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A B S T R A C T

Accurately and efficiently estimating system performance under uncertainty is paramount in power system
planning and operation. Monte Carlo simulation is often used for this purpose, but convergence may be slow,
especially when detailed models are used. Previously published methods to speed up computations may severely
constrain model complexity, limiting their real-world effectiveness. This paper uses the recently proposed
Multilevel Monte Carlo (MLMC) framework, which combines outputs from a hierarchy of simulators to boost
computational efficiency without sacrificing accuracy. It explains which requirements the MLMC framework
imposes on the model hierarchy, and how these naturally occur in power system adequacy assessment problems.
Two adequacy assessment examples are studied in detail: a composite system and a system with heterogeneous
storage units. An intuitive speed metric is introduced for easy comparison of simulation setups. Depending on the
problem and metric of interest, large speedups can be obtained.

1. Introduction

Operational and planning problems in the power system domain
often involve the assessment of (sub-)system performance across a
range of probabilistically modelled scenarios. For all but the simplest
power system models, this cannot be done analytically, and Monte
Carlo (MC) simulations are used instead. MC simulations are a powerful
general purpose computation method with a long tradition in power
system applications [1], but convergence to the correct answer may be
slow. A number of different variance reductionmethods exist to speed up
convergence of Monte Carlo estimates, e.g. [1,2]. One of these, im-
portance sampling, has recently grown in popularity for power system
applications, especially in combination with automatic tuning of model
bias parameters using the cross-entropy approach [3,4]. However, im-
plementing importance sampling typically requires deep insight into
the model, and limits the design freedom, e.g. for simulations involving
complex decision making or sequential actions.

The Multilevel Monte Carlo (MLMC) method was introduced in the
context of computational finance to speed up averaging over sample
paths, without compromising model detail or accuracy [5]. Initial ap-
plications involved the combination of multi-resolution models (geo-
metric sequences), but other applications have subsequently evolved. A
good overview of the method and its applications is given in [5]. The

MLMC approach has recently been used in a reliability context to speed
up the estimation of the average mission time of large systems in [6]. In
[7], electrical distribution system risk metrics were estimated using
MLMC, using a multi-scale approach to simulate component failures
and repairs.

This paper considers how the MLMC framework [5] can be used to
accelerate risk calculations, in particular in applications relating to
system adequacy assessment of complex systems. The contributions of
this work are as follows.

1. A concise overview of the MLMC approach to the estimation of risks
is given. It is shown how the structure required for MLMC simula-
tion naturally occurs in adequacy assessment problems, and can
often be implemented with minimal changes to the constituent
models. Two examples of common model patterns are given.

2. An intuitive speed metric is introduced that allows for fair com-
parison between Monte Carlo simulation approaches, and across risk
measures.

3. Two case studies are presented, each representing one of the
common model patterns. The MLMC approach results in large
speedups, in one case speeding up simulations by a factor 2000
compared to conventional Monte Carlo sampling. The sensitivity of
computational speed to the model stack is investigated.
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2. Methodology

2.1. Mathematical problem statement

Power system performance indicators often take the form of risk
measures q that are expressed as the expectation1 of a performance
indicator X (a random variable), i.e. =q XE[ ]. Formally, the random
variable X may be seen as a function →X : Ω that associates a nu-
merical outcome with every system state ω ∈ Ω in a sample space Ω.
The probabilistic behaviour of the system, and therefore of X, is defined
by associating probabilities with (sets of) states.

In the context of system adequacy assessment, the probabilistic
behaviour of a power system is typically specified using a bottom up
model that defines demand levels, component status, generator output
levels, etc. This model generates both the sample space Ω (the set of all
possible combinations of component states) and the associated prob-
abilities. The function X deterministically evaluates any specific state
ω ∈ Ω and computes a numerical performance measure for that state.
The risk measure =q XE[ ] is then the (probability weighted) average of
the function X over all states.

For even moderately complex systems, it is not possible to compute
the quantity of interest =q XE[ ] analytically, nor can it be computed by
enumeration of all states in Ω. In such cases, it is common to resort to
Monte Carlo simulation, in which power system states = …ω i, 1, 2,i( )

are generated using the probabilistic bottom-up model and analysed to
provide relevant outcomes X(ω(i)). It should be noted that at any time,
multiple outcomes …X X, ,a b( ) ( ) (e.g. number of outages, energy not
supplied) can be measured simultaneously, at little to no extra cost. In
the mathematical analysis that follows, only a single risk measure

=q XE[ ] is discussed, but the methods can trivially be applied in par-
allel.

