
Master of Science in Applied Geophysics

Research Thesis

Triangulation for seismic modelling
with optimization techniques

Weijun Wang

August 10, 2017

Triangulation for seismic modelling
with optimization techniques

Master of Science Thesis

for the degree of Master of Science in Applied Geophysics

by

Weijun Wang

August 10, 2017

ii

August 10, 2017

IDEA LEAGUE
JOINT MASTER’S IN APPLIED GEOPHYSICS

Delft University of Technology, The Netherlands
ETH Zürich, Switzerland
RWTH Aachen, Germany

Dated: August 10, 2017

Supervisor(s):
Prof.dr. W.A. Mulder

Committee Members:
Prof.dr. W.A. Mulder

Prof.dr.ir. E.C. Slob

Prof.dr. J.F. Wellmann

Abstract

The finite-element method can easily handle complicated geometries because of the applica-
tion of unstructured meshes. Unlike the Cartesian grid used in the finite-difference method,
the unstructured mesh can follow the sharp interfaces that separate two layers of different
properties. Therefore, the finite-element method can provide more accurate solutions for
the simulation of seismic wave propagation. Meshes of good quality are required for the
finite-element simulation. However, it is not trivial to set up an appropriate mesh. First
of all, the mesh should contain elements of good shapes and sizes. In addition, the sharp
interfaces should coincide with the edges of the elements instead of intersecting with them.
These requirements are formulated as an optimization problem with three terms, measuring
the difference between the actual and prescribed scaling field, shape quality, and the area
between prescribed curves and the nearest triangle edges. The solution of the optimization
problem should provide the desired mesh. The mesh generator MESH2D was applied to ob-
tain an initial mesh. The Matlab function minFunc was used to search for the minimum of
the constructed objective function. Three weights balance the three terms in the objective
function. When it comes to complicated models, these weights have to be chosen carefully to
produce a reasonable mesh.

August 10, 2017

vi Abstract

August 10, 2017

Acknowledgements

First of all, I want to thank my supervisor, Prof.dr. W.A. Mulder, for his preliminary work and
kind help during the whole period of my thesis. Without his supervision, I would have needed
considerably more time and effort to solve the problems occurring during the preparation of
this thesis. Also I appreciate a lot him agreeing on my working at home, due to the remoteness
of my living place, which saved me a lot of time otherwise spent on commuting.

In addition, I express my thanks to my dear wife and unborn baby, expected to be born this
September. My wife is always by my side and encourages me when I feel frustrated. As a
husband and father-to-be, a sense of responsibility motivates me to try my best to overcome
all kinds of obstacles.

Furthermore, I want to express my gratitude to the IDEA LEAGUE and Royal Dutch Shell
for their provision of the comprehensive scholarship that covers everything during my master
program. With their financial support, I had the opportunity to participate as an international
student in this excellent program.

Delft University of Technology Weijun Wang
August 10, 2017

viii Acknowledgements

August 10, 2017

Table of Contents

Abstract v

Acknowledgements vii

1 Introduction 1

I Theory 3

2 Mesh quality control 5

2-1 Notation . 5

2-2 Element shapes . 5

2-3 Element sizes . 8

3 Mesh generation algorithms 11

3-1 Advancing front methods . 11

3-2 Quadtree methods . 12

3-3 Delaunay methods . 14

4 Optimization techniques 19

4-1 Search methods . 19

4-1-1 Gradient based methods . 19

4-1-2 Hessian based methods . 21

4-1-3 Objective function value based methods 22

4-2 Minimization solvers in Matlab . 23

August 10, 2017

x Table of Contents

II Application 25

5 Formulation of the problem 27

5-1 Generation of the initial mesh . 27

5-2 Objective functions and corresponding gradients 28

5-2-1 Element sizes . 28

5-2-2 Element shapes . 30

5-2-3 Areas between curves and edges . 31

5-3 Optimization using minFunc . 34

5-4 More complicated cases . 35

6 Discussions and conclusions 41

Bibliography 43

A More examples 47

A-1 Smoothness of the curve . 47

A-2 Elements sizes . 47

August 10, 2017

List of Figures

2-1 Triangle quantities . 6

2-2 The influence of shapes on the interpolation error is small. Elements with both
too large and too small angles can be accepted. 6

2-3 The influence of shapes on the gradient error varies. Elements with too large angles
can cause large gradient errors. Very small angles hardly affect the gradient error. 7

2-4 The influence of shapes on the conditioning number of the stiffness matrix. Small
angles can ruin the matrix conditioning. 8

2-5 The influence of the number of elements on the vertical deflection and solve time
for a rectangular beam test. 8

3-1 Overview of advancing front based methods. 11

3-2 A section of the active front . 12

3-3 The 6 front configurations and their specific triangulation process. 12

3-4 The process of quadtree based mesh generation. 13

3-5 The tree structure of a quadtree representation. 14

3-6 Examples of polygons. 15

3-7 Subsets of the plane (left-hand side) and their corresponding convex hulls (right-
hand side). 15

3-8 A triangulation is Delaunay if and only if it satisfies the circumcircle property. . . 16

3-9 Non-uniqueness of the Delaunay triangulation when co-circular points exist. . . . 16

3-10 An example of a 2D convex hull with four vertices. 17

5-1 The synthetic velocity field scaled by a reference number, together with the closed
curve. 28

5-2 The initial mesh of the extended domain. 29

5-3 Overview of the curve and the mesh. 31

5-4 Locate all the triangles between two points on the curve. 32

5-5 Different ways for a curve to intersect with a triangle. 33

August 10, 2017

xii List of Figures

5-6 Optimization of f1 and f2 without bounds. 34

5-7 Optimization of f1 and f2 with bounds. 35

5-8 Optimization of f1, f2 and f3 simultaneously without bounds. 35

5-9 Final mesh after removing the elements outside the boundaries. 36

5-10 The synthetic velocity field and a set of curves of model-2. 37

5-11 The initial mesh and curves for model-2. 37

5-12 The mesh after optimization using weights of 1, 15, and 1.1 for model-2. 38

5-13 The mesh after optimization using weights of 1, 15, and 1 for model-2. 38

5-14 The mesh generated for the model with a zigzag curve. 39

5-15 The mesh generated for the model with a smooth curve. 39

A-1 The meshes generated for the model with curve-1 before and after smoothing applied. 48

A-2 The meshes generated for the model with curve-2 before and after smoothing applied. 49

A-3 The meshes generated for the model with curve-3 before and after smoothing applied. 50

A-4 The meshes generated for the model with curve-4 before and after smoothing applied. 51

A-5 The meshes generated for the model with curve-5 before and after smoothing applied. 52

A-6 The influence of scaleref on the performance of curve fitting as well as the mesh
quality. 53

August 10, 2017

Chapter 1

Introduction

The finite-difference method has been the preferred option for time-domain modelling of
the wave equation, with applications in acquisition optimization, development and testing
of seismic processing algorithm, reverse-time migration and full waveform inversion. This is
due to the fact that finite-difference method has some inherent merits, such as the relative
ease of coding and low computational cost. However, this method is mainly implemented
on rectangular domains with smooth velocity variations. When it comes to a domain with
irregular free surface or sharp contrasts in the properties of the medium, the finite-difference
method on a Cartesian grid will lose accuracy, since the grid does not fit the irregular interface
precisely, which results in the staircasing effect (Zhebel et al., 2014).

Compared with the finite-difference method, the finite-element method has the advantage
that complicated geometries can be handled relatively easily with the help of unstructured
meshes and spatial local refinement. By using unstructured meshes, the sharp interfaces
can be followed to avoid the staircasing effect and loss of accuracy. Besides, the size of the
elements can be adjusted according to specific parameters of the medium in order to increase
the computational efficiency.

The finite-element method requires meshes that consist of elements with the right shapes
and sizes. However, generating a suitable unstructured mesh is a non-trivial task. For the
sake of computational efficiency, the elements should maintain good shapes and sizes. In
addition, sharp interfaces should be followed by the elements. Namely, the interfaces should
coincide with the edges of the elements or be as close as possible. In order to fulfil all these
requirements, we can utilize the tools of optimization by formulating our design criteria as
some appropriate objective functions. Then a desired mesh can be generated after solving
the optimization problem.

In the engineering world, an equilateral triangle is universally accepted as the ideal element
in a 2D mesh. Conversely, elements with either too large or too small angles are considered
as bad elements and are avoided by most mesh generators. But is this universal recognition
really true? Are triangles with too large or too small angles always defined as being of poor
quality? How to evaluate the quality of a triangle mathematically? These questions will be
discussed in chapter 2 in detail.

August 10, 2017

2 Introduction

We only focus on 2D unstructured mesh generation in this project. Many algorithms can be
chosen to generate a decent mesh that meets user-defined requirements. These algorithms
include advancing front methods, quadtree methods, and Delaunay methods. The way to
generate a mesh differs, and so does the metric of the element quality. In chapter 3, I will
review these three algorithms, including the way they operate.

