs1. Hence, we muxed the actual address sent to the
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LSU between the ALU output and the register file output for rs1.

Accelerator Interface

DMA
Request
> FP_SS
Response
IPU

Figure 3.4: Block diagram of the Snitch CC accelerator offloading datapath extended
with Xpulpimg

Apart from the logic required by the Snitch core, the IPU is integrated into the mainline
Snitch by connecting it to the accelerator interface of the Snitch core. As the accelerator
interface was extended with demux and arbiter to support FPU and DMA, we added
new ports for demuxing and arbitration for the IPU. Then the IPU module can be
instantiated and directly connected to these ports in Snitch CC as shown in Figure 3.4.

3.2 Sub-byte SIMD ISA integration

Xpulpimg ISA has the support of SIMD computing paradigm on 16- and 8-bit vector
operands, while sub-byte SIMD ISA is part of the XpulpNN ISA extension, which
extends the SIMD operations for 4-bit operands, namely nibble. It aims to boost the
computation of low-bit-width data types. This ISA was originally also implemented in a
diverging branch of Mempool system.

To port this ISA extension into the mainline Snitch, it requires us to extend the
decoding logic of the Snitch core at the beginning, and then these SIMD instructions
are executed by the SIMD unit inside the IPU as same as in Xpulpimg ISA. Figure 3.5
depicts the extended SIMD unit inside the IPU. Since we need to vectorize the operands
on the granularity of nibbles as the smallest data size, but also bytes and half-words
as larger sub-word data sizes, the data packing logic was first extended to have a new
mechanism to adjust three input operands into vectors on the granularity of 4-bit, 8-bit,
or 16-bit. Then an extra 4-bit domain was added to perform the computation through
simple parameterized instantiation.
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Figure 3.5: Block diagram of the extended SIMD unit in the IPU
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3.3 Snitch integer SSR extension

The integer SSR extension requires the hardware modifications of both the Snitch core
and the SSR streamer. The Snitch core was extended to be able to control the usage
of the integer SSRs, and the arbitration of the SSR streamer between the integer and
the floating-point datapath. Also the integer register file was extended to have an SSR
interface that redirects the register reads and writes to the memory streams from the SSR
streamer. The detailed hardware extension of the Snitch core is described in Section 3.3.1.
The extended SSR streamer supports providing 64-bit double-precision floating-point
data streams for the Snitch FPU and 32-bit integer data streams for the Snitch core. Its
architecture is detailed in Section 3.3.2.

3.3.1 Snitch architecture extension

The Snitch core extension follows a similar implementation of SSR support in FPU with
an invented arbitration mechanism, which involves the following necessary modifica-
tions:

¢ A control and status register (CSR) to enable or disable stream semantics;
¢ The indices of the registers assigned with stream semantics must be changed;

¢ The register file must be extended to intercept and re-reroute accesses to a subset
of registers;

* The control logic of the core must be extended to support the additional stall
conditions introduced by the stream interface;

* A newly invented arbitration mechanism is necessary to achieve the mutual exclu-
sion of the SSR streamer between the integer and the floating-point datapath.

Control and status registers

According to the usage of SSRs in the floating-point subsystem of Snitch cluster, the first
requirement of the integer SSR extension is to have a control and status register (CSR) to
enable or disable stream semantics. We added the CSR_INT_SSR CSR with address 0x7C2
to the Snitch core. It is a standard read /write CSR in the machine CSRs address range. It
contains a single bit (the LSB) to enable or disable integer stream semantics. And the
subset of registers with stream semantics is fixed in hardware and can only be enabled
or disabled all at once.

Register index mapped to SSR

The register calling convention in the floating-point subsystem assigns temporary regis-
ters ft0, ft1 and ft2 with stream semantics. When the SSR is enabled and the instruction
uses this subset of registers, the register reads and writes are forwarded to the external
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streams from the SSR streamer instead of accessing the registers. This subset is mapped
to the physical floating-point register file with register indices from zero to two. How-
ever, the register x0 (the physical register of index 0) in the Snitch core is hardwired to
logic 0 according to the basic RISC-V calling convention [22]. Therefore, we shifted the
indices of the integer registers that mapped with stream semantics to five, six and seven,
which corresponds to t0, t1 and t2 respectively. In this way, we kept using temporary
registers in the integer register file for stream semantics.

Register file

A vanilla integer register file supplies the operands for the subsequent pipeline by the
read ports, and write ports are used to store back the result of an instruction [24]. To
support SSR we need to intercept access to a certain set of registers, and redirect the read
or write transaction on the external stream interface instead of accessing the physical
register file [24]. Hence, additional hardware is required to wrap the register file as the
interface for streams. Figure 3.3.1 and 3.3.1 depict the hardware change per read and
write port of the integer register file.

SSR_RDONE
B SSR_RVALID
@ SSR_RDATA
@ SSR_RREADY

Valid instruction

——#» SSR_RADDR

Read OP_READY

GPR_RADDR D
Address
SSR?

RegisterFile
1
» 1 OPERAND
Read
Data > 0

Figure 3.6: Additional logic required per register file read port for SSRs

L

+Q

The data exchange on the SSR interface is achieved via a two-phase handshake: the
Snitch core asserts its read ssr_rvalid or write ssr_wwvalid signal if an access has stream
semantics ("SSR?"). This is determined by checking two conditions:

1. The register address (read address or write address) must be one of the registers
with stream semantics(t0, t1 and t2 in our implementation);

2. The CSR for stream semantics must be enabled.

If both conditions are met, the access is routed to the SSR streamer via the stream
interface. In the read mode, the operands can be directly fetched from memory by the
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SSR streamer instead of accessing the register file. The ssr_rready signal is pulled to
high as long as the data in the respective SSR lane’s FIFO is available. Finally, if the
core can consume this coming data, it asserts the ssr_rdone signal. In the write mode,
the ssr_wdone signal is always asserted, and the writing data is redirected to the SSR
streamer if the above-mentioned SSR checking conditions are met, and the SSR lanes
are ready to consume the data by asserting ssr_wready. This interface allows the SSR
streamer to assert back pressure to the Snitch core to stall the data exchange if a request
cannot be handled at once.

