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Abstract

Blind Source Separation (BSS), the separation of latent source components from observed
mixtures, is relevant to many fields of expertise such as neuro-imaging, economics and machine
learning. Reliable estimates of the sources can be obtained through diagonalization of the
cumulant tensor, i.e., a fourth-order symmetric multi-linear array containing the cross-kurtosis
values of observed mixtures. The downside of such diagonalization methods is that they scale
quartically with the increase of the amount of source components to estimate due to the
tensor’s quartic size. Tensor decomposition can simultaneously diagonalize the cumulant
tensor and address its size. However, it does not resolve the scalability issue due to the
restriction of having to first explicitly compute the tensor.

It is studied how decomposing the cumulant tensor in implicit fashion can be used to solve the
BSS problem while simultaneously addressing its scalablity issue. A class of implicit cumulant
tensor decomposition algorithms is derived which scale more favorably than their explicit
counterparts in terms of either computational cost, storage cost or both. Firstly, a novel QR-
Tensor algorithm (QRT) is introduced which allows for the simultaneous diagonalization of a
tensor’s outer-slices. It is theoretically shown how an implicit version of the QRT algorithm
can be used to solve the BSS problem at a linearly scaling computational cost. Secondly,
a fixed-point Canonical Polyadic Decomposition (CPD) iteration method is presented. It
reduces the computational complexity from a quartic dependence to a linear dependence on
the amount of signals to estimate. The source estimation performance of the devised implicit
decomposition methods is compared to that of the state-of-the-art FastICA for an artificial
linear BSS problem.

Results show that both fixed-point CPD and QRT are superior to FastICA when it comes
to the computation time needed to reach convergence, while producing estimated sources of
similar quality. It is shown that when the amount of sources to estimate is increased both
QRT and FastICA struggle to converge. In contrast, the fixed-point CPD method converges
within a consistent amount of iterations, suggesting a method more suitable for the estimation
of a large amount of sources.
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5-18 Estimated source components ŝi ∀i = 1, 2, 3, 4 together with the residual noise
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Preface

The photo shown on the cover of this thesis is shot at a low shutter speed while swinging an
LED-cord in a dark room. Halfway during the shot the blue part of the LED-cord is changed
to the color red. The result is a mixture of colorful lines which seem partially separated and
partially mixed with each other. To us, the impression it leaves is akin to that of Blind Source
Separation where we think we can see separate signals but we do not know for sure how many
there are and what they truly look like.
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Chapter 1

Introduction

Advancements in computational technologies stimulate the use of increasingly larger quanti-
ties of data together with more mainstream use of multi-dimensionality [4]. This allows for
better estimation of Higher Order Statistics (HOS) which are used to solve complex problems
in many fields such as machine learning [5][6][7], economics [8][9], signal processing [10][11],
general engineering practices [12][13][14] and neuro-imaging [15][5][16].

One such HOS related problem relevant to all aforementioned fields is the extraction of latent
information from observed data. From a signal processing perspective, this comes down
to unmixing measured data into separate signals such that components of interest can be
identified. This challenge of unmixing latent signals is called Blind Source Separation (BSS).
After having been studied extensively the past 3 decades [17], the BSS problem remains
relevant with new solutions still being found [18][19][20].

We explain BSS through the example of functional neuro-imaging where the objective is to
extract genuine functional brain activity from the measured mixtures. At any given moment
an unknown amount of processes take place simultaneously within the nervous system and
sensors can measure mixtures of these processes as a single signal. The mixing of these source
components s into measured signals x is illustrated in Figure 1-1. For example, assume that
source s2 represents the activity in the brain responsible for an epileptic seizure of a patient
and source s1 and s3 represent the activity responsible for heart rate and eye movement.
When researching epileptic seizures source component s2 is clearly of interest. However, s2 is
not measured directly but only indirectly as it is mixed with s1 and s2 to form the mixtures
x1, x2 and x3. With little to no prior knowledge available about the source signals and how
they are mixed this problem of extracting s2 is ill-posed.

This is what defines the BSS problem, where blind indicates that nothing or very little is
known about the sources and the mixing model. By defining a mathematical framework for
BSS, useful estimations of the sources can be derived that rely on varying assumptions based
on statistical and mathematical properties of the underlying processes.
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Figure 1-1: The mixing of source signals s into measured mixtures x. Brain by Marek Polakovic
from NounProject.com

Throughout this thesis we consider the case where the mixtures x = (x1, x2, . . . , xP )T ∈ RP

are assumed to be a linear combination of the source signals s = (s1, s2, . . . , sN )T ∈ RN which
has already been widely covered in literature [17][21][22] with a plethora of existing solutions
[21][23][24][11][25][15][26][27]. Furthermore, we assume that the amount of mixtures is at the
very least equivalent to the amount of source components present P ≥ N and that the mixing
model A is stationary, meaning it does not change over time.

Definition 1.1: Linear Mixture model A [17][21]

For a linear mixture model the set of output signals x = (x1, x2, . . . , xP )T ∈ RP

consist of a weighted sum of the source signals s = (s1, s2, . . . , sN )T ∈ RN :

x = As, (1-1)

where the mapping A is a P ×N matrix of which its entries {ai,j ∀i ∈ P, j ∈ N} are
scalar values denoting the weight coefficients of the mixture.

A more in-depth classification of the various existing mixing models and model properties is
presented in appendix B-1.

Solving the BSS problem amounts to identifying the inverse mapping of the mixture process
such that the source components can be found. In order to do so an additional assumption
on the source components s has to be made.
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1-1 Introduction to Independent Component Analysis

Two of the most commonly used assumptions are that the original source components are sta-
tistically independent of each other and the assumption that the multidimensional observed
data is low in rank. Both can be exploited with tensor decomposition [28][29][5][7] but the
former only uses HOS tensors. The latter has seen a recent rise in research, especially in the
field of neuro-imaging [15][30][31] due to the growing interest in neuro-imaging technologies
combined with the natural representation of multi-way biomedical data as higher-dimensional
arrays [5][15]. However, the statistical independence assumption which forms the core prin-
ciple in Independent Component Analysis (ICA) still remains relevant for functional neuro-
imaging [16][32] and other fields such as speech recognition [18], portfolio-diversification [8]
and more [13][14]. In all of these cases ICA has proven to be a versatile mathematical tool
for finding a solution to the BSS problem.

One of the pioneering ICA methods devised by Hyvarinen called FastICA [33] is still widely
used and has seen many alterations [21][2][34]. It is an optimization method that finds the
source components by optimizing over a space defined by negentropy, some HOS measure
such as kurtosis or a set of nonlinear functions which approximate either of the two at a
lower computational cost. For the estimation of many source components it is desirable to
keep computational cost as low as possible. For this reason, FastICA is still considered as the
state-of-the-art method due to its low computational and storage cost.

Opposed to said optimization algorithms are methods which find the solution algebraically
[21][17][35][10][23][36]. Similarly to how the covariance matrix is diagonalized through some
transformation in Principal Component Analysis (PCA), algebraic methods diagonalize a set
of delayed second-order covariance matrices [37] or some HOS tensors [23][11][35] which are
classified as tensorial methods [21].

Generally speaking ICA can be separated into these 2 categories. Fundamentally the above
mentioned methods all rely on the principle of non-Gaussianity which is inherently intertwined
with the statistical independence assumption through the Central Limit Theorem (CLT) [38].
Hyvarinen showed [21] that certain algebraic HOS methods lead to exactly the same algo-
rithm as the FastICA kurtosis method. Tensorial methods have been demonstrated to deliver
consistent and reliable results, e.g., with functional Magnetic Resonance Imaging (fMRI)
data [39][40]. However, the best results are in general obtained through the use of group
methods [41][39][42] where multiple algorithms are used with varying initializations. As such,
the need for efficient and characteristically unique new algorithms persists. Nevertheless,
algebraic methods definitely have importance amongst all ICA algorithms. Key to under-
standing algebraic methods are higher-order cumulants and tensor diagonalization which are
both explained below.

Fourth order cumulant: kurtosis Most algebraic methods diagonalize the fourth order cu-
mulant tensor [21][17] which is a 4-way symmetric array containing the cross-kurtosis values
of the data. A diagonal kurtosis tensor implies statistical independence amongst the com-
ponents. Algebraic methods are alternatively referred to as tensorial methods. A 4-way
symmetric tensor denotes an array of size RP ×P ×P ×P which is a generalization of symmetric
matrices to higher orders. The word "dimension" is purposefully avoided as often in multi-
linear algebra and data science it denotes the size P .
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Kurtosis has been shown to be a good measure of non-Gaussianity but it is not without its
drawbacks. Firstly, kurtosis has been critiqued [43][44] for its sensitivity to outliers which
makes it not a robust measure of non-Gaussianity. This can be mitigated to some extent by
applying pre-processing techniques [45] that detect and remove outliers. For fMRI data it is
common practice to spatially smooth the data by convolving the functional images with a
Gaussian kernel [46] prior to analysis which helps in eliminating outliers. Secondly, without
any knowledge of a variable’s probability density function, many samples I are required to
be able to get a proper estimate of kurtosis, usually through k-statistics. Mccullagh states in
[44] that roughly 40000 to half a million observations are needed to accurately estimate the
fourth-order cumulant of a variable. Accurate is defined by Mccullagh as correctly estimating
kurtosis up to its second decimal. However, kurtosis based algorithms have been shown to
deliver good and reliable results when properly used [26][47].

Cumulant tensor diagonalization Reliable solutions to the BSS problem can be found
through diagonalization of the cumulant tensor, i.e., a fourth-order symmetric multi-linear
array containing the cross-kurtosis values of observed mixtures. Pointed out by Comon [10],
tensor diagonalization for ICA is in general best done by looking for an approximate diago-
nalization. In reality the ICA model does not hold exactly and sampling errors exist in the
data which in most cases is also corrupted by noise. Different cumulant tensor approximate
diagonalization algorithms (FOBI[35], COM2[10], JADE[23], STOTD[48], FOOBI2[24]) have
been compared [49][26][50] with methods such as FastICA. For low-dimensional spaces these
methods provide a competitive alternative. However, they suffer from high computational
requirements when dimensionality of the problem is increased [21][50][26][17] due to the quar-
tic scaling of the cumulant tensor O(P 4). This poor scalability is known as the curse of
dimensionality.

Curse of dimensionality of HOS in ICA The curse of dimensionality is not unique to the
cumulant tensor. As a matter of fact, any higher-order statistical tensor suffers from poor
scalibility. This fact alone is often attributed to be the cause why HOS tensor methods
are avoided. However, this is not a valid reason why HOS tensors and HOS tensorial ICA
methods should not be further studied. HOS tensorial methods for ICA have been shown to
enjoy useful properties such as robustness and convergence[17][21].

Tensor decomposition for ICA A common method for addressing the poor scalability of
tensorial problems is through clever exploitation of the problem’s multidimensional structure
and breaking it down into elementary pieces, better known as tensor decomposition [28][5].
Existing cumulant tensor ICA methods have been shown to be closely related to a tensor
decomposition format known as Canonical Polyadic Decomposition (CPD) [51][52] due to its
capability of diagonalizing a tensor. Various formats have properties useful for ICA such as
tensor compression and introducing structure. However, the issue that all tensor decomposi-
tion formats share when it comes to ICA is that the cumulant tensor has to be first explicitly
computed. This means that the scalability issue cannot be properly addressed by tensor
decomposition alone.
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1-2 Research objective: lifting the curse

The scalablity issue of tensorial ICA methods is based on the premise that these HOS tensors
have to be manipulated explicitly. However, existing research already suggests [53] that this
issue can be bypassed through exploitation of a HOS tensor’s structure. This results in
manipulation and decomposition in implicit fashion. In ICA the implicit manipulation of
parts of the cumulant tensor is already done by the renowned FastICA algorithm.

The question then arises whether an implicit cumulant tensor manipulation scheme can be
combined with tensor decomposition such that new ICA methods can be developed which
enjoy characteristics of both optimization based and algebraic methods. This introduces the
following research objective of this thesis.

1.1: Research objective

Cumulant tensor based ICA methods for solving the BSS problem suffer in general
from the curse of dimensionality. The main research objective of this thesis is
to present how the cost of storage and decomposition of the cumulant tensor for ICA
can be reduced through the use of its implicit manipulation. This is formulated into
the following research question:

Can implicit decomposition of the cumulant tensor for ICA provide a competitive al-
ternative to FastICA in terms of convergence, solution quality and speed?

The following sub-questions are devised to aid in answering the main question:

• Can the storage cost and computational cost of manipulating the cumulant tensor
be reduced through the use of an implicit manipulation scheme?

• Can tensor decomposition methods which have already existing uses for ICA ben-
efit from this implicit manipulation scheme?

The secondary objectives are to verify these theoretical cost reductions and to
compare the performances of the implicit algorithms with that of the widely used
FastICA on a BSS problem. Both are done in a controlled test environment using a
self designed artificial BSS problem of which the solution is known.

Building on the philosophy of [53], the implicit decomposition of the cumulant tensor forms
the cornerstone of the class of implicit algorithms this thesis presents. Meant for but not re-
stricted to, the cumulant tensor with the purpose of solving the BSS problem. All algorithms
are an implicit (approximate) version of their explicit counterparts. One novel tensor decom-
position algorithm is presented. Another algorithm shows the similarity between a first-order
canonical polyadic decomposition problem of the cumulant tensor and FastICA. In all cases a
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theoretical decrease in either the computation cost, the storage cost, or both is presented. For
several algorithms the quartic dependency on the amount of mixtures is reduced to a linear
dependency on the amount of components to be estimated. The theoretical cost reductions
are verified through a numerical experiment. Moreover, the experiment shows how two of
the presented methods can be considered as new competitors to FastICA when it comes to
estimation quality, convergence and computation time. The presentation of it all is structured
in such a way that newcomers to the topics of BSS, ICA and tensor decomposition can find
all necessary information needed to comprehend the end result.

1-3 Contributions

This section gives the outline of this thesis by chapter. Each chapter is written with a specific
purpose. As such, the chapters purpose is explained and the resulting contributions of the
chapter to this thesis are listed.

Chapter 2: Multi-linear algebra This chapter presents the core definition of tensors together
with higher-order equivalents of notions such as diagonality and symmetry. Furthermore, we
present multi-linear algebraic operations together with their respective notations which are
used extensively throughout this thesis. Even when knowledgeable on the topic of tensors
and multi-linear algebra, the reader is advised to read through this chapter as important
nomenclature is presented.

1.2: Contributions chapter 2

• The base knowledge concerning tensors and multi-linear algebra for ICA
is presented such that all information is present necessary to comprehend later
discussed matter.

Chapter 3: Independent Component Analysis Independent Components Analysis is the
framework used in this thesis for solving the BSS problem. In order to fully understand the
choices and reasoning made in later chapters it is of great importance that the general notion
of ICA is clear to the reader. This means that its working principle and its implications to
the BSS problem must be understood together with its accompanied indeterminacies. The
importance of whitening is theoretically shown. Furthermore, an example of an existing al-
gebraic ICA algorithm known as COM2 is shown as it has similarities to our later presented
QR-Tensor algorithm (QRT). Besides this the renowned optimization based FastICA algo-
rithm is presented. This algorithm plays an extremely important part in practical ICA due
to its speed and overall simplicity. On top of that, a fixed-point based CPD algorithm pre-
sented later on shows a lot of similarity to the FastICA algorithm and can be considered
as a constrained version of it. Lastly, advantages and disadvantages of both the COM2 and
FastICA algorithms are discussed. The algorithms are compared to each other to illustrate
the detrimental effect of the scalability of the COM2 algorithm and algebraic methods in
general.

The reader is advised to read through this chapter if not knowledgeable on the topic of ICA.
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1.3: Contributions chapter 3

• All necessary basic knowledge concerning ICA is written in compact and log-
ically structured fashion such that newcomers to the topic may understand its
basic principles.

• Through the use of examples the difference between optimization based and
algebraic ICA methods is explained.

• The benefits and drawbacks of both optimization based and algebraic ICA meth-
ods in general are listed and explained through examples.

• It is shown how through the curse of dimensionality algebraic methods scale
generally speaking in computation cost with O(P 4) and in storage cost with
O(P 4).
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Chapter 4: Implicit tensor decomposition for ICA This chapter presents the new implicit
algorithms which are derived to address the scalability issue presented in the previous chapter.
An implicit manipulation scheme for the cumulant tensor is presented, which together with
whitening allows for fast computation of selective values, fibers and slices of the tensor. On
top of that, it is shown how the cumulant tensor’s symmetry and the indeterminacies of
ICA can be exploited for more efficient handling. Each of the 4 algorithms is based on
Tucker decomposition. The general use of each implicit decomposition for ICA is shown. For
canonical polyadic decomposition it is shown how the behavior of tensor ranks and diagonality
of the cumulant tensor are related.

1.4: Contributions chapter 4

• A scheme is presented based on the cumulant tensor’s matricization which allows
for simple yet efficient computation of a single element, a fiber or entire
slices in both whitened and non-whitened case.

• It is shown that the storage cost of Higher-Order Singular Value Decomposition
(HOSVD) of the cumulant tensor is decreased from O(P 4) to O(P2) using an
implicit scheme.

• A novel algorithm (QRT) based on the QR-algorithm for matrices is presented
which simultaneously diagonalizes the outer slices of a symmetric tensor.

• An implicit version of the QRT algorithm for ICA is presented which has an
iteration cost of O(IRP ) and a storage cost of O(RP ).

• A small study into the behavior of tensor ranks for ICA is performed which is
related to the diagonality of the cumulant tensor. It is identified that the measure
of diagonality adequately reflects a solutions quality.

• A first-order optimization problem for implicitly computing the CPD of the
cumulant tensor is presented which has an iteration cost of O(IRP ) and a storage
cost of O(RP ).

• It is shown how rewriting the first-order CPD optimization problem as a fixed-
point iteration results in FastICA with a CPD constraint on the cumulant tensor
which too has an iteration cost of O(IRP ) and a storage cost of O(RP ).
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Chapter 5: A numerical experiment In this chapter the previously presented implicit algo-
rithms are tested on an artificial BSS problem consisting of 4 latent source signals of which the
solution is known. The point of this chapter is 2-fold: to verify the theoretical complexities
of the derived algorithms and to inspect their performance for ICA through comparison with
that of FastICA. The used artificial test-set is relatively simple as this experiment serves as
a proof of concept. The algorithms are divided into 2 categories: non-iterative algorithms
and iterative algorithms. Both are tested on their performance of separating mixed source
components. However, the former and their variants are tested too for their performance
of providing initial estimates for the iterative algorithms, as is suggested by literature. The
resulting estimations are tested for correctness using a self-designed classification algorithm.
Moreover, they are compared on the diagonality of the resulting cumulant tensor, their esti-
mation errors and computation time. The analysis of the performances is done in a qualitative
manner as only relative differences are of interest.

1.5: Contributions chapter 5

• It is shown that the implicit HOSVD and implicit Generalized EigenValue De-
composition (GEVD) algorithms do not scale favorably with the amount of
mixtures P due to the total SVD-update cost.

• It is shown that computing the implicit HOSVD of the cumulant tensor with only
its unique slices or only its core slices can result in similar performance for
ICA as computing the full HOSVD.

• It is shown that for a linearly mixed BSS problem with additive Gaussian-White-
Noise (GWN) the source component estimation performance of QRT and fixed-
point CPD is on par with that of kurtosis-based parallel FastICA in terms of
estimation error and solution correctness.

• It is shown that the QRT and I-CPD-FF algorithms can achieve better results
than FastICA when combined with the HOSVD based algorithms as initial esti-
mates in terms of correctness and estimation error.

• It is shown that the computation time of the QRT algorithm to reach a cer-
tain convergence tolerance is lower than that of FastICA by nearly an order of
magnitude due to its lower per iteration cost.

• It is shown that a fixed-point iteration of the implicit CPD first order optimiza-
tion method converges in fewer iterations towards a solution than FastICA.
As a result the computational time needed by the implicit CPD first order opti-
mization method scales much more favorably with P as it does for FastICA.

• It is shown that for the case when FastICA and QRT struggle to reach conver-
gence, the fixed-point implicit CPD first order optimization method manages to
converge in a consistent and much smaller amount of iterations.

The thesis is concluded in chapter 6 in which a conclusion and recommendations for future
research are given. A complete overview of the thesis structure is shown in Figure 1-2. All
general theoretical contributions of this thesis are presented in the green boxes and build
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upon the already existing knowledge shown in the blue boxes.

Figure 1-2: Overview of the theoretical topics within this thesis. Chapters are colored in gray,
theoretical concepts which already exist are colored in blue and the contributions of this thesis
are presented in green.
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1-3-1 Github repository

All implementations and used code for the creation of this thesis can be found at the
Github repository: https://github.com/padenarie/Independent-component-analysis-through-
implicit-cumulant-tensor-decomposition.git .
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Chapter 2

An overview of multilinear algebra

This chapter covers the preliminary notation on multi-linear algebra used throughout this
thesis. Many of the definitions build on other multi-linear definitions, so they are kept together
in this separate chapter in logical order primarily for the report’s readability. First the basic
definitions and properties of higher-order tensors are explained. This is followed by multilinear
operations such as matricization and the mode-N product which are often used in the chapters
that follow.

2-1 Tensor preliminaries

Notation of tensors A tensor is any type of data structure which represents multilinear
relations between mathematical objects. The values of a tensor are denoted using its indices
which are interchangeably called ways or modes. Each tensor i’th index varies from 1 to its
maximal value Pi. The indexing of a tensor is denoted using parentheses. The colon format
’s : e’ is used to denote all values starting at s up to and included e along that particular
index. No s present means the index starts at 1 and no e present means the index stops
at the last value of that mode. The amount of modes a tensor has is known as the tensor’s
order. For example, a tensor of order 0 represents a scalar denoted with lower case regular
font x ∈ R. A first-order tensor is more commonly referred to as a vector, denoted using a
bold letter x ∈ RP1 . A matrix denoted by a bold capital letter X ∈ RP1×P2 is a tensor of
order 2. Tensors of order 3 and above are referred to as Higher-order tensors and are denoted
using capital calligraphic letters X ∈ RP1×P2...PN . Often a tensor with N modes is referred
to as an N -way tensor. Any tensor which has the property that all of its modes are of equal
size can be called ’cubical’.

Definition 2.1: Cubical tensor [28]

A tensor is cubical if all modes are of equivalent size, e.g. X ∈ RP ×...×P . The
shorthand notation for a N ’th-order cubical tensor X with each mode of size P is:
X ∈ R[N,P ].
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14 An overview of multilinear algebra

Tensor fibers and slices Fibers and slices are commonly used in tensor algebra as modes
represent different types of variability of data.

Definition 2.2: Tensor fibers [28]

A tensor fiber is a vector that consists of the sequential elements when fixing ev-
ery index but one. The n-th mode fiber of a tensor X ∈ RP1×...×PN is denoted as
x(p1, . . . , pn−1, :, pn+1, . . . , pN ) where the colon indicates the non-fixed dimension.

Definition 2.3: Tensor slices [28]

A slice of a tensor is a matrix defined by fixing all but two of its indices. For example,
the horizontal, lateral and frontal slices of a 3-dimensional tensor X ∈ RP1×P2×P3 are
denoted as X (p1, :, :), X (:, p2, :) and X (:, :, p3) where the colon denotes the non-fixed
modes.

Figure 2-1 illustrates the 3 possible fiber configurations of a third-order tensor and Figure 2-2
illustrates its possible slices.

(a) Mode-1 fibers of a 3-way tensor. (b) Mode-2 fibers of a 3-way tensor (c) Mode-3 fibers of a 3-way tensor

Figure 2-1: The 3 different mode fibers of a 3-way tensor.

(a) Horizontal slices of a 3-
dimensional tensor.

(b) Lateral slices of a 3-dimensional
tensor

(c) Frontal slices of a 3-dimensional
tensor

Figure 2-2: The 3 different slice types of a 3-way tensor.
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2-1 Tensor preliminaries 15

Index permutation

Definition 2.4: Index permutation[54]

Let S be the finite integer set consisting of N elements and let SN be the set consisting
of all permutations of S. Reordering the indices of a tensor X ∈ RP1×P2×...×PN results
in the tensor Y whose indices are a permutation σ ∈ SN of the indices S = {1, 2, . . . , N}
of X . This is denoted by:

Y = X T σ for σ ∈ SN . (2-1)

Symmetric tensor Similar to matrices, tensors can show symmetry too. Tensors can be
fully symmetric or only partially [55] with respect to a selection of modes. However, only full
symmetry is of importance throughout the report so only its definition is given below.

Definition 2.5: Symmetric tensor

A cubical tensor X ∈ R[N,P ] is symmetrical, if the value of its elements remain constant
under any permutation from definition 2.4 of its indices:

X = X T σ ∀σ ∈ SN . (2-2)

Diagonal tensor The general definition of a diagonal tensor given below extends the notion
of a diagonal matrix to higher-orders.

Definition 2.6: Diagonal tensor [28]

The superdiagonal is the higher-order equivalent of the diagonal of a square matrix.
The superdiagonal of a cubic tensor X [N,P ] consists of all elements for which all indices
are identical:

X (p1, p2, . . . , pN ) ∀p1 = p2 = . . . = pN . (2-3)

A cubical tensor X ∈ R[N,P ] is diagonal if and only if all non-zero elements are on the
superdiagonal. Meaning that all off-diagonal elements equal zero:

X (p1, p2, . . . , pN ) = 0 ∀¬(p1 = p2 = . . . = pN ) ∀p1, . . . , pN = 1, . . . , P, (2-4)

where the negation symbol ¬ means not equal to the statement that follows.
Taking only the values on the superdiagonal of a tensor X is denoted as diag(X ) and
taking only the values that are not on the superdiagonal is denoted as offdiag(X ). The
reshaping of a vector x ∈ RN into a diagonal N -way tensor by placing its elements on
the superdiagonal is denoted as diagN (x).
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16 An overview of multilinear algebra

2-2 Multilinear operations
Kronecker, Khatri-Rhao and Hadamard product

Definition 2.7: Kronecker product [28]

The Kronecker product of matrices A =
[

a1 . . . aJ

]
∈ RI×J and B =[

b1 . . . bL

]
∈ RK×L is denoted by A⊗B and its resulting matrix of size IK×JL

is defined as:

A⊗B =


a1(1) ·B a2(1) ·B · · · aJ(1) ·B
a1(2) ·B a2(2) ·B · · · aJ(2) ·B

...
... . . . ...

a1(I) ·B a2(I) ·B · · · aJ(I) ·B

 , (2-5)

with a computational cost of O(IJKL).

Definition 2.8: Khatri-Rhao product [28]

The Khatri-Rhao product is the matching columnwise Kronecker product of ma-
trices A =

[
a1 . . . aK

]
∈ RI×K and B =

[
b1 . . . bK

]
∈ RJ×K . It is denoted

by A⊙B and its resulting matrix of size IJ ×K is defined as:

A⊙B =
[

a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
, (2-6)

with a computational cost of O(KIJ).

Definition 2.9: Hadamard product product [28]

The Hadamard product is the elementwise product of matrices A =[
a1 . . . aJ

]
∈ RI×J and B =

[
b1 . . . bJ

]
∈ RI×J . It is denoted by A ∗B and

its resulting matrix of size I × J is defined as:

A ∗B =


a1(1) · b1(1) a2(1) · b2(1) · · · aJ(1) · bJ(1)
a1(2) · b1(2) a2(2) · b2(2) · · · aJ(2) · bJ(2)

...
... . . . ...

a1(I) · b1(I) a2(I) · b2(I) · · · aJI1) · bJ(I)

 . (2-7)

The computational cost of performing the above described Hadamard product is O(IJ).

The elementwise power operation of a matrix M where each element is raised to the
power N is denoted as [M]N and equals the following sequence of Hadamard products:

[M]N = M ∗M ∗ · · · ∗M︸ ︷︷ ︸
N−1 products

, (2-8)

which is performed at a computational cost of O ((N − 1)IJ).
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2-2 Multilinear operations 17

Outer-product

Definition 2.10: Outer Product [28]

The outer-product X of N vectors {u1 ∈ RP1 , . . . uN ∈ RPN } is the N -
dimensional object that exists in the outer-product space of the individual vector spaces
X = u1 ◦ . . . ◦ uN ∈ RP1 ◦ . . . ◦ RPN where ◦ denotes the outer product. Element-wise
this is defined as:

X (p1, p2, . . . , pN ) = u1(p1)u2(p2) · · ·uN (pN ). (2-9)

The outer-product operation is applicable to tensors of any order. The outer-product
of 2 tensors X ∈ RI1×...×IN and Y ∈ RJ1×...×JM results in a new tensor which is of
order N + M :

X ◦ Y ∈ RI1×...×IN ×J1×...×JM . (2-10)

Vectorization Vectorization is the transformation of any tensor of order 2 and higher into
a single vector which is a structured concatenation of the tensor’s elements.

Definition 2.11: Vectorization

Vectorizing a given tensor X ∈ RP1×...×PN−1×PN consists of stacking its elements row-
wise into a single vector of size

∏N
i=1 Pi as follows:

vec (X ) =
[

X (1,...,1,1) ... X (1,...,1,PN ) X (1,...,2,1) ... X (P1,...,PN−1,PN )
]T

. (2-11)

Mode-N matricization Matricization, defined in [28] as: ’the process of reordering the ele-
ments of an N-way array into a matrix’ is an important tensor operation in tensor algebra.
Its definition is given below. It helps to visualize the mode-N-matricization of a tensor. A
graphical example of mode-3 matricization of a third-order tensor can be found in figure
Figure 2-3. The figure shows how the indexing of the tri-linear tensor is translated into a
bi-linear format.

Definition 2.12: Mode-N matricization [28]

A tensor X ∈ RP1×P2×...×PN can be matricized along a mode n by stacking the mode-n
fibers in columnwise fashion:

X(n) (pn, j) = X (p1, p2, . . . , pN )

j = 1+
N∑

k=1
k ̸=n

(pk − 1)
k−1∏
m=1
m ̸=n

Pm, (2-12)

where X(n) denotes the mode-n matricized tensor.
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18 An overview of multilinear algebra

Figure 2-3: Mode-3 matricization of third-order tensor X ∈ RP1×P2×P3 . The colors and numbers
indicate how the mode fibers are concatenated next to each other. The indices {p1, p2, p3} show
how navigation through the tensor is translated into its matricized form.

Mode-n product The mode-n product is the multiplication and summation of the n’th mode
of a tensor X ∈ RP1×...Pn...×PN with the second mode of a matrix M ∈ RJ×Pn and is denoted
by X×n M [28].

Definition 2.13: Mode-N product [28]

The elementwise definition of the mode-n product between a tensor X ∈ RP1×...Pn...×PN

and matrix M ∈ RJ×Pn is given in [28] as:

(X ×n M) (p1, · · · , pn−1, j, pn+1, · · · , pN ) =
Pn∑

pn=1
X (p1, p2 · · · pn · · · pN ) M (j, pn) .

(2-13)
The computational complexity of this operation is O(P1 · · ·PN J).

Inner-product and tensor norm The inner-product is the summation over all dimensions of
the element-wise products of of 2 tensors of identical shape. One of the recurring use-cases
of the inner-product is that it can be used to compute tensor norms. Taking the square root
of the inner-product of a tensor with itself results in the computation of its norm which is a
measure of its magnitude.

Definition 2.14: Inner-product [28]

The inner product of 2 tensors X ,Y ∈ RP1×P2×...×PN is defined as the sum of all
products of their entries at identical indices:

⟨X ,Y⟩ =
P1∑ P2∑

· · ·
PN∑
X (p1, p2, . . . , pN ) · Y (p1, p2, . . . , pN ) (2-14)
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2-2 Multilinear operations 19

Definition 2.15: Tensor norm [28]

The norm of a tensor is defined as the square root of the sum of all products of their
entries at identical indices, which is identical to the square root of the inner-product
of the tensor with itself:

∥X∥2 =

√
P1∑ P2∑

· · ·
PN∑
X (p1p2 · · · pN )2 =

√
⟨X ,X⟩. (2-15)

For 2 equally sized vectors u, v ∈ RP the inner-product equals the dot product of the vectors
with the first vector being transposed: ⟨u, v⟩ = uT · v = vT · u. Depending on the coding
language used, binary machines store and access their data in either row-major or column-
major order. Letting operations iterate through a single row or column is faster than iteration
through multiple rows or multiple columns. Thus the inner product of any 2 identically shaped
tensors can alternatively be computed more efficiently by vectorizing each array following
definition 2.11 and applying the previously mentioned vector inner product:

⟨X ,Y⟩ = vec (X )T · vec (Y) (2-16)

Tensor Times Same Vector The Tensor Times Same Vector (TTSV) operation is the mul-
tiplication and summation of a tensor with the same vector along all or a selection of its
modes. Below in 2.16 the definition is given over all modes and for the special case for all
modes but one of a symmetric tensor.

Definition 2.16: Tensor Times Same Vector [56]

The Tensor Times Same Vector operation is defined as the product and summation
along all modes of a cubic tensor X ∈ R[N,P ] with a vector v ∈ RP and is denoted as
follows:

XvN = X ×1 vT ×2 . . .×N vT =
P∑

p1=1
· · ·

P∑
pN =1

(
X (p1p2 · · · pN )

N∏
k=1

v(pk)
)

(2-17)

which results in a scalar at a computational cost of O(P N ).

The TTSV in all modes but one for a symmetric tensor Xsym ∈ R[N,P ] with a vector
v ∈ RP is denoted as:

(
XsymvN−1

)
p1

=
P∑

p2=1
· · ·

P∑
pN =1

(
X (p1p2 · · · pN )

N∏
k=2

v(pk)
)

for all p1 ∈ {1, . . . , P},

(2-18)
which results in a vector of size P . The choice of the left-out mode does not matter
due to the symmetry of Xsym.
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Chapter 3

Independent Component Analysis

One possible method of solving the Blind Source Separation (BSS) problem is Independent
Component Analysis (ICA). Describing data in a statistical framework [46] can be used to
process or transform the data in such a way that hidden patterns and information can be
revealed. This statistical framework is the foundation on which the workings of ICA are
build. While having similarities with Principal Component Analysis (PCA), ICA can be used
to find components that are statistically independent which is a much stronger notion than
uncorrelatedness, although harder to satisfy. However, under specific conditions and with the
right assumptions ICA can be a powerful tool with many diverse strategies [21][17] when it
comes to solving the BSS problem.

Chapter organization First the core concept of statistical independence is introduced along
with the central limit theorem. This forms the foundation of ICA which can be categorized
into optimization and algebraic methods. For the algebraic methods the general working prin-
ciple of approximate diagonalization is explained through the example of the method known
as COM2. FastICA is briefly introduced together with some of its noteworthy properties as
the state-of-the-art optimization method. Afterwards, the definitions of algebraic and opti-
mization methods are compared with each other and their general respective pro’s and con’s
are listed. Formulation of the scaling issue of algebraic methods serves as the stepping stone
into the subsequent chapter.

3-1 Statistical Independence

The working principle of ICA is the assumption that the original source signals are statistically
independent of each other. From a practical point of view this means that when statistically
analysing one source component nothing can be inferred about the other components. This
assumption however, only tells us something about the source components. For that reason,
the Central Limit Theorem (CLT) [38] is needed which allows an important observation to
be made about how the mixing mode can be estimated. Before that, the reader is given a
brief reminder of the Gaussian distribution as it is used as a measure of independence.
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22 Independent Component Analysis

Figure 3-1: A Gaussian probability density function px(x) of a random variable x with mean mx

and standard deviation σ.

3-1-1 The Gaussian distribution

The Gaussian distribution, also known as the normal distribution or informally as a bell
curve, is a unique distribution which serves for many situations as the go-to distribution for
modelling additive noise.

Definition 3.1: Gaussian (normal) distribution

A Gaussian distribution is a probability distribution characterized by its the proba-
bility density function given as:

px(x) = 1
σ
√

2π
e− 1

2 ( x−mx
σ )2

(3-1)

where σ denotes the standard deviation and mx the mean.

The standard Gaussian distribution is when the distribution has zero-mean mx = 0
and unit variance σ2 = 1.

px(x) = 1√
2π

e− x2
2 (3-2)

Figure 3-1 shows an example of a Gaussian distribution together with a mean of mx and
standard deviation of σ.

