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Preface

On the cover of this thesis we have a picture of a remake of the Bombe machine at Bletchley Park. A
machine designed by the computer scientist Alan Turing. Its aim was to break the Nazi’s correspon-
dences that were encrypted using the Enigma machine. The Bombe can be seen as one of the devices
that brought into motion our modern understanding of cryptography and computing. The story of how
this machine got made has fascinated me ever since | visited Bletchley park back when | was still at
school. We can only imagine what the excitement was like when the machine was first plugged in and
was able to decipher the first encrypted message.

Also on the Bletchley Park campus is the British computer museum. Inside it there is a plethora
of early computers build and designed during the 1940’s to 1960’s. Most notably a remake of the
Colossus computer used to break messages encrypted using the Lorenz machine. Another reason
why the museum is fascinating, is that it contains a compendium of funny and faulty computer designs.
Many of which never made it past the prototype phase or the first generation. Proof to show that the
progress in computing was not always as linear as what we now like to think in our age where Moore’s
law rules the roost.

Now in 2022 we are living through a new epoch in computing, the dawn of the quantum age. Here
too we are not seeing a clear linear advancement, but a progression of peaks and troughs, paired with
many new designs that may never leave the drawing board. Where at the end of this epoch only a few
designs will rule the roost of quantum computing.

Just like in the 1940’s a new generation of cryptography will come to fruition. New encryption
standards will be designed as older methods will be thrown into the dustbin of history.

One encryption standard that will eventually be thrown in the dustbin of history is RSA. It is a simple
mathematical problem that has fascinated me since the start of my master degree in September 2020.
Even though the power and ability of modern quantum computing is laughable and disappointing, the
research of it and around it is far from disappointing or laughable. During my research | have thoroughly
enjoyed learning about this new area of study. Therefore | very much hope that this thesis is a testament
to the great importance of this area of research, and also hope that for people who have little or no
knowledge of this research area, that this will be a good entry point into what we can use the quantum
computing paradigm for. | would therefore very much like to thank my thesis advisor Dr. Ir. Sicco
Verwer and thesis supervisor Dr. Sebastian Feld for allowing me to research this field.

Furthermore, | would like to thank the people at the Feld group, namely Aritra Sarkar, Dhruv Bhat-
nagar, Luise Prelinger, Matt Steinberg, Matti Dreef, Medina Bandic and Sacha Szkudlarek; for making
this experience very enjoyable. | would also like to say that a lot of my knowledge of this subject is
thanks to the brilliant lectures given by Sridhar Tayur et al. at Carnegie Mellon University [8]. | would
like to thank all fellow master’s students that have had to put up with me, with special thanks to Adriaan
de Vos. Last but not least | would like to thank my girlfriend Tamara for putting up with me during this
period.

Peter Elgar
Rotterdam, December 2022



Abstract

RSA encryption standard is a vital component of everyday internet communication. It is currently seen
as being unbreakable as the problem that it is based on, semiprime factorisation, is an NP problem.
Therefore, to try and break RSA using the current state of the art factoring method will take thousands
of years.

However, thanks to the advent of quantum computers we do know that RSA can theoretically be
broken in seconds in two main ways. Firstly, by using Shor’s algorithm. Secondly, by formulating it
as a binary optimisation problem and solving the formation with the quantum approximate optimization
algorithm or solving the formulation by using quantum annealing.

Unfortunately, there does not exist a quantum computer today that is accurate nor large enough to
be able to break RSA encryption any time soon. For example, the largest semiprime number that has
been factored by a quantum computer was a 41-bit number, as opposed to 2048-bit numbers that get
used for RSA encryption.

Fortunately, what is possible is to split the binary optimisation problem formulisation up into sub-
problems, solve them individually and combine the solutions to get the answer, as shown in Wang et
al. [50]. Unfortunately, how the Wang et al. approach splits the problem up is not scalable, as when
the problem gets larger so do the subproblems. Therefore, in the end the subproblems will expand to
such a size that even they cannot be solved.

The problem of ever expanding subproblems is the main focus of this thesis. We present a new
approach that splits the problem into subproblems that are of constant size. Consequently, no matter
how large the problem gets, all components can still be solved. Using our new method, we have been
able to vastly outperform previous records set by quantum computers. However, our approach does
not outperform current state of the art classical factoring methods.

However, we also show that our new approach has limits. The increase in the amount of subprob-
lems means an exponential increase in the spatial complexity when combining the solutions.

Fortunately, we also present ways in which we can reduce the spatial complexity. These methods
have a mixed success. However, they have meant that we can factor numbers that have more than
triple the bit length than if we were not to use them.

Finally, our techniques in reducing the spatial complexity have led us to discover a new weakness
in RSA encryption. Therefore, potentially wreaking havoc on the security of the internet.
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Introduction

Our current methods of online communication are based on the fact that we can correspond with a large
degree of confidentiality, integrity and availability. Partly thanks to this triad, it has allowed world wide
internet communication, e-commerce and many software services to become ubiquitous in the last 30
years. Supplanting businesses and services that were once the sole preserve of bricks and mortar
companies. One such form of encryption that has allowed internet communication to become safe is
asymmetric (or also called public key) encryption. One of the oldest and most well known asymmetric
encryption schemes is called RSA encryption. Despite RSA becoming less popular over the years due
to elliptic curve encryption, RSA is still widely used. One metric to see how wide the adoption of RSA
is, is by looking at the number of root certificates that use RSA [1]. About 3/4 of the root certificates
that are recognised by Mozilla use RSA. We can therefore say that everyone using the internet to visit
a website or sending an email is reliant on RSA in some way or form.

The security of RSA is based on a simple mathematical problem. Given two prime numbers p
and ¢, the product will be N, a semiprime number. It is easy to calculate N with p and ¢, however
it is hard to calculate p and ¢ if only N is known. Obviously for small numbers such as 143 this is a
straightforward task, however for a number N with 617 decimal digits this would take a long time. The
current state of the art factoring method is the general number field sieve (GNFS) [11]. The GNFS runs
sub exponentially in time, and the largest RSA number that has been factored is RSA-250 which is a
semiprime number with 250 decimal digits or 829 binary digits, where it took 2700 CPU core-years to
factor [28].

Although RSA is currently secure, it does face a risk from a new paradigm of computing, namely
quantum computing. We currently know of two ways quantum computers can factor numbers, firstly
through Shor’s algorithm on a universal quantum computer [45], and secondly through making a dis-
crete optimisation problem first devised by Schaller et al. which can be run on a universal quantum
computer and on quantum annealing computers [44]. Both factoring methods when run on a quantum
computer that has enough quantum bits (qubits), connectivity and lack of noise, will be able to factor
large RSA numbers in seconds or minutes, instead of days or years.

Despite the grand prospects of quantum computing, in the medium term quantum computing faces
many difficulties. The most well known problems are the lack of quality in terms of the production of
qubits, lack of connectivity between qubits, and the amount of noise during calculations [41]. All these
problems have meant that we so far have not been able to do calculations where quantum computers
have either been faster or more accurate than classical computers. The largest numbers to be fac-
tored using these methods are currently 21 for Shor’s algorithm [33] and 1099551473989 using the
optimisation method [31].

What would make a significant difference, would be to be able to split the problem into sections and
solve those parts individually, then combine the answers together to find the solution. Consequently,
this would mean that instead of having to build a computer that is 10 times more powerful, it could be
possible to just split the problem up into 10 sections and solve it with 10 computers that are already
available.

Fortunately, what we do know to be possible, is that both quantum factoring methods can be run
distributively, as shown by Gidney et al. for Shor’s algorithm [24], and by Wang et al. for the discrete

1
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optimisation problem [49]. The problem in the Wang et al. approach is that the size of the sections is
proportional to the size of the problem instance. Consequently, this means that the Wang et al. method
is not scalable. However, in this thesis we shall introduce a scalable distributive method of factoring
that firstly splits the problem instance into sections that are constant in size, then solves the individual
sections, and finally mergers the individual solutions together to get the answer. Furthermore, we shall
look at how effective this method is in terms of speed in solving and merging the individual sections
together, and see how accurate it is in finding the two factors of the semiprime number. Finally, we look
at what the pitfalls of this method are and see how we can overcome these problems.

1.1. Research Question

Therefore this thesis will be about making a new factoring algorithm that uses a discrete optimisation

method whereby we can split the formulations into sections that are constant in size. Then solve all the

constituent sections and finally combine the solved sections to get the factors of the semiprime number.
Therefore our research question is:

How can we build a scalable distributive factoring algorithm that is based on a discrete optimisation
problem?

1.2. Our Contribution
Our contributions are listed as follows:

A thorough analysis of the intersection between the factoring problem and quantum computing.
An analysis of the pitfalls of the current quantum based factoring methods.

A proposal to overcome the different pitfalls of past implementations.

An analysis of the effectiveness and efficiency of our new algorithm.

Based on our research into our new approach, we discuss a potential new weakness of RSA
encryption.

arowbd =

1.3. Overview

The thesis will be divided up into the following chapters. Firstly we shall go over some preliminary
subjects in chapter 2, secondly we shall go over related work about different factoring methods, optimi-
sation and how the problem can be split into subproblems in chapter 3. Before going on to explain how
our new factoring method works in chapter 4. After having explained the factoring method we shall
evaluate the different parts of the algorithm theoretically and practically in chapter 5. This thesis will
finish with a conclusion in chapter 6 where we shall answer our research question, and list the different
limitations and future work.



Preliminaries

Before going into the related work of how to factor semi-prime numbers as a discrete optimisation prob-
lem, we must first explain a number of concepts before the different methods can be understood. This
thesis shall not explain how quantum or quantum annealing computers work, for a general introduction
to quantum annealing and its applications we suggest reading Quantum Integer Programming lecture
notes by Tayur et al. [8]. However, it will explain how one can formulate an optimisation problem that a
quantum (annealing) computer can solve. For this we use the Ising model, which allows us to view our
problem as a lattice of qubits that in the end of the annealing phase will be +1 or -1. Unfortunately, in
most optimisation problems we don’t want our variables in our solution to be either +1 or -1, but to be
either 1 or 0. Therefore we formulate the problem as a quadratic unconstrained optimisation (QUBO)
problem and then later convert to the Ising model. After having explained both concepts an example
will be given to show how a QUBO problem can be formed, and then turned into a problem so that a
quantum annealer can solve it.

After having explained these concepts, we shall briefly discuss RSA encryption and different factor-
ing algorithms.

2.1. Ising Model

The Ising model is a mathematical way of formulating an optimisation problem for a quantum annealing
computer, where we describe the energy of a system where we hope to minimise the energy. In our
case we wish to minimise the energy to 0, when that happens then we have found our solution. lIts
general formulation can be seen in equation 2.1. The Ising model describes a lattice where the o are
the quantum bits (qubits) or magnets which have a spin which is between -1 and +1 with their bias
h. For the h value a negative value means that the qubit is more inclined to be -1, and positive value
more likely to be +1, and 0 meaning no bias. Then we also have the coupling strength between the
qubits denoted by the letter J, where positive values mean ferromagnetic momentum i.e attracted to
the other qubit, negative values mean anti-ferromagnetic momentum, and 0 no momentum. Finally
which means magnetic momentum, this can be largely ignored as on a quantum annealing computer
it is a constant.

H(J) = — Z JijO'iCTj ¥ Z hiJi (21)

(ij)EE(G) ieV(G)

As a general approach we can therefore visualise this as a graph like in figure 2.1. Here we have
arrows which can be seen as the qubits or as magnets, that are either up or down, thereby either +1 or
-1, or north or south. Therefore, we can say that the J values can be seen as the edges with a given
weight, and h values being the vertices also with a given weight.
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Figure 2.1: Graphical representation of Ising Model

2.2. Quadratic unconstrained binary optimization

As computers and programming languages work with the concept that a value is 1 or 0, not -1 or +1.
Therefore, we use the quadratic unconstrained binary optimization (QUBO) formalisation as seen in
equation 2.2. This formalisation can be converted into the Ising model using equation 2.4. The QUBO
form can be described as having a vector x, which has all the variables described as x in equation
2.2, also we have ¢ which is our constant. Then a matrix Q which contains all the weights i.e. »h and J
values like in the Ising model. The goal of the QUBO is to minimize the energy, so in a factoring case
that would mean getting a value that is 0.

IEFRJ{T}” Z 2 Qijry — | > Quimite (2.2)
(i) €E(G) 1€V (G)
min xTQx + ¢ (2.3)
ze{0,1}n
x;=(1-0y)/2 (2.4)

One aspect that is important to note is that relations can maximally be quadratic. If the binary formu-
lation has higher order terms then we call it a HUBO (higher order unconstrained binary optimization).
There are several methods of converting a higher order term into a quadratic term. Boros et al. and
Dattani et al. have produced reference books on how to do that [10] [18].

Formulating a QUBO problem instance

We shall now take a look at how we can formulate a problem from an integer cost function to a QUBO
and then to an Ising model. We shall take an easy example; finding the prime factors of 15.

The formulation starts off by writing the problem for integers as in equation 2.5. We square the equation
as we are dealing with an optimisation problem, therefore we want the answer to be 0 not negative
infinity. Therefore the correct answers can be p = 5 and ¢ = 3 as that would result in (15— (5 x 3))2 = 0.
On the other hand if we were to have p = 2 and ¢ = 7 then our answer would be (15 — (7 x 2))? = 1.

0= (N —pxq) (2.5)

Now that we have formulated the problem in decimal form, we shall now need to formulate p and ¢
in binary, giving every binary its corresponding weight, where ¢, is the least significant bit and ¢2 the
most significant:

=[15 = (p1 x 2" +po x 2°)(g2 x 2% + @1 x 2" + go x 2°))? (2.6)

As we are doing prime factorisation we can make an assumption. As all prime numbers are odd with
the exception of 2, and we can easily check if 15 is divisible by 2, so therefore we can substitute the
least significant bit with 1.

=[15—(p1 x 2V + 1) (g2 x 22 + 1 x 2 +1))?
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Now that we have turned the problem into binary representation we need to expand the problem.