SSR_WDATA SSR_WADDR

GPR_WADDR HID T Write Address SSR_WDONE
GPR_WDATA | Write Data
RegisterFile
| SSR? g
) writeenan SSRMVALD
SSR_WREADY HED— Rel-nanie

Figure 3.7: Additional logic required per register file write port for SSRs

Control logic

We extended the scoreboarding logic and the write-back control logic for the SSR support.
The dependencies of the destination register should not be tracked when the SSR is
enabled since there is no physical register file access. Also, the operands should be
ready if it is used by SSR and they do not need to be marked in the scoreboard in this
case. The write-back results are rerouted to the SSR streamer at the retirement phase of
the instruction. It needs to check whether the destination register is mapped to stream
semantics and if the respective SSR lane is ready to take the data.

Arbitration mechanism for SSR sharing

We would like to mux the SSR streamer for both the integer datapath and the floating-
point datapath considering the area-performance trade-off. Meanwhile, this design
choice is also based on the fact that one stream can only be used by one master as the
integer and floating-point datapath are mutually exclusive. Thus the SSR streamer
cannot be active for both datapaths at the same time. We proposed an arbitration
mechanism for SSR sharing: it uses a 2-bit register inside the Snitch core to track the
usage status of the SSR streamer.

Since the execution of the FPU is decoupled from the Snitch core, floating-point
instructions could be committed at an arbitrary time later than its issuing from the Snitch
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Figure 3.8: SSR streamer sharing and arbitration mechanism support

core. Also, the CSR for enabling or disabling the floating-point SSRs locates in the FPU
instead of the Snitch core. Table 3.1 presents a pseudo-code example using both the
floating-point and integer SSRs, the left code is the program order, and the right is the
potential execution order. The program starts with enabling the floating-point SSRs and
then does the required computation. Afterward, it disables the floating-point SSRs, and
immediately enables the integer SSRs for the next integer kernels. In this case, if the
FPU is busy when the disabling is issued, the disabling could be delayed with arbitrary
cycles in the FPU, while the integer SSRs has already been enabled by the Snitch core,
which breaks up the entire system.

Program order  Potential execution order

set  fp_ssren set  fp_ssr_en

fp_ssr_en set  int_ssr_en
set int_ssr_en fp_ssr_en

Table 3.1: Pseudo code example using floating-point and integer SSRs

This issue can be solved by wiring a feedback signal from the FPU to the Snitch core to
inform the core of the usage status of the SSR streamer in the floating-point datapath, as
depicted in Figure 3.3.1. Finally, we can achieve a 4-state finite state machine (FSM) with
the 2-bit register and this feedback signal as presented in Figure 3.3.1. The default state
is IDLE as no one is using the SSR streamer. It can switch between IDLE and INT_ACTIVE
when the CSR for integer SSRs is enabled or disabled, as the responsible CSR was
added in the Snitch core. As for the floating-point datapath, this FSM jumps from IDLE
to FP_ISSUE when the CSR for floating-point SSRs is enabled. And it only jumps to
FP_ACTIVE when the Snitch core receives the SSR status signal from the FPU and the
signal is pulled to high, which means the SSR streamer is in use by the floating-point
datapath. Finally, if the floating-point SSRs are disabled and the Snitch core receives
logic zero brought by the SSR status signal, the machine returns back to IDLE. This
mechanism guarantees the robustness of the system in case of the SSR extension is used
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by both the floating-point and the integer datapath. It ensures that the SSR streamer is
only used by one master at a time.

FP_Enable

FP_ISSUE

FP_High
INT_Enable INT_Disable

Figure 3.9: Finite state machine (FSM) for mutual exclusion of SSRs

3.3.2 SSR streamer

The SSR streamer is the hardware extension to support SSRs. It wraps around the FPU’s
register file originally, and it is configurable by the Snitch core to configure memory
streams with an affine address pattern according to the available loops in the program.
We extended the SSR streamer to support integer streams by connecting it to the Snitch
core, and its resource sharing between the floating-point and the integer datapath. The
extensions of the SSR streamer include two major modules:

* SSR switch: it can map the streams of register accesses from the master to the
SSR lanes based on our requirements. We extended it to support both integer and
floating-point memory stream mapping.

¢ SSR lane: it can generate addresses for memory accesses, fetch data from memory
and store it in the FIFO in the read mode. We extended it to support feeding 32-bit
integers to the Snitch core.

SSR switch

The read and write ports of the register file is exposed as separate streams at the boundary
of the core. The SSR switch uses the register address to map each access on these streams
to the targeted SSR lane [24]. The original implementation contains three such lanes for
floating-point datapath, one for the ft0, one for the ft1 and one for the ft2 registers.
We extended the switch to support the following additional functionalities:

¢ it can map the integer register access on the streams to the SSR lanes;
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¢ it can mux the streams from the SSR lane to the corresponding master that sends
the request.

First, we added an extra SSR interface to connect the SSR streamer to the Snitch core.
Then we mapped the streams from the integer register file to the SSR lanes. Here these
lanes were mapped to t0, t1 and t2 registers in the Snitch core. The stream multiplexing
is achieved by a 1-bit control signal from the Snitch core: it will select the corresponding
datapath according to the current state of the FSM we introduced in Figure 3.3.1 for the
correct arbitration. For example, the integer datapath is selected at state INT_ACTIVE as
the control signal is 0, then the streams from the integer register file are mapped to the
SSR lanes. On the other hand, the floating-point datapath is selected at state FP_ACTIVE
as the control signal is asserted, and the streams from the floating-point register file are
mapped to the SSR lanes in this case.

