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Abstract

Critical systems are complex, consisting of thousands of components, which can
fail at any time. Diagnosing these systems within a certain time is highly desirable.
Traditional diagnosis algorithms are mostly deterministic, able to find single faults ex-
tremely fast and double faults reasonably quick as well. However, these algorithms
fail to find diagnoses fast enough in cases where there are three or more components
failing simultaneously. A stochastic algorithm, like SAFARI, is able to diagnose these
problems in reasonable time. However, stochastic algorithms are unable to guarantee
optimality and completeness of the returned diagnoses. In this thesis we analyze the
behavior of the SAFARI algorithm, introducing a characterization of performance. We
provide a performance model for this stochastic algorithm and we propose a termina-
tion criterion which guarantees a certain level of completeness of the most important
set of diagnoses.
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Chapter 1

Introduction

Todays systems are becoming increasingly complex. For example, vehicles, satellites and
power plants all consist of thousands of components. A failure of one or more of these
components will likely cause the complete system to behave differently. One important
reason for locating the fault is to ensure safety or continuous operation of a system. In cases
like (aero)space and automotive systems or critical control systems the faults need to be
identified as soon as possible in order to be fixed or circumvented. For example, if a nuclear
power plant shows some unexpected behavior, like an extremely high reading of one of the
sensors, the source of this problem needs to be found as soon as possible. It could be that
a part of the installation is overheating and action needs to be taken to cool it down, or it
could be a defect sensor giving erroneous information. One error could lead to other errors,
which in turn lead to yet more errors, resulting in an alarm avalanche, flooding the operators
with so many problems that it becomes nearly impossible to extract the root cause in time.
Another reason is cost in terms of money and time. There are many complex systems that
cost a great amount of money for each minute that it is not in operation. For example, wafer
steppers, used in the production of integrated circuits, play a very dominant role in the
process, which results in great production losses and thus great costs when unavailable. For
companies it is crucial to locate and repair a fault of such systems as soon as possible. Due
to the complexity of these systems it is hard to locate and repair a system fault whenever
this occurs. Therefore, diagnosis approaches are needed that pair high diagnosis accuracy
to low (algorithmic) cost.

1.1 Model Based Diagnosis

Model-based diagnosis (MBD) is a diagnosis approach that requires a model of the system
under investigation. The general definition of a diagnosis [12] states that an evaluation of a
system model together with observations on the system, results in the possible explanations
of the observed behavior:

• A (model of a) system is defined as a set of components and a description of how
these components interact. This behavioral model can simulate the workings of the
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1.2 SAFARI Introduction

actual system in nominal mode and it can simulate the system when components mal-
function (fault modes). In the general definition this model is typically represented in
first order logic.

• Observations on (parts of) the system are defined as additional constraints on the
system model. These observations are measurements at specific points of the system.
For example, they could be the input and output of a digital circuit or pressure and
temperature gauge values of a nuclear power plant. The observations on the actual
system will not be in conflict with the model if it is working correctly.

• A diagnosis is defined as the set of faulty components, given a system model together
with the constraints of an observation. A diagnosis explains the observed behavior,
given that the system model is valid. Typically, a diagnosis engine returns multiple
candidates, and these diagnoses can be of different fault cardinality (number of faulty
components). Usually one wants minimal diagnoses (the lowest fault cardinality), as
it has higher probability of being the real fault.

The conventional algorithms for diagnosing these faults are deterministic and are fast
in finding low cardinality faults, e.g., when there is only one fault in the system. A popular
deterministic approach used in model-based diagnosis is the conflict-directed A* (CDA*)
algorithm [14], which is built upon the concepts of the general diagnostic engine (GDE) [3].
This method tries to find the best next candidate while continuously decreasing the search
space by checking for inconsistencies. A similar conflict-directed best first search algorithm
is adopted by the Livingstone kernel [13], which is successfully used in several missions of
NASA [1, 11]. Another state-of-the-art approach to model-based diagnosis, called HA* [7],
exploits the hierarchy of system models. It consists of an expensive pre-processing step and
a very fast diagnosis step. Because the exponential cost of pre-processing is done only once
for a model, this is an attractive approach.

However, when multiple components fail at the same time, these deterministic algo-
rithms suffer from poor performance due to the fact that time complexity is exponential in
the number of faults. A popular example of a multiple component failure in the field of
space exploration is the Apollo 13 crisis, as mentioned in [11]. In this situation no less than
five faults occurred in the system simultaneously: three electrical shorts, the bursting of a
tank-line, and a pressure jacket. With little sensor information, diagnosing the health state
of the system was a huge challenge for ground control.

In todays systems, consisting of thousands of components, a quintuple fault could take
weeks to diagnose using conventional algorithms.

1.2 SAFARI

SAFARI (StochAstic Fault diagnosis AlgoRIthm) [6] is developed to overcome the time
complexity of the conventional models. Being a stochastic algorithm, the time to solve
a problem becomes roughly constant, independent of the number of simultaneous faulty
components in the system. It has been shown [5] that SAFARI is able to produce possible

2



Introduction 1.3 Problem Statement

diagnoses for difficult problems that deterministic algorithms are not able to diagnose within
a reasonable amount of time (weeks or months).

The downside of applying a stochastic algorithm is the sacrifice of optimality and com-
pleteness. A deterministic method starts bottom up, first trying to explain the observations
by a single faulty component. After all single fault solutions are visited, then combinations
of two faulty components are tried, etcetera. This exhaustive approach will always return
the minimal set of faulty components that explain the observed behavior. Therefore, deter-
ministic methods are always optimal. A deterministic method is able to produce all possible
diagnoses, making it complete. A stochastic method, however, has the risk of failing to find
the diagnosis with the least faulty components, purely by chance. The more runs that a
stochastic algorithm executes, the higher the probability of having found this diagnosis. Al-
though possible diagnoses are produced continuously by SAFARI, we can not be certain that
all the relevant diagnoses are found, especially that one diagnosis that turns out to be the
actual one. The consequence is that SAFARI needs to run for an unknown amount of time,
unless we can somehow state something about the probability of having found all relevant
diagnoses.

Currently, there is no clear model to accurately predict the behavior of SAFARI. Conse-
quently, we are not able to indicate the level of completeness or optimality of the diagnoses
found at any given moment by SAFARI. A proper model of the SAFARI algorithm is required
to understand the probability of generating a particular diagnosis and to aid in minimizing
the uncertainty.

1.3 Problem Statement

We define the performance of a stochastic diagnosis algorithm in terms of the probability
density of the low cardinality solutions, as the solutions of low cardinality have the high-
est probability of being the correct diagnosis. If a stochastic diagnosis engine has a high
probability of returning a solution of low cardinality, then we consider the performance
of the algorithm to be good. For example, for an imaginary problem there exists a pool
of possible solutions with a Gaussian-like cardinality distribution. An algorithm with bad
performance would randomly pick a solution from this pool. An algorithm with good per-
formance would be able to return low cardinality solutions with higher probability. This is
illustrated in Figure 1.1.

From the previous section it becomes clear that the applicability of the SAFARI algo-
rithm is limited due to the uncertainty of completeness and optimality of the results. A
correct performance model of the algorithm can give an indication of the optimality and
completeness during the diagnosis process. This model may lead to a prediction of the be-
havior and a termination criterion that assures that the probability of finding a new relevant
diagnosis is sufficiently small. The problem statement therefore becomes:

Can we find a correct performance model for the SAFARI algorithm and from this
model devise a termination criterion, in order to provide a proper termination condi-
tion of the diagnosis process, while ensuring a certain degree of completeness of the
returned diagnoses?

3



1.4 Contributions Introduction

Figure 1.1: (a) Bad performance: probability density highest at medium cardinalities. (b)
Good performance: probability density highest at low cardinalities

1.4 Contributions

In this thesis an analysis is made of the problem mentioned above and possible solutions
are explored and discussed. The contributions of this thesis are listed below.

• The current performance model of SAFARI as defined in [5], dubbed A0 in this thesis,
is proven to be insufficient to form a basis for a termination criterion, as it disregards
the impact of fault cardinalities other than the target cardinality.

• A characterization of performance S is introduced, that will categorize the many so-
lutions possible for a system into a relatively small set, that is used to further analyze
and model the SAFARI algorithm.

• The characterization of performance S is shown to be the determining factor of the
behavior of SAFARI.

• Different models of the SAFARI algorithms are explored, each model having a differ-
ent level of abstraction from the actual algorithm. These models, A1, A2, and A3, are
compared and one model is selected as best candidate for modeling SAFARI.

• Having analyzed and modeled the SAFARI algorithm, a criterion is proposed to ter-
minate the algorithm while ensuring a certain level of completeness.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 gives an introduction to
model-based diagnosis and explains some basic concepts, like healthy and faulty compo-
nents, and weak and strong models. Also, in this chapter a running example is introduced
that will be used throughout the thesis to illustrate concepts and validate models. Chapter 3
discusses the SAFARI algorithm, the current SAFARI performance model, A0, and details on
the limitation of this model. Chapter 4 and 5 contain the main contributions of this paper.
Chapter 4 introduces the characterization S of SAFARI performance and shows that it essen-
tially determines the behavior of SAFARI. Also, in this chapter three new models, A1, A2

4



Introduction 1.5 Thesis Outline

and A3, are presented and compared. Chapter 5 discusses termination of the SAFARI algo-
rithm. It shows how the models can be used to predict the characteristic S and it introduces
a termination criterion for the SAFARI algorithm. Chapter 6 concludes the thesis with an
overview of the results of the work done and the work still remaining on the subject.
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Chapter 2

Model Based Diagnosis

In this section the concept of model based diagnosis is explained and a small-sized system
is introduced, which serves as a running example used throughout the thesis to illustrate
many of the concepts, algorithms and models that will be discussed. Since this example
system is thoroughly examined it also serves as a basis for experiments. Furthermore, all
relevant terms are explained in this section.

Reality

System 

Model

Model Based 

Reasoner

Observations

Diagnosis

Figure 2.1: Process of Model Based Diagnosis.

Model Based Diagnosis (MBD) [4, 12] is a form of abductive reasoning using a model
of the system under investigation. This simplified representation captures the relevant be-
havior of the real system. Certain points on the actual system can be measured and together
with the system model this observation on the real system is used as input to a diagnostic
reasoner in order to obtain possible explanations of (unexpected) behavior of the actual
system. This process is depicted in Figure 2.1.

For example, consider MBD on an example digital circuit consisting of three inverter
components, as depicted in Figure 2.2. This circuit has one input (x) and two outputs (y and
z), which can be observed externally. Internally, it has an unobservable variable w, which
serves as the output of inverter 1 and the input of inverters 2 and 3. Let M denote the size
of a system, or the number of components, which in this case is equal to M = 3. Let h
be the health variable of a component. For a boolean health variable, h = 1 or h states
that the component is healthy, i.e., the component behaves as expected, and h = 0 or ¬h
denotes an unhealthy or faulty component. The nominal behavior, i.e., the case where all
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Model Based Diagnosis

h1

h2

h3

x

y

z

w

Figure 2.2: Three-inverters digital circuit.

components are healthy (hi = 1,∀i), would cause the outputs y and z to be equal to the input
x. However, we assume that each component in the system can be at fault, leading to 2M

possible fault modes of the system. The aim of MBD is to infer the fault modes that explain
an observation, using a model of the system.

Given an observation x = 1, y = 0, and z = 1 on the three-inverter system, the obvious
explanation would be ¬h2, i.e., the component leading directly to y = 0, inverter 2, is at
fault. Another possible explanation would be¬h1∧¬h3, where both inverter 1 and inverter 3
have incorrect behavior. Both diagnoses are correct, given the measured variables and what
we know about the nominal system behavior. Knowing the value of the internal variable
w would be the key to solve the problem of multiple diagnoses, since w would assume a
different value for each diagnosis. However, uncertainty and incomplete knowledge of a
system is reality and the set of possible solutions to the problem must be returned by a
diagnosis engine.