Central Limit Theorem The central limit theorem establishes that under the condition that
random variables are Independently and Identically Distributed (IID), a normalized sum of
independent random variables will inherently tend towards a Gaussian (normal) distribution
from definition 3.1. For this particular reason the Gaussian distribution is a useful approxi-
mation of noise as noise usually consists of a combination of unknown elements. The original
variables themselves do not have to be normally distributed in order for this theorem to hold
true. The theorem together with the definition of IID variables is given below in definition
3.2 and theorem 3.1. A more practical interpretation of theorem 3.1 is that given the non-
Gaussian and IID conditions, a sum of random variables will be more Gaussian than any of
its respective components.
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Definition 3.2: Independent and Identically Distributed

n random variables {X1, . . . , Xn} which take values in I ⊆ R, are independent and
identically distributed if and only if their individual density functions fXi(x) and
joint density function fX1,...,Xn(x1, . . . , xn) meet the following requirements:

pXi(x) = pXj (x) ∀i, j ∈ {1, . . . , n} ∧ ∀x ∈ I

pX1,...,Xn(x1, . . . , xn) = pX1(x1) · · · pXn(xn).
(3-3)

Theorem 3.1: Central Limit Theorem [57]

Let {X1, . . . , Xn, . . .} be a sequence of Independent and Identically Distributed (I.I.D.)
random variables, drawn from a distribution with expected value E [Xi] = µ and
finite variance Var [Xi] = σ2 < ∞. As n approaches infinity, the random variables
√

n
(

X̄n−µ
σ

)
where X̄n denotes the sample average, converge in distribution to a

normal (Gaussian) distribution N (0, 1):

lim
n→∞

√
n

(
X̄n − µ

σ

)
d→ N (0, 1) . (3-4)

Why the CLT is of importance for ICA is easily shown using the linear mixing model from
definition (1-1). Assume that the 3 source components {s1, s2, s3} from Figure 1-1 in chapter
1 are mixed linearly into 3 observed signals {x1, x2, x3}:

x1 = a11s1 + a12s2 + a13s3

x2 = a21s1 + a22s2 + a23s3

x3 = a31s1 + a32s2 + a33s3

(3-5)

where the mixing coefficient aij represent the element of the i’th row and j’th column of the
mixing matrix A.

Given that these independent signals are non-Gaussian and identically distributed, the central
limit theorem states that the distribution of any weighted sum of these 3 variables will be
more Gaussian than the distributions of the individual components themselves. Given the
assumption about statistical independence, it is implied that to estimate one of the original
components s = (s1, s2, s3)T , one has to find a linear combination q of the observed variables
x = (x1, x2, x3)T that decreases the Gaussianity. Let us denote the estimate of a source
component with ŝi. The estimate can be expressed as a linear combination qT A of the source
components s:

ŝi = qT x = qAs. (3-6)

In the ideal case that qT represents the i’th row of the inverse mixing matrix A−1, the
estimate ŝi will be identical to a component si. This means that ŝi will be the least Gaussian
as it equals one of the source components si. In practice, as nothing is known about the
assumed linear mixing model A, qT cannot be determined exactly [21]. However, as ŝi must
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be as non-Gaussian as possible in order to equal a source component, qT can be found by
minimizing some measure of Gaussianity. Or in other words, qT has to maximize the non-
Gaussianity of ŝi = qT x in order to retrieve the Independent Component (IC) si. For a more
extensive explanation on this topic, the reader is advised to read chapter 8 of [21].

In the general case one is looking for all Independent Components (IC’s) simultaneously as
it is impossible to determine beforehand which independent component will result from the
vector qT . For this reason (3-6) can be rewritten in matrix form such that it captures all
IC’s:

ŝ = Qx = QAs, (3-7)

where Q represents a matrix whose rows are the unmixing vectors qT . So transformation Q
leads to the independent components when non-Gaussianity is maximized.

In order for the result of Qx to be a proper solution to the BSS problem, there are two more
conditions that need to be satisfied. Namely the existence and uniqueness of the solution. If
the problem has no unique solution but many solutions, then there is no way of telling which
solution is a correct estimated representation of the IC’s. Comon showed [11] that for the
linear mixing case the solution to the ICA problem exists and is unique up to some trivial
indeterminacies [11].

3-1-2 Indeterminacies

Ideally, the sought for transformation Q is found as the inverse A−1 of the mixing matrix,
assuming that it is square. However, both in theory and in practice it is impossible to know
when this exact transformation is found due to 2 indeterminacies that exist within ICA[11][21].

Order of components First of all, the order of the source components cannot be determined.
This can be clearly explained using the linear mixture model:

x = As. (3-8)

Any permutation matrix P that is added to the model together with its inverse as AP−1Ps,
results in just a new mixing matrix AP−1 that has to be determined. As both A and s
are unknown, the order of components can be chosen freely so the permutation matrix P
is cancelled. Note that multiplication with any square and invertible matrix other than a
permutation matrix gets cancelled too. However, this can influence the problem by changing
the properties of the mixing matrix while multiplication with a permutation matrix P does
not. This is shown later on.

Variances Secondly, it is impossible to determine the variances of the IC’s. Based on the
same reasoning as above, the fact that both A and s are unknown leads to the cancellation
of any added scalar terms. Any scalar ai that is multiplied with one of the sources can
be cancelled by division through the same scalar ai of the corresponding column a(i) of the
mixing matrix:
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x =
∑

i

( 1
ai

a(i)
)

aisi. (3-9)

Furthermore, not only is the variance of each IC undetermined, the sign of each IC is unde-
termined too as each scalar ai might as well have value −1. However, in most cases this poses
no problem.

3-1-3 pre-whitening

An important step which simplifies the BSS problem is pre-whitening of the data. Whitening
normalizes the variances of the P observed variables and makes the variables uncorrelated.
This results in a diagonal covariance matrix of zero-mean data. As such, a transformation
which diagonalizes and normalizes the covariance matrix, can be used to whiten data. When
the data is zero mean, correlation and covariance are identical. Hence whitening results in a
unit correlation matrix too.

Definition 3.3: Whitening

A matrix W which transforms the covariance matrix Cx of a random vector x ∈ RP

with I observations into a diagonal matrix with unit variance:

WCxWT = WE
[
(x−mx) (x−mx)T

]
WT = IP , (3-10)

can be used to whiten said random vector:

z = Wx, (3-11)

where z denotes the whitened random vector and IP the identity covariance of size
P × P .

The main reason why pre-whitening is beneficial for solving the BSS problem is that it narrows
the search space of the unmixing transformation Q down to orthogonal matrices. This is
explained below. Let Cx be the covariance matrix of the mixture x = As. It is equal to:

Cx = E
[
(x−mx) (x−mx)T

]
= E

[
(As−Ams) (As−Ams)T

]
= ACsAT . (3-12)

Assuming that the source components have unit variance (without loss of generality as the
rows of the mixing matrix can be appropriately rescaled), the covariance simply becomes
Cx = AAT . Substitution of the Singular-Value-Decomposition (SVD) of the mixing matrix
A = UΣQT results in the following expression:

Cx = UΣQT QΣU = UΣ2UT . (3-13)

The right hand side of (3-13) is equivalent to the Eigen-Value-Decomposition (EVD) of Cx
where U contains the eigenvectors and Σ the square root of the corresponding eigenvalues.
In other words the source component subspace UΣ can be estimated through second-order
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statistics only and the whitening transformation can be taken as W =
√

Cx
−1 = UΣ−1UT

or due to orthogonality of U even simpler as W = Σ−1UT . Alternatively, when the data
matrix X =

[
x(1) . . . x(I)

]
has zero mean UΣ can be estimated through its SVD:

X = UXΣXQT
X as UΣ = 1√

I
·UXΣX with QT

X = QT s.

This shows that W =
√

I · Σ−1
X UT

X is a whitening transformation too based on SVD. Both
methods amount to PCA and in both cases the remaining unknown part of the mixing matrix
is an orthogonal factor QT .

So by pre-whitening the data with a whitening transformation such as W = Σ−1UT , the
problem is simplified to the estimation of a new orthogonal mixing matrix QT :

z = Wx = WAs = Σ−1UT UΣQT s = QT s, (3-14)

of which the inverse is unmixing transformation Q.

This decreases the degrees of freedom of the mixing matrix that needs to be estimated from
P 2 to P (P − 1)/2 which simplifies the overall problem. A second and more practical benefit
from the orthogonality constraint is that computing the inverse of the found mixing matrix
A when unmixing the data is as simple as transposing it. Matrix inversion can be a costly
process especially for high P so circumventing it is better altogether. Lastly, the number of
source components can be deduced from the rank of the covariance matrix Cx given that the
Signal to Noise Ratio (SNR) is high enough.

It is strongly pointed out that pre-whitening does not solve the BSS problem, it simplifies
it. An in-depth explanation of why this is the case can be found in [21]. As was mentioned
before, statistical independence is a stronger notion than uncorrelatedness [21] and therefore
conventional decorrelation methods such as pre-whitening are not an alternative to ICA but
rather a helpful pre-processing step.

3-1-4 Gaussian variables in ICA

In short, Gaussian variables are forbidden in ICA [21] due to the CLT which states that the
individual source components will be independent if as non-Gaussian as possible. However,
if such a component is inherently Gaussian no transformation can be found which maximizes
the non-Gaussianity. Thus no proper unmixing transformation can be found for that specific
component. For a more detailed explanation the reader is referred to chapter 7.5 from [21].

3-2 Measure of non-Gaussianity with Higher Order Statistics (HOS)

HOS refers to functions and quantities which consist of the expectation of a sample to the
power 3 or higher. HOS are particularly useful for characterizing a distributions shape with
for example ’skewness’ and ’tailedness’. On top of that, certain HOS quantities can be used
as a measure of a distributions depart of a Gaussian distribution. In other words, HOS can
be used to measure non-Gaussianity. Other measures exist such as negentropy [21]. However,
in this literature review only the HOS quantity called Kurtosis is used as in its tensor form
it can be diagonalized to obtain the BSS solution.
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3-2-1 Kurtosis

The normalized moment of degree 4 of a random variable is known as kurtosis. It describes
the ’tailedness’ of a probability distribution. Distributions with a high kurtosis will in general
show a high peak with thick wide tails whereas low kurtosis usually results in a flattened
top with little to no tails. Kurtosis together with excess kurtosis is defined below in 3.4.
Moments, centralized moments and standardized moments are all explained in appendix A-2

Definition 3.4: Kurtosis

The fourth standardized central moment of a random variable x represents the measure
of ’tailedness’ of a distribution’s shape and is referred to as kurtosis:

a4 = a4
σ4 =

E
[
(x−mx)4

]
(
E
[
(x−mx)2

]) 4
2

. (3-15)

Excess kurtosis is defined as the kurtosis difference a distribution has compared to a
Gaussian distribution. Gaussian distributions have a kurtosis of 3 so the excess kurtosis
is denoted as the kurtosis difference:

ã4 = kurt(x) a4
σ4 − 3 =

E
[
(x−mx)4

]
(
E
[
(x−mx)2

]) 4
2
− 3. (3-16)

Distributions which have an excess kurtosis of ã4 = 0 are called meso-kurtic, ã4 > 0
are called lepto-kurtic and ã4 < 0 are called platy-kurtic.

Excess kurtosis Excess kurtosis represents the difference in kurtosis of a distribution when
compared to a Gaussian distribution of similar scale. A standard Gaussian distribution has
a kurtosis of value 3, for this reason the excess kurtosis shown in (3-16) for a standardized
distribution is defined as the kurtosis from (3-15) minus 3.

Figure 3-2 shows 3 distributions. The blue distribution denotes a Gaussian distribution which
has an excess kurtosis of 0, so it is meso-kurtic. Green denotes a platy-kurtic distribution
which has a negative excess kurtosis and orange denotes a distribution where ã4 > 0 which
is classified as lepto-kurtic. This demonstrates how excess kurtosis can be used as a measure
of non-Gaussianity.

3-2-2 Fourth-order Cumulant

An alternative way of describing a probability distribution’s shape is through the use of
cumulants. Cumulants, are in many aspects similar to moments but especially in the higher-
order case they enjoy certain properties such as linearity and additivity which moments do
not. Hence the name ’cumulants’. For this report the fourth-order cumulant is of interest as
it can be used as a measure of non-Gaussianity which is shown in definition 3.5. For a broader
explanation of cumulants and their derivation the reader is referred to appendix A-1.
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Figure 3-2: A meso-kurtic distribution (blue), a lepto-kurtic distribution (orange dashed) and a
platy-kurtic distribution (green dashdotted).

Definition 3.5: Fourth order cumulant

The fourth order cumulant of a random variable x is denoted as:

cum(x, x, x, x) = κ4 = E[(x−mx)4]− 3
(
E[(x−mx)2]

)2
. (3-17)

It can easily be shown that when normalized the definition for the 4th order cumulant shown
above is identical to that of the earlier defined excess kurtosis from (3-16):

κ4 = κ4
σ4 = E[(x−mx)4](

E[(x−mx)2]
)2 − 3 = ã4. (3-18)

In other words, the fourth order cumulant can be used to describe the departure of a random
variable’s distribution from that of a Gaussian distribution.
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3-2-3 Fourth-order Cumulant tensor

Analogous to how the covariance matrix is formed by computing the covariances of the random
variables in the vector x, the 4-dimensional fourth-order cumulant tensor which consists of
the fourth-order cross-cumulants can be formed. The definition of this fourth-order cumulant
tensor is shown below in definition 3-2-3.

Definition 3.6: Fourth order cumulant tensor [21][44]

The fourth-order cumulant tensor C(4)
x ∈ RP ×P ×P ×P is a 4-dimensional sym-

metric tensor that is comprised of the fourth-order cross cumulants of a zero mean
random vector x ∈ RP . Elementwise the tensor is denoted as:

C(4)
x (i1, i2, i3, i4) =E [xi1xi2xi3xi4 ]− E [xi1xi2 ]E [xi3xi4 ]

− E [xi1xi3 ]E [xi2xi4 ]− E [xi1xi4 ]E [xi2xi3 ]
(3-19)

where i1, i2, i3, i4 are the indices of the 4-dimensional tensor ranging from 1 to P . For a
non zero mean vector every xi in (3-19) must be replaced by (xi −mxi)∀i ∈ {1, 2, 3, 4}.

The elements of the cumulant tensor of a zero-mean random vector x with I samples
are computed with the following estimations of the joint moments:

E [xi1xi2xi3xi4 ] = 1
I
·
(

I∑
ℓ=1

4∏
k=1

xik
(ℓ)
)

E [ximxin ] = 1
I
·
(

I∑
ℓ=1

xim(ℓ)xin(ℓ)
)
∀m, n ∈ {1, 2, 3, 4}

(3-20)

where xik
(ℓ) denotes the ℓ’th sample of the random variable xik

.
The computational cost of forming the tensor is approximately O(IP 4).

The first important property is the cumulant tensor’s symmetry shown in property 3.1. This
symmetry [55] is often alternatively referred to as super-symmetry. In this report however,
the former is used as the term super-symmetric is challenged by Comon et all. [55]. This
symmetry can potentially be exploited to compute the tensor more efficiently, as is shown
later on. Analogous to how a diagonal covariance matrix represents uncorrelated data, a
diagonal cumulant tensor represents statistically independent variables. This property of the
cumulant tensor is exploited by the algebraic ICA methods presented later on and is shown
in 3.2. Moving on, properties 3.4 and 3.3 state together that the cumulant tensor is blind
to Gaussian components. This is related to the previously explained issue of why Gaussian
variables do not work in ICA. However, it can be a blessing too as the property implies that
Gaussian noise components do not affect the cumulant tensor whatsoever. Seen that noise
can be approximated in general as Gaussian noise for practical reasons this is beneficial to
solving the BSS problem. Finally, the multi-linearity property from 3.5 is what defines how
the diagonalization transformation can be used to unmix the data. Below the properties of
interest of the cumulant tensor are given.
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Property 3.1: Symmetric [17][44][55][28]

The symmetry of the cumulant tensor means that the tensor’s elements remain con-
stant under a permutation σ of the indices:

C(4)
x (p1, p2, p3, p4) = C(4)

x σ(p1, p2, p3, p4). (3-21)

Property 3.2: Diagonal for independent variables [44][55][28]

The fourth-order cumulant tensor of a vector s consisting of statistically indepen-
dent variables is diagonal which means all elements equal 0 except for the elements
on the superdiagonal:

C(4)
x (p1, p2, p3, p4) ̸= 0 only if: p1 = p2 = p3 = p4. (3-22)

Property 3.3: Additivity when independent [17][44]

When two variables or vectors with variables x and y are independent, then the cu-
mulant tensor of their sum equals the sum of their individual cumulant tensors:

C(4)
x+y = C(4)

x + C(4)
y only if: p(x, y) = p(x)p(y). (3-23)

Property 3.4: Blind to Gaussian components [17][44]

A random variable or vector x which is disturbed by an additive Gaussian vector d:

x̂ = x + d (3-24)

will have a cumulant tensor which is solely dependent on the cumulant tensor of x:

C(4)
x̂ = C(4)

x + C(4)
d = C(4)

x (3-25)

due to the value of excess kurtosis for a Gaussian variable being 0 which is identical
for the fourth-order cumulant.

Property 3.5: Multi-linearity [17][44][55][28]

If a random vector x is transformed by a matrix M:

x̃ = Mx, (3-26)

then the cumulant tensor is transformed through the mode-product with M along all
of its 4 modes:

C(4)
x̃ = C(4)

x ×1 M×2 M×3 M×4 M. (3-27)

P. Denarié Master of Science Thesis



3-3 ICA methods for solving BSS 31

3-3 ICA methods for solving BSS

The general definitions of algebraic and optimization ICA methods are briefly explained and
for each definition an algorithm is presented as an example. By comparing the two categories
through their respective examples, a clear distinction is made of what separates the two from
each other. On top of that the comparison highlights the strengths and weaknesses of each
category.

3-3-1 Algebraic methods: COM2

The solution to the BSS problem can be found algebraically [21][17] by diagonalizing a set
of HOS matrices [37] or some HOS tensor [58][59]. This thesis considers only the fourth-
order cumulant tensor from definition 3-2-3 as in its diagonal state it represents components
which are statistically independent. The third order cumulant tensor [58] is a measure of
skewness. For any symmetrical distribution it will have a value of 0. Cumulants of order ≥ 5
are more complex to compute and show more sensitivity to outliers in the data [60] than the
fourth-order cumulant.

Approximate diagonalization of the fourth-order cumulant tensor

Due to model and sampling errors [21] the fourth-order cumulant tensor cannot be made
exactly diagonal. On top of that, no exact tensor diagonalization method exists so diago-
nalization is performed approximately by optimizing over some cost function, also called a
contrast function.

Lemma 3.1 shows the contrast functions for approximate diagonalization of the cumulant
tensor itself which are used by algorithms such as COM2 [10]. Other algorithms such as JADE
[23] or STOTD [48] jointly diagonalize a set of eigenmatrices or subtensors of the cumulant
tensor for which the contrast functions are the sum of the contrasts of the individual matrices
or tensors. However, the least squares principle remains the same.

Lemma 3.1: Approximate diagonalization

Let X ∈ RP ×P ×···×P denote an N -dimensional symmetric cubic tensor, X ′ its trans-
formation X ′ = X ×1 Q×2 · · · ×N Q with Q an orthogonal transformation matrix and
f(Q) the following contrast function:

f(Q) = ∥ offdiag(X ′)∥22, (3-28)

For any matrix Q that minimizes f(Q), X ′ will be an approximate diagonalization of
X .

As Q is orthogonal, this is equivalent to maximizing the values on the superdiagonal
of X ′:

g(Q) = ∥diag(X ′)∥22. (3-29)
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What these algorithm have in common is that the (sub-)optimal Q can be found through a
sequence of Jacobi rotations. The definition of a Jacobi rotation is given below in 3.7. For
a more in-depth explanation on the Jacobi rotation the reader is referred to chapter 5 of
[17]. In short, it is designed to eliminate off-diagonal entries through plane rotations. Each
k’th rotation is stored by multiplying it with the previous k− 1 iterations such that the final
transformation consists of all rotations combined:

Q = JK · JK−1 · · ·J2 · J1 (3-30)

where K denotes the total amount of iterations. The computation of the rotation is performed
by finding the roots of a fourth-order polynomial. A detailed explanation the matter can be
found in [10].

Definition 3.7: Jacobi rotation [17]

A Jacobi rotation matrix J(p, q, c, s) is an orthogonal similarity transformation of
the following structure:

J(p, q, c, s) =



1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · jp,p · · · jp,q · · · 0
...

... . . . ...
...

0 · · · jq,p · · · jq,q · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1


(3-31)

where p < q, jp,p = jq,q = c, jp,q = −s, jq,p = s̄ and (c, s) ∈ R×C such that c2+|s|2 = 1.
For a Jacobi rotation matrix of size P × P there exists:

P −1∑
n=1

n = P (P − 1)
2 =

(
P
2

)
(3-32)

possible rotation pairs where the right-hand notation denotes the binomial coefficients
of the polynomial expansion. An explanation of binomial coefficients can be found in
appendix B-5.

For the tensor case it cannot be said a priori which optimal (p, q) pair maximizes the cost
reduction. Therefore the rotation pairs (p, q) are swept through in a cyclic way. This makes
it difficult to prove convergence to the global optimum and to study convergence speed of the
algorithm. In practice algorithms seem to converge reasonably fast to the solution and local
optima and saddle-points do not seem to pose a problem. After convergence, the independent
components can be found obtained using theorem 3.2. Note that when Q ∈ RN×P is non-
square and semi-orthogonal with N < P and QQT = IN , application of the theorem results
in the estimation of N components.
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Theorem 3.2: Component separation through approximate Tensor diago-
nalization

Let x ∈ RP be a zero-mean pre-whitened random vector with I observations and let
C(4)

x ∈ RP ×P ×P ×P be its corresponding fourth-order cumulant tensor. Based on the
cumulant tensor properties 3.2, 3.1, 3.5 and lemma 3.1, any orthogonal transformation
Q ∈ RP ×P that approximately diagonalizes the cumulant tensor through multiplication
along all of its modes:

C(4)′ ≈ C(4) ×1 Q×2 Q×3 Q×4 Q, (3-33)

will result in P approximately statistically independent variables when multiplied with
x:

ŝ = Qx (3-34)

where ŝ ∈ RP denotes an approximation of the original source components s.

Measure of diagonality Because algebraic methods tend to make the cumulant tensor as
diagonal as possible it is logical to define a solutions quality through the measure of a tensor’s
approximate diagonality. A straightforward way of doing so is looking at the fraction of the
the norm of the superdiagonal over the norm of the entire tensor. A perfectly diagonal tensor
will have a fraction equal to 1. Any tensor less than perfectly diagonal will have a fraction in
the range of [0, 1). As such, the following metric is devised to measure a tensor’s diagonality.

Definition 3.8: Measure of diagonality

A tensor’s measure of diagonality is given by the ratio of the norm of its diagonal
entries to the norm of all of its entries:

τD = ∥ diag(X )∥2
∥X∥2

(3-35)

where the tensor norm is defined as in definition 2.15. For any given tensor τD ∈ [0, 1].
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3-3-2 Optimization methods: FastICA

Opposed to algebraic methods for which the solution is clearly defined as a diagonal tensor,
optimization methods do not have a clear definition of what the solution should look like.
What can only be said about the solution is that a variable’s absolute kurtosis value should
be as high as possible. This can be performed by optimizing over this value.

Devised by Hyvarinen [33], FastICA is a fixed-point method optimization method which
optimizes over a contrast function defined usually by an approximation of neg-entropy or
excess kurtosis from (3-16). The base optimization problem of which kurtosis based FastICA
is derived from is presented below in definition 3.9. The bottom part of the definition shows
the fixed-point iteration which FastICA performs.

Definition 3.9: FastICA [33]

The cost function of FastICA for a zero-mean random vector z ∈ RP with I
samples consists of the sum of absolute self-kurtosis values:

max
U

f(U) =
N∑

i=1
| kurt(uT

i Z)| with U =
[

u1 . . . uN

]
kurt(uT

i Z) = 1
I

uT
i Z

[
ZT ui

]3
− 3

(1
I

uT
i ZZT ui

)2
.

(3-36)

The corresponding gradient for each unmixing vector ui is defined as:

∂f

∂ui
= 4 · sign(kurt(uT

i Z)) ·
[1

I
Z
[
ZT ui

]3
− 3 ⟨ui, ui⟩ui

]
. (3-37)

For whitened data the equations are simplified due to the covariance being diagonal
1
I ZZT = I and the orthogonality constraint on the unmixing matrix ∥ui∥2 = 1.

In the fixed-point iteration that FastICA performs each new estimate of every un-
mixing vector ui is set to be proportionally equal to its gradient:

ui ∝
1
I

Z
[
ZT ui

]3
− 3 ⟨ui, ui⟩ui (3-38)

where ∝ means proportionally equal to.

Although widely used thanks to its speed and low memory cost, the attractiveness of the
algorithm does overshadow its shortcomings and in distinct cases it is proven not to be the best
ICA algorithm [1]. For example, in [47] FastICA was found to fail for weak sources or when
the sources are highly spatially correlated. It is suggested that functional Magnetic Resonance
Imaging (fMRI) data can show high spatial correlation depending on which brain region the
data is from [40] and that some ICA methods perform worse when spatial independence is
assumed [61]. This implies that FastICA would have trouble with fMRI data. Research
on group-subject methods [39] shows that this is not necessarily the case when the proper
nonlinearity is chosen with which kurtosis is approximated. However it was found on multiple
occasions that FastICA’s performance suffers when a low SNR is present [1][47]. Another
drawback of FastICA mentioned reccuringly is how its performance depends on a "good"
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intialization as saddle-points in the optimization landscape can have detrimental effects on
its performance [3][21][1]. Alterations to the algorithm exist which address its shortcomings
but are at times paired with some trade-off [21][2][34].

One mentioned trade-off is the rise of additional tuning parameters. For example, kurtosis
computed by cumulants can be replaced by some nonlinear approximation which speeds up
the algorithm and mitigates the sensitivity to outliers. The trade-off made is that a non-
linearity has to be chosen a priori for which performances can vary widely [21]. Criteria
for the optimal choice of non-linearity have been derived [62] but are dependent on addi-
tional statistical assumptions such as the source component’s probability density function
which further complicates the problem. On top of that, not all nonlinear approximations are
blind to Gaussian noise as cumulants are. This means that Gaussian noise can degrade the
performance of the algorithm.

In general FastICA and its alterations do provide good results. However, there are some dis-
tinct situations such as when a low SNR or many saddle-points in the optimization landscape
are present that the performance deteriorates more than other ICA methods. In most cases
the best solution is to run the algorithm multiple times with varying settings and initializa-
tions. However, this makes it inherently somewhat of a "shotgun-hail" method. Below the
points made are summarized and below that the complexities and convergence property of
the FastICA algorithm are listed.

FastICA tuning parameters and trade-offs [21]

Measure of non-Gaussianity Different measures of non-Gaussianity can be used for
fastICA such as kurtosis and negentropy. While the former is sensitive to outliers
the latter can be very hard to compute exactly. Alternatively, nonlinear functions can
be used to approximate either with the trade-off of non-linearity selection. Depending
on the choice of non-linearity, the method can loose its property of being blind to
Gaussian noise. This proves to be detrimental in situations when a low SNR is present.

Mixing matrix initialization An initial estimate of the mixing matrix has to be given.
Due to the non-convexity of the optimization problem as explained in [21] and [17],
the performance of FastICA can be heavily dependent on the initial estimate as for
example saddle-points have been shown to be detrimental to its performance [3]. This
results in FastICA not being robust so "shotgun-hail" tactics have to be used to obtain
good results.

FastICA properties

Storage complexity Taken from [2], the storage complexity for memory efficient Fas-
tICA is approximately O (RP ) where R are the amount of components to be estimated
and P are the amount of mixtures used.

Computational complexity In [1] the computational cost per iteration for FastICA
is approximated to be O (IRP ) where R equals the amount of components to be esti-
mated, P are the amount of mixtures used and I the number of used observations.

Convergence It has been proven that the convergence of FastICA is cubic [21].
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3-4 Comparison of algebraic methods with optimization methods

The cost function of FastICA in equation (3-36) can alternatively be defined from a cumu-
lant tensor perspective with either the Tensor Times Same Vector (TTSV) operation from
definition 2.16 or a mode-n product sequence:

max
U

f(U) =
N∑

i=1
|C(4)

z u4
i | = ∥ diag

(
C(4) ×1 U×2 U×3 U×4 U

)
∥1. (3-39)

In this regard FastICA can be considered as a cumulant tensor method which only focuses
on the entries on the superdiagonal. First of all, this can raise some confusion about the
exact difference between what are considered optimization methods and what are considered
algebraic methods. While somewhat ambiguous, an actual difference lies in the computation
of the unmixing matrix. The Jacobi-type rotations from the COM2 method from definition
3.7 are designed to maximize entries on the superdiagonal while simultaneously eliminating
offdiagonal entries. In contrast to this, FastICA only focuses on maximizing the diagonal
entries. As a consequence the off-diagonal entries are decreased. However, information present
on the off-diagonal entries is never explicitly used when computing the unmixing matrix as is
the case with the COM2 algorithm. As a result, algebraic methods such as COM2 can show
a lot of consistency in their performances and results [63][26]. This does however depend
somewhat on the nature of the BSS problem. Furthermore, algebraic methods have been
shown to outperform non-kurtosis based FastICA [50][26] when for example, a low SNR is
present for Gaussian noise [63], illustrating the effectiveness of property 3.4 of the cumulant
tensor.
Secondly, (3-39) and the gradient in definition 3.9 show that FastICA uses parts of the cu-
mulant tensor in implicit fashion. This suggests that this implicit scheme can also be used to
computed parts of the entire tensor for algebraic methods.

3-4-1 Issue of algebraic methods: curse of dimensionality

The downside of algebraic methods becomes apparent when comparing the storage and com-
putational cost with that of FastICA. Table 3-1 illustrates the storage, computational and
cumulant tensor forming cost of the algebraic method COM2 against FastICA.

Costs

Initial Per iteration Storage

COM2 IP 4 P 5 P 4

FastICA - IRP RP

Table 3-1: The dominant initiation, storage and computational complexities of the COM2 and
parallel kurtosis-based FastICA algorithms for R components to be estimated with I observations
and P mixtures. For COM2 the initial cost consists of computing the cumulant tensor. For COM2
the storage needed is O(P 4) for the cumulant tensor. For FastICA the storage needed is domi-
nated by the orthogonal transformation and the gradient. For ease of analysis the computational
complexities are solely determined through the amount of multiplications. The complexities for
parallel FastICA are taken from [1][2][3].
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The first column shows the initial onetime cost each algorithm has. For COM2 this consists
only of forming the cumulant tensor. For the algebraic method the initial cost scales up
quartically whereas FastICA has none. The second column shows that the cost COM2 is
dominated by the size of the cumulant tensor which increases quartically with the amount
of components P . The middle column of Table 3-1 shows the cost per iteration of each
algorithm. The cost for FastICA scales woth I, Rand P whereas the algebraic methods only
scale with P . However, it is impossible to know beforehand how many iterations K are
needed for convergence so nothing can be directly stated about the total computational cost.
HComparing the per iteration cost does clearly show that the algebraic methods suffer from
higher-order powers of P . Taking into consideration how the amount of possible rotation pairs
grows according definition 3.7, the amount of iterations needed for the algebraic method grows
too in polynomial fashion which adds up even further to the already growing per iteration
computational cost.

3-5 Chapter summary and contributions

This chapter serves as an introduction to the concept of ICA and its sub-classes: optimiza-
tion based methods and algebraic methods. As was shown there is some ambiguity present
concerning this classification as most algebraic methods are based on an optimization process
too. The cost functions of FastICA and COM2 can both be written as the maximization of
an L-norm of the diagonal entries, however the main difference was found to be whether a
method uses off-diagonal cumulant tensor entries or not. Literature suggests the superiority
of algebraic methods when considering robustness due to use of off-diagonal entries. However,
the use of off-diagonal entries results in general in many more iterations needed by the alge-
braic methods, which in combination with the high cumulant tensor forming and handling
costs results in poor scaling with the amount of mixtures P used.

All of the above is listed below as a set of concrete contributions.

3.1: Contributions chapter 3

• All necessary basic knowledge concerning ICA is written in compact and log-
ically structured fashion such that newcomers to the topic may understand its
basic principles.

• Through the use of examples the difference between optimization based and
algebraic ICA methods is explained.

• The benefits and drawbacks of both optimization based and algebraic ICA meth-
ods in general are listed and explained through examples.

• It is shown how through the curse of dimensionality algebraic methods scale
generally speaking in computation cost with O(IP 4) and in storage cost with
O(P 4).
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Chapter 4

Implicit tensor decomposition for
Independent Component

Analysis (ICA)

The manipulating and storing of the fourth-order cumulant tensor suffers from the curse of
dimensionality due to it being quartic in size. For this reason it is natural to consider tensor
decomposition as a solution of lifting this curse. Different tensor decomposition formats have
varying useful properties which for example allow for data compression, more efficient tensor
manipulation and tensor diagonalization. Several formats have already found their use in
ICA. However, for the cumulant tensor these potential benefits come at the cost of having to
first explicitly form and store the tensor. By itself this can be reason enough to avoid using
the tensor altogether. However, by exploiting the cumulant tensor’s properties varying tensor
decomposition formats can be computed implicitly. Meaning that the tensor formation and
storing step is bypassed. The result of doing so is the creation of a set of implicit tensor
decomposition algorithms which can be used to find a solution for ICA.

Chapter outline In this section we present how three decomposition formats of the cumulant
tensor can be computed implicitly at lower costs than doing so explicitly. Their working
principles together with their potential use for ICA are discussed. Before presenting each
implicit decomposition, we give a general description the format together with its history
and use concerning ICA. Alongside this we make important observations between cumulant
tensor diagonality and tensor ranks which are used as the rational for Higher-Order Singular
Value Decomposition (HOSVD) as a preprocessing step.
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4-1 Tucker Decomposition

First the already existing Tucker decomposition is shown. The formal definition of a Tucker
decomposition is presented below in definition 4.1. Tucker decomposition refers to the gen-
eral format where a tensor X ∈ RP1×...PN is decomposed into a core tensor G and factor
matrices {U1, . . . , UN}. Figure 4-1 shows a graphical representation of how a 3-way tensor
is decomposed into a core tensor G and its 3 factor matrices Ui ∀i = 1, 2, 3.

Figure 4-1: Tucker decomposition of a 3-way tensor X ∈ RP1×P2×P3 into a tensor core G ∈
RR1×R2×R3 together with 3 factor matrices Ui ∈ RPi×Ri ∀i = 1, 2, 3.

Definition 4.1: Tucker decomposition [28]

The Tucker decomposition of a tensor X ∈ RP1×P2×...×PN consists of a tensor core
G ∈ RR1×R2×...×RN which is multiplied along each of its modes {1, . . . , N} with a
corresponding factor matrix Ui =

[
ui,1 . . . ui,Ri

]
∈ RPi×Ri ∀i = 1, . . . , N :

X = [[G; U1, · · · , UN ]] = G ×1 U1 ×2 · · · ×N UN

=
R1∑

r1=1
· · ·

RN∑
rN =1

G(r1, · · · , rN ) · u1,r1 ◦ · · · ◦ uN,rN
,

(4-1)

where the [[G; U1, · · · , UN ]] notation denotes a tensor core G that is multiplied along
its modes with the factor matrices {U1, . . . , UN}.
The Tucker rank is the N -tuple consisting of the n-ranks Rn.