= 16p3q} + 64plqiqe + 16piqr + 64piqs + 32pTqe + 4pt + 16p1g; + 64p1q1 e
— 104p1g1 + 64p1g5 — 208p1g2 — 56p1 + 4qi + 16g1pe — 56q1 + 16g5 — 1122 + 196

As it is the case that squaring a binary number gives you the same binary number, this means we can
substitute all the squares and simplify the formulation.

= 16p1q1 + 64p1q192 + 16p1q1 + 64p1g2 + 32p1g2 + 4p1 + 16p1q1 + 64p1g1g2 — 104p1qy
+ 64p1g2 — 208p1g2 — 56p1 + 4g1 + 16g1p2 — 56¢1 + 162 — 112¢5 + 196

We now have a simplified formulation of the problem, yet we do not have a QUBO. As we have a cubic
term, this therefore means that we need to substitute it. We shall substitute it by adding a new variable
using the following formulation: p1g2qs = g2 + 2(p1¢1 — 2p12 — 2¢12 + 3z) as shown in [10].

= 128p1q192 — 56p1g2 — 48p1ga + 16qigx — 952p; — 521 — 96g2 + 196

= 128(q2x + 2(p1q1 — 2p12 — 2q1x + 3x)) — 56p1g2 — 48p1g2 + 16¢1g2 — 52p1 — 52¢1 — 96g2 + 196

We now have have our QUBO.

= 200p1q1 — 48p1g2 — 512p1x + 16q192 — 512¢1x + 128gex — 52p1 — 52¢q7 — 96q2 + 768z + 196

In order to convert the problem into an Ising model we shall need to substitute the binary variables with
equation 2.4.

1751].752 1781].783 17811784
=2 —4 — 512
00 2 2 8 2 2 o 2 2 + 2 2 2 2
1—531—354 1—s1 1— 359 1—s3 1— sy
12 — 52 — 52 —
+ 128 5 5 5 5 5 5 96 5

= 11681 + 10082 + 2453 - 16084 + 508182 - 128153 - 1288154 + 48253 - 1285254 + 325354 + 298

After substituting we can reduce the values by dividing everything by 2.

= b58sy + 50sy + 1253 — 80s4 + 255159 — 6S153 — 645154 + 28953 — 648954 + 165354 + 149

Finally, we get our coefficients for the linear terms h, and the quadratic terms the J values which we
can put into matrices.
S2 83 84
s1 (25 —6 —64
hT = (58,50, 12, —80),J = s 2 —64
S3 16

2.3. RSA

The RSA encryption standard is based on the prime factorisation problem for semiprime numbers i.e
numbers that are solely the product of two prime numbers [43]. Where our semiprime number we call
N and its two factors are p and q. It is an NP problem where it is easy to calculate N from p and ¢, but
hard to calculate p and ¢ when you only have N. There is however a difference between the general
problem and what most RSA encryption libraries tend to use, that is that RSA always has an N that has
a specific bit length. Currently, this is usually a bit length of 1024, 2048 or 4096, where the bit length
of p and ¢ is typically half of N’s bit length, this does not necessarily need to be the case, however
for practical reasons it is the case that for a number with an even bit length the bit lengths of p and ¢
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are both half the bit length of N. On the other hand for an odd bit length of N are L, = [L,,/2] and
L, =|L,/2]|, where L stands for the bit length of a number.

The reason for both prime numbers being the same length is down to how one usually generates
prime numbers. This is done by picking a number at random that is of a certain bit length, then testing
if it is prime. Testing whether it is prime or not is easy to do through the Miller—Rabin primality test. If
not prime then we select another number at random that is of a certain bit length. We do the same
for the other factor. Thereby we have our two factors. As it may have already been noticed it is more
convenient to simply have a fixed bit length for both factors so that we have a fixed bit length for IV, than
first randomly choosing a bit length for p and then choosing another bit length for ¢ to get the correct
bit length for V.

Therefore, in this thesis we assume that all semiprime numbers are of the RSA form, i.e. the two
factors have the same bit length.

2.4. Factoring methods

There are several factoring methods, however we can split the factoring methods into two groups. One
being general-purpose, i.e. those that are able to factor all numbers, and special-purpose, i.e. those
that are able to factor a small subset of all numbers.

Both classes of factoring methods are important. Especially the special-purpose factoring methods,
as they can often factor large numbers in a matter of seconds. Therefore, if one can break 1% or 0.1%
or even less of all internet certificates using RSA, then it is still possible to cause a lot of harm.

The current best performing general-purpose factoring method in time is the general number field
sieve (GNFS) [11]. This has been the method that has been used to factor all the recent large RSA
numbers [28]. There are several other factoring methods, these are generally considered less efficient
in time in factoring numbers. GNFS and other general-purpose methods will not be explored in this
thesis, as they require a deep understanding of number theory.

What we will mention a couple of times is one special-purpose factoring method, called Fermat's
factoring method [7]. Itis an important method, as some quantum factoring papers such as by Karamlou
et al. have factored numbers that are Fermat factorable [31]. A number N is Fermat factorable if the
two factors vary little in their binary form. This means that no matter how large a number is, if the two
factors have a small Hamming distance then it can be factored in milliseconds.

The use of numbers that can be factored by Fermat’s factoring method in previous quantum factoring
papers is problematic, as it undermines the progress made in quantum computing. There is only one
reason why these numbers get used, it is because as Dattani et al. show, the QUBO formulation for
these numbers can be reduced to a small size [19], unlike most semiprime numbers. Therefore, in this
thesis, all numbers that have been factored are not Fermat factorable.



Related Work

Quadratic unconstrained binary optimisation (QUBO) problems and the QUBO method of factoring
semiprime numbers have been studied extensively in the past decade to fifteen years [14] [25] [32]. In
this chapter, we discuss the different research that has been done, and that has made it possible for
us to design a new method of factoring semiprime numbers.

The related work chapter is split into three sections; methods of factoring in section 3.1, methods
of reducing variables in section 3.2, and methods of running the optimisation problem in section 3.3.
All these sections can be seen as doing the following; the methods of factoring are ways in which
we can initially formulate the problem; the methods of reduction are ways in which we can make the
problem formulation smaller; the methods of running are ways in which we can either improve the
accuracy or the efficiency of solving the problem through splitting the problem into sub-problems. We
can view the three sections as three overlapping circles or sets that overlap each other as shown in
figure 3.1. The reason for them overlapping is that we can argue that certain methods of reduction can
change the method so much that we get a new method entirely, and other reductions can be seen as
changing the process of solving the problem entirely as it aims to calculate or solve a large chunk of the
problem. Finally, as this thesis will not go into detail about quantum annealers or simulated annealers
we therefore do not get into a fourth or possibly fifth section on how to best perform the annealing
process on a quantum annealer or simulated annealer. Furthermore, there are different devices that
can solve Ising or QUBO problem e.g. Digital Annealers and Ising machines [5] [35]. Moreover, other
software that is specifically designed to solve optimisation software such as Gurobi and Google OR
[42]. Both devices and software we do not talk about in this thesis.

.D

Figure 3.1: Visual overview of chapter

Methods

What must also be noted is that not all methods for running and reduction can be combined together,
as will become apparent in all corresponding sections. Furthermore, certain methods of reduction may
even have no use for this problem. However, we have added them as we felt that they are interesting
concepts, and the process of inventing a new method of factorisation was also a process of knowing
which methods and techniques could not be applied to this problem.
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3.1. Factoring Methods

In this section we shall look at the different factoring methods that have been proposed to factor
semiprimes that can be translated into a quadratic unconstrained binary optimization problem (QUBO)
or an Ising model, meaning it can be run on a quantum annealing computer. Not all the papers were
initially intended for quantum annealing computers. Moreover, the initial paper does not even mention
quantum computers at all [13]. Several methods have originally been used to run on a nuclear mag-
netic resonance quantum computer (NMR) [19] [55], and another was used on quantum gate computer
using the Quantum Approximate Optimization Algorithm (QAOA) [4] [38].

3.1.1. Direct Method

The direct method can be seen as the most simple way possible to try and formulate the problem,
this was also the method used to give a toy example of how to formulate a QUBO problem in section
2.2. With N being the product and p and ¢ being the factors, the optimisation problem can be seen in
integer form in equation 3.1. This method gets used in two papers by Warren [51] and Jiang et al. [30].
Warren looks at how to simply factor small semiprime numbers up to 1000, and Jiang et al. uses it as
an example to compare it to another factoring method.

(N-pxq)?=0 (3.1)

With the formulation of equation 3.1 it is currently in an integer form which would not be able to run

on a quantum annealing computer, therefore we would need to make p and ¢ into a Boolean form, as

shown in section 2.2. Here we have to assign p and ¢ with a specific bit length. For example if we

were to say that p and ¢ were of bit length 4 we can formulate it as equation 3.2. As all primes with the

exception of 2 are odd, we can substitute pg and ¢ (the least significant bit) with 1. That means that
we can formulate the problem as equation 3.3, where L, and L, are the binary lengths of p and q.

20 xpo+2' xpr+22xpe+22 xp3=p (3.2)
L, L,

(N— (14> 2 xp) x (1+) 2" xq))* =0, (3.3)
=1 i=1

The problem with this formulation is that when expanding this problem for larger numbers one will not
only end up getting many variables, one will also get many cubic or larger terms as has been shown
in section 2.2. This means that not only will one need to use more logical variables as the problem
expands. One will also need many more ancillary variables to substitute all the cubic and larger terms.

3.1.2. Table Method

We can now look at the second class of methods called the table method. This was mentioned back by
Burges in 2002 as a way of describing the problem as an optimisation problem for simulated annealers
[13]. The table formulation is essentially a binary form of long multiplication, where the product N is at
the bottom, and the factors p and ¢ are on top. Only in this case do we know the product, but not the
factors. Between the factors and the product, every row p gets multiplied by a bit of q.

p3 P2 P Po
g3 q2 q1 q0
P3qo P290 Pi9o Podo
P3q1  P291 P191  Pod1
P3q2  PpP29q2 Pi192  Pog2
P3q3  P243  Pi143  Pods
nr Ne ns Ny ns N2 n No

Table 3.1: Generic binary table method example

The formulation in table 3.1 is not complete yet, as it is necessary to add in the carry bits so that it is
possible to calculate the variables between columns. As mentioned before there are three versions
of this factoring method; the cell, column and block method. The initial version that was applied to a
quantum computer was done by Schaller et al. and was first published in 2007 [44].
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Cell Method

The initial implementation of the cell method was done as a QUBO in 2007 [44]. Here the method is
formulated so that every product of p and gq has a corresponding carry (z) and sum (.S) variable. This
version is called the cell method and has two other implementations, one by D-wave systems using a
constraint satisfaction formulation [3]. The second method uses Grébner basis to reduce the amount
of variables [21]. We shall go into more detail on how the Grébner basis can be used to reduce the
size of the QUBO problems in section 3.2.

As can be seen in the table 3.1.2, the table is split into cells, where every product includes a sum
value S above the product and a carry variable z below the product. The number of cells is equal to the
product of the two binary variables p x ¢, in other words, 4 x 4 = 16. All of these cells remain the same
size, unlike the columns in the column method and blocks in the block method. However, the number
of cells expands greatly as the number that has to be factored becomes larger.

p3 b2 P Po
q3 q2 q1 qo
0 0 0 0
P3qo | P290 | P190 | Podo
0 0 0 0
0 Sa1 S11 So1
P3qr | P291 | P1491 | Poq1
231 221 211 0
S32 S22 S12 So2
P3q2 | P292 | P192 | Poq2
232 | 222 | z12 | O
S3z | S23 | S13 | Sos3
P3q3 | P293 | P143 | Pog3
233 | 223 | z13 | O
n7  Ng ns N4 ng n2 ni no

Table 3.2: Generic representation of the cell method, assuming that p and q are not necessarily odd and not having used the
substitutions of 3.5

The cell method can be described as the minimum sum of all the cells, where the cells have to
be squared, as can be seen in equation 3.4. Furthermore, as we have the quadratic term p;q;, when
squaring the cell we shall get cubic terms such as p;q;z; ;. This means that in order to transform the
problem into a QUBO the quadratic term p;q; will have to be substituted. This means that for every cell
an ancillary variable will have to be added.

f= minZH?j
1j

Hij = qipj + Sij + zij = Siv1,j-1 = 22ij41 (3.4)

To make the formulation complete, this means that certain variables have to be substituted. These are
listed in equation 3.5. These are the edge substitutions, for the sum and carry variables to be

20,5 = 51,51,
Si0 = 1y,
Sk41,j-1 = Nktj,
Si,nfk = Zin—k = Oa

2k = 0,
Sin-k—1=0
Where k = L,

(3.5)
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The general benefits of the cell method can be seen that it needs less ancillary variables in comparison
to the direct method, this is because there are fewer higher-order terms than in the direct method.
Every cell stays the same size unlike the column and block method, and some of the cells could even
be easily solved with a binary solver and therefore it may be possible to reduce the number of variables
for the entire problem. These advantages shall be discussed in more detail in the section 3.2. As the
size of every cell remains the same, it is, therefore, possible to split the problem up into separate parts
that are equal in size and run the problem in parallel. When the two other table methods do not divide
as neatly into equal-sized sections.

The issue with the cell method is that for every product of two binary variables we need sum and
carry variables, and then an ancillary variable to make the formulation a QUBO. In general, this means
that we greatly increase the number of variables as the problem gets larger. As opposed to the column
and block method (which will be discussed in the next two subsections) there are many extra variables
that have to be introduced. Therefore, running the problem as one would be less scalable.

Column Method

To reduce the amount of variables that are needed, one can then formulate the problem in terms of
columns, thereby reducing the number of carry variables needed compared to the cell method. This
was initially thought up by Burges to factor numbers for simulated annealers [13]. This was then done
on a nuclear magnetic resonance quantum computer by Xu et al. [55]. There have been a number of
other implementations that use this method and that have tried to improve on these methods. Firstly
Dattani et al. where they managed to factor the number 56153 on an NMR quantum computer using
preprocessing [19]. Then there is Pal et al., where they used a hybrid method to reduce the number of
carries, and then to factor, the number 551 [38]. It was also possible to improve the factoring method
using the Grébner basis in the same paper as that used the same approach to reduce the cell method
[21]. There was one method that also did pre-processing and ran the problem on a quantum gate
computer, however this can in theory also be run on a quantum annealing computer as it was applied
using the QAOA algorithm [4]. All these improved methods are discussed in other subsections.