In this project, we formulated the mesh generation as an optimization problem. Optimization
refers to the process of locating the minimum or maximum of an objective function, which
expresses our requirements in mathematical terms. Therefore, we need an algorithm that can
find the minimum or maximum of the objective function. In chapter 4, I will present different
search methods based on the use of the objective function values, their gradients, and their
Hessians. Each method has its own scope of application and rate of convergence. According
to the objective function that needs to be optimized, an appropriate method has to be chosen.
Apart from that, the Optimization Toolbox provided by Matlab will also be reviewed in this
chapter.

In chapter 5, I will explain step by step how the problem is formulated. This includes the
construction of the terms in the objective function, the calculation of the gradients, and the
way we combine the different terms in objective function. In addition, the meshes generated
by the optimization will be presented for both simple and complicated models.

This thesis provides a 2D prototype for the unstructured mesh generation. The generated 2D
mesh maintains a reasonable quality in both shapes and sizes. Additionally, the topography
as well as the seismic horizons and faults can be followed by the mesh. This project can serve
as a foundation of the further 3D research on related topics.

August 10, 2017

Part I

Theory

August 10, 2017

Chapter 2

Mesh quality control

Mesh quality is extremely important for numerical accuracy and efficiency. In this paper,
mesh quality refers to the shapes and sizes of mesh elements. Later on, also the goodness of
fit to prescribed external and internal boundary curves will be considered. In this chapter,
I will present some notation and definitions regarding meshes used in this paper. Then the
influence of element shapes and sizes on the numerical simulation will be introduced.

2-1 Notation

Notations used in this paper are listed below:

t: the triangle (2D) or tetrahedral (3D) element in a mesh. In this paper, we only consider
the triangle in 2D, which is composed of vertices vi (i = 1, 2, 3) and edges ei (i = 1, 2, 3).

lmin, lmed, lmax: the minimum, median and maximum edge lengths of an element t.

di: the diameter of the incircle or insphere of t.

do: the diameter of the circumcircle or circumsphere of t.

a: the area of the triangle element t.

Figure 2-1 illustrates some of the above quantities.

2-2 Element shapes

In terms of mesh generation in a 2D domain, two kinds of element shapes can be used
separately or simultaneously: quadrilateral and triangle. To fit the irregular topography and
the interfaces of a medium, triangle-shaped elements have a better performance. The shape
quality of both the quadrilateral and the triangle is vital to the finite-element simulation.
Poor element shapes will lead to convergence issues as well as inaccuracy of the final results.

August 10, 2017

6 Mesh quality control

(a) triangle (b) incircle (c) circumcircle

Figure 2-1: Triangle quantities

A considerably large number of element shape measures, including Jacobian ratio, aspect
ratio, corner angle, etc., have been applied to evaluate the shape quality according to different
applications. In (Shewchuk, 2002), the mathematical connections of different quality measures
to the conditioning of finite-element stiffness matrices and the accuracy of linear interpolation
of functions and their gradients are evaluated in detail.

According to engineering experience, equilateral elements are desired for mesh generation, and
elements with both too large and too small angles should be avoided. But the mathematical
support behind this experience is insufficiently known by most people who are involved in
mesh generation. Besides, this experience does not always hold if the focus of the application
varies. In some circumstances, elements with too large or too small angles should not be
considered as bad elements. Based on the research of Shewchuk (2002), element shapes have
different sensitivities to the interpolation error, the gradient error, and the discretization error
and the condition number of the stiffness matrix if finite-element methods are applied.

The interpolation error refers to the difference between the true function f(p), which is
continuously defined over a mesh, and the interpolated function g(p), which is a piecewise
linear approximation to f(p). For triangles, this error is bounded by c l2max/6, where c is the
curvature bound of f , or in other words the maximum magnitude of the directional second
derivative of f . Therefore, the shapes of elements only slightly influence the interpolation
error. In other words, elements with large or small angles cannot be regarded as bad elements
if the primary purpose is interpolation with regards to the true function (see Figure 2-2).

(a) ideal (b) acceptable
(c) accept-

able

Figure 2-2: The influence of shapes on the interpolation error is small. Elements with both too
large and too small angles can be accepted.

August 10, 2017

2-2 Element shapes 7

The gradient error is the difference between the gradient of f(p) and the gradient of g(p). For
the wave equation, we are more interested in ∇f (particle velocity of the wave) compared to
f (displacement of the wave). Therefore, the gradient error is more important compared with
the interpolation error for certain applications. The upper bound of the gradient error can
be written as 3 c lmax lmed lmin /4A. If a triangle element has a large angle that approaches
180◦, the area a will be close to zero. But the lengths of all three edges do not change very
much. As a result, the bound of the gradient error will increase considerably as the angle
grows towards 180◦. Nevertheless, as a tiny angle decreases towards zero, both the area a and
the shortest edge lmin approach zero at almost the same rate. Therefore, the upper bound
of the gradient error will remain nearly unchanged. Namely, elements with too large and too
small angles can result in a different performance in terms of the gradient of the interpolated
function. Figure 2-3 illustrates the shape qualities regarding the gradient error.

(a) ideal (b) bad
(c) accept-

able

Figure 2-3: The influence of shapes on the gradient error varies. Elements with too large angles
can cause large gradient errors. Very small angles hardly affect the gradient error.

In the finite-element method, the global stiffness matrix is assembled from all the element
stiffness matrices, each of which is composed of the basis function of that element. The
ultimate objective, which is also the difficulty of the finite element method, is to solve the
constructed linear system of equations associated with the global stiffness matrix. A critical
factor with regard to the stiffness matrix is the corresponding conditioning number C =
λmax/λmin, where λmax and λmin are the largest and smallest eigenvalues of the matrix. To
solve the linear system of equations, typically two groups of methods exist: iterative methods
and direct methods. No matter which methods are applied, their performance is dominated
by the conditioning number C of the stiffness matrix. A larger conditioning number can
decrease the speed of convergence for iterative methods and increase the size of the round-off
error for direct methods. According to Fried (1972), the conditioning number C of the global
stiffness matrix is roughly proportional to the largest eigenvalue in terms of all the element
stiffness matrices. Shewchuk (2002) shows that if one of the angles of an element approaches
zero, the largest eigenvalue of that element will approximate infinity. Therefore, small angles
are deleterious to the the matrix conditioning, and equilateral triangles are the preferred
element shapes for the condition number of the stiffness matrix (see Figure 2-4).

August 10, 2017

8 Mesh quality control

(a) ideal (b) bad (c) bad

Figure 2-4: The influence of shapes on the conditioning number of the stiffness matrix. Small
angles can ruin the matrix conditioning.

2-3 Element sizes

Element size is also a crucial factor for the numerical analysis. Smaller elements that require
more nodes in a mesh can increase the accuracy of the numerical results, but the drawback
is that the complexity of the geometry and the computation time increase correspondingly.
Larger elements can simplify the geometry and save computation time, but at the expense
of the numerical accuracy. An example of a rectangualar beam test carried out by Gardiner
(2017) showed the influence of the number of elements on the vertical deflection and solve
time (c.f. Figure 2-5). Reduction of the element size leads to more elements in a mesh. As
shown in the figure, a converged solution can be achieved with more elements, but at the
expense of more solve time.

Figure 2-5: The influence of the number of elements on the vertical deflection and solve time
for a rectangular beam test.

A large number of research studies (More and Bindu, 2015; Dutt, 2015; Skotny, 2017, e.g.)
has been carried out to evaluate the effect of element size on the numerical results based on
various models, parameters as well as analysis methods. Their primary objective is to search
for a trade-off between the element size and the numerical accuracy. Besides, the accuracy is

August 10, 2017

2-3 Element sizes 9

not constantly proportional to the number of the nodes. Liu et al. (2011) found that when
element size is reduced to a certain magnitude, the changes of the results will remain stable,
and no more significant improvements can be expected. Therefore, an optimal element size
has to be chosen in order to balance the numerical accuracy and efficiency. It is not necessary
and sometimes unphysical to use a super-fine mesh. As long as the results are physical and
achieve the desired accuracy, the generated mesh is good enough. One possible solution to
the trade-off is to generate a coarse mesh first, and then apply a mesh refinement where finer
elements are needed, such as in regions with large deformations, stresses, and instabilities,
instead of applying the refinement to the entire domain. There is not a common criterion
applicable to all cases. Several factors can be considered when it comes to determine the
sizes of the elements: the curvature of the geometry boundary, the local feature size of the
geometry, the numerical error estimate, or any user-specified size constraints (Persson, 2006).

August 10, 2017

10 Mesh quality control

August 10, 2017

Chapter 3

Mesh generation algorithms

In this chapter we will look at some algorithms, including the advancing front methods, the
quadtree methods, as well as the Delaunay methods, for the generation of a 2D unstructured
mesh. In this thesis, we will use a method based on optimization, inspired by but quite
different from that of Alliez et al. (2005).