The above diagnosis of the three-inverter digital circuit can be formalized using the
logic model

h1→ w⇔¬x

h2→ y⇔¬w

h3→ z⇔¬w

where each inverter is modeled by stating that if the component is healthy, the output equals
the inverted input. Applying the observation x= 1, y= 0, and z= 1 on this model, it follows

(¬h1∨¬w)∧ (¬h2∨w)∧ (¬h3∨¬w) (2.1)

Converting this CNF (conjunctive normal form) expression to DNF (disjunctive normal
form) yields

(¬h1∧¬h2∧¬h3)∨ (¬h1∧¬h2∧¬w)∨ (¬h1∧¬h3∧w)∨ (¬h2∧¬h3∧¬w)∨ (¬h2∧¬w) (2.2)

which reduces to the minimal DNF expression

(¬h2∧¬w)∨ (¬h1∧¬h3∧w) (2.3)

This results in the same explanations as given earlier, with the addition that the internal
variable w is also assigned a value with each solution. Thus, given the observation of x,
y, and z, either inverter 2 is faulty and the internal variable w = 0, or inverters 1 and 3 are
faulty and w = 1.

8



Model Based Diagnosis

In the formal theory of diagnosis of the three-inverters system, the DNF (2.2) shows
all five consistent solutions to the problem. One of these solutions is the trivial solution of
all components being unhealthy. This is consistent with the model, since the components
are modeled weakly, that is, only the behavior of a healthy component is described, leaving
the behavior of an faulty component undefined. On the other hand, strong models would
also describe the behavior of an unhealthy component, such as the component being stuck-
at-zero, which means that a faulty component always outputs a low signal. The difference
between a weak model and a strong model is shown in Table 2.1 where a logic and-gate is
modeled in both ways. Together with the fact that internal variables exist that can not be
observed, weakly modeled components cause supersets of solutions to exist. Considering
the DNF result (2.2) of the three-inverters problem, three of the five solutions are subsumed
by (¬h2 ∧¬w). The reduced DNF (2.3) contains the minimal solutions to the problem,
which are not subsumed by any other solution.

weak strong (stuck-at-zero)
h → o⇔ (i1∧ i2) h → o⇔ (i1∧ i2)

¬h → ¬o

Table 2.1: Weak and strong model of a logic and-gate

The three-inverters example results in two minimal solutions, which differ in the num-
ber of components that are faulty. When assuming equal probability of components being
unhealthy, the number of faulty components (fault cardinality C) is used to determine the
most probable solution. In this case, the C = 1 solution (¬h2 ∧¬w) is the most probable,
since the probability that only one inverter (h2) is broken, is greater than the probability of
the two other inverters being broken (assuming components fail independently, a standard
assumption in diagnosis). Therefore, in diagnostic problems, we are usually interested in
the minimal cardinality (MC) solutions.

A diagnostic reasoner employs an algorithm to get from a CNF representation of the
problem (2.1), which is relatively easy to extract from a model description and observa-
tions, to the list of solutions (2.2) or at least a partial list containing the lower cardinality
solutions. Using exhaustive search would imply trying all 2M possible fault modes, which
is prohibitive for a realistic system. As mentioned earlier, diagnostic reasoning algorithms
can be divided in deterministic, stochastic and hybrid algorithms. Deterministic algorithms,
like GDE (General Diagnostic Engine) and CDA* (Conflict Directed A*), are expensive
but complete. Stochastic algorithms, like the SAFARI algorithm, are cheaper, but incom-
plete. Completeness is important for diagnostic applications, especially completeness of
lower cardinality solutions, since finding all reasons of failure that are most probable is key
to repairing the system. If a stochastic reasoner fails to return one of the most probable
solutions, which in fact turns out to be the true cause of the system failure, this method is
considered unreliable and will therefore not be used by diagnosticians. However, a second
requirement for most diagnostic applications is that the diagnosis is returned within a rea-
sonable amount of time. If the minimal cardinality MC of a problem is large, deterministic
methods will take an extremely large amount of time to return even one of the possible so-
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2.1 Running Example: 74180 Model Based Diagnosis

lutions and might even be unable to return a solution given a time or space constraint. A
stochastic method, however, does not guarantee completeness, but can guarantee relatively
quick solutions at roughly regular intervals, independent of MC.

2.1 Running Example: 74180

In this thesis the 74180 logic circuit serves as a running example and is the basis for ex-
perimental research, because it is a relatively small, but real system, which is thoroughly
analyzed. The 74180 circuit is an 8-bit parity generator/checker, of which the logic diagram
is given in Figure 2.3. This integrated circuit is typically used to generate and check parity
on data being communicated over a lossy connection.

c1

c2

c4

c5

c3

c6

c7

c8

c9

c10

c12

c13

c11

c14

I0

I1

I2

I3

I4

I5

I6

I7

OI

EI

SE

SO

Figure 2.3: Diagram of the 74180 system

The system has an 8-bit data input (I0− I7), an odd input (OI) and an even input (EI).
The outputs (SE and SO) signify the parity (even or odd) of the data input and parity control
input. This system can be cascaded to allow an unlimited word length for the data input.
The intended behavior of the system is given in a truth table (Table 2.2).

sum of 1’s
in I0 thru I7 IE IO SE SO

EVEN 1 0 1 0
ODD 1 0 0 1
EVEN 0 1 0 1
ODD 0 1 1 0

irrelevant 1 1 0 0
irrelevant 0 0 1 1

Table 2.2: Truth table for the 74180 system

The example 74180 circuit is modeled by modeling each logic gate as a separate compo-
nent and by connecting them as depicted in Figure 2.3. As with the three-inverters example,
each component can be healthy, behaving as expected, or it can be faulty, where the behav-
ior of the component may be inconsistent with its modeled nominal behavior. Each logic
gate is modeled weakly and lets the behavior of an unhealthy component be undefined. The
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Model Based Diagnosis 2.1 Running Example: 74180

example system contains M = 14 logic gates, denoted c1− c14 in Figure 2.3, each of which
can break and may cause unexpected behavior of the total system. The system can only be
observed at the twelve variables at its interface. If some input results in unexpected out-
put, then it can be assumed that one or more internal components are at fault. Using the
observation on the system, in this case the inputs and outputs, and a model of the system,
the components that are the most probable candidates to be broken can be inferred. For
example, consider the following observation on the system:

o1 = {I = 11111111,EI = 0,OI = 0,SE = 0,SO = 1}

It states that all data input lines (I0− I7) are high, which results in an even number of 1’s,
EI and OI are both low. According to the truth table of the system (Table 2.2), both SE and
SO should be set to high. However, with o1 it is observed that only SO is high and that SE
is low. If the system would be diagnosed with this observation it would turn out that either
one of the components c9, c10 or c11 is broken, (i.e., three single faults). Internally, from the
point of view of a diagnostic reasoner, this is represented by a health vector. This is an array
of health variables, 1’s and 0’s each relating to a different component, where a 1 signifies a
healthy component and a 0 signifies that that component is faulty. The health vectors of the
resulting solutions which explain the example observation would be

d1 : h = (11111111011111)

d2 : h = (11111111101111)

d3 : h = (11111111110111)

where all components are healthy except for c9, c10, c11, respectively.
A health vector of all 1’s would denote nominal modeled behavior, where each compo-

nent is healthy. Since a weak model of a component does not model the faulty behavior, any
behavior is consistent with a faulty component. This implies that the trivial health vector of
all 0’s, dt , where all components are faulty, explains every possible behavior of the system.
The solutions of interest, however, are the minimal solutions, as discussed earlier. Given
the following health vectors of existing solutions

dt : h = {00000000000000}

d0 : h = {11111111001111}

d1 : h = {11111111011111}

d2 : h = {11111111101111}

solution d0 is subsumed by the minimal solutions d1 and d2, and the trivial solution dt is
subsumed by all other solutions. In this thesis a solution is denoted by its health vector
and we define the solution variables to be the faulty health variables of the solution. In the
above example, the solution variable of d2 is part of the solution variables of d0.

The diagnosis of the example problem consists of three minimal solutions and can be
written as

D = ¬h9∨¬h10∨¬h11

where ¬h9 denotes a faulty (not healthy) component c9. Each of these minimal solutions
contains only one faulty component. In other words, the fault cardinality of each solution is
C = 1.
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2.1 Running Example: 74180 Model Based Diagnosis

With the explained concept of model-based diagnosis and the terminology as discussed
in this chapter we are able to describe and analyze the SAFARI stochastic diagnosis algo-
rithm. In the remaining chapters performance models are discussed of the SAFARI algo-
rithm. This concept of a model should not be confused with a system model, which is
discussed previously and is used as input to the diagnosis algorithm.

12



Chapter 3

SAFARI Algorithm

SAFARI is a greedy stochastic algorithm, which finds multiple cardinality-minimal diag-
noses. The pseudo-code of the algorithm is given in Algorithm 1. In this pseudo-code, the
following notations are used. The system description SD is a propositional theory describ-
ing the behavior of the system. COMPS is the set of assumable variables in SD, which, in
practice, are the M health variables of the system. OBS is the set of observable variables in
SD. Together they form the diagnosable system DS.

The input to the algorithm consists of the diagnosable system DS together with an ob-
servation α, an integer R and an integer N. α is an observation on the system, in other words,
known values for the variables in OBS. R is a value between 1 and M which determines the
maximum number of retries per run. N denotes the number of runs, where each run adds a
new solution to the resulting set of possible solutions to the problem. Cr is the cardinality
of a resulting solution of a single run.

At the beginning of each run a random, consistent, diagnosis is generated as a starting
point for the stochastic hill climbing. Then, this diagnosis is improved upon in the sense that
it is transformed to a more probable solution, i.e. a solution with less faulty variables. The
IMPROVEDIAGNOSIS function, in fact, selects a faulty health variable and makes it healthy
by flipping it. This can result in either an improved and consistent solution or an inconsistent
solution. In the case of an inconsistent solution another health variable is selected and
consistency is checked again. This can be done a maximum of R times before the current
solution is viewed as a local optimum and is added to the set of solutions. The selection of
variables to flip is done without repetition, so that multiple checks of the same solution are
avoided. A C =Cr solution is added to the set only if it is not subsumed by other solutions
in the set and all solutions in the set that are subsumed by the added solution are removed
so that the resulting set contains only minimal solutions with regards to the encountered
solutions. Deterministic methods start with a all-healthy solution, which is inconsistent in
most cases, and find the minimal solutions by changing variables to unhealthy. SAFARI,
on the other hand, starts with an inconsistent but high fault cardinality solution and tries to
reduce fault cardinality while keeping consistency.

For example, consider the algorithm applied on an observation of the 74180 system.
The DS is composed of a weak model of the logical system SD as depicted in Figure 2.3 in
the previous chapter, COMPS, which are the M = 14 health variables, and OBS, the twelve
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SAFARI Algorithm

1: function HILLCLIMB(DS,α,R,N) returns a set
inputs: DS = 〈SD,COMPS,OBS〉, diag. system

α, term, observation
R, integer, climb restart limit
N, integer, number of runs

2: n← 0
3: while n < N do
4: ω← RANDOMDIAGNOSIS(SD,α)
5: r← 0
6: while r < R do
7: ω′← IMPROVEDIAGNOSIS(ω,ρ)
8: if SD∧α∧ω′ 6|=⊥ then
9: ω← ω′

10: r← 0
11: else
12: r← r+1
13: end if
14: end while
15: unless ISSUBSUMED(S,ω) then
16: ADDTOSET(S,ω)
17: REMOVESUBSUMED(S,ω)
18: end unless
19: n← n+1
20: end while
21: return S
22: end function

Algorithm 1: SAFARI: A greedy stochastic hill climbing algorithm for approximating the
set of minimal diagnoses.

observable variables (I0−7,EI,OI,SE,SO). Let an observation o1 be

o1 = {I = 11111111,EI = 0,OI = 0,SE = 0,SO = 1}

and let the input to SAFARI be α = o1, N = 3 and R = 2, so there will be three runs and
two possible retries. Since a weak model of the system is used, RANDOMDIAGNOSIS
may return an all faulty solution, which is always consistent. We know, by exhaustively
diagnosing the system, that the true minimal diagnoses of this observation are

d1 : h = (11111111011111)

d2 : h = (11111111101111)

d3 : h = (11111111110111)

Deterministic methods would usually try each health variable and would quickly come to
the correct minimal diagnosis. SAFARI, in this case, starts with the all-faulty but consistent
solution. A partial trace of the algorithm is shown in Table 3.1. It starts with setting n and
r to zero and using the trivial all-faulty solution of C = 14. At the second step, this solution
is transformed to a consistent C = 13 solution by flipping one random health variable to

14



SAFARI Algorithm

healthy. At the fourth step, health variable h9 is flipped to healthy, which makes it unable
to reach the existing minimal solution d1 in the rest of this run. However, solutions d2 and
d3 can still be reached, so the current solution is still consistent. Further along, at step
seven, h11 is flipped to healthy, eliminating the chance of reaching d3 in this run, letting
d2 be the only possible true minimal solution outcome of this run. At step eleven h10 is
flipped to healthy as well, resulting in a C = 4 solution which is inconsistent. At this point
r is increased and another variable is flipped, which results in a consistent C = 4 solution.
At C = 1 h10 is indeed the only remaining faulty health variable and further flipping of
variables result in the inconsistent all-healthy solution. Thus, d2 is added to the set of
resulting solutions and a new run is started by increasing n and by reinitializing the current
solution to the trivial all-faulty solution.

n r health vector C consistent
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 yes
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 13 yes
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 12 yes
0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 11 yes
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 10 yes
0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 9 yes
0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 8 yes
0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 7 yes
0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 6 yes
0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 5 yes
0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 4 no
0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 4 yes
0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 3 yes
0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 2 yes
0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 yes
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 no→ d2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 yes
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 13 yes

...