As can be seen in table 3.3 there are only carry variables and no sum variables. Moreover, in
comparison to the cell method example in table , there are fewer carry and sum variables, 9 carries
in table 3.3 verses 14 in table . This means that opposed to the cell methods we have to introduce
significantly fewer variables. The number of carries per column (as can be deduced from equation 3.6)
is dependent on the number of products per column and how far to the left the column is. Furthermore,
the middle column, where ns is, will have as many products of p; x ¢; as the bit length of p.

D3 p2 P Po
q3 q2 q1 do
P3qo | P290 | P190 | Poqo
P3q1 | P291 | P1491 | Poqd1
P3q2 | P292 | P192 | Poq2
P393 | P2493 | P193 | Pogs
267 | %56 245 234 223 212
257 | 246 235 224
nr Ng ns N4 ng n2 ni no

Table 3.3: This is a formulation of the column method, where we have not substituted the most and least significant bits of p
and ¢

The formulation of the column method can be seen in equation 3.6, where every column needs to
be squared in order to form a minimisation problem. Because every column has to be squared, this
means that there will be cubic and quartic terms. Therefore more variables will need to be introduced
in order to make all terms quadratic.

f=min > H?
1<i<(Lp+Lg+1)

Lo+14i—n;

L, i
H; = qu' X pi_j + Z 25— Mg — z 27 % i1 (3.6)
j=0 =1

j=1
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The general advantage of the column method is that it significantly reduces the amount of carry vari-
ables needed for the whole problem. This means that larger numbers can be run in one go with a
greater probability of success as there are fewer variables as shown in Peng et al. [39], and also larger
numbers can be embedded on the quantum annealing computer for instance. Furthermore, the column
method is also able split the problem up and run in parallel.

The disadvantage of the column method is that it sits between the block method and the cell method.
In that it does not have the same advantage as the block method, as in that it has more carries. Similarly
it does not have the advantage that the cell method has, in that the columns do expand in size, in
comparison to the cell method where the constituent cells do stay the same size.

Block Method

The final improvement that can be made, is done by combining a number of columns to form a block
in order to reduce the amount of carries needed even more. The block method was initially introduced
by Jiang et al. [30]. It has also been used by Wang et al. with a different method of turning the cost
function into a QUBO [50]. Furthermore, there is a hybrid method of doing the factorisation by Peng et
al. that reduces the amount of carries even more [39]. Finally, there is an approach where the columns
are solved individually and then the intersection of all the results are used to find the final result by
Wang et al. [49].

The general approach of the block method is to combine the columns together, in previous papers
this has ranged between 2 to 4 columns; usually dependent on the size of the problem, with exception
of the first column (which is left out as we are assuming that both prime factors are odd) and the last
column as the most significant bit of n is dependent on carries. We can see that the amount of carries
has been reduced even more in table 3.4, from 14 carries in the cell method to 9 carries in the column
method to 4 in the block method.

D3 b2 b1 Dbo
q3 q2 q1 q0
P3qo | P2go P1490 | Po9o
P3q1  Pp2q91 | P191 Poda
P3q2 | P292  P192 | Po42
P3q3  P243 | P143  Pogds
256 245 234 223
nr  Ne ns Ty ns N2 n no

Table 3.4: Generic representation of the block method, without having substituted the values for n and pp and qo

The formulation of the method is given in two parts in equations 3.7 and 3.8, where L,, and L, are
the number of binaries in n and p, and z; stands for a carry variable for block k. In formula 3.8 we have
three cases for how to calculate the blocks, the initial case is for the first block, the last case is for the
last block and all the other blocks correspond to the second case. As in the other methods, it is also
here that in order to formulate it as a QUBO it will be necessary to add ancillary variables for p;q; in
order for it to remain quadratic.

_ Zf:o DiQk—i k<L,
9k = Lp—1
>oilo Pidk—is k> L,
where 1 <k < L, ke Z" (3.7)

coly —colg—1 coly—colg 2
f — min << Z 2kgk _ Z 2k’+col1+colozk) + .+

k=0 k=1
col;_1—colj_1—1 col;_o—col;_3 col;_o—col;_3 2
< Z 2% g + Z k=1 — Z 2k+c"li1+wli2zk> + .+
k=0 k=1 k=1
col;—col; _1 colj_1—col;_o col;_1—col;_o 2
< Z 2kgk + Z Qkilzk o Z 2k+6011+001i12k> ) (38)
k=0 k=1 k=1
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The general advantage of this method can be seen that it has the least amount of carries compared
to all other methods. Furthermore it has been shown that it is possible to successfully run the problem
in parallel [49].

The general disadvantage can be seen that the constituent parts are the largest out of the table
methods. This could be a disadvantage when wanting to split the problem up and run it in sections. As
there are a limited amount of qubits available it will become a disadvantage to have such large sections.

3.2. Reduction Methods

In this section we go over the various ways in which the problem can be reduced so that we have less
variables. Grobner basis and split reduction can be seen as overlapping with the methods section as
it can transform the binary problem so much that it can be seen as another formulation. Furthermore,
Graver basis overlaps with the running section as how it is implemented changes the way it gets run.

3.2.1. Grobner Basis
Grébner basis can be seen as the most simple way of writing a set of polynomial equations, potentially
splitting a complicated equation into smaller and more easily understood equations .

In our case it can be seen as a useful tool to solve a set of polynomial equations, or at least to simplify
the set. There are generally two methods of getting the Grébner basis. First one is called the Conti
and Traverso method (CT Method) [16]. The second method, which we use in the examples, is called
the Bertsimas, Perakis and Tayur method (BPT) [9]. Furthermore, there are a number of algorithms
that can be used to calculate the Grébner basis. The most famous and original algorithm is called the
Buchberger algorithm [12]. There are a number of other new and improved implementations such as
the F4 and F5 algorithm [23] [22]. However, in general they all have the same issue, in that they all
take at least exponential time to calculate the Grébner basis. The reason, however, for writing about
Grébner basis in this thesis is that it was used in one of the factoring papers [21]. Furthermore, the
lecture series by Tayur et al. [8], which was used extensively in this research, spent a lot of time on the
Grdbner basis.

As a general example we can look at equation 3.9 where we have six equations, the first two can
be seen as constraint equations to give the constraints of our problem, the last four are used to say
that all the variables are binary. After having given the Buchberger algorithm the polynomial equations
we get the Grébner basis, as can be seen in equation 3.10. Here on out we know that x is equal to 1
and y is the opposite value of z. Therefore, we can reduce the problem to equation 3.11, from here we
can calculate all the possible combinations that adhere to the constraints, as can be seen in equation
3.12.

{zyzw+zz+yw—2z=0,24+2y+2—-2=0,w(w—1) =0,z(x—1) =0,y(y—1) =0,2(2—1) = 0} (3.9)

{wz—w=0,y+2z—-1=0,2—-1=0} (3.10)
wz —w =0 (3.11)
(957%271”) = {(Lov 170)7 (1707 17 1)7 (17 17070)} (312)

Grobner basis can be seen as being a method to either reduce the number of variables in a set of
equations, or to be used as a way to rewrite the equations into a set of smaller equations. For the initial
case this can be quite easy to see as that is what we have just done in the example. What has to be
remembered is that for most cases we shall need to have a cutoff point in terms of the maximal size
of an equation that it can take, as all algorithms that calculate the Grébner basis do not scale well in
time. This is what was done for the cell method in the paper by Dridi and Alghassi [21]. They went on
to use the Grébner basis again to further reduce the amount of variables. Finally one could go even as
far to say that Grébner basis changes the formulation of the method so much so that it is a whole new
class by itself, as if it is given a general formula such as in equations 3.4, 3.6 and 3.8 it will rewrite it in
a different way.

Unfortunately, this reduction method is rather useless if one were to use it every time to factor a new
number, as it is only fast for small equations. However, it may be better for a larger general formulation

"The formal definition of the Grébner basis involves using concepts that go beyond the scope of this thesis.
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as then you would only need to run it once. However, the same operations can probably be done just
as well or better using other algorithms or binary optimisation software.

3.2.2. Energy Landscape Manipulation

Energy landscape manipulation (ELM) can be seen as a way to reduce or increase the energy range
of the optimisation problem i.e. lowering or increasing the energy of unwanted solutions, but also as
a way to reduce the amount of cubic or larger terms [47]. In other words, ELM can provide a new
optimisation function whose minimum still occurs at the same place, but is easier to find.

ELM can work in two parts. Firstly if we are able to deduce that f = g for some polynomial f, g we
can manipulate the optimisation problem by adding A(f — g) for some A > 0. This part is the deduction
ELM, similar to how deduction reduction works in subsection 3.2.4. From equations 3.13 till 3.19 we
have the different columns to factor a number using the column method. Equation 3.20 is the final
optimisation function that would get sent to the quantum annealer.

2p1 +p2 + g2 = 2293 + 4224 (3.13)

P1P2 + P19z + P3 + g3 + 223 = 2234 + 4235 + 1 (3.14)

P1P3 + P1G3 + P2g — 2 + 224 + 234 + 2 = 2245 + 4246 (3.15)
2p1 + p2gs + P32 + 235 + 245 = 2256 + 4257 (3.16)

D2 + P3qs + g2 + 246 + 256 = 2267 + 4268 + 1 (3.17)

p3 + s + 257 + 267 = 2268 + 4279 (3.18)

zes + 279 = 1 (3.19)

Ho = (2p1 + p2 + g2 — 2203 — 4204)% + ... + (268 + 270 — 1)° (3.20)

However, in equation 3.13, if zo4, = 1 then we must have p; = ps = ¢» = 1, this can be encoded by
doing the following in equation 3.21.

224(1 — p1), 224(1 — p2), and z24(1 — ¢2) (3.21)
This can then in turn be used to rewrite the equation as H; in 3.22.
Hy = Hy+ 24(3 —p1 — p2 — q2) (3.22)

We can finally do a similar deduction reduction for z79 where we get H,.
Hy = Hy + 279(4 — p3 — g3 — 257 — 267) (3.23)

The second part of ELM can be seen as giving every part of the optimisation problem or cost function
a weight \. For example given an optimisation problem that is made out of two parts like equation 3.24,
we wish to find two weights A in order to reduce the energy range. This can be done in two ways. Firstly,
we find what the max energy for every block is, e.g. (0+0—-1—-1)2=4and (0+0—-2—1—1)? = 16.
Therefore we can set the \y = 4.

Hy = (331 + To — X3 — 1)2 + (.%‘1 + 2129 — 22003 — T — 1)2 (324)

Hl = )\1(1’1 + o — X3 — 1)2 + )\2(‘%1 + x129 — 21’2.’E3 — Xo — ].)2 (325)

This would be the naive method as this does not always decrease the energy landscape and can even
increase it. Therefore, as a general refinement it is best to keep to the rules in equation 3.26. Where
E; is the max energy for equation ¢, and E,,,,,, maximum energy of all the equations.

py 1, Ei = Emax (3.26)
23 Ei 7é Emax

The advantage of this technique is that it can be relatively easy to implement this method, and can
be quite an effective way of reducing a cubic function or a part of a function that is cubic.

Unfortunately, it may not always be possible to use this deduction, and searching for the possible
deductions may be harder than as given in the example as it certain sections of the optimisation problem
may be large.
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3.2.3. Removing Carry variables

Removing the carry variables has been done by Pal et al. for the column method, and Peng et al.
for the block method [38] [39]. In general, the concept is uncomplicated, as not all the corresponding
product bits for every column or block are equal to 1. Therefore, the maximum number of carries, that
were initially assigned, are not all necessary.

The advantage of using this method is that it is uncomplicated to implement and a time efficient way
to reduce the number of variables. Therefore making the problem less complex.

Even though the calculation is seen as being simple, in terms of reducing the total amount of vari-
ables it is negligible. Furthermore, the methods used do not always seem clear nor applicable for
all numbers. Therefore, it can be seen as a potentially easy improvement, yet on the grand scale of
reducing or simplifying the formulation it does little.

3.2.4. Deduction Reduction
The deduction reduction method is a way in which one tries to reduce the amount of variables by looking
at certain parts of the problem and asserting whether they are equal to 1 or 0 [48]. This is a suitable
method for reducing the size of a factoring method as it is made out of smaller blocks, cells or columns.
Even though, the paper’s methods do not explicitly say they use this method, both Anschuetz et al. and
Dattani et al. use a similar method to reduce the number of variables [4] [19]. Anschuetz et al. uses a
similar technique where they remove all the linear terms to further decrease the amount of variables in
the problem.

We can see this in the example of equations 3.27 till 3.29. From this formulation we get the optimi-
sation problem in equation 3.30 where we have cubic and quartic terms.

T+ T+ 23=1 (3.27)
T1T4 + o5 = T3 (328)
T1 + 2x9 = x3 + 224 (3.29)

H=(z1+x2+ 235 — 1)2 + (x124 + 225 — (L‘3)2 + (1 + 229 — 23 — 2x4)2
= 20129X405 — 2012304 — 2X023,5 — 2X003+6x1L0 —3T104 —8xoxy +Toxs+ 30 +4x3T4 +3+404+1

(3.30)

However, with the equations 3.27 till 3.29 we can deduce that certain products must be equal to 0
and we can therefore replace them with 0.

1Ty = X2X3 = T3L1 — 0 (331)

However, if we were to naively substitute the values with 0 we would get equation 3.32. on the
surface this may be alright, however the minimum value is not 0 anymore but -3. Therefore, the quantum
annealer may not reach the right answer.

H = —3x1x4 — 8x2xy4 + Toxs + 32 + 4x374 + 23 + 424 + 1 (332)

Therefore the reduction has to be done in a different way. We want an error term so that it is equal to
0 if z122 = 0 and strictly greater than 0 if z;22 # 0. We can see all the following reductions:

1. Solution can be either 0 or 2: 2z zox475 — 27179
2. Solution can be either 0 or -2: —2z12324 — 0
3. Solution can be either 0 or -2: —2z9x3x5 — 0

Therefore we finally get a different optimisation problem where the minimum possible energy is 0 in
equation 3.33.