3-1 Advancing front methods

Advancing front methods are based on the generation of triangles by the propagation of a
front towards the interior, starting from the boundary of a domain (Fleischmann, 2000). The
initial front is constructed by discretization of the original one with the desired density of the
nodes. New vertices are then added progressively in the interior of the domain to form new
elements with acceptable shapes and sizes until no active front remains, namely, the entire
domain is meshed. Since this mesh generator starts from the discretized boundary, the local
mesh density around the boundary can be controlled directly (Ito et al., 2004). In addition,
the physical features of the original boundary can be naturally preserved. Figure 3-1 (Bahar,
2001) demonstrates the general procedure of advancing front based methods.

Figure 3-1: Overview of advancing front based methods.

August 10, 2017

12 Mesh generation algorithms

Figure 3-2: A section of the active front

Figure 3-3: The 6 front configurations and their specific triangulation process.

The placement of new vertices is not a trivial task. We consider a front section next to PaPb

on an active front with two angles α1 and α2, which are the angles formed by the current
front element PaPb and its previous as well as next front elements, respectively (cf. Figure
3-2). The position where the new vertex is placed depends on how big these two angles are.
Accordingly, there are six situations in terms of creating a new triangle (Foucault et al., 2008).
The candidate front in figure 3-3 refers to the active front that marches towards the interior
of the domain.

α1 and α2 have to be computed before one of the six configurations is applied. The new
triangle will be generated using one or two neighbouring front elements if the front config-
uration lies agrees with one of the cases between 1 and 5 (case 6 is an exception in that a
new vertex should be created instead of connecting the vertices that already exist to form
a new triangle). It is realized by comparing α1 and α2 with two prescribed threshold an-
gles, such as 85o and 135o. If both α1 and α2 exceed the larger threshold angle as shown in
the 6th configuration, then a new vertex will be created to form the new triangle that has
to satisfy the requirements of both the element shape and the element size. Besides, other
front elements nearby apart from the neighbouring ones also have to be taken into account
in order to avoid their cross-over (triangles overlapping each other) and to create an optimal
node location. After the new triangle is generated, the active front is updated by replacing
the previous front element with edges of the newly created triangle. The whole process will
terminate until the active front is empty, i.e., the entire domain is covered by mesh elements.

3-2 Quadtree methods

The quadtree decomposition, which has a counterpart named octree in 3D, has been used
for the purpose of mesh generation for decades since its first implementation by Yerry and
Shephard (1983). They presented four reasons why the standard quadtree technique is im-

August 10, 2017

3-2 Quadtree methods 13

practical for finite-element analysis and proposed a modified quadtree approach suitable for
finite-element mesh generation. The basic concept of quadtree mesh generation algorithm is
to divide a square area into smaller squares recursively depending on the geometry of a model,
followed by subdivision of the created quadrants into finite elements (triangles, quadrilaterals,
or their combination). An optimization is usually applied afterwards to improve the quality
of mesh elements (cf. Figure 3-4 (FREY and MARECHAL, 1998)).

(a) Region of interest (b) Subdivision of the bounding box

(c) Mesh generation based on
created quadrants

(d) Mesh optimization

Figure 3-4: The process of quadtree based mesh generation.

The quadtree based method is applied to a bounding box, usually a square, which can enclose a
region of interest. This bounding box is considered as the root of the tree. Then a subdivision
of the square is performed to create 4 quadrants if the square contains area outside the
objective region. The new created quadrants will be tested to see whether they are inside
(full), outside (empty), or partially inside (partial) the objective region. If the quadrants
are partially inside the region, then subdivisions will be applied to them again. This process
will be performed recursively until it reaches a stop criterion, which can be a user-defined
resolution.

The quadtree representation of a given region has a clear tree structure (cf. Figure 3-5
(Yang, 1994)). Starting from the root, each quadrant is subdivided into 4 subquadrants or
has no subdivision at all. The depth of the tree is denoted by a level number starting from

August 10, 2017

14 Mesh generation algorithms

0 on the root. A leaf of the tree refers to a terminal quadrant that has no subdivisions.
Leaves inside the region are the foundation for mesh generation. After each subdivision, four
subquadrants will be created with relative positions labeled as TL (top-left), BL (bottom-
left), BR (bottom-right) and TR (top-right). Consequently, each quadrant can be easily
located following a specific path linked by the root.

Figure 3-5: The tree structure of a quadtree representation.

Due to the recursive subdivision of the quadrants, the resulting decomposition of the tree
might be quite unbalanced, which refers to a large difference of the level between neighbour
quadrants. Working on an unbalanced quadtree will result in ill-shaped triangles in the
subsequent triangulation stage. In order to overcome this problem, Yerry and Shephard
(1983) introduced a balancing condition that is known as the 2 : 1 rule: the sizes of any two
adjacent quadrants should differ by at most a factor of two. This is a quite useful intermediate
step to ensure a good quality of elements in the stage of mesh generation.

The subsequent operation following quadtree decomposition is finite-element mesh generation
based on a balanced quadtree (cf. Figure 3-4c). It is realized by cutting the quadrants to
approximate the geometry of a region and triangulating them in a proper way, for instance,
with the Delaunay triangulation technique. Mesh optimization (cf. Figure 3-4d) serves as
the final stage to improve the mesh quality and obtain a better representation of the region
geometry.

3-3 Delaunay methods

The Delaunay triangulation has been used for the purpose of scientific computing for many
years since its first introduction by Boris Delaunay in 1934. It has several advantages among
all the triangulation methods in terms of mesh quality control, such as avoiding the presence
of small angles by maximizing the minimum angle of all the triangles. Besides, there is a lot

August 10, 2017

3-3 Delaunay methods 15

of useful functionality that can be implemented for triangulation-based applications including
a query point location and adding or removing points in the triangulation.

Before talking about the Delaunay triangulation, let me first introduce the definition of a
convex polygon and a convex hull (de Berg et al., 2008). Given a point set P , it is called
convex if and only if for any pair of points pi and pj belong to P , the connecting line segment
of them is also completely contained in P . Otherwise, it is not convex. The polygon shown in
Figure 3-6a is convex, while the one shown in Figure 3-6b is not, since parts of the connecting
line segment of the indicated two points are outside the polygon. Accordingly, a convex
hull for any subset of the plane such as a set of points, a rectangle, or a simple polygon is
the smallest convex set that contains that subset, namely, the intersection of all convex sets
that contain the subset. Figure 3-7 illustrates three kinds of subset of the plane and their
corresponding convex hulls.

(a) A convex polygon (b) A non-convex polygon

Figure 3-6: Examples of polygons.

Figure 3-7: Subsets of the plane (left-hand side) and their corresponding convex hulls (right-hand
side).

August 10, 2017

16 Mesh generation algorithms

(a) Delaunay triangulation

(b) Non-Delaunay triangulation

Figure 3-8: A triangulation is Delaunay if and only if it satisfies the circumcircle property.

Figure 3-9: Non-uniqueness of the Delaunay triangulation when co-circular points exist.

A Delaunay triangulation of a set of points P is a partition of the convex hull into a certain
number of triangles that satisfy the circumcircle property: any circumcircle of the triangles
in the convex hull of the point set does not contain a point of P in its interior. To be more
precise, their corresponding circumcircles are empty. The triangulation shown in Figure 3-8a
is a Delaunay triangulation since the circumcircles of both triangles T1 and T2 are empty.
On the contrary, the triangulation in Figure 3-8b is not Delaunay as the circumcircle of the
triangle T1 contains a point V 3 in its interior, and so does that of T2.

Every point set that has more than three points has a Delaunay triangulation if not all the
points are collinear. However, the uniqueness of the Delaunay triangulation depends on the
position of the points. If four or more points are located on a common circle, then there is
more than one way to construct a Delaunay triangulation. Both the triangulations of the
same point set shown in Figure 3-9 are Delaunay. But the chances that four or more points
lie on a common circle is quite small. So we can assume a set of points is in general position
where no more than three points are co-circular and the Delaunay triangulation is unique.

In order to know whether a triangulation is Delaunay or not, we have to check if all the

August 10, 2017

3-3 Delaunay methods 17

circumcircles are empty according to the circumcircle property. We consider a simple 2D
convex hull with four vertices A, B, C, and D (cf. Figure 3-10). To detect where the vertex
D lies is equivalent to evaluate the following determinant (Guibas and Stolfi, 1985):

det(A,B,C,D) =

∣∣∣∣∣∣∣∣
xA yA x2A + y2A 1
xB yB x2B + y2B 1
xC yC x2C + y2C 1
xD yD x2D + y2D 1

∣∣∣∣∣∣∣∣
If the vertex D is inside the circumcircle of the triangle ABC that is defined in a counter-
clockwise order, this determinant should be positive. Otherwise, it should be negative. This
can be used as a guideline for the construction of a Delaunay triangulation. We consider
the convex hull ABCD again. There are two ways to triangulate this convex hull, adding
either the diagonal AC or the diagonal BD. One of them must fulfil the Delaunay condition.
Then we can test one case by evaluating its determinant before deciding which configuration
we should choose for our Delaunay triangulation construction. This process constitutes the
foundation of the flip algorithm for the computation of a Delaunay triangulation. Starting
from a random triangulation of a point set, all the edges will be tested according to the
circumcircle property. For any one who violates the Delaunay condition, it will be flipped by
exchanging it for the other diagonal.