Table 3.1: Trace of SAFARI with N = 3 and R = 2

The SAFARI algorithm returns a set of solutions which is an approximation of the actual
set of minimal diagnoses in different aspects. First, because of the stochastic behavior of
the algorithm there is always a chance that some path towards a certain existing minimal
solution is not traversed. For example, if one minimal solution exists of which a health
variable hi is faulty, but by chance each run sets hi to healthy early in the run without
causing inconsistency, then this minimal solution is never found. Because no inconsistency
has occurred, the number of retries R is ineffective. This problem can be overcome by
increasing N to increase the probability of climbing towards that solution. Secondly, the
returned set is an approximation because the number of retries is limited to R. This causes
uncertainty in reaching the actual local minimum. For example, if at a certain point only five
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3.1 SAFARI Performance SAFARI Algorithm

faulty health variables remain (h1 to h5) and R = 4, then only four of the possible five health
variables are tried to be changed to healthy. If none of these tries resulted in a consistent
solution, the algorithm adds the Cr = 5 solution to the resulting set. However, it could be
that the solution with the fifth variable changed to healthy resulted in a consistent Cr = 4
solution. Increasing the value of R to try all variables would solve this issue, however, this
will make the algorithm slower.

A stochastic algorithm like SAFARI leads to incompleteness and non-optimality, which
is essential in the area of diagnostics. But ensuring completeness and optimality requires a
deterministic method which is complex in terms of time and often in terms of space as well.
Most diagnostic problems have a solutions set with low MC, however, this is not always
the case, especially when systems have limited observability. Time and space can be an
important requirement for diagnostic applications, which can relate directly to money, e.g.,
when the cost of a failing machine rises with each minute it is off-line for diagnosis, or to
safety, e.g., when an aircraft needs to diagnose and repair some system failure while flying.
For higher MC diagnoses stochastic algorithms like SAFARI are the only feasible solution.

When discussing the performance model for the SAFARI algorithm some basic assump-
tions of the diagnosis problem are made:

1. The system models are assumed to be boolean, since this simplifies the flipping of
health variables, i.e. either faulty or healthy. Also, any system model created in the
integer domain can be rewritten into a boolean model.

2. Secondly, a system is assumed to be weakly modeled. Because the plain SAFARI

algorithm as discussed is not capable of solving every non-weak model an extension
of the algorithm is needed, which makes modeling the algorithm even harder. It must
be noted that every system can be modeled weakly, which means that this assumption
only excludes certain system models, rather than the systems themselves. A property
of weak system models is that given a consistent solution s, then the solution, created
by flipping any of the healthy variables to faulty, is also consistent.

3. Finally, it is assumed that SAFARI initializes with the trivial solution of all compo-
nents being unhealthy. This removes any bias to the algorithm, since the method
of determining the starting health vector could favor some health variables being
healthy. Also, any initialization other than the trivial initialization is only required
for non-weak models, which could yield an inconsistency when all components are
set to unhealthy.

3.1 SAFARI Performance

As can be seen in Algorithm 1, the result of the SAFARI algorithm is a set which contains
minimal solutions to the diagnostic problem. These solutions are minimal with respect to
all solutions that are found during the N runs. Due to the fact that SAFARI is stochastic and
thus incomplete and non-optimal, the solutions could be non-minimal in reality, since more
solutions may exist which subsume a subset of the resulting set of solutions.

16



SAFARI Algorithm 3.1 SAFARI Performance

Since we are interested in the resulting cardinalities of solutions, as explained in the
previous chapter, we can capture the distribution of cardinalities of solutions in the resulting
set. Let fs (s for solution space) be the pdf of cardinalities of the minimal solution space
of the diagnostic problem as returned by SAFARI. For example, if for a given diagnostic
problem, SAFARI returns a set which consists of the following six minimal solutions:

h C
d1 0111111 C = 1
d2 1011111 C = 1
d3 1100111 C = 2
d4 1101011 C = 2
d5 1110011 C = 2
d6 1101100 C = 3

then the resulting fs contains a probability of 1
3 for a C = 1 solution, 1

2 for a C = 2 solu-
tion and 1

6 for a C = 3 solution. This is illustrated in Figure 3.1, where fs shows the per-

Figure 3.1: left: fs and right: fa of a system of size M = 7.

formance of SAFARI in terms of optimality and completeness when compared to the true
solution space, another distribution, fa (a for algorithm), shows more clearly the behavior
of SAFARI. fs is based on unique minimal solutions returned by SAFARI. Let fa be the
distribution of cardinalities Cr of solutions actually returned by each SAFARI run. Different
runs can result in the same solution. fa captures the frequency per resulting cardinality. As
will be explained in the next section, an M > 0 will result in a shift of probability mass
towards lower C. An example of ten consecutive SAFARI runs, for the diagnostic problem
discussed above, is shown in the following table.

run 1 2 3 4 5 6 7 8 9 10
solution d1 d2 d3 d2 d2 d6 d4 d1 d3 d2
cardinality 1 1 2 1 1 3 2 1 2 1

Because of the high probability of returning solutions of cardinality C = 1, solutions d1 and
d2 are returned more often than the rest, although the number of C = 2 solutions is greater
than the number of C = 1 solutions.

Figure 3.2 illustrates the transformation of the solution space by the SAFARI algorithm.
It shows that fs and fa are two views of the same SAFARI output. One view is the unique
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3.2 Current Model A0 SAFARI Algorithm

Figure 3.2: SAFARI performance.

(minimal) solutions returned by the algorithm ( fs) after N runs. The dashed outline shows
that the returned solution space is incomplete at higher cardinalities. The reason is shown
in the fa view of the SAFARI output, which shows the relative frequencies of returned car-
dinalities. The lower cardinality solutions are more likely to be returned, which accounts
for the success of SAFARI. If a stochastic algorithm like SAFARI would run for an infinite
amount of times (N → ∞), fs would be equal to the true solution space, i.e., every solu-
tion would be visited at least once, even the solutions that are least probable (the higher
cardinality solutions, in the case of SAFARI). Since fa is independent of the number of
runs N, we will define the performance of SAFARI in terms of the probability density of
the solution cardinalities, and in specific, the low cardinalities, since these are more rele-
vant. This performance could differ per input (system model and observations). For some
problems SAFARI will return solutions of lowest cardinality with high probability, while for
other problems the number of higher cardinality solutions is so great, that they decrease the
probability of finding the MC solutions, and thus decrease the performance of SAFARI.

3.2 Current Model A0

Currently, a basic model of the SAFARI algorithm exists that models the pdf of the solution
cardinalities as returned by SAFARI. This model, A0, is based on a SAFARI run which leads
to a target solution of a given cardinality Ct . Ideally, a run would result in Cr =Ct .

Let k be the current fault cardinality, starting with k = M. A successful variable flip
from unhealthy to healthy results in a transition to k−1, reducing the fault cardinality of the
current, intermediate, solution. Let p(k) be the probability that a variable flip on a solution
of C = k results in a consistent improved solution of C = k− 1. Then q(k) = 1− p(k)
signifies the probability that a variable flip fails to result in a consistent solution.

The solution at k has M− k healthy and k faulty health variables. In this model, a
successful variable flip is defined to be a flip of a faulty health variable which is not part of
the faulty health variables of the target solution. Since there are k variables which are faulty
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of which Ct variables are part of the target solution, the probability p(k) becomes

p(k) =
k−Ct

k
= 1−Ct

k

This process can be modeled in terms of a Markov chain, which is depicted in Figure
3.3, where k signifies the state of the algorithm. A transition to state fail occurs when a
variable flip results in an inconsistent solution.

k = M k = M - 1 k = M - 2 k = M - i k = Ct

fail

p(M) p(M - 1) p(M - i - 1) p(Ct + 1)

q(0) q(1) q(2) q(i) 1

Figure 3.3: Model A0 of a SAFARI run with R = 1 and a single diagnosis of cardinality c

Retries are modeled by adding an axis to the linear Markov chain, using k and r as
state. An unsuccessful variable flip from state (k, r) results in a transition to state (k, r+1),
whereas a successful variable flip results in a transition to state (k−1, 0). This can also be
modeled by generalizing the calculation of probability p by stating

p(k) = 1−
(Ct

R

)(k
R

)
Figure 3.4 shows the effect of R on the performance of SAFARI. A larger R results in a

drastic increase of the probability mass in fa near the target cardinality Ct . This is explained
by the fact that a retry increases the probability of reaching the Ct .

Note that this model assumes a selection with repetition of a variable to flip, which is
in contradiction with the actual SAFARI algorithm. SAFARI would show an even greater
increase of probability mass near the lower cardinalities, because the probability of flipping
a variable twice is zero.

If there is more than one solution of the same cardinality Ct , the chance of returning a Ct

solution increases. Let the number of solutions of C =Ct be N, then this solution multiplicity
is modeled by taking the minimum of the resulting cardinalities of N independent runs. In
terms of model A0, the resulting Cr would be the minimum Cr of N independent runs:

Cr =
N

min
i=1

Cr(i)

Figure 3.5 shows that the existence of multiple solutions of C = Ct cause a increase of
the probability mass towards Ct . This increase is not as profound as with a larger R, but
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Figure 3.4: fa of Model A0 for different R on a system with M = 14 and Ct = 1.

Figure 3.5: fa of Model A0 for different solution multiplicities on a system with M = 14
and Ct = 1 and R = 1.

it is significant. It is explained by the fact that if there are more solutions of C = Ct , the
probability of reaching any of them increases. This, of course, is not an algorithm parameter,
like R, but this shows that the effect of multiple solutions on the performance of SAFARI is
large.
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3.3 Limitations of Model A0

Figure 3.6 shows the effect of higher cardinality solutions on the distribution of solution
cardinalities of SAFARI. In the figure MC = 1, which is also used as the target cardinality of
model A0. There is only a single MC solution of C = 1. The resulting distribution of model
A0 is the same as the solution distribution of SAFARI when run on random observations
with a single C = 1 solution and R = 1. When no other solutions exist, the behavior of
SAFARI is the same as modeled by model A0. However, when SAFARI is run on random
observations with again a single C = 1 solution, but with solutions of C = 2 as well, the
resulting solution distribution is very different. Where one single MC solution results in an
equal probability of returning any cardinality, including higher cardinality solutions results
in an increase of probability mass near that cardinality. Also, including higher cardinality
solutions decreases the probability of inconsistency at higher k.

Model A0 is accurate if the true diagnosis of the problem contains only MC solutions.
It is clear that model A0 is unable to capture the influences of higher cardinality solutions.
To base a model on MC and its multiplicity results in an incomplete model. We need more
information to capture the behavior of SAFARI.

Figure 3.6: pdf of Model A0 compared to empirical results of SAFARI on random observa-
tions both without and with higher cardinality solutions on the 74180 circuit.

Since the MC of the solutions and its multiplicity are insufficient information to base a
model upon, it becomes clear that more information of existing solutions of the problem is
required. This notion is supported by Figure 3.7, which shows the distribution of solution
cardinalities of three actual observations of the example system with MC = 1 and MC solu-
tion multiplicity of 3. One of these observations results in a diagnosis of only MC solutions.
This is accurately modeled by model A0. However the remaining two observations result
in very different behavior of SAFARI, even though the MC and its multiplicity remain the
same, the difference being the presence of higher cardinality solutions.
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Figure 3.7: pdf of Model A0 compared to empirical results of SAFARI on three existing
observations without and with higher cardinality solutions

This leads to the following theorem on SAFARI.

Theorem 1. The behavior of the SAFARI algorithm depends on all minimal solutions
present in the system, not only the MC solution(s).