Tucker decomposition forms the baseline of the decomposition formats used throughout this
thesis. Each of these formats is a special case of Tucker decomposition with specific con-
straints.
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4-2 Higher-Order-Singular-Value-Decomposition HOSVD

Higher-Order-Singular-Value-Decomposition (HOSVD) is a special case of Tucker decompo-
sition where the factor matrices and the core are constrained to be orthogonal. It is implied
that it actually is a form of higher-order Principal Component Analysis (PCA) [64] due to
the Singular-Value-Decomposition (SVD) along each tensor mode. The HOSVD of a sym-
metric tensor has the properties that the resulting core is symmetric too and that all factor
matrices are identical. The latter means that the SVD of only a single mode has to be com-
puted which lowers the computational complexity of the decomposition. The definition of
a symmetric HOSVD is given in definition 4.2. The self derived storage and computational
complexities of the symmetric HOSVD are shown in 4.1.

Definition 4.2: HOSVD of a symmetric tensor [64]

The HOSVD of a symmetric tensor X ∈ R[N,P ] consists of a symmetric tensor core
G ∈ R[N,R] which is multiplied along each of its modes {1, . . . , N} with a single factor
matrix U =

[
u1 . . . uR

]
∈ RP ×R:

X = [[G; U, · · · , U]] = G ×1 U×2 · · · ×N U

=
R∑

r1=1
· · ·

R∑
rN =1

G(r1, · · · , rN ) · ur1 ◦ · · · ◦ urN ,
(4-2)

The semi-orthogonal factor matrix U with R ≤ P has the property of being left-
invertible UT U = IR. As all factor matrices are identical the core G of a symmetric
HOSVD is symmetric too.

Symmetric HOSVD properties

Storage complexity The storage complexity of the HOSVD of a symmetric tensor
X ∈ R[N,P ] is O

(
RN + PR

)
where R is the Tucker-rank.

Computational complexity The computational complexity of symmetric HOSVD of a
symmetric tensor X ∈ R[N,P ] is dominated by the computation a single SVD O(P N+1).

Computing the symmetric HOSVD of a tensor amounts to performing SVD on a single mode-
n matricization. This is illustrated in figure 4-2 for a third-order tensor X . After the SVD
the diagonal matrix Σ ∈ RR×R is multiplied with the right-orthogonal matrix VT ∈ RR×R2

which is then reshaped into the HOSVD core G ∈ RR×R×R.
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Figure 4-2: The computation of the factor matrix U of a symmetric third-order tensor X .

HOSVD of the cumulant tensor Decomposing the fourth-order cumulant tensor with HOSVD
results in the following symmetric decomposition from definition 4.2:

C(4)
x = GC(4)

x
×1 U×2 U×3 U×4 U. (4-3)

Comparing this expression with the multilinearity property 3.5 of the cumulant tensor shows
that the inverse of the orthogonal factor matrix U, equal to its transpose, can be applied as
a un-mixing transformation Q = UT on the observed mixtures:

ŝ = Qx = UT x. (4-4)

The HOSVD core GC(4)
x

is in general not diagonal which means that this is not an approximate
diagonal transformation of the cumulant tensor. By theorem 3.2 the estimate ŝ of the true
sources s will not have statistical independent components and by definition fails to be an
effective ICA method.

Experimental results show that although HOSVD is in general not able to properly separate
mixed components [52][65], it does provide a useful starting estimate of the unmixing matrix.
On top of that, it is often used too as the starting estimate for a Tucker decomposition in which
the resulting core is constrained to be diagonal. We later show how computing a diagonally
constrained Tucker decomposition of the cumulant tensor can benefit from preprocessing it
with HOSVD.

One key issue concerning the computation of the HOSVD of the cumulant tensor is the fact
that a matricized tensor of size P 4 has to be processed and stored. On top of that, there is
no guarantee that the Tucker-rank of the resulting symmetric core is any smaller than P .

In the following section we present an algorithm which exploits the structure of the cumu-
lant tensor such that its HOSVD can be computed iteratively without surpassing a storage
requirement of P 2 at any given iteration.
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4-2-1 Computing the HOSVD implicitly

In this section we present an algorithm which allows for implicit computation of the whitened
fourth-order cumulant tensor HOSVD. The main benefit of doing so related to ICA is the
computation of the factor matrix U which can be used as an initial estimate for ICA and
Canonical Polyadic Decomposition (CPD) algorithms. Due to not having to explicitly com-
pute and store the cumulant tensor C(4) ∈ R[4,P ] and the HOSVD core G ∈ R[4,R], the storage
cost of the algorithm never exceeds O(P 2). The algorithm for implicit HOSVD of the cumu-
lant tensor is presented below and its complexities we derived are presented in 4.2.

Algorithm 1 Implicit HOSVD
Require: whitened data: Z ∈ RP ×I

1: procedure Implicit HOSVD(Z)
2: for i = 1, . . . , P do
3: for j = i, . . . , P do
4: W = zeros(size = [P, P ]), W(i, j) = 1
5: Meye = (IP (:, :) · IP (i, j)) + W + WT

6: Mij = 1
I Z(Z(i, :) ∗ Z(j, :) ∗ Z)T −Meye

7: if i = 1 and j = 1 then
8: U, Σ, VT ← SVD(M)
9: else

10: if i = j then
11: U, Σ← SVD-update(M)
12: else
13: U, Σ← SVD-update(

[
M

]
) twice

14: end if
15: end if
16: end for
17: end for
18: return U, Σ
19: end procedure

Property 4.2: Implicit HOSVD properties

Computational complexity For the cumulant tensor C(4) ∈ R[4,P ] the dominant
computational costs of the implicit HOSVD algorithm are the computation of
all slices O( IP 3(P +1)

2 ) and for P >> 0, the cost of performing all svd-updates
O((P 3 − 1) · P 2(log(P )2) ≈ O(P 5(log(P )2).

Storage complexity The storage complexity of the algorithm is O(P 2).

At the heart of implicit HOSVD lies a stable algorithm presented in [66] for updating an
already existing SVD. By iteratively computing the cumulant tensor’s slices the SVD of its
matricization is continuously updated. Furthermore, the algorithm benefits from the tensor’s
symmetry by computing fewer slices. Both are explained in the following sections together
with an explanation on how slices of the cumulant tensor can be computed separately.
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Iterative SVD The core SVD-update method utilized by our Iterative-implicit-HOSVD algo-
rithm is presented in [66]. To update an already existing SVD of a square matrix M1 = UΣVT

by appending a vector to it as M2 =
[

M z
]
, the algorithm from [66] updates the singular

values by finding the eigenvalues of

M′M′T
[

Σ z
] [ Σ

zT

]
. (4-5)

The eigenvalues are found using the Fast Multipole method (FMM) proposed in [67][68].
For more in-depth information on the FMM the reader is directed to said references. The
used implementation of this method taken from [69] contains several alterations and additional
techniques presented in [70] and [71] which allow for a faster computation of sequential updates
at a computational cost of O(P 2(log(P )2) per update. The complete problem the SVD-update
method solves can be found in appendix C-3. Figure 4-3 illustrates how the SVD-update
method works for a matricized third-order cubic tensor X ∈ R[3,P ].

Figure 4-3: Iterative SVD of a matricized 3-way tensor X ∈ R[3,P ]. The tensor X ∈ R[3,P ] is
first matricized along mode 1 (top row) after which the HOSVD is initiated with an SVD of the
first frontal slice X (:, :, 1) (second row). The SVD is updated P (P − 1) times with the set of
fibers F = {X (:, i, j) ∀i, j ∈ {1, . . . , P}}.
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The algorithm is initialized with the SVD of the first frontal slice X (:, :, 1) after which the
SVD is updated P (P − 1) times with the P (P − 1) remaining columns. The matrix VT

containing the right singular vectors increases in size according to the size of the appended
decomposed matrix. However, the SVD-update algorithm from [66] only needs to update
the singular vectors which results in only the singular values and the left orthogonal matrix
U ∈ RP ×P needed to be stored at a cost of O(P 2). After the SVD has been updated with all
of the cumulant tensor slices the orthogonal matrix U can be then used as an initial estimate
for ICA or CPD.

In order to benefit from the lower storage cost of the iterative SVD, the cumulant tensor
slices have to be computed and processed in the SVD-update iteratively. We present a partial
cumulant tensor computation scheme with which parts of the cumulant tensor of arbitrary
size can be computed. This partial computation scheme is the cornerstone of the implicit
methods we propose in this thesis.

Cumulant tensor slice computation Here we present how any part of the cumulant tensor
can be computed separately. The same method can be used to compute single vectors or
values of the tensor. For the sake of simplicity and for the added benefit of an orthogonality
constraint on the solution, only whitened data Z ∈ RP ×I is considered here when computing
the cumulant tensor which is defined as follows.

Definition 4.3: Fourth-order cumulant tensor for whitened data

The fourth-order cumulant tensor for a whitened random vector z ∈ RP with I
samples in its full tensor form is expressed as:

C(4)
z =M(4)

z − TC(2)z

with TC(2) z = C(2)
z ◦C(2)

z +
(
C(2)

z ◦C(2)
z
)T σ1 +

(
C(2)

z ◦C(2)
z
)T σ2

σ1 =[1, 3, 2, 4], σ2 = [1, 4, 3, 2]

(4-6)

where the fourth order moment tensor M(4)
x and the covariance C(2)

z are computed
using the elementwise operation defined in 3-20.

The tensor TC(2)
z

can be equivalently written by replacing C(2)
z with an identity matrix

IP due to whiteness:

TC(2)
z

= TI = IP ◦ IP + (IP ◦ IP )T σ1 + (IP ◦ IP )T σ2

σ1 =[1, 3, 2, 4], σ2 = [1, 4, 3, 2].
(4-7)

Due to whiteness the second-order part TI of (4-7) is a sparse tensor in which the nonzero en-
tries are symmetrically placed. The structure of this tensor is created through the summation
of index permutated outer-products of identity matrices.

To better understand how to navigate through the slices of a 4-way tensor T ∈ RP1×P2×P3×P4 ,
the tensor can be considered as a set of P4 3-way tensors which is represented in figure
Figure 4-4. Arrows indicate how the indices pi ∀i ∈ {1, 2, 3, 4} move along this set of 3-way
tensors.
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Figure 4-4: Visual representation of a 4-way tensor X ∈ RP1×P2×P3×P4 as P4 3-way tensors
Xsub ∈ RP1×P2×P3 . The arrows p1, p2, p3 and p4 indicate how to traverse along the original
tensors indices through the representation.

Alternatively, Figure 4-4 can be considered as a set of P3 × P4 slices where each slice is
defined by pi ∈ {1, . . . , Pi} ∀i ∈ {1, 2}. When matricizing the cumulant tensor these slices
are stacked columnwise next to each other. Due to the matricization each element in the
4-dimensional space RP1×P2×P3×P4 at the indices (p1, p2, p3, p4) is mapped to a 2-dimensional
space RP1×P2P3P4 where its indices are defined as (p1, p4P3P2 + p3P2 + p2).
For the cumulant tensor C(4) ∈ R[4,P ] any of its mode-n matricizations is defined as follows:

C(4)
(n) = M(4)

Z(n) −TI(n) with: M(4)
Z(n) = 1

I
Z (Z⊙ Z⊙ Z)T . (4-8)

Lemma 4.1 shows how to navigate through the matricized cumulant tensor according to its
4-way indices based on the definition of mode-n matricization 2.12.

Lemma 4.1: Indices of matricized cumulant tensor

For any entry of the fourth-order cumulant tensor C(4) ∈ R[4,P ] at the indices
(p1, p2, p3, p4), the following equivalence holds true for any mode-n matricization
C(4)

(n) of the tensor:

C(4)(p1, p2, p3, p4) = C(4)
(n)(p1, p4P 2 + p3P + p2). (4-9)

Using (4-8) and lemma 4.1 navigation through the fourth-moment tensor M(4)
z is defined

as follows. For Z =
[

zT
1 zT

2 . . . zT
P

]T
, zi ∈ R1×I ∀i ∈ {1, . . . , P} the value of the

original tensor at the indices (p1, p2, p3, p4) corresponds to the following:

M(4)
Z (p1, p2, p3, p4) = M(4)

Z(n)(p1, p4P 2 + p3P + p2) = 1
I

zp1 (zp4 ⊙ zp3 ⊙ zp2)T . (4-10)

With identical reasoning a similar notation can be found for the sparse tensor TI(1). This
means that any of the P3 × P4 slices of the tensor can be computed using definition 4.4.
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Definition 4.4: Partial cumulant tensor computation

For Z =
[

zT
1 zT

2 . . . zT
P

]T
, zi ∈ R1×I ∀i ∈ {1, . . . , P}, the cumulant tensor

entry at (p1, p2, p3, p4) can be computed as follows:

C(4)
Z (p1, p2, p3, p4) = 1

I
zp1 (zp4 ∗ zp3 ∗ zp2)T − TI(p1, p2, p3, p4) with

TI(p1,p2, p3, p4) = I(p1, p2) ◦ I(p3, p4) + I(p1, p3) ◦ I(p2, p4) + I(p1, p4) ◦ I(p3, p2).
(4-11)

A vector at the indices (:, p2, p3, p4) can be computed by varying p1 = 1, . . . , P , and a
slice at the indices (:, :, p3, p4) can be computed by varying p1, p2 = 1, . . . , P .

Now that we now how to compute the cumulant tensor slices separately we show how to lower
the computational cost of the implicit HOSVD by exploiting the cumulant tensor’s symmetry.

Exploiting symmetry Due to the cumulant tensor’s symmetry not all slices from definition
4.4 are unique. The equivalence between slices is visually represented using colors in Figure 4-
5. the figure shows that out of all P 2 slices, only P (P +1)

2 are unique.

Figure 4-5: Visualization of identical slices of the cumulant tensor due to symmetry through
representation with colors.

The implicit HOSVD algorithm from 1 exploits this symmetry by only computing each unique
slice once. This is visually represented in figure 4-6. In order to still compute the proper
HOSVD the SVD is updated twice with the columns of each unique slice with multiplicity
2, denoted in the figure with the color blue. This reduces the cost of computing the tensor
slices from O(IP 4) to O( IP 3(P +1)

2 ).
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Figure 4-6: Visualization of the unique slices of the cumulant tensor. Computation of all slices
with dashed outlines are skipped by updating the SVD twice with the columns of the slices in
blue.

U-Implicit HOSVD and C-Implicit HOSVD

The implicit HOSVD still requires the computation of the entire cumulant tensor. On top
of that, the total computational cost of all svd-updates is more expensive than performing a
single svd on the matricized tensor. For these reasons the following 2 versions of the implicit
algorithm are proposed which use different sub-selections of the cumulant tensor slices. It is
important to note that these versions of the algorithm do not produce a correct HOSVD as
not all information is processed. The rational behind these versions is that perhaps using only
part of the cumulant tensor can be enough to find a good initial estimate for ICA algorithms
while lowering overall computational complexity.

U-Implicit HOSVD The U-Implicit HOSVD version updates the svd only once with each
unique slice from Figure 4-6. This means that the total computational cost of the svd-updates
is brought down to O((P (P +1)

2 − 1) · P · P 2(log(P )2) ≈ O(P 5

2 (log(P )2)

C-Implicit HOSVD The C-Implicit HOSVD version only uses the "core" slices of the cumu-
lant tensor. Our definition for core slices is given as follows.

Definition 4.5: Core slices of a symmetric tensor

The core slices of a symmetric N -way tensor X ∈ R[N,P ] are defined as all slices for
which the following holds true:

X (:, :, p3, . . . , pN ) with p3 = . . . = pN ∀p3 = 1, . . . , N. (4-12)

Note that due to symmetry any permutation of the indices will result in the same set
of slices.
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For the cumulant tensor these are the slices for which p3 = p4 ∀p4 = 1, 2, . . . , P . The core
slices are shown below in Figure 4-7 in blue. the total svd-update cost for this version is
O((P − 1) · P · P 2(log(P )2) ≈ O(P 4(log(P )2).

Figure 4-7: Slice selection of the 4-way cumulant tensor using previously introduced visual
representation. Each slice in blue is computed at the value of p indicated below.
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4-3 Tucker decomposition through a QR Tensor method

In this section we present a novel algorithm together with its implicit version for the cumulant
tensor which allows for the computation of a Tucker decomposition with specific structural
properties. Inspired by the QR algorithm for matrices, the presented algorithm computes and
applies successive QR-decompositions on a tensor in order to transform it. The algorithm
is presented below in pseudo-code. The algorithm has a lot of similarity with an already
existing method for computing the real eigenpairs of a symmetric tensor [72]. However,
instead of iterating through entire slices as is done in [72], the slices used by algorithm 2 for
QR-decomposition decrease in size.

Algorithm 2 QRT
Require: N-dimensional tensor: T ∈ R[P,N ], max iterations: Kmax

1: procedure QR-T(T )
2: Qstore = IP

3: for p = 1, . . . , P − 1 do
4: for k = 1, . . . , Kmax do
5: Q′ = QR-decomposition (T (p : P, p : P, p, . . . , p))

6: Q =
[

Ip−1 0
0 Q′

]
∈ RP ×P

7: Qstore ← QQstore

8: T ← T ×1 Q×2 . . .×N Q
9: end for

10: end for
11: return T , Qstore

12: end procedure

We remind the reader of the definition of "core" slices shown in definition 4.5. The core slices
the QRT algorithm uses for a 4-way tensor are shown below in Figure 4-8.

Figure 4-8: Slice selection of the 4-way cumulant tensor using previously introduced visual
representation. Each slice in blue is computed at the value of p indicated below.
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4-3-1 The QR-algorithm for tensors

Our inspiration for the QRT alorithm comes from the QR algorithm. The QR algorithm
or QR iteration, developed simultaneously but independently by John G. F. Francis and by
Vera N. Kublanovskaya [73][74][75], is a procedure to calculate the eigendecomposition of a
matrix. The QR algorithm is shown below in definition 4.6.

Definition 4.6: QR algorithm [73][74][75]

The eigenvalue decomposition of a symmetric matrix M ∈ RP ×P can be computed
using a sequence of QR decompositions. After computing the QR decomposition
of M:

Qk, Rk ←QR-decomposition(Mk), (4-13)

the upper triangular R matrix is multiplied from the right with the orthogonal matrix
Q to obtain the next iteration of M:

Mk+1 = RkQk = QT
k MkQk. (4-14)

As k →∞ the QR iteration will converge to:

lim
k→∞

QT
k · · ·QT

0 M0Q0 · · ·Mk = ET ΛE (4-15)

where E ∈ RP ×P is a matrix containing all of the eigenvectors of M and Λ =
diag2(λ1, . . . , λP ) is a diagonal matrix with the corresponding eigenvalues on the diag-
onal.

Several procedures exist for computing a QR-decomposition of which the most widely used
ones are through householder-reflection matrices or through Givens-rotations. Both will not
be discussed in detail but the former can be found in appendix C-4 and the latter follows
the definition of a Jacobi-rotation from definition 3.7. Givens-rotations and Jacobi-rotations
are essentially the same. The difference comes from how they are used. When using Givens-
rotations to diagonalize a matrix, as is done in the QR-algorithm from definition 4.6, they are
called Jacobi-rotations. By themselves, Givens-rotations are designed to introduce zeros into
an array which do not change anymore afterwards. Using them in Jacobi-rotation fashion
decreases off-diagonal elements successively.

From a multi-linear perspective, the QR algorithm can be considered as a diagonalizaton
method for tensors of order 2. The question then arises whether such an algorithm can exist
for higher-order tensors to diagonalize them. As a matter of fact, we have established that
such an algorithm already exists for symmetric tensors which can be considered as the higher-
order equivalent of definition 4.6. This is the earlier presented COM2 algorithm from section
3-3-1. The computed rotation for the Jacobi-rotation follows the same root finding procedure
with a quadri-linear based polynomial as it does for the bi-linear case [10][17]. However, as
we mentioned before the COM2 algorithm scales poorly due to the cyclic way the rotation
pairs are swept through.
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QR-decomposition on a symmetric tensor slice Instead of using a direct higher-order ana-
logue of the QR-algorithm as COM2, our proposed method uses bi-linear QR-decomposition
on slices of a symmetric tensor and applies them iteratively on all modes using the mode-n
product. The idea here is that this will impose some form of diagonality on the structure of
the tensor.
Writing out the sequence can give more insight in the process. Let X ∈ R[N,P ] be a symmetric
tensor and let X(n) =

[
M1 M2

]
∈ RP ×(N−1)P be any of its its mode-n matricizations

where M1 ∈ RP ×P consists of the first P columns and M2 ∈ RP ×(N−2)P of all the other
(N − 2)P columns. First the QR-decomposition of M1 at iteration k is computed:

Qk, Rk ←QR-decomposition(M1,k). (4-16)

Afterwards the tensor is updated by multiplying all of its modes with the orthogonal trans-
formation Q:

Xk+1 = Xk ×1 QT
k ×2 . . .×N QT

k . (4-17)

In matricized form this is equivalent to:

X(n),k+1 = QT
k X(n),k (Qk ⊗ . . .⊗Qk)︸ ︷︷ ︸

N−2 Kronecker products
(4-18)

Expressing X(n),k+1 as a sequence of X(n),0 results in:

X(n),k+1 = QT
k · · ·QT

0 X(n),0 (Q0 · · ·Qk ⊗ . . .⊗Q0 · · ·Qk) (4-19)

which can than be used to express M1,k with X(n),0 :

M1,k+1 = QT
k · · ·QT

0 X(n),0

Q0 · · ·Qk−1q1,k ⊗ . . .⊗Q0 · · ·Qk−1q1,k︸ ︷︷ ︸
N−3 Kronecker products

⊗Q0 · · ·Qk


= UT

Q,kX(n),0VQ,k

↪→ X(n),0 = UQ,kM1,k+1X(n),0VT
Q,k

(4-20)

where Qk =
[

q1,k . . . qP,k

]
. The matrix UQ,k ∈ RP ×P is orthogonal and the matrix

VQ,k ∈ RP N−1×P is semi-orthogonal. If M1,K+1 is diagonal, equation (4-20) has the resem-
blance of an SVD of X(n),0 where the right singular vectors are constrained with a multi-linear
structure as VT

Q,k = uQ,k,1⊗ . . .⊗uQ,k,1⊗UQ,k and where uQ,k,1 is the first column of UQ,k.
Equation (4-18) shows that the matrix VQ,k ∈ RP N−1×P consists only of the first P columns
of (Qk ⊗ . . .⊗Qk). This means computing the SVD of X(n),0 will will not work as it is not
equivalent to equation (4-20) due to the multi-linear constraint (Qk ⊗ . . .⊗Qk). This would
result in only the next iteration of M1,k and not the entire tensor. The larger second part
M2,k will be discarded if applying SVD. However, we believe that this comparison with SVD
illustrates to some extent the workings of the QRT algorithm as our findings show that for
K >> 0 the slice M1,K+1 does become diagonal.

P. Denarié Master of Science Thesis



4-3 Tucker decomposition through a QR Tensor method 53

Increasing slice diagonal entries We attempt to illustrate how applying Q in all modes can
increase the diagonal entries of M1,k.

For convergence of the QR-algorithm [73][74][75], we observe the following. For any iteration
of the QR-algorithm for a symmetric matrix the following inequality related to the first value
on the diagonal holds true as it converges to |λ1|:

|Ak+1(1, 1)| = |aT Ak+1a| = |qT
k,1Akqk,1| ≥ |aT Aka| = |Ak(1, 1)| (4-21)

where a =
[

1 0 . . . 0
]
∈ RP . The absolute value must be taken here because A can be

indefinite.

Now for a tensor this can be used as follows. Using previously defined tensor X , its slice M1
is equivalent to the Tensor Times Same Vector (TTSV) operation M1 = XaN−2. Computing
the QR-decomposition of this slice and applying it on both sides results in the following
equation for the top left entry:

qT
1,kM1,kq1,k = qT

1,k(XkaN−2)q1,k. (4-22)

This is the entry at the indices (1, . . . , 1) but note that this is not equivalent to equation
(4-17). Due to the tensor’s symmetry it does not matter in what modes the multiplication
with q1,k takes place. For example:

qT
1,k(XkaN−2)q1,k = aT ((Xkq2

1,k)aN−4)a. (4-23)

Writing out the absolute value similarly to (4-21) results in the following inequality:

|qT
1,k(XkaN−2)q1,k| ≥ |aT (XkaN−2)a| = |XkaN | = |Xk(1, . . . , 1)|. (4-24)

This equality makes sense as it is nothing else but the QR-algorithm applied on the slice M1
of the higher-order tensor X :

Xk+1 = Xk ×1 QT ×2 QT ×3 I× . . .×N I. (4-25)

Our question related to our QRT algorithm is would the increase of the first superdiagonal
entry hold true too when multiplying 3 or more modes with QT instead of just 2? However,
due to there not yet existing a higher-order equivalent of equation (4-21) we cannot make any
further direct statements. Ideally, for the vector q1 it must be proven that:

|Xk+1(1, . . . , 1)| ≥ |XkaqN
1,k| ≥ |XkaN | = |Xk(1, . . . , 1)|,

and
lim

k→∞
Qk = I,

(4-26)

which means that the first superdiagonal entry keeps on increasing until Q has converged.
Up to this day, our results have not presented any counterexample of this hypothesis.
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We believe that such a higher-order analogue of the QR-algorithm convergence on a ten-
sor slice exists. More precisely, we hypothesize that multiplying all modes of a symmetric
tensor X with QT of the QR-decomposition of its frontal slice X (:, :, 1, . . . , 1), leads to its
diagonalization of that slice. This hypothesis is presented below.

Hypothesis 4.1: QR-algorithm on tensor slice

Let X ∈ R[N,P ] be a symmetric tensor of order N and let X(n) =
[

M1 M2
]

be
any of its its mode-n matricizations where M1 ∈ RP ×P consists of the first P columns
and M2 ∈ RP ×(N−2)P of all the other (N − 2)P columns.
By computing the QR-decomposition of X1 at iteration k:

Qk, Rk ←QR-decomposition(X1,k) (4-27)

and applying the orthogonal transformation Qk in all tensor modes to obtain a new
iteration of X :

Xk+1 = Xk ×1 QT
k ×2 . . .×N QT

k , (4-28)

we hypothesize that:

lim
k→∞

X0 ×1 QT
0 · · ·QT

k×2 . . .×N QT
0 · · ·QT

k →M1,k = Λ′

and
lim

k→∞
Qk = I

(4-29)

where Λ′ represents a diagonal matrix.

The hypothesis above implies that due to tensor symmetry, all slices equivalent to X (:, :, 1, . . . , 1)
will be simultaneously diagonalized. These are slices which arise from any permutation of the
index set SN = {s1, s2, 3, . . . , N} where we vary s1 = s2 over [1, . . . , N ] ∈ Z. These are all of
the slices that together form part of the outer-layer of the tensor, or outer-shell. The slices of
the outer-shell that are diagonalized are considered as the ’top’ part of the outer-shell. This
is visually represented for a 3-way tensor in Figure 4-9.

Figure 4-9: Exploded view of the outer shell of a 3-way tensor X . The blue slices are together
considered as the ’top’ part of the outer-shell.
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Figure 4-10: Visual representation of how the norm of elements is increased due to the successive
mode-n multiplications with q1. A darker red color indicates that the norm of that tensor slice,
fiber or entry has increased in comparison to before the previous mode-n multiplication.

What is happening during the QRT procedure can be intuitively explained using Figure 4-
10. In the figure above a 3-way tensor of size 3 × 3 × 3 is shown of which the frontal
slices are colored in red, green and blue consecutively. Each row of the figure represents
the multiplication of this tensor’s mode n with the QT =

[
q1 q2 q3

]
matrix of the

red slice’s QR-decomposition. The figure focuses on how the norm of parts of the tensor is
partially condensed into the top left corner at indices (1, 1, 1) due to qT

1 . The darkening of
the red color is to illustrate how the norm of that particular sub part increases in comparison
to before the last mode-n product. In this small example we assume for simplicity that qT

2
and qT

3 are null vectors. The faded parts of the tensor are those that are not affected by q1.

Top outer-shell diagonalization: numerical example We present a small numerical example
on the workings of the QRT algorithm on a symmetric 3-way tensor X [3,3]. The tensor is
created by multiplying all modes of a diagonal core tensor C with 1’s on its superdiagonal
with 5 stacked vectors randomly generated from a uniform distribution:

X = C ×1 U×2 U×3 U. (4-30)

The result of performing the QRT procedure from algorithm 2 for K = 25 iterations is shown
below in figure Figure 4-11. Both figures show the 3-way tensor as a voxelplot where visible
voxels at the indices (p1, p2, p3) represents a value of X (p1, p2, p3) > 0 and non-visible voxels
are entries in the tensor of value 0. The left Figure 4-11a shows the tensor before applying the
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QRT procedure and the right Figure 4-11b after. The values of the unique diagonal entries
of the top outer-shell d = {d1, . . . , d5} are plotted in Figure 4-12.

(a) Tensor X ∈ R[3,5]. The top outer-shell is indi-
cated in blue.

(b) Tensor X ∈ R[3,5] after performing the QRT
iteration for K = 25 iterations.

Figure 4-11: Tensor X ∈ R[3,5] with indices (p1, p2, p3) before and after the QRT procedure. All
non-visible voxels are entries in the tensor of value 0. The top outer-shell originally indicated in blue
has been changed into a collection of diagonal slices of which the unique entries d = {d1, . . . , d5}
are denoted in colors which match Figure 4-12.

Figure 4-12: Absolute values of d: |di| ∀i = 1, 2, 3, 4, 5 during the QRT procedure on the top
outer-shell. Only the first 10 iterations are shown.

The tensor value |d1| = |X (1, 1, 1)| shown in blue keeps increasing up till a certain value. Con-
versely the last 2 values |d5| = |X (5, 5, 5)| and |d4| = |X (4, 4, 1)| decrease in a similar fashion.
The values |d2| = |X (2, 2, 1)| and |d3| = |X (3, 3, 1)| show a more interesting behaviour. Value
|d2| reaches a certain maximum at k = 1, decreases afterwards and finally settles. For |d3|
the same happens but then in a decreasing way. We conclude that this odd behaviour of
|d2| and |d3| is necessary for the increase or decrease of |d1|, |d4| and |d5| as they have not
reached their maximum or minimum yet at k = 1. The final value of |d1| is between ≈ 10×
and ≈ 1000× higher than that |d2|, |d3|, |d4| and |d5|. The ratio between the value of |d1| and√

3|d2|2 + 3|d3|2 + 3|d4|2 + 3|d5|2 equals τD = 0.991. This can be considered as the measure
of diagonality τD from definition 2.6 of only the top outer-shell. The values di ∀i = 2, 3, 4, 5
are multiplied with 3 as they have a multiplicity of 3 in the top outer-shell. We observe the
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same behavior of the diagonal entries of a symmetric matrix during the QR-algorithm. An
example is shown in appendix C-5.

As the top outer-shell has been diagonalized the procedure is repeated on the inner part of
the tensor indicated in brown in Figure 4-11b by computing the QR-decomposition of the
truncated slice X (2 :, 2 :, 2). This procedure is said to work on the first top inner-shell of
the tensor X . The converged resulting tensor is displayed in Figure 4-13b and the values of
d are shown below that in Figure 4-14. The figures show that the top outer-shell has lost its
diagonal form and that the values |di| ∀i = 2, 3, 4 have changed. Again a settling behaviour
can be seen in the changed values albeit this time with a lot more fluctuation beforehand.
However, the previous measure of diagonality has remained the same τD = 0.991.

(a) Tensor X ∈ R[3,5] after performing the QRT
iteration for K = 25 only once on the top outer-
shell.

(b) Tensor X ∈ R[3,5] after performing the QRT
iteration for K = 25 on the top outer-shell and the
first inner shell.

Figure 4-13: Tensor X ∈ R[3,5] with indices (p1, p2, p3) before and after the QRT procedure on
the first top inner-shell. All non-visible voxels are entries in the tensor of value 0. The previously
diagonalized top outer-shell has now lost its diagonality. This is indicated by the tensor entries in
grey.

Figure 4-14: Absolute values of d: |di| ∀i = 1, 2, 3, 4, 5 during the QRT procedure on the top
outer-shell and first top inner-shell.

The fibers X (:, 1, 1), X (1, :, 1) and X (1, 1, :) have remained unchanged too. The reason why is
visually shown in Figure 4-15. Due to the new but smaller Q′ matrix being extended with an
identity matrix, the tensor entry X (1, 1, 1) remains untouched. On top of that, paired with
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the zeros already present on the fibers X (:, 1, 1), X (1, :, 1) and X (1, 1, :), the fibers effectively
do not change either. The top row of QT does not change anymore after the QRT procedure
on the top outer-shell. This has an interesting implication for ICA. Namely that the 4’th
order analogue of Figure 4-13a and Figure 4-13b result in the same solution for the first
estimated source component.

Figure 4-15: Unaffected part of the tensor X when multiplied in all modes with the Q′ matrix
computed from the QR-decomposition of X (2 :, 2 :, 2). The after each multiplication the effected
part is faded-out and the unaffected part is kept in full color. The only truly unaffected element
is the top of the superdiagonal X (1, 1, 1).

Lastly, ’peeling’ of the top outer-shell reveals that the previously diagonal form is now present
on the first top inner-shell. This means that this diagonal structure is present on the top
shell layer that the QRT-procedure is working on. Applying the QRT-procedure iteratively
through the top outer-shell and all of the top inner-shells will result in a tensor of which all
fibers X (i :, i, i), X (i, i :, i) and X (i, i, i :) ∀i = 1, 2, 3, 4 will be null-vectors, or null-fibers,
with a single nonzero element at the top which corresponds to the elements on the tensors
superdiagonal X (i, i, i) ∀i = 1, 2, 3, 4, 5.

Figure 4-16: Tensor X ∈ R[3,5] after performing the QRT iteration for K = 25 on the top
outer-shell and the first inner shell of which the top outer-shell is ’peeled’ off.
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4-3-2 Implicit QRT for the cumulant tensor

In this section we present how our partial cumulant tensor entry, fiber and slice computation
method from section 4-2-1 can be combined with the QRT algorithm for implicit use. In the
previous section we showed that for ICA the solution of the i’th component did not depend on
the full diagonalization of the i’th top inner-shell. Only the part affected by the multiplication
in all modes with the column vector qi of the orthogonal transformation Q was shown to be
relevant.

This means that for the cumulant tensor only the (truncated) fibers C(4)
z (i :, i, i, i) ∀i =

1, 2, . . . , P of the core slices shown in Figure 4-17 are needed. If all core slices from Figure 4-8
are stacked next to each other, then the relevant (truncated) vectors are shown in Figure 4-18
below. In other words, based on the workings of any QR-decomposition procedure only the
QR-decomposition of these fibers is needed.

Figure 4-17: The core slices of the cumulant tensor.

Figure 4-18: The part of the columns of the core slices indicated in blue in Figure 4-17 relevant
for the implicit computation of the QRT procedure for the cumulant tensor.
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Cumulant tensor slice update The second-order sparse tensor TI from definition 4.3 has a
property which is exploited by the implicit QRT method. Using lemma 4.2, it can be stated
that the outer-product of identity matrices remains unchanged when multiplied with the same
orthogonal transformation Q in all modes:

(IP ◦ IP )×1Q×2 Q×3 Q×4 Q =
(
QIP QT

)
◦
(
QIP QT

)
= (IP ◦ IP ) . (4-31)

Lemma 4.2: Identity outer-product transformation

The mode-n product of the outer-product of 2 identity matrices with the matrix M
is equivalent to multiplying the n’th dimension in the outer-product sequence with M:

(IP ◦ IP )×1 M = (MIP ) ◦ (IP ) , (IP ◦ IP )×2 M =
(
IP MT

)
◦ (IP )

(IP ◦ IP )×3 M = (IP ) ◦ (MIP ) , (IP ◦ IP )×4 M = (IP ) ◦
(
IP MT

)
.

(4-32)

The proof of this lemma can be found in C-6.

This proposition remains true for index permutation. So by extension the second-order part TI
of the cumulant tensor from definition (4.3) is invariant under any orthogonal transformation
of the original whitened data Z. This is shown in definition 4.7.