SSR lane

The SSR lane is the central module inside the SSR streamer. It is employed to generate
addresses and send requests to the TCDM, and feed the response data to the master (e.g.
FPU). Originally, the address generators inside each lane were configured to generate
64-bit aligned addresses as the last three bits of the address were masked to 0. And each
time 64-bit double-word data was fetched from the TCDM for floating-point datapath.
We proposed an address filter approach using FIFO to store metadata and split 32-bit
words out of each 64-bit double word. The extended SSR lane’s architecture is shown in
Figure 3.10.

In this approach, we first configured the address generator to generate 32-bit aligned
addresses by masking only the last two bits of the address. This is useful to track
the address sequence as we can get the address information of each 32-bit data when
the address was emitted. We added an intermediary unit (address filter) between the
address generator and the remaining modules inside the SSR that communicates with
three different components based on valid-ready handshakes:

¢ It consumes the address from the address generator when its downstream modules
(metadata FIFO and memory request hardware) are ready;

¢ It produces valid addresses and the memory request signal to the existing request
mechanism, which happens when a new double word address is detected and
there is valid data at the address generator interface;

¢ It produces the metadata and sends it to the downstream FIFO when there is a
valid address from the address generator.

The handshake mechanism can stall and continue the exchange of data whenever the
producer or the consumer dessert their respective control signals in any cycle, which
frees the designer from using fine-grained data flow control in terms of the hardware.

Then we introduced the concept of metadata, which consists of 3 bits as shown in
Figure 3.11:
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Figure 3.10: Block diagram of the extended SSR lane. The existing modules and datapath
are marked in blue, while the added modules and datapath are marked in
grey and black respectively.
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e Offset: it is the 3rd LSB of the address. It is used to split two 32-bit data out of one
64-bit data. For example, a 64-bit double word is stored at address 0x00000, and it
contains two 32-bit integers stored at address 0x00000 and 0x00004, respectively.
Then we can distinguish them as their 3rd LSBs are different. The lower 32-bit uses
0 while the upper 32-bit uses 1.

¢ Fetch: it is obtained by comparing the upper 14 bits of the two consecutively
generated addresses. The address emitted earlier is registered for one cycle and
used to compare with the later one. If the upper bits are different, it means two
double words are needed by these two addresses, and the memory request will
be sent to the TCDM with the later address. On the contrary, if the upper bits are
the same, it means these two addresses are pointing to a single double-word data,
then only one memory access will happen and the second memory access will be
filtered to avoid repeating data fetching and expensive latency.

¢ Last: it is a signal coming from the address generator indicating the end of the
address stream. It is necessary to ensure the last data stored in the data FIFO can
also be read out.

Last(1b) | Fetch(1b) | Offset(1b)

Figure 3.11: The organization of metadata

We used a lookahead FIFO to store the metadata, and the metadata is used to control
the data FIFO that stores the data we fetch from memory and split the 32-bit word at
the output stage. Each time the address filter module generates 3-bit metadata when
it receives a valid address from the address generator, thus each metadata contains all
the required information of its corresponding address, which is useful for downstream
processing. Fetch and Last are used for reading control of the data FIFO. The head
element of the data FIFO is popped if Fetch of the second element in the metadata
FIFO is 1, or Last of the first element in the metadata FIFO is 1. Fetch = 1 means the
consecutive addresses use different 64-bit double word data in TCDM instead of sharing
the same double word and vice versa. In this case, we need to pop the head element
from the data FIFO, otherwise the subsequent address can reuse the same double-word
data and we need to make sure this data is not popped. The lookahead mechanism
ensures that two elements can be read in one cycle: the element at the head of the FIFO
and the element behind it. In this way, we can check two consecutive addresses in a
single cycle, which is consistent with our requirements. While Last = 1 means, it is
the last required data of the stream. Therefore it also needs to be popped and sent to
the master. This lookahead FIFO is achieved by adding a register at the head of the
FIFO. The register and the FIFO are both implemented with valid-ready handshaking
interfaces so that it is easy to fit this module in our SSR lane. The size of this metadata
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FIFO is eight, which is able to store all the addresses in the flight safely: the size of the
data FIFO is four and the latency of TCDM is two cycles.

Finally, the data selection is achieved inside the SSR switch as we need to select 32-bit
words for integer datapath but bypass this data splitting for floating-point datapath.
This is controlled by the SSR datapath selection signal from the Snitch core: when this
signal is 0, the integer datapath is selected, and the 64-bit double words are split into
32-bit words based on the 0ffset. The upper 32-bit word is selected if the 0ffset is 1,
otherwise the lower 32-bit word is selected. On the other hand, when the SSR mux signal
is 1, the floating-point datapath is selected, and the 64-bit data can be directly fed to the
FPU instead of passing through the data-splitting logic. In addition, the data selection
module is implemented with valid-ready handshaking interfaces as the consumer of
the 0ffset metadata and the 64-bit double words from the data FIFO, and the producer
of the data to the FPU/Snitch core. It only generates a valid output when it finishes
handshakes with both upstream inputs successfully. This mechanism also makes sure it
can select the correct 32-bit words required for the integer datapath.

3.4 Verification

The verification during our hardware implementation is based on the existing test bench
for the Snitch cluster. We can write bare-metal C programs and use pulp-riscv-gnu
toolchain [34] to compile them to binaries. The test bench then takes the binaries as the
input stimuli for the RTL simulation on the Snitch cluster.

We verified our ISA extensions by integrating the existing riscv-tests [36] verifica-
tion framework into the mainline Snitch. The methodology we adopted in our design
iteration is shown in Figure 3.12. riscv-tests environment provides two phases of
verification:

* Behavioral simulations of the instructions with Spike ISA simulators [37]
¢ RTL simulations by generating test binaries

We used the custom pulp-gcc toolchain extended with Xpulpimg and sub-byte SIMD
instruction set to compile the tests, and then we ran the RTL simulation on a single
core of the Snitch cluster. We also automated the testing process for efficiency and also
ensuring every new instruction introduced by the ISA extension was tested.