Proof. With R = 1, SAFARI returns when the consistency check fails. With larger values
for R, SAFARI tries to flip another variable when the consistency check fails. This con-
sistency check is equivalent to checking if one or more minimal solutions of the problem
is still reachable. In other words, at least one solution should consist of variables which
are still unflipped. Since all minimal solutions are by definition unsubsumed and SAFARI

flips variables to unhealthy until an inconsistency is reached, each of these solutions has a
probability of being the last remaining solution of one SAFARI run. The fact that each of
the existing minimal solutions can be the last remaining solution implies that the distribu-
tion of probabilities of solution cardinalities is influenced by the complete set of minimal
solutions.

Table 3.2 shows an example of a SAFARI run as a sequence of health vectors. In this ex-
ample M = 6, R = 1, and only one C = 1 solution exists, which is denoted by an underlined
health variable. Since only one solution exists, an inconsistency arises whenever one of its
variables is flipped. At the start, k = M = 6 variables can be flipped, of which one variable
belongs to the last remaining solution. There is a 1

6 chance of reaching an inconsistency at
the beginning of the run.

Given that one variable was successfully flipped, k = M−1 = 5 variables can be flipped
at this point, which makes the probability of reaching an inconsistency 1

5 at this point. The
table shows the probabilities of flipping the solution variable at each k, given that each k is
reached (cf. Model A0).
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health vector p f ail
0 0 0 0 0 0 0.17
0 0 0 0 0 1 0.20
0 0 1 0 0 1 0.25
0 0 1 0 1 1 0.33
0 0 1 1 1 1 0.50
0 1 1 1 1 1 1.00

Table 3.2: Trace of SAFARI with one existing solution and the probability of reaching an
inconsistency

Table 3.3 shows two runs of SAFARI on the same system of size M = 6, but for another
observation which has an extra solution of fault cardinality C = 2 next to the C = 1 solution.
There is already a difference compared to the previous example at the start of the run. In
this example there is no chance of flipping a first variable which would make all solutions
impossible to reach. If the variable of the C = 1 solution is flipped, the C = 2 solution
would still be possible, and vice versa. In the first of the two example runs in Table 3.3
the C = 2 solution is made infeasible at k = 4. From this point on the C = 1 solution is
the only remaining solution and the probabilities of reaching inconsistency are the same as
in Table 3.2. The second example run shows that the probabilities are very different when
the variable of the single fault solution is flipped, although the chance of that happening is
smaller.

health vector p f ail
0 0 0 0 0 0 0.00
0 0 0 0 0 1 0.00
0 0 1 0 0 1 0.25
0 0 1 0 1 1 0.33
0 0 1 1 1 1 0.50
0 1 1 1 1 1 1.00

health vector p f ail
0 0 0 0 0 0 0.00
0 0 0 0 0 1 0.00
0 0 0 0 1 1 0.00
1 0 0 0 1 1 0.67
1 0 0 1 1 1 1.00

Table 3.3: Influence of multiple solutions on the probability of reaching an inconsistency

This explains how model A0 is insufficient to model SAFARI behavior, since this model
only works when the set of existing solutions consists only of solutions of the same car-
dinality. Higher cardinality solutions, and, in fact, all minimal solutions of the problem
influence the probability of returning a certain cardinality.
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Chapter 4

Performance Modeling

In this section the performance of SAFARI is analyzed in more detail and three new perfor-
mance models are studied. The names of the models are based on the level of abstraction.
Model A0, the existing model, is furthest away from reality as every way of checking for
inconsistency is abstracted. Model A3 is closest to the actual algorithm and the abstraction
from reality is kept at a minimum. The models are compared regarding their accuracy of
modeling actual SAFARI behavior, and their complexity. All models are based on a partic-
ular way of characterizing SAFARI performance, which is presented in the next section.

4.1 Characterizing SAFARI Performance

Considering only boolean systems, the number of different observations of any system with
O observable variables is 2O. The running example has ten inputs and two outputs which
can be observed, which results in 212 = 4096 possible different observations of which many
are observations corresponding to faulty system behavior.

Many of these observations can lead to the same diagnosis. For example, in the running
example there are 1024 different observations which lead to the same nominal diagnosis,
where no component is faulty.

4.1.1 Characteristic S

The previous chapter shows that the pdf of cardinalities returned by SAFARI is dependent
on all existing minimal solutions of the problem. We have also seen that the SAFARI algo-
rithm does not exploit the system model in any way for optimizing the way it searches for
solutions. The system model is only used as an oracle for determining the consistency of
the solutions, which are obtained by flipping variables randomly. The same holds for the
observation, which is simply a constraint on the problem. Because the algorithm focuses on
flipping variables randomly, not based on the system model and observation, the behavior
of SAFARI while reaching one solution of cardinality C = 3 is similar to its behavior when
reaching another C = 3 solution. It seems that the behavior of SAFARI is influenced more
by the cardinalities and the number of solutions existing in the solution space. This leads us
to the following hypothesis:
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Hypothesis 1. The actual existing minimal solutions in the health vector of a diagnosis
problem is less influential on the performance of the SAFARI algorithm than the fault car-
dinality is. Consequently, let Si be the number of minimal solutions of fault cardinality i,
then the vector S = {S1,S2, . . . ,SM} is assumed to be characteristic for the performance of
SAFARI.

Observations can be grouped further by making use of Theorem 1 and the additional
Hypothesis 1. The assumption is made that the actual diagnosis does not determine the
behavior of SAFARI, but the composition of minimal solutions in terms of cardinalities. As
indicated in Table 3.3, it is the fault cardinalities of the remaining solutions that determine
the probability of reaching an inconsistency.

To illustrate S, let the true diagnosis for an observation o on a system of M = 14 com-
ponents consist of one C = 1 solution, four C = 2 solutions and twenty-one C = 3 solutions.
There are no solutions of higher cardinalities. Then for this observation S equals

S(o) = {1,4,21,0,0,0,0,0,0,0,0,0,0,0}

For simplicity, we write
S(o) = {1,4,21}

The 4096 different observations on the example system were used as input to exhaus-
tively1 obtain the true set of minimal solutions for each observation. It turns out that the
example system contains only 13 different values of S. Table 4.1 shows these values together
with the number of observations leading to each S. That would mean that the performance
of SAFARI is limited to only thirteen variations for this system.

MC S count
0 {0, 0, 0, 0, 0} 1024
1 {1, 4, 21, 0, 0} 128
{2, 7, 21, 0, 0} 256
{2, 10, 0, 0, 0} 256
{2, 21, 0, 0, 0} 256
{3, 0, 0, 0, 0} 512
{3, 14, 0, 0, 0} 256
{3, 28, 0, 0, 0} 256
{4, 21, 0, 0, 0} 256
{7, 8, 0, 0, 0} 256
{7, 9, 0, 0, 0} 256

2 {0, 9, 0, 0, 0} 256
{0, 11, 21, 0, 0} 128

Table 4.1: The thirteen unique values for S of the 74180 system

The resulting distributions fa of SAFARI of all observations of the same S were com-
pared and demonstrated surprisingly little variation, supporting the hypothesis that the car-
dinalities of all existing solutions are the most important influence on the behavior of the

1Exhaustive search was done by trying all health vectors, resulting in all possible solutions of the problem,
of which the minimal set was taken.
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SAFARI algorithm, rather than the exact positioning of the solutions in the health vector.
For example, in Figure 4.1 the resulting boxplots of all observations of S = {1,4,21} and
all observations of S = {2,10,0}, when used as input for SAFARI with R = 5, are shown.
It shows that the variation of fa over resulting cardinalities is very small. This is seen in
experiments on the observations of the remaining values of S as well. This shows that S is
indeed characteristic for the behavior of SAFARI.

Figure 4.1: Boxplots of SAFARI output (R = 5) of all observations with S = {1,4,21} and
S = {2,10}

Figure 4.2: Boxplots of SAFARI output (R = 5) of random observations with S = {1,4,21}
and S = {2,10}
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Figure 4.1 shows only results of the observations of a single system, the example system.
It is likely that for actual systems there is a certain pattern of how solutions of groups of
observations are distributed in the health vector. This can result in a optimistic view of
S as a characterization of resulting cardinality distribution. To generalize the experiments
which show that S is characteristic for the behavior of SAFARI, a solution generator is
used to create random solutions of a given S and a health vector of size M. These random
solutions can be seen as the diagnoses of a random system and random observations or
as a random observation leading to solutions of the cardinalities given in S. The resulting
boxplots when given the same S as used in Figure 4.1 are shown in Figure 4.2. Some 50%
of the observations reside within a limited range of resulting probabilities, supporting the
hypothesis that S is the main characteristic with respect to the behavior of the algorithm.
However, from the plots it is also clear that there are outliers, exceptions to the general case,
some improbable distribution of solutions in the health vector that results in a different
distribution of cardinalities.

4.1.2 Overlapping Solutions

One theory that could explain the different SAFARI behavior when returning solutions of
the same S is that the solutions of the resulting diagnosis can overlap each other in different
degrees. For example, if there are two solutions of cardinality C = 3 in a health vector of
size M = 6, their variables could be distributed disjunctively:

C=3 0 0 0 1 1 1
C=3 1 1 1 0 0 0

Another way the variables could be distributed is by overlapping the solutions:

C=3 0 0 0 1 1 1
C=3 1 0 0 0 1 1

In the latter case two variables are shared among two solutions, increasing the probability
that one variable flip of SAFARI will make the two solutions impossible to reach.

To have an indication of how solutions are overlapped we consider the variance σ2 of
the number of solutions that share a variable. For example, consider the sets of minimal
solutions given in Table 4.2. Both sets contain five solutions, of which one is of cardinality
one, three solutions are of cardinality two and the last solution is of fault cardinality three.
In the first set the solutions are spread out as much as possible in the nine available health
variables, therefore the number of overlaps of solutions is kept to a minimum, although
variable h7 is still shared among two solutions. The second set contains solutions which are
overlapped as much as possible. Variables h2 and h4 are shared by three solutions, while
variables h7, h8 and h9 are not used by any solution.

The calculation of the mean µ of the number of sharing solution per variable is equal
to the average fault cardinality of each solution. Because the two solution sets of the same
S = {1,3,1} are compared, µ is the same for the two examples. However, because the
overlap of variables differs greatly, the assumption is that the variance of the number of
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C = 1 0 1 1 1 1 1 1 1 1
C = 2 1 0 0 1 1 1 1 1 1
C = 2 1 1 1 0 0 1 1 1 1
C = 2 1 1 1 1 1 0 0 1 1
C = 3 1 1 1 1 1 1 0 0 0
|shared| 1 1 1 1 1 1 2 1 1

µ 1.111
σ2 0.099

C = 1 0 1 1 1 1 1 1 1 1
C = 2 1 0 0 1 1 1 1 1 1
C = 2 1 0 1 0 1 1 1 1 1
C = 2 1 1 1 0 0 1 1 1 1
C = 3 1 0 1 0 1 0 1 1 1
|shared| 1 3 1 3 1 1 0 0 0

µ 1.111
σ2 1.210

Table 4.2: Variance of the number of sharing solutions per variable

sharing solutions per variable will be a measure of how extreme the overlapping of solutions
is.

Figure 4.3: Scatterplot of the probability of reaching c = 2 solutions versus the variance of
the number of sharing solutions of random observations with S = {1,4,21} and S = {2,10}

If the assumption that the degree of overlapping solutions explains the variation in the
boxplots of Figure 4.2 is correct, then the calculated variance of each of the solutions used
in the experiment should correlate with the probabilities of reaching a C = 2 solution of
the two tested S, which show a large variation. The scatterplot of the probabilities versus
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the variance of the number of sharing solutions as seen in Figure 4.3 in fact show the very
opposite for the S = {1,4,21}, but show a correlation for the S = {2,10} case.

The experiments show that S is characteristic for the behavior of the SAFARI algorithm,
but that it abstracts the way the variables of solutions is positioned in the health vector.
This positioning of solutions should explain the outliers of random solutions of the same
S, but the variance calculation that is used to capture the overlapping of solutions is unable
to explain the variation of behavior of SAFARI on solutions with the same chararcteristic
S. This would imply that either the variance calculation is inaccurate or too general for all
cardinalities, or that there is another factor than overlapping solutions.