2.2. Conventional Monte Carlo

A brief summary of conventional Monte Carlo simulation is given in
this section, as a point of reference for following sections. In conven-
tional Monte Carlo simulation, the quantity =q XE[ ] is approximated
by the Monte Carlo estimator

∑≡
=

Q
n

X^ 1 ,MC
i

n
i

1

( )

(1)

where …X X{ , , }n(1) ( ) represents a random sample2 from X, with each X(i)

independent and identically distributed to X. Note that we distinguish
the random variable X(i) that represents the ith random draw from X, and
its realisation x(i) in a particular experiment or simulation run. The MC
estimate for a simulation run is thus given by

∑≈ =
=

q q
n

x^ 1 .
i

n
i

1

( )

(2)

We proceed to use the generic expression (1) to reason about the
convergence of the result. The error ΔQMC obtained in this approx-
imation is

= −Q Q qΔ ^ .MC MC (3)

The MC estimator Q̂MC is unbiased, and, as a result of the central limit
theorem, for a sufficiently large sample size n, ΔQMC is normally dis-
tributed, so that

� ⎜ ⎟
⎛
⎝

⎞
⎠

∼Q σΔ 0, .MC Q̂
2

MC
(4)

The variance of Q̂MC follows from the MC estimator (1):

=σ
σ
n

.
Q

X
^
2

2

MC (5)

As a result, the standard error σQ̂MC
equals σ n/ ,X indicating the typical

−O n( )1/2 convergence of MC simulations.
To quantify the computational efficiency of an MC simulation, we

denote by τ the average time required to generate a single realisation
x(i). The time spent to generate a sample of size n is then

=t nτ.MC (6)

Using this relation, the variance (5) can be expressed as

=σ t
σ τ
t

( ) .
Q MC

X

MC
^
2

2

MC (7)

2.3. Multilevel Monte Carlo

For multilevel Monte Carlo (MLMC), we assume to have at our
disposal a hierarchy of models � �…, , L1 that generate random out-
puts …X X, , ,L1 the expectations of which approximate E[X] with in-
creasing accuracy. Specifically, we consider the case where the top level
model � L is the model of interest, i.e. =q XE[ ]L . The lower level
models � �… −, , L0 1 are approximations of the top level model that are
faster to evaluate but have a bias, i.e. E[Xl < L] ≠ E[XL].

The material in this section is generic, and can be found using
slightly different notation in e.g. [5]. The basis for the MLMC method is
the trivial identity that is the telescopic sum:

=
= + − +…+ −
= + +…+

−

q X
X X X X X

r r r

E[ ]
E[ ] E[ ] E[ ]

.

L

L L

L

0 1 0 1

0 1 (8)

The quantity of interest q is thus decomposed into a crude estimate r0
plus iterative refinements …r r, , L1 . In MLMC, each of these terms is in-
dependently estimated using (1). This results in the MLMC estimator

∑ ∑ ∑≡ =
= = =

Q r
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l
l
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n

l
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with

= − −Y X Xl
i

l
l i

l
l i( ) ( , )

1
( , ) (9b)

≡−X 0.1 (9c)

To clarify notation, for each level l we distinguish the level outcomes
X ,l

k i( , ) the level pairs −X X( , )l
l i

l
l i( , )

1
( , ) and the level contribution

= ∑ =r n Y^ (1/ )l l i
n

l
i

1
( )l . An additional superscipt has been added to the level

outcome Xl
k i( , ) to denote the level k of the pair it is associated with,

because outcomes for level lmay be generated differently depending on
whether they are paired with outcomes at level −l 1 or +l 1, as long as
this does not affect the model bias. That is, we require only

= =+X X XE[ ] E[ ] E[ ]l
l i

l
l i

l
( , ) ( 1, ) . All sampled outcomes are assumed to be

mutually independent, except for those in a level pair −X X( , ),l
l i

l
l i( , )