H =8x1x9 — 22013 — 3x124 + Toxs + 322 + 4304 + T3 + 44 + 1 (333)

The advantage is that we are able to reduce the amount of cubic terms quite easily. The deductions
however are only easy to find for small equations like in equation 3.29. For larger equations this will be
more complicated and there will be more brute forcing necessary.
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3.2.5. Excludable Local Configuration
An Excludable Local Configuration (ELC) is a partial assignment of variables that make it impossible
to achieve the minimum [29].

Hs_jocal = b1ba + babs + b3by — 4b1b2bs3 (3.34)

In equation 3.34 if 4b,b2b3 = 0, no other assignment of our variables will be able to reach a lower energy
than if 4b;b2b5 = 1. Hence this gives us twelve ELCs, and one example is (b1, b2, b3) = (1,0,0) which
we can use to form the polynomial:

H27local = H37local + 4b1(1 - b2>(1 - b3) (335)

= bybs + babs + bby + 4by — 4b1by — 4bybs (3.36)

The advantage can be seen in that we have removed a cubic term, or in other cases quadratic or single
terms.

The disadvantage is that we cannot easily find the ELC’s except through brute force, therefore when
applying this method it can only really be done on smaller chunks. Furthermore, we do not necessarily
have a guarantee that they exist for every cubic or quartic term.

3.2.6. Split Reduction

The split reduction method is a way of reducing the amount of cubic or greater terms in an equation
by substituting a variable with a 1 and a 0, thereby creating two smaller equations that are easier to
calculate. It was introduced 2015 by Okada et al. [36].

This technique can be seen as being useful in two ways. Firstly as a way to reduce the cubic or
higher terms. Secondly, as a way to split the terms into smaller chunks so that Grébner basis calculation
or similar calculations can become easier.

To give an example we can first look at equation 3.37, where we have three qubic terms and one
quartic term.

H =1+ b1bobs + bibgbrbg + b3bsbg — b1b3by (337)

We can split the equation in two parts, by substituting b; with 1 and 0, so we end up getting two equations.
Both still have cubic terms, but H, can be easily solved by introducing an auxiliary variable. However,
H; needs to be reduced even further.

Hy =1+ b3bybg (3.38)

Hy = 1+ bybs + bebrbs + bsbabs — bsby (3.39)

We can make H; quadratic by substituting bs with 1 and 0, we get two quadratic terms.
HI,O =1+ bybs — b3by (340)

Hiy 1 =1+ bobs + bgbr (3.41)

The benefit of using this method is that it is easy to implement and one can implement it on all higher
order binary optimisation problems so that we can turn them into QUBO form. Moreover, this means
that large equations can be split up into smaller equations that can possibly be solved on their own.

The problem, however, is that we cannot be sure this makes all equations less complicated, and
may also make it even more complex as we may split the initial large equation into a large number of
equations. Furthermore, we do not know how many split reduce steps we must take.

3.2.7. Graver Basis

Graver Basis is similar to Grébner basis in that we end up with what can be called as test sets, i.e. a
simplified set of equations to describe the problem. The difference lies in how we apply the Graver
basis. As instead of using the test sets to have a simplified solution, one can use the Graver basis
for augmentation in order to get to the optimal solution. Graver basis was first described in the 70’s,
however only later was there an algorithm to calculate it [26] [40]. Furthermore, its application for linear
and integer programming only became popularin 2010 [37]. More recently a method has been invented
that uses a hybrid of quantum annealing and classical computation, their implementation we shall use
to show how Graver basis can be used for these kinds of problems [2].
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The use of Graver basis is made out of two parts, the initial one is calculating the kernel (the test
set), the second part is calculating an initial solution and then using the kernel to get to the optimal
solution.

The idea of the kernel or the test set is that for every non-optimal but feasible solution (i.e. a solution
that adheres to all the constraints) x( there exists ¢ € S and A € Z such that xy + At is feasible and
flxo + At) < f(z0). The vector t is called the improving or augmenting direction, and S is the set of
test sets.

For the kernel to work, all vectors inside the kernel need to be conformal. With conformal we mean
that for vectors z,y € R, where = C y, when z;y; > 0 and |z;| < |y;| for i = 1,.., n. Additionally, a sum
u =), v; is called conformal, if v; C « for all i (v majorizes all v;)

Also before we get into every step of how we can use graver basis we need to define the lattice
integer kernel of A, where A is the matrix for the values Ax = b.

LA)={z| Az =0,2€Z",Ac 7™ "} \ {0} (3.42)
We can say that the Graver basis of A is:
G(A)c LA czr (3.43)

Such that G(A) is C - minimal i.e. fz,y € G(A)st. z Cy
Finally our encoding is as follows:

2T = [xlxg...xn] r;, €7L (3.44)
i =T X, (3.45)
ol = [Xin X2 Xk, | (3.46)
el = [2021...2F] (3.47)
Finally to set a lower bound to allow for negative kernel values and reformulate:
Ly, elT O --- 0 X1
L, 0 eg oo 0 X5
r=L+EX=1 |+1. . . . : (3.48)
L. Lo o o) lx,

Now that the definitions have been given, we can now go through the steps on how to get the Graver
basis:

1. Given a constraint matrix (i.e. all constraint equations in the form of a matrix) we turn it into a
quadratic unconstrained integer optimisation matrix i.e. given matrix A as in Ax = 0 we turn it
into the formulation min 27 Q;z where Q; = AT A.

2. We use a two bit encoding as e = [2°2'], we then get the encoding matrix E. We shall also shift
one step to the left with L = —1 to cover negative values. Then encode vector e to matrix £

Encode equationto x = L + EX

Reformulate it to QUBO form as follows min(L + EX)TQ;(L + EX)

Then map it to Ising variables and reformulate as an Ising problem.

Solve the Ising problem and convert back to binary variables.

Decode and recover the kernel

convert kernel to Graver Basis, do classical C - minimal filtration to get G(A)

© N Ok

Then we find an initial solution, and we can augment to find our final optimal solution.

The benefit of this technique is that the annealer or solver does not initially have to find the optimal
solution. Through getting the initial solution you can get to the optimal solution.

The disadvantages may be that calculating the kernel may simply be too difficult or take an unfea-
sible amount of time and that it may just be better to try and solve the original problem. Furthermore,
the kernel may be increadibly large.
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3.3. Running Methods

Running the problem can be seen as the way in which we can divide the problem into different chunks
and how we feed the problem to an annealer or QUBO solver. Here we shall view the annealer or
solver as being an oracle or black box that can only solve a problem that is smaller than a certain size.
The approaches can be split into two groups. The first as being run as one problem, the other as being
split into sections.

Both have advantages and disadvantages. The advantage for solving it as one problem is that if it
can be solved as one, then it is the fastest way possible. The disadvantage is that as the problem gets
bigger it either does not fit on the annealer or the accuracy becomes so low that we need to do so many
anneals that being able to get the answer takes too much time. Therefore after a certain size we must
split the problem into sub-problems in order to calculate the solution. The problem is that we firstly will
need to split the problem into subsections, this may either not be possible nor may it be possible to
split the problem into small enough problems for the anneal/solver to solve it. Secondly, when solving
the sub-problem we get noise in the form of non-valid solutions with an energy of 0 as can be seen
in figure 3.2. In other words, these are solutions that are correct for the subproblem, but not for the
entire problem. For example, variable ¢; could be both 1 and 0 in subproblem 1, yet in subproblem
2 it may be the case that ¢; can only be 0. Thirdly, the number of calls to the annealer or solver may
even grow exponentially with the increase in bit length of IV, as the size of the entire problem increases
exponentially so do the number of subproblems. Furthermore, it may also take a long time to merge all
the solutions together, either because of the number of subproblems, or also because of the number
of incorrect solutions with an energy of zero. This can mean an increase in spatial complexity when
having to merge the solutions to the subproblems together. The problem of the increase in spatial
complexity will be dealt with in section 4.4 in the next chapter.

All Solutions

O

All Solutions

Solutions with energy 0

Figure 3.2: Representation of normal case vs the distributed case

In this section, we shall briefly go over methods that have been done before, and present a couple
of concepts of our own.

3.3.1. As one problem

Most of the methods are run as one problem formulation, this is quite obvious as it is the easiest way
to solve the problem. Furthermore, it may even be advantageous as all the needed qubits are present
to solve it.

The issue however arises when the formulation gets too large. Firstly, the problem formulation may
become too large for the annealer/solver, therefore not able to even run the problem. Secondly, Peng
et al. shows that the accuracy can decrease as the QUBO gets larger [39]. Even using reduction
methods as described in section 3.2, it is not always possible to reduce the QUBO to such a small
enough size that it can be quickly solved.

3.3.2. Parallel

To try and avoid the problem becoming too large so that a quantum computer cannot solve it, or to avoid
losing accuracy as the problem gets greater. We can try and split the problem up into smaller chunks
and to try and run them individually, i.e. parallel or distributed as shown in 3.3. This was proposed
by Wang et al. [49]. As can be seen in equation 3.49, all sections of the whole optimisation problem
are to be squared, therefore the individual correct answers can also be solved by solving all functions
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individually in equation 3.50. Here every block gets run individually and then the answers of every block
get intersected together, where in the end you should get the final correct answer(s).

f=min> " H? (3.49)
fo =min(HY)
J1 =min(H3)
fn = min(H?)
(3.50)

The disadvantage is firstly that often one cannot run the problem in parallel, as one may not always
have access to multiple quantum annealing computers. In that case, it may not be more advantageous
to run the problem sequentially as opposed to running the problem longer or more times on a quantum
computer. Furthermore, for the block and column methods, the central block/column will increase in
size as N'’s bit length gets larger, therefore there is still is an upper limit. This will however not be the
case for the cell method, as its cells do not increase in size

Blocks m o I
r 1 Pz ™m 1
q 1 g2 @ 1
1 P M 1
9y P |
pq

q2 P22 P19z 92
1 pa | 1
Carries €, &

€ 6
N 1 0 0 1] 1 1 1

Figure 3.3: Graphical representation of parallel process

3.3.3. Sequential

Running sequentially can be seen as a derivative of running the problem in parallel. As we know what
the possible correct solution or solutions are for certain variables after having run the problem for one
part of the problem, we could then substitute in the values for those variables for the other parts of
the problem that have not been solved yet, thereby reducing the complexity of the parts individually. A
graphical representation is given in figure 3.4, where the leftmost column is initially solved, its answers
are fed into the next column which is then solved, and the process continues till the leftmost column
has been reached.

This can be seen as advantageous, as it is the case that for every table method the most left or
right-hand block/cell/column has the least amount of variables. Therefore, easier to calculate and find
the corresponding answers for those variables.

The problem, however, is knowing whether you have found the correct answer for a variable. It
may be the case that the wrong answer has been found for a variable, this will then likely mean it is
impossible to find the solution to the entire problem. Furthermore, it may also be the case that no
definite answers are found for variables in subproblems.
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Figure 3.4: Graphical representation of sequential process

3.3.4. Meet in the middle

This can be seen as a corollary of the sequential way of running the problem. Instead of solving the
problem from right to left or vice versa, we could solve the problem from both ends, as seen in figure
3.5.

As mentioned in the sequential subsection, as it is the case that both extremities have the least
amount of variables, they are therefore the easiest parts to solve. Going from both extremities inwards
would mean less computing time, and potentially will mean a greater rate of success as along the way
the larger parts of the problem get reduced in size due to variables being solved.

However, this problem suffers from the same issues as parallel and sequential way of running the
problem.

Blocks o 11 I
P [ P P 1
q 1 Gz G 1
1Ll ™ 1
@ P [ @

pq
2 P20 pid2| a2

1 P2 lm 1

Carries y
N 1 0 oo 1 1 1 1

\AV)

Figure 3.5: Graphical representation of meet in the middle process

3.3.5. Divide and Conquer

Divide and conquer approach in general is well known in classical computing. For QUBO problems it
is less commonly used. The general idea is to split the problem into smaller parts and to solve those
parts, and then to stick these smaller solved parts back together to get the solution. The main question
is how one should split it up.

Guerreschi in 2021 proposes it for the max cut problem, here he ran it on a universal quantum
computer [27]. However, as it was a QUBO the approach can be also be applied to an annealer or
QUBO solver. What the paper found was that for a quantum computer the rate of success increased,
albeit not for a simulated annealer.

The approach the paper takes is by drawing the problem as a graph like in figure 3.6 and doing
community detection on the graph, thereby splitting the problem into smaller chunks.

The problem with divide-and-conquer approach is the case that you have to merge the solutions
together. Which again may have issues in terms of large spatial complexity as mentioned in the other
distributive methods. Besides the general problem, it may not be useful for all methods. As the block
and column methods can have large columns, it may not be useful as you may just be grouping the
largest columns and blocks together, which are too large for the annealer to solve anyway. Moreover,
there are several ways in which one can split a graph into smaller sections, there currently is not a
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¥ n

Figure 3.6: Graphical representation of divide and conquer method taken Guerreschi 2021 [27]

definitive answer on how to best split these problems into smaller chunks. Finally, we do not know how
well the community detection algorithm scales in time.



Factoring Method

In summary of what we have shown in the related work chapter is that the only method that is able to
be split up into sections that have a constant size, is the cell method. We then saw that several of the
reduction methods were not relevant for this specific problem. Furthermore, we also noticed that no
single or combination of the reduction methods could reduce the size of the problem to a significantly
smaller problem all the time.

Therefore, the formulation of the problem is not scalable, as either the size of the problem would
mean that it was too large for a quantum computer to take, or too large so that the chance of finding
the solution would be zero. That is why it became important to look at methods of splitting the problem
up into sub-problems and run these individually. As we know that a quantum annealer or a simulated
annealer can only solve problems of a certain size, it was therefore important that as the size of the
problem grew, the size of the sub-problems would stay constant. The only method that would have
equal sizes for all sub-problems no matter how large the problem would get was the cell method.

The best approach to solving the cell method distributively is the approach of solving the problems
in parallel and then combining the solutions together. This is because the cells are so small that they
could be easily solved in parallel. Furthermore, there was little guarantee that in the stage of merging
or intersecting the answers together the sequential or meet in the middle methods would have any
advantage over the parallel method. Moreover, with the divide and conquer method there is also little
guarantee that splitting the cells using the community detection algorithm would create a better split in
the problem nor did it seem that this algorithm would be more efficient than splitting the cell method
into its constituent cells.