For our SSR extension, we verified our implementation step by step corresponding
to our progress. First, we verified the integer reading and writing using SSRs with a
simple array-addition kernel after we added the SSR interface to the integer register file
of Snitch, and the SSR switch was extended to have two interfaces as a slave module.
Next, we verified our SSR arbitration mechanism with some edge cases that could break
up the system. It also guarantees the robustness of the mutual exclusion strategy we
proposed. Finally, we verified all the extensions in the streamer and the Snitch core in
the system with a software test suite. This test suite targets both floating-point SSRs and
integer SSRs, to ensure that the floating-point datapath is not broken by our extension
and functionality of our extension is correct. It mainly contains two parts:

27



3 Hardware Architecture

pulp-riscv-gnu-toolchain

COMPILE

A 4

riscv-tests

VERIFICATION

A 4 A 4

RTL
implementation

riscv-isa-sim

Figure 3.12: ISA extension verification methodology

¢ Functional tests: this aims to verify the functionalities of our design. We tested
the system with element-wise operations of two arrays, such as addition and
MAC operation. The types of arrays include both the 64-bit double-precision
floating-point and the 32-bit integer;

¢ Stress tests: this aims to verify the system with some edge cases. We tested the
system with element-wise operations of two arrays with large array sizes, i.e.,
hundreds of elements per array. This makes sure both FP SSRs and integer SSRs
can work correctly when reading a large amount of data is necessary.

3.5 Conclusion

In this chapter, we defined a unified Snitch system with integer extensions for integer
workloads acceleration. The hardware implementation of these integer extensions in
Snitch was described, which consists of the following three parts:

¢ Xpulpimg ISA integration;
* Sub-byte SIMD ISA integration;
¢ Integer support for SSRs and the datapath sharing of SSR streamer.

For the Xpulpimg and sub-byte SIMD ISA integration, we modified the logic inside the
Snitch core in a parameterized style to support these new instructions without harming
the extensibility and modularity of the Snitch core. Also, we integrated the Snitch IPU
as an integer accelerator into the Snitch CC through the generic accelerator interface of

28



3 Hardware Architecture

the Snitch core. For the integer SSR extension, we extended the Snitch core to be able
to redirect the register read or write transaction to the external streams and arbitrate
the usage of the SSR streamer for floating-point and integer datapath. Also, the SSR
streamer is extended to have 32-bit integer support maintaining the original floating-
point abilities. We followed a top-down approach to introduce our hardware extensions
from high level to details. Finally, we introduced our verification methodology during
our implementation.

29



Chapter

Results

We integrated the Xpulpimg and sub-byte SIMD ISA extensions into the mainline Snitch,
and we added integer SSR support as described in Chapter 3. We aimed to evaluate the
impact of these different integer extensions for Snitch in terms of performance, area, and
timing. The main object of our evaluation is the Snitch core complex (CC). This level
of abstraction only contains the vanilla Snitch core and different hardware extensions
applied to the core, such as FPU, SSR streamer, etc.

In this chapter, we present the performance, area, and timing results of our integer
extensions in comparison with the baseline RV32IM Snitch CC. First, we describe our
evaluation setup in terms of benchmarking and synthesis in Section 4.1. Then we analyze
the performance of the Snitch CC with different extensions according to the benchmark
results in Section 4.2. Finally, Section 4.3 presents the synthesis results showing the cost
in terms of the area and the timing.

4.1 Evaluation setup

4.1.1 Benchmarking methodology

We used cycle-accurate RTL simulations in QuestaSim 10.7b to measure the performance
of the Snitch CC. The traces for the Snitch core were recorded during the simulations and
parsed to a readable format by a Python script. The program execution sequence can be
found in the results of the traces, and the execution cycles of the benchmark kernels are
tracked by the CSR counter in the Snitch core. The evaluation flow is shown in Figure
4.1.

We benchmarked the Snitch CC with the matrix multiplication (matmul) algorithm.
It is a typical integer workload widely used in DSP and machine learning applications.
We also developed a set of kernels in C language based on different integer extensions
for the evaluation:

¢ The vanilla Snitch CC with RV32IM ISA;
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Figure 4.1: Performance evaluation flow

¢ The Snitch CC with Xpulp ISA (Xpulpimg and sub-byte SIMD) extension;
® The Snitch CC with integer SSR extension;
¢ The Snitch CC with Xpulp ISA and integer SSR extensions.

We compiled these kernels with the pulp-gcc-toolchain extended with Xpulpimg and
sub-byte SIMD instruction set. To exploit the highest performance of these extensions,
we optimized these kernels by employing available compiler intrinsics and manual
inline assembly. Loop unrolling is also applied to these kernels. In addition, these
matmul kernels have been simulated with different data widths such as 32-bit, 8-bit and
4-bit, aiming to explore the performance impact on the typical lower data widths.

We utilized the 8-core Snitch cluster configuration for simulation, but ran the programs
on a single core for the evaluation of CC. In this cluster, a 128 KiB TCDM with 32
memory banks is shared between eight cores. Since we also benchmarked with different
dimensions of the matrices, we ensured that the input and output matrices could fit in
the TCDM for the simulation reasons. This not only prevents us from long stalls due to
potential lower-level memory accesses, allowing us to focus on the performance of our
extensions but also ensures the correct data can be fetched by the SSR streamer for the
integer SSR extension.