Definition 4.7: Invariant whiteness

The second-order part TI ∈ RP ×P ×P ×P of the cumulant tensor from (4.3) for
whitened data is invariant under any orthogonal transformation QRP ×P of the original
whitened data Z ∈ RP ×I :

QZ → TI ×1 Q×2 Q×3 Q×4 Q = TI

with TI = (IP ) ◦ (IP ) + ((IP ) ◦ (IP ))T σ1 + ((IP ) ◦ (IP ))T σ2

σ1 = [1, 3, 2, 4], σ2 = [1, 4, 3, 2]

(4-33)

From a statistical standpoint definition 4.7 makes sense too as whitened data remains whitened
under any orthogonal transformation. For the implicit version of the algorithm this means
that the mode-n product in all modes with QT can be replaced by QT Z and that afterwards
only the fourth-order moment part M(4) has to be recomputed which results in a minimal
amount of necessary computations. Definition 4.4 shows that the second order part TI consists
during every iteration of only an identity matrix multiplied by 3.
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The implicit QRT algorithm for the cumulant tensor. We combine all of these findings to
form the Implicit QR-Tensor algorithm (QRT) for the cumulant tensor shown in algorithm
3. For completeness the computation of the covariance step C(2)

z is kept. However, due to
whitening this step can be substituted by C(2)

z = IP .

The algorithm contains a convergence error computation such that a certain tolerance can be
specified. The computation of this error is shown later on in the chapter containing numerical
comparisons. The complexities of our algorithm are presented below in property 4.3. The
implicit algorithm circumvents the one-time cost of forming the entire tensor O(IP 4) and the
per iteration intensive mode-n multiplication cost of O(P 5).

Algorithm 3 Implicit QRT for the cumulant tensor
Require: Whitened data: Z ∈ RP ×I , max iterations: Kmax, number of components to

estimate: R, tolerance: tol
1: procedure QR-T(Z, Kmax, R)
2: Qstore = IP

3: while ε > tol or i < Kmax do
4: C(2)

z = 1
I ZZT

5: M = 1
I Z
[
Z(1 : R, :)T

]3
− 3 ·C(2)

z (1 : R, :)
6: Q = QR-decomposition (M)
7: ε = Convergence Error function(Q)
8: Qstore ← QT Qstore

9: Z← QT Z
10: end while
11: Ŝ = Z(0 : R, :)
12: return Ŝ, Qstore

13: end procedure

Property 4.3: Complexities of implicit QRT for the cumulant tensor

Computational complexity The computational complexity of algorithm 3 is dom-
inated by the computation of the tensor fibers M. For a cumulant tensor of size
C(4)

Z ∈ R[4,P ] this cost is O(IRP ) per iteration.

Storage complexity For a cumulant tensor of size C(4)
Z ∈ R[4,P ] the storage complexity

of algorithm 3 is O(P 2).
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4-4 Canonical Polyadic Decomposition

As was mentioned before, a special case of the Tucker decomposition exists where the resulting
core is constrained to be diagonal from definition 2.6 called Canonical Polyadic Decomposition
(CPD). Before CPD and its functionality for ICA are presented, the following tensor rank
concepts related to CPD are explained.

4-4-1 Tensor ranks

Rank-one tensor The concept of a rank-one tensor is easily understood with the definition of
outer-products. Its definition is given below in 4.8 and a visual representation of a third-order
rank-one tensor can be found in Figure 4-19.

Definition 4.8: Rank-one Tensor [28]

A tensor X ∈ RP1×P2×...×PN of order N which can be written as the outer-product
of N vectors is of rank one:

X = x1 ◦ x2 ◦ · · · ◦ xN . (4-34)

Figure 4-19: A 3-way rank-one tensor X which is expressed as a sequence of vector outer
products of the vectors x(1), x(2) and x(3).

Symmetric outer-product A sequence of outer-products of a vector with only itself is defined
as a symmetric outer-product. The symmetric outer-product, or d-way outer product, of a
vector is defined below in definition 4.9 and results in a symmetric rank-one tensor.

Definition 4.9: Symmetric outer-product [53]

The N-way outer-product of a P -dimensional vector x ∈ RP with itself is denoted
as:

x◦N = x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
N times

with
(
x◦N

)
i1...iN

=
N∏

k=1
xik

for i1, . . . , iN ∈ {1, . . . , P}

(4-35)
which results in an N -dimensional symmetric rank-one tensor X ∈ R[N,P ] formed
at the cost of O(IN ).
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Canonical-Polyadic-rank The Canonical-Polyadic-rank (CP-rank) of a tensor extends the
notion of the bi-linear rank of a matrix into multi-linear algebra. It plays an important
role in many tensor decomposition related problems [28][5][30][15] and forms under certain
assumptions the foundation of theorems [36] and procedures [30][53] presented later on. Al-
though seemingly similar, there are some crucial differences between tensor rank and matrix
rank. First of all, finding the CP-rank of a tensor is not as straightforward as for matrices
as it is classified as NP-Hard [76]. Secondly, tensor ranks follow a different set of rules as for
example they can differ over R and C. Moreover, the CP-rank can in fact be greater than the
size of the largest mode.
The CP-rank R of a tensor can be expressed as the minimal amount of rank-one tensors
from definition 4.8 needed to represent the tensor. The definition of the CP-rank is given
below and a graphical representation can be seen in Figure 4-20. Lower and upper bounds
for the CP-rank tensor can be derived depending on the tensors size and order [28]. However,
in practice the CP-rank is estimated numerically by fitting several CP models with varying
ranks R [28].

Definition 4.10: Tensor Canonical-Polyadic rank R [28]

The CP-rank R of a tensor X of order N is the minimum number of rank-one
tensors that when summed up form X [77]:

X =
R∑

r=1
x1,r ◦ x2,r ◦ . . . ◦ xN,r, (4-36)

where xn,r denotes the n’th vector in the r’th outer-product sequence to form the r’th
rank-one tensor from definition 4.8. Computing the CP-rank R of a tensor has been
proven to be an NP-Hard problem [78][76].

Canonical Polyadic decomposition Introduced by Hitchcock [77], Canonical Polyadic de-
composition factorizes a tensor into an estimate of the minimal sum of rank-one tensors from
definition 4.10. Although reintroduced as CANDECOMP (canonical decomposition) by Car-
rol and Chang [79] and later as PARAFAC (parralel factors) by Harshman [80], CPD has
gained a lot of attention over the years in many areas such as signal processing [15][81], deep
neural networks [5] and data analysis [7] due to its unique structure and properties.
The general definition of a weighted CPD is given below together with an illustrated example
of the CPD of a 3-way tensor in Figure 4-20.

Figure 4-20: A 3-way tensor X expressed as a sum of R 3-way rank-one tensors where R is the
CP-rank of the tensor.
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Definition 4.11: Canonical Polyadic Decomposition

The Canonical Polyadic decomposition of a tensor X ∈ RP1×P2×...×PN consists of
R weighted rank-one tensors which when summed up form X :

X ≈ [[diagN (λ); U1, U2, . . . , UN ]] ≡
R∑

r=1
λru1,r ◦ u2,r ◦ . . . ◦ uN,r, (4-37)

where R is the CP-rank of the tensor, λ ∈ RR is a vector consisting of the concatenated
weights and each factor matrix Un =

[
un,1 . . . un,R

]
RPn×R ∀n = 1, . . . , N .

Definition 4.11 shows that CPD is in fact a special case of the Tucker decomposition in which
the core tensor is a diagonal tensor from definition 2.6 with the weights λ on its superdiagonal.
This means that CPD is in fact a diagonalization transformation of a tensor. However, in
order to make use of the multi-linearity property 3.5 of the cumulant tensor such that observed
data can be unmixed, an additional symmetry constraint has to be imposed on the factor
matrices themselves. This introduces the symmetric counterparts of CP-rank and CPD.

Symmetric CP-rank For symmetric tensors there exists a second rank in which the rank-one
tensors are constrained to be symmetric too. This is called the symmetric CP-rank [55][82].
Its definition is presented below in definition 4.12.

Definition 4.12: Symmetric Canonical-Polyadic rank SR [83]

The symmetric CP-rank SR of a symmetric tensor X of order N is the minimum
number of symmetric rank-one tensors that when summed up form X :

X =
SR∑
r=1

x◦N
r . (4-38)

Currently it remains unknown for symmetric tensors if the symmetric rank is always identical
to the CP-rank while both have been proven to always exist [55]. Two of the most challenging
problems concerning these tensor ranks are Strassen’s Conjecture on the additivity of tensor
ranks and Comon’s Conjecture on the equality of the CP-rank and the symmetric CP-rank.
The latter has been proven to hold true for a number of cases [55][82][84], e.g. when the
CP-rank is lower than the mode size. At first hand this seems useful for Blind Source Sep-
aration (BSS) when the problem is considered to be over-determined. However it is covered
later on why these tensor ranks of the cumulant tensor can be misleading and must be used
with caution when consdering ICA.
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Symmetric Canonical Polyadic Decomposition Estimating a decomposition of a symmetric
tensor into the format of its symmetric CP-rank is called symmetric CPD. Its mathematical
definition is given below in definition 4.13. The authors of [85][53] refer to it alternatively
as the Kruskal format due to his work on tensors of this format [86][87]. Identical as with
definition 4.11, the factors are normalized where each scalar λr results from the normalization
of its corresponding factor symmetric N-way outer-product u◦N

r .

Definition 4.13: Symmetric Canonical Polyadic Decomposition

The symmetric Canonical Polyadic decomposition of a symmetric tensor X ∈
R[N,P ] consists of SR weighted and symmetric rank-one tensors which when summed
up form X :

X ≈ [[diagN (λ); U, U, . . . , U]] ≡
SR∑
r=1

λru◦N
r , (4-39)

where SR is the symmetric CP-rank of a symmetric tensor, U =
[

u1 . . . uR

]
∈

RP ×SR is the single factor matrix and λ ∈ RSR are the weighting coefficients of the
factors.

From this point on, whenever CPD, Parallel Factor Analysis (PARAFAC) or any other equiva-
lent decomposition [79] of the cumulant tensor is mentioned, it is assumed that the symmetric
CPD format from definition 4.13 is used. It is explicitly mentioned if else.

Computing the symmetric CPD of the fourth-order cumulant tensor is equivalent to the
diagonalization of its eigenmatrices [36] which is performed by the Joint Approximate Diago-
nalization of Eigenmatrices (JADE) algorithm [23]. Cardoso [51][88] explains that identically
to how a symmetric operator A ∈ RP ×P on a P -dimensional space can be decomposed into P
real eigenvalues and P orthonormal eigenvectors, a symmetric operator on a P 2-dimensional
space can be decomposed into P 2 real eigenvalues and P 2 orthonormal operators which are
called "Eigenmatrices" [51] [21]. Later works [81][36][89] show that CPD of the cumulant
tensor is equivalent to the joint diagonalization of its eigenmatrices which means it too is
identical to a diagonalization transformation of the tensor itself. In a later section we show
how a first-order optimization problem for computing the symmetric CPD of the cumulant
tensor bears a lot of similarity to the earlier presented FastICA.

CPD uniqueness conditions An interesting property of the CPD of a tensor is that it is
unique under the right conditions. First proven by Kruskal [86][87] for the 3-way tensor case
and later on generalized by Sidiropoulos and Bro [90] for the N -dimensional case, a tensor
X ∈ RP1×P2×...×PN is stated to have a unique CPD if the following condition is met:

N∑
n=1

kUn ≥ 2R + (N − 1), (4-40)

where kUn denotes the k-rank of the factor matrix Un and R the tensor rank. The k-rank
of a matrix M is defined as the maximum value k such that any k columns are linearly
independent [86]. In [28] it is shown that the CPD of a tensor is unique up to a scaling and
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a permutation indeterminacy. The exact same indeterminacies of ICA. Important to note is
that a CPD with unitary factors is unique under even milder conditions [91].
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4-4-2 Tensor ranks for ICA and cumulant tensor diagonality

Estimating either the CP-rank or symmetric CP-rank of the cumulant tensor can provide an
indication of the amount of underlying independent components. This can be considered as
the higher-order equivalent of how the covariance matrix rank equals the amount of principal
components. However, in practice the computation of an exact Canonical Polyadic model of a
cumulant tensor is hindered by the approximation of cumulants through k-statistics [60] and
sampling errors present in the data [10]. On top of that, although the statistical independence
assumption in practice delivers good results as for example in functional Magnetic Resonance
Imaging (fMRI) studies [92][39][93][94][40][61], from a practical perspective it is somewhat
unrealistic to assume a perfectly diagonal cumulant tensor and why approximately diagonal
can be considered as good enough.

In this section we first provide insight in the behaviour of the cumulant tensor’s ranks related
to its approximate diagonalization for ICA. By doing so we show how ICA can benefit from
applying HOSVD as a preprocessign step. Afterwards we briefly discuss the constraint of
orthogonality on CPD factor matrices and what its implications are for the rest of our work.

Non-mixed case Consider the following noiseless example consisting of 2 signals s(t) =
[

s1(t)
s2(t)

]
:

a sinusoidal signal s1(t) = sin (2t) and a sawtooth signal s2(t) = 1.2 ·
(
t− 1

2 − ⌊t⌋
)

for a times-
pan of t = [0, 20] seconds which are shown in Figure 4-21. The reader is pointed out that
these signals are not mixed in this example.

Figure 4-21: Two source components of an artificial data set consisting of a sinusoidal signal s1
and a sawtooth signal s2.

Computing the fourth-order cumulant tensor C(4)
s of these non-mixed signals for I = 5e4

samples and stacking its slices as follows yields:

[
C(4)

s (:, :, 1, 1) C(4)
s (:, :, 1, 2)

C(4)
s (:, :, 2, 1) C(4)

s (:, :, 2, 2)

]
=


−3.9e− 1 −8.5e− 3 −8.5e− 3 −6.7e− 4
−8.5e− 3 −6.7e− 4 −6.7e− 4 −5.9e− 4
−8.5e− 3 −6.7e− 4 −6.7e− 4 −5.9e− 4
−6.7e− 4 −5.9e− 4 −5.9e− 4 −1.7e− 2

.

(4-41)

Inspection of the values shows that these signals are not completely statistically independent.
Note that these values represent excess kurtosis from definition 3.4 which means that sign is
trivial. The absolute of the entries on the cumulant tensor’s superdiagonal (blue) are relatively
higher than their neighbouring entries but the off-diagonal entries (black) are not zero. This
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goes to show how latent source components can show some measure of statistical dependence
to each other. This can often be attributed to the similar characteristics these signals have [17]
due to their origin, e.g., being speech patterns or functional brain activity. However, looking
at the ratio of the superdiagonal norm to the entire tensor norm from definition 2.6 for S
after normalization and removing the mean, the value of τD = 0.999 shows that norm-wise
the tensor can be considered as diagonal. All information related to the mean and scale of the
signals is lost due to whitening and the scaling indeterminacy of ICA. It must be noted that
this is the smallest of possible examples with relatively simple signals. For larger problems
we observed that this diagonality tends to be lower.
To some extent this can be related to how the tensor ranks behave as follows. Figure 4-22
shows the relative error εCP = ||Ĉ(4)

s − C(4)
s ||2/||C(4)

s ||2 of the estimated CPD and symmetric
CPD of this cumulant tensor for varying ranks R and SR. Both were computed using the
PARAFAC and symmetric PARAFAC power iteration implementation from Tensorly [95]
with standard settings.

Figure 4-22: CP-rank and symmetric CP-rank estimation for the given 2 source cumulant tensor
for R = SR = {1, . . . , 7}. The left plot shows the relative error ϵ = ||Ĉ(4)

s −C(4)
s ||2

||C(4)
s ||2

on a linear scale
and he right plot shows the error on a logarithmic scale.

CP symmetric CP
Error εCP 3.08478e− 3 3.08483e− 3
Weights λ

[
−0.3875 −0.01734

] [
0.3875 0.01734

]
Factors U1

[ 0.9998 −0.03719
0.02193 −0.9993

] [ 0.9998 0.03719
0.02194 0.9993

]
U2

[ −0.9998 0.03719
−0.02193 0.9993

]
U1

U3
[ −0.9998 0.03719
−0.02193 0.9993

]
U1

U4
[ −0.9998 0.03719
−0.02193 0.9993

]
U1

Table 4-1: Resulting CPD and symmetric CPD estimation of the cumulant tensor for
R = SR = 2. Note that the CPD is essentially identical to the symmetric CPD as all of the
present minuses cancel each other out.

P. Denarié Master of Science Thesis



4-4 Canonical Polyadic Decomposition 69

For this particular example, the figure initially suggests that the symmetric CP-rank and non-
symmetric CP-rank are not estimated to be identical. Looking at the errors on a logarithmic
scale suggests that the non-symmetric rank is ≥ 3 while the symmetric rank is suggested to
be 2 due to the halt in error decrease. However, both seem to have an identical error for
R = SR = 2. Close inspection of the resulting decomposition in Table 4-1 shows that both
methods have found the exact same decomposition.

Note that all of the minuses in the non-symmetric CPD cancel each other out which effectively
makes it a symmetric decomposition. This suggests that the symmetric CP-rank and CP-rank
are identical [55] and are equivalent to the number of source components. The CPD can be
symmetric for different ranks R too but is not equivalent to the symmetric CPD as is the case
for R = SR = 2. The residual error of the symmetric CPD remains pretty much constant
for 3 ≥ SR ≤ 7 which is most likely due to there not existing an exact CPD for this range
of SR. This non-perfect tensor rank matches up with the non perfect diagonality of the
cumulant tensor. While the original tensor is not perfectly diagonal, the symmetric CP-rank
estimation does manage to give a good indication of the amount of independent components
the cumulant tensor represents. This is under the assumption that the problem is not greatly
under-determined N >> P as explained in appendix B-1. Figure 4-23 shows that better
symmetric CPD models can be found by greatly increasing the rank. However, estimating
a greater amount of sources than there are observations present N >> P , rarely produces
reliable results [21][17], hence the assumption.

Figure 4-23: Symmetric CP-rank estimation for the given 2 source cumulant tensor for R =
SR = {1, . . . , 50}. The left plot shows the relative error ϵ = ||Ĉ(4)

s −C(4)
s ||2

||C(4)
s ||2

on a linear scale and
the right plot shows the error on a logarithmic scale.

Mixed case Switching from the non-mixed case to the case where the signals have been
linearly mixed but now whitened, the rank estimation becomes a lot harder. The previously
shown 2 signals are now mixed with a linear mixing model X = AS where the mixing matrix
is sampled from a uniform distribution over [0, 1):

A =
[

0.5508 0.7081
0.2909 0.5108

]
, (4-42)

which results in the following 2 observed mixtures shown in figure 4-24.
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Figure 4-24: Two mixtures x1 and x2 of the original source signals s1 and s1.

The corresponding fourth-order cumulant tensor C(4)
x of these mixtures is given as:

[
C(4)

x (:, :, 1, 1) C(4)
x (:, :, 1, 2)

C(4)
x (:, :, 2, 1) C(4)

x (:, :, 2, 2)

]
=


−4.5e− 2 −2.5e− 2 −2.5e− 2 −1.4e− 2
−2.5e− 2 −1.4e− 2 −1.4e− 2 −7.9e− 3
−2.5e− 2 −1.4e− 2 −1.4e− 2 −7.9e− 3
−1.4e− 2 −7.9e− 3 −7.9e− 3 −4.5e− 2

.

(4-43)

Compared to its unmixed counterpart C(4)
s , the differences between the diagonal and offdi-

agonal entries of the mixture cumulant tensor are a lot smaller. The corresponding measure
of diagonality has now a much lower value of τD = 0.586 which This shows how maximizing
τD, i.e. the diagonal entries entries, can lead to a solution akin to the original source compo-
nents. The decrease in τD signifies the distribution of information previously present on the
superdiagonal now along the offdiagonal entries. This impacts the difficulty of estimating the
tensor rank.

Figure 4-25 shows the relative estimation errors for the observed mixtures. The rank cannot
be estimated anymore as clearly as was the case with the source cumulant tensor. The fact
that the tensor from (4-43) has higher off-diagonal entries makes it harder for the CPD and
symmetric CPD to find a good fit. Looking at the symmetric CP-rank, it is now suggested
that the tensor is of rank 4 instead of 2. On top of that, the CPD and symmetric CPD do
not share a comon solution anymore.

Figure 4-25: CP-rank and symmetric CP-rank estimation for the given 2 observed mixtures
cumulant tensor for R = SR = {1, . . . , 7}. The left plot shows the relative error ϵ = ||Ĉ(4)

s −C(4)
s ||2

||C(4)
s ||2

on a linear scale and the right plot shows the error on a logarithmic scale.
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This example is an extreme simplification of real world BSS problems as it consists of only 2
signals without any noise. On top of that, the solution is already known which introduces a
bias in how results are analysed and evaluated. In real practical problems only the information
related to the mixed case is present. It is for this reason why one should remain skeptical of
any cumulant tensor CP-rank R or symmetric CP-rank SR estimation as it may deviate from
the true number of latent source components. However, the rank estimation problem can to
some extent be simplified through the use of whitening and HOSVD.

Whitening and HOSVD The importance of pre-whitening data for ICA was already ex-
plained in section 3-1-3. Here it is shown how whitening combined with HOSVD can help
even more with simplifying the BSS problem. HOSVD is often used to initialize the estimation
of a CPD so it is natural to consider it for ICA too.

First, the previously shown mixtures x are whitened with an SVD based whitening transfor-
mation W:

z = Wx. (4-44)

and result in the following cumulant tensor:

[
C(4)

z (:, :, 1, 1) C(4)
z (:, :, 1, 2)

C(4)
z (:, :, 2, 1) C(4)

z (:, :, 2, 2)

]
=


−9.1e− 1 −2.9e− 1 −2.9e− 1 −5.7e− 1
−2.9e− 1 −5.7e− 1 −5.7e− 1 1.8e− 1
−2.9e− 1 −5.7e− 1 −5.7e− 1 1.8e− 1
−5.7e− 1 1.8e− 1 1.8e− 1 −6.7e− 1

.

(4-45)

This tensor has a measure of diagonality of τD = 0.588 which has little difference compared
to the non whitened case. However, the benefit of whitening becomes apparent when looking
at the rank estimation shown below in Figure 4-26. The same rank behaviour as with the
source signals is seen here for the symmetric CP-rank which suggests a rank of SR = 2.

Figure 4-26: CP-rank and symmetric CP-rank estimation for the given 2 observed mixtures
cumulant tensor for R = SR = {1, . . . , 7} after whitening. The left plot shows the relative error
ϵ = ||Ĉ(4)

s −C(4)
s ||2

||C(4)
s ||2

on a linear scale and the right plot shows the error on a logarithmic scale.
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On top of that, for R = SR = 2 the CPD and symmetric CPD show again a near identical
relative error. Inspecting the numerical results presented in Table 4-2 shows that the regular
CPD has again resulted in a symmetric format which is near identical to the symmetric CPD.
As was the case with the source signal cumulant tensor, this can be a good indication that
the correct amount of source components have been estimated.

CP symmetric CP
Error εCP 8.495e− 3 8.497e− 3
Weights λ

[
1.504 1.200

] [
−1.200 −1.504

]
Factors U1

[ 0.8472 0.5730
0.5313 −0.8196

] [ −0.5731 0.8472
0.8194 0.5313

]
U2

[ −0.8472 −0.5730
−0.5313 0.8196

]
U1

U3
[ −0.8472 −0.5730
−0.5313 0.8196

]
U1

U4
[ −0.8472 −0.5730
−0.5313 0.8196

]
U1

Table 4-2: Resulting CPD and symmetric CPD estimation of the cumulant tensor for R = SR = 2
for the whitened case z. Note that the CPD is essentially identical to the symmetric CPD as all
of the present minuses cancel each other out.

Figure 4-27: CP-rank and symmetric CP-rank estimation for the given 2 observed mixtures
cumulant tensor for R = SR = {1, . . . , 7} after whitening and applying HOSVD. The left plot
shows the relative error ϵ = ||Ĉ(4)

s −C(4)
s ||2

||C(4)
s ||2

on a linear scale and the right plot shows the error on a
logarithmic scale.

Next the whitened data is additionally transformed using the inverse HOSVD factor ma-
trix U of the cumulant tensor and the multi-linearity property of the cumulant tensor 3.5:
z′ = UT z = UT Wx. Computing the cumulant tensor C(4)

z′ yields the following set of slices:
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[
C(4)

z′ (:, :, 1, 1) C(4)
z′ (:, :, 1, 2)

C(4)
z′ (:, :, 2, 1) C(4)

z′ (:, :, 2, 2)

]
=


−1.5 1.2e− 1 1.2e− 1 −3.9e− 2

1.2e− 1 −3.9e− 2 −3.9e− 2 −1.5e− 1
1.2e− 1 −3.9e− 2 −3.9e− 2 −1.5e− 1
−3.9e− 2 −1.5e− 1 −1.5e− 1 −1.2

.

(4-46)

which have a measure of diagonality of τD = 0.977. The results show that HOSVD has
made the tensor more diagonal compared to the observed mixtures cumulant tensor. The
corresponding symmetric CP-rank estimation errors shown in Figure 4-27 show no difference.

The benefit of applying HOSVD on this example can be seen when looking at the transformed
mixtures. Figure 4-28 show the signals after only whitening and Figure 4-29 after whitening
and HOSVD. The latter shows that whitening of the data combined with the HOSVD of the
cumulant tensor has managed to unmix the source signals adequately, hence the high value
for τD.

Figure 4-28: Two mixtures x1 and x2 of the original source signals s1 and s1 after whitening.

Figure 4-29: Two mixtures x1 and x2 of the original source signals s1 and s1 after whitening
and applying HOSVD.

It is pointed out that the presented example is extremely simple and more often than not
HOSVD will fail to unmix the data as was mentioned before. Moreover, the results from this
example cannot be generalized to all cases. However, it does illustrate estimating the rank
of the cumulant tensor can benefit from applying both whitening and HOSVD. This is not
restriced to only CPD but is applicable in general for ICA methods. The pre-processing step
of applying the HOSVD on the cumulant tensor after whitening is shown below in definition
4.14.
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Definition 4.14: HOSVD pre-processing

HOSVD pre-processing consists of applying the inverse factor matrix of fourth-order
cumulant tensor C(4)

z HOSVD:

C(4)
z = C(4)

z′ ×1 U×2 U×3 U×4 U (4-47)

on a whitened random vector z ∈ RP :

z′ = UT z = UT Wx. (4-48)

where W is the whitening transformation. Due to U being orthogonal the transformed
vector z′ keeps the whitened property from whitened vector z.

Canonical polyadic decomposition and orthogonality We have deliberately avoided the
topic of the orthogonality of the factor matrices up to this point to not further complicate
the introduction of CPD and symmetric CPD. Most CPD computation methods such as
Alternating Least Squares (ALS) or Non-linear Least Squares (NLS) do not produce orthogo-
nal factor matrices. The effects of having a (semi-)orthogonal constraint on the factor matrices
or some of the factor matrices was extensively studied by the authors of [91]. They estab-
lished that the uniqueness of a CPD with at least one (semi-)orthogonal factor can be proven
under even milder conditions than was shown in the previous paragraph. On top of that,
the authors propose an Orthogonally-constraint-Alternating-Least-Squares (OALS) method
to compute such a decomposition. After pointing out the weaknesses of the OALS method
the authors of [96] propose a different scheme based on the probabilistic inference framework.

Considering these methods for ICA solves the problem of having no orthogonality of the factor
matrices but introduces several others. First of all, pointed out by the authors of [96] OALS
is not a robust method. On top of that, it requires knowledge on the rank of the tensor a
priori as the rank is used to structure the problem. The probabilistic inference method from
[96] presents a key issue too. Namely that the resulting factor matrices are not guaranteed to
be identical and hence there is no guarantee a symmetric CPD is computed. By no guarantee
it is meant that there is a probability of computing a symmetric CPD similarly to how the
CPD presented in Table 4-1 and Table 4-2 resulted in a symmetric CPD by appropriate tensor
rank choice.

Nevertheless, needing to have a priori knowledge on the cumulant tensor’s rank or possibly
breaking the symmetry of the cumulant tensor and abusing the multi-linearity property 3.5 of
the cumulant tensor are not considered as desirable compromises for the formulation of a CPD
based ICA algorithm. We do somewhat contradict this statement as the implicit Generalized
EigenValue Decomposition (GEVD) based CPD algorithm presented in the following section
breaks symmetry and does not result in all orthogonal factor matrices. However, we opted to
proceed with the implicit GEVD based algorithm as its explicit counterpart is often used for
finding reliably good initial estimates of a CPD due to it being a deterministic method.
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4-4-3 Computing the Canonical Polyadic decomposition

Typical approaches to obtaining a CPD are through ALS [79][80] or NLS [97][98]. However,
the former is known to not be accurate in the case when over-estimating the tensor CP-rank
R and the latter is relatively much slower due to the much higher per iteration computa-
tional cost. On top of that, the quality of the solution of both methods is sensitive to what
values are used for initialization. For these reasons we present three devised algorithms for
computing the CPD of the cumulant tensor in implicit fashion. First a deterministic ap-
proach which is derived from an already existing method commonly used for initialization of
CPD algorithms [99]. Secondly, a relatively simple first-order gradient approach and lastly a
fixed-point iteration which both surprisingly bear a lot of similarity to FastICA.

4-4-4 CPD through generalized eigenvalue decomposition

Here we present our deterministic algorithm for computing the CPD of a cumulant tensor
implicitly. The algorithm is based on the trilinear decomposition method from [99] which
uses generalized eigenvalue decomposition to find the factors of a 3-way tensor. Our implicit
Canonical-Polyadic-Generalized-Eigenvalue-decomposition (CP-GEVD) is presented below in
algorithm 4 and its workings are explained in the following paragraphs.

Algorithm 4 Implicit CP-GEVD

Require: Whitened data: Z =
[

zT
1 zT

2 . . . zT
P

]T
∈ R1P ×I , Rank: R

1: procedure Implicit CPD-GEVD(Z)
2: UP ← ImplicitHOSVD(Z), From ImplicitHOSVD(Z) save: Mij∀i = j = {1, . . . , R}
3: G1 = UT

P M11, G2 = UT
P M22

4: GEVD of pencil: (G1, G2)→ λ, Veig
5: Cast imaginary part of second in complex conjugate pair as new part:
6: Re(λi) ∈ R,Re(veig,i) ∈ RP → λi, veig,i ∀i ∈ Scomplexpairs(i,j)
7: Im(λj) ∈ C, Im(veig,j) ∈ CP → λj , veig,j ∀j ∈ Scomplexpairs(i,j)
8: Inwards projection
9: X = [M11, . . . , MRR]

10: for r = 1, . . . , R do
11: vT

r ← SVD
(
V−1

eigUT
P Mrr

)
keep first right orthogonal vector

12: end for
13: Ui

out = [v1, . . . , vr] ∀i ∈ {2, . . . , 4}

14: K =
[([

U2
out (1, :)

]2 ⊙U2
out

)T
, . . . ,

([
U2

out (R, :)
]2 ⊙U2

out

)T
]T

15: U1
out = X

(
KT

)†

16: for r = 1, . . . , R do
17: Ui

out(:, r)← Ui
out(:,r)

||Ui
out(:,r)||22

, λr = ||U1
out(:, r)||22 · . . . · ||UN

out(:, r)||22 ∀i = {1, 2, . . . , 4}
18: end for
19: return [[λ; U1

out, . . . , UN
out]]

20: end procedure
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It is important to note that this algorithm does not produce a symmetric CPD due to U1
out

being different.

Generalized Eigenvalue Decomposition After applying implicit HOSVD on the cumulant
tensor the first step in the CP-GEVD algorithm is the GEVD of the matrix pencil (G1, G2).
The definition of GEVD is shown below in definition 4.15.

Definition 4.15: Generalized Eigenvalue problem

The generalized eigenvalue problem is the problem of finding a nonzero vector v for
which the following equality holds true for 2 equally shaped square matrices A and B:

Av = λBv. (4-49)

Any such vector v for which the above holds true is called a generalized eigenvector
The scalar λ is its corresponding generalized eigenvalue for which the following must
hold true:

det(A− λB) = 0. (4-50)

In [99] it is explained that by finding all generalized eigenvectors of the two frontal slices
of a 3-tensor X ∈ RP ×P ×2 its CPD can be computed directly and algebraically. For 3-way
tensors that have more than 2 frontal slices or that have more than 3 modes the method can
be used to compute an approximation of the CPD factors. Several methods are suggested for
the selection of used slices but the main proposed method is to use HOSVD on the tensor
and take the first two front most slices as they contain the principal components with largest
variances. This means that for a tensor with the indices (p1, p2, p3, . . . , pN−1, pN ) its slices at
(:, :, 1, . . . , 1, 1) and (:, :, 1, . . . , 1, 2) are taken.

For the higher-order whitened cumulant tensor C(4)
z′ (p1, p2, p3, p4) this amounts to selecting

the slices C(4)
z′ (:, :, 1, 1) and C(4)

z′ (:, :, 1, 2). However, we propose a different selection criterion.
Due to symmetry many of the cumulant tensor’s slices show partial symmetry to another.
This holds true too for C(4)

z′ (:, :, 1, 2) compared to C(4)
z′ (:, :, 1, 1). The point is to compute the

GEVD with as much information as possible as this will maximize the probability of finding
a good CPD estimation. So instead of C(4)

z′ (:, :, 1, 2) as G2, the slice C(4)
z′ (:, :, 2, 2) is chosen

for G2 as this slices contains more unique information when compared to C(4)
z′ (:, :, 1, 1) . The

shared amount of unique values these slices have is shown in table Table 4-3.

C(4)
z′ (:, :, 1, 2) C(4)

z′ (:, :, 2, 2)

C(4)
z′ (:, :, 1, 1) P 2 + (P − 2) P 2 + (P − 1)

Table 4-3: Table showing the amount of unique values the slices on the top have together with
slice C(4)

z′ (:, :, 1, 1) for a higher-order whitened cumulant tensor of size C(4)
z′ ∈ R[4,P ].

For the computation of the slices G1 = C(4)
z′ (:, :, 1, 1) and G2 = C(4)

z′ (:, :, 2, 2) the regular cumu-
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lant tensor slices C(4)
z (:, :, 1, 1) and C(4)

z (:, :, 2, 2) computed during the previous implicit HOSVD
step and are multiplied from the left with UT . All slices C(4)

z (:, :, r, r) ∀r = 1, 2, . . . , R are
stored as they are needed for the following inwards projection step. The slices are denoted in
algorithm 4 as Mii∀i = 1, 2, . . . , R.

Casting complex conjugates In the case that the GEVD produces eigenvalue-eigenvector
pairs which are complex conjugates of each others these must be cast to being only real
vectors. The reason behind this is that real valued signals produce real cumulant values.
The used independenc solution of the BSS problem is defined as diagonalizing the cumulant
tensor in its original space. For ICA with real valued variables this means that cumulant
tensor must be diagonalized in real space R[4,P ]. As complex signals are not considered in
this thesis, any complex conjugate eigen-pairs from the GEVD must be dealt with. However,
this cannot simply be done by discarding the imaginary part of such eigen-pairs. This will
result in duplicate eigenvectors veig which means that not all columns of Veig are linearly
independent and hence do not represent separate components. Instead, for each complex
conjugate eigen-pair (i, j) in the set of complex conjugate eigen-pairs Scomplexpairs, one of the
eigen-pairs is set to only its real part and the other eigen-pair to only its imaginary part
casted as real:

Re(λi) ∈ R,Re(veig,i) ∈ RP → λi, veig,i ∀i ∈ Scomplexpairs(i,j)

Im(λj) ∈ C, Im(veig,j) ∈ CP → λj , veig,j ∀j ∈ Scomplexpairs(i,j).

(4-51)

This ensures that the columns of Veig are at the very least different from each other. The
casting of complex conjugate eigen-pairs in such a fashion is done too in other Eigen-Value-
Decomposition (EVD) based ICA algorithms [100][17] for the same reasons when considering
real valued signals.

Inwards projection As the name suggests, the inwards projection step consists of projecting
the transformed tensor inwards which results in the final factor matrix U1

out. This step is in
fact the least squares solution of the best fitting final factor matrix. In algorithm 4 this is
performed in lines 7 to 13. The authors of [99] use the entire tensor in this step which for
the cumulant tensor is impractical. The objective here is to bypass forming the entire tensor.
In order to so, we only use the previously stored slices C(4)

z (:, :, r, r) ∀r = 1, 2, . . . , R. These
are the R first core slices from definition 4.5. Each r’th core slice contains the self-cumulants
cum(zr, zr, zr, zr) of the r’th variable in the random vector z =

[
z1 z2 . . . zP

]T
which

are the values on the cumulant tensor superdiagonal. On top of that, the slice contains all
of the cross-cumulants cum(zr, zr, zi, zj) ∀i, j = 1, 2, . . . , P closest to zr which contain the
most information about how zr is related to the other z’s. It is for these reasons why the core
slices are considered as a suitable sub-selection for the inwards projection step.