In this chapter we shall therefore present our design of how to solve the cell method by solving
every cell individually and then combine these cells together to get the final answer.

Our implementation was written in Python, and our implementation was based on the code that had
been written initially by HPQC labs [46]. Furthermore, all equations and expressions were written with
the help of Sympy the symbolic computation library [34].

The chapter is made out of the following sections; we shall revisit the cell method in section 4.1;
then we shall go over how we can solve every cell individually in section 4.2; before looking at ways
of reducing the size of the problem in section 4.3; then we shall look at how to merge the solutions
together and note that the bottleneck is that we get an exponential rise in the spatial complexity in
section 4.4. To try and solve this issue we look at ways of reducing the spatial complexity. We initially
start with a section on how to view this problem as a search problem in section 4.5. This is used to find
three different techniques of reducing the spatial complexity problem which we present in section 4.6.
All symbols used in this chapter are listed in table 4.1.

Symbol Definition

N The RSA number we wish to factor
n; bit i of NV

D, q the two factors of N, where p > ¢
Di bit i of factor p

21
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Symbol Definition

q; bit i of factor ¢

S; Sum bit i

2 carry bit i

Ly,Ly, L, bit length of N, p and q

m(r) = o5 prime counting function 7, it approximately gives the

position of the prime relative to other prime numbers

Table 4.1: List of symbols used in the Factoring Method chapter

4.1. Cell Method Formulation

Before we start looking at our new method of factoring, we first need to recap on what the cell method
does and how it can be split into smaller sections.

To be able to start factoring we first need to formulate the different equations. This method of
formulating was first introduced by Schaller and Schiitzhold in 2007 [44]. In the original case it was
meant to be described as a minimisation problem where every term C;; is squared and added together,
as can be seen in the formula 4.1. Where the S variables are the sum values and the z variables are
the carry variables. Finally, as there are certain edge cases where one variable is equal to another
or equal to zero. Then we must add these substitutions as can be seen in equations 4.2. Finally, the
most significant bit is the most right bit in table 4.2 i.e py and ¢o, they are all set to 1 as we know that
both p and ¢ are of the same length. Furthermore, as said in previous sections we know that the least
significant bit must also be equal to 1. i.e. p3 and ¢3 in table 4.2.

f =min Z H
ij

Hij = qip; + Sz’,j + 2 — Si+1,j71 - 221’,j+1 (4-1)

20,5 = S1,j717
Sio = ny,
Sk+1,j—1 = Nk+j,
Sin—k = Zin—k =0,
2, = 0,
S1m—k—1 =0,
Where k =L, (4.2)

If one were to implement this representation the result would look like table 4.2. Where the number
of cells is equal to the product of the two binary variables L, x L, in other words in this example
4 x 4 = 16. What should also be noted is that all the cells on the edges will have less than 6 variables
due to the substitutions that have been made using equations 4.2. The cells not on the edges will all
have six variables. Also what can also be observed is that the q variables go horizontal, and the p
variables go diagonally.

The terms of the cell method for factoring 143, where p and q both have a bit length of 4, can be
seen in terms 4.3.
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1 P2 o1
1 g2 a1
1 P2 pr |1
1 P2 pp |1
0 0 0 0
0 Sa1 | Su1 | Sou
q1 p2q1 | P1q1 | 41
231 221 211 0
Saz | S22 | S12 | So2
q2 P2q2 | P142 | G2
z32 | 222 | 212 | O
S33 | S23 | S13 | Sos
1 P2 | p1 1
233 | 223 | 213 | O
ny  MNe s Ty ns UP) ni )

Table 4.2: Generic representation of the cell method 4.2

— 2% S0+ S11+ 211+ 1
— 2% 511 + S12 — S21 +q1 + 212
— 2% 812 — So2 + q2 + 213
—2% 83— 8933 +1
So1 +p1 — 2% 211 + 221
Sog — 831 +p1*q1 — 2% 212 + 222
Soz — S32 +p1* g2 — 2% 213 + 223
— S33 +p1
S31 +p2 — 2% 221 + 231
S32 — Sa1 +p2*q1 — 2% 222 + 232
S33 — Sy2 + P2 * g2 — 2% 223 + 233
— S43+po
Si1 — 2% 231
Sg2+q1 —2%230—1
Siz+q2—2%z233—1
(4.3)

Generating the cells takes approximately the least amount of time compared to all other sections in
this algorithm. The code that we implemented was based on the code from HPQC lab’s implementation
of the cell method [46], where we made some changes to make the code run more efficiently. The
psuedocode of the implementation can be seen in algorithm 1. Even though this part of the algorithm
takes the least amount of time, there are still improvements that can be made. Firstly by doing the
substitution inside the first loop, and secondly by making the algorithm run in parallel.
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Data: L,,L,,N
Result: equations
Ly <+ L,+Lg;
k< Lp;
edgeSubs =[p1: 1, ¢i: 1, pr,: 1, - 11,
equations « [];
targetDigits = ToBinaryArray(N);
fori=1to(k+1)do
forj=1to(Ly-k+ 1)do
equation = p; * q; + Sij + zij — S(iJrl)(j,l) — 2% Z(i—1)5>
equations < equations + [equation];
if i == 1 then
edgeSubs[zg;] = Si(j-1) ;
edgesubS[Sl(p'r‘oductfkfl)] =0;

end
if j == 1 then
| edgeSubs[S;] = targetDigits[i-1];
end
if i == k then

edgeSubs[S + (k + 1)(j — 1)] = targetDigits[k + j - 1];
edgeSubs|z;;] = 0;
end
if j == product - k then
edgeSUbS[Si(product—k)] =0;
edgeSUbS[Zi(product—k')] =0;
end
end
end
for x = 0 to length(equations) do
for var in variables(equations([x]) do
if var in keys(edgeSubs) then
\ equations]i] «+ SubstituteVariable(equations[x],var,edgeSubs|var]);
end
end
end

Algorithm 1: Generating equations

4.2. Solving Cell Method Terms

Due to the cells at most only having 6 variables, this means that all cells do not have to be solved by
a quantum annealer or any other annealer or special solver. Instead, it can simply be solved outright
using Sympy’s own solve function, or any other symbolic or binary solver. The Sympy solver returns a
list of all the possible correct solutions. The correct solution is represented as a dictionary, in order to
make processing of these results easier we transform the list of dictionaries into a Panda’s data frame,
which is essentially a table, which we can see as a truth table, as can be seen in table 4.3.

In the code of algorithm 2 we can see how the solver works. The maximum time observed to solve
an equation was 0.01 seconds on a computer with a 2,2GHz 6-Core Intel i7 processor. Furthermore,
the process of solving all the equations can be sped up through parallisation as none of the operations
need to be done sequentially. There can be even more improvements done to this algorithm through
only solving the edge cells. As all the inner cells are of the form given in equation 4.1, therefore all the
truth tables will look like table 4.3. Therefore we could simply generate these tables without having to
solve them.
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S2.2 S3_1 p2 q2 z1_2 222
0 0O 000 0 0
1 0o 001 0 0
2 0 010 0 0
3 o o1 1 1 1
4 o 100 0 1
5 o 101 0 1
6 o 110 0 1
7 o 111 0 0
8 1 000 1 1
9 1t 00 1 1 1
10 1 o010 1 1
11 1 0 1 1 1 0
12 1 1.0 0 0 0
13 1 1.0 1 0 0
14 1 1.1 .0 0 0
5 1 11 1 1 1

Table 4.3: General truth table of a term, all terms that are given here are all the possible correct terms. The left most column
represents the row number.

Data: Equations
Result: SolvedEquations
SolvedEquations « [J;
for i = 0 to length(Equations) do
\ SolvedEquations][i] +— BinarySolve(Equations]i]);
end
Algorithm 2: Solving equations

4.3. Reducing the number of variables

The reduction step can be seen as an optional step as the merging phase can work without it. However,
the merging step will probably take longer, as without the reduction step it will mean that the number
of unnecessary variables and rows in the tables will be greater. Therefore, a greater increase in data
complexity.

The reduction section is made out of two parts, one is finding the different constraints per table, and
the second part is enforcing these constraints so to reduce the size of the tables.

There are several different constraints one could find per table, but to keep it simple we only looked
at cases for either one variable, or the relationship between two variables. The six deductions that we
used were:

0 zx is equal to a constant (0 or 1)

1 x is equal to variable y

2 z is the opposite of y

3 x is greater than y

4 xislessthany

5 z and y are never both 1 (NAND)

The wrapper function that calls the deduction and reduction functions can be seen in algorithm 3,
and works as follows; it starts by getting all the truth tables from the solveEquations function. Then it
creates a dictionary for every option we are dealing with; O for constants, 1 for equals, 2 for not equals,
etc. . The option variable is initialised to 0 and we enter a while loop where the condition is that the
option variable is less than 6.

In the while loop we assign the last deductions of that option to a new variable, and reset the
deductions of that option. We then loop through every truth table, to find a deduction and add it to the
deductions array.
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After the deductions have been found, we check for the set difference between the new deductions
and the last deductions. If there is a set difference, then we can reduce all the results. After that, we
can assign the option to 0 to see if new constant deductions can be found. If however, it is not the case
that there were new deductions found, then we increment the option variable and start looking at new
methods of deduction.

Data: solvedEquations

Result: solvedEquations

option + 0;

deductionFunctions « [FindConstants(), FindEquals(), FindOpposites(), FindGreaterThan(),

FindLessThan(), FindNand()];
reducerFunctions «+ [EnforceConstants(), EnforceEquals(), EnforceOpposites(),
EnforceGreaterThan(), EnforceLessThan(), EnforceNand()];

deductions < [[],[1,[1.0.0.05

while option < 6 do
lastDeductions <« length(deductions[option]);
for i = 0 to length(solvedEquations) do
deductions[option] «+ deductions[option] +

deductionFunctions[option](solvedEquations]i]);
end
if lastDeductions < length(deductions[option]) then
for i = 0 to length(solvedEquations) do

solvedEquations]i] +

reducerFunctions[option](solvedEquations[i],deductions[option]);
end
option « O;
else
| option « option + 1;
end
end

Algorithm 3: Wrapper function that calls the deduction and reduction functions

We managed to speed up the algorithm by making the deductions and reductions run in parallel.
There are probably other areas of improvement for this algorithm, either in the number of reductions
that can be made e.g. doing comparisons between three or more variables or in efficiency. However,
this section of the factoring method takes relatively little time in comparison to the merge algorithm,
therefore it did not become our main focus.

A simple example of how the reduction and deduction can be done is where we know from one
table a variable is constant e.g. in table 4.4 where we can see that both p4 and ¢4 are equal to 1, and
another table where we have p4 where it can be 1 or 0. After doing this reduction we also know that
Sy1 is equal to 0. Therefore, being able to reduce another table as seen in table 4.5.

There are two modes of doing the reductions, one is the “standard” one as shown in tables 4.4 and
4.5, here the variables do not get replaced. Then we can also have a “ruthless” version, where for
example if S1; is equal to pl in one cell, then for all other cells where S;; is present, we replace Sy;
with p1.

p4 g4 ‘(1)
0 1 1 )

Table 4.4: Example of two tables before reduction

p4 g4 S4_1 p4 z3_1
0 1 1 0 0 1 0

Table 4.5: Same tables after the reduction has been made
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4.4. Merging the solutions together
The merging phase is the final part of the algorithm. Here all the truth tables get merged together so
that we know what the values are of the two factors. The algorithm can be seen in algorithm 4. The
method starts off by selecting the truth table that has both the variables p; and ¢, then all the following
truth tables get selected in order of most significant p or ¢ variable to the least significant p or ¢ variable.
In this case we chose to first select ¢ and then select p variables. The joining of the two tables is done
through a hash join, which can be seen in algorithm 5. During this process filtering gets done which
will be explained in sections 4.5 and 4.6, this has the function of reducing the size of the data and also
trying to find a factor early. When the method has gone through all the variables of ¢ or p, the program
goes through all the rows of the final answer and looks at which answer for ¢ or p could be a factor of
N.

Data: solvedEquations

Result: finalResult

finalResult, solvedEquations < GetFirstEquation(solvedEquations);

while /ength(solvedEquations) > 0 do
variable < GetMostSignificantVar(); /I Get next most significant variable of p or q

if variable == null then

/I If there are no more variables then we can check all rows to see if it contains one of the factors
return checkAnswers(finalResult);

end

result, solvedEquations « GetNextResult(finalResult,solvedEquations,variable);

finalResult + HashJoin(finalResult,result);

finalResult, answer + doFilters(finalResult);

if answer I= null then

| return answer;
end
end

Algorithm 4: Merge results

The hash join as seen in algorithm 5 is done firstly by making a hash table and hashing the vari-
ables that are both in the finalResult and the current table on one end, and adding the corresponding
variables on the other. The second part of the algorithm works by initialising a new dictionary, and
then looping through all the results in the finalResult table, and also looping through the corresponding
values inside the hash table. Here the joining happens, it is initially done by calculating the maximum
possible values for p and ¢. The values are first checked if they are factors of N, then check if pmax
is larger than gmay, if that is the case then the new value is inserted into the newResults dictionary,
with the product of the pmax and gmax as the key and the joined values as the value. After the looping
has been done, the newResults dictionary gets sorted and the dictionary gets converted into an array.
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Data: result, finalResult
Result: finalResult, factor
hashTable «+ MakeHashTable();
intersect « keys(result) N keys(finalResult);
factor = null;
for i = 0 to length(result) do
variables, values = getVariablesValue(result[i],intesect);
hashTable[variables] = values;
end
newResults = dictionary();
for row = 0 to length(finalResult) do
for h = 0 to length(hashTable[row]) do
pmax, gmax = CalculateMaxResults(join(finalResult[row],hashTable[row][h]));
if checklfFactor(pmax) == True then
| factor = pmax;
end
if checklfFactor(qmax) == True then
| factor = gmax;
end
if pmax > gqmax then
\ newResults[pmax*gmax] = join(finalResult[row],hashTable[row][h]);
end
end
end
newResults + Sort(newResults);
finalResult + GetValues(newResults);
Algorithm 5: HashJoin tables
Overall as will be discussed in chapter 5, this section takes the longest to run and is the largest
bottleneck. There are a number of ways in which this algorithm can be improved, the most notable one
would be making sure that the finalResult table needs to be sorted and is kept sorted throughout the
process.