4.1.2 Synthesis methodology

We synthesized the Snitch CC with GlobalFoundries 22FDX FD-SOI technology in typical
conditions (TT, 0.80V, 25°C) using Synopsys Design Compiler 2022.03. The aims of the
synthesis consist of two parts:

¢ We would like to understand the area and timing impact of these integer extensions
on the Snitch CC, targeting the default operating frequency of 1 GHz;

* We would like to explore the highest effective frequency of the Snitch CC with
different extensions. We changed the clock constraint varying from 2.8 ns to the
potentially lowest effective clock period. And we drew the Area-Timing (AT) plots
with a set of Pareto points collected from the synthesis results. In our AT plots, the
x-axis represents the clock period, the y-axis stands for the area in terms of GE.
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4.2 Benchmarking Results

4.2.1 32-bit matrix multiplication

We first evaluated our extensions with 32-bit matrix multiplication kernels. We varies
the dimension of the input matrices to have four sets: 16x16, 32x32, 64x32, 64 x64.
Note that we did not enlarge the dimension further than 64 x 64 since we need to ensure
the input and output matrices can be safely stored in TCDM as explained in Section
4.1.1. We compared the results of four different versions of matmul kernels based on
different extensions within each matrix dimension. Each version was optimized by loop
unrolling in the following way:

* The baseline RV32IM matmul kernel: we unrolled the outer loop to compute a small
2 x 2 square of the output matrix per iteration. The inner loop is also unrolled,
performing 2 MAC operations for each element inside the 2x2 square per iteration.
In summary, each hot-loop loads four elements from each input matrix, and then
eight MACs are performed.

J : it follows the same structure as the baseline kernel.
However, it is compiled for Xpulpimg architecture which uses the post-increment
load and store operations as well as the fused-MAC operation.

¢ The SSRs matmul kernel: All the load operations are encoded into the register
read operations for the SSR kernel, and we only need to do a one-time setup for
the address generator according to the loops. As the existing multiplier needs
four cycles to finish each computation, if we do the addition using the destination
register of the multiplication as the source subsequently, a false dependency will
occur, which hampers achieving the highest throughput. Hence, we unrolled the
inner loop by a factor of 8 at the assembly level to hide the latency of the multiplier
and solve the false dependencies issue. The loop unrolling of the SSR kernel is
based on the repeating functionality of the SSR extension. By configuring the
repeat times N, each data can be reused by N time. In this case, each iteration
of the hot-loop computes one element from matrix A with eight elements from
matrix B (i.e., 8 MACs are performed), and additions are performed after all
the multiplications are finished instead of the normal serialized execution of
multiplication and addition. This unrolling factor is bounded by the number of
available registers, as we already need 18 registers for the unrolling by eight (16
destination registers for multiplication and accumulation, two registers for stream
semantics as input).

J : the Xpulp+SSRs kernel is unrolled by 16 with the
similar approach as the SSRs kernel. However, we use the fused-mac operation
introduced by the Xpulpimg ISA instead of the decoupled multiplication and
accumulation in RV32IM. Hence, we can unroll the inner loop further from 8 to
16 to achieve higher throughput. Also, this loop unrolling mechanism already
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eliminates the false dependencies as we compute 16 elements back-to-back with
16 different accumulation registers.

32-bit Matmul performance of CC
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Figure 4.2: Performance of the Snitch CC with different integer extensions on 32-bit
matrix multiplication kernels

Table 4.1 depicts the assembly code of the hot loop with different extensions. We
can observe that Xpulp kernel eliminates the index incrementation with post-increment
load instructions p. lw, and combines the multiplication and addition into a single fused
instruction p.mac. SSRs kernel is unrolled by eight and optimized to solve the RAW
dependency manually, but it still needs two individual instructions per MAC operation.
Note that the load operations have been encoded into reading registers t0 and t1.
Xpulp+SSRs kernel leverages the benefits of both the SSRs and Xpulp ISA to achieve
high FU utilization.

We proposed a metric to evaluate the performance: hardware efficiency. It can be
measured in terms of MACs per cycle. Figure 4.2 shows the benchmarking results of the
Snitch CC on 32-bit matrix multiplication kernels. Compared with the baseline, Xpulp
ISA extension leads to the maximum speedup of 1.3 in terms of MACs/cycle; SSR
extension achieves 3.5x speedup, while Xpulp+SSR extensions reaches 5.9 x speedup.

Ideally, the Xpulp+SSR extensions can achieve 1 MAC/cycle at maximum. However,
we only reach 0.86 MACs/cycle when the input matrix size is 64 x64. We analyzed the
results of the traces to understand this performance gap. First, when the matrix size is
small (e.g., 16 x 16), we observed that the performance is slightly lower than the larger
matrices. And we found that the setup overhead for the SSR is significant, which takes
around 16% of the execution time of the kernel. Secondly, as we unrolled the inner loop
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Baseline SSRs
Iw s10, 0(ab) plw  t6,8(t2!) mul  t5,t0,t1 p-mac s5,t0,t1
Iw al, 0(t1) plw t4,8(s0!) mul t6,t0,t1 p-mac a5,t0,tl
Iw s8, 0(t3) plw t5,512(al!) mul s0,t0,t1 p-mac a4,t0,t1
Iw s9, 4(t3) plw t3,512(s4!) mul  s4,t0,t1 p-mac a3,t0,tl
Iw a2, 4(ab) plw t1,8(s1!) mul  s5,t0,t1 p-mac a2,t0,tl
mul s11,s10, s8 p-mac a5,t6,t5 mul s6,t0,t1 p-mac al,t0,tl
Iw a4, 4(t1) plw a6,8(s2!) mul s7,t0,t1 p-mac a0,t0,tl
Iw a3, 0(t4) plw a7,512(s5!) mul  s8,t0,t1 p-mac a6,t0,tl
Iw s6, 4(t4) plw a0,512(s3!) add a5,t5,a5 p-mac s2,t0,t1
addi a5, a5, 8 p-mac a4,t6,t3 add a4,t6,a4 p-mac s1,t0,t1
addi t1,tl1,8 p-mac a3,t4,t5 add a3,s0,a3 p-mac s0,t0,t1
addi t3,t3,512 p-mac a2,t4,t3 add a2,s4,a2 p-mac t6,t0,t1
addi 4, 4,512 p-mac a5,tl,a7 add al,sb,al p-mac t5,t0,t1
mul s8,al, s8 p-mac a4,tl,a0 add a0,s6,a0 p-mac t4,t0,t1