4.1.3 Summary

The number of MC solutions of a diagnosis problem, used in model A0, is unable to explain
the behavior of SAFARI, when in addition to the MC solutions, the total set of existing
minimal solutions also contains solutions of higher cardinality. S contains the number of
existing minimal solutions for each cardinality C, and is shown to be the main characteristic
with respect to the behavior of SAFARI. Figure 4.4 illustrates this. The observations are
grouped by different performance characterizations. Each S results in a unique SAFARI

performance pdf fa. It is also shown that S does not explain the behavior of SAFARI exactly,
since, for example, the degree in which solutions overlap each other in the health vector is
a factor which is abstracted by S. Although using S as a basis for developing models for
SAFARI behavior could increase model complexity, the accuracy can be greatly enhanced.

Figure 4.4: Characterizing SAFARI performance
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4.2 Model A3

In the previous section we have introduced S and we have confirmed that it is sufficiently
characteristic for the performance of the SAFARI algorithm. In this section we introduce
model A3, which is based on S and simulates the algorithm as closely as possible, abstracting
the information on the positioning of solutions.

In this model S is used as state in the Markov Chain. Its starting state is a state with the
given S and k = M. The chain is then constructed by adding a traversal from each S(k) to
every possible S(k−1) that can be a result of a variable flip. Figure 4.5 shows the Markov
chain of this model applied to a simple example of system of size M = 6 and an observation
that can be characterized by S = {0,1,2}.

k=6

S={0,1,2}

k=5

S={0,1,2}

k=5

S={0,1,1}

k=5

S={0,1,0}

k=5

S={0,0,2}

k=5

S={0,0,1}

k=4

S={0,1,2}

k=4

S={0,1,1}

k=4

S={0,1,0}

k=4

S={0,0,2}

k=4

S={0,0,1}

k=3

S={0,1,2}

k=3

S={0,1,1}

k=3

S={0,1,0}

k=3

S={0,0,2}

k=3

S={0,0,1}

k=2

S={0,1,0}

p p p

p

Figure 4.5: Model A3 of a SAFARI run on a system of size M = 6 and an observation of
S = {0,1,2} (terminating states in bold)

The value of R is left out of this model. Since SAFARI picks variables at random with-
out repetition, an R greater or equal to k (the number of unflipped variables), ensures that
all variables are tried. In reality, this could mean a worse time performance of SAFARI,
but since completeness of the algorithm is valued more than speed, R is assumed to be
large enough to guarantee minimal solutions. Furthermore, the effect of an insufficient R is
greater at lower k near the end of a run, when the probability of reaching an inconsistency
with a variable flip is larger, making the performance drop limited to a number of retries
equal to a small k.

In this model we assume that the solutions that are present in S(k) are randomly posi-
tioned in the health vector. The probability of each traversal from state S(k) to state S(k−1)
depends on the number of ways the new state can be reached, the probability that certain
solutions are made infeasible, and the probability that the remaining solutions have no vari-
ables flipped. For example, suppose that the actual solutions to a problem of a system of
M = 6 are
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h C
s1 001111 C = 2
s2 010011 C = 3
s3 101100 C = 3

then the characteristic S for this problem is S = {0,1,2}. The starting state, therefore, is
S(k = 6) = {0,1,2}. Given this system and its starting state of Model A3, consider the
traversal to state S(k = 5) = {0,1,1}. This is a decrease of S3 by one, i.e. one of the
C = 3 solutions, s2 or s3 is made infeasible by flipping one of its variables. The number of
solutions per cardinality that are made infeasible is given by

S(k)−S(k−1) = {0,0,1}

In this case, either s2 or s3 is made infeasible, making the number of combinations equal to
2. In general, the number of ways one can choose the solutions that are made infeasible out
of the complete set of solutions is given by

∏
i

(
Si(k)

Si(k−1)

)
where Si is the number of solutions in S for cardinality C = i.

In order to make a C = 3 solution infeasible, either a variable of s2 is flipped, or a
variable belonging to s3. The probability of making any C = 3 solution infeasible given
k = 6 is equal to 3

6 since only one of its variables needs to be flipped in order for the solution
to be impossible to be reached. In the case of the example, either h1, h3 or h4 needs to be
flipped in order to make solution s2 infeasible.

The probability that the remaining solutions (s1 and the remaining C = 3 solution) have
none of their variables flipped is equal to(

1− 2
6

)
·
(

1− 3
6

)
=

1
3

Combining it all results in a probability p = 1
3 that a variable flip results in reaching a state

where one of the two C = 3 solutions is made infeasible, while the other C = 3 solution and
the C = 2 solution remain feasible. In general this probability is equal to

p = ∏
i

((
Si(k)

Si(k−1)

)
·
(

i
k

)Si(k)−Si(k−1)

·
(

1− i
k

)Si(k−1)
)

In total, there are six possible transitions from state S(k = 6) = {0,1,2} as shown in
Table 4.3. State S(k = 5) = {0,0,0} is an inconsistency state, where none of the cardinali-
ties have solutions. Since the assumption is made that R is large enough, an inconsistency
always results in trying to flip another variable until all variables are tried. In practice,
reaching an inconsistency results in a transition to the same state with the same probabil-
ities for reaching another state. The probabilities of traversing to the consistent states can
therefore be normalized to have the same effect. In the example, the probabilities of the
transitions to any state other than S(k = 5) = {0,0,0} should be multiplied by 12

11 .
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k S p Cr

5 {0,1,2} 1
6 N/A

5 {0,1,1} 1
3 N/A

5 {0,1,0} 1
6 2

5 {0,0,2} 1
12 3

5 {0,0,1} 1
6 3

5 {0,0,0} 1
12 N/A

Table 4.3: Possible transitions from state S(k = 6) = {0,1,2}

Figure 4.6: Accuracy of Model A3 when compared to SAFARI when run with random gen-
erated solutions.

The end state of the chain is any state that contains an S which contains only one cardi-
nality. In Figure 4.5 these states are emphasized. Table 4.3 shows the resulting cardinality
Cr whenever this is clear.

Model A3 serves as a reference for other models, since this is the best achievable model
without including exact solution positioning in the health vector. We performed an experi-
ment where SAFARI was run 10,000 times on a randomly generated solution set of a certain
S to obtain a single pdf fa of its resulting Cr. This was done 10,000 times to create fa for
many randomly created sets of the same S. The total experiment was performed for all dif-
ferent S of the example system, among others. All results demonstrated the same accuracy
of this model. The result for two different S are shown in Figure 4.6, where the outcome of
model A3 lies exactly at the median of outcomes of SAFARI when run on random observa-
tions of the same S, which indicates that model A3 is a very accurate model for the behavior
of SAFARI on random solutions.

However, this model proves to be too complex to be used in practice. Depending on S,
the number of transitions from each state can be very large. The number of transitions is
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equal to
|S(k−1)|= ∏

i
(Si(k)+1)

For a relatively small system as the 74180 system with 14 components, a first state of
S = {1,4,21} has a total number of 220 transitions. Each of these states has again 220
transitions, making the total number of states in the Markov chain very large. For a more
complex and realistic system of hundreds of components and an S which contains many
solutions the size of the model is exponential prohibitive.

4.3 Model A2

Based on model A3 a model is created to minimize model complexity while abstracting as
little as possible. The approach used in this model (A2) is to simulate a SAFARI run while
keeping track of the mean intermediate S at each step of the algorithm. In this approach,
the C-values within S(k) are mean values, averaged over all possible trajectories leading to
S(k). The intermediate S(k) is expressed in terms of the intermediate S(k−1).

For example, consider a system of M = 6 components and a characterization of perfor-
mance S = {0,1,2}, where the actual solutions are

h C
s1 001111 C = 2
s2 010011 C = 3
s3 101100 C = 3

As with the real algorithm, the model starts with k = M. S(6) contains one C = 2 solution
and two C = 3 solutions. Flipping a variable which causes s1 to be infeasible has a prob-
ability of 2

6 . If this is done a large number of times, on average, 1
3 of the C = 2 solution

would remain. The average number of C = 2 solutions, which is made impossible to reach
by flipping one of the six variables, is equal to

S2 ·
2
k
= 1 · 2

6
=

1
3

In other words, on average, a third of the number of C = 2 solutions is made infeasible,
because the variable that was flipped belonged to a C = 2 solution. The same is done for
C = 3, where the average number of solutions that is made impossible to reach is equal to

S3 ·
3
k
= 2 · 3

6
= 1

These average values are then subtracted from the previous S to obtain the average S at the
new k, making S(k−1) = S(k)−{0, 1

3 ,1}= {0,
2
3 ,1}.

The average S(k− 2) is calculated in the same way, but it is based on the generated
average S(k−1). The generalized function for this model is written as

Si(k−1) = Si(k)−Si(k) ·
i
k
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When the model is applied on a starting value of S a complete trace of averages of
intermediate S is acquired. This equals the average number of solutions of each cardinality
that would still be feasible at each step k of the actual SAFARI algorithm. The complete
trace of the example becomes

k S
6 {0, 1.00, 2.00}
5 {0, 0.67, 1.00}
4 {0, 0.40, 0.40}
3 {0, 0.20, 0.10}
2 {0, 0.07, 0.00}
1 {0, 0.00, 0.00}

Note, that, compared to model A3, the Markov chain has reduced to a 1-dimensional
chain, greatly reducing model complexity. Table 4.4 shows example traces of the example
system of size M = 14 and an observation with a characteristic S = {1,4,21}. Both traces
are acquired by running SAFARI multiple times and taking the average number of solutions
at each k. The trace of model A2 is very accurate when compared with the actual SAFARI

algorithm. Unfortunately, however, this is only a valid model for R = 1, which is displayed
on the left of Table 4.4. At the right hand side of the table is the trace of SAFARI when
run with R = 5 on the same observation, averaged over 10,000 runs. Both traces show
that at k = 14 the intermediate S is still equal to the original. The values of S at each
of the cardinalities decrease with every next k, but we see that the value of S3 decreases
significantly faster than the others, which is because these relatively larger solutions are
made infeasible with a larger probability. The difference in the two traces is that with R = 1
the numbers decrease to zero, while with a large enough R the values decrease to some value
higher than zero at a k equal to the cardinality.

k S for R = 1 S for R = 5
14 {1.00, 4.00, 21.00} {1.00, 4.00, 21.00}
13 {0.93, 3.43, 16.50} {0.93, 3.43, 16.49}
12 {0.86, 2.90, 12.70} {0.86, 2.90, 12.70}
11 {0.79, 2.42, 9.52} {0.78, 2.42, 9.53}
10 {0.71, 1.98, 6.92} {0.71, 1.98, 6.94}
9 {0.64, 1.58, 4.85} {0.65, 1.60, 4.89}
8 {0.57, 1.23, 3.23} {0.58, 1.26, 3.32}
7 {0.50, 0.92, 2.02} {0.52, 0.97, 2.17}
6 {0.43, 0.66, 1.15} {0.47, 0.75, 1.37}
5 {0.36, 0.44, 0.58} {0.43, 0.58, 0.84}
4 {0.29, 0.26, 0.23} {0.40, 0.46, 0.48}
3 {0.21, 0.13, 0.06} {0.38, 0.39, 0.26}
2 {0.14, 0.04, 0.00} {0.38, 0.36, 0.00}
1 {0.07, 0.00, 0.00} {0.38, 0.00, 0.00}

Table 4.4: Averaged S over 10,000 runs of SAFARI on a 74180 observation with S =
{1,4,21}. Left: R = 1. Right: R = 5.
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The effect of the average number of solutions decreasing less when a larger value for
R is chosen is explained by the fact that a variable flip is retried after an inconsistency.
The algorithm is able to reach lower k, adding to the average number of solutions at that
k. For R = 5 (i.e., exhaustive retrying) it turns out that the values of the average number of
solutions at k equal to the cardinality, which are underlined in Table 4.4, are exactly equal
to the distribution of these cardinalities of the actual SAFARI algorithm. This leads us to the
following theorem.

Theorem 2. If R is chosen to guarantee solution minimality, then the trace of an ideal model
A2 contains the probability distribution of cardinalities on its diagonal.

Proof. The diagonal contains the average values of S for which the solution cardinality is
equal to the remaining number of unflipped variables (k = c). If SAFARI is run with a
sufficiently large R, the intermediate set of feasible solutions contains only one solution
when a cardinality is returned. Because a maximum of one feasible solution can remain at
k =C, and minimality of solutions is guaranteed, the sum of the average number of solutions
remaining at k =C for all C is equal to one. Therefore the diagonal contains the probability
distribution of cardinalities which are returned by SAFARI.