Bottleneck of merging

The merge phase is the final step, and as the size of the number gets larger this part of the algorithm
starts to take the most amount of time. There are many methods of how one can make this process
faster through parallelization. The naive fastest method would be a divide-and-conquer merge con-
struction. However, the order of how the merging happens affects the speed of the merging process
greatly as the spatial complexity increases greatly.

Our initial strategy was to start with the truth table with the least amount of rows and then consistently
choose the next smallest truth table which could be merged. The merging would continue till all tables
had been merged as can be seen in graphs 4.1, the number of the rows increases sharply and then
plateaus till the very end when the number of rows decreases rapidly. The rapid decline happens as
the final results start to filter our the answers.

We decided to change this method to the one that we have now, i.e. start with the cells with the
most significant bits of p and ¢ and continue downwards to the least significant bits of p and ¢, as we
noticed that by the time the table had reached its peak in size it would contain at least one of the factors,
or even both. Therefore, it was unnecessary to merge all the answers.

Furthermore, when testing the initial method we noticed two things. Firstly, the number of rows dur-
ing the merging can be dependent on the merge strategy. Secondly, the number of rows approximately
doubles every time the length of the bit length increases by 2. As we can see for figures 4.1 where
829201 is a 20 bit number and maximally has 128 rows, then for 13911017 which has a bit length of
24 bits we can see that it has at its peak 512 rows. Looking at other results we can come up with the
formula that the peak number of rows will be 27, where x = (log,(N) — 4)/2. This will therefore mean
that if we were to factor a 100-bit semiprime we would be dealing with
11692013098647223345629478661730264157247460343808 rows. A data complexity too large for
any computer to work with.
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Figure 4.1: Number of rows during the merging process
This would not necessarily be a problem for if it were not the case that our merging operation were
running in polynomial or linear time, which will be discussed in chapter 5. As can be seen in figures

4.2 we see that the time it takes to merge is usually proportional to the number of rows in practice.
Therefore slowing the process of factoring down.
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Figure 4.2: Time in seconds for every merge

As we can see from the two graphs 4.1 and 4.2 we have a problem with data complexity, where at
the current pace we would not be able to factor any significant numbers that are any larger than the
current best methods, nor will we be able to factor any numbers any faster. However, we can do two
things; firstly, we can try and find one of the factors before the end of the merging process; secondly,
we can try and filter out bad candidate answers. In sections 4.5 and 4.6 we shall show how certain
methods of filtration can be made.

4.5. Viewing the problem as a tree

We shall introduce three methods of factoring that are not used in the final method. However, they can
be seen as being useful to understand what we have done to reduce the size of the problem in section
4.6.

As we can see in figure 4.3 every variable for p and ¢ can also be seen as a node in a binary tree.
Where pl and ¢1 are the most significant bits of both numbers. We also can observe that the left node
is always 0 and the right node is 1. Every child node will be the opposite factor of the current node, so if
the current node is a p both child nodes will be gs. The alternation has been chosen because it makes
it possible to easily calculate the maximal and minimal possible product of p and ¢. At the bottom of the
tree are the leaf nodes, where we can calculate the values of p and ¢, one of the leaf node’s product
of p and ¢ will be equal to N. In terms of the properties of the tree, we can see that the size of the tree
doubles every time we go down one level.

There are several ways of traversing trees to find an answer. However, there are two basic ways,
breadth first search and depth first search. We shall look at both ways and how we can use these
methods to factor numbers.
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What should be noted is that using a trivial searching algorithm is not efficient for two reasons.
Firstly, because of the potential size of the numbers that are to be factored are so large, as the size of
the tree will double every time you go one level deeper, thereby taking an unreasonable amount of time
to factor. Secondly, we are specifically doing prime factorisation. Therefore, after a certain depth there
may not be primes between the maximal possible leaf (The rightmost leaf where all downwards nodes
are 1) and the minimal possible leaf (The leftmost leaf where all downwards nodes are 0). Furthermore,
as will be discussed later it is hard to discern approximately where N should be at the bottom of the
tree.

P

D2 P2
0 1

Figure 4.3: Tree view of the factoring problem

4.5.1. Depth-first Search Tree Factoring

The depth-first search (DFS) approach works by doing a normal depth-first search, either by looking
first at the smaller numbers, meaning inclining to move to the child node with a zero as value instead
of one, or prioritising larger numbers, therefore moving in the opposite direction. The example given
in figure 4.4 shows all the steps of the DFS algorithm to get to N. In this case, the algorithm goes from
left to right.

What we can do during every move is check if the leaves below the node have a possibility of being
equal to N. This can be done by calculating the minimum and the maximum possible answers. If it is
the case that the minimum possible answer is larger than N or that the maximum possible answer is
smaller than N, then we can remove the node and subtree, and search in a different direction.

This process has its obvious pros and cons, it is advantageous if the answer is on the far left or right
of the tree, less so if more in the middle. Furthermore, it is also good in that there is little overhead in
terms of data that needs to be stored, as the search path does not need to be held in memory.
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Figure 4.4: DFS method of factoring

4.5.2. Breadth-First Search Tree factoring
The breadth-first search (BFS) approach works in the opposite way. BFS tries all the nodes at the
present depth, checking if they have viable answers by checking the maximal and minimal answers,
after having checked all the nodes at the current depth it moves down to the next depth. This method
won’t be as fast or slow as the DFS version but will have the same average because it takes longer to
get to the leaf nodes as opposed to DFS. An example of how BFS works can be seen in 4.5

Just like in the DFS version we can improve on this method by checking what the maximum and
minimum possible answers are, and only continue in the cases where N is between those two extremes.

Figure 4.5: BFS method of factoring

4.5.3. Priority Search Factoring

The priority factoring method is a combination of both methods. Here we use a priority queue, where
we calculate the priority of the node as being the difference between N and the average of the maximal
and minimal numbers, if the N is between the maximum and minimum possible answer. The node with
the smallest difference will be at the start of the queue, and the largest difference will be at the end of
the queue. An example of how this method would work can be seen in figure 4.6.
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Figure 4.6: Priority search method

45.4. Weaknesses in RSA

Despite the fact that all tree methods in the worst case have to visit all vertices, they all have the
advantage of being able to factor certain semiprime numbers quickly. Furthermore, these are not trivial
cases as we can exploit the fact that we can check the min and max cases, where we also go and find
the maximum and minimum prime numbers for both p and q. If at least p or g are factors of N then we
can stop our search. This means that through searching the maximum and minimum primes we can
come closer to finding the answer.

We can view the entire binary tree as a triangle where we start at the top and work our way down,
as shown in figure 4.7. Somewhere at the bottom of the triangle is our answer N. Every time we visit
a new node going down the tree, we check what the maximum and minimum semiprimes are, if N is
between those numbers then we can continue down this path. Every time we are on a new node, we
therefore are finding new primes. Only one of these primes needs to be a factor of N, if done properly,
then we can find four new primes every iteration, therefore four possible factors of N.

(a) DFS method

\

(b) BFS method

Figure 4.7: Graphical representation of DFS and BFS factoring methods
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4.6. Filtering

As for every merge step we get in the worst case a doubling of data every iteration, i.e. an exponential
increase in spatial complexity. To reduce the spatial complexity we have invented three methods with
which we can reduce the space; Min-Max filtration, Prime Filtration and Dynamic Case filtration. All
three are meant to reduce different sections of the search space. As can be seen in figure 4.8 we
can view the space of candidate answers as a triangle, which represents the area of a binary search
tree, where the top contains the root node and the bottom the leaf nodes. Here we can see that the
Min-max method (red) reduces the answers in the far left and right from start to finish; the Dynamic
Case Filtration (yellow) starts a little later and filters the centre of the triangle. Finally, the prime filter
(turquoise) filters the bottom of the triangle.
We shall explain how these methods work, what their strengths and weaknesses are.

Min-Max Filter

Case
Filtration

Prime Filtration

Figure 4.8: What areas the different filtration methods try to reduce.

4.6.1. Min-Max filtration

If we were to view the space we are dealing with as a binary search tree, and the number N being the
product of one of the leaf node’s p and ¢, like what has been shown in section 4.5. We can traverse
the nodes to a certain depth and see what their maximum and minimum possible answers are. Where
the maximum is where all the following bits are 1 and the minimum is where all the following bits are O.
If NV is between the minimum and maximum, then we can proceed going down this path, but if it is not,
then we can remove the node, as shown in figure 4.9.
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Figure 4.9: Min-Max filtration method

In our case we are not dealing with a tree, but an array of dictionaries. However, as we have the
array ordered by the maximum possible answer for every case, then we can easily do a binary search
on all the options for both extremities, i.e. checking for the maximal end and the minimal end, as can
be seen in algorithm 6 where the maximum answers get removed.

Data: finalResult, N

Result: finalResult

low «+ O;

high < length(finalResult) - 1;

while /ow != high do
mid < (low + high)/2;
pmin, gmin < GetMinimumAnswer(finalResult[mid]); checklfFactor(pmin)

checklfFactor(gmin) //Both pmin and gmin must be prime
if pmin x gmin > N then

| high < mid - 1;
else
| low < mid + 1;
end

end
return finalResult[0:high]
Algorithm 6: Filter Max Function

We improved this method in two ways. The improvements can be seen as closing the difference
between the max and min possible answer. Firstly, we can say that we want the max and min possible
ps and ¢s to be prime numbers. Secondly, we can reduce the maximum answer, by subtracting the
maximum product with the minimum q, as we know that it is not possible to have an answer between
max and max - gmin. Furthermore, as shown in algorithm 6 we can check if the q or p is a factor of N.

There are three issues with this method. One of them is that it only filters the extremities and not
from the middle. As it is extremely probable that somewhere in the centre the factors for N will lie,
therefore, it will probably take a long time to whittle down the answers till we get our solution. The
second is that the range does not necessarily reflect the possible answers between the maximum and
minimum answers. Meaning that even though N may be between the maximal and minimal answers,
it is unlikely that N is below this node. Finally, this method is reliant on the data being ordered.

4.6.2. Prime Filtration

There are two facts we know for certain about prime numbers. Firstly, there are infinite many primes
[15]. Secondly, the frequency of primes becomes sparser and sparser as our numbers get larger [20].
This means that the further we are in the merging process the less likely there will be prime numbers
in every case.
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For this filtration we can use Prime Number Theorem (PNT) and Cramer’s or Wolf’s conjecture [17]
[54]. These theories can be used to estimate if there is a prime number between two numbers. It is
generally accepted that there are infinitely many twin primes, i.e. two prime numbers with a gap of 2
[53]. However, there are several conjectures for the maximal gap between two prime numbers, but the
most notable would be Cramer’s and Wolf’'s conjectures [17] [54].

Cramer’s conjecture is about the maximal gap between two primes, it estimates that the maximal
possible gap between two primes is:

Pn+1 — Pn = O('”(pn)Q) (44)

PNT introduces a function called the prime-counting function that tells us what the nth prime number
is, denoted as w(p,,) = = where p,, denotes the nth prime. This is largely an estimation but gets better
as the prime numbers get bigger. The prime-counting function’s definition is:

X

= — 4.5
@) = (4.5)
PNT also says that the maximal gap between a composite numberis n < p < 2 x n, where p is the
prime number and n is the composite number and n > 1.
Finally, Wolf's conjecture estimates the maximum gap to be smaller, which is currently assumed to
be closer to the actual max possible gap [54]. Its definition is:

X

@) (2In(w(z)) — In(z) + o) (4.6)
, Where ¢g = log(Cs) = 0.2778769... and Cy = 1.320326..., which is twice the twin primes constant.

We can use these formulas as a way to estimate if there is a possibility that between the maximum
and minimum values of a subtree there is the possibility of having no primes, as seen in figure 4.10.
Therefore, if we get to that point it makes sense to brute force that range to see if there are no prime
numbers and if there are to check if they are factors of N. This can be used in tandem with the dynamic
case filtration method. As it is likely that when the cases have a distance that is smaller than Wolf’'s
or Cramer’s conjecture, we can assume that the space complexity is large. Therefore it would be a
good idea to do several subtrees at the same time, where the cases are either spaced in the centre or
spread out. Our implementation is shown in algorithm 7.

Figure 4.10: Graphical representation of prime number filter
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Data: finalResult, ranges,N
Result: finalResult,ranges, factor
budget « maxDistance;
while budget > 0 do
i « pickRandomRow(length(finalResult));
gmin « calculateQminPrime(finalResult[i]);
gmax <« calculateQmaxPrime(finalResult[i]);
/lget ’'s maximum and minimum possible primes
distance « calculateDistance(gmax,gmin,ranges);
/[calculate distance by checking if parts of the range have already been scanned
if calcWolfGap(qmin) > distance && budget > distance then
budget < budget - distance;
factor «+ ScanDistance(gmax,gmin,N,ranges);
//go through all odd numbers between gmax and gmin and check if one the numbers is a factor of N
ranges < UpdateRanges(gmax, gmin, ranges);
if factor I= null then

| return finalResult, ranges, factor; //We have found our answer
end
finalResult < finalResult[0:i-1] + finalResult[i+1:-1];
else
| budget « budget - distance;
end
end

return finalResult, ranges, null;
Algorithm 7: Prime Filtration

4.6.3. Dynamic Case Filtration
The problem with the prime filter approach is that early on in the merge process it has no use as the
gaps are probably so big that there is likely to be at least a prime number in that gap. Moreover, towards
the end there are probably several cases where the gap is likely to have no primes, but because of
the expansion in size it may by then become less effective, only being able to remove needles in a
haystack.

Building on the prime filtration method is that we can simply try and see if between two numbers of
p or g there is a number that is a factor of N. To avoid checking all gaps, we give it a budget that it can
only check a certain distance every turn. Furthermore, we also keep track of the ranges that we have
scanned, keeping them in memory in order to avoid scanning that area again. After having scanned
the ranges, we can remove candidates that fall inside the scanned ranges. Therefore, reducing the
space complexity of the problem, and is represented in figure 4.11.