Figure 3-10: An example of a 2D convex hull with four vertices.

Although the performance of the flip algorithm is quite good, it will take a running time
of O(n2) in the worst case, where n is the number of points to be triangulated. In order
to improve the computational performance, many other algorithms were proposed and im-
plemented with less running time. The divide-and-conquer algorithm for triangulation was
presented by Guibas and Stolfi (1985). To begin with, it successively partitions a set of points
into two halves according to their x-coordinates (y-coordinates are considered if they have the
same x-coordinate), until subsets with no more than three points are left. Then each subset
was processed by Delaunay triangulation and merged with its former half. Once the final
two half triangulations are merged, the final Delaunay triangulation for the whole set is com-
pleted. The overall running time is expexted to be O(n log n) (Leach, 1997). The incremental
algorithm proposed by Green and Sibson (1977) allows new points to be added or deleted
rather than working on the provided points only. Typically, two steps are involved in this
algorithm: locating the triangle that contains the new site and updating the new diagram.
This algorithm was improved later by Su and Drysdale (1997) so that the overall running
time is decreased to O(n) while maintaining its relative simplicity.

August 10, 2017

18 Mesh generation algorithms

August 10, 2017

Chapter 4

Optimization techniques

Given a physical problem, we want first to identify what our objective is, and figure out how
it can be expressed by a mathematical formula before we can solve it using computational
tools. This mathematical expression of our objective is called the objective function, which
depends on a certain number of variables or unknowns. Optimization refers to the process of
finding the values of variables that can maximize or minimize our objective function with or
without constraints. In order to optimize the objective function efficiently, both the objective
function itself and the optimization algorithm have to be taken into consideration. The
objective function should not be neither too simple, lacking some information of the problem
we want to solve, nor too complex, requiring lots of computational time and storage. Besides,
there are numerous optimization algorithms aimed at distinct objective functions. A proper
one has to be chosen among them according to the characteristics of the objective function
to be optimized.

4-1 Search methods

As mentioned above, optimization searches for the variable values by which the objective func-
tion achieves its minimum value (we only consider minimization in this paper). Generally
three categories in terms of search methods exist according to their use of objective func-
tion evaluations, gradients of the objective function, and Hessians of the objective function
(Kiranyaz et al., 2014).

4-1-1 Gradient based methods

To understand the minimization using gradients of the objective function, we can start with a
simple example. Suppose you are on the top of a mountain with a lake on its foot. Your aim
is to reach the lake under the condition that you are blindfolded. So you have no visibility to
see where you are headed. Under such a circumstance, the best approach that can guide you
to the lake is to follow the slope of the hill downwards.

August 10, 2017

20 Optimization techniques

In the mathematical point of view, gradient methods can be explained using Taylor’s theorem.
Consider the optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is differentiable and convex. By introducing Taylor series expansion, we
can obtain the first order approximation of the objective function at the location xk + ∆xk if
we know the value at the point xk:

f(xk + ∆xk) = f(xk) +∇f(xk)T ∆xk. (4-1)

We want to find a smaller value than f(xk) by moving a step ∆xk along a certain direction,
namely, f(xk + ∆xk) < f(xk). Then it requires that the second term on the right-hand side
of (4-1) should be negative. ∆xk could be either negative or positive. Therefore, the sign of
∆xk should be opposite to that of the gradient of f(xk). If this condition is satisfied, f(xk)
will descend as we move along the direction of −∇f(xk), and we can reach the minimum of
f(x) at the end.

The simplest first-order algorithm based on this theorem is the gradient descent method,
using only the objective function f(x) and its gradient ∇f(x). The minimum of f(x) can
be found following the direction of the negative gradient of f(x), along which f(x) decreases
fastest. But how far we should move for each step along this direction still remains unknown.
Actually, the step size dominates the efficiency of the entire optimization process. Starting
from an initial point x0, the gradient descent method applies the following updates for each
iteration until a stop criterion is fulfilled:

xk+1 = xk − αk∇f(xk), (4-2)

where αk is the step size, which is a positive real number. αk could be either a constant
value or adapted to the iteration automatically by applying a line search, which minimizes
f(xk−αk∇f(xk)). The step size has a significant influence on the performance of the iteration.
If it is too small, the convergence will be very slow, while if it is too large, divergence may
occur, and the minimum can never be reached. The rate of convergence for the gradient
descent method is linear (Nocedal and Wright, 1999):

‖sk+1 − s∗‖ ≤ r ‖sk − s∗‖, (4-3)

if k is sufficiently large for a sequence of numbers sk that converges to some limit s∗, where
r is a constant between 0 and 1.

The gradients or derivatives can be computed either analytically or numerically. If the ob-
jective function has a simple expression and the derivatives are easy to calculate by hand or
a computer algebra system, then users can provide the code to compute them. A derivative
check with the numerical approximation can be applied to ensure the correctness of the re-
sults. However, if the function is quite complicated, calculating the derivatives analytically
could be infeasible. In this case, the finite difference approximation of the derivatives or other
differentiation methods (Nocedal and Wright, 1999) can provide the possibility to compute
them automatically.

August 10, 2017

4-1 Search methods 21

4-1-2 Hessian based methods

Methods involving only the first partial derivatives are quite simple in terms of programming
and requires less computation, but the rate of convergence is relatively slow. If the sec-
ond derivative or Hessian is included, the rate of convergence will be improved significantly.
Suppose f(x) is twice differentiable and convex, the second order Taylor series expansion of
f(xk + ∆xk) is:

f(xk + ∆xk) = f(xk) +∇f(xk)T ∆xk +
1

2
∆xTk ∇2f(xk) ∆xk := m(∆xk). (4-4)

We are trying to looking for a direction for ∆xk that can minimize m(∆xk). As we know,
the gradient is zero at the minimum of a function. According to this, we set the derivative of
m(∆xk) zero, and can obtain:

∆xk = −
[
∇2f(xk)

]−1 ∇f(xk). (4-5)

The term on the right-hand side of 4-5 is called the Newton direction. By taking the step size
αk into account we can compute the successive points through the following iteration:

xk+1 = xk − αk

[
∇2f(xk)

]−1
f(xk). (4-6)

Different from the gradient descent method, the Newton’s method usually uses a unit step
size (α = 1). Only when the obtained minimum of f is not satisfactory will α be adjusted by
a line search. The rate of convergence for the Newton’s method is very fast or quadratic if
we are sufficiently close to the minimum and the functional is convex and sufficiently smooth.
If a sequence of numbers sk converges to some limit s∗ at a quadratic speed, these numbers
should satisfy (Nocedal and Wright, 1999):

‖sk+1 − s∗‖ ≤M ‖sk − s∗‖2, (4-7)

for all k that is sufficiently large, where M is a positive constant. Compared to the gradient
descent method with a linear rate of convergence, the rate of convergence of Newton’s method
is improved significantly.

Although the second-order optimization converges fast to the minimum of f , there are some
limitations. The major one is that this method requires a convex and twice differentiable
function. This is to make sure that a positive semi-definite Hessian, which satisfies ∇2f(x),
is available. Otherwise, the Newton direction will not exist, or is not a descent direction any
more. Being convex is to ensure that a global minimum can be reached rather than being
stuck in a local minimum. Another limitation is that the Hessian matrix has to be computed
at each iteration, which could be computationally expensive. Therefore, the pure Newton
method is not suitable for applications in higher dimensions.