add a0, sl1, a0 p-mac a3,a6,a7 add a6,s7,a6 p-mac t3,t0,t1
mul 10, s10, s9 p-mac a2,a6,a0 add a7,8,a7 p-mac aZ,t0,t1
add a7,s8,a7 bne t0,al, pc-64 addi t3,t3,-1 addi s4,54,-1
mul al,al, s9 bnez t3,pc-68 bnez s4,pc-68
add a6, s10, a6

mul s8, a2, a3

add al,al,s7

mul a3, a4, a3

add a0, s8, a0

mul a2, a2, sé

add a7, a3, a7

mul a4, a4, s6

add a6, a2, a6

add s7,a4,al

bne t5,a5, pc-112

Table 4.1: Assembly code improvements with different extensions of the 32-bit matrix
multiplication hot-loop
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by 16, the hot loop consequently consists of 16 MAC operations for computation, one
instruction for index incrementation, and one instruction for branching. Hence, there is
an 11% loss caused by bookkeeping. Additionally, we use some instructions to store the
results of the output matrix and reset the accumulating registers.

4.2.2 8-bit matrix multiplication

We used matrix multiplication algorithms for the 8-bit data type following a similar
approach as its 32-bit counterpart. There are still four sets of input matrices dimensions:
1616, 32x32, 64 x 64, 128 x128. Note that the largest dimension is increased to 128 since
the data size of 8-bit shrinks by four times compared with 32-bit data. We developed
three versions of kernels, namely baseline RV32IM, Xpulp and Xpulp+SSRs. The baseline
and Xpulp+SSRs versions follow the similar optimization as their 32-bit implementation
explained in Section 4.2.1, except that the Xpulp+SSRs kernel exploits the 8-bit SIMD
sum-dot-product instruction introduced by the Xpulpimg ISA, which also requires the
matrix B to be stored in the transposed format. As for the Xpulp kernel, the following
optimizations were applied:

¢ the compiler intrinsics were used for 8-bit SIMD operations. Some shuffle opera-
tions are also used to transpose the chunk of the input matrix B for the correct data
packing of the SIMD registers for the dot products.

* we also added loop unrolling to compute a 2x4 square of the output matrix per
iteration. In each hot loop, 4 MACS are performed for each output element.

The results of the kernel benchmarked on the Snitch CC are presented in Figure 4.3.
Xpulp extension achieves a maximum speedup of 5.3 x, while Xpulp+SSR extensions
are observed to be 22.6x faster with respect to the RV32IM baseline. Note that with
64 x 64 input matrices, the Xpulp+SSR kernel even has a better performance compared
with the larger matrices. Since we unrolled the inner loop by 16, the compiler also did
extra optimizations so that the most inner loop was fully unrolled and book-keeping
instructions for the hot loop were eliminated.

4.2.3 4-bit matrix multiplication

The 4-bit matrix multiplication also shares a similar setup as 8-bit, with the same four
sets of input matrices dimensions and three versions of kernels. However, since the
smallest granularity of the processor is a byte (8-bit), we have to at least pack two 4-bit
data into one 8-bit data for storage purposes. Then in the baseline RV32IM kernels, it
needs to first unpack a byte into two 4-bit sub-bytes, then sign-extended them both to
8-bit. Finally the computations with full bit-width (i.e., 32-bit level) are performed by the
ALU and the multiplier. In contrast, the Xpulp extension supports 4-bit SIMD operations,
which handles this small data type more efficiently. The 32-bit word is loaded to the
SIMD registers and 8 MACs are performed within a single instruction. The performance
results of 4-bit matrix multiplication are shown in Figure 4.4.
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8-bit Matmul performance of CC
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Figure 4.3: Performance of the Snitch CC with different integer extensions on 8-bit matrix
multiplication kernels
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Figure 4.4: Performance of the Snitch CC with different integer extensions on 4-bit matrix
multiplication kernels
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The baseline has a poor performance on 4-bit data type as the Snitch core has the
disadvantage of processing it under the support of 32-bit datapath modules. The
speedup of 15.3 x is observed from the Xpulp kernel with respect to the baseline. Note
that the performance of the Xpulp kernel reaches its peak with the 16 x 16 input matrices,
thanks to the fewer load operations required for SIMD registers. The Xpulp+SSRs kernel
exhibits significant speedup, which also scales linearly as the matrix dimension increases.
For input matrices with 128 x128 elements, It achieves a maximum speedup of 77.4x.

4.3 Synthesis Results

The area cost of our extensions under certain timing conditions is evaluated with logic
synthesis on the Snitch CC. First, we targeted a 1 GHz clock with appropriate 10 delays.
Figure 4.5 and 4.6 shows the area of the Snitch CC with different extensions. Here we use
the gate equivalent (GE) as a measure of circuit area. From these figures, we observe that
the Xpulp ISA extension, including the Xpulpimg and sub-byte SIMD ISA introduced an
area overhead of 32.7 kGE. In particular, the IPU dominates with an area of 27.6 kGE. The
critical path passes through the accelerator offloading datapath instead of the register file
in the baseline. The SSR extension brought an area overhead of 30.8 kGE, which consists
of the logic extension we implemented inside the Snitch core and the extended SSR
streamer. The original SSR streamer has already consumed an area of 25.8 kGE. Thus our
extension to support integer SSR only introduced an extra overhead of approximately 5
kGE. With the integer SSR extension, the critical path of the Snitch CC passes through the
Snitch register file and the SSR streamer. When the floating-point extension is enabled,
the FPU coprocessor is presented in the Snitch CC. This hardware needs around 255
kGE, and the retiming optimization is applied to improve the operating frequency of the
Snitch CC. Besides, we found that our extensions on the integer datapath did not exhibit
a measurable impact on the critical path of the floating-point datapath. Compared with
the FP-capable CC, our Xpulp ISA and integer SSRs extensions increased the area by only
12%. For the Xpulp-capable CC, our integer SSRs extension leads to an area overhead of
42%.