1
( , )

which are jointly sampled from a common distribution.
The MLMC estimator is unbiased and asymptotically normally dis-

tributed, by virtue of the constituent MC estimators of the level con-
tributions. Its variance follows from (9a) and the mutual independence
of sampled values:

∑=
=

σ
σ
n

,
Q

l

L
Y

l
^
2

0

2

ML

l

(10)

= + − −−σ σ σ X X2·Cov( , ).Y X X l
l

l
l2 2 2

1
( ) ( )

l l l1 (11)

1 The framework of estimating expectation values is less limiting than it may
seem. For example, if one is interested in estimating the distribution of X in
addition to the expectation E[X], one can define a series of quantities

= ≤X : ,v X v( ) so that =X F vE[ ] ( )v X( ) .
2 We use the statistics convention that a sample is a set of sampled values,

rather than the computational science convention where each x(i) is a sample.
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Here, the superscript (l) on the simulation outputs is maintained, be-
cause the covariance term depends on the joint sampling process of the
pairs −X X( , )l

l i
l

l i( , )
1

( , ) . Clearly, the variance is minimised if the sample pairs
are highly correlated.

For a given set of models � �…, , ,L0 the challenge is to optimally
choose the samples sizes nl. Defining the average time to generate a
single value yl

i( ) as τl, the total time taken to produce an MLMC estimate
is given by

∑=
=

t n τ .ML
l

L

l l
0 (12)

The optimal sample counts nl can now be determined by minimising the
variance (10) with respect to n1: L while keeping tML constant. Using
(12) to substitute n0 and setting =σ nd /d 0

Q l^
2

ML
for = …l L1, , results in

optimal sample counts (ignoring their discrete nature)

=
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With this optimal choice of nl, the computational effort spent on each
level pair l is proportional to σ τY ll (see (12)), and the total variance
(10) can be expressed as a function of computational time as
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2.4. Measuring simulation speed

By comparing the expressions for the variance of the conventional
and multilevel MC approaches, we can investigate the potential
speedup resulting from the MLMC approach. Let us consider the times
t̃MC and t̃ML required to converge to a given variance

= =v σ t σ t˜ (˜ ) * (˜ )
Q MC Q ML^
2

^
2

MC ML
. Then, combining (5) and (14) results in the

expression

= = ⎛

⎝
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⎞

⎠
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t

σ τ
σ τ

speedup
˜
˜ .MC

ML

X

l
L

Y l0

2

l (15)

In practice, the variance of the lowest level is similar to that of the
direct MC simulator, ≈σ σ ,Y X0 and the cost of evaluating the highest
level pair is at least that of a direct evaluation of the highest level, i.e.
τL ≥ τ. Considerable speedups are possible if ≪σ τ σ τY l Xl for all l.
Intuitively, this occurs when each simplified model � −l 1 is much faster
than the next level � ,l but returns very similar results for the majority
of samples. Examples where this occurs naturally in the context of
power system adequacy assessment will be discussed in Sections 4 and
5.

In order to compare the computational efficiency of various im-
plementations, we require an operational definition of ‘computational
speed’. Monte Carlo simulations are often run with the goal to estimate
the quantity q with a certain relative accuracy, expressed using the
coefficient of variation =c σ q/q Q . We note that both (7) and (14) can be
brought into the form

⏟⏟
⏟= ×

c
z t1 .

q
q2

computational
‘distance’

speed time

(16)

This implicitly defines the computation speed zq as

=z
q

tσ t
:

( )
.q

Q

2

^
2

(17)

This definition may be compared with the ‘figure of merit’ used in
[8]. The inclusion of the quantity q2 in (17) has a number of ad-
vantages, provided that q ≠ 0. First, the speed has dimensions 1/time,

independent of the measure q. Second, speeds corresponding to dif-
ferent metrics are directly comparable. For example, when

<z z ,LOLE EENS this indicates that the LOLE estimator is the limiting
factor in achieving convergence to a given coefficient of variation. And
finally, the speed metric and the implied computational distance are
easily interpretable in terms of simulation outcomes. For example, in
order to achieve a coefficient of variation of 1% (i.e. a ‘distance’
10,000) using a speed of −s10 ,1 a simulation run of 1000 s is required.