Figure 4.11: Graphical representation of the dynamic filter

The advantage of this method of filtration is that it can be implemented on the centre of the array of
cases, not just on the maximum and the minimum cases. Furthermore, it can also be applied earlier
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in the process of merging than prime filtration, and can be used in conjunction with the other filtration
methods.

Our implementation is made up of two parts. The first part as shown in algorithm 8 is where we
scan the candidate in the centre of the finalResult. The algorithm also takes two other parameters,
ranges that have already been scanned and the maximum distance the algorithm is allowed to scan.
The algorithm calculates the max and min possible ¢ answers and scans that distance and checks if
between these two numbers there is a number that factors N. After having scanned that distance the
range gets added to the array of ranges.

Data: finalResult, ranges, maxDistance

Result: finalResult, ranges, factor

budget + maxDistance;

i «+ length(finalResult) / 2;

gmin « calculateQminPrime(finalResult[i]);

gmax < calculateQmaxPrime(finalResult[i]);

distance < calculateDistance(qmax,gmin,ranges);

budget « budget - distance ;

factor « null;

while budget > 0 do
factor «+— ScanDistance(gmax,gmin,N,ranges);
ranges <« UpdateRanges(gmax, gmin, ranges);
finalResult + finalResult[0:i-1] + finalResult[i+1:-1];
if factor |= null then

\ return finalResult, ranges, factor;
end
i « length(finalResult) / 2;
gmin <« calculateQminPrime(finalResult[i]);
gmax < calculateQmaxPrime(finalResult[i]);
distance « calculateDistance(gmax,gmin,ranges);
budget «+ budget - distance ;

end

return finalResult, ranges, factor

Algorithm 8: Dynamic search

The second part of the dynamic case filtration method is the “welding” algorithm as shown in algo-
rithm 9, where if the distance between two ranges is smaller than the maxDistance given then the two
ranges can be “welded” together by scanning the distance between the two ranges and making the two
ranges one.

Data: ranges, maxDistance

Result: ranges, factor

factor « null;

i1

while i < length(ranges) do
if ranges[i-1]J[1] - ranges][iJ[0] < maxDistance then

factor «+— scanDistance(ranges[i-1][1],ranges[i][0]);

ranges[i-1] « [ranges[i-1][0],ranges][i][0]];

ranges < rangesl:i-1] + ranges][i+1:];
else

| i+
end
end
return ranges, factor

Algorithm 9: “Weld” ranges together



Evaluation

In this chapter we evaluate the new factoring method that we have designed. The evaluation is given
in two sections. The first part is the theoretical evaluation of every part of the factoring method, where
we evaluate the algorithmic complexity of the algorithm. In the second part we look at how the method
runs in practice for RSA numbers of several sizes. The list of symbols used in this chapter are given in
table 5.1.

Symbol Definition

N The RSA number we wish to factor
D, q the two factors of N, where p > ¢
Di bit i of factor p

G bit i of factor ¢

S; sum bit i

Z; carry bit i

Ly,Ly, Ly bit length of N, p and q

M number of cells in the problem

L number of variables in the problem
K number of rows in the final result Dataset
R number of ranges

Table 5.1: List of symbols used in the Evaluation chapter

5.1. Theoretical Evaluation

This section will go over all the sections of the algorithm to see what the algorithmic complexity is. To
avoid confusion we shall not use the letter V for the big O notation but will use the letter M and other
letters.

5.1.1. Generating cells
Generating the cells is made out of two sections, the first section by generating the cells and the second
by doing all the substitutions.

The first section is made by doing two for loops, from 1 going up to k£ + 1 and a second for loop from
1 that goes up to Ly — k + 1, where k is L,,. Every iteration generates a new cell. As both for loops
generate all the cells, that means that M = (k + 1) x (Ly — k + 1), where M stands for all the cells
that have been generated. Therefore we can conclude that the first section is O(M).

In the case where L, = L, itwill meanthat Ly — L, = L,. Therefore, M = (k+1)x (Ly —k+1) =
(k+1) x (k+ 1) ~ k* < Ly>. All cases where L, # L,, we shall get the case that Ly <= M < Ly?.

The second part is where variables in the cells get substituted. Here again the for loop goes over
all the cells, which takes M iterations. Then loops over all the variables inside the equation, to find if a
substitution has to be made. As mentioned all the cells are of the form p; x q; +.5i; + 2i; — S(iy1)(j—1) —

38
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2 x z(;—1);, therefore it only has to check 6 variables which is a constant, therefore we can conclude that
the algorithmic complexity is also O(M). Therefore, we can say that the entire algorithmic complexity
is O(M).

5.1.2. Solving cell method terms
For solving the cells, if we say that the length of the array of cells is M. As shown in section 4.2, in
order to solve all the cells we need to loop over the entire array of cells.

Furthermore, we know that the time it takes to solve the cell is dependent on the number of vari-
ables in the cell, and as the number of variables is either 6 or less, we can say that the solving of a cell
is of constant time. Therefore, we can conclude that the algorithmic complexity of this section of the
algorithm takes O(M).

5.1.3. Reduction of the number of variables

Again we denote the length of the array of the solved cells as being M. As can be seen in algorithm
3 after having initialised the variables, the algorithm enters a while loop that only breaks till the option
variable is greater than 6. To determine the maximum number of iterations that can be taken we need
to first look at the for loops inside the while loop.

The first nested loop is where the deductions are made, it is simply going over every solved cell and
running a deduction function on it. We can safely say that the running of the deduction function can be
seen as a constant, as it is dependent on the size of the solved cell, as we know that the maximal size
is constant no matter how large the problem gets we will be dealing with the same size. Therefore, we
can say that the algorithmic complexity of this nested loop is O(M).

In the second nested loop we have a similar situation to the previous nested loop. Here the loop
goes over all the solved cells, and checks if the variables inside the solved cell are in the current
deduction dictionary, if so then the reduction gets made by the reducer function. As we also know that
the number of variables per solved cell is 6 or less we can also say that the reduction function is a
constant. Therefore the algorithmic complexity is O(M).

Finally now that we know what the algorithmic complexity of the two nested loops are, we must
now look at what the worst case scenario would be for the while loop. The worst case would be that
all variables get solved, and at the end of running of this algorithm we would have solved the entire
problem. The worst possible case for this would be that per iteration of the outer loop only one variable
gets solved. Therefore, we can say that the outer loop takes O(L) iterations, where L stands for the
number of variables in the entire problem, where L'’s relationto M is L = M + (Ly/2 — 2).

In conclusion, we can therefore say that the algorithmic complexity of this entire algorithm is O(L x
M).

5.1.4. Merging the solutions

The merging part of the algorithm is firstly made out of a while loop. The number of iterations that have
to be taken for the while loop to run are at most equal to the number of variables in both factors p and
g, thus the number of iterations for the initial loop that have to be made is O(L,, + L,).

Every iteration the algorithm finds a new result for it to merge into, at most this takes O (M) iterations,
where M denotes the number of results. Then the algorithm does a hash join and filters the solved
cells.

The hash join initially goes through all the answers of the result to make a hash map. As the number
of rows per result can only maximally be 16 rows, we can therefore say that this is constant in time.
Next, the algorithm loops over all the rows in the current final table, this can be seen as being denoted
as K, where K are the number of candidate solutions or rows in the final result. After the merge has
been done, the new results are sorted, as this is Python the sorting algorithm is Tim Sort where the
worst case performance would be O(K log(K)) [6].

The filtering part of the algorithm will be discussed in subsection 5.1.5, all filtering methods either
run in constant time (prime filtration and dynamic case filtration) or are more efficient (min-max filtration)
than O(K log(K)). Only the dynamic case filtration’s weld method takes O(R), where R are the number
of ranges.

Therefore we can conclude that the merging algorithm takes O((L,, + L;) x (M + K log(K) + R))
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5.1.5. Filtering the solutions
All filtering functions are focused on reducing the size of the array of the solutions, we shall refer to the
number of (candidate) solutions as being K.

Min-max filtration

Both max and min filtration work the same in that both run an adapted version of binary search. Inside
both filtration methods there is a check of what the maximum and minimum possible answers are, this
is a rather simple operation and can be seen as taking constant time. As we know that binary search
is logarithmic we can therefore conclude that the algorithmic complexity is O(log K).

Prime Filtration

For prime filtration we have an outer while loop which breaks if the budget exceeds the budget that has
been set. As the budget is constant no matter how large the size of the problem gets, therefore we can
say that this section runs in the worst case in constant time, O(1).

Dynamic Case Filtration

For the dynamic filtration case there are two sections. The first section is like the prime filtration in that
we have a while loop which breaks if the budget has been exceeded. Again the size of the budget
does not change. The second part deals with the welding of the ranges together. The algorithm loops
over all the ranges and checks if the distance between the two ranges is not greater or smaller than
a constant, if it is smaller than a constant then the algorithm searches between the two ranges and
checks if it contains one of the factors of N. If we were to denote the length of the array of ranges as
R, then we can say that the worst case is equal to the best case, as the algorithm always needs to loop
over all the ranges. Therefore, we can say that the algorithmic complexity is O(R).

5.1.6. Summary of Theoretical Analysis

In summary we can see that all parts of the algorithm run at most in linearithmic time in regard to K,
which is in the merging part. Therefore, we can say that the main bottleneck of this algorithm comes
in the merging section where we are heavily dependent on the size of K (number of rows in the final
result) being small or having a manageable size. All the algorithmic complexities are listed in table 5.2.

Section Complexity

Generating Equations O(M)

Solving cells O(M)

Reduction O(L x M)

Merging O((Lp+ Lg) x (M + Klog(K) +
R))

Min-max filtration O(log K)

Prime filtration o(1)

Dynamic case filtration O(R)

Table 5.2: Algorithmic complexity of the all sections of the algorithm

5.2. Practical Evaluation

The practical evaluation was done by running the algorithm on RSA numbers that have an even bit
length and where it is not possible to factor these numbers by using Fermat’s factoring method. The
choice to choose even bit length numbers was because all RSA keys that get used for encryption have
an even bit length. Secondly, All Fermat factorable numbers can be factored in milliseconds anyway.
Therefore, it is of no interest to try and factor these numbers.

The numbers ranged from having a bit length of 20 to 74, and per bit length 10 numbers were
chosen at random, all numbers are in the appendix section A.1. We felt that 10 numbers was a good
amount in terms of variance and the time it would take to factor all numbers. The reason for choosing
74 bits as the upper limit was that anything longer, the variance in the time it took to factor these
numbers would increase ever greater. We have managed to factor numbers that have a larger bit
length, however, certain numbers would take far too long to factor, whilst others would be factored in
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a matter of seconds. All numbers were factored on a computer with a 6 core CPU with a speed of
2.1 GHz and 96 GB of memory. Both the solving and the reduction parts of the algorithm were made
to run in parallel with 10 threads. The budget for filtering for prime and dynamic filtration was set at
1000000000 decimal numbers.

The practical evaluation section is split into the following parts. Firstly we evaluate the performance
in time it takes to solve the problem, number of iterations and spatial complexity. We then look at how
the method performs with and without the different filtering methods to see which filtration method has
the most effect. This was done by testing all numbers that have a bit length of 20 to 26. After that we
shall take a look at how much the reduction-deduction method is able to reduce on its own, and to see
what effect it has on the merge process. Then finally we compare our results to the results of a general
purpose factoring method.

5.2.1. Time Comparison
We can firstly look at the mean total time taken in figure 5.1. We can see a gradual increase in time
it takes to factor numbers, till it gets to around the 60 bit mark, after that there is an even greater
increase in the amount of time taken. Looking at the total time in terms of a stacked graph in figure 5.2
we can see that from 20 bits till just before the 50 bit mark there seems to be an approximate 50/50
split between solving the equations and merging the solutions to find the factors. After the 50 bit mark
the merging takes a larger proportion of the time, and after the 60 bit mark solving takes a minuscule
amount of the total time.

From these two graphs we can infer that before the 50 bit mark, the filtering methods are able to
either keep the spatial complexity small or are able to find the final answer before the spatial complexity
becomes incredibly large.

Total Time vs Bit Length Of N
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Figure 5.2: Total Factoring time broken down into different

Figure 5.1: Total Factoring time
components

Furthermore, if we were to look at figure 5.3 we can see that for every bit length we have a box plot
of the merge time. As we can see from the plots the average time often does increase, however, there
is often a large disparity in terms of the time it takes to factor these numbers. Furthermore, we can
see that many numbers can be factored faster than other numbers with a smaller bit length. Therefore,
there is a large variance and if more numbers were to be tested this would become more apparent.
What this means is that our factoring method is better at solving certain number than other numbers.
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Figure 5.3: Box plot of time it takes to factor numbers

5.2.2. Iteration Comparison

Looking at the mean number of iterations during the merge phase in figure 5.2.4 we can see that the
number of iterations stays relatively constant and is not dependent on the size of the number till the bit
length of 70, when the number of iterations increases greatly.