In order to combine the computational efficiency of the first-order methods and the fast rate of
convergence of the second-order methods, a class of quasi-Newton methods, such as the BFGS
method, the DFP method, and the SR1 method, are designed based on the regular Newton
method. Instead of computing the Hessian matrix explicitly, the quasi-Newton methods
construct an approximation to the Hessian matrix using the gradients from the previous

August 10, 2017

22 Optimization techniques

iterations. Different quasi-Newton methods have different ways to update this approximation
for each iteration with the following formula:

Hk+1 = Hk + Uk, (4-8)

where Uk is the term to update Hk+1, and differs in various quasi-Newton methods. But
all the approximated matrices should preserve some essential features of the Hessian matrix,
such as being symmetric and positive-definite. Besides, the quasi-Newton condition should
be satisfied:

Hk+1 ∆xk = yk, (4-9)

where Hk+1 is the updated estimate of the Hessian matrix, ∆xk := xk+1 − xk and yk :=
∇f(xk+1)−∇f(xk). Since the quasi-Newton methods preserve the structure of the Newton
method and avoid the computation of the second derivatives, it is preferred in the majority of
the optimization problems. Typically, the quasi-Newton methods converge at a superlinear
rate, meaning:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (4-10)

4-1-3 Objective function value based methods

Optimizers using either the gradient only or both the gradient and the Hessian are efficient
in finding the local minimum of convex objective functions. But if the gradients do not exist,
such as in the case of discontinuous functions, or is so expensive that their evaluation is
impractical, the gradient-based methods will be inefficient or useless at all. Then, derivative-
free methods that only evaluate the values of the objective function itself can be applied to
deal with these problems. There is a long history of the development for the gradient-free
algorithms. Various methods have been designed and improved (Rios and Sahinidis, 2013),
such as the direct local method, Nelder-Mead Simplex method, and the DIvided RECTangles
(DIRECT) Method, which is a global optimizer.

The Nelder-Mead Simplex method is a classical direct search method, and is among the
first generation of the derivative-free methods in 1960s. This algorithm works with a simplex,
which is formed by n+1 points in n-dimensional space (Hicken and Alonso, 2012). Specifically,
in 2-dimensional space, the simplex is a simple triangle. The first step is to generate a
simplex starting from an initial point by adding n new extra points. Then the values of the
objective function at each vertex of this simplex will be evaluated. The vertex that yields the
worst result (with the highest value) will be replaced by a new point, which can be obtained
through a series of operations: reflection, expansion, outside contraction, inside contraction
and shrinking. The algorithm will be terminated if the size of the simplex is small enough,
or the objective function values at the vertices are close enough to the minimum.

To avoid being trapped in a local minimum, a global optimizer has to be implemented using
a systematic search of the design space. Such optimizers involve partitioning the search space
into subsets (Rios and Sahinidis, 2013), such as the DIRECT method and the multilevel
coordinate search (MCS) method. Although these algorithms can converge to the minimum
globally, this convergence is based on a large and exhaustive search over the entire domain.

August 10, 2017

4-2 Minimization solvers in Matlab 23

4-2 Minimization solvers in Matlab

In Matlab, the Optimization Toolbox provides solvers for various kinds of optimization prob-
lems, such as minimization, for multi-objective problems, objective functions that are a sum
of squares, and so on. Since the objective function in our problem is formulated as a scalar
that should be minimized, we focus on the minimization solver, or minimizer of this toolbox.

fminsearch (MathWorks, 2017a) is a non-linear minimization solver designed for the un-
constrained objective functions using the derivative-free methods—the Nelder-Mead simplex
algorithm. The objective function f(x) returns a scalar, while the variables x can be a vector
or matrix. The full syntax of fminsearch is:

[x,fval,exitflag,output] = fminsearch(fun,x0,options) (4-11)

where the input and output arguments are defined as below:

fun: the name or handle of the objective function to be minimized, a real scalar
x0: the initial point specified as a real vector or real array
options: a structure of the optimization options, which can define whether to display

during the process or not and what kinds of information to be displayed, the
maximum number of function evaluations and iterations allowed, the termina-
tion tolerance on f and x, and so on

x: the solution, which can be a real vector or real array with the same size as that of x0
fval: the value of the objective function at the solution
exitflag: the reason why the solver was terminated
output: a structure indicating the information of the optimization process, including the

number of iterations and function evaluations, algorithm used, etc.

Since fminsearch uses the simplex algorithm, which is a derivative-free method to locate the
minimum, it can be applied to discontinuous functions. But only the local minimum will be
found, unless the function is strictly convex. Besides, fminsearch only accepts real numbers
of f and x. Complex values have to be split into real and imaginary parts before they can be
processed by fminsearch.

If the objective function is differentiable, fminunc minimizer (MathWorks, 2017b) can be
applied with the first or second order derivative-based methods. And it is more efficient than
fminsearch, especially when the dimension of the problem is greater than two. The syntax
to call fminunc is more or less the same as that to be used for fminsearch, except the
information of the gradient and the Hessian:

[x,fval,exitflag,output,grad,hessian] = fminunc(fun,x0,options) (4-12)

where the arguments options, grad, and hessian are defined:

options: a structure of the optimization options. In addition to the options that can be
defined in fminsearch, it can also define what kinds of optimization algorithms
are used, whether the gradients are provided by users or approximated in a
finite-difference way, and so on

grad: a real vector of the gradient at the solution
hessian: a real matrix of the approximated Hessian at the solution.

August 10, 2017

24 Optimization techniques

Two algorithms can be chosen for fminunc: trust-region and quasi-Newton algorithms. If the
trust-region algorithm is performed, the users have to provide the gradient in the objective
function. The option CheckGradients can be used to compare the user-supplied derivatives
to the finite-difference approximations in order to confirm the correctness of the gradients.
If the gradients can be provided by users, the performance of fminunc will be improved
significantly. Similarly, the user-supplied Hessian for the trust-region algorithm can speed
up the convergence rate of fminunc. Typically, the Hessian is approximated using the finite
differences.

minFunc is a Matlab minimizer designed for unconstrained optimization problems with a real-
valued differentiable function by Schmidt in 2005. The latest version was released in 2013.
The way to call minFunc is almost the same as that of calling fminunc. It involves a lot
of algorithms, including both the first-derivative and second-derivative methods, to compute
the descent direction. The quasi-Newton method with the limited-memory BFGS updating is
chosen for the default setting. The step size is determined by three line search strategies: the
Armijo line search, the Wolfe line search, and the line search from the Matlab Optimization
Toolbox. Compared to fminunc, minFunc requires less function evaluations to converge, and
can process a larger number of variables. Because of those advantages and its compatibility
with Matlab Optimization Toolbox, minFunc is used to optimize our objective function in
this project.

August 10, 2017

Part II

Application

August 10, 2017

Chapter 5

Formulation of the problem

As mentioned in the beginning, meshes that fit the topography and interfaces of the subsurface
impedance model are required for the numerical analysis of the seismic wave propagation,
especially for the finite-element analysis. In this project, the generation of a good mesh that
can meet our requirements is formulated as an optimization problem. Given a velocity model
of the subsurface medium, we pursue a qualified mesh that can be generated by our program.
In this chapter, I will present the way to solve our optimization problem step by step using
Matlab.

5-1 Generation of the initial mesh

To start with, we synthesized a simple 2D P-wave velocity model with a relatively smooth
topography, which is considered as the curve we are trying to match the mesh with. We want
our element sizes to be proportional to the synthetic velocity field. In order to realize that,
the velocity field is scaled by a reference number scaleref such that the scaled values can be
applied to control the element sizes. The reference number scaleref is chosen according to
the rule that at least three elements can be accommodated per wavelength. Then, the velocity
field can be scaled by this reference number and the P-wave velocity in the sea water. The
scaled velocity field is denoted as scl, defined as:

scl = scaleref vpij / 1500, i = 1 . . . n, j = 1 . . .m, (5-1)

where vp is the synthetic P-wave velocity in the xz-space. Figure 5-1 illustrates the scaled
velocity field including a closed curve. The top of the curve represents the topography of the
geological body, while the other three boundaries are created for the closure of the curve to
make sense geologically.

Given the velocity field, we will generate our initial mesh to represent this domain. During
the process of the optimization, the mesh can change in both shape and size. In order to
ensure that the closed curve is always inside the mesh, we add extra points to the exterior

August 10, 2017

28 Formulation of the problem

Figure 5-1: The synthetic velocity field scaled by a reference number, together with the closed
curve.

of this domain to extend the velocity field by the extrapolation. When the optimization is
finished, we can remove those extra elements. The algorithm we used to generate the mesh is
MESH2D, which is designed by Engwirda in 2006 for the first release. It starts with a quadtree
decomposition of a domain before applying the triangulation. This algorithm preserves the
features of the Delaunay Triangulation, which avoids the presence of elements with small
angles. Besides, the element sizes can be specified by users. We used the scaled velocity
values scl as the constraints of the element sizes. Figure 5-2 shows the generated mesh, the
initial mesh, obtained by MESH2D for the extended domain.

5-2 Objective functions and corresponding gradients

Our goals are: (1) to maintain the elements in good shapes, (2) to enable the elements to
reflect the given velocity information, (3) and to let the mesh fit the topography and the
interfaces of the medium. In order to achieve these goals, we created an objective model f ,
which can represent those requirements mathematically. Then we can deal with it through
the optimization. For our optimization problem, three objective functions (f1, f2, f3) are
combined together in terms of element sizes, element shapes, as well as the areas between
the curves and the edges. In order to maintain a trade-off between those three objective
functions, the weights are needed for each term to adjust their contributions.