Each core slice’s HOSVD counterpart C(4)
z′ (:, :, r, r) ∀r = 1, 2, . . . , R from definition 4.14 is

transformed using the inverse of the found generalized eigenvectors Veig. From this trans-
formed slice its first principal component is taken as the first right orthogonal vector through
its SVD:
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vT
r

SV D←−−−−−−−−−−
F irstcomponent

V−1
eigC

(4)
z′ (:, :, r, r) = V−1

eigUT
PC

(4)
z (:, :, r, r), (4-52)

which contains the largest part of information of that slice and hopefully, contains most
information relevant to the source component sr.

The final step is the actual inwards projection. In [99] it is shown that this can be done in
the least squares sense by projecting the original tensor inwards using the inverse estimated
factor matrices Ui∀i = 2, 3, 4. In matricized format this amounts to multiplying the mode-1
matricization of the original tensor T with the pseudo-inverse of a transposed Khatri-Rao
product of the factor matrices:

U1
out = T(1)

(
KT

)†
, with K =

[
U2

out ⊙U3
out ⊙U4

out

]
. (4-53)

In our algorithm 4 only the ’core’ slices are used so only the corresponding columns of K
are needed. These columns have the same index behaviour as the cumulant tensor as was
presented in lemma 4.1 so at the indices K(:, rP 2 + rP + 1 : rP 2 + rP + P ) ∀r = 2, . . . , 4.
Instead of selecting these columns they can be computed directly as:

K =

 U2
out (1, :) ∗U3

out (1, :)⊙U4
out

...
U2

out (R, :) ∗U3
out (R, :)⊙U4

out

 =


[
U2

out (1, :)
]2 ⊙U2

out
...[

U2
out (R, :)

]2 ⊙U2
out

 (4-54)

where the rightmost equivalence is thanks to U2
out = U3

out = U4
out. After the inwards projec-

tion the final step is normalizing the corresponding factors and storing the resulting scalar
values into λ.

Complexities The time complexity and storage complexity of algorithm 4 are listed down
below in property 4.4. The algorithm from [99] has a dominant computational cost of O(P 5).
On top of that, the cost of computing the cumulant tensor O(IP 4) itself has to be factored
in too.

The dominant computational costs of our algorithm 4 are the implicit HOSVD step:
O(1

2IP 4) + O(P 5(log(P )2)) and the inwards projection step: O(RP 4) which amounts to a
total of O(1

2IP 4) + P 5(log(P )2) + RP 4).

Comparing this total cost with that of the original cost of O(IP 4 + P 5) shows that our
algorithm 4 scales worse with P than the algorithm from [99] due to the logarithmic term.
Additionally this does comes at the loss of not using all information of the cumulant tensor
as the implicit CPD method only uses a selection of the cumulant tensor matrices whereas
[99] uses the entire tensor. The storage complexity however has been reduced from O(P 4)
to O(RP 2). This effectively means that theoretically there has been a trade-off between
computational speed and storage requirement.
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Property 4.4: CPD-GEVD complexities

Computational complexity The computational complexity of the implicit CP-GEVD
algorithm is dominated by the cost of the HOSVD-iter operation and the inwards
projection: O(1

2IP 4 + P 5(log(P )2) + RP 4).

Storage complexity The storage complexity of the implicit CP-GEVD algorithm is
dominated by the R tensor slices that have to be stored at a cost of O(RP 2).

U-Implicit CP-GEVD and C-Implicit CP-GEVD The implicit CP-GEVD allows for a U -
type and C -type variant as well depending on the type of implicit HOSVD algorithm used.
In both cases the dominant computational complexity changes to that of the specific implicit
HOSVD version used + the inwards projection step O(RP 4). Note that where the full implicit
HOSVD produced an identical result as the explicit HOSVD, the implicit GEVD method does
not produce the same result as its explicit counterpart. This is due to the smaller approximate
inwards projection step. The original CP-GEVD algorithm from [99] can be found in appendix
C-7.

In the coming section we present a different method of computing the CPD of the cumulant
tensor implicitly.
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4-4-5 CPD through first-order optimization

In [101][102] the CPD of the cumulant tensor is reduced to a single step least-squares opti-
mization process by exploiting its symmetry. Alternatively, the authors of [103] propose a
first-order optimization method for the CPD of any tensor which is shown to be more accu-
rate than ALS while keeping the per iteration cost near identical to that of ALS. Inspired by
this method, Kolda shows in [104] how the first-order method can be used for more efficient
computation of the CPD of symmetric tensors.

First order optimization problem

The base optimization problem Kolda describes in [104] is given below in definition 4.16.
The least-squares approach of computing the CPD of a symmetric tensor is solved with a
gradient-based approach. The gradients of the weights λr and the factor vectors ur can be
computed as shown due to the symmetry of the tensor X .

Definition 4.16: First-order optimization for symmetric CPD [104]

In order to obtain the rank-R CPD of a symmetric tensor X ∈ R[N,P ] as defined in
4.13, the following non-convex optimization problem needs to be solved:

min
λ,U

f(λ, U) ≡ ∥X − X̂∥2 s.t. X̂ ≡
R∑

r=1
λru◦N

r , (4-55)

with U ∈ RP ×R and λ ∈ RR.
From [103], the gradients of this problem are defined as:

∂f

∂λr
= −2

[
XuN

r −
R∑

k=1
λk ⟨ur, uk⟩N

]
and (4-56)

∂f

∂ur
= −2Nλr

[
XuN−1

r −
R∑

k=1
λk ⟨ur, uk⟩N−1 uk

]
(4-57)

where XuN
r and XuN−1

r denote the TTSV operation defined in 2.16 for all modes
and all modes but one. With these gradients the optimization problem can be solved
using a first-order optimization method. The TTSV operations dominate the cost of
computing the gradients at a cost of O(RP N ).

A recent work by Sherman and Kolda [53] expands Kolda’s first-order optimization CPD
method for symmetric tensors from definition 4.16 to Higher Order Statistics (HOS) moment
tensors. It presents how the first-order optimization problem can be rewritten such that
higher-order moment tensors never have to be explicitly formed in order to compute their
CPD. It primarily exploits the outer-product from definition 4.9 with which such tensors are
created. More specifically, the algorithm exploits the fact that for a random vector x ∈ RP

with I samples, the N ’th empirical moment tensor M(d)
x can be expressed as the sum of I

rank-one tensors:
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M(N)
x = 1

I
·
(

I∑
l=1

x(ℓ)◦N

)
, (4-58)

where x(ℓ) denotes the ℓ’th sample of the random vector x. However, Sherman and Kolda do
not show how their method can be used for the fourth-order cumulant tensor. Due to the ad-
ditional outer-product of second order terms, shown below in definition 4.17, the computation
of the gradient and cost function becomes more complex.

Definition 4.17: Fourth-order cumulant tensor full expression

The fourth-order cumulant tensor for a zero-mean random vector x ∈ RP with I
samples in its full tensor form is expressed as:

C(4)
x =M(4)

x −C(2)
x ◦C(2)

x −
(
C(2)

x ◦C(2)
x
)T σ1

−
(
C(2)

x ◦C(2)
x
)T σ2

with σ1 = {1, 3, 2, 4}, σ2 = {1, 4, 3, 2}
(4-59)

where the fourth order moment tensor M(4)
x and the covariance matrix C(2)

x are com-
puted using the elementwise operations defined in 3-20.

Before we present our final algorithm for the first-order CPD optimization of the cumulant
tensor, we present the derivation of the gradients. Furthermore, we present the final expression
for the computation of the cost function. This is done for the zero-mean non-whitened case
after which it is simplified even further for the whitened data case.

Computing the gradients implicitly We rewrite the elementwise operations for the fourth-
order moment tensor and second-order moment tensors from 3-20 as summations of symmetric
outer-products as follows:

M(4)
x = E

[
x⊗4

]
= 1

I
·
(

I∑
l=1

x(ℓ)⊗4
)

C(2)
x = E

[
x⊗2

]
= 1

I
·
(

I∑
l=1

x(ℓ)⊗2
)

,

(4-60)

where x(ℓ) denotes the ℓ’th sample of the zero-mean random vector x. Using definition 4.17
the full cumulant tensor can be expressed as the following series of symmetric outer-product
summations:

C(4) =1
I

I∑
ℓ=1

x(ℓ)◦4 − 1
I2

(
I∑

ℓ=1
x(ℓ)◦2

)
◦
(

I∑
k=1

x(k)◦2
)

− 1
I2

((
I∑

ℓ=1
x(ℓ)◦2

)
◦
(

I∑
k=1

x(k)◦2
))T σ={1,3,2,4}

− 1
I2

((
I∑

ℓ=1
x(ℓ)◦2

)
◦
(

I∑
k=1

x(k)◦2
))T σ={1,4,3,2}

(4-61)
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Using equation (4-58), lemma 4.3 and lemma 4.4 we rewrite the TTSV operation of the
gradient (C-49) for the moment tensor part as follows:

M(4)
x u3

r = 1
I

I∑
ℓ=1

(
x(ℓ)◦3

)
u3 = 1

I

I∑
ℓ=1
⟨x(ℓ), u⟩3 x(ℓ). (4-62)

Lemma 4.3: [53]

Let a,b ∈ RP . Then the inner-product of the N -way symmetric rank-one tensors
constructed from the vectors satisfies:〈

a◦N , b◦N
〉

= ⟨a, b⟩N . (4-63)

Lemma 4.4: [53]

Let a,b ∈ RP . Let X ∈ R[N,P ] be the symmetric rank-one tensor defined by X = b◦N .
Then the TTSV in all modes but one of tensor X with the vector a satisfies:

XaN−1 = ⟨a, b⟩N−1b. (4-64)

Furthermore, the TTSV in all modes satisfies:

XaN = ⟨a, b⟩N . (4-65)

Lemma 4.5: [53]

Using the symmetric outer-product definition 4.9 and the elementwise power op-
eration from definition 2.9. Let X = 1

I

∑I
ℓ=1 x◦N

ℓ ∈ R[N,P ] and u ∈ RP ,
X =

[
x1 x2 . . . xI

]
∈ RP ×I . Then XuN−1 = 1

I X
[
XT u

]N−1
.

By defining a matrix Y ∈ RP ×R of which each column yr = yM
r −yC

r ∈ RP for r ∈ {1, . . . , R}
represents a separate TTSV operation for ur, we compute each subpart yM

r containing the
moment tensor with lemma 4.5 as follows:

yM
r =M(4)

x u3
r = 1

I
X
[
XT ur

]3
∀r = {1, 2, . . . , R}. (4-66)

Close inspection shows that the outer-product of the second-order cumulant tensor with itself
from equation (4-61) is identical to:(

I∑
ℓ=1

x◦2
ℓ

)
◦
(

I∑
k=1

x◦2
k

)
=

I∑
ℓ=1

I∑
k=1

x◦2
ℓ ◦ x◦2

k . (4-67)
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Lemma 4.6:

Given the following sequence of vector outer-products:

x1 ◦ x2 ◦ x3 ◦ x4. (4-68)

The index permutation from definition 2.4 of this sequence is identical to the permu-
tation of the order of the vectors. For example with σ = {1, 3, 2, 4}:

(x1 ◦ x2 ◦ x3 ◦ x4)T σ = x1 ◦ x3 ◦ x2 ◦ x4. (4-69)

Using lemma 4.6, we rewrite the tensor transposes of (4-67) as:

((
I∑

ℓ=1
x◦2

ℓ

)
◦
(

I∑
k=1

x◦2
k

))T σ={1,3,2,4}

=
I∑

ℓ=1

I∑
k=1

xℓ ◦ xk ◦ xℓ ◦ xk

((
I∑

ℓ=1
x(ℓ)◦2

)
◦
(

I∑
k=1

x(k)◦2
))T σ={1,4,3,2}

=
I∑

ℓ=1

I∑
k=1

x(ℓ) ◦ x(k) ◦ x(k) ◦ x(ℓ)

(4-70)

Combining equations (4-61), (4-67) and (4-70), the computation of the TTSV of all modes
but one C(4)

x u3
r for the part yC

r is rewritten into the following split TTSV expression:

yC
r =

[
1
I2

I∑
ℓ=1

I∑
k=1

x◦2
ℓ ◦ x◦2

k

]
u3

r

+
[

1
I2

I∑
ℓ=1

I∑
k=1

xℓ ◦ xk ◦ xℓ ◦ xk

]
u3

r

+
[

1
I2

I∑
ℓ=1

I∑
k=1

xℓ ◦ xk ◦ xk ◦ xℓ

]
u3

r .

(4-71)

Finally, using lemmas 4.4, 4.7 and 4.8 we can simplify the TTSV further as:

yC
r = 3 1

I2

(
uT

r XXT ur

)
XXT ur (4-72)

Lemma 4.7:

Let X =
[

x(1) x(2) . . . x(I)
]
∈ RP ×I , u ∈ RP and let S4 be the set consisting

of all permutations of S = {1, 2, 3, 4}. Then for any permutation σ ∈ S it holds that:( I∑
ℓ=1

I∑
k=1

xℓ ◦ xk ◦ xℓ ◦ x(k)
)T σ

u3 =
I∑

ℓ=1

I∑
k=1
⟨xℓ, u⟩2 ⟨xk, u⟩xk. (4-73)
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Lemma 4.8:

Let X =
[

x1 x2 . . . xI

]
∈ RP ×I and u ∈ RP .

Then:
I∑

ℓ=1

I∑
k=1
⟨xℓ, u⟩2 ⟨xk, u⟩xk =

(
uT XXT u

)
XXT u. (4-74)

The TTSV of the gradient of λr is computed by taking the inner-product of yR and ur. For
completeness up to this point the gradients are computed for the non-whitened case which
contains the whitened case too. For explicitly the whitened case, we simplify the TTSV
operations of the gradients even further as follows:

yC
r =

[
IP ◦ IP + (IP ◦ IP )T σ1 + (IP ◦ IP )T σ2

]
u3

r

with σ1 = [1, 3, 2, 4], σ2 = [1, 4, 3, 2]
(4-75)

yC
r = 3 [IP ◦ IP ] u3

r = 3 ⟨ur, ur⟩ · ur (4-76)

This results in the final gradients presented in definition 4.18 down below.

Definition 4.18: Gradients first-order CPD cumulant tensor problem

The gradients of the first-order optimization problem from definition 4.16 for the
cumulant tensor C(4) of non-whitened data X are defined as:

∂f

∂λr
= −2

[
yT

r ur −
R∑

k=1
λk ⟨ur, uk⟩4

]
and (4-77)

∂f

∂ur
= −2 · 4λr

[
yr −

R∑
k=1

λk ⟨ur, uk⟩3 uk

]
, (4-78)

with each yr ∈ RP for r ∈ {1, . . . , R} is defined as

yr = C(4)u3
r = 1

I
X
[
XT ur

]3
− 3 1

I2

(
aT

r ar

)
Xar with ar = XT ur. (4-79)

By first computing ar separately, the dominant computational cost of equation (4-79)
remains O(IP ). The derivation for this can be found in appendix C-9.

For whitened data Z ∈ RP ×I the computation of each TTSV operation yr is simplified
as:

yr = C(4)u3
r = 1

I
Z
[
ZT ur

]3
− 3 ⟨ur, ur⟩ · ur. (4-80)

Comparing the result from equation 4-79 for the cumulant tensor with that of Sherman
and Kolda’s fourth-order moment tensor from equation4-66, shows that the computation of
each vector yr has gained the additional term: −3 1

I2

(
aT

r ar

)
Xar with ar = XT ur. The
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additional computational cost of this term is O (2IP + I) per vector yr which amounts to
a total additional cost of O (R · (2IP + I)). This shows that the implicit version reduces
the R amount of TTSV operations of the cumulant tensor from O(RP 4) to O(IPR) while
simultaneously avoiding the O(IP 4) cost of forming the tensor. The storage complexity of
the implicit case is O(PR) for both the outputs and intermediaries.
For completeness the computation for λr is kept while due to the scaling indeterminacy of ICA
it can effectively be discarded. Only its sign is relevant. Alternatively, the computation of λr

can be considered as a normalization step during each iteration when solving the first-order
optimization problem. However, discarding λ as a variable from the optimization problem
may cause overflow of underflow issues in the computation of the vectors ur. On top of that,
keeping λ ensures that no sign functions are needed as is the case with the fastICA gradient.

Computing the cost function The written out cost function from definition 4.16 for the
cumulant tensor is presented below in definition 4.19. As ∥C(4)

x ∥2 is a constant, it can be
essentially left-out of the algorithm. Sherman and Kolda [53] propose to replace ∥C(4)

x ∥2 by
adding an additional parameter α to their method. The reason being that for tensors of large
size (P >> 2) one wants to avoid ever computing the tensor. Any estimate of the tensor
inner product or arbitrary large enough value for α which keeps the cost positive will suffice.
The decrease in cost is of interest which is of course relative. However, for completeness we
keep the computation of ∥C(4)

x ∥2 here.

Definition 4.19: Function first-order CPD cumulant tensor problem

The cost function from 4.16 for a zero-mean random variable x ∈ RP with I samples
equals:

∥C(4)
x − Ĉ(4)

x ∥2 = ∥C(4)
x ∥2 + ∥Ĉ(4)

x ∥2 − 2⟨C(4)
x , Ĉ(4)

x ⟩. (4-81)

By defining the vector vI =
[

1
I . . . 1

I

]T
∈ RI equation (4-81) for the cumulant

tensor can be completely written out into:

∥C(4)
x ∥2 =vT

I

[
XT X

]4
vI − 6 · vT

I

[
XT X

]2
diag2(vI)

[
XT X

]2
vI

+ 3 ·
[
vT

I

[
XT X

]2
vI

]2
+ 6 · vT

I

[
XT X diag2(vI)XT X

]2
vI

∥Ĉ(4)
x ∥2 = λT

[
UT U

]4
λ

⟨C(4)
x , Ĉ(4)

x ⟩ = vT
I

[
XT U

]4
λ− 3 · vT

I

[[
XT U

]2
diag2(λ)

[
UT X

]]2
vI .

(4-82)

The full derivation of the cost function can be found in appendix C-10.

The algorithm Our final algorithm for computing the gradients and cost of the first-order
optimization problem for the cumulant tensor is presented below. It contains several addi-
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tional steps which speed up the process by eliminating duplicate operations such B = UT U
and C = [U]3. The algorithm computes the gradients and cost of the optimization problem.
As such it can be used with any first-order solver in Matlab or Python. The complexities of
the algorithm we derived are given in property 4.5.

Algorithm 5 Implicit computation of cumulant tensor CPD gradients
Require: I,Z,U,λ,α

1: procedure Implicit computation(I,X,λ,U,α,R)
2: for r = 1, . . . , R do
3: ar = XT ur

4: yr = 1
I X

[
XT ur

]3
− 3 1

I2

(
aT

r ar

)
Xar

5: wr = uT
r yr

6: end for
7: B = UT U
8: C = [B]3
9: v = (B ∗C) λ

10: f = α + λT v− 2wT λ
11: gλ = −2(w− v)
12: GU = −8(Y−UDλC)Dλ

13: return f, gλ, GU
14: end procedure

Property 4.5: Complexities of Implicit CPD gradient method

Computational complexity The dominant computational complexity for computing
the gradients with algorithm 5 is O(IRP ).

Storage complexity The storage complexity of the implicit CPD algorithm is O(RP ).

Important to note is that in our base optimization problem the factor matrix U is not con-
strained to be orthogonal. We discuss this in the following section where the gradients are
compared with that of fastICA.
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Comparison of implicit CPD with FastICA

By comparing implicit CPD with FastICA for whitened data Z ∈ RP ×I we make several key
observations.

First of all, both gradients can be used for ICA to estimate a single column of U which
amounts to estimating a single source component. However, both optimization problems have
no orthogonality constraints so estimating all columns of U simultaneously will result in a non-
orthogonal result. As the whitened ICA solution is defined to be an orthogonal transformation,
the found result will not be a proper solution. Hyvärinen clearly mentions in [33] and [21]
that in order to estimate all components simultaneously with the gradient of fastICA (3-37),
each iteration of the estimate U must be symmetrically orthogonalized. This ensures that the
whiteness and the orthogonality of the solution is maintained. This implies that symmetric
orthogonalization is needed if the implicit CPD gradient of equation (C-49) is to be used
for ICA. Definition 4.20 presents one such symmetric orthogonalization scheme based on
eigenvalue decomposition. The name symmetric is somewhat misleading as the resulting
matrix is not specifically made symmetric. Symmetric refers to the fact that all columns of
the matrix U ∈ RP ×R are treated equally. It is sufficient to find any orthogonal basis for
the subspace spanned by the original columns. As a result, after symmetric orthgonalization
UT U = IP ∈ RP ×P .

Definition 4.20: Symmetric orthogonalization [21]

A matrix U ∈ RP ×R can be symmetrically orthogonalized as:

U←
(
UUT

)−1/2
U (4-83)

where the the inverse square root of UUT is obtained through its eigendecomposition:(
UUT

)−1/2
= E diag

(
d

−1/2
1 , . . . , d

−1/2
R

)
ET , (4-84)

where E ∈ RP ×P contains the left eigenvectors and di ∀i = 1, . . . , R are the corre-
sponding eigenvalues.

Secondly, when estimating all components simultaneously with a symmetric orthogonalization
method in place, both gradients are simplified even further due to orthogonality:

FastICA: ∂f

∂ui
= 4 · sign(kurt(uT

i Z)) ·
[1

I
Z
[
ZT ui

]3
− 3ui

]
. (4-85)

Implicit CPD: ∂f

∂ur
= −2 · λr · 4 ·

[1
I

Z
[
ZT ur

]3
− 3ur − λr · ur

]
and

∂f

∂λr
= −2

[1
I

Z
[
uT

r ZT ur

]3
− 3− λr

] (4-86)

Recall that excess kurtosis is defined in 3.4 as the departure from a Gaussian distribution.
For the whitened case this departure is computed by subtracting the kurtosis of a Gaussian
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distribution which is always of value 3. This is where the −3ui term from gradient (4-85)
originates from. Looking at the simplified gradients from equation (4-86) and rearranging the
right-hand sides as

∂f

∂ur
= −2 · λr · 4 ·

[1
I

Z
[
ZT ur

]3
− (3 + λr) · ur

]
,

∂f

∂λr
= −2

[1
I

uT
r Z

[
ZT ur

]3
− (3 + λr)

]
(4-87)

results in a slightly different departure of (3 + λr). This departure of (3 + λ) ensures that
the gradients of (4-87) point in the direction of a locally best fitting CPD model whereas
fastICA’s departure points in the direction of least-Gaussianity. (4-87) can be interpreted as
fastICA with a CPD constraint.

P. Denarié Master of Science Thesis



4-4 Canonical Polyadic Decomposition 89

Implicit CPD as a fixed-point iteration Due to the similarity the gradient of implicit CPD
has with that of fastICA it is logical to ask the question how a fixed-point iteration would
work. Hyvärinen clearly shows [21] that for ICA the direction of the gradient is important due
to the scaling indeterminacy. As such, a fixed-point iteration will work too and will be much
faster than any gradient method. Writing the gradients from (4-87) as fixed-point iterations1

by discarding all constants results in the following proportional gradients:
∂f

∂ur
∝ λr ·

[1
I

Z
[
ZT ur

]3
− (3 + λr) · ur

]

∂f

∂λr
∝ 1

I
uT

r Z
[
ZT ur

]3
− (3 + λr).

(4-88)

This results in the following fixed-point algorithm shown below in 6. Next to the function value
f the algorithm contains an additional convergence error computation ϵ. The computation of
this error is shown in the next chapter containing numerical comparisons. The idea behind
using a fixed-point method instead of a gradient one is that it can be a lot faster. The
complexities of algorithm 6 are identical to those of the previously presented gradient method.
However, due to the fixed-point iteration the values of lambda will not correspond to the actual
values, they merely point in the direction of the better estimate. As such, the computed
gradient of λ is used internally and is initialized each iteration as a unit vector.

Algorithm 6 Implicit CPD fixed-point iteration
Require: I,Z,U,λ,α, number of components R, function tolerance tol, max iterations K

1: procedure Implicit computation(I,X,λ,U,α)
2: while ε > tol or i < K do
3: λ = [1, . . . , 1]T ∈ RR

4: for r = 1, . . . , R do
5: ar = XT ur

6: yr = 1
I X

[
XT ur

]3
− 3 1

I2

(
aT

r ar

)
Xar

7: wr = uT
r yr

8: end for
9: B = UT U

10: C = [B]3
11: v = (B ∗C) λ
12: fi = α + λT v− 2wT λ
13: λ← w− v
14: U← (Y−UDλC)Dλ

15: U← U diag2(λ)
∥U diag2(λ)∥2

16: U← Symmetric Orthogonalization(U)
17: ε = Convergence Error function(U)
18: end while
19: return f , U
20: end procedure

1In a fixed-point iteration the updated variable xk+1 is equated to its function value xk+1 = f(xk).
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4-5 Chapter summary and contributions

This chapter presented a set of algorithms to compute a HOSVD, QR Tucker decomposition
and CPD of the cumulant tensor in implicit fashion. Starting with the former, first an
implicit algorithm to compute the full HOSVD of the cumulant tensor is proposed which
uses SVD updating procedures to ensure the storage cost never exceeds O(P 4). However,
this comes a the price of an additional per svd-update cost. When summed up this results
in a higher cost than performing a single SVD on the entire matricized cumulant tensor.
Literature suggests the use of HOSVD for finding initial estimates of the mixing matrix in
ICA and for the computation of a cumulant tensor CPD. As such, the U and C variant
of the implicit HOSVD algorithm are proposed of which the former uses only the cumulant
tensor’s unique slices once and the latter only its core slices. These simplifications result in
lower computational costs but at the price of computing incomplete HOSVD’s.

Secondly a novel algorithm called QRT is proposed which uses successive QR-decompositions
to simultaneously diagonalize the outer-slices of a symmetric tensor. By iterating through all
layers of the tensor a special structure is imposed in it in which the fibers extending from the
diagonal values are null-vectors with only the diagonal entry as non-zero. The algorithm is
inspired by the QR-algorithm for computing the EVD of symmetric matrices and as such it
is hypothesized that its convergence will follow similar reasoning. However, due to the lack
of multi-linear equivalents of specific lemma’s no constructive proof of convergence could be
derived. A computationally more efficient implicit version of the QRT algorithm is proposed
for the cumulant tensor which has a per iteration cost equivalent to that of FastICA O(IRP ).

Lastly, the final format considered in this thesis is the CPD due to its diagonal core property.
The general notion of tensor ranks is presented together with a small demonstration of how
such ranks behave in relation to the cumulant tensor’s diagonality. This is done to reinforce
the proposal of using HOSVD as an initial estimate for computing a CPD and the mixing
matrix in ICA. On top of that, it is shown how the measure of diagonality adequately reflects
the independentness of all estimated components. Three methods for computing the CPD
of the cumulant tensor implicitly are proposed. The first computes an approximation in
deterministic through GEVD of the first 2 core tensor slices. The second method is based
on a first-order gradient based optimization approach presented in [53] for the computation
of a CPD of higher-order moment tensors. By rewriting the gradient approach as a fixed-
point iteration an algorithm is developed which can in fact be considered as FastICA with a
CPD constraint. The gradient and fixed-point method enjoy complexities identical to that of
FastICA.
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All of the above is summarize below in the following list of contributions.

4.1: Contributions chapter 4

• A scheme is presented based on the cumulant tensor’s matricization which allows
for simple yet efficient computation of a single element, a fiber or entire
slices in both whitened and non-whitened case.

• It is shown that the storage cost of HOSVD of the cumulant tensor is decreased
from O(P 4) to O(P2) using an implicit scheme.

• A novel algorithm (QRT) based on the QR-algorithm for matrices is presented
which simultaneously diagonalizes the outer slices of a symmetric tensor.

• An implicit version of the QRT algorithm for a whitened cumulant tensor for
ICA is presented which has an iteration cost of O(IRP ) and a storage cost of
O(RP ).

• Due to a small study in the behavior of tensor ranks for ICA which is related
to the diagonality of the cumulant tensor it is identified that the measure of
diagonality adequately reflects a solutions quality of independence.

• A first-order optimization problem for implicitly computing the CPD of the
cumulant tensor is presented which has an iteration cost of O(IRP ) and a storage
cost of O(RP ).

• It is shown how rewriting the first-order CPD optimization problem as a fixed-
point iteration results in fastICA with a CPD constraint which too has an iter-
ation cost of O(IRP ) and a storage cost of O(RP ).
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Chapter 5

Experimental results

In this chapter the previously introduced algorithms are tested for their performance in Blind
Source Separation (BSS) on an artificial dataset. The theoretical complexities of the algo-
rithms are tested and the performance of all algorithms are compared with each other and
with the renowned fastICA on performance measures such as source estimation error, diag-
onality and computation time. While not all shown results are to be generalized, the point
is to provide a relative comparison in a controlled environment of which the solutions and
mixing model is known such that the noteworthy differences can be identified and explained.

Chapter outline First the used artificial data-set and mixing model are described. Sec-
ondly, the tested algorithms and used performance measures are described together with a
self devised classification algorithm. Afterwards the algorithms are put to the test in BSS of
which empirical results are presented. First the non-iterative algorithms Canonical-Polyadic-
Generalized-Eigenvalue-decomposition (CP-GEVD), implicit CP-GEVD, Higher-Order Sin-
gular Value Decomposition (HOSVD) and implicit HOSVD are considered and afterwards
the iterative algorithms FastICA, QRT, implicit Canonical Polyadic Decomposition (CPD)
gradient based and implicit CPD as a fixed point iteration.
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5-1 Test setup

In this sectionthe used test-setup is explained. Afterwards the computation of the convergence
error is presented and the tested algorithms are listed together with the general settings that
are used such as the tolerance for the convergence error. Lastly, the metrics that measure the
algorithms performance are listed.

Source signals The testset consists of 4 signals s(t) =
[

s1(t)T s2(t)T s3(t) s4(t)
]T

:
a sinusoid s1(t) = 0.6 · sin (2t), a square wave s2(t) = sign(sin (3t)), a sawtooth signal
s3(t) = 1.2 ·

(
t− 1

2 − ⌊t⌋
)

and a square root signal s4(t) =
√

t for a timespan of t = [0, 10]
seconds which are shown in Figure 5-1. The signals are sampled I times. Relatively simple
yet easy recognisable signals are chosen as this simplifies evaluating the found the solutions
which is shown later on. The order and coloring of the signals presented here is maintained
throughout the rest of this report.

Figure 5-1: The source signals of the artificial dataset. The signals consist of a sine wave s1, a
square wave s2, a sawtooth function s3 and a square root function s4 consecutively.

In order to visualize the structure and diagonality of the cumulant tensor a heatmap will
be used throughout this chapter. Identically to how it was done in the Canonical-Polyadic-
rank (CP-rank) section the cumulant tensor slices are tiled next to each other on a grid to
form a single matrix:

MC(4) =


C(4)

s (:, :, 1, 1) . . . C(4)
s (:, :, 1, P )

... . . . ...
C(4)

s (:, :, P, 1) . . . C(4)
s (:, :, P, P )

. (5-1)

However, due to the size of this matrix MC ∈ RP 2×P 2 the actual values will not be shown.
Instead, a heat-map is used as this provides an easier visual representation of the tensor’s
structure. Figure 5-2 shows the heat-map of the normalized source signals.
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Figure 5-2: Heat-map of the cumulant tensor of the normalized source signals s. On the left
the absolute values are on a linear scale and on the right on a logarithmic scale.

The left heat-map of Figure 5-2 shows the absolute values on a linear scale and the right
heatmap on a logarithmic scale. The linear scale can clearly represent the diagonality of the
tensor which is to be seen by the values at the indices p1 = p2 = p3 = p4 = 1, 2, . . . , 4 while
the logarithmic scale reveals the difference between small values of order 10−3 and values of
order 10−8 which for all intends and purposes can be considered as 0. The navigation through
these heat-maps is done by following the tensor indices along both x and y axes. For example:
the slice at the indices (:, :, 1, 1) corresponds to the top 4 rows and left-most columns. Note
that due to the tensor’s symmetry the indices along the axes can be permuted in any way
while the heat-map remains the same.

This particular set of heat-maps show that the source-component cumulant tensor has a clear
diagonal structure. The corresponding measure of diagonality from definition 2.6 has a value of
τD = 1.00 which substantiates this observation. However, all information related to the mean
and scale of the signals is lost due to whitening and the scaling indeterminacy of Independent
Component Analysis (ICA). Therefore the measure of diagonality the solution should strive
to have is at least that of the normalized source signals with zero-mean: τD = 0.855.

Mixing model The mixing model used for the setup is a time-invariant linear mixing model
with additive Gaussian-White-Noise (GWN) and is shown in equation (5-2). The entries of
the mixing matrix A ∈ RP ×N are sampled from a uniform distribution over [0, 1) and the
noise is given a variance of σ2 = 0.15. This results in the signal to noise ratios shown in
Table 5-1.

x(t) = As(t) + ϵ, ϵ ∼ N
(
0, σ2

)
with σ2 = 0.15 (5-2)
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s1 s2 s3 s4

1.18 6.65 3.20 3.71

Table 5-1: Signal to noise ratios (SNR) of the source components.

An example of what a mixture of the original source signals looks like is shown in Figure 5-3.
When generating the test-data multiple-times for multiple tests the mixing matrix A and the
GWN ϵ are sampled using a different seed every time. More precisely, for Ntest different tests
the seeds are taken as the sequence: 0, 1, . . . , Ntest − 1.

Figure 5-3: Four mixtures of the source signals of the artificial dataset.
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5-1-1 Tested algorithms

The algorithms that are tested can be divided into two categories: non-iterative algorithms
and iterative algorithms. While the implicit HOSVD uses an iteration internally to decompose
the cumulant tensor, it does so in a fixed amount of iterations. On the other hand the main
procedures of the iterative algorithms can be repeated many times in order to improve the
solution.

The used implicit non-iterative algorithms are compared with their explicit counterparts.
They are listed down below together with their used abbreviations and sections.

Abbreviation Algorithm Variants Section

HOSVD Symmetric HOSVD 4-2
GEVD CP-GEVD 4-4-4

I-HOSVD Implicit HOSVD full, U and C 4-2-1
I-GEVD full, U and C 4-4-4

Table 5-2: Tested non-iterative algorithms with their variants and their abbreviations.

The non-iterative algorithms will also be used to initialize the iterative algorithms as is sug-
gested in literature. The presented new implicit algorithms from this thesis are compared
with each other and with the algebraic COM2 method and the optimization based FastICA
procedure.

Abbreviation Algorithm Section

FICA Parallel kurtosis based FastICA 3-3-2
QRT Implicit QRT for whitened cumulant tensor 4-3

I-CPD-G Implicit CPD first-order gradient approach 4-4-5
I-CPD-FF Implicit CPD fixed-point iteration approach 4-4-5

Table 5-3: Tested iterative algorithms and their abbreviations.

Convergence error The convergence error for the iterative algorithms is shown below in
equation 5-3 and is taken from [17]. The error is basically a measure of the orthgonality
between two iterations of the unmixing matrix Q.

ε = max
(
∥ diag

(
QkQT

k−1

)
| − 1|

)
(5-3)

5-1-2 Performance measures

In order to automate the process of determining whether a solution is correct or not, algorithm
10 in appendix D-1 was developed. The ICA Solution Sorting and Evalutation (ICA-SSE)
algorithm first sorts the found solutions based on the order of maximum correlation they
have to the source components and determines afterwards whether the estimated components
match up with source components and sorts them again by looking for the minimal relative
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errors between the source components and the estimated components (lines 4 to 13). By
first sorting on maximum correlation and afterwards on minimum error the probability of
finding the correct matching pairs is increased. After sorting, the errors and correlations of
the found components are compared with the tolerances etol and ctol to determine whether
these components are defined as correct.