Like in figure 5.2, we can infer that from the 20 to 70 bit length mark the filtration methods are able
to find the answer within 15 iterations on average. Therefore, before all the solved cells have been
merged. After the 70 bit length mark, the filtration methods are no longer able to find the answers
within 15 iterations and the data complexity increases greatly, therefore also the time it takes to find the
answer.
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Figure 5.4: Mean total number of iterations it takes to factor numbers

Furthermore, when we look at the box plots for how many iterations it takes to factor the numbers in
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figure 5.5, we can again see that the number of iterations stays constant till the bit length of 66 where
after that it greatly increases. What we can see in this box plot as opposed to figure 5.3 is that early
on there do seem to be more cases of outliers, however the median seems to be constant. This is
probably because of the large outliers such as with bit length 40. This is probably the reason why the
mean number of iterations varies between the 20 to 66 bit length in figure 5.2.4. What we can also
see is that after bit length 66 we still get cases where it is not unusual for a factoring method to take
less iterations than a number that has a bit length that is two bits shorter. Again, this suggests that our
method is better at factoring certain numbers than others.
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Figure 5.5: Box plot of number of iterations it takes to factor numbers

5.2.3. Space Complexity Comparison

Here we look at the space complexity, in which we mean the number of rows in the final results table

at the end of merging. Here we have a similar situation like in the number of iterations. In figure 5.6 we

can see a plateau from 20 to 66 bits, after which there is a great expansion in the number of rows.
This graph has a similar trajectory to the figure 5.2.4, this is what we expect as every iteration the

data complexity doubles without filtration. In the 60 - 70 bit mark area, we can see that the filtration

methods start to struggle to find the answer early, then struggle to keep the data size small.
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Figure 5.6: Mean data size at the end of factoring N

Furthermore, we can see in figure 5.7 that again the pattern is much the same as in figure 5.5. What
is different however, is that there are less outliers than in the previous two box plots of time 5.3 and
number of iterations 5.5. Again this suggests what we have mentioned for the time comparison and the
iteration comparison, where we believe that our factoring method is better at factoring certain numbers
than others.
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Figure 5.7: Box plot of data size at the end of factoring N

5.2.4. Comparing Different Filter methods

We also ran the algorithm with only one or none of the filtering methods. This was to see which of the
filtration methods were the most effective; to see if all of them work; and to see what the result would
be if we were not to apply any filtration methods at all. Because of time constraints, we decided to only
run the algorithm on numbers that are between 20 and 26 in bit length.
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As can be seen in figures 5.8, 5.9 and 5.10, the dynamic filtration is the fastest and has the least
amount of iterations and the least amount of rows. This is probably because the budget was so large in
comparison to the size of the number that the algorithm was factoring, which meant that it could rather
quickly solve the problem.

Furthermore, we can see that in figures 5.8 and 5.10 that after the dynamic filtration method, the
min-max filtration method is second. Then we have the prime filtration method in third, this makes
sense as the prime filtration method is meant to only start filtering towards the end of the process.

Finally, in figure 5.9 there is less of a clear cut difference between the prime and min-max filtration
methods. It is even the case for the bit length of 24 that the min-max method took more iterations on
average than having no filter, this is most likely a fluke because of one of the factors being found when
merging.

In conclusion, we can see that the dynamic filtration method is able to quickly solve the smaller
numbers, and is most likely the reason why in figures and 5.6 there is a plateau till the 70 bit mark.
This is probably because the dynamic filtration method is able to find the answer quickly and therefore
avoid greater increase in data. In graph 5.2 we can see that that the increase in merge time starts
earlier, around the 48 bit length mark. This suggests that earlier on the dynamic filtration method takes
a long time to run.

Therefore, dynamic filtration even though it is constant in time theoretically, does take a long time
when the distance that it can maximally scan has been reached. As figures and 5.6 show, it is effective
to a certain point, after which it does not scale well any more.

Furthermore, from our observations we would suggest to either adapt dynamic filtration so that it
is more efficient, one possible avenue would be to look at sieving methods [52]. Otherwise, we would
suggest looking for new filtration methods or improving the other two filtration methods.
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5.2.5. Reduction method

Firstly, we have looked at how much the reduction methods reduce the entire problem by. We ran two
versions of the reduction method, normal and ruthless, on all numbers between 20 - 40 bits in length.
Ruthless being the version where we substitute the values if two values are equal or opposite, normal
being the case where that does not happen.

In figure 5.11 we can see the mean number of rows before and after the running of the reduction
methods for every number ranging from bit length 20 to 40. We can clearly see that there is some
reduction for all cases. However, we can also see that the reduction methods are not able to reduce
the size of the problem to a size that is radically smaller than the original problem size.

In figure 5.12 we can see a box plot for both reduction methods. We can see that the normal
reduction method is able to reduce the size of the problem at around 4% on average and the ruthless
reduction method is able to reduce the size on average by about 7%. There are, however, cases where
the methods have been able to reduce the problem in a far greater amount, with the ruthless reduction
method being able to reduce the problem size by 12%. Unfortunately, there have been cases where
the normal reduction was less effective, where we have a reduction of just around 3%.
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Figure 5.11: Line plot of mean number of rows for every  Figure 5.12: Box plot of both reduction methods, looking at the
number between 20 - 40 bits in length. percentage of the reduction it has managed to make.

In figures 5.13, 5.14 and 5.15 we can see the actual difference in performance using the different
reduction methods and not using the reduction method. Firstly, in figure 5.13 we can see the mean
time (in seconds) it takes to factor numbers. In all cases there does not seem to be any constant trend
where any of the reduction methods outperforms in time. Furthermore, it does seem that for many
cases that the non-reduction method outperforms the reduction methods. Moreover, in the case for
number of iterations in figure 5.14 it is usually the case that the no reduction method takes less or just
as many iterations as the reduction methods. Finally, this trend continues in the last graph 5.15 for the
size of data.

Therefore, we can conclude that on average the reduction methods in their current form have no
advantage in being able to factor numbers faster than not using a reduction method.
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Figure 5.15: Data size at then end of the algorithm, when running different reduction methods

Moving on to look at the box plots of the amount of time it takes to factor numbers in figures 5.16,
5.17 and 5.18, we see a slightly different picture. Again the average seems to be the same for all
methods. However, there is a significantly greater amount of variance. Most notably for the numbers
with the bit length 62 and 58. This does suggest that it does have a greater advantage for certain
numbers, but on average it does not.

Therefore, we can conclude that the reduction methods do not show a special advantage for some
numbers.
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Figure 5.16: Box plot of time it takes to factor numbers using Figure 5.17: Box plot of time it takes to factor numbers using
normal reduction method ruthless reduction method
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Figure 5.18: Box plot of time it takes to factor numbers

5.2.6. Comparison with other factoring methods
To give a quick comparison on how long the current state of the art factoring methods take to factor
numbers we can look at figure 5.19 where we ran Sage math’s implementation of Paul Zimmermann’s
GMP-ECM algorithm [56]. The time it takes to factor the RSA numbers is about a factor of ten faster
than what is displayed, this is because running sage through the command line is a lot slower than
opening sage and running the program.

Still the point is clear, in that we can easily see that there is little to no difference in time it takes to
run GMP-ECM and takes significantly less time than our factoring method.

Time for Sage's ECM to factor numbers

2.0 1

time second
=
w
|

=
=}
L

0.5 4

0.0 T
20 30 40 50 60 70 80

bit length

Figure 5.19: GMP-ECM factoring all the same numbers

5.2.7. Summary
In summary we can see that our factoring method is not fast, nor seems to be able to factor any number
faster than the current best case factoring methods.

However, in comparison to factoring methods that use quantum computers, our method greatly
outperforms all of them. Moreover, our method can with ease factor numbers that are around the 40
bit mark, the largest number that has been factored with the use of a quantum computer [31].

As seen in the time comparison section 5.2.1 and as said in the theoretical evaluation, most of the
time it takes to factor the large numbers is based on the fact that the merging process takes a long time
due to the method taking O(K log K') and the size of the final results doubling every iteration. We can
however say that the filtration methods are able to reduce the size of the data by a great deal looking
at the graphs 5.8 to 5.10.

However the main reason why the increase in time to solve the problem is relatively flat from 20 till
50 bits as seen in figure 5.2 is probably because of the dynamic filtration method, where the budget
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is so large that through brute force it manages to find at least one of the factors relatively quickly. We
assume this by looking at the graphs 5.8 to 5.10 where in all cases the dynamic filtration method is the
fastest.



Conclusion

RSA is a very important public encryption standard that is used frequently. It is therefore of great
importance to constantly study and check the security of the encryption standard. Research either in
finding new general purpose factoring methods or through looking for new special purpose factoring
methods like Fermat’s factoring method.

In this final chapter we shall answer the research question that we have set ourselves in this thesis
and go over the limitations of this research and future possible research.

6.1. Discussion
To reiterate the initial research question:

How can we build a scalable distributive factoring algorithm that is based on a discrete optimisation
formulisation?

Our method of distributive factoring that we showed in chapter 4 is indeed able to factor numbers
that have a bit length of 20 to 74 as shown in chapter 5. Therefore, we can argue that given an unlimited
amount of memory and an unlimited amount of threads RSA can be broken in a short amount of time.
Unfortunately in real life, we do not have an unlimited amount of memory or threads, and as our memory
approximately doubles every iteration during the merge part of the algorithm this is by far not a good
general purpose factoring method.

Therefore, if we were to seriously look at being able to break RSA numbers that get used for encryp-
tion that are of 1024, 2048 or 4096 bits in length then the general answer would be that at its current
state it would not be possible. This is due to the large amount of data that gets created as the factoring
process goes on. Keeping many options in data and not having been able to reduce the size of the
data, has been the major drawback of our implementation.

Furthermore, if we were to compare our method to current state of the art factoring methods we can
see that our method underperforms by quite a significant margin.

Even though theoretically this method should be able to factor certain numbers faster than others,
we have not been able to find any empirical evidence that this method of factorisation has any special
purpose advantage to the current state of the art factoring methods. Therefore, we can currently say
that its special purpose advantage is inconclusive.

However, what can be shown is that this method of factoring is at the current state of quantum
computing a far better method than Shor’s factoring method and any discrete optimisation method
where the entire problem is placed onto the quantum computer. In the future as quantum computers
get better at solving larger and more complex problems, so too can we increase the size of the cells
and factor even larger RSA numbers. Thereby reducing the spatial complexity of the problem, and
being able to break larger RSA keys.

Furthermore, we are to the best of our knowledge the first people to have described the semiprime
factoring problem as a search problem. We believe that this will give a new insight into how to possibly
break RSA in general or in special cases. Either by devising search algorithms for this problem, or by
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inventing new filtration methods. So that larger RSA keys will become vulnerable to special factoring
methods.

Moreover, we have no doubt that there are more methods of filtration that can be applied to this
problem. Therefore, possibly one day be able to reduce the spatial complexity from being exponential
to subexponential or possibly even polynomial.

Finally, we hope this method will be the first in a new generation of factoring methods and through
future methods we shall either be able to factor certain semiprime numbers faster or will be able to
factor semiprime numbers faster in general.

6.2. Limitations

The first limitation of this research is that we have not tested more numbers, and have only found
numbers where this method is rather bad at in comparison with general purpose factoring methods. As
mentioned before we do know that this algorithm may be able to factor certain RSA numbers better than
the current best factoring methods around, and that this method may be able to factor certain numbers
in seconds, minutes or hours when the current best factoring methods may only factor number in days,
weeks or years.

Furthermore, we have not gone into trying to factor RSA keys that are of encryption standard length
i.e. 1024, 2048 or 4096 bits in length. Giving the factorisation method a time limit of x minutes and
then seeing if it was able to factor the RSA number.

Thirdly, another limitation was that the code was written in Python. Even though Python is a helpful
language in terms of ease of use and number of libraries, it is not the best in terms speed. Therefore,
our algorithm could be significantly faster and may even factor larger numbers if it were programmed
in C++, however it does not change the general pitfalls of the algorithm.

Finally, the budget for the dynamic case filtration was critical for determining what size numbers
the algorithm could factor. If it had been larger or smaller, then our results would have been slightly
different.

6.3. Future Work

As has been alluded to, there are many new avenues for future research either in improving the current
factoring algorithm or creating a new factoring algorithm by itself. Here we shall quickly go over sections
that we believe to be of interest and/or could improve this algorithm even more.

Different Data Structure Looking for new data structures for the data so that the data ordering can
be done in a more efficient way, merging the data can be done more efficiently, and/or filtering can be
done more efficiently.

Merge Process Furthermore, we believe that the current method of merging with the same data
structure can be done in O(K) as opposed to K log(K') by simply making sure that the final results
table is constantly ordered by initially ordering the table that will be merged into the final result table.
Moreover, we believe that the process of merging can have a smaller data complexity due to a better
"Merge strategy”, where we possibly select the tables that get merged better by being more selective
on either size or intersection of variables.

Filtration Methods Other than the three filtration methods already shown, we believe that there
must be more ways of reducing the data complexity of this problem. One such method may be done
by using the other two table methods. Where after having all candidates for the variables p, and g till
p. and q., the solutions get fed into a column or a block to see if it were possible to be a valid solution.

Reduction process As mentioned before it has been possible to solve certain formulations of the
problem by hand. It therefore may be of use to go deeper into looking at how one could optimise the
reduction process in order to reduce the problem to a far smaller size, or even solve the entire problem
outright.

Testing more numbers The current tests have been done on a select amount of numbers. It may
be the case that we were unlucky and that there are numbers where this method is better at factoring
RSA numbers than current state of the art factoring methods. Where this factoring method has the
same property as Fermat’s, Euler’s and Pollard p’s factoring methods in that it is a "special purpose”
factoring method.

Larger cells In this factoring method we have chosen the smallest possible chunks in the cell
method. However, it is easy to merge all cells with one, two or more cells together and then go about
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solving the amalgamated cells and then start the process of reducing, merging and filtering. This may
mean that we get a smaller data complexity and therefore can factor larger numbers.

6.4. Concluding Remarks

In conclusion, this thesis has shown that for semiprime numbers between 20-74 bits in length, it is pos-
sible to factor them using our distributive method. This has mainly been thanks to our filtration methods
which have been able to reduce the data complexity by quite a margin. Therefore, far outperforming
current state of the art quantum factoring methods. However, in comparison to the current state of the
art classical factoring methods, it is slow. During our practical evaluation, we have not come across
any discernible advantage in factoring certain special numbers over general purpose factoring meth-
ods. However, we have reason to believe that there are numbers that can be factored faster using
our factoring method. Finally, we have shown that one can view the factoring problem as a search
problem, this may mean that in future research new special purpose factoring methods will be invented
that exploit weaknesses in RSA.
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Cell Method example

—2x S0+ 511 +211+1
— 2% 511+ S12 — Sa1 + @2+ 212
— 2% S19 — S22 + ¢34+ 213
— 2% 513 — Sa3 + ¢4
Sa1 +p2 — 2% 211 + 221
S22 — 531 +p2%q2 — 2% 212 + 222
Soz — S32 + P2 x q3 — 2 % 213 + 223
— S33+p2*qd
S31 4+ p3 — 2% 291 + 231
Sz — Sa1 4+ P3* q2 — 2 % 299 + 232
S33 — Syo + p3 * q3 — 2 * 293 + 233
— Syz +p3 g4
Sy +pd—2%23 —1
Sipo +pd*q2 —2% 239 — 1
Siz+pd*q3—2%233—1
pdxqgd—1
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