We also explored the highest effective frequency of the Snitch CC when different
extensions are applied with the same setup configuration for the synthesis. At this
step, we set the clock period constraint to sweep from 2.8 ns to the potentially lowest
values. The highest effective frequency can be calculated by the sum of the clock
period and the worst negative slack when the timing constraint is not met and the
slack is a negative value. Figure 4.7 and 4.8 plots the Snitch CC area against effective
longest path for different combinations of extensions. The results of the highest effective
frequency and the critical path are summarized in Table 4.2. Note that the baseline
vanilla Snitch of RV32IMA instruction set achieves a maximum frequency of 2 GHz,
and the longest path passes through the Snitch register file. The Xpulp extension
decreases the maximum frequency to 1.9 GHz, which also changes the longest path,
passing through the accelerator offloading datapath. The integer SSRs extension does
not degrade the frequency, but the critical path passes through the Snitch register file
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Figure 4.5: Snitch CC Area at 1 GHz with different integer extensions. Note that the
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Figure 4.6: Snitch CC Area at 1 GHz with different integer extensions. Note that the
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and the SSR streamer in this case. On the other hand, we can notice that the maximum
frequency is worsened by the floating-point subsystem to 1.5 GHz. However, these
results also prove that our integer extensions do not influence the frequency when the
floating-point extension is presented.

Frequency Critical path
Snitch RV32IMA 2.0GHz Snitch register file

1.9 GHz Accelerator offloading datapath
Snitch with integer SSRs 2.0GHz Snitch register file and SSR streamer
Snitch with Xpulp+SSRs 1.9 GHz Accelerator offloading datapath
Snitch with FP 1.5 GHz Floating-point subsystem

1.5 GHz Floating-point subsystem
Snitch with FP+integer SSRs 1.5 GHz Floating-point subsystem
Snitch with FP+Xpulp+SSRs 1.5 GHz Floating-point subsystem

Table 4.2: Highest effective frequency and corresponding critical paths under this fre-
quency of Snitch CC with different extensions

4.4 Conclusion

In this chapter, the benchmark results and the synthesis results on the Snitch CC have
been detailed to analyze the impact of our design. We used the integer matrix multipli-
cation algorithm as our benchmark, varying the input matrices’ size, data widths, and
kernels belonging to different extensions for the performance evaluation. When both the
Xpulp ISA extension and the integer SSR extension are enabled, the Snitch CC achieves
a maximum speedup of 5.9, 22.6x and 77.4x in terms of MACs/cycle for 32-bit, 8-bit
and 4-bit matmul respectively. For 32-bit matmul, we analyzed the underlying reasons
why the Xpulp+SSR kernel does not achieve 1 MAC/cycle theoretically. We observed
the following: the book-keeping instructions for each hot-loop result in an 11% loss in
performance, and the setup overhead for SSR is not negligible when the matrix size is
small; also we consumed some instructions to store the result matrices and reset the
accumulation register. For lower bit-width data such as 8-bit and 4-bit, we noticed that
their computation benefits greatly from our extensions thanks to the SIMD nature. We
synthesized the Snitch CC with different extensions in 22 nm technology to evaluate the
area and timing impact. The Xpulp ISA extension increased the Snitch CC area by 32.7
kGE at 1 GHz. While the integer SSR extension only contributes 4.9 kGE with respect to
the existing floating-point SSR. In general, our Xpulp ISA and integer SSRs extensions
increased the area by only 12% compared with the FP-capable CC at 1 GHz. Similarly
for the Xpulp-capable CC, our integer SSRs extension leads to an area overhead of 42%.
In addition, our hardware extension only decreases the highest effective frequency from
2 GHz to 1.9 GHz, and the longest path in the floating-point datapath is not affected. In
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summary, our extensions improve the performance remarkably, only introducing the
reasonable area overhead and timing influence.
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Chapter

Conclusion and Future Work

5.1 Summary

In Chapter 2, we explained the necessary background knowledge for this project. First,
we introduced the RISC-V open-source ISA along with its extensions. Next, SSRs are
presented as a custom RISC-V extension to improve FU utilization, which we will extend
to enhance the integer FU utilization in our work. Then, we introduced the hardware
platform we will work on in this project, the Snitch cluster, and its detailed architecture
was explained. Finally, another RISC-V system Mempool was introduced. Mempool
was improved for ISP purposes with the ISA extensions, namely Xpulpimg and sub-byte
SIMD. We are interested in porting them to the mainline Snitch and exploring their
impact.

In Chapter 3, we defined a unified Snitch system with integer extensions for integer
workloads acceleration. The hardware implementation of the integer extensions in
Snitch was described, which consists of the following three parts:

¢ Xpulpimg ISA integration;
¢ Sub-byte SIMD ISA integration;
¢ Integer support for SSRs and the datapath sharing of SSR streamer.

For the Xpulpimg and sub-byte SIMD ISA integration, we modified the logic inside the
Snitch core in a parameterized style to support these new instructions without harming
the extensibility and modularity of the Snitch core. Also, we integrated the Snitch IPU
as an integer accelerator into the Snitch CC through the generic accelerator interface of
the Snitch core. For the integer SSR extension, we extended the Snitch core to be able
to redirect the register read or write transaction to the external streams and arbitrate
the usage of the SSR streamer for floating-point and integer datapath. Also, the SSR
streamer is extended to have 32-bit integer support maintaining the original floating-
point abilities. We followed a top-down approach to introduce our hardware extensions
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from high level to details. Finally, we introduced our verification methodology during
our implementation.