Estimation error The relative estimation errors of the estimated components from the
ICA-SSE algorithm in 10 are combined to form the total relative estimation error of the
run:

εtotal,k = ∥ek∥2
∥S∥2

, (5-4)

where ek ∈ N denotes the source component estimation errors of the k’th run.

Measure of diagonality The measure of diagonality introduced in chapter 2 definition 2.6
is used to represent the transformed cumulant tensor’s diagonality:

τD,k = ∥ diag(X )∥2
∥X∥2

. (5-5)

For the GEVD and I-GEVD methods this means that the cumulant tensor has been trans-
formed using the first factor matrix. The measure of diagonality was shown in section 4-4-2
to be a good indicator of the quality of the solution as it represents the statistical indepen-
dence of the components. Conversely, the CP-error is not used as a performance metric in
this experiment. Simply due to the fact that a good solution is defined as having a cumulant
tensor which is as diagonal as possible. This relaxed condition implies that the off-diagonal
values can be greater than zero as long as they are relatively much smaller than the values
on the superdiagonal. The CP-error however punishes these off-diagonal values more and is
hence not completely in line with the approximate diagonal philosophy of ICA. Results of
the CP-error can be found in appendix D-2.

Computational time For each algorithm during each run the time needed to compute a
solution is measured. This means that for all algorithms the timer starts when each algorithm
starts working on a solution and stops as soon as the unmixed signals have been produced.
For the explicit algorithms the time for computing the cumulant tensor is added. To make
the comparison between the explicit and implicit algorithms as fair as possible the cumulant
tensor is computed slice by slice using the earlier mentioned method from section 4-2-1. There
are several different ways in which the cumulant tensor can be computed with a numerical
machine. Depending on the coding language, code structure and computational method the
computational performance can vary by several orders of magnitude. In Python, the fastest
way of doing so is computing the entire tensor with several C -function calls and no loops as
C -functions and their internal loops are in general many orders faster than native Python
looping. On top of that, nested looping in Python can substantially degrade computational
speed. As the implicit HOSVD algorithm is written with nested loops in Python and not in
C the cumulant tensor is computed in the same way for this example.
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5-2 Solving the BSS problem

In this section experimental test results of the algorithms are presented. First an example
is shown which reflects the general behaviour of data-sets generated from the test set when
whitened. The example set is sampled with I = 1e4 observations and consists of P = 4
observations which equals the amount of underlying source components. Afterwards, results
of the non-iterative and iterative algorithms are shown which are performed for varying P =
4, 5, . . . , 10 where for each value of P the test is repeated Ntest = 100 times. The amount
of samples I is kept constant at I = 1e4. The focus of the entire experiment is to see how
the algorithms perform for varying P which is the reason for the creation of the implicit
algorithms to begin with. Moreover, the tests are conducted with additive noise present as
this is a better reflection of reality. It is important to note that many of the results are
dependent on the output of the sorting algorithm 10. Therefore relative performances are
considered as important which means the analysis done is qualitative.

5-2-1 Whitening example

Starting conditions The heat-maps of the mixtures from Figure 5-3 are shown in Figure 5-4
and the corresponding performance measures are shown in Table 5-4. Both show that the
starting mixtures do not have a diagonal cumulant tensor and as expected do not match the
source components which results in a high total estimation error εtotal and low diagonality
τD.

Figure 5-4: Heat-map of the cumulant tensor of the mixtures x. On the left the absolute values
are on a linear scale and on the right on a logarithmic scale.

εtotal τD εCP

0.896 0.192 -

Table 5-4: Performance measures of the mixtures x.
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Whitening Figure 5-5 shows the whitened mixtures from Figure 5-3. Although Whitening
has not solved the problem, the result can be considered as somewhat recognizable when
compared to the true source components. Out of 100 sampled test data-sets for each P =
4, . . . , 10 not once did the whitening procedure produce a result which was evaluated as
correct.

Figure 5-5: Example of a Failed set of estimated components after only pre-whitening.

The heat-maps shown in Figure 5-6 and measure of diagonality from Table 5-5 show that
whitening has structured the cumulant tensor towards a more diagonal form. On top of that,
the higher kurtosis values are now near at the lower tensor index values pi = 1, 2 ∀i =
1, 2, 3, 4. The estimation error has increased but not by any significant amount. From this
point on all used data-sets are whitened when used with any algorithm.

Figure 5-6: Heat-map of the cumulant tensor of the whitened mixtures z. On the left the
absolute values are on a linear scale and on the right on a logarithmic scale.

εtotal τD εCP

0.910 0.448 -

Table 5-5: Performance measures for only whitening of the data.
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5-2-2 Non-iterative algorithms

First the performance of the non-iterative algorithms is compared. This is done with the pre-
viously presented test-setup. The implicit non-iterative algorithms have two main purposes:
to be able to produce (nearly) identical or better results than their explicit counterparts and
to do so at lower computational costs expressed in computation time and storage cost which
was proven theoretically.

Successful estimations Figure 5-7 shows the percentage of runs per non-iterative algorithm
that are classified as successful. Noteworthy is the fact that GEVD outperforms all other
algorithms. Compared with HOSVD this can be attributed to the fact that GEVD performs
the additional Generalized EigenValue Decomposition (GEVD) step after HOSVD. For the
I-HOSVD algorithms it is observed that the U and C versions perform better than the full
version at higher values of P with U the best uot of the two. The same cannot be said about
the I-GEVD algorithms. Here the full algorithm performs arguable overall the best with its
U version as a close second. The C however, does not manage to produce a single successful
result. The vast differences that are present in the I-GEVD algorithms can be attributed to
the fact that the amount of information on the first 2 core slices of the tensor is different
when using simpler I-HOSVD algorithms.

Figure 5-7: Average percentage of estimations for varying amounts of mixtures P = 4, . . . , 10
which are classified as correct for a total of Ntest = 100 runs.
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Total Estimation error In Figure 5-8 the average relative estimation errors εtotal of the non-
iterative algorithms are presented for all runs (solid) and only the successful runs (dashed)
together with their variances (shaded areas). Clearly for all methods the average errors of
the successful runs are lower than the average of all runs. The variances of the HOSVD
based algorithms for all runs narrows as P increases which implies that using more mixtures
results in general in better estimates. The total errors of the C-I-HOSVD algorithm differ
the most from the others. Its average error, considering successful and failed runs together,
is the lowest of all 4 HOSVD methods.

Figure 5-8: Average total estimation errors εtotal (solid and dashed lines) together with their
standard deviations (shaded areas) for varying amounts of mixtures P = 4, . . . , 10 for a total of
Ntest = 100 runs. The solid lines represent only the successful runs and the dashed lines represent
all 100 runs. Notice how for example the successful run (dashed line) of C-I-HOSVD only starts
at P = 6 showing that no successful solution was found at P = 4 and P = 5.

The average succesful estimation errors of the GEVD methods are lower than the HOSVD
algorithms except for C-I-GEVD. All 3 versions of the I-GEVD algorithm failed for P = 4 and
P = 5 while GEVD does not. This implies that its smaller and partial inwards projection step
is the cause. The C-I-GEVD algorithm fails to produce any successful estimation, indicating
that applying HOSVD on only the core slices together with the partial inwards projection
step does not work.

Overall, the errors show that the GEVD methods produce on average results with lower
errors but with higher variabilities compared to the HOSVD methods. However, for successful
estimation the results are on average better with the HOSVD methods, if ever so slightly.
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Diagonality Figure 5-9 shows the diagonality of the different algorithmss. The diagonality of
the cumulant tensor of normalized and zero-mean s is shown too as a dotted line at τD = 0.855.
The figure shows that the HOSVD algorithms do a much better job at imposing diagonality
on the entire cumulant tensor than the GEVD algorithms do. The explanation for this is
simple: the GEVD algorithms do not compute a symmetric decomposition. The implicit
versions of the GEVD algorithm perform worse than their explicit counterpart. Again, this
can be attributed to the partial inwards projection as the Full-C-GEVD uses the full HOSVD
too.

It is interesting to see that the U-I-HOSVD method performs on average very similar to the
HOSVD and Full-I-HOSVD methods while the performance deteriorates a lot more when
only the core slices are used with C-I-HOSVD. As in real life there i in many cases no definite
way of knowing when a solution is a success or not the general performance of the algorithm
is what you want to depend on. Seeing that the U-I-HOSVD performs on average similar
on the aspects of estimation error and diagonality as regular HOSVD suggests it could be
considered as a computationally more efficient alternative.

Figure 5-9: Average measure of diagonality τD (solid and dashed lines) together with their
variances (color shaded for all runs and gray shaded for successful runs) of the entire cumulant
tensor for varying amounts of mixtures P = 4, . . . , 10 for a total of Ntest = 100 runs. The solid
lines represent only the successful runs and the dashed lines represent all 100 runs. The measure
of diagonality of the normalized and zero-mean source components τD,S = 0.855 is shown too as
a grey loosely dashed line.

The measure of diagonality shown here is for the entire transformed cumulant tensor. How-
ever, as P increases there are more noise components present which resemble each other
statistically speaking. Due to finite smapling these are approximate GWN components which
will show high cross-kurtosis values and low self-kurtosis values or in other words, low diag-
onal values and relatively high off-diaognal values. Therefore it is of interest to consider the
measure of diagonality of the smaller sub-cumulant tensor created from only the estimated
source components ŝi ∀i = 1, 2, 3, 4 which is shown in figure Figure 5-10.
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Figure 5-10: Average measure of diagonality τD (solid and dashed lines) together with their
variances (color shaded for all runs and gray shaded for successful runs) of thesub-cumulant
tensor of the estimated components ŝ for varying amounts of mixtures P = 4, . . . , 10 for a
total of Ntest = 100 runs. The solid lines represent only the successful runs and the dashed
lines represent all 100 runs. The measure of diagonality of the normalized and zero-mean source
components τD,S = 0.855 is shown too as a grey loosely dashed line.

In comparison to Figure 5-9, the figure shows that for the HOSVD methods the diagonality
of the cumulant tensor changes little when considering only parts of it suggesting an even
distribution of the diagonality among components. The diagonality of the GEVD methods is
this time a lot higher. Especially for the successful cases which means that they manage to
diagonalize the parts of the cumulant tensor related to the source components. This makes
sense as the GEVD step is used to separate the strongest components present in the chosen
tensor slices which in this case are the source components. Furthermore, as was mentioned
before the residual noise components after estimation will have low ratios of absolute diagonal
values to absolute off-diagonal values.

What can be stated when combining all of these results together is that for the non-iterative
algorithms the measure of diagonality of the estimated source components is a clear indicator
of the quality of a solution. This makes sense as the ICA solution is defined to have a cumulant
tensor for the estimated source signals which is as diagonal as possible.
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Runtime and computational complexities The average running times are shown in Figure 5-
11 for varying P . Starting with the explicit algorithms HOSVD and GEVD, it is clear that
the cost of these methods is dominated by the cumulant tensor forming cost which is visible
through the gray x-shaped markers. The GEVD algorithm has a slight increase compared to
the HOSVD algorithm for higher values of P which is due to the additional inwards projection
step. This holds true too for each version pair of the I-HOSVD and I-GEVD algorithms.

The computational time of the implicit algorithms varies over which version is used. Both
the full and U versions take more time to compute than the original explicit algorithms. The
C version is much faster, which is due to less slices that needed to be computed.

Figure 5-11: Average computation time for varying amounts of mixtures P = 4, . . . , 10 for a
total of Ntest = 100 runs for varying values of I = {2, 5e3, 5e3, 10e3}.

The difference in scaling of the implicit algorithms can be related to their complexities listed
in Table 5-6. The table in combination with the figure shows that the additional terms due
to the svd-update steps (blue) and the inwards projection step for the I-GEVD (red) have a
significant impact on the total computation cost as P goes up.

C4 HOSVD I-HOSVD GEVD I-GEVD

Full IP 4 IP 4 1
2IP 4 + P 5(log(P )2) IP 4 1

2IP 4 + P 5(log(P )2) + RP 4

U-method - - 1
2IP 4 + P 5

2 (log(P )2 - 1
2IP 4 + P 5

2 (log(P )2 + RP 4

C-method - - IP 3 + P 4(log(P )2 - IP 3 + P 4(log(P )2 + RP 4

Table 5-6: Dominant computational complexities of the cumulant tensor forming, the non-
iterative explicit algorithms and their implicit counterparts. The terms in blue are due to the
svd-update procedure and the term in red is due to the inwards projection step.

These results show that the implementing the implicit scheme for both HOSVD and GEVD
comes at the cost of an increase in computational effort. Essentially a trade-off is made
between storage complexity and computaitonal complexity.
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5-2-3 Iterative algorithms

All iterative algorithms are set to have a convergence tolerance of 10−4 and a maximum
amount of iterations of Kmax = 300. Furthermore, the gradient CPD algorithm is solved us-
ing the Limited-memory-Broyden–Fletcher–Goldfarb–Shanno-Bound (L-BFGS-B) algorithm
implemented in the Python scipy package with the custom convergence stopping criterion
from (5-3). This is the same solver used by the authors of the paper from which the implicit
first-order gradient problem for statistical tensors originates from [53]. For the gradient meth-
ods the total amount of iterations is taken as the number of function evaluations times the
number iterations. In general, only the successful estimations are considered in the analysis
of the iterative algorithms performance. It is stated if otherwise.

Algorithm initialization All iterative algorithms are tested with different initial estimates
to see whether and how they impact performance. What initialization means differs per
algorithm. For the QRT algorithm it means that before feeding the data to the algorithm it
is transformed using an initial estimate of the mixing matrix Q0:

Z′ = QT
0 Z. (5-6)

The final estimate consists of the QRT solution multiplied with the initial estimate Qfinal =
Q0QQRT . For the other algorithms the initial estimate Q0 is used in the computation of the
gradient. For the I-CPD-G and I-CPD-FF algorithms the initial estimate of λ0 is used too.

The used initialization schemes with the following initial estimates are listed below.

Name Mixing matrix Q0 Kurtosis coefficients λ

None IP

[
1 . . . 1

]T
∈ RP

HOSVD U1 ← HOSVD
[

1 . . . 1
]T
∈ RP

U-I-HOSVD U1 ← U-Implicit HOSVD
[

1 . . . 1
]T
∈ RP

C-I-HOSVD U1 ← C-Implicit HOSVD
[

1 . . . 1
]T
∈ RP

GEVD U1 ← CP-GEVD λ← CP-GEVD
I-GEVD U1 ← Full Implicit CP-GEVD λ← Full Implicit CP-GEVD

U-I-GEVD U1 ← U-Implicit CP-GEVD λ← U-Implicit CP-GEVD
C-I-GEVD U1 ← C-Implicit CP-GEVD λ← C-Implicit CP-GEVD

Table 5-7: Used initialization schemes for the numerical performance comparison of the iterative
algorithms.
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Successful estimations Figure 5-12 shows the percentage of successful runs of all 4 iterative
algorithms with the varying initialisation methods. FICA, QRT and I-CPD-FF all perform
very similar for no initialization method and for HOSVD. It would be no surprise if the slight
differences would vanish as the total amount of experiment runs Ntotal is increased. However,
due to time constraints this was not verified. With the HOSVD method I-CPD-G performs
equally well as the others. However, with no initializing method and with GEVD it performs
worse, especially with the latter. This clearly shows how the gradient method’s performance
greatly depends on the initial estimate used. This is in line with the general performance of
the gradient version of fastICA [33][21].

Looking at QRT shows that GEVD initialization resulted in nearly 0 successful runs. There is
a simple yet logical explanation for this. The first factor matrix produced by the GEVD is not
orthogonal. Due to the multiplication of the whitened data with the initial non-orthogonal
estimate Q0 the data loses its whiteness. The implicit QRT algorithm was designed to work
only with whitened data, hence there are no successful runs with these initialization schemes.
This implies that the QRT algorithm will perform poorly with the other GEVD methods too.

Figure 5-12: Average percentage of estimations for varying amounts of mixtures P = 4, . . . , 10
of runs classified as correct for a total of Ntest = 100 runs. For each algorithm the results are
plotted with no initialization used and when standard HOSVD and GEVD are used.

The other algorithms perform worse with the GEVD initialization too. For FICA it starts
of identical to the other methods. However, after P = 6 the percentage declines. The same
is true for I-CPD-FF with the differences being that the GEVD method performs slightly
better at lower values of P ≤ 6 and that the final decline is less.

Considering the figure but then for all HOSVD based methods only, shown in Figure 5-13,
several key differences can be observed. First of all, the performance of FICA and QRT does
not differ between methods. Secondly, I-CPD-G performs better with all HOSVD methods
than without any initialization. Again, stressing the importance of a good initial estimate
for gradient ICA algorithms. Lastly, the performance of I-CPD-FF with U-I-HOSVD has
improved over several values of P suggesting its effectiveness as an initial estimate of quality
for the I-CPD-FF algorithm.
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Figure 5-13: Average percentage of estimations for varying amounts of mixtures P = 4, . . . , 10
of runs classified as correct for a total of Ntest = 100 runs. For each algorithm the results are
plotted with all of the possible HOSVD based initializations.

Moving on to the GEVD based initialization methods shown in Figure 5-14 it can be observed
that as was previously suggested the QRT algorithm fails for every method. The performance
of FICA and I-CPD-FF with each implicit version is better than with the original GEVD
algorithm with again the U version having the highest scores over several values of P for
the I-CPD-F algorithm. This suggests that the partial inwards projection is preferred over
the entire inwards projection for these methods for this data-set at higher-values of P . The
gradient approach I-CPD-G performs again worse with the GEVD based methods as was
suggested by Figure 5-12.

Figure 5-14: Average percentage of estimations for varying amounts of mixtures P = 4, . . . , 10
of runs classified as correct for a total of Ntest = 100 runs. For each algorithm the results are
plotted with all of the possible HOSVD based initializations.

The general take-away of these results is that the gradient and fixed-point iteration algorithms
show a lot of sensitivity to the initial estimate. For QRT no such statement can be made
from only these results. The GEVD based initialization methods do not count for QRT as it
was not designed to work with non-orthogonal matrices.
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Total Estimation error The total estimation error of only successful runs of the full meth-
ods is shown in Figure 5-15. Taking into account the percentages of successes, the figure
shows that the I-CPD-G algorithm manages to achieve the lowest possible estimation error.
Gradient based approaches in general can achieve better results than fixed-point methods
when correctly initialized. Next to the I-CPD-G method the QRT and I-CPD-FF seem to
prefer the initialization of HOSVD too over the other methods. Compared over all meth-
ods the GEVD initialization performs the worst. FICA and I-CPD-FF have again similar
performances not considering GEVD.

Figure 5-15: Average total error εtotal for varying amounts of mixtures P = 4, . . . , 10 of runs
classified as correct for a total of Ntest = 100 runs. For each algorithm the results are plotted
with no initialization used and when HOSVD and GEVD is used.

The estimation errors with the HOSVD type initializing algorithms is shown in Figure 5-
16. Two things can be stated when observing these results. Firstly, FICA, I-CPD-FF and
I-CPD-G perform nearly identical for all types of the implicit HOSVD algorithm. Secondly,
QRT ’s average estimation error has decreased with the U type.

Figure 5-16: Average total error εtotal for varying amounts of mixtures P = 4, . . . , 10 of runs
classified as correct for a total of Ntest = 100 runs. For each algorithm the results are plotted
with all different HOSVD type initializations used.
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Lastly, the results of the algorithms with GEVD initialization is shown in Figure 5-17. Com-
pared to the HOSVD based initializations these methods produce overall slightly worse results.
Hinting at the iterative-algorithms’ preference for HOSVD type initializations.

Figure 5-17: Average total error εtotal for varying amounts of mixtures P = 4, . . . , 10 of runs
classified as correct for a total of Ntest = 100 runs. For each algorithm the results are plotted
with all different GEVD type initializations used.

What all methods have in common is that the estimation error decreases as P increases. This
is simply due to the fact that more mixtures allow for more possible seperation of signal and
noise. An example of the QRT method with U-I-HOSVD initialization is shown below in
Figure 5-18 for P = 10. The results clearly show that the signals have been properly unmixed
and that noise is adequately removed from the estimated components.

Figure 5-18: Estimated source components ŝi ∀i = 1, 2, 3, 4 together with the residual noise
components ŝε,i ∀i = 1, 2, 3, 4, 5, 6 of a successful run of the QRT algorithm with U-I-HOSVD
initialization for P = 10 mixtures.
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Diagonality Figure 5-19 shows the diagonality of the no initialization, HOSVD and the
GEVD initialization scheme. The results show that all algorithms are able to make the
cumulant tensor more diagonal than the supposed solution. The GEVD scheme performs
overall the worst with this measure too and HOSVD could arguably be considered as the
overall best. This corresponds with the previous observations concerning the estimation
errors.

Figure 5-19: Average measure of diagonality τD (solid and dashed lines) of the entire transformed
cumulant tensor for varying amounts of mixtures P = 4, . . . , 10 for a total of Ntest = 100 runs.
The solid lines represent only the successful runs and the dashed lines represent all 100 runs.
The measure of diagonality of the normalized and zero-mean source components τD,S = 0.855 is
shown too as a grey loosely dashed line.

Continuing to the HOSVD methods in Figure 5-20 shows that for all algorithms the full I-
HOSVD and U type perform equally well except for a minor dip at P = 5 for the gradient
approach. Even the C type approach manages to keep up with the others.

Figure 5-20: Average measure of diagonality τD (solid and dashed lines) of the entire transformed
cumulant tensor for varying amounts of mixtures P = 4, . . . , 10 for a total of Ntest = 100 runs.
The solid lines represent only the successful runs and the dashed lines represent all 100 runs.
The measure of diagonality of the normalized and zero-mean source components τD,S = 0.855 is
shown too as a grey loosely dashed line.
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Cross-referencing this with the previous results indicates that at least for the fixed-point
iterations and the QRT method the choice of the HOSVD type initialization scheme does not
worsen the result. However, the same cannot be said for the GEVD based methods. Only
FICA’s performance has not deteriorated in comparison to the HOSVD based methods and
no initialization method.

Figure 5-21: Average measure of diagonality τD (solid and dashed lines) of the entire transformed
cumulant tensor for varying amounts of mixtures P = 4, . . . , 10 for a total of Ntest = 100 runs.
The solid lines represent only the successful runs and the dashed lines represent all 100 runs.
The measure of diagonality of the normalized and zero-mean source components τD,S = 0.855 is
shown too as a grey loosely dashed line.

The constant decrease in the diagonality as P goes up initially seems to go against the error
that gets lower as P increases. However, this can again be attributed to the additional
residual noise components. It was previously mentioned that they have high cross kurtosis
values and low self kurtosis values which and cannot be made less gaussian as they are GWN.
So considering once again the measure of diagonality of only the estimated source components
sub-cumulant tensor shown in Figure 5-22 the diagonality behaviour changes.

This time the results are only shown for no initialization, HOSVD and GEVD based initial-
ization. For FICA andQRT the diagonality τD of the sub tensor remains for P ≥ 5 at a
consistently high level with very little variance amongst the values for P . This is most likely
due to there being 5 latent components in the data present. Namely the 4 source signals
and the GWN noise component. in the infinite sample case excess kurtosis is blind to GWN.
However, this is not the case here as excess kurtosis is approximated using a finite number of
samples. Hence the strong presence of the noise as a separate component.

The slightly lower diagonality score of the I-CPD-FF algorithm is most likely the result of
the algorithms focus on computing a CPD instead of maximizing the diagonal entries such
as FICA and QRT do. However, the difference here is minor and the overall performance of
the I-CPD-FF algorithm shown up to this point is on par with that of FICA
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Figure 5-22: Average measure of diagonality τD (solid and dashed lines) of the sub cumulant ten-
sor from only the estimated source components ŝ for varying amounts of mixtures P = 4, . . . , 10
for a total of Ntest = 100 runs. The solid lines represent only the successful runs and the dashed
lines represent all 100 runs. The measure of diagonality of the normalized and zero-mean source
components τD,S = 0.855 is shown too as a grey loosely dashed line.

Lastly, the heat-maps of the estimated source-components sub cumulant tensor are shown in
Figure 5-18. The linear scale heat-map clearly shows the diagonal structure of the tensor.
Moreover, the null-fiber structure the QRT algorithm applies on a tensor discussed in section
4-3-1 can be clearly observed on the locarithmicly scaled heat-map.

Figure 5-23: Heat-map of the cumulant tensor of the source components ŝi ∀i = 1, 2, 3, 4
estimated with QRT and HOSVD initialization for P = 10 mixtures. On the left the absolute
values are on a linear scale and on the right on a logarithmic scale.

Master of Science Thesis P. Denarié



114 Experimental results

Runtime and computational complexities Arguably some of the most interesting results
of the experiment are to be seen whenn looking at needed computation times shown on a
linear scale in Figure 5-24 and for alogarithmic scale in Figure 5-25. Before anything else,
note that the I-CPD-G results have been scaled down by a factor 2 in the time figure and by
2 orders of magnitude in the number of iterations figure Figure 5-26 which is done for clearer
visualization of the overall results. Only the results of no initialization, HOSVD and GEVD
are shown here as the latter are representable for the average times of all of their alternate
versions. First and foremost it must be stated that both QRT and I-CPD-FF algorithm are
a lot faster than FICA. The former by nearly an order of magnitude and the latter by a factor
of 5. While I-CPD-FF starts of slower than FICA its average time increases at a much slower
pace.

Figure 5-24: Average runtime for varying amounts of mixtures P = 4, . . . , 10 of runs classified
as correct for a total of Ntest = 100 runs on a linear scale. For each algorithm the results are
plotted with no initialization used and when HOSVD, GEVD or no initialization is used. Notice
that the I-CPD-G algorithm is scaled down for clearer visual presentation. The actual times of
the I-CPD-G algorithm are a factor 2 as high.

Figure 5-25: Average runtime for varying amounts of mixtures P = 4, . . . , 10 of runs classified as
correct for a total of Ntest = 100 runs on a logarithmic scale. For each algorithm the results are
plotted with no initialization used and when HOSVD, GEVD or no initialization is used. Notice
that the I-CPD-G algorithm is scaled down for clearer visual presentation. The actual times of
the I-CPD-G algorithm are a factor 2 as high.
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Inspecting the amount of iterations each algorithm performs shown in Figure 5-26 on average
explains these differences. The figure shows that while QRT and FICA have to perform a near
equal amount of iterations to reach the same level of convergence, I-CPD-FF needs far less.
The cost per iteration for FICA andI-CPD-FF are nearly identical implying that I-CPD-FF
converges faster towards a solution. This is most likely due to the CPD constraint present in
the gradient together with the gradient computation of λ which are all a result of the cost
function. The cost function of FICA is the L1 norm of the self kurtosis values whereas the
cost function of I-CPD-FF is the L2 norm squared over the difference between the entire
cumulant tensor and its CPD estimate.

Figure 5-26: Average total amount of iterations needed per algorithm for varying amounts
of mixtures P = 4, . . . , 10 of runs classified as correct for a total of Ntest = 100 runs. For
each algorithm the results are plotted with no initialization used and when HOSVD, GEVD
or no initialization is used. Notice that the I-CPD-G algorithm is scaled down for clearer visual
presentation. The actual number of iterations of the I-CPD-G algorithm are 2 oders of magnitude
higher.

The fact that QRT and FICA need approximately an equivalent amount of iterations but have
different times suggests that they have different per iteration costs. This difference in cost per
iteration can be traced down to the orthogonalization step of both algorithms. The dominant
cost of computing the gradient in FICA is identical to the dominant cost of computing the
tensor slice and updating the data in QRT : O(IPR). However, the dominant cost of the QR-
decomposition and Eigen-Value-Decomposition (EVD) of the symmetric orthogonalization
step differ. While both scale with O(RP 2) there is a difference in the amount of steps each
decomposition needs. If for example the QR-algorithm from definition 4.6 is used as EVD
then a QR-decomposition has to be computed during each iteration of the EVD. While it
is not the fastest EVD algorithm the QR-algorithm does clearly illustrate the difference in
computational effort needed and hence why the QRT algorithm has a lower per iteration cost
than FICA.

A small empirical demonstration of this is shown in Figure 5-27. The figure shows how the
computation time of the symmetric EVD based orthogonalization and QR-decomposition
scales for varying P . This costly difference is due to the aforementioned difference between
EVD and QR-decomposition. On top of that, QR-decomposition is performed in a fixed
amount of steps while eigenvalue algorithms converge towards the EVD.
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Figure 5-27: Average computation time of the symmetric orthogonalization through EVD and
of the QR-decomposition of a random symmetric matrix M ∈ RP ×P . The results are averaged
over 10e3 iterations.

Besides differences in per iteration costs the following is observed about the error convergence
of FICA, QRT and I-CPD-FF. Figure 5-28 shows the total amount of iterations need but
this time with the standard deviation for only the no initialization scheme. The figure shows
that for both FICA and QRT there is a lot of variance in the amount of iterations needed for
higher values of P ≥ 6. Furthermore, both QRT ’s and FICA’s amount of average iterations
seem to decrease growth after P = 8.

Figure 5-28: Average total amount of iterations needed per algorithm with the standard deviation
for varying amounts of mixtures P = 4, . . . , 10 of runs classified as correct for a total of Ntest =
100 runs. For each algorithm the results are plotted only with no initialization scheme used.

To understand why this is the case the general behavior of the convergence errors is studied.
The convergence errors for a single run of P = 4, 7, 10 is shown for these 3 methods in
Figure 5-29. The figure clearly shows why both FICA and QRT need many more iterations
than I-CPD-FF. As P increases the behavior of the convergence error of FICA and QRT
becomes less predictable whereas for I-CPD-FF the behavior remains consistent. For this
particular example for P = 10 FICA did not even manage to reach convergence within 200
iterations while these errors are from a solution which is considered as successful. For this
particular example QRT manages to reach convergence for P = 10. However, there are many
cases which are similar to the one of FICA shown here.
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Figure 5-29: Convergence errors of the FICA, QRT and I-CPD-FF methods with no initialization
scheme for P = 4, 7, 10. The figure shows that as P increase so does the number of iterations
needed to reach convergence. However, whereas I-CPD-FF presents consistent convergence be-
havior the FICA and QRT methods do not. Up to the point where for high values of P ≥ 8 FICA
never reaches convergence. Note that from top to bottom the x-axis increases in size.

The same result but then averaged over 100 successful runs is shown below in Figure 5-30. This
figure shows that on average both QRT and FICA suffer from the problem of possibly never
reaching convergence for this range of iterations while still producing successful estimations.

Figure 5-30: Average convergence errors of the FICA, QRT and I-CPD-FF methods with no
initialization scheme for P = 4, 7, 10. The figure shows that as P increase so does the number
of iterations needed to reach convergence. However, whereas I-CPD-FF presents consistent
convergence behavior the FICA and QRT methods do not. Up to the point where for high values
of P ≥ 8 they never reach convergence. Note that from top to bottom the x-axis increases in
size.
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This can be deduced by the fact that there is not a general iteration after which the FICA
and QRT errors drop for P = 7 and P = 10. Conversely, I-CPD-FF does on average manage
to reach convergence after a set amount of iteration. This partially explains the decrease in
growth of the algorithm iterations from Figure 5-26. Both the FICA and QRT algorithms
often reach the iteration ceiling of Kmax = 300 while for some runs they converge in fewer
iterations which averages out as a decrease in average iteration growth. Nevertheless, the
implication of it all is that both FICA and QRT take a long time to converge for high values
of P and that the convergence measure from 5-3 does not in all cases properly indicate when
these methods have estimated a solution as they do manage to produce successful solutions
without reaching convergence.

Lastly, Figure 5-31 shows the computation time of each algorithm for only no initialization
method where the tolerance has been set to tol = 0 such that all algorithms perform the
same amount of computations for all values of P . Comparing the average computation times
with the dominant computational complexities shown in Table 5-8 shows that the algorithms
behave accordingly to their theoretical scaling.

Figure 5-31: Average runtime for varying amounts of mixtures P = 4, . . . , 10 of runs classified
as correct for a total of Ntest = 100 runs on a logarithmic scale. For each algorithm the results
are plotted with no initialization used and the tolerance is set to tol = 0 such that all algorithms
perform an identical amount of iterations for each value of P .

Dominant per iteration cost

FICA QRT I-CPD-G I-CPD-FF

IRP IRP IRP IRP

Table 5-8: Dominant computational complexities of iterative algorithms. In the experimental
setup the number of estimated components R was chosen continuously to be equal to the amount
of mixtures P .
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5-3 Chapter summary and discussion of results

This section discusses the previously found numerical results. The reader is noted that all
statements made in the following are in relation to the performance on the used data-set. This
does not mean that these results generalize to all cases. However, where thought possible it
is suggested what the found results would imply for general performance.

Non-iterative methods Starting with the non-iterative algorithms only, it can be stated
that the explicit GEVD, implicit full GEVD and implicit GEVD type-U methods in general
perform better than their HOSVD counterparts for P ≥ 8 due to the lower average errors and
the slightly higher percentages of successes. However, the overall performance of all HOSVD
methods remains more consistent when varying P . The U sub-type of both implicit HOSVD
and implicit GEVD show similar results and performance as their full implicit counterparts.
Note that the full implicit HOSVD is identical to the explicit HOSVD while the full implicit
GEVD is not identical to its explicit counterpart. As all GEVD based methods perform
HOSVD too, these results suggest that the additional GEVD step does help with estimating
the source components as long as the 2 used slices in the GEVD contain enough information
of all other tensor slices. The reasoning behind this can be understood when looking at the
implicit HOSVD and implicit GEVD C -types. Both C -types performed worse than their
other variants. However, the C -type implicit GEVD algorithm performed considerably the
worst as no estimation was considered as successful. On top of that, the average error of all
runs is much higher compared to the other GEVD methods. This can be attributed to the
fact that due to an incomplete HOSVD the first 2 slices of the resulting tensor core are not
a proper linear combination of all original slices. Next to this the implicit GEVD algorithms
already use less of the tensor’s information due to the partial inwards projection. combining
these 2 facts is what most likely caused the GEVD step to fail when only using the core slices.

Considering the computation times of the non-iterative algorithms it can be stated that a sig-
nificant trade-off is made when using the full implicit versions. While the implicit algorithms
have a lower storage complexity compared to their explicit versions, the added SVD-update
cost dominates the computation time of both algorithms and as a result only their C -types
are faster than the explicit algorithm. While the theoretical complexities cannot be directly
changed a faster implementation of the implicit HOSVD is most definitely possible. As was
said before, the current implementation contains a nested Python loop which is slow. On top
of that, much of the SVD-update code is written in Python. Python is a versatile language,
yet by far not the fastest. Writing the implicit HOSVD code in a faster language such as C
and directly implementing the SVD-update procedure into it can speed up the algorithm by
removing any over-head cost caused by Python. Nevertheless, the computaitonal time results
of the non-iterative methods suggest that they could be practical when time is not an issue
but storage is.

Iterative methods When using no initialization scheme it can be stated that both the QRT
and I-CPD-FF algorithms produce similar results as FastICA, albeit with slightly higher
estimation errors and lower tensor diagonality scores. The gradient based I-CPD-G approach
performed a lot worse than all other methods which corresponds with the performance of
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gradient methods in general for ICA[21]. As such, its performance is not further discussed
here.

The advantage both the QRT and I-CPD-FF have over FastICA is the reduced computation
time they need when increasing the amount of mixtures P to reach convergence. With the
former this is the result of a lower per iteration computational cost and with the latter it is
the result of converging in fewer iterations. However, similar to FastICA the QRT algorithm
exhibits convergence issues for higher values of P . As a consequence both algorithms cannot
stop prematurely which results in unnecessary higher computation times considering the fact
that both methods might still produce a successful estimate.

This has several practical implications. First of all this introduces an uncertainty in the
quality of solutions which have not converged as they might in fact actually be considered
as adequate estimations. Secondly, not having a properly functioning convergence tolerance
stopping criterion might lead to unnecessary long computation times. This means one might
resort to shotgun-hail tactics to find an adequate maximum number of iterations which adds
up extra time.