4.3.1 Improving A2

The difference between model A2 as discussed so far and the SAFARI algorithm is the calcu-
lation of the probability of reaching an inconsistency. Reaching an inconsistency is caused
by flipping a variable which is shared among the remaining solutions. Flipping this variable
makes all solutions impossible to reach. This probability grows as the number of variables
decreases and is overcome by using a larger value for R in SAFARI, which results in other
variables being tried. For example, if the remaining feasible solutions are

C=3 0 0 0 1 1 1
C=3 1 0 0 0 1 1

then there are two shared variables among the remaining solutions. If either one of these
variables is flipped, the system becomes inconsistent and no minimal solution is reached.

If R is chosen large enough to guarantee solution minimality, in effect the variables
that are shared among all solutions are taken out of the equation, because a retry occurs
whenever these are flipped. In the above example, variables h5 and h6 are shared by both
solutions. Therefore, only four variables remain that can be flipped resulting in a consistent
situation. The probability of flipping a C = 3 solution becomes 1

4 , instead of 3
6 . The original

calculation of the next intermediate S

Si(k−1) = Si(k)−Si(k) ·
i
k

should therefore become

Si(k−1) = Si(k)−Si(k) ·
i−|shared|
k−|shared|
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where |shared| is the average number of shared variables among the remaining solutions.
If the solution variables are randomly distributed in the health vector, the probability of

a variable being shared by all solutions is equal to

p =
k

∏
i=1

(
i
k

)Si

The mean number of shared variables, thus the mean number of variables which are left out
of the equation is

|shared|= p · k

k S
14 {1.000000 4.000000 21.000000}
13 {0.928571 3.428571 16.500000}
12 {0.857143 2.901099 12.692308}
11 {0.785714 2.417582 9.519231}
10 {0.714286 1.978022 6.923077}
9 {0.642858 1.582420 4.846161}
8 {0.571481 1.230882 3.231064}
7 {0.501055 0.925025 2.023492}
6 {0.437926 0.673732 1.179030}
5 {0.400915 0.493434 0.647632}
4 {0.400915 0.383199 0.335299}
3 {0.400915 0.308474 0.134957}
2 {0.400915 0.223213 0.000000}
1 {0.400915 0.000000 0.000000}

Table 4.5: Trace of model A2 on a 74180 observation with S = {1,4,21}.

Table 4.5 shows the trace of model A2 improved to model SAFARI with a large R. This
version is clearly different from the initial version and resembles the true SAFARI trace in
Table 4.4 in that the values of Si do not drop to zero but slow down their decrease due to the
effect of the shared variables which influence the algorithm at lower values of k.

It must be noted, however, that the resulting probability distribution of cardinalities is
still not perfect. This is because variables of the solutions are assumed to be randomly
distributed in the health vector, while in reality this cannot be the case, since subsumption
of solutions would occur when they were placed randomly. In addition, the values on the
diagonal can not serve as a probability distribution as the values do not sum up to one. There
are two options to deal with this problem and to be able to use the outcome in practical
applications:

• Assume that the remaining probability of solution cardinality is distributed over larger
cardinalities.

• Normalize the values.
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The latter option would be the more logical solution, since, due to the approximation, the
probabilities might add up to more than one. This ensures that the cardinalities in S are the
only cardinalities in the resulting probability distribution. This would be correct, compared
to reality, since solution minimality ensures that only these cardinalities are returned.

SAFARI Model A3 Model A2 Model A2
(normalized)

Figure 4.7: Comparison of SAFARI output with models A3, A2 and the normalized model
A2.

Figure 4.7 shows the pdf results of model A2 on three different observations on the
example system, compared to the actual SAFARI output and to the output of model A3. The
last column contains the normalized values of model A2. When compared to the SAFARI

output, model A2 seems to model SAFARI more accurately that model A3, which serves
as a simulator which should resemble SAFARI closest. This can be explained by the fact
that model A3 assumes random observations of S, while SAFARI is run on real observations
on the system, which are considered outliers compared to the random observations. The
output of model A2 differs from the output of model A3 because of the assumption that the
variables of the solutions are assumed to be randomly distributed in the health vector and
therefore does not account for solution subsumption. By chance, this difference transforms
the resulting pdf to resemble the SAFARI outcome more that model A3. It would be more
accurate to compare the model to the reference model A3, which stands as close as possible
to the actual algorithm, but which excludes the information of the positioning of solution
variables in the health vector. Looking at the output of the normalized version of model A2
we see that the lower cardinalities have a slightly larger probability mass when compared to
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the output of model A3. Nonetheless, the difference between model A3 and the normalized
model A2 is small, indicating that model A2 is usable as a model for the behavior of the
SAFARI algorithm. Both model A3 and A2 result in outputs with no probability mass at
cardinalities of which there are no existing solutions.

An advantage of this model is that it is computationally cheap. The number of compu-
tations is determined only by the number of components M. In the worst case, S contains
significant values for all cardinalities, which results in M2 computations of new values for
each cardinality in S for all k. Half of these values are known to be zero, since the number
of solutions of cardinality C is zero if k < C. In addition, the lower cardinalities in S are
usually dominant, which makes it possible to exclude the higher cardinalities with only little
difference in behavior and limit the number of computations even further.

4.4 Model A1

Model A3 and, less so, model A2 try to follow the SAFARI algorithm step by step, calculating
intermediate probabilities of each cardinality. The low level of abstraction of model A3 re-
sults in a computationally complex model, with the number of possible states exponentially
growing for larger M. Model A2 is more abstract than A3 resulting in lower computational
cost. Only 1

2 M2 calculations are required to compute the estimated pdf. With the next
model, A1, we will further decrease the computational complexity and have an even greater
abstraction.

Where the models A3 and A2 follow the steps of the SAFARI algorithm, lowering k at
each step, model A1 computes the probability of each cardinality directly from S. Again,
we assume that R is chosen large enough to guarantee that minimal solutions are always
reached. Model A1 is defined as

ni =
Si(M
i

)
pi =

ni

sum(n)

where i is the cardinality and p is the resulting pdf, containing the probabilities of SAFARI

returning a certain cardinality. The probability of returning a solution of cardinality i is
determined by the the number of solutions of this cardinality, the number of ways such a
solution can be reached, independently of other solutions. This probability is decreased if
more solutions exist in the solution space, however, an extra C = 1 solution has more impact
on other solutions than an extra C = 3 solution.

To understand the reasoning of the model we will investigate some imaginary cases.
First, the case that a single cardinality exists in the solution space. For example, let M = 6
and consider the following solution space

011111

There is just one cardinality possible as outcome, and because we guarantee minimal solu-
tions, SAFARI will always return this solution. Therefore the pdf will have a probability of
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1 for C = 1. The same holds for the following solution space

000001

000010

where there are two solutions, but both having five faulty components. In this case, the
resulting pdf will have all probability mass at C = 5. The single cardinality case is handled
by model A0 by having a non-zero ni only if Si is non-zero. The 100% probability mass at
that cardinality is the result of normalizing all ni to get p.

Another interesting case is a high cardinality solution together with a low cardinality
solution. For the same system of M = 6 let there be a solution of C = 5 and C = 1. The
solution space would be

000001

111110

When the SAFARI algorithm processes this system and first flips the variable belonging to
the C = 1 solution, it will return the C = 5 solution. In all other cases it will return the C = 1
solution. The probability that the C = 5 solution is returned is equal to 1

(6
5)

= 1
6 , leaving a

probability of 5
6 that the C = 1 solution is reached. This is verified by running SAFARI for

this imaginary system. Unfortunately, model A1 is unable to correctly calculate this, since
both n5 and n1 are equal and thus normalizing this results in p = 1

2 for both solutions. If
this was a realistic scenario, one would dismiss this model because of this result. However,
a C = 5 solution for a system with M = 6 is a diagnosis where almost all components are
faulty. One may assume that this is not the case in realistic systems, since it would mean
that the only possible way to solve the problem is to replace the complete system. For this
model, let us assume that the maximum number of simultaneous faults is less than half the
number of components.

With this in mind, we consider the following case of the same M = 6 system and three
solutions of cardinality C = 3, C = 2 and C = 1, respectively. There are two variations of
solution spaces. One is a disjunct set of solutions:

000111

111001

111110

And the other contains a shared variable:

000111

011011

111101

40



Performance Modeling 4.4 Model A1

The behavior of SAFARI for these different solution spaces is very different and hard to
model, since the probability mass of a solution without a shared variable is increased dras-
tically when the shared variable is flipped. Model A1 works at a more abstract level, dis-
missing this notion of shared variables among solutions. The basis for this model is the
probability of reaching a solution of a given cardinality. In this example, the probability
of reaching the C = 3 solution, independently of other solutions, is equal to 3

6 ·
2
5 ·

1
4 or

1
(6

3)
= 1

20 . In the same manner, reaching the C = 2 solution has p = 1
15 and the C = 1 so-

lution has p = 1
6 . The preference of SAFARI for lower cardinality solutions is reflected in

these probabilities. Because these are all possible solutions in the solution space, the next
step is to normalize these probabilities to maintain the relative proportions. The resulting
pdf of model A1 for this example is shown in Table 4.6. The columns represent the pdf for

C SAFARI A1 A2 A3

1 0.612 0.588 0.429 0.816
2 0.267 0.235 0.312 0.182
3 0.121 0.176 0.260 0.001

Table 4.6: pdf of model A1 compared to SAFARI for S = {1,1,1} and M = 6

SAFARI and models A1, A2 and A3. It shows that model A1 resembles SAFARI quite well.
In fact, for this example model A1 performs better than models A2 and A3.

When, for the same example, an extra solution of C = 1 is added, n1 is doubled. The
probability of returning a C = 1 solutions, independently of other solution, is twice as large.
However, when normalized, including all other solutions in the calculation, the actual in-
crease of probability is not doubled. One could say that other existing solutions prevent
the probability to increase as much. As with the previous example, the pdf of all models
is given in Table 4.7. Like the actual SAFARI algorithm, model A1 has a clear reaction on

C SAFARI A1 A2 A3

1 0.800 0.741 0.501 0.944
2 0.144 0.148 0.273 0.056
3 0.055 0.111 0.227 0.000

Table 4.7: pdf of model A1 compared to SAFARI for S = {2,1,1} and M = 6

the extra C = 1 solution. It also shows that the probability of returning the C = 3 solution
according to model A1 is twice the actual probability of SAFARI. But again, A1 seems to be
better at modeling SAFARI than the other models.
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Figure 4.8: Model A1 of a SAFARI run and a diagnosis of cardinality c

4.5 Summary

In this chapter we have explored three new performance models for the SAFARI algorithm,
as an improvement on the original model, A0. All three models use S as input and return the
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pdf of solution cardinalities fa.
First, we have discussed model A3, the least abstract model, which defines all possible

transitions from one state (intermediate S) to all possible next states. Any state consisting
of a single cardinality serves as ending state for the model. By calculating the probabilities
of all state transitions, the probability of reaching each cardinality can be determined. How-
ever, this is a very expensive method and unrealistic for large systems, since the number
of possible states grow exponentially for larger M. The Monte Carlo approach, traversing
the model multiple times to achieve a pdf of solution cardinalities, is another possibility,
however, this method consumes time and could suffer from lack of numerical precision.

Second, the more abstract model A2 is introduced, which starts with a given S, and,
with each step k, calculates the average S for that step in the algorithm. The resulting pdf
is constructed by using the values on the diagonal of the trace of average S of the model.
Since this computational complexity of this model is small (O(M2)), and because this model
seems to model the actual algorithm more accurately, this is a far more attractive model to
use, compared to model A3.

Last, we have our most abstract model, A1, which computes the pdf directly (in a two-
step approach) from the characteristic S. It calculates the probability of returning each
cardinality, given only the number of components and the number of solutions of the same
cardinality. After calculating this for all cardinalities, the pdf is calculated by normalizing
the values, which models the influence that solutions of different cardinality have on each
other. This is the computationally cheapest model and experiments show that it seems to
model SAFARI more accurately than model A2. However, more extensive testing should
be performed, with different systems and observations, to be able to decide which of the
performance models is best at modeling SAFARI.

43





Chapter 5

Termination

Next to understanding the behavior of the algorithm, the reason for modeling SAFARI is
to be able to state something about the level of completion. At this moment, there is no
way to determine the percentage of solutions already returned by SAFARI, and more im-
portantly, the level of completion of the MC solutions. The following sections are focused
on determining an ending condition for the stochastic algorithm, both by making use of the
discussed performance models and by making use of other methods.