5-2-1 Element sizes

The first objective function f1 includes the information of di to control the element sizes,
which should be proportional to the scaled velocity field. The purpose is to avoid a dense
distribution of the elements near some features, such as the vicinity of an interface between
two layers. We consider a triangle element t with three vertices vi(xi, zi), i = 1, 2, 3. The area

August 10, 2017

5-2 Objective functions and corresponding gradients 29

Figure 5-2: The initial mesh of the extended domain.

st of the triangle can be obtained by the following determinant:

st = ± 1

2

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ , (5-2)

where the plus/minus is meant to guarantee a positive value of the area. The diameter di of
the inscribed circle of the triangle is obtained by:

di =
4 st

h21 + h32 + h13
(5-3)

where hij (i, j denote the index of the vertex) represent the lengths of three edges, which can
be calculated by:

h21 =
√

(x2 − x1)2 + (z2 − z1)2 ; (5-4a)

h32 =
√

(x3 − x2)2 + (z3 − z2)2 ; (5-4b)

h13 =
√

(x1 − x3)2 + (z1 − z3)2 . (5-4c)

We want the element sizes to be proportional to the corresponding scaled velocity values.
Namely, di should be equal to scl for the same triangle. To represent the triangle better, we
take the value of scl at the centroid of t. Supposing we have nt triangles in the mesh, the
first objective model f1 is constructed in the following way (l2-norm for a smooth function):

f1 =

√√√√ 1

nt

nt∑
i=1

|dii/scli − 1|2 . (5-5)

The derivatives of f1 with respect to xi and zi can be obtained by differentiation by parts.
To simplify the problem, we assume scl is constant within the triangle, and has no relation

August 10, 2017

30 Formulation of the problem

with the changes of the vertices. Let gi denote the derivative of di: gi = (∂di/∂xi, ∂di/∂zi),
i = 1, 2, 3. Then the derivatives of f1, g1, can be written as:

g1 =

nt∑
i=1

gii scli |
dii
scli
− 1|√√√√nt

nt∑
i=1

| dii
scli
− 1|2

. (5-6)

g1 has a dimension of np × 2, where np is the number of the points in the mesh. In order to
be used by minFunc, g1 has to be rearranged as a column vector.

5-2-2 Element shapes

We have already mentioned that the ideal element shape in 2D is an equilateral triangle. One
important feature of it is that the ratio of its incircle and circumcircle diameters is 0.5, which
we can use as a constraint of the shape to enable the elements to approach an equilateral
triangle. The diameter do of the circumcircle of t can be obtained by the following formula:

do =
h21 h32 h13

2 st
. (5-7)

Based on the feature of an equilateral triangle, the objective function f2 for the element shapes
is designed by the combination of the diameters of both the incircle and the circumcircle of t:

f2 =

√√√√ 1

nt

nt∑
i=1

|1− 2 dii
doi
|2 . (5-8)

The purpose of using the l2-form is to ensure a smooth and differentiable function for the
subsequent optimization.

Similarly, the derivatives of f2 with respect to xi and zi can also be obtained by differentiation
by parts. Let go denote the the derivative of do: go = (∂do/∂xi, ∂do/∂zi), i = 1, 2, 3. The
derivatives, g2, of f2 can be calculated by:

g2 =

nt∑
i=1

ggi |1−
2 dii
doi
|√√√√nt

nt∑
i=1

|1− 2 dii
doi
|2
, (5-9)

where gg represent the derivatives of the formula 1− 2 di/do:

gg = 2
di go− do gi

do2
. (5-10)

The dimension of g2 is np × 2, where np is the number of the points in the mesh. g2 also has
to be rearranged to a column vector such that the algorithm minFunc can use it.

August 10, 2017

5-2 Objective functions and corresponding gradients 31

Figure 5-3: Overview of the curve and the mesh.

5-2-3 Areas between curves and edges

The last but not least aim is to enable the elements to follow the curves, including the
topography and interfaces in a domain, such that the curves coincide with the edges of the
elements. To express it in mathematical terms, we can try to minimize the areas between
the curves and the edges. Therefore, we have to locate the points that can define a polygon
between the curves and the edges. Afterwards, the areas and the corresponding gradients will
be derived for the optimization.

Consider the model, including the triangulation TR and the curve, we constructed in Figure
5-3. First, we have to extract the triangles that contain the points pc on the curve with
the help of the Matlab function tsearchn. We denote these triangles tc. We notice that the
triangles tc do not cover all the triangles that the closed curve crosses. So we have to start
with tc to locate all the triangles tall that contain a section of the curve.

Suppose there are some triangles (one or more) between two points, xlast and xcurr, on
the curve (cf. Figure 5-4). The triangles enclosing these two points are denoted as tlast and
tcurr, and we can find their indices with tsearchn. We want to locate the other three triangles
between the two points. We only consider tlast and the two points for the first step. The
intersection point xedge of the edge and the connecting line between xlast and xcurr can be
obtained by solving the equation:

(1−mu)xv1 +muxv2 = (1− la)xlast+ la xcurr , (5-11)

where xv1 and xv2 are the vertices of tlast in a clockwise order; mu and la are two partition
coefficients of the edge and the connecting line of the points, respectively. With the partition
coefficients, we can get xedge(x, z) via either the left-hand or the right-hand side of Equation
5-11. Then we replace xlast by a new point, which is shifted from xedge towards xcurr by
adding a relatively small number to xedge:

xlast = xedge+ (xedge− xlast) 10−12 . (5-12)

This is to ensure the new xlast to fall in the next triangle, which is considered to be the new
tlast. The procedures above iterate until the stopping criterion, tlast = tcurr, is reached.

August 10, 2017

32 Formulation of the problem

Figure 5-4: Locate all the triangles between two points on the curve.

We have already located all the triangles tall that the curve crosses. The next step is to
construct a polygon to represent the gap between the curve and the edges of tall before we
obtain our third objective function and its gradients. Figure 5-5 illustrates five cases when a
curve intersects with a triangle. In order to construct a proper polygon, we chose the vertex
that is closest to the intersection point xedge. So for the cases 1 to 4, the polygon consists of
the points on the curve (pc1, pc2, pc3), and the vertices close to pc1 and pc3. In case 3, pc1 and
pc3 share a common point as the closest vertex. Case 0 is an exception, which could occur at
the corner of the curve. In this case, the polygon includes only one vertex that is closest to
pc2 besides pc1 and pc2. Note that pc1 acts both the first and the last point of the polygon to
keep it being closed. For example, the polygon in case 1 of Figure 5-5 is pc1 pc2 pc3 v3 v1 pc1,
consisting of 6 points with pc1 counted twice for closure. The absolute value of the polygon
area pa can be calculated by:

pa = ±1

2

n∑
i=1

(xi zi+1 − xi+1 zi) = ±1

2

n∑
i=1

(xi − xi+1)(zi+1 + zi) , (5-13)

where n is the number of points constituting the polygon, excluding the one repeated for
closure (5 for case 1 in Figure 5-5). Note that point number n + 1 needs to be set to point
1 and point 0 to n. Accordingly, the derivatives of pa with respect to x and z for each point
are:

gpi(x, z) = ±1

2
(zi+1 − zi−1, xi−1 − xi+1) i = 1, 2, . . . , n , (5-14)

To generate the third objective function, we applied the square of the area instead of using
the area directly. The reason to do this will be discussed later. The expression of the third
objective function is give below:

f3(x, z) =
1

2

n∑
j=1

paj(x, z)
2 , (5-15)

where n is the length of tall. Then the derivatives of f3 with respect to x and z follow simply
from the chain rule.

∂pa

∂xi
= ±1

2
(zi+1 − zi−1),

∂pa

∂zi
= ±1

2
(xi−1 − xi+1), (5-16)

we obtain
∂f3
∂xk

=

n∑
j=1

paj
∂paj
∂xk

,
∂f3
∂zk

=

n∑
j=1

paj
∂paj
∂zk

. (5-17)

August 10, 2017

5-2 Objective functions and corresponding gradients 33

(a) case 0 (b) case 1 (c) case 2

(d) case 3 (e) case 4

Figure 5-5: Different ways for a curve to intersect with a triangle.

Here, most of the contributions are zero. For the derivatives, we are only interested in those
vertices that are the variables in our problem. We take case 1 in Figure 5-5 as an example to
analyse the derivatives. The polygon used for the area minimization is pc1pc2pc3v3v1pc1. So
the area of this polygon is a function of those five points. Apparently, only the vertices v1 and
v3 contribute to the area. But the vertex v2 is also related to the area due to its contribution to
the location of the intersection points pc1 and pc3. If we take the derivatives at all these three
vertices into consideration, things would become quite complicated. Therefore, for simplicity,
we ignored the influence of the vertex v2, and only used the derivatives of the vertices v1 and
v3 which constitute the polygon. Other cases are processed in such a way that the impact of
the vertices, which are outside the polygon, on the area is neglected. So the remaining task
is to extract the derivatives of the vertices involved in the polygon, followed by assigning the
correct indices to them.