In the course of a simulation run, (17) can be used to estimate the
computational speed, replacing q and σQ by their empirical estimates.
The speed zq for MC and MLMC estimation follow from (5) and (10) as

=z
q
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3. Considerations for implementation

3.1. Joint sample spaces

The core of the MLMC algorithm is the joint generation of sample
pairs −X X( , ),l

l i
l

l i( , )
1

( , ) used in (9b), in such a way that they are maximally
correlated. The random variables Xl and −Xl 1 have sample spaces Ωl and

−Ω ,l 1 respectively, which must be combined into a joint sample space
′Ωl. We highlight two common model patterns that naturally achieve

this.

3.1.1. Pattern 1: component subsets
One common occurrence in system adequacy studies is that the

lower level model � −l 1 omits components that are present in the
higher level model � l. As a result, the sample space Ωl can be written
as a Cartesian product

= ×− AΩ Ω ,l l l1 (22)

where Al is the sample space of components present in � l but not in
� −l 1. We may then identify ′Ωl and Ωl. In practical terms this means
that samples can be generated at the higher level l and unused elements
are discarded for the simpler models � −l 1. An example of this design
pattern is explored in Section 4.

3.1.2. Pattern 2: identical randomness
It is also easy to conceive of scenarios where � l and � −l 1 have

identical sample spaces, so that

′ = = −Ω Ω Ω .l l l 1 (23)

This occurs when both models are driven by the same set of random
inputs, but the higher level model performs more complex processing.
An example of this model pattern is given in Section 5.

3.2. Direct evaluation of expectations

Occasionally, the base model � 0 is sufficiently simple to permit
direct computation of =r XE[ ],0 0 either analytically or using a numer-
ical approximation procedure. In those cases, the long run efficiency is
enhanced by evaluating r0 directly instead of using its MC estimate. The
standard deviation σY0 is then equal to 0, or a value commensurate with
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the accuracy of the numerical approximation of r0. Although direct
evaluation of the lowest level is nearly always preferred, there may be
cases where the evaluation of E[X0] is a comparatively time-consuming
operation and the optimal trade-off is more complex. In the examples
that follow in Sections 4 and 5, direct evaluation is always possible, and
results in faster convergence of the overall MLMC estimator.

The use of an analytical result at the lowest level also highlights a
connection between the MLMC method and the control variate ap-
proach [5]. The control variate similarly makes use of a simplified
model for which an explicit solution can be calculated. It can therefore
be considered as a special case of a bilevel MLMC procedure where the
value E[X0] is known and the output X0 is scaled for optimal con-
vergence. The control variate approach was used in [2] to speed up
composite system adequacy assessment - a problem that is also ad-
dressed in Section 4.

3.3. Implementation

Simulations were implemented in Python 3.7 and were run on an
Intel i5-7360U CPU under macOS 10.14.6. A generic multilevel sampler
was developed with specialisations for particular simulation studies. No
effort was made to optimise the execution speed of individual models,
because the aim of this paper is not to maximise execution speed per se,
but to investigate the relative speed between sampling strategies. The
code used to generate the results in this paper is available [9] also
available as a CodeOcean capsule [15].

All MLMC simulations started with an exploratory run in which a
sample with fixed size n(0) is taken at each level set Yl, in order to de-
termine initial estimates of the evaluation cost τ̂l and variance σ̂Y

2
l . This

initial run is followed by a sequence of follow-up runs, each para-
meterised by a target run time t*. Given t*, optimal sample sizes at each
level were determined using (13) and the most up to date estimates of
evaluation times τ̂l and variances σ̂Y

2
l . For all results in this paper, 10

runs with an estimated run time of 60 s (each) were used, for a total run
time of approximately 600 s.

One practical concern with determining optimal sample sizes using
(13) is that the values of σY

2
l are estimated using relatively small data

sets. In power system risk assessment, the simulation outputs Xl often
involve measurements of rare events, so that there is a high probability
that =Y 0,l

i( ) and therefore ≪σ σŶ Y
2 2
l l (or even =σ̂ 0Y

2
l ). If the estimated

value is used naively in (13), this leads to undersampling of Yl, thereby
exacerbating the problem because fewer samples are generated that can
correct the estimate of σY

2
l . To mitigate this risk, the variance estimators

were adjusted as follows. First, a conservative estimate for the variance
of X was obtained as

=σ σ˜ max(^ ).X
l

X
2 2

l (24)

Next, we assumed for the lowest level estimator that ≈σ σ˜ ˜ ,Y X
2 2
0 and that

the ratio +Y Y/l l1 of variances of subsequent level contributions is lower-
bounded by a factor α. Therefore, updated variance estimates are
computed as

=σ σ α σ˜ max(^ , ˜ ),Y Y
l

X
2 2 2
l l (25)

for those pairs l where E[Yl] is estimated by sampling. For the simu-
lations, the value of α was heuristically set to 0.1.