The I-CPD-FF algorithm on the other hand was shown to reach convergence within a con-
sistent amount of iterations between different runs. On top of that, for P ≥ 5 the algorithm
reaches convergence in considerably fewer iterations than both FastICA and QRT. It is be-
lieved that this is due to the additional terms in the I-CPD-FF gradient together with the
internal computation of a λ estimate. As was mentioned before, I-CPD-FF could be con-
sidered as a CPD constrained version of FastICA where the gradient does not point in the
direction of a locally maximum sum of absolute self kurtosis but in the direction of a locally
best fitting CPD model. Additionally, the internal multiplication of the gradient of the factors
with the gradient of the λ estimate is in fact a relative scaling correction of the gradient’s
rows. This can be considered as a weighting of the estimated source components during each
iteration based on their self-kurtosis value. Components with higher self-kurtosis estimates
lead to higher weights and thus have a more dominant effect in the direction of the solution.

The faster convergence of the fixed-point I-CPD-FF algorithm at higher values of P > 4
does not mean that it will always converge faster. The experiment contained only 4 latent
source signals without including the GWN. It may very well be that as the amount of
source components is increased too the convergence performance of the I-CPD-FF algorithm
deteriorates. However, we cannot draw any such conclusion based on the results of our small
experiment. What we can say is that the results suggest I-CPD-FF may converge faster for
problems with more source signals.

In conclusion, it can be stated that the definitive differences of the algorithms compared to
each other and to FastICA are to be found in the convergence behavior and computational
speed. Furthermore, both the fixed-point first-order CPD method and the QRT method can
find solutions of similar quality to a BSS problem in less time than FastICA.

Iterative methods with initialization schemes The 7 different initialization schemes are
categorized as HOSVD based methods or GEVD based methods. Table 5-9. Shows the
qualitative comparison of each algorithm/initialization scheme pair with the case when no
initialization scheme is used. Overall, the HOSVD category yielded better results when used
as an initial estimate for the iterative methods. The GEVD based methods resulted in most
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cases in worse performance of all 4 iterative algorithms with the non-orthogonality of the initial
estimate even breaking the QRT method completely. The reason why FastICA, I-CPD-G and
I-CPD-FF can deal with the non-orthogonality is because of the symmetric orthogonalization
step present in said methods. This implies that the factor matrix from the GEVD methods
used for initialization could be symmetrically orthogonalized before passing it through to the
QRT algorithm. However, this would not make it the least squares approximate solution of the
inwards projections step anymore which essentially means it loses all meaning. Nevertheless,
it can be concluded that the lack of orthogonality of the factors and the asymmetry of the
CPD the GEVD methods compute do not benefit the presented ICA algorithms.

HOSVD GEVD

Explicit / Full Type-U Type-C Explicit Full Type-U Type-C

FICA 0 0 0 − 0 0 0
QRT + + + + − − − −
I-CPD-G + + + − − − −
I-CPD-FF + + + + − 0 0 0

Table 5-9: Qualitative analysis of the 4 iterative algorithms with all of the different initialization
schemes. Each algorithm/initialization scheme pair is compared to the case when no initialization
scheme is used. A 0 indicates that no clear difference was observed when using that combination,
a + indicates minor improvements in overall results, ++ indicates the best overall performance
increase, a − indicates a slight deterioration in performance and − indicates total failure when
using said combination.

Without any additional initialization scheme, non of the newly introduced methods showed a
significant advantage over FastICA when considering the successful amount of solutions and
the estimation errors. However, the results of both the I-CPD-FF algorithm and the QRT
algorithm did improve when initialized with HOSVD based methods even surpassing that
of fastICA on estimation error or percentage of successes. This suggests the following: that
these methods too are sensitive to initial estimates and that these type of initializations may
result in overall better and more robust source component estimation.

Somewhat surprising, the U -type implicit HOSVD method resulted overall in the best per-
formance increase when combined with the QRT, I-CPD-G and I-CPD-FF methods. It is
unclear whether this method outperforms explicit HOSVD as an initialization method in gen-
eral. However, it is believed that the results produced by the U -type implicit HOSVD method
for this-dataset aligned favorably with possible solutions. For both the QRT and I-CPD-FF
algorithms the C -type implicit HOSVD method performed adequately too as the performance
was never lesser than initialization with a complete HOSVD. The above 2 findings do not
prove nor do they imply the general success of these HOSVD based methods. However, it
does show that using different initial estimates based on varying amounts of information of
the cumulant tensor can potentially improve results for a specific problem in a consistent way.

Concerning the computational time of iterative methods combined with non-iterative methods
for initialization the following can be said. Due to the scaling of the non-iterative algorithms
the cost of computing of an initial estimate can quickly exceed the computation time needed
by the iterative algorithm while there not being any guarantee the initial estimate will help.
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This raises the question whether or not it is better to retry the iterative algorithm with several
random estimates instead. There is no definitive answer to this question. However, if wanting
to use one of the non-iterative algorithms for initialization it is best practice to start with
the C -types and work up towards the full explicit algorithms if the need for better estimates
persists.

Overall, the initial impression is that the QRT and I-CPD-FF method prove to be a valid
alternative to FastICA in terms of estimation error and solution correctness while shown to
be superior in terms of convergence and speed. All of the presented and discussed findings
are summarized as the following list of contributions.

5.1: Contributions chapter 5

• It is shown that the implicit HOSVD and implicit GEVD algorithms do not scale
favorably with the amount of mixtures P due to the total SVD-update cost.

• It is shown that computing the implicit HOSVD of the cumulant tensor with only
its unique slices or only its core slices can result in similar performance for ICA
as computing the full HOSVD.

• It is shown that for a linearly mixed BSS problem with additive GWN the source
component estimation performance of QRT and I-CPD-FF is on par with that
of kurtosis-based parallel FastICA in terms of estimation error and solution cor-
rectness.

• It is shown that the QRT and I-CPD-FF algorithms can achieve better results
than FastICA when combined with the HOSVD based algorithms as initial esti-
mates in terms of correctness and estimation error.

• It is shown that the computation time of the QRT algorithm to reach a cer-
tain convergence tolerance is lower than that of FastICA by nearly an order of
magnitude due to its lower per iteration cost.

• It is shown that a fixed-point iteration of the implicit CPD first order optimiza-
tion method converges in fewer iterations towards a solution than FastICA. As a
result the computational time needed by the implicit CPD first order optimization
method scales much more favorably with P as it does for FastICA.

• It is shown that for the case when FastICA and QRT struggle to reach conver-
gence, the fixed-point implicit CPD first order optimization method manages to
converge in a consistent and much smaller amount of iterations.
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Chapter 6

Conclusion and Recommendations

6-1 Thesis Conclusion

In this thesis it has been researched whether implicit decomposition of the cumulant tensor
can be used to solve the Blind Source Separation (BSS) problem. The objective was to derive
efficient cumulant tensor diagonalization methods by decreasing the cost of its manipulation
and storage. Cumulant tensor methods suffer from the curse of dimensionality due to their
quartic dependence on the amount of mixtures O(P 4). To address this scalability issue, the
tensor’s symmetry and structure are exploited such that its diagonalization through tensor
decomposition is performed implicitly. The result is a class of implicit cumulant tensor de-
composition algorithms which scale more favorably than their explicit counterparts in terms
of either computational cost, storage cost or both.

This thesis is concluded by revisiting the research question posed in the first chapter together
with its sub-questions:

Can implicit decomposition of the cumulant tensor for Independent Component Analysis
(ICA) provide a competitive alternative to fastICA in terms of convergence, solution qual-
ity and cost?

• Can the storage cost and computational cost of manipulating the cumulant tensor be
reduced through the use of an implicit computation scheme?

• Can tensor decomposition methods which have already existing uses for ICA benefit from
this implicit computation scheme?

The implicit cumulant tensor C(4) ∈ R[4,P ] computation scheme presented in this thesis is
the cornerstone of all derived implicit methods. It allows for the computation of any part
of the tensor of arbitrary size. With this scheme, two low cost iterative algorithms have
been derived which diagonalize the cumulant tensor through its implicit decomposition. The
computational and storage cost of each method scales linearly with the amount of estimated
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components O(RP ), opposed to the previously quartic dependence on the amount of mixtures
O(P 4). Both methods have a theoretical storage and per iteration computation cost identical
to that of FastICA.

One of these methods iterates through the core slices of the cumulant tensor and while per-
forming successive QR-decomposition to increase the tensor’s diagonality. Akin to the QR-
algorithm for matrices, the QR-Tensor algorithm simultaneously diagonalizes the set slices of
any designated top-layer of a symmetric tensor. Analysis of the unique structure this decom-
position introduces into a tensor showed that for ICA it can be simplified by computing only
the QR-decomposition of the columns along the superdiagonal. Combined with the implicit
computation strategy this results in an efficient method for finding a solution to the BSS
problem at the computational cost of O(RP ) per iteration and with a storage cost of O(P 2).

The second low-cost method is a fixed-point iteration of a gradient-based first-order Canonical
Polyadic Decomposition (CPD) optimization problem for the cumulant tensor. The first-order
gradient-based method uses a gradient for the factors U and a gradient for the scaling values
λ to find a locally best fitting CPD model. Bearing a lot of similarity to the gradient of
FastICA, it is shown that the problem is in fact FastICA with a CPD constraint. In order
to produce an orthogonal result a symmetric orthogonalization scheme is introduced into the
optimization problem. Moreover, due to the scaling indeterminacy of ICA only direction of
the solution is importance. For this reason the first-order optimization problem is rewritten
as a fixed-point iteration. Both the gradient and fixed-point approach have a per iteration
computational cost of O(RP ) and a storage cost of O(RP ).

Additionally, two non-iterative implicit cumulant tensor decomposition methods are derived.
The first computes the Higher-Order Singular Value Decomposition (HOSVD) of the cumu-
lant tensor implicitly. It does so through a Singular-Value-Decomposition (SVD)-updating
method and keeps the storage cost at O(P 2). However, the scaling of the computational
cost of performing the implicit decomposition as become less favorable with P compared to
the explicit HOSVD. While not equivalent to a diagonalization transformation, it is shown
through a small numerical example how ICA can benefit from initialization with HOSVD. As
such, 2 variants of the implicit HOSVD are proposed which update the SVD with fewer slices
to reduce overall computation cost. The U -type uses only the tensor’s unique slices and the
C -type uses only the core slices.

The second non-iterative implicit algorithm computes an approximate non-symmetric CPD
through Generalized EigenValue Decomposition (GEVD) of 2 slices of the cumulant tensor’s
HOSVD. From literature it is known that the explicit GEVD procedure is often used for
finding initial estimates of a tensor CPD. The connection between CPD and cumulant tensor
diagonalization suggests the use of the GEVD method as initialization for ICA. The com-
putational cost of the algorithm scales nearly identical as the implicit HOSVD method. For
this reason it too has been given a U -type and C -type variant.

Finally, the derived implicit tensor decomposition algorithms have been tested on an artificial
linear BSS separation problem with additive Gaussian-White-Noise (GWN) consisting of four
source components. By comparison of the amount of successful estimations, the estimation
errors and the cumulant tensor diagonality it is shown that both the fixed-point CPD and
QRT method perform nearly identical to kurtosis based parallel FastICA. However, in terms
of reaching convergence and computation time on the presented problem both methods are
shown to be superior to FastICA. Due to the QRT having a lower per iteration cost and the
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fixed-point CPD method needing fewer iterations to reach convergence. For the latter it is
shown that for higher values of P >> 4 it keeps converging within a fixed-amount of iterations
while both QRT and FastICA struggle to do so. The gradient-based first-order approach does
not perform well relative to the other methods which is in line with results from literature.

The implicit HOSVD and GEVD methods and their variants show similar or identical per-
formance in solving the BSS with respect to their explicit counterparts. However, when used
as an initialization for the iterative algorithms the HOSVD based methods proved to be su-
perior in terms of estimation improvement. Conversely, the GEVD methods are shown to
deteriorate performance at varying levels. The asymmetry and the non-orthogonality of the
solution they produce is stated to be counterproductive in aiding ICA algorithms. It was
shown that computing the implicit HOSVD and GEVD based decompositions comes at the
price of poorer scaling with the amount of mixtures P . Effectively this means a trade-off is
made between computational cost and storage cost.

To answer the research question and sub-questions, implicit decomposition of the cumulant
tensor can solve the BSS problem at storage and computational costs equivalent to that of the
state-of-the-art FastICA whilst converging faster. The presented partial computation scheme
allows for efficient and selective computation of the cumulant tensor entries necessary for
updating the current estimate of the mixing matrix.

6-2 Recommendations for Future research

Based on the theoretical and numerical results of this thesis we suggest several topics for
future research as we believe they show potential.

In depth performance analysis of the presented methods for ICA The numerical experi-
ment in which the algorithms are tested in solving BSS served as but a proof of concept. In
order to better understand the performance of the presented fixed-point CPD and QR-Tensor
algorithm (QRT) algorithms for ICA and how they measure up to FastICA a more extensive
experiment must be performed. As was mentioned before, we increased the amount of mix-
tures while our experiment only contained 4 source signals. The estimation performance and
convergence behavior of the algorithms may be different for problems containing more latent
source components. Our results do not exclude whether the faster convergence of the QRT
and fixed-point CPD methods is only due to the relatively low amount of source components
present P = 4. Moreover, we only considered a symmetric BSS problem were the amount
of estimated components R is equal to the amount of mixtures P . Our algorithms allow for
the estimation of fewer components than mixtures used. It is unclear whether performance
changes when doing so. We suggest that a scalable BSS experiment should be performed such
that the effects of varying amounts of source components can be studied together with the
asymmetric case P > R.

Furthermore, the latent source components we used are simple for the reason of being able
to easily identify whether an estimation can be considered as successful or not. However, in
real-life the source components can be a lot more complex and are not so easily identifiable
from each other. In order to truly benchmark the performance of our methods we suggest
that they should be tested on a BSS problem with real practical signals of which the solutions
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are known. For example, separate audio signals or vectorized images can be used as source
components.

Lastly, the non-iterative HOSVD and GEVD based methods were used for the computation
of initial estimates. Our results suggest that the implicit HOSVD can improve estimation
results of other iterative algorithms. However, it is unclear whether this benefit remains
when problem size is increased. We suggest to take this into the same scalable experiment
mentioned above. We advise that before doing so, a faster implementation of the implicit
HOSVD algorithms is coded which circumvents part or all of the overhead cost caused by
Python as was described in chapter 5.

Implicit CPD algorithms All of our derived algorithms for computing the cumulant tensor
CPD have been tested for their performance of performing BSS. However, the performance
of their original intended use of computing a CPD has never been explored. Computing
the CPD allows for a compressed format of the cumulant tensor which can be desirable
if its values are often needed. Good CPD performance does not necessarily imply a good
ICA performance. As such, our results do not illustrate whether the implicit Canonical-
Polyadic-Generalized-Eigenvalue-decomposition (CP-GEVD) and first-order CPD methods
are adequate competitors for computing the cumulant tensor CPD. For ICA the factor
matrices were constrained to be orthogonal. However we believe that this orthogonality
constraint is not beneficial in CPD estimation. We suggest to test the implicit GEVD and its
variants, the first-order gradient CPD and first-order fixed-point CPD on their performances
of computing the cumulant tensor CPD.

QRT algorithm The true purpose of the novel QRT algorithm we presented is the simulta-
neous diagonalization of a symmetric tensor’s top outer-slices. While writing this thesis we
did not find any literature which presents a similar process, nor have we found any cases in
which it is shown that this outer-slice diagonal form is desired. We used the algorithm for the
approximate diagonalization of the cumulant tensor as the structure it introduces into the
cumulant tensor resulted in approximately independent components. It is not unimaginable
that the unique structure it introduces can have other uses too. However, instead of looking
for potential use-cases, we suggest that the algorithm and its workings should be further
studied. We hypothesized that its working principle and convergence are closely intertwined
with that of the QR-algorithm for matrices. As such, we believe it is of interest to understand
what the unique structure QRT introduces into a tensor signifies mathematically.

On top of that, the algorithm was shown to converge fast for low values of P but struggled
at higher values of P . The QR-algorithm for matrices can be sped up by applying what is
known as a shift [73][74][75]. The QRST algorithm from [72] which has a lot of similarity to
the QRT algorithm uses a shift for faster convergence too. This raises the question whether
the convergence of QRT can be sped up too using a shift and whether this results in better
estimation performance.

Lastly, it is desirable to prove general convergence of the QRT algorithm if it exists in the
first place. Many shifted versions of the QR-algorithm for matrices have never been proven
to always converge while no counter-examples have been found either. Proving convergence
of the QRT algorithm will most likely prove to be difficult to say the least. Nevertheless,
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further investigation of the QRT algorithm may open new doors in our understanding of how
bi-linear algebraic methods such as QR-decomposition work with multi-linear objects.

Combining implicit tensor decomposition with diagonalization methods In this thesis we
only studied how implicit tensor decomposition of the cumulant tensor which simultaneously
diagonalizes it can be used for ICA. However, there are many other tensor decomposition
formats. Many of them allow for compression of a tensor, i.e., (approximately) representing
the full tensor with fewer values. It is unclear whether other specific tensor decomposition
formats can aid algebraic diagonalization methods such as the COM2 algorithm. As such,
we recommend the exploration of other decomposition formats in combination with algebraic
ICA algorithms.

Group-method with FastICA Instead of pitting the algorithms against each other, they
can be used together as a group-method. Literature shows that group-methods provide in
general the most reliable results as they have a robust performance. The most commonly
used group-method is one in which the FastICA algorithm is run multiple times with varying
settings and initial conditions after which the results are clustered and combined to form the
final estimate. When using varying ICA methods the problem group-methods have is that
the whole process is bottle-necked by its slowest ICA algorithm. However, our presented
algorithms will most likely not be the bottleneck. For this reason we suggest experimenting
with a group-method of only the QRT or fixed-point CPD methods and a group-method of
said methods combined with FastICA.
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Appendix A

Statistics

In this appendix several general definitions related to moments and cumulants are presented.

A-1 Derivation of moments and cumulants

How cumulants are found follows the same method of how moments are derived using the
moment generating function (mgf). This section briefly outlines this process. Any formal
and extensive proof can either be found in the appendix or is left out entirely due to its
complexity.

Moment generating function The probability distribution of a random variable x can be
fully defined using a complex function named the Characteristic function (CF). The first CF
is defined as the continuous Fourier transform of the probability density function px(x):

φ(ω) = E[eiωx] =
∫ ∞

−∞
e(iωx)px(x)dx (A-1)

where i represents the imaginary unit
√
−1. By expanding the first CF into its Taylor series

an expression is derived of which the coefficients of the infinite sum are the earlier presented
statistical moments, hence the name moment generating function.
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Definition I: Moment generating function (mgf)

The moment generating function is defined as the Taylor series expansion of
the first characteristic function φ(ω) from (A-1):

φ(ω) =
∫ ∞

−∞

( ∞∑
k=0

xk(iω)k

k!

)
px(x)dx =

∞∑
k=0

E[xk] (iω)k

k! , (A-2)

where the expansion coefficients are given by the statistical moments E[xk]. In other
words, evaluating the derivatives of the mgf at zero gives the statistical moments:

dnφ(ω)
dωn

∣∣∣∣
ω=0

= E[xn]. (A-3)

Cumulant generating function The second characteristic function is defined as the natural
logarithm of the first characteristic function from (A-1):

ϕ(ω) = ln(φ(ω)) = ln(E[eiωx]). (A-4)

As the first characteristic function can be used to fully define a probability distribution of a
random variable x, its natural logarithmic transformation inherently has the same property.
However, due to this transformation the Taylor series expansion of (A-4) can be used to
obtain the cumulants of a probability distribution which exhibit some interesting properties
which moments do not share, especially in the higher-order case. The first three cumulants
are directly related to the first 3 central moments, but from the fourth cumulant on this is
not directly the case anymore. Instead, the fourth cumulant is related to the excess kurtosis
presented before.
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Definition II: Cumulant generating function (cgf)

The cumulant generating function is defined as the Taylor series expansion of
the second characteristic function ϕ(ω) from (A-4):

ϕ(ω) =
n∑

k=0
κk

(iω)k

k! . (A-5)

By evaluating the derivatives of the cumulant generating function (cgf) at 0 the
cumulants κ of the probability distribution are obtained:

κk = (−i)k dkϕ(ω)
dωk

∣∣∣∣∣
ω=0

. (A-6)

The first cumulant of a random variable x is equal to the mean of x:

κ1 = E[x] = mx. (A-7)

The second cumulant equals the second central moment of x:

κ2 = E[(x−mx)2] = σ2. (A-8)

The third cumulant is equal to the third central moment of x:

κ3 = E[(x−mx)3]. (A-9)

A-2 Moments

Moments are measures that describe a function in a quantitative way. When such a func-
tion describes a probability distribution, these moments represent statistical quantities of a
distribution such as mean, variance, skewness and kurtosis depending on whether they are
centralized or standardized.

Definition III: Statistical moments

The j’th moment of a random variable x’s probability distribution, is denoted as the
expectation of x to the power j which is equal to the following integral:

µj = E
[
xj
]

=
∫ ∞

−∞
ξjpx(ξ)dξ, (A-10)

where px(x) denotes the probability density function of x.

The first moment of a random variable x is called the mean mx of that variable. In
vector form this can be denoted as the mean vector mx:

mx = E [x] =
∫ ∞

−∞
ξpx(ξ)dξ, (A-11)
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From the ordinary statistical moments the mean represents a measure of where a distribution
is located. It can be used to centralize a distribution such that other characteristics of a
distribution around its mean can be found which are suitably named: central moments.

A-2-1 Central moments

Central moments offer a more meaningful characterization of a distribution as they represent
measurable quantities of said distribution around its mean. This means these quantities can
be used to describe a distributions shape around its center.

Definition IV: Central moments

The j’th central moment of a random variable x’s probability distribution about the
random variable’s mean, is denoted as the j’th moment of the mean mx subtracted
from x prior to taking the expectation:

αj = E
[
(x− µ1)j

]
=
∫ ∞

−∞
(ξ −mx)j px(ξ)dξ. (A-12)

The first central moment of a random variable x equals 0 as the mean is subtracted
from itself:

α1 = E [x−mx] = E [x]−mx = 0. (A-13)

The second central moment of a random variable x is called the variance:

α2 = E
[
(x−mx)2

]
= σ2 (A-14)

which is equal to the standard deviation σ squared.

A-2-2 Standardized moments

In order to be able to properly compare distributions, moments can be standardized. Stan-
dardizing moments renders them scale invariant which means that when scaled by some factor
the distribution they represent does not change shape.

Definition V: Standardized moments

A standardized version of a central moment aj is identical to said moment normal-
ized through some expression of the standard deviation which renders the moment
scale invariant. The standardized central moment of degree k is denoted as:

αk = αk

σk
. (A-15)

By centralizing and standardizing moments many expressions can be simplified as terms
consisting of the mean are eliminated and unit variance allows for direct comparison of dis-
tributions. As is shown later on in this review through whitening of data, this is beneficial
for solving the Blind Source Separation (BSS) problem.

P. Denarié Master of Science Thesis



Appendix B

Independent Component
Analysis (ICA)

This appendix chapter contains additional elaboration on the varying type of ICA models and
the problem’s properties. Moreover, the derivation of the computaitonal cost of the cumulant
tensor is shown, the derivation of the computational cost of the COM2 algorithm is shown
and a short explanation on binomial coefficients is shown.

B-1 Mixture models

In [17] the Blind Source Separation (BSS) problem is clearly defined as the retrieval of
the original source signals s = (s1, s2, . . . , sN )T ∈ RN from a set of observed signals x =
(x1, x2, . . . , xP )T ∈ RP which are directly related to each other through a mixture model A
shown in definition B-1. The source signals are latent variables which means that they cannot
be directly observed [105].

Definition B.1: Mixture model A [17]

A mixture model consists of a mapping A which maps a set of source signals
s = (s1, s2, . . . , sN )T ∈ RN to a set of output signals x = (x1, x2, . . . , xP )T ∈ RP :

x = A (s) . (B-1)

Solving the BSS problem amounts to identifying the inverse mapping of the mixture process Q
such that the source components can be found through s = Q (x). Occasionally information
on the mixture model can be inferred from the context of the problem at hand. For example,
crosstalk which is typically encountered in multi-user communication systems such as by
phone carriers, is when the signals of several mobile users on the same frequency channel
interfere with each other causing co-channel interference (CCI). Due to the different spatial
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origins of the signals it is natural to think of the mixture as a weighted sum of the individual
signals where each weight simply reflects the relative distance of its corresponding signal.

However, such simple to interpret prior knowledge about the mixing model A is not always
available. Therefore preliminary assumptions have to be made about the mapping’s structure.
These assumptions boil down to whether the mixing model is stationary, linear or nonlinear
and whether the problem is over- or under-determined.

B-1-1 Stationary problem

The BSS problem is considered stationary when the mapping A does not change during
sampling intervals.

Definition B.2: Stationary Mixture Model

A mixture model is stationary if its mapping A is independent of the time of
sampling:

A(t) = A ∀t, (B-2)

where t represents the sampling index.

For non-stationary mixtures this mapping is dynamic and behaves differently during different
sampling intervals. In many cases it can be assumed that this dynamic behaviour is a function
related to time [106] [107] [108] but non-monochromatic mappings in the time-frequency
domain have been identified too [12].

B-1-2 Overdetermined problem

The BSS problem is overdetermined whenever the amount of sources to be identified is smaller
than or equal to the amount of observed signals N ≤ P . This condition is in many cases
necessary if the inverse transformation of the mapping A is used to recover the source signals
s. For linear mixture models this means that if N < P , in most cases the observed data x
is first to be projected onto a subspace with N dimensions after which the mixing matrix A
can be inverted to obtain the reconstructed source components. Alternatively if the mixing
matrix A ∈ RP ×N is semi-orthogonal so AT A = I with identity I ∈ RN×N , then its transpose
can simply be used to unmix the signals.

B-1-3 Underdetermined problem

The undetermined case is given when the amount of components to be estimated is more
than the amount of observed mixtures P > N . This makes the problem significantly more
difficult. Additional assumptions on data sparsity [109][110][22][111] or specific conditions on
the sensors [24] can ease the problem to some degree.
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B-2 Mixture models

As was mentioned before, to find a solution the BSS problem a mixing model must be se-
lected for the mapping A from (B-1) which can be either linear or nonlinear. Both linear
and nonlinear models are classified in literature as one of 2 types [17][5]: instantaneous or
convolutive. The research presented in this thesis concerns itself with a linear instantaneous
model.

Linear model When the mixture is assumed to be linear the observed signals x are considered
as a linear combination of the source signals s.

Definition B.3: Linear Mixture model A

For a linear mixture model the set of output signals x = (x1, x2, . . . , xP )T ∈ RP

consist of a weighted sum of the source signals s = (s1, s2, . . . , sN )T ∈ RN :

x = As, (B-3)

where the mapping A is a P ×N matrix of which its entries {ai,j ∀i ∈ P, j ∈ N} are
scalar values denoting the weight coefficients of the mixture.

The linear model has been widely covered already in literature [17][21][22] and a diverse range
of solutions and frameworks [21][25][15][26][27] already exist to the problem each with its own
pro’s and con’s for particular use-cases.

Instantaneous mixtures An instantaneous mixture is one where the observed signals are a
combination of the source signals at the exact same time when measured.

Definition B.4: Instantaneous Mixture

For an instantaneous mixture model the set of output signals x(t) is dependent
only on the source signals s(t) at the same sampling index:

x(t) = A (s(t)) . (B-4)

Nonlinear models In contrast to the linear model, the nonlinear mixture models have not
been as thoroughly researched yet mainly due to the increase in problem complexity and
the wide range of possible nonlinearites. However, motivated by their associated application
fields, advances in linear-quadratic [112][113] and post-nonlinear mixture models [114][115]
have been made the past 2 decades and even attempts at generalizing the nonlinear framework
have been made [17][21][116][117].
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Convolutive mixtures In contrast to instantaneous mixtures, convolutive mixtures are de-
pendent on values at multiple sampling indices. In definition ?? the linear convolutive model
is defined.

Definition B.5: Convolutive Mixture

For a linear convolutive mixture model the set of output signals x(t) is dependent
not only on the current value at index t of the source signals s(t), but on past values
up to t−K too. This is denoted as:

x(t) =
N∑

j=1

K∑
k=0

hij(k) · sj(t− k), (B-5)

where K denotes the amount of past samples and hij(k) represent the coefficients of
the Multi-Input-Multi-Output (MIMO) linear mixing filters [5].

General approaches for convolutive mixtures have already been covered in literature [118][17]
although most recent works focus on application specific cases [18][19].

Combinations of the described models exist as for example the complex post-nonlinear con-
volutive model [119] which apply a nonlinear distortion on the convolutive model of B.5.
However, the use of such complex models is highly unconventional and is predominantly seen
in cases when all other less complex models fail.
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B-3 Computational cost of cumulant tensor

Step Computational cost Remark

E [xi1xi2xi3xi4 ] = 1
I ·
(∑I

l=1
∏4

k=1 xik
(l)
)

O(3IP 4)→ O(IP 4) -
E [ximxin ] = 1

I ·
(∑I

l=1 xim(l)xin(l)
)
∀m, n ∈ {1, 2, 3, 4} O(IP 2) zero mean

E [ximxin ] ◦ E [ximxin ] O(P 4) zero mean
total asymptotic: O(IP 4)

B-4 Derivation of complexity COM2 algorithm

Step Computational cost Remark

Polynomial root finding O(1)
Accumulation of rotations O(P 3)
Tensor update O(4P 5)
Final unmixing O(IP 2)
Total asymptotic cost: O(P 5)

B-5 Binomial coefficients

The binomial coefficients denoted as
(

n
k

)
, represent the coefficients of the xk terms in the

polynomial expansion of the binomial power (x + 1)n, and is computed as
(

n
k

)
= n!

k!(n−k)! .
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Appendix C

Tensor decomposition for ICA

This appendix chapter contains the derivation of computational complexities, referenced al-
gorithms, additional numerical results, the derivation of the implicit fixed-point CPD cost
function and guidelines for use of our presented methods with other statistical tensors. Fur-
thermore, one of our earliest attempts of integrating a rank-one constraint on tensorial data
into the first-order implicit Canonical Polyadic Decomposition (CPD) problem is shown. We
wrote out the full problem and its gradients but abandoned it early on during the making of
this thesis as it was deemed to be to far out of the scope of this thesis.
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C-1 HOSVD

Algorithm 7 shows how to compute the Higher-Order Singular Value Decomposition (HOSVD)
of a tensor in pseudocode. The columns of the factor matrices are the left singular vectors of
the subspaces of X .

Algorithm 7 HOSVD
Require: N-dimensional tensor:X ∈ RI1×I2×...×IN

1: procedure HOSVD(X )
2: for n = 1, . . . , N do
3: U(n) ←left singular vectors of X(n)
4: end for
5: G ← X ×1 U(1)T ×2 U(2)T . . .×N U(N)T

6: return G, U(1), . . . , U(N)

7: end procedure

C-2 Time complexity implicit HOSVD

Step Computational cost Remark

Initial SVD O(P 3)
cost per SVD-update O(P 2(log(P ))2))
Slice computation cost O(I + IP + IP 2)
Total cost: O(P (P − 1)(I + IP + P 3(log(P )2))) Exploiting slice symmetry

+ O(P 3 + IP 3(P +1)
2 )
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C-3 SVD-update lemma

The core Singular-Value-Decomposition (SVD)-update method utilized by the Iterative-implicit-
HOSVD algorithm is presented in [66]. To update an already existing SVD of square matrix
M1 = UΣVT with vector a z, the algorithm exploits the properties in lemma C.1 shown
below.

Lemma C.1: [120]

Let UΣVT be the SVD of M ∈ RP ×P and let U′
[

Σ′ 0
]T

V′T be the SVD of

M′ =
[

Σ zT
]T
∈ RP +1×P with:

Σ = diag(σ1, . . . , σP ), Σ′ = diag(σ′
1, . . . , σ′

P

U′ =
[

u′
1 . . . u′

P u′
P +1

]
, V′ =

[
v′

1 . . . v′
P

] (C-1)

where 0 ≤ σ1 ≤ . . . ≤ σP and 0 ≤ σ′
1 ≤ . . . ≤ σ′

P .
Then

M′T M′ = Σ2 + zzT = V′Σ′2V′T . (C-2)

is the eigendecomposition of M′T M′ with the corresponding secular equation:

F(σ′) = 1 +
n∑

i=1

z2
i

σ2
i − σ′2 = 0 (C-3)

and the singular values {σi}Pi=1 satisfy the interlacing property:

0 ≤ σ1 ≤ σ′
1 ≤ . . . ≤ σP ≤ σ′

P ≤ σP + ||z||2. (C-4)

The corresponding singular vectors satisfy:

u′
j =

(
σ1z1

σ2
1 − σ′

j
2 , . . . ,

σP zP

σ2
P − σ′

j
2 ,−1

)T

/

√√√√√1 +
P∑

i=1

σ2
i z2

i(
σ2

i − σ′
j
2
)2 ,

u′
P +1 =

(
z1
σ1

, . . . ,
zP

σP
,−1

)T

/

√√√√1 +
P∑

i=1

z2
i

σ2
i

,

v′
j =

(
z1

σ2
1 − σ′

j
2 , . . . ,

zP

σ2
P − σ′

j
2

)T

/

√√√√√ P∑
i=1

z2
i(

σ2
i − σ′

j
2
)2 ,

(C-5)

where j = 1, . . . , P .

Lemma C.1 shows that the singular values of an appended matrix can be updated by finding
the roots σ′ of the secular equation (C-2) 1. Afterwards, the updated singular vectors can

1The secular equation, also known as the characteristic polynomial of a square matrix, is a polynomial
which has the eigenvalues of the square matrix as its roots.
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be easily computed using the newly found singular values. The roots of the secular function
are found using the Fast Multipole method (FMM) proposed in [67][68]. For more in-depth
information on the FMM the reader is directed to said references. The used implementation
2 of this method contains several alterations and additional techniques presented in [70] and
[71] which allow for a faster computation of sequential updates at a computational cost of
O(P 2(log(P )2) per update.

The algorithm is initialized with the SVD of the first frontal slice X (:, :, 1) after which the
SVD is updated P (P − 1) times with the P (P − 1) remaining columns. The matrix VT

containing the right singular vectors increases in size according to the size of the appended
decomposed matrix. However, the equations (C-5) in lemma C.1 show that only the previous
Σ and updated singular values Σ′ are needed to update the singular vectors which results in
only the singular values needed to be stored at a cost of O(P ).

2The implementation together with associated literature can be found in [69].
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C-4 QR: Householder reflection matrices

Below the House-holder reflection matrices algorithm for performing QR-decomposition is
shown.

Algorithm 8 Householder reflections QR

Require: Matrix: A =
[

a1 a2 . . . aN

]
∈ RM×N with M ≥ N

1: procedure HhR-QR(A)
2: A′ = A
3: for m = 1, . . . , t = min(M − 1, N) do
4: p = 1
5: |α| = ||a′

m||, sign(α)← − sign(ap
m), a′

m
p is pivot point in vector am

6: em =
[

1 0 . . . 0
]T
∈ RM+1−m

7: u = a′
m − αem

8: v = u
||u||

9: Q′
m = IM+1−m − 2vvT

10: R′ = Q′
mA′ =


αm ⋆ . . . ⋆
0
... A′

0

 ∈ RM+1−m×N+1−m, A′ ∈ RM−m×N−m

11: if m = 1 then
12: Q1 = Q′

13: else if m ≥ 2 then

14: Qm =
[

Im−1 0
0 Qm

]
∈ RM×M

15: end if
16: end for
17: Q = QT

1 QT
2 · · ·QT

t

18: R = QT A
19: return Q, R
20: end procedure
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C-5 Comparison of QRT with QR-algorithm on a symmetric matrix

Figure C-1 shows the behavior of the entries on the diagonal of an outer slice of a symmetric
tensor when applying the QRT algorithm. The absolute values are taken. These are the exact
same values from the example in the main text.