Now let us consider the consequence of this approximation to the derivatives if we use the
area itself as the third objective function. Due to the approximation made in the gradient
computation, the derivatives may not be zero when the area is zero, which is undesirable.
Instead, we want a zero derivative for a zero area. Otherwise, the vertices will keep moving
when the area reaches the minimum. This problem can be solved by introducing the squares
of the areas. The resulting derivative g3 is a multiplication of the area and its derivatives.
Then, g3 vanishes when the area approaches zero.

The final step of constructing our objective function is to add those three separate objective
functions using three weights. The total objective function and its gradient become

f = w1 f1 + w2 f2 + w3 f3 , (5-18a)

g = w1 g1 + w2 g2 + w3 g3 , (5-18b)

where w1, w2, and w3 are the corresponding weights, which can be adjusted to balance the
contributions of each separate objective functions and their gradient. Note that f is a scalar,
while g is a column vector with a length of twice the number of points in the mesh.

August 10, 2017

34 Formulation of the problem

Figure 5-6: Optimization of f1 and f2 without bounds.

5-3 Optimization using minFunc

Having constructed the objective function and the gradients, we will subsequently carry out
the optimization using minFunc (version 2012). Based on the initial points in the mesh
shown in Figure 5-3, the mesh will adjust itself such that the objective function can reach its
minimum. In order to increase the performance and the efficiency, we split the whole process
of optimization into two steps. The objective functions f1 and f2 are first optimized prior to
the full optimization. This can be realized by modifying the weights.

By setting the third weight w3 to zero, f3 will be neglected and only f1 and f2 are optimized.
During the optimization, the whole mesh will deform (cf. Figure 5-6) to find the minimum
objective function. This leads to a smaller density of elements inside the curve as well as
a poorly shaped mesh. To avoid this situation, bounds are applied to the boundaries by
constructing a mask, which has a value of one for the boundary points. Then, the gradients
are multiplied by one minus this mask. After this procedure, the boundary points will remain
fixed during the optimization (cf. Figure 5-7). The price paid is that the resulting objective
function has a larger value than before.

The next stage of the optimization is to take f3 into consideration, starting with the mesh
generated in the first step. Since the order of magnitude of f3 is much larger than that of
the other terms, the weight w3 has to be modified beforehand such that f3 can be reduced
to a size comparable with f1 and f2. One solution is to extract ordf3, which is the order of
magnitude of f3, followed by dividing w3 by ordf3. ordf3 can be extracted in the following
way:

ordf3 = floor(log(abs(f3))/log(10)) , (5-19)

where floor, log, and abs follow Matlab syntax. Then, the modified weight w3n is obtained
by:

w3n = w3 10−ordf3 . (5-20)

August 10, 2017

5-4 More complicated cases 35

Figure 5-7: Optimization of f1 and f2 with bounds.

Figure 5-8: Optimization of f1, f2 and f3 simultaneously without bounds.

If this modification is not enough, ordf3 can be adjusted manually by adding or subtracting
a certain number. In order to give enough freedom to the optimization, boundary bounds are
not applied during this stage. Figure 5-8 illustrates the result after the optimization. Although
the mesh deforms a little bit, the shape and size relative to the curve are still acceptable. We
can observe that the mesh fits the curve quite well, with reasonable element shapes and sizes.
Finally, we trimmed the mesh by removing the triangles outside the boundaries (the closed
curve) to form our final mesh (cf. Figure 5-9).

5-4 More complicated cases

In order to see the performance in more complicated cases, we synthesized another model
named model-2 (cf. Figure 5-10) with more curves to be optimized. Because of the smaller
distances between the curves, we decrease the scale to obtain a denser mesh. Figure 5-11

August 10, 2017

36 Formulation of the problem

Figure 5-9: Final mesh after removing the elements outside the boundaries.

displays the initial mesh generated according to the velocity field, together with the curves.
The mesh after the optimization is shown in Figure 5-12 using the weights of 1, 15, and 1.1.
We can observe that the curves are followed quite well, but the quality of the mesh is not
very good. Figure 5-13 displays another version of the mesh generated by changing the third
weight to 1. The quality of the mesh is improved a lot, while the curves are not completely
followed by the mesh. Therefore, in order to obtain a satisfied mesh, the weights have to be
selected properly.

Figure 5-14 illustrates the mesh generated according to the first velocity model with a zigzag
curve. The curve has a lot of sharp corners that are much smaller than the size of the elements
in the mesh. We see the mesh does not follow the trend of the curve well, because the mesh
tries to fit every small section of the curve. In the physical world, if the dimension of some
features, which we are not interested in, on the earth surface is much smaller than that of the
seismic wavelength, it will cause problems to simulate the propagation of the seismic waves.
For the same model without these sharp corners, the curve is followed very well (cf. Figure
5-15). Therefore, the curves can be smoothed in advance using the Matlab function smooth

if we want to remove the sharp corners. More examples can be found in the Appendix.

August 10, 2017

5-4 More complicated cases 37

Figure 5-10: The synthetic velocity field and a set of curves of model-2.

Figure 5-11: The initial mesh and curves for model-2.

August 10, 2017

38 Formulation of the problem

Figure 5-12: The mesh after optimization using weights of 1, 15, and 1.1 for model-2.

Figure 5-13: The mesh after optimization using weights of 1, 15, and 1 for model-2.

August 10, 2017

5-4 More complicated cases 39

Figure 5-14: The mesh generated for the model with a zigzag curve.

Figure 5-15: The mesh generated for the model with a smooth curve.

August 10, 2017

40 Formulation of the problem

August 10, 2017

Chapter 6

Discussions and conclusions

For the generation of the initial mesh, we applied the generator MESH2D. We found the gen-
erated initial mesh represents the velocity field quite well due to the input of the sizing con-
straints. In addition to MESH2D, we also tried the Matlab function delaunayTriangulation.
But the results are not satisfactory, since during the generation of the initial mesh, the infor-
mation of the scaling field is not included. This poses a bigger challenge to the subsequent
optimization. Besides, the mesh will deform substantially during the optimization of f1 and
f2 if the boundaries are not fixed, although f1 and f2 can be well optimized in this case. If
the boundaries are set to be fixed, the optimization of f1 will fail. Namely, the sizes of the
elements are not proportional to the velocity field. Therefore, MESH2D provides a better
initial mesh, which makes the whole optimization more efficient.

For g3, we only considered the vertices that constitute the polygon. Actually, the other
vertex or vertices of the triangle, which the curve crosses, also has or have contributions to
the gradients of the polygon area. This is due to the fact that the edge points are located
using the vertices both in and outside the polygon. For simplicity, we ignored the influences of
the vertex or vertices outside the polygon on the g3. This process leads to an approximation
to the gradients of f3. So during the optimization of f3, only one or two vertices of a triangle
can move. This reduces the freedom, and the triangles will degenerate. But if the weights
can be chosen properly, the optimization of f2 can compensate for this effect to some degree.

If the the wavelength of a seismic wave is much larger than the variations of the topography
and interfaces, these small variations cannot be recognized in the seismic data. Therefore,
we expect our mesh to ignore these details of the topography and interfaces during the op-
timization of f3. Otherwise, the mesh will attempt to fit every detail of the curve, which is
impossible due to the relatively large element size. Therefore, a smoothing process is applied
before the optimization is carried out. The smoothing can be applied to the whole curve or
just a section of it where the smoothing is required, such as in areas with large wave speeds.

The sizes of the elements are proportional to the local velocity in the mesh. The exact
size of an element is controlled by a reference number, scaleref . We choose it according
to the rule that at least three elements can be accommodated per wavelength, which should

August 10, 2017

42 Discussions and conclusions

provide sufficient modelling accuracy. We have seen that both the rate of convergence and the
computing time depend on the element sizes. Besides, the performance of the curve fitting for
the generated mesh also relies on the element sizes, especially when multiple curves exist and
the gap between those curves is small compared to the element size. Therefore, the reference
number scaleref has to be selected appropriately to balance between the desired numerical
accuracy and the running time as well as the curve fitting.

August 10, 2017

Bibliography

Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. (2005). Variational Tetrahedral
Meshing. ACM Transactions on Graphics, pages 617–625.

Bahar, C. (2001). Advancing Front Method. http://www.ae.metu.edu.tr/~cengiz/Eng/

index.html.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Computational Geom-
etry: Algorithms and Applications. Springer-Verlag.

Dutt, A. (2015). Effect of Mesh Size on Finite Element Analysis of Beam. SSRG International
Journal of Mechanical Engineering, pages 8–10.

Engwirda, D. (2017). MESH2D - Delaunay-based unstructured mesh-
generation. https://nl.mathworks.com/matlabcentral/fileexchange/

25555-mesh2d-delaunay-based-unstructured-mesh-generation.

Fleischmann, P. (2000). Advancing Front Methods. http://www.iue.tuwien.ac.at/phd/

fleischmann/node39.html.