5.1 Prediction of S

An important application for the performance models would be to predict the S based on the
distribution of solution cardinalities that SAFARI obtained thus far. In practical diagnostic
situations the minimal cardinality solutions are the most desirable ones. Because SAFARI

is a completely stochastic algorithm, it is never known for certain if the resulting minimal
cardinality of its returned solutions is in fact the true minimal cardinality. Although it can be
shown that if SAFARI returns a zero cardinality solution (the nominal solution) or a single
cardinality solution, this is the minimal cardinality, the SAFARI algorithm will typically be
used if a diagnosis is expected to contain a relatively high minimal cardinality, in which
case it is unknown if MC is reached during algorithm execution.

In addition to knowing the minimal cardinality, it is highly desirable to know the total
number of solutions of the minimal cardinality. Since SAFARI does not include failure
probabilities that are present in the model to return the most probable solutions, as is done
with most conventional algorithms, every solution of the same cardinality is considered to
be equally probable to be the true solution to the problem. Because in this view higher
cardinality solutions are less probable, all minimal cardinality solutions should be known
and used as candidates for examining the system.

A database of solution cardinality distributions of a certain system can be obtained either
by calculating it for a large number of possible S or by storing the resulting distribution of
cardinalities of each actual run when SAFARI is used in practice. Using this database a
new diagnosis can be categorized by comparing the data of known S with the results of the
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algorithm early on in its number of runs. Because computational effort is small, a large
database can easily be made in a pre-diagnosis stage.

In theory a prediction of the S can be made, which contains the minimal cardinality
and the number of solutions of that cardinality. However, this still a topic of research and
experimental results are therefore not included in this thesis.

5.2 Algorithm Termination

The SAFARI algorithm can result in a solution which is already present in the set of previ-
ously returned solutions. It can also return a new solution, possibly of a lower cardinality
than any of the solutions currently known. One can be never sure if there is still a solution
with a lower cardinality. It is also uncertain if all minimal cardinality solutions are returned.
With an increasing number of runs the probability of having reached the true minimal car-
dinality and the probability of having reached all minimal cardinality solutions increase as
well. However, the number of runs necessary, to be certain that no important solution is
missed, is unknown.

Using the model to predict the S belonging to the observation currently under diagnosis
it is possible to calculate the probability of having reached the minimal cardinality and even
the probability of having returned all solutions of minimal cardinality. This is essential for
determining a safe termination point for the algorithm. Different observations can require a
different number of runs to have the same level of certainty of optimality and completeness
of minimal solutions.

Ideally, the algorithm can be adopted to provide the user with the current minimal car-
dinality and the probability that this is the true minimal cardinality at run time. The same
can be done for the number of minimal cardinality solutions.

5.2.1 The n(k) Curve

Now that we have a model that predicts the probability density function fa from S, how do
we determine that SAFARI is ’done’? That is, when do we know that we have seen, for
example, 99.99% of the posterior probability mass? Using the pdf from our model we are
able to predict the total number of unique minimal solutions.

First, consider the following example. We have an S of {N,0,0, ...}, having a solution
space of just one cardinality. Let S′ = {n,0,0, ...} be the collection of solutions seen by
SAFARI thus far. Then

p(k) =
N−n(k)

N
= 1− n(k)

N
is the probability of seeing a new sample at run k, since each run results in a minimal so-
lution (given that R is chosen big enough) and the probability of getting a solution that we
have seen already becomes greater with every new unique solution. As explained through-
out this thesis, same-cardinality solutions are equally probable to reach using the SAFARI

algorithm.
Let N = 6 at run 1, when no solutions are yet seen, then p = 6

6 . In other words, the first
run will always result in one of the N solutions. During the second run, there is a probability
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of 1
6 that the first solution is found again, leaving p = 5

6 that a new solution will be found.
With every run, the probability of finding a new solution decreases. From this follows:

n(k)−n(k−1) = p(k)

Solving this, we get:

n(k) = N(1− (1− 1
N
)k)

From this 1− e−x type of curve, we are able to estimate N. In our example, at run 10 we
have reached n(10) = 5.03. We have probably found five of the six unique solutions, or a
probability mass of n(k)

N = 0.84. To have a posterior probability mass of 99.99% that we
have found all six solutions, we need to have run for at least k = 51 times.

We can apply this to multiple bins as well. Let the characteristic S = {N1,N2,N3, ...}
and the set of found solutions thus far S′ = {n1,n2,n3, ...}. Furthermore, we have the pdf
f = {p1, p2, p3, ...}, as returned by a model of SAFARI. Every bin has its own n(k) curve,
however, each of these curves is normalized according to its corresponding pi. This is
because the probability of having found a new unique solution of cardinality i is now mul-
tiplied by the probability of having actually found a solution belonging to the cardinality-i
bin, which is given by the pdf. The formula now becomes:

ni(k) = N(1− (1− 1
N
)kpi)

The result is that the individual cardinality curves are ’stretched’ on the k-axis. In other
words, we need to have executed more runs to get to an acceptable probability of having
found all MC solutions. Fortunately, the behavior of SAFARI is such that most of the prob-
ability mass is located in the most important lower cardinalities, as shown in the previous
chapters. Therefore, the extra number of runs caused by the stretching of the k-axis is
minimized by the nature of SAFARI.

Figure 5.1 shows an actual SAFARI progression of unique solutions. The running exam-
ple is used with an observation of category S = {2,7,21}. For each cardinality a different
figure is used, because of the difference in scale of the k-axis. It shows the cumulative num-
ber of unique solutions (n) at each run (k) of the algorithm. This is the ’stairs-curve’ plotted
as a solid blue line. Additionally, the n(k) curve of empirical SAFARI data is plotted as a
solid red line. This is calculated from the pdf of 3000 executions of the SAFARI algorithm
with 3000 runs each.

It is interesting to note that the n(k) curve is located at the ’bottom’ of the stairs-curve.
It fits through the values of n at the latest k. In other words, in runs through the points of
transition to the next n.

On top of each figure, the n(k)-curve of the resulting pdf of model A1 to A3 is plotted.
This shows the validity of the respective models. The closer the plot resembles the empirical
data, the better the ’fit’ of the model.

5.2.2 Estimation of S

In the previous section we reasoned from a known S to a n(k) curve for each cardinality. We
saw that the influence of one cardinality on another is determined only by their respective
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Figure 5.1: nk curve of the models compared to an actual SAFARI execution.

probability of being found, which is captured by the pdf. In practice, however, we know
nothing of the actual S, but we are interested in an accurate estimation of S based on the
solutions returned by SAFARI. For a practical application of the theory discussed thus far,
we need to ’fit’ a n(k) curve onto set S′ = {n1,n2,n3, ...} of solutions found thus far by
SAFARI.

Consider again the running example with an observation of S = {2,7,21}. In this ex-
ample we will focus on cardinality C = 2. At specific points in the execution of the SAFARI

algorithm, a fit is made onto the the S′ known at that moment. The function used for fitting
is

y = N(1− (1− 1
N
)px)

where N and p are the coefficients to be estimated1. Table 5.1 lists the number of found
solutions of C = 2 at a selection of runs. For each run, the estimated N′ and p′ are also
listed. We see that the estimated N′2 quickly approaches the true value of N2 = 7. This is
also depicted in Figure 5.2.

Figure 5.3 shows the ’stairs’ plot of the progressing n2 over k, together with the plotted
n(k) curves of the estimated N′2. The dotted curves are calculated at k = {10,20, ...,90} and

1 For fitting, the Curve Fitting Tool of Matlab was used, with non-linear least squares as fitting method.
The function for fitting is y = N(1−(1− 1

N )px). The coefficients to be fitted are N, bounded by (1,100), having
starting value 1, and p, bounded by (0,1), having starting value 0.5.
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k n2(k) N′2 p′2 SSE
10 4 100.0000 0.4496 3.0822
20 5 4.8189 0.5875 6.5553
30 6 6.8028 0.4624 10.5931
40 7 7.1741 0.4398 12.2605
50 7 7.3507 0.4299 12.4588
60 7 7.2680 0.4358 12.5501
70 7 7.1951 0.4419 12.7114
80 7 7.1467 0.4466 12.8597
90 7 7.1149 0.4499 12.9754

100 7 7.0933 0.4522 13.0619

Table 5.1: Least squares fitting of N at a selection of runs.

Figure 5.2: Increasing accuracy of estimation N′ at runs k = {10,20, ...,100}.

the solid curve is calculated at k = 100, when it becomes less likely that there is no new
unique sample of C = 2.

The value of p is quite different from the actual value, as given from the empirical data.
The true value of p should approximately be 0.32. The curves also show this, as they are
located more to the center of the stairs-curve. The larger value of p stretches the curves
less in the axis of k than was seen in Figure 5.1. This behavior is explained by the fact
that we are trying to estimate a real valued curve through a discrete function. An added
effect of this, and also because we are increasing the sample space with each run, is that the
SSE keeps increasing, instead of decreasing, meaning that we can not use this as a criterion
for terminating SAFARI. A more elegant solution would be to have a discrete estimation.
However, this requires some more investigation, which is outside the scope of this thesis.

Another way to improve the estimation of the true n(k) curve is to consider only part
of the data of the ’stairs’-plot. As we have noticed in the previous section, the n(k) curve
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Figure 5.3: n(k) curves of N′ fitted at runs k = {10,20, ...,100}.

touches the lower part of the stairs. If we would only fit the function to those points that
have the highest value of k for each value of n, then we should obtain a better estimation
of p as well. For example, consider the S = {2,7,21} case, where we have seen, in one
SAFARI execution, new unique solutions of cardinality C = 2 at runs k = 3,5,6,7,20,21 and
36. Table 5.2 shows the data points used for fitting the curve at different values of k. We
only use the ’bottom-right’ points of the stairs data. Notice that the last coordinate is not
fixed, but changes with increasing k, since we the last known value of k for the current n is
the current run. The resulting values are shown in Table 5.3. It is clear that the estimated
value of N approaches the true value 7 after about 60 runs according to this model. A line
for run k = 1000 is added as well to show at which values the estimated N and p settle. As
predicted, the value of p′ estimated with this method comes closer to the true value of 0.32
than with the previously discussed method.

k data points (k,n)
1 (1,0)
5 (2,0),(4,1),(5,2)

10 (2,0),(4,1),(5,2),(6,3),(10,4)
20 (2,0),(4,1),(5,2),(6,3),(19,4),(20,5)
50 (2,0),(4,1),(5,2),(6,3),(19,4),(20,5),(35,6),(50,7)

100 (2,0),(4,1),(5,2),(6,3),(19,4),(20,5),(35,6),(100,7)

Table 5.2: Data points used in the estimation of N′2 and p′2.

This curve can be used for a termination criterion. For example, the SAFARI algorithm
could stop acquiring new diagnoses if the relative delta of N′ is below some defined thresh-
old. Also, the estimated p′ of each cardinality can be checked with the true pdf as obtained
thus far. If the estimated p′ differs too much from the true frequency of finding solutions of
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k n2(k) N′2 p′2 SSE
10 4 100.0000 0.4018 1.3791
20 5 4.7609 0.4226 1.8245
30 6 7.0333 0.3765 2.2795
40 7 7.6470 0.3545 2.5638
50 7 7.3107 0.3596 2.3331
60 7 7.1252 0.3644 2.2640
70 7 7.0321 0.3673 2.2385
80 7 6.9844 0.3689 2.2274
90 7 6.9592 0.3697 2.2221

100 7 6.9457 0.3702 2.2194
1000 7 6.9293 0.3707 2.2162

Table 5.3: Least squares fitting of N at a selection of runs on a selected set of data points.

the corresponding cardinality, then this could be an indication that more unique solutions
are expected. However, this is a very fuzzy condition, and probably not applicable in prac-
tice, until a method of estimation is found that is more exact. We could benefit more from a
termination condition that takes into account the probability of having not found all relevant
solutions.

5.2.3 Coupon Collectors Problem

The problem of expecting a unique solution of some cardinality resembles the coupon col-
lectors problem described in probability theory [8, 9]. This problem is defined as: If a
collector tries to find all n coupons for his collection and the coupons are selected with re-
placement, then what is the probability that more than t sample trials are needed to collect
all n unique coupons? For each cardinality we can ask the same question: If we have seven
unique solutions of cardinality two, but every time we get a C = 2 solution it could be any
of the seven, with equal probability, then what is the probability that more than k runs are
needed to get all of the unique solutions?