Figure C-1: Absolute values of d: |di| ∀i = 1, 2, 3, 4, 5 during the QRT procedure on the top
outer-shell. Only the first 10 iterations are shown.

The behavior of these values shares a lot of similarity with the behavior of the diagonal entries
of a matrix during the QR-algorithm. For example, let the matrix M ∈ R5×5 be sampled
from a normal distribution with variance 1 and multiplied with itself to make it symmetrical:

MT M =


10.717 −1.183 −0.2913 6.071 −3.122
−1.183 5.837 1.613 0.9582 1.990
−0.2913 1.613 2.349 1.596 5.241

6.071 0.9582 1.596 5.696 2.245
−3.122 1.990 5.241 2.245 9.735

 . (C-6)

The absolute values on the diagonal of MT M during the QR-algorithm are shown in Figure C-
2. We state for clarity that the final resulting values on the diagonalof the outer-slices are
not equivalent to its eigenvalues.

Figure C-2: Absolute values of d: |di| ∀i = 1, 2, 3, 4, 5 during the QR-algorithm on a symmetric
matrix M.
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C-6 Proof of lemma identity outer product transformation

In this section we present the proof of the following lemma used in the main text.

Lemma C.2: Identity outer-product transformation

The mode-n product of the outer-product of 2 identity matrices with the matrix M
is equivalent to multiplying the n’th dimension in the outer-product sequence with M:

(IP ◦ IP )×1 M = (MIP ) ◦ (IP ) , (IP ◦ IP )×2 M =
(
IP MT

)
◦ (IP )

(IP ◦ IP )×3 M = (IP ) ◦ (MIP ) , (IP ◦ IP )×4 M = (IP ) ◦
(
IP MT

)
.

(C-7)

Using the definition of tensor indices of a sequence of outer-products we define the following
equality:

(IP ◦ IP ) (p1, p2, p3, p4) = (IP (p1, p2) ◦ IP (p3, p4)) . (C-8)

Next we use the index notation from the mode-n matricization with IP ∈ RP ×P :

(IP ◦ IP ) (p1, p2, p3, p4) = (IP ◦ IP )(1) (p1, (p4 − 1) · P 2 + (p3 − 1) · P + p2). (C-9)

Following the index notations from above the mode-1 matricization can be fully written out
as:

(IP ◦ IP )(1) =
[

IP · IP (1, 1) . . . IP · IP (P, 1) IP · IP (1, 2) . . . IP · IP (P, P )
]

. (C-10)

Using the mode-n product definition:

(IP ◦ IP )×1 M = M (IP ◦ IP )(1)

= M
[

IP · IP (1, 1) . . . IP · IP (P, 1) IP · IP (1, 2) . . . IP · IP (P, P )
]

=
[

MIP · IP (1, 1) . . . MIP · IP (P, 1) MIP · IP (1, 2) . . . MIP · IP (P, P )
]

(C-11)

The last line of (C-12) can be reversed with the mode-1 matricization definition in (C-9) and
results in:

[
MIP · IP (1, 1) . . . MIP · IP (P, 1) MIP · IP (1, 2) . . . MIP · IP (P, P )

]

= (IP ◦ IP )×1 M = (MIP ) ◦ (IP ) ,

(C-12)
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meaning that we have proven:

(IP ◦ IP )×1 M = (MIP ) ◦ (IP ) . (C-13)

For all other modes the same reasoning can be applied. This is left to the reader.

C-7 CP-GEVD

This section shows the Canonical-Polyadic-Generalized-Eigenvalue-decomposition (CP-GEVD)
algorithm presented in [99].

Algorithm 9 CPD-GEVD
Require: N-dimensional tensor: T ∈ RP1×P2×...×PN , rank: R, machine epsilon: ϵ

1: procedure CPD-GEVD(T )
2: HOSVD of T → [[G; U1, . . . , UN ]], store mode-n singular values as: Sn

3: for n = 1, . . . , N do
4: δn = max(Pn,

∏N

i=1 Pi

Pn
) · ϵ

5: P ′
n = Column-rank-truncation (Sn, δn)

6: end for
7: Sort on descending order: (P ′

1, . . . , P ′
N )← σ (P ′

1, . . . , P ′
N ), permutation indices: σ

8: permute: G(i1, . . . , iN )← Gσ(i1, . . . , iN ),
(
U1, . . . , UN

)
← σ

(
U1, . . . , UN

)
9: P ′

i ← min (P ′
i , R) ∀i = {1, 2}, P ′

2 = 2, P ′
j = 1 ∀i = {3, . . . , N}

10: Truncate: U1′ = U1(:, 1 : P ′
1)

11: create slices:
12: G1 = G(1 : P ′

1, 1 : P ′
2, 1, P ′

4 . . . , P ′
N ), G2 = G(1 : P ′

1, 1 : P ′
2, 2, P ′

4 . . . , P ′
N )

13: GEVD of pencil: (G1, G2)→ λ, V
14: Matricize: T → T(1)
15: Project inwards: X = TT

(1)U1′V
16: for r = 1, . . . , R do
17: X ← reshape(X(:, r), [P2, . . . , PN ])
18: HOSVD of X → [[GX ; U1

X , . . . , UN−1
X ]]

19: Ui
out(:, r) = Ui−1

X (:, 1) ∀i ∈ {2, . . . , N}
20: end for
21: K = UN

out ⊙UN−1
out ⊙ . . .⊙U2

out

22: U1
out = T(1)

(
KT

)†

23: Normalize factors:
24: for r = 1, . . . , R do
25: Ui

out(:, r)← Ui
out(:,r)

||Ui
out(:,r)||22

· N

√
||U1

out(:, r)||22 · . . . · ||UN
out(:, r)||22 ∀i = {1, 2, . . . , N}

26: end for
27: return [[G; U1

out, . . . , UN
out]]

28: end procedure
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C-8 Derivation of full fourth-order cumulant tensor expression

E [xi1xi2xi3xi4 ] = 1
I
·
(

I∑
l=1

4∏
k=1

xik
(l)
)

Full tensor−−−−−−→M(4)
x = E

[
x⊗4

]
= 1

I
·
(

I∑
l=1

x(ℓ)⊗4
)
(C-14)

E [ximxin ] = 1
I
·
(

I∑
l=1

xim(l)xin(l)
)

Full tensor−−−−−−→ C(2)
x = E

[
x⊗2

]
= 1

I
·
(

I∑
l=1

x(ℓ)⊗2
)

(C-15)

E [xi1xi2 ]E [xi3xi4 ] Full tensor−−−−−−→ E
[
x⊗2

]
◦ E

[
x⊗2

]
= C(2)

x ◦C(2)
x (C-16)

E [xi1xi3 ]E [xi2xi4 ] Full tensor−−−−−−→
(
E
[
x⊗2

]
◦ E

[
x⊗2

])T σ
=
(
C(2)

x ◦C(2)
x
)T σ

with σ = {1, 3, 2, 4}
(C-17)

E [xi1xi3 ]E [xi2xi4 ] Full tensor−−−−−−→
(
E
[
x⊗2

]
◦ E

[
x⊗2

])T σ
=
(
C(2)

x ◦C(2)
x
)T σ

with σ = {1, 4, 3, 2}
(C-18)

C-9 Derivation of computational complexity of cumulant TTSV
data form

The derivaiton of the computational complexity of:

yr = C(4)u4
r = XDI

[
XT ur

]3
− 3

(
zT [DI ]2 z

)
Xz with z = XT u, (C-19)

is shown in the table below. Remember, the steps are performed successively so all terms in
the rows above have already been computed.

Step Computational cost Remark

z = XT u O(IP )
Xz O(PI)
[DI ]2 O(I)
zT [DI ]2 O(I2)
zT [DI ]2 z O(I)(
zT [DI ]2 z

)
Xz O(P )

Total asymptotic cost: O(IP )
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C-10 Derivation of cost function for implicit CPD of cumulant
tensor

min
λ,U

f(λ, U) ≡ ∥C(4)
x − Ĉ(4)

x ∥2 s.t. Ĉ(4)
x ≡

R∑
r=1

λru◦4
r (C-20)

∥C(4)
x − Ĉ(4)

x ∥2 = ∥C(4)
x ∥2 + ∥Ĉ(4)

x ∥2 − 2⟨C(4)
x , Ĉ(4)

x ⟩ (C-21)

∥Ĉ(4)
x ∥2 = ⟨Ĉ(4)

x , Ĉ(4)
x ⟩ =

R∑
r=1

R∑
s=1

λrλs

〈
u◦4

r , u◦4
s

〉
=

R∑
r=1

R∑
s=1

λrλs ⟨ur, us⟩4

=
R∑

r=1

R∑
s=1

λr

[
uT

r us

]4
λs = λT

[
UT U

]4
λ

(C-22)

∥C(4)
x ∥2 = ⟨C(4)

x , C(4)
x ⟩ =

⟨M(4)
x ,M(4)

x ⟩ − ⟨M(4)
x , C(2)

x ◦C(2)
x ⟩

− ⟨M(4)
x ,

(
C(2)

x ◦C(2)
x
)T σ1
⟩ − ⟨M(4)

x ,
(
C(2)

x ◦C(2)
x
)T σ2
⟩

− ⟨C(2)
x ◦C(2)

x ,M(4)
x ⟩+ ⟨C(2)

x ◦C(2)
x , C(2)

x ◦C(2)
x ⟩

+ ⟨C(2)
x ◦C(2)

x ,
(
C(2)

x ◦C(2)
x
)T σ1
⟩+ ⟨C(2)

x ◦C(2)
x ,

(
C(2)

x ◦C(2)
x
)T σ2
⟩

− ⟨
(
C(2)

x ◦C(2)
x
)T σ1

,M(4)
x ⟩+ ⟨

(
C(2)

x ◦C(2)
x
)T σ1

, C(2)
x ◦C(2)

x ⟩

+ ⟨
(
C(2)

x ◦C(2)
x
)T σ1

,
(
C(2)

x ◦C(2)
x
)T σ1
⟩+ ⟨

(
C(2)

x ◦C(2)
x
)T σ1

,
(
C(2)

x ◦C(2)
x
)T σ2
⟩

− ⟨
(
C(2)

x ◦C(2)
x
)T σ2

,M(4)
x ⟩+ ⟨

(
C(2)

x ◦C(2)
x
)T σ2

, C(2)
x ◦C(2)

x ⟩

+ ⟨
(
C(2)

x ◦C(2)
x
)T σ2

,
(
C(2)

x ◦C(2)
x
)T σ1
⟩+ ⟨

(
C(2)

x ◦C(2)
x
)T σ2

,
(
C(2)

x ◦C(2)
x
)T σ2
⟩

(C-23)

Due to symmetry:

⟨M(4)
x , C(2)

x ◦C(2)
x ⟩ = ⟨M(4)

x ,
(
C(2)

x ◦C(2)
x
)T σ1
⟩ = ⟨M(4)

x ,
(
C(2)

x ◦C(2)
x
)T σ2
⟩

⟨M(4)
x , C(2)

x ◦C(2)
x ⟩ = ⟨C(2)

x ◦C(2)
x ,M(4)

x ⟩

⟨C(2)
x ◦C(2)

x , C(2)
x ◦C(2)

x ⟩ = ⟨
(
C(2)

x ◦C(2)
x
)T σ1

, C(2)
x ◦C(2)

x
T σ1⟩

= ⟨
(
C(2)

x ◦C(2)
x
)T σ2

,
(
C(2)

x ◦C(2)
x
)T σ2
⟩

⟨
(
C(2)

x ◦C(2)
x
)T σ1

, C(2)
x ◦C(2)

x ⟩ = ⟨
(
C(2)

x ◦C(2)
x
)T σ1

,
(
C(2)

x ◦C(2)
x
)T σ2
⟩

= ⟨
(
C(2)

x ◦C(2)
x
)T σ2

, C(2)
x ◦C(2)

x ⟩

(C-24)
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∥C(4)
x ∥2 = ⟨C(4)

x , C(4)
x ⟩ =

⟨M(4)
x ,M(4)

x ⟩ − 6⟨M(4)
x , C(2)

x ◦C(2)
x ⟩

+ 3⟨C(2)
x ◦C(2)

x , C(2)
x ◦C(2)

x ⟩

+ 6⟨
(
C(2)

x ◦C(2)
x
)T σ1

, C(2)
x ◦C(2)

x ⟩

(C-25)

1 =
[

1 . . . 1
]T
∈ RI (C-26)

⟨
(
C(2)

x ◦C(2)
x
)T σ1

, C(2)
x ◦C(2)

x ⟩ = 1
I4

I∑
i=1

I∑
j=1

I∑
k=1

I∑
l=1
⟨xi, xk⟩ · ⟨xj , xk⟩ · ⟨xi, xl⟩ · ⟨xj , xl⟩

= 1
I4 1T

[
XT XXT X

]2
1

(C-27)

⟨C(2)
x ◦C(2)

x , C(2)
x ◦C(2)

x ⟩ = 1
I4

I∑
ℓ1=1

I∑
k1=1

I∑
ℓ2=1

I∑
k2=1
⟨x◦2

ℓ1 ◦ x◦2
k1 , x◦2

ℓ2 ◦ x◦2
k2⟩

= 1
I4

I∑
ℓ1=1

I∑
k1=1

I∑
ℓ2=1

I∑
k2=1

[
xT

ℓ1xℓ2

]2
·
[
xT

k1xk2

]2
= 1

I
· 1T

[
XT X

]2
1 · 1

I
· 1

I
· 1T

[
XT X

]2
1 · 1

I
, 1 ∈ RI

(C-28)

⟨M(4)
x , C(2)

x ◦C(2)
x ⟩ = 1

I3

I∑
i=1

I∑
j=1

I∑
k=1
⟨xi, xj⟩2 · ⟨xj , xj⟩2

= 1
I3 1T

[
XT X

]2
·
[
XT X

]2
1

(C-29)

⟨M(4)
x ,M(4)

x ⟩ = 1
I2

I∑
i=1

I∑
j=1
⟨xi, xj⟩ = 1

I
· 1T

[
XT X

]4
1 · 1

I
, 1 ∈ RI (C-30)

⟨C(4)
x , Ĉ(4)

x ⟩ = ⟨M(4)
x , Ĉ(4)

x ⟩+ ⟨C(2)
x ◦C(2)

x , Ĉ(4)
x ⟩+ ⟨

(
C(2)

x ◦C(2)
x
)T σ1

, Ĉ(4)
x ⟩

+ ⟨
(
C(2)

x ◦C(2)
x
)T σ2

, Ĉ(4)
x ⟩

(C-31)

⟨C(2)
x ◦C(2)

x , Ĉ(4)
x ⟩ = ⟨

(
C(2)

x ◦C(2)
x
)T σ1

, Ĉ(4)
x ⟩ = ⟨

(
C(2)

x ◦C(2)
x
)T σ2

, Ĉ(4)
x ⟩ (C-32)

⟨C(4)
x , Ĉ(4)

x ⟩ = ⟨M(4)
x , Ĉ(4)

x ⟩ − 3⟨C(2)
x ◦C(2)

x , Ĉ(4)
x ⟩ (C-33)

⟨M(4)
x , Ĉ(4)

x ⟩ =
I∑

i=1

R∑
r=1

1
I

[
xT

i ur

]4
λr = 1

I
1T
[
XT U

]4
λ (C-34)
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⟨C(2)
x ◦C(2)

x , Ĉ(4)
x ⟩ = 1

I2

I∑
i=1

I∑
j=1

R∑
r=1

λr · ⟨ur, xi⟩2 · ⟨ur, xj⟩2

= 1
I2 1T

[
XT U

]2
diag2(λ)

[
UT X

]2
1

(C-35)

Final cost function update is:

∥C(4)
x − Ĉ(4)

x ∥2 = ∥C(4)
x ∥2 + ∥Ĉ(4)

x ∥2 − 2⟨C(4)
x , Ĉ(4)

x ⟩

= 1
I
· 1T

[
XT X

]4
1 · 1

I
− 6 · 1

I3 1T
[
XT X

]2
·
[
XT X

]2
1 + 3 ·

[1
I
· 1T

[
XT X

]2
1 · 1

I

]2

+ 6 · 1
I4 1T

[
XT XXT X

]
1 + λT

[
UT U

]4
λ

− 2 ·
[1

I
1T
[
XT U

]4
λ + 3 · 1

I2 1T
[
XT U

]2
diag2(λ)

[
UT X

]2
1
]

(C-36)
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C-11 Additional low rank assumption for tensorial data

Tensor-based Blind Source Separation (BSS) methods rely on the assumption that patterns
of interest are low in rank which means they can be approximated by decomposing the data
tensor using any low-rank decomposition. Various works and frameworks have been presented
on this topic [15][5][28][29][7].

Theorem C.1: Low-rank assumption

In this section an attempt at introducing a rank-one constraint on tensorial in combi-
nation with the first-order CPD problem for the cumulant tensor is shown.
Let X ∈ RP1×P2×...×PN denote an N -dimensional data array which consists of mixed
components when vectorized are represented as s. Under the assumption that said
source components are low in rank, they can be approximated by decomposing the
tensor into low-rank components.

Using theorem C.1, the source components of a mixture tensor which are assumed to be low
in rank can be found using CPD for example. However, it is noted that when the assumption
is incorrect tensor-based BSS methods fail completely. Alternatively, data can be low in rank
but not in all modes. Therefore, inspection and pre-processing of the data are important steps
one must consider when applying tensor-based BSS methods [5][15]. A different approach is
to combine tensor-based BSS methods with the independence of assumption of Independent
Component Analysis (ICA). This is presented in the following section.

C-11-1 Enforcing statistical independence on multi-dimensional data

Beckmann and Smith propose in [93] a method of analysing the components of multi-dimensional
data by combining the independence and low-rank assumption. Their work is meant specifi-
cally for multi-subject or multi-session functional Magnetic Resonance Imaging (fMRI) data
but can be generalized as follows.

The tensor-pICA algorithm constraints the data to be maximally non-Gaussian in selected
modes. As an example we shall use a third-order tensor X ∈ RP1×P2×P3 which decomposed
with Parallel Factor Analysis (PARAFAC) results in the following model:

X̂ =
R∑

r=1
ar ◦ br ◦ cr, a ∈ RP1 , b ∈ RP2 , c ∈ RP3 . (C-37)

Note that this is identical to a CPD with all weights λr = 1. The factors can be found by
solving the following optimization problem:

min
A,B,C

f(A, B, C) ≡ ∥X −
R∑

r=1
ar ◦ br ◦ cr∥2F

A =
(

a1 . . . aR

)
, B =

(
b1 . . . bR

)
, C =

(
c1 . . . cR

)
.

(C-38)
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By matricizing X(n) and the model from (C-37) along each of its modes the following matrix
product expressions of are obtained:

X̂T
(1) = (C⊙B) AT , X̂T

(2) = (C⊙A) BT , X̂T
(3) = (B⊙A) CT . (C-39)

By fixing any 2 of the matrices such as B and C the problem reduces to a linear least-squares
for which the optimal solution is given by:

AT
opt = [(C⊙B)]† XT

(1)
3 (C-40)

where [M]† denotes the Moore-Penrose or better known as the pseudo-inverse of matrix M.
Alternating Least Squares (ALS) consists of cylically alternating the free matrix in the process
described above. Observe that the equations from (C-44) are in fact linear mixing models
with for example the mixing matrix being the Khatri-Rhao structure (C⊙B) and source
components being AT . The tensor-pICA algorithm exploits this by first estimating (C⊙B)
as a single mixing matrix with conventional ICA methods and afterwards decomposing it into
B and C. This can be done iteratively or by a fully converged ICA estimation which can
be followed by a single decomposition. Either way, the consequent steps in the direction of
independence and the direction of the Khatri-Rhao structure enforce the components to be
statistically independent in the respective set of modes and can be applied to all modes.

The generalization of this method referred to as tensor Independent Component Analysis
(tICA) from now is shown in definition C.1.

Definition C.1: tensor Independent Component Analysis

Tensor ICA is the process of unmixing tensorial data X ∈ RP1×P2×...×PN into its rank-
one source components and constraining the factors in the PARAFAC decomposition:

X ≈
R∑

r=1
v1,r ◦ v2,r ◦ . . . ◦ vN,r, vi,r ∈ RPi ∀i ∈ {1, . . . , N} (C-41)

to be statistically independent in mode n. This is done through decomposition of
M̂ into (VN ⊙ . . .⊙Vn+1 ⊙Vn−1 ⊙ . . .⊙V1) after acquiring the linear mixing matrix
estimate M̂ through ICA:

XT
(n) = MVT

n
ICA−−→ M̂. (C-42)

Although shown that the tICA method manages to obtain better results than just PARAFAC
or ICA for cases such as with fMRI data [93], the algorithm is prone to failure since the
independence step and Khatri-Rhao step have different objectives [121]. Based on [121], this
can be addressed by combining the steps which is shown in the subsequent section for the
previously presented symmetric first-order method.

3A more efficient version of this computation can be performed by rewriting the Khatri-Rhao pseudo inverse
as: A = X(1) (C ⊙ B)

(
CT C ∗ BT B

)† for which the pseudo inverse of an R × R matrix has to be taken as
opposed to P3P2 × R.
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Definition C.2: First-order optimization for symmetric CPD constraint
to rank-one

For data tensor X ∈ RP1×P2×...PN PARAFAC model is:

X̂ ≈
R∑

r=1
vr,1 ◦ vr,2 ◦ . . . ◦ vr,N = [[V1, V2, . . . , VN ]], vr,j ∈ RPj ∀j ∈ {1, . . . , N}

(C-43)
Reshape according to reshaping of data:

X̂T
(n) = (VN ⊙ . . .⊙Vn+1 ⊙Vn−1 ⊙ . . .⊙V1) VT

n = UVT
n (C-44)

with P ′ =
N∏

i=1
i ̸=n

Pi, X̂(n) ∈ RPn×P ′ , U ∈ RP ′×R and Vn ∈ RPn×R.

Create cumulant tensor C(4) ∈ R[4,P ′] from matricized data XT
(n).

Following first-order optimization poblem to find independent components:

min
λ,U

f(λ, U) ≡ ∥C(4) − Ĉ(4)∥2 s.t. Ĉ(4) ≡
R∑

r=1
λru◦4

r , (C-45)

∂f

∂λr
= −2

[
C(4)u4

r −
R∑

k=1
λk ⟨ur, uk⟩4

]
and (C-46)

∂f

∂ur
= −8λr

[
C(4)u3

r −
R∑

k=1
λk ⟨ur, uk⟩3 uk

]
(C-47)

only now the factors are constrained to the following structure:

U = (VN ⊙ . . .⊙Vn+1 ⊙Vn−1 ⊙ . . .⊙V1) ∈ RP ′×R

ur = vN,r ⊗ . . .⊗ vn+1,r ⊗ vn−1,r ⊗ . . .⊗ v1,r ∈ RP ′
.

(C-48)

Now it can be written as a single optimization problem with the following adjusted
gradients:

∂f

∂vj,r
= ∂f

∂ur

∂ur

∂vj,r
∀r ∈ {1, . . . , R}, j ∈ {1, . . . , n− 1, n + 1, . . . , N}, (C-49)

C-12 Higher-order statistical tensors in general

It is briefly discussed here how the presented algorithms can be used for Higher Order Statis-
tics (HOS) tensors in general. The original first-order implicit CPD method was devised to
work with any N ’th-order moment tensor for a random vector z ∈ RP with I samples:

M(4)
z =

I∑
i=1

1
I

z◦N
i . (C-50)
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The key to as why this is possible is the exploitation of the tensor structure. For the implicit
HOSVD, implicit QRT and implicit CP-GEVD algorithms this can be done too. The key
exploit was that frouth-order moment part of the cumulant tensors matricization has a simple
Khatri-rhao structure:

M(4)
(n),z = 1

I
Z(Z⊙ Z⊙ Z)T . (C-51)

This same structure holds true for any N ’th order moment tensor:

M(N)
(n),z = 1

I
Z (Z⊙ . . .⊙ Z)T︸ ︷︷ ︸

N−2 Khatri-rao products

. (C-52)

For the fourth-order cumulant tensor the second-order part was simplified due to whitening.
Cumulant tensors of order ≥ 5 have more complex structures such as for exmample the
fifth-order cumulant:

κ5(X) = E
(
(X − E(X))5

)
− 10E

(
(X − E(X))3

)
E
(
(X − E(X))2

)
. (C-53)

However, structurally these cumulants are always expressible in moment tensors of equivalent
or lower order or in cumulant tensors of lower order. If the reader wants to apply the presented
algorithms on a HOS tensor different than the cumulant tensor, the reader is advised to
perform the following steps:

1. Write out full definition of the HOS quantity and its tensorized version with symmetric
outer-products as in (C-50).

2. Inspect the simplification of terms due to whitening.

3. Write out the mode-n matricization of the used HOS tensor in an expression similar to
(C-52) and check whether the indexing strategy of lemma 4.1 holds true.

4. Replace all instances of tensor slice computation in the desired algorithm with previously
derived matricized expression.

5. Correct the algorithms such that for example the amount of mode-n products and index
notation match tensor order.

There are a few big side notes. First of all, the desired HOS must have the multilinearity
property 3.5 of the cumulant tensor too. Secondly, preliminary investigation of said HOS ten-
sor’s symmetry can lead to varying exploits which are in many cases tensor order dependent.
Lastly, the added benefit of whitening can vary greatly amongst HOS tensors.

This goes to show that using such algorithms on HOS tensors in general requires customization
and exploitation of that particular tensor’s properties.
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Appendix D

Experimental results

In this appendix chapter the process of determining the classification algorithm’s hyper-
parameters is shown. Next to this several additional results of the numerical Blind Source
Separation (BSS) experiment are discussed which have not been used in the main text.

D-1 Classification algorithm and Tolerance determination

The algorithm below is used to determine whether a solution is considered as successful or
failed.

In order to automate the process of determining whether a solution is correct or not, algorithm
10 in appendix D-1 was developed. The ICA Solution Sorting and Evalutation (ICA-SSE)
algorithm first sorts the found solutions based on the order of maximum correlation they
have to the source components and determines afterwards whether the estimated components
match up with source components and sorts them again by looking for the minimal relative
errors between the source components and the estimated components (lines 4 to 13). By
first sorting on maximum correlation and afterwards on minimum error the probability of
finding the correct matching pairs is increased. After sorting, the errors and correlations of
the found components are compared with the tolerances etol and ctol to determine whether
these components are defined as correct.
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Algorithm 10 ICA-SSE

Require: S =
[

sT
1 . . . sT

N

]T
∈ RN×I ,Ŝ =

[
ŝT

1 . . . ŝT
P

]T
∈ RP ×I , Error tolerances:

etol, Correlation tolerances: ctol

1: procedure ICA-SSE(S,Ŝ)
2: List to store indices of Ŝ that match with a source component: Lfound

3: Normalize and center rows of S and Ŝ
4: Sort based on correlation matrix: Lsorted = argmaxcol(CS,Ŝ)
5: for n = 1, . . . , N do
6: for p iterate through Lsorted do
7: if p ∈ Lfound then
8: εp =∞
9: end if

10: εp = min (∥sn − ŝp∥2, ∥sn + ŝp∥2)
11: Lsigns assign sign depending on: argmin (∥sn − ŝp∥2, ∥sn + ŝp∥2)
12: end for
13: Add index of best matching solution to Lfound: argmin([ε1, . . . εP ])
14: Store error: en = min([ε1, . . . εP ])
15: end for
16: Ŝsorted ← Sort Ŝ in order of Lfound

17: Permute correlation matrix in order of Ŝsorted: CS,Ŝsorted
← CS,Ŝ

18: for n = 1, . . . , N do
19: if e(n) > etol(n) or CS,Ŝsorted

(n, n) < ctol(n) then
20: Store index of failed component in: Lfailed

21: end if
22: end for
23: return e, Lfound, Lfail, Lsigns

24: end procedure

The method how we determined the tolerances is explained here.

The tolerances are determined through an experiment were the first 25 solutions of each iter-
ative algorithm (FICA,QRT,I-CPD-G,I-CPD-FF) which we deemed as correct are evaluated
on their performance. With first 25 solutions we mean the first 25 solutions deemed correct
as we reiterate through the test-set while every time increasing the seed with 1 starting at
0. Table D-1 shows the maximum error tolerances and minimum correlation tolerances found
for which we deemed a solution to be correct. The values in red correspond to the algorithm
and its solution number on the left. The values in black do not necessarily correspond to
these algorithms.These values were found
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Maximum e or minimum c allowed tolerances

Responsible Method Seed e1 e2 e3 e4 c1 c2 c3 c4

QRT 83 0.624 0.589 0.461 0.601 - - - -
QRT 37 - - - - 0.806 0.871 0.848 0.839

Table D-1: Maximum found error tolerances and minimum found correlation tolerances. In total
238 runs were needed to find 25 successful estimations for each algorithm at P = 4. The colors
in red indicate the maximum or minimum value that was found. The algorithm in red on the left
corresponds to this value. The values in black are not necessarily a result from that particular
algorithm.

The final error tolerance values for all components are set to the highest value found and
rounded upwards. For the correlation tolerance the lowest value found was taken and was
rounded downwards. This results in the following final values:

etol = [0.65, 0.65, 0.65, 0.65], ctol = [0.8, 0.8, 0.8, 0.8]. (D-1)

These tolerances can be considered as rather lenient. On top of that, setting the error tol-
erances higher than the found maxima and the correlation tolerances lower than the found
minima seems counter intuitive as it suggests faulty solutions may be deemed correct. How-
ever, our reasoning behind this choice is 2-fold. Firstly, we do not know whether these are
the true maxima and minima for which we would deem a solution to still be correct. As it
is a subjective process there sill might exist a solution which we deem to be correct which
has higher error values and lower correlation values. As we do not want to miss such possible
solutions we set the error tolerances slightly higher and the correlation tolerances slightly
lower than the found maxima and minima. Secondly, as will be clear from the following two
examples, only one component has to fail to indicate whether a solution has failed. Whenever
one or several estimated components are considered as "failed" they tend to have high errors
> 0.8, low correlations < 0.6 or both. The other components tend to be the opposite by
showing low errors < 0.5 and high correlations > 0.9. This means that the effect of slightly
increasing the error tolerance and slightly decreasing the correlation tolerance will be that
potential solutions with more extreme values will still be considered as successful while failed
solutions will still be evaluated as failed.

An example of a correct set of estimated components for a data-set with 4 mixtures and 5000
observations can be seen in Figure D-1 and an example of a set that is considered as failed can
be seen in Figure D-2. The tables in D-2 show the per estimated source component estimation
error and correlations of both the successful and the failed case. Most of the components of
the failed case have higher errors than the successful case. The fourth component of the
failed case ŝ4 is what caused this solution to be classified as incorrect due to its error and
correlation. However, the solutions of both cases still show a lot of noise with the noise being
differently distributed over the components per case. This suggests that by adding additional
mixtures to the problem and estimating additional components in which the noise can be
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maximized can lead to improved results. This is shown later on.

Figure D-1: Example of a correct set of estimated components from a data-set with P = 6
mixtures. The estimated components are corrected for sign and mean such that they align
correctly with the source components shown in dashed black lines.

Figure D-2: Example of a failed set of estimated components from a data-set with P = 6
mixtures.. The estimated components are corrected for sign and mean such that they align
correctly with the source components shown in dashed black lines.

ŝ1 ŝ2 ŝ3 ŝ4

e 0.557 0.512 0.170 0.213

c 0.845 0.907 0.986 0.869

(a) The error values e and correlations c of the es-
timated sources from Figure D-1.

ŝ1 ŝ2 ŝ3 ŝ4

e 0.599 0.434 0.533 0.820

c 0.773 0.871 0.695 0.624

(b) The error values e and correlations c of the
estimated sources from Figure D-2.

Table D-2: Illustration of the possible range of estimation errors and correlation values for
estimated sources.
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D-2 Canonical Polyadic Decomposition (CPD) performance

The figures below show the CP-error of the non-iterative and iterative algorithms with no,
Higher-Order Singular Value Decomposition (HOSVD) and Generalized EigenValue Decom-
position (GEVD) initialization. For the GEVD methods the symmetric and non-symmetric
CP-errors are shown due to the asymmetry of the CPD they compute. Clearly their asym-
metric CPD performance is better than their symmetric one. The CP-error shows a lot of
similarity to the measure of diagonality. This is another reason why it was opted to discard
the CP-error as a performance metric.

Figure D-3: Average CPD errors εCP (solid and dashed lines) together with their standard
deviations (shaded areas) for varying amounts of mixtures P = 4, . . . , 10 for a total of Ntest = 100
runs. The solid lines represent only the successful runs and the dashed lines represent all 100
runs. The results are shown for the non-iterative algorithms.

Figure D-4: Average CPD errors εCP (solid and dashed lines) together with their standard
deviations (shaded areas) for varying amounts of mixtures P = 4, . . . , 10 for a total of Ntest = 100
runs. The solid lines represent only the successful runs and the dashed lines represent all 100
runs. The results are shown for the iterative with no, HOSVD and GEVD initialization only.
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D-3 Qualitative analysis

The table below presents the complete overview of the qualitative analysis performed in
chapter 5. The smaller table presented in chapter 5 is a generalization of these results.

HOSVD GEVD

Success % Explicit / Full Type-U Type-C Explicit Full Type-U Type-C

FICA 0 0 0 - 0 0 0
QRT 0 0 0 - - - -
I-CPD-G + + + - - - -
I-CPD-FF + ++ 0 - 0 + 0

Error εtotal

FICA 0 0 0 - 0 0 0
QRT + + + - - - -
I-CPD-G + + + - + 0 -
I-CPD-FF 0 0 0 - 0 0 0
Diagonality τD

FICA 0 0 0 0 0 0 0
QRT + ++ + - - - -
I-CPD-G + + 0 - - - -
I-CPD-FF + + + - + + 0

Time s

FICA + + + + 0 0 0
QRT + + + - - - -
I-CPD-G + + + + + + -
I-CPD-FF + + + 0 0 0 0
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D-4 Convergence of fixed-point CPD

An example of the convergence behavior of the fixed-point CPD is shown below. The top
figure shows the convergence error and the figure below that shows the absolute values of the
weights λi ∀i = 1, 2, 3, 4, 5.

The figures are on a logarithmic scale. One can clearly see the converging behavior of the
algorithm. Moreover, the weights show the same type of converging behavior as the error.
While not decreasing monotonically, all of the shown graphs illustrate the converging property
of the fixed-point CPD method.

Figure D-5: Convergence error during the fixed-point CPD procedure.

Figure D-6: Values of λi ∀i = 1, 2, 3, 4, 5 during the fixed-point CPD procedure.
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Glossary

List of Acronyms

CP-rank CP-rank
BSS Blind Source Separation
ICA Independent Component Analysis
fMRI functional Magnetic Resonance Imaging
CPD Canonical Polyadic Decomposition
HOS Higher Order Statistics
IID Independently and Identically Distributed
MIMO Multi-Input-Multi-Output
PCA Principal Component Analysis
CLT Central Limit Theorem
I.I.D. Independent and Identically Distributed
IC Independent Component
IC’s Independent Components
CF Characteristic function
mgf moment generating function
cgf cumulant generating function
CPD Canonical Polyadic Decomposition
HOSVD Higher-Order Singular Value Decomposition
SVD Singular-Value-Decomposition
EVD Eigen-Value-Decomposition
ALS Alternating Least Squares
SNR Signal to Noise Ratio
TTSV Tensor Times Same Vector
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174 Glossary

NLS Non-linear Least Squares
PARAFAC Parallel Factor Analysis
tICA tensor Independent Component Analysis

CPDCanonical-Polyadic-Decomposition

CP-rank Canonical-Polyadic-rank
GEVD Generalized EigenValue Decomposition
CCI co-channel interference
JADE Joint Approximate Diagonalization of Eigenmatrices
FMM Fast Multipole method
CP-GEVD Canonical-Polyadic-Generalized-Eigenvalue-decomposition
GWN Gaussian-White-Noise
ICA-SSE ICA Solution Sorting and Evalutation
L-BFGS-B Limited-memory-Broyden–Fletcher–Goldfarb–Shanno-Bound
OALS Orthogonally-constraint-Alternating-Least-Squares
QRT QR-Tensor algorithm
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