In Chapter 4, the benchmark results and the synthesis results on the Snitch CC have
been detailed to analyze the impact of our design. We used the integer matrix multipli-
cation algorithm as our benchmark, varying the input matrices” size, data widths, and
kernels belonging to different extensions for the performance evaluation. When both the
Xpulp ISA extension and the integer SSR extension are enabled, the Snitch CC achieves
a maximum speedup of 5.9x, 22.6x, and 77.4x in terms of MACs/cycle for 32-bit, 8-bit
and 4-bit matmul respectively. For 32-bit matmul, we analyzed the underlying reasons
why the Xpulp+SSR kernel does not achieve 1 MAC/cycle theoretically. We observed
the following: the book-keeping instructions for each hot-loop result in an 11% loss in
performance, and the setup overhead for SSR is not negligible when the matrix size is
small; also we consumed some instructions to store the result matrices and reset the
accumulation register. For lower bit-width data such as 8-bit and 4-bit, we noticed that
their computation benefits greatly from our extensions thanks to the SIMD nature. We
synthesized the Snitch CC with different extensions in 22 nm technology to evaluate the
area and timing impact. The Xpulp ISA extension increased the Snitch CC area by 32.7
kGE at 1 GHz. While the integer SSR extension only contributes 4.9 kGE with respect to
the existing floating-point SSR. In general, our Xpulp ISA and integer SSRs extensions
increased the area by only 12% compared with the FP-capable CC at 1 GHz. Similarly
for the Xpulp-capable CC, our integer SSRs extension leads to an area overhead of 42%.
In addition, our hardware extension only decreases the highest effective frequency from
2 GHz to 1.9 GHz, and the longest path in the floating-point datapath is not affected. In
summary, our extensions improve the performance remarkably, only introducing the
reasonable area overhead and timing influence.

5.2 Main contributions

The major contributions of this work consist of the following:

¢ We integrated the existing Xpulpimg and sub-byte SIMD ISA extensions into the
mainline Snitch system;

* We extended the existing floating-point SSRs to support integer SSRs but main-
tained all the floating-point abilities and integrated the integer SSRs into the
mainline Snitch system;

¢ We evaluated these integer extensions in terms of performance, area, and timing.
These contributions solve the research questions we proposed in Chapter 1:

® How can we define a unified Snitch architecture with available and possible integer
extensions for efficient processing of integer workloads?

* What are the performance benefits and cost of the potential integer extensions in Snitch?
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The answers can be formulated as follows: The unified Snitch architecture is based on
the vanilla Snitch integer core in the mainly Snitch system. We extended it by integrating
the Xpulp ISA extensions and adding integer SSRs support at the CC level to boost its
performance on integer-based workloads. The final architecture achieves remarkable
speedup on integer matrix multiplication benchmarks: a maximum speedup of 5.9,
22.6x and 77.4x in terms of MACs/cycle for 32-bit, 8-bit and 4-bit matmul respectively.
The maximum effective frequency decreases by 5% when both the Xpulp ISA and integer
SSRs extensions are enabled. And these two extensions increase the area of Snitch CC
by 32.7 kGE and 4.9 kGE. In summary, our integer extensions empowers the Snitch
system to achieve high performance in integer workloads, such as DSP and QNN, with
reasonable area overhead.

5.3 Future work

Due to the time limit and the new ideas found during this project, there are many
opportunities for future improvements. We list some potential working directions as
follows:

* We could investigate the impact of the integer hardware loop proposed in [38]. This
ISA extension provides the hardware setup for the nested loops before entering
the loop body. Thus it eliminates the need for index incrementation and branching,
which could potentially amend the performance gap in Xpulp+SSR extensions and
approach the theoretical throughput.

¢ We could update the RISC-V toolchain in Snitch repository [39] to support Xpulpimg
and sub-byte SIMD ISA. Since the mainline Snitch system uses PULP-LLVM
toolchain [40] as the main compiler. The up-to-date PULP-LLVM does not support
the Xpulpimg and the sub-byte SIMD ISA extensions we ported in the mainline
Snitch. In our project, we still used the PULP-GNU toolchain in Mempool, where
these instructions were originally implemented. Hence, an integrated and unified
compiler can be exploited to form a complete ecosystem to facilitate future work.

¢ We could use additional representative integer applications for the performance
evaluation. In our work, we only explored the impact of our integer extensions
under different bit widths with matrix multiplication algorithms. However, there
are lots of typical integer-based workloads, such as graph processing, convolutions,
FFT, etc. More extensive performance evaluation could help us understand our
extensions’ benefits and bottlenecks, leading to further improvements.

¢ We could analyze the power consumption of our extensions. Power consumption
is also one of the main concerns for current computer systems. We can also
measure the energy efficiency of our system based on the power data to have a
more exhaustive evaluation.
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List of Acronyms

ALU ... .. .. arithmetic logic unit
cC........ core complex

clsc ... complex instruction set computer
CSR ....... control and status register

DMA . ... .. direct memory access

DNN ...... deep neural network

psp ....... digital signal processing

FD-SOI . . ... Fully-Depleted Silicon-Over-Insulator
FIFO . ... . .. first in, first out

FP ... floating-point

FPSS . ... ... floating-point subsystem

FPU . ... ... floating-point unit

FREP ...... floating-point repetition

FSM ... .... finite state machine

FU ........ functional unit

GE ........ gate equivalent

IoT ... ..... internet of things

PU .. integer processing unit
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instruction set architecture

image signal processing

least significant bit

load-store unit

multiply-accumulate

microcontroller unit

.integer multiply-divide unit

program counter

Parallel Ultra-Low Power
quantized neural network

read-after-write
reduced instruction set computer

register transfer level

single instruction multiple data

stream semantic register
tightly coupled data memory

very long instruction word
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