The expectation of the number of runs (K) to get all n unique solutions is:

E(K) = n ·Hn = n lnn+ γn+
1
2

where Hn is called the harmonic number and γ≈ 0.577 (the Euler-Mascheroni constant).
For the example case of the seven unique solutions of cardinality two, the expected

number of runs is equal to 18.16. However, this is only considering the cardinality two
solutions. In fact, we are drawing from the total set of solutions of all cardinalities. The
expected number of runs for the seventh unique solution of C = 2 therefore needs to be
divided by the probability that a solution is of cardinality two. This is given by the pdf of
cardinalities. In the case of the example of S = {2,7,21} the probability of getting any of
the C = 2 solutions at a given run is equal to 0.32. This results in an expected number of
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runs equal to 18.16
0.32 = 56.75. According to this theory we will need, on average, 57 runs

before all seven unique solutions are found, which is consistent with our previous results.
However, the most interesting question is: If we have seen only six solutions at run

k = 57, how many runs should we execute after this point, before concluding that six is the
true number of C = 2 solutions? The coupon collectors problem provides us with an upper
bound by using the Markov inequality:

P(K ≥ cnHn)≤
1
c

If we solve this inequality for n = 7 and a target probability of 1
100 , then we find that the

probability that more than 1816 runs are required is less or equal to 1
100 . In fact, this number

of runs only considers the runs at which a C = 2 solution is returned by SAFARI.
We can also look at the probability bound when we are at a certain run. For example,

if k = 100, what can we say about the probability P that we have not found all solutions
yet? Solving the same inequality, we get P ≤ 0.18. That is, the probability that we have
not found the seventh unique solution of C = 2 at k = 100 is at most 0.18. Again, the
run number actually is the number of runs in which we have found a C = 2 solution. The
calculated bounds are not very strict as the number of runs to get a decent probability ranges
in the thousands, while the correct number of solutions in our example tracing is already
found at run k = 35.

A stricter bound exists, using the Chebyshev inequality, which is defined as:

P(K−nHn ≥ cn)≤ 2
c2

If we solve this for the same situation as above, we find that the probability of k being
greater than 117 is less or equal to 1

100 . And the probability that we have not found the
seventh unique solution of C = 2 at k = 100 is at most 0.015. This is a great improvement
on the previous bound inequality. However, considering that this calculation only applies
to the solutions of the same cardinality, the number of runs should be at least 117

0.32 = 366 to
guarantee a maximum probability of 1

100 that the next solution of the same cardinality is a
unique solution.

The coupon collectors problem gives us a method for calculating bounds on the prob-
ability of having found all solutions of a selected cardinality. However, the quality of this
bound is still unclear. When applying this to the SAFARI algorithm as a termination cri-
terion, the probability can be communicated continuously to the user. The fact that this
probability can be expressed will improve the applicability of the SAFARI algorithm, be-
cause there is a defined ending to the diagnosis process after which a summation can be
given of the probabilities of missing a diagnosis for each of the cardinalities in the solution
space.

5.3 Termination in Practice

In this chapter several techniques are discussed which could aid in deciding when to stop
the execution of the SAFARI algorithm. Before stopping the generation of new solutions,
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we should have enough certainty that there are no more unseen solutions of the relevant
lowest cardinalities, since most of the posterior probability mass of the problem resides in
the MC (and possibly in MC+1, if the number of MC solutions is very small). One or more
of the following steps can be implemented as a termination procedure.

• If a database of multiple performance model executions (and previous diagnoses)
exists, then the pdf fa of the algorithm during the diagnosis process can be matched
to a corresponding S. If the database contains data that is distinctive enough and this
match is clear enough, then from the obtained S the number of MC solutions can be
read and used as stopping criterion. However, these required conditions are not very
likely to be met.

• The performance model can be executed at every run of the SAFARI algorithm us-
ing the S as obtained thus far from the actual runs. The predicted pdf can then be
compared to the actual fa to see if this matches. This method assumes that the per-
formance model accurately models the SAFARI behavior.

• During the execution of the algorithm, the Coupon Collectors method can be used,
which gives a defined bound for the number of runs needed after which the probability
of finding a new solution of MC (or another cardinality) is, for example, less than a
percent.

• The previous two methods can be combined, where the performance model predicts
fa early in the execution of the algorithm. Based on this pdf, the Coupon Collectors
method can determine the number of runs needed before stopping the algorithm. The
same formula can be used to give the (bounded) probability that the next run results
in a new MC solution. This probability will decrease to an acceptable value, which
can even be determined by the user at runtime. Having an estimation, or progress
indication, this early in the execution may be a very attractive feature for the SAFARI

algorithm, as stochastic methods usually provide no information to the user about
their progress.
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Chapter 6

Conclusions

A stochastic diagnostic engine like SAFARI can be used to diagnose problems with an ex-
pected higher MC, where deterministic methods fail due to space and time complexity.
Because of the stochastic behavior, a model is required to determine the optimality and
completeness of these algorithms. However, the previous model of SAFARI is insufficient
to be used as a general model for all inputs to the algorithm. In this thesis we set out to find a
performance model for the SAFARI algorithm and to devise a termination procedure for the
diagnosis progress. To achieve this, we have introduced a characterization of performance,
dubbed S, and showed that this is an important factor for the behavior of SAFARI. Three
new performance models are introduced which are based on this S. Finally, termination of
the algorithm is discussed and a process for terminating SAFARI is proposed.

6.1 Results

Our conclusions are as follows. We have established that S largely determines the behavior
of SAFARI. This characteristic set S contains the number of existing minimal solutions of
each cardinality of a certain group of problem. Experiments have shown that the number of
components M together with the characteristic S are the dominant influence on the behavior
of the SAFARI algorithm. Since the observation on a system is the only variable factor in a
diagnosis and because each observation leads to a certain set of minimal solutions, S serves
as a characterization of observations as well. Although experiments have shown that the
characteristic S is not the only factor in the behavior of SAFARI, it is the most influential
factor. Another factor which explains the behavior of SAFARI is the way solution variables
are distributed in the health vector. Solutions can overlap, causing some variables being
shared by many solutions, which increases the possibility that a single variable flip makes
many solutions infeasible. This effect is researched, however it is shown that there must
be another factor that causes SAFARI to behave differently other than the characteristic S
and the distribution of solution variables. Although this other factor is still an unknown,
the effect is relatively small and it can be concluded that S is sufficient to model SAFARI

behavior. This characteristic S is used to create new models of the behavior of SAFARI.
A model A3 is constructed, which resembles the SAFARI algorithm as much as possible,
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and only abstracts the exact location of solution variables in the health vector. It is a model
which is based on the traversals from one intermediate S to all other possible S. It assumes
a large enough number of retries R of SAFARI to guarantee solution minimality. Mode
A3 is computationally expensive, because for a realistic system of many components and
many existing minimal solutions, the number of states in the model explodes exponentially.
Because the computational complexity of model A3 it is impractical to be used in reality.
This computational complexity also seems to be expressed in the inaccuracy of the model
output, making it even less applicable.

Model A2 is a computationally efficient model which has the potential of being used in
practice. It is based on calculating the mean of intermediate values of S at each step k in the
algorithm. The output of an ideal version of model A2, created by statistical information of
multiple SAFARI runs, show that the true distribution of solution cardinalities is shown in
the trace of the intermediate values of the mean of S. A transformation formula to calculate
S for the next k is researched to model the SAFARI algorithm with an R chosen to guarantee
solution minimality. Model A2 is efficient and can be used in practice at run time.

Model A1 was created as an attempt to even further decrease complexity. It is a higher
level of abstraction than the previous models. It is able to efficiently calculate the estimated
pdf of the problem with one calculation per cardinality. Propagation of calculation errors is
avoided using this model. Results have shown that this model outperforms models A2 and
A3 for a number of observations on the running example system, also for an observation
resulting in higher cardinality solutions. This has led us to conclude that of the models
discussed in this thesis, model A1 is the best model to explain the behavior of SAFARI.

The models can be used to predict the characteristic S for a problem, based on the
distribution of solution cardinalities that are obtained during the execution of the algorithm.
The characteristic S provides information about the cardinalities existing in the solution
space, where the minimal cardinality is of special interest to the user. Using the models for
predicting S is not further explored in this thesis.

To be able to define a termination criterion for the SAFARI algorithm, we have intro-
duced the n(k)−curve, which is constructed using the runs at which the algorithm returns a
new unique solution. This curve is used to estimate the total number of unique solutions of
selected cardinalities, effectively estimating S. The estimated value will approach the true
number of unique solutions. The decreasing difference between the estimations of each
consecutive run can be used for defining a threshold to be used as termination criterion.

Finally, the coupon collectors problem from probability theory is applied to this problem
to provide a termination criterion which is based on probability bounds. With these bounds,
a defined level of certainty can be given to the end user about the diagnostic quality of the
SAFARI algorithm. Although the explored bounds are not very strict, it provides a good
starting point for the termination of the diagnosis process.

6.2 Future Work

The work done in this thesis is mostly on the Proof of Concept level. Many follow-up
experiments need to be conducted to build upon the work done in this thesis. Future work
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includes the following directions:

• In this thesis, the algorithm and models are tested against a well analyzed running
example, which is not too small having fourteen components, and of which all pos-
sible observations and diagnoses are known. However, to have a better validation of
the models introduced in this thesis, they should be tested against a great number of
systems and observations. A well-known set of systems, used in many model-based
diagnosis papers, is the ISCAS85 benchmark [2]. Consisting of ten systems, the num-
ber of components ranging from 160 to 3512, this will give a good overview of the
applicability of the models. Next to this benchmark, the four medium-sized circuits
of the 74XXX discussed in [10], with 19 to 65 components, could be extensively an-
alyzed, as done with the running example system in this thesis, to form a more firm
base for the models.

• The models discussed in this paper assumed that the systems are weakly modeled,
that is, there is a description of the healthy behavior of the system components. On
the other hand, systems can also be modeled strongly, where different fault-modes
can be described, resulting in more detailed and less diagnoses. The current SAFARI

algorithm depends on systems being modeled weakly, because a weakly modeled
component that is set as unhealthy by the algorithm can also behave as described by
its healthy state. In this case, the all-components-unhealthy initial state will also ex-
plain nominal behavior. In contrast, strong models have explicit behavior descriptions
of faulty components. A system with all components being at fault will not explain
nominal behavior in this case. These strong models could be translated into weak(er)
models, enabling SAFARI to diagnose the system. The effect of the degree of weak-
ness on the algorithm can be analyzed with the models discussed in this thesis. Also,
the models might aid in adopting the algorithm to handle stronger models.

• There are some other possible improvements on the SAFARI algorithm that might
be researched using the models discussed in the thesis. For example, one improve-
ment could be to make SAFARI hybrid. In this case SAFARI will switch from being
stochastic to deterministic at a certain point in the search. The great benefit would
be that all solutions are visited near a local optimum of the search space, instead of
depending on chance to get to a nearby solution. The models in this thesis could aid
in determining the best point at which to make this switch to deterministic search.
However, the termination criterion, as currently defined, will be incorrect, because
the resulting pdf will be very different as multiple diagnoses are found during one
run. The termination criterion will most likely be modified to account for a partially
deterministic algorithm.

• Every model in this thesis has assumed an R great enough to assure optimality of the
algorithm. A smaller R is no problem if solutions exist with cardinality equal or lower
than this value, since the selection of new variables to flip is done without repetition.
However, if the minimal cardinality is higher, then the value of R will play a role. A
correct model of SAFARI should also consider this number of retries per run, since
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6.2 Future Work Conclusions

it is a parameter to the algorithm. This will result in more complex models of the
algorithm and the impact of dismissing this parameter should be more thoroughly
investigated.

• The termination criterion is now based on probability bounds that are not very strict.
Further investigation into better bounds is required for terminating the SAFARI algo-
rithm earlier, without decreasing the certainty of having found all minimum cardinal-
ity solutions.
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Appendix A

List of Symbols

A0 original single target cardinality model
A1 multiple cardinality model
A2 mean of intermediate S model
A3 Markov chain with S as state
C cardinality
dc single diagnosis of cardinality c
fa probability density function of cardinalities of the SAFARI algorithm outcome
fs cardinality distribution of the minimal solution space of the problem
k current number of variables flipped
M number of components
MC minimal fault cardinality of the problem
R number of retries (SAFARI algorithm parameter)
S set of minimal solutions
si number of hits of solutions of cardinality i
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