Foucault, G., Cuillière J-C., François, V., Léon J-C., and Maranzana, R. (2008). An Exten-
sion of the Advancing Front Method to Composite Geometry. In Proceedings of the 16th
International Meshing Roundtable, pages 287–314. Springer, Berlin, Heidelberg.

FREY, P. J. and MARECHAL, L. (1998). Fast Adaptive Quadtree Mesh Generation. In
Proceedings of the 7th International Meshing Roundtable, pages 211–224. Sandia National
Laboratories.

Fried, I. (1972). Condition of finite element matrices generated from nonuniform meshes.
AIAA Journal, pages 219–221.

Gardiner, J. (2017). Finite Element Analysis Conver-
gence and Mesh Independence. https://www.xceed-eng.com/

finite-element-analysis-convergence-and-mesh-independence/.

August 10, 2017

http://www.ae.metu.edu.tr/~cengiz/Eng/index.html
http://www.ae.metu.edu.tr/~cengiz/Eng/index.html
https://nl.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-delaunay-based-unstructured-mesh-generation
https://nl.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-delaunay-based-unstructured-mesh-generation
http://www.iue.tuwien.ac.at/phd/fleischmann/node39.html
http://www.iue.tuwien.ac.at/phd/fleischmann/node39.html
https://www.xceed-eng.com/finite-element-analysis-convergence-and-mesh-independence/
https://www.xceed-eng.com/finite-element-analysis-convergence-and-mesh-independence/

44 Bibliography

Green, P. J. and Sibson, R. (1977). Computing Dirichlet Tessellations in the Plane. The
Computer Journal, pages 168–173.

Guibas, L. and Stolfi, J. (1985). Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Transactions on Graphics, pages 74–123.

Hicken, J. E. and Alonso, J. J. (2012). Chapter 6: Gradient-Free Optimization. http:

//adl.stanford.edu/aa222/Lecture_Notes_files/chapter6_gradfree.pdf.

Ito, Y., Shih, A. M., and Soni, B. K. (2004). Reliable Isotropic Tetrahedral Mesh Genera-
tion Based on an Advancing Front Method. In Proceedings, 13th International Meshing
Roundtable, pages 95–106. Sandia National Laboratories.

Kiranyaz, S., Ince, T., and Gabbouj, M. (2014). Multidimensional Particle Swarm Optimiza-
tion for Machine Learning and Pattern Recognition. Springer Berlin Heidelberg.

Leach, G. (1997). Improving Worst-Case Optimal Delaunay Triangulation Algorithms. http:
//goanna.cs.rmit.edu.au/~gl/research/comp_geom/delaunay/paper_short.pdf.

Liu, W., Geni, M., and Yu, L. (2011). Effect of Mesh Size of Finite Element Analysis in
Modal Analysis for Periodic Symmetric Struts Support. Key Engineering Materials, pages
1008–1012.

MathWorks (2017a). fminsearch. https://nl.mathworks.com/help/optim/ug/

fminsearch.html.

MathWorks (2017b). fminunc. https://nl.mathworks.com/help/optim/ug/fminunc.html.

More, S. T. and Bindu, R. S. (2015). Effect of Mesh Size on Finite Element Analysis of Plate
Structure. International Journal of Engineering Science and Innovative Technology, pages
181–185.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer-Verlag.

Persson, P.-O. (2006). Unstructured Mesh Generation. https://persson.berkeley.edu/

pub/persson06unstructured.pdf.

Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free optimization: a review of algorithms
and comparison of software implementations. Journal of Global Optimization, pages 1247–
1293.

Schmidt, M. (2005). minFunc: unconstrained differentiable multivariate optimization in Mat-
lab. http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

Shewchuk, J. R. (2002). What is a Good Linear Element? Interpolation, Conditioning, and
Quality Measures. Proc. of 11th International Meshing Roundtable, pages 115–126.

Skotny, L. (2017). Correct mesh size - a quick guide. https://enterfea.com/

correct-mesh-size-quick-guide/.

Su, P. and Drysdale, R. L. S. (1997). A comparison of sequential Delaunay triangulation
algorithms. Computational Geometry, pages 361–385.

August 10, 2017

http://adl.stanford.edu/aa222/Lecture_Notes_files/chapter6_gradfree.pdf
http://adl.stanford.edu/aa222/Lecture_Notes_files/chapter6_gradfree.pdf
http://goanna.cs.rmit.edu.au/~gl/research/comp_geom/delaunay/paper_short.pdf
http://goanna.cs.rmit.edu.au/~gl/research/comp_geom/delaunay/paper_short.pdf
https://nl.mathworks.com/help/optim/ug/fminsearch.html
https://nl.mathworks.com/help/optim/ug/fminsearch.html
https://nl.mathworks.com/help/optim/ug/fminunc.html
https://persson.berkeley.edu/pub/persson06unstructured.pdf
https://persson.berkeley.edu/pub/persson06unstructured.pdf
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
https://enterfea.com/correct-mesh-size-quick-guide/
https://enterfea.com/correct-mesh-size-quick-guide/

Bibliography 45

Yang, D. D. X. (1994). MESH GENERATION AND INFORMATION MODEL FOR
DEVICE SIMULATION. PhD thesis, STANFORD UNIVERSITY, http://www-tcad.

stanford.edu/tcad/pubs/theses/danyang/.

Yerry, M. A. and Shephard, M. S. (1983). A Modified Quadtree Approach To Finite Element
Mesh Generation. IEEE Computer Graphics and Applications, pages 39–46.

Zhebel, E., Minisini, S., Kononov, A., and Mulder, W. A. (2014). A comparison of continuous
mass-lumped finite elements with finite differences for 3-D wave propagation. Geophysical
Prospecting, 62:1111–1125.

August 10, 2017

http://www-tcad.stanford.edu/tcad/pubs/theses/danyang/
http://www-tcad.stanford.edu/tcad/pubs/theses/danyang/

46 Bibliography

August 10, 2017

Appendix A

More examples

A-1 Smoothness of the curve

Figures A-1 to A-5 depict meshes generated for models with different curves with and without
smoothing. If the corners of the curve are not so sharp, and the distances between corners
are not very short compared to the element size, the curve can still be well fit by the mesh
despite of its non-smoothness (c.f. Figure A-1a). But as the corners become sharper and
closer to each other, the mesh cannot follow the curve anymore, and the quality of elements
decreases. Therefore, smoothing of the curve should be applied before the optimization under
this condition.

A-2 Elements sizes

Figure A-6 illustrates the influence of the reference number scaleref and the corresponding
element sizes on the performance of curve fitting as well as on the mesh quality. Although
the curve can still be followed as the reference number scaleref or the element size increases,
the quality of the elements is becoming worse.

August 10, 2017

48 More examples

(a) Without curve smoothing

(b) With curve smoothing

Figure A-1: The meshes generated for the model with curve-1 before and after smoothing ap-
plied.

August 10, 2017

A-2 Elements sizes 49

(a) Without curve smoothing

(b) With curve smoothing

Figure A-2: The meshes generated for the model with curve-2 before and after smoothing ap-
plied.

August 10, 2017

50 More examples

(a) Without curve smoothing

(b) With curve smoothing

Figure A-3: The meshes generated for the model with curve-3 before and after smoothing ap-
plied.

August 10, 2017

A-2 Elements sizes 51

(a) Without curve smoothing

(b) With curve smoothing

Figure A-4: The meshes generated for the model with curve-4 before and after smoothing ap-
plied.

August 10, 2017

52 More examples

(a) Without curve smoothing

(b) With curve smoothing

Figure A-5: The meshes generated for the model with curve-5 before and after smoothing ap-
plied.

August 10, 2017

A-2 Elements sizes 53

(a
)
sc
a
le
re
f

=
20

0
(b
)
sc
a
le
re
f

=
3
20

(c
)
sc
a
le
re
f

=
40

0
(d
)
sc
a
le
re
f

=
5
60

F
ig
u
re

A
-6
:

T
h

e
in

fl
u

en
ce

of
sc
a
le
re
f

on
th

e
p

er
fo

rm
an

ce
of

cu
rv

e
fi

tt
in

g
as

w
el

l
as

th
e

m
es

h
q

u
al

it
y.

August 10, 2017

	Abstract
	Acknowledgements
	Introduction
	I Theory
	Mesh quality control
	Notation
	Element shapes
	Element sizes

	Mesh generation algorithms
	Advancing front methods
	Quadtree methods
	Delaunay methods

	Optimization techniques
	Search methods
	Gradient based methods
	Hessian based methods
	Objective function value based methods

	Minimization solvers in Matlab

	II Application
	Formulation of the problem
	Generation of the initial mesh
	Objective functions and corresponding gradients
	Element sizes
	Element shapes
	Areas between curves and edges

	Optimization using minFunc
	More complicated cases

	Discussions and conclusions
	Bibliography
	More examples
	Smoothness of the curve
	Elements sizes