Finally, in simulations, multiple risk measures …q q, ,a b( ) ( ) were es-
timated in parallel. In determining optimal sample sizes, one of these
was selected as the ‘target measure’ to optimise for, so that its mean and
variance estimates were inserted in (13) to determine the optimal al-
location of sample counts nl.

4. Composite system adequacy assessment

The first case study is a system adequacy assessment of the single
area IEEE Reliability Test System (RTS) [10]. A two-level MLMC

approach is used, where the upper level, i.e. the study of interest, is a
hierarchical level 2 (HL2) study [1]: a composite system adequacy as-
sessment that takes into account transmission line outages and con-
straints. The lower level HL1 is a single node assessment that omits the
transmission system. This is in accordance with the subset model pat-
tern in Section 3.1.1.

4.1. Models

4.1.1. Model �1 - Composite system adequacy assessment (HL2)
The RTS model defines outage probabilities of generators and

transmission lines, which were modelled as independent two state
Markov models. Maintenance and transient outages were not con-
sidered. Load levels were sampled by uniformly selecting an hour from
the annual demand trace and assigning loads to each node in proportion
to the maximum nodal demands.

Therefore, at the upper level ( =l 1), a sampled system state ω i
1
( )

consists of: (i) the nodal demand dn
i( ) for �∈n , the set of nodes; (ii) the

generator status ∈γ {0, 1}j
i( ) for �∈j , with � ��= ⋃ ∈ ,n n where �n is

the set of generators in node n; (iii) the line status ∈λ {0, 1}k
i( ) for �∈k ,

the set of transmission lines. Let generator and line flow limits be given
by gj

max and fk
max. Then, the amount of curtailment C1 is computed by

the linear program

�
� �
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∈
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c g n
n1 1
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,1: 1: (26)
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( )

( ) max

max ( ) ( ) max

( )
n

n

where the matrix �= + −M D A A D A( 1/| |)i i T i( ) ( ) ( ) 1 relates bus injections
and line flows. The directed line-node incidence matrix A has elements
+ 1 for outgoing lines and − 1 for incoming lines; the diagonal matrix
D(i) has elements =D λ x/ ,kk

i
k

i
k

( ) ( ) where xk is the reactance of line k. The
element-wise constant �1/| | ensures invertibility, eliminating the need
for a designated slack bus. In cases where line outages resulted in
multiple islands, problem (26) was formulated and solved for each is-
land independently and the curtailments were summed to obtain the
total system curtailment. Linear optimisation was performed using
scipy.optimize.linprog, with the revised simplex method.

4.1.2. Model � 0 - Generation adequacy assessment (HL1)
For HL1 assessment, a single-node generation adequacy analysis is

performed, without transmission line constraints and outages. The lower
level system state ω i

0
( ) can thus be obtained from ω i

1
( ) by omitting the line

status variables. For this HL1 study, the curtailment is calculated as

� �

⎛

⎝
⎜ ∑ ⎡

⎣⎢
∑ ⎤

⎦⎥
⎞

⎠
⎟= −

∈ ∈

C ω d γ g( ) max 0, .i

n
n

i

j
j
i

j0 0
( ) ( ) ( ) max

n (27)

4.1.3. Risk measures
Two common risk measures were computed: the probability of load

curtailment (PLC) and expected power not supplied (EPNS). The related
performance measures Xq,l are defined in terms of the load curtailment
(27) and (26) as

= >X ω( ) ,l C ωPLC, ( ) 0l (28)

=X ω C ω( ) max(0, ( )).l lEPNS, (29)
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4.2. Results

Throughout, Monte Carlo estimates of risk measures are given with
the relevant number of significant digits, followed by the estimated
standard error in parentheses. Thus, × −1.71(13) 10 3 stands for an esti-
mate of 0.00171 with a standard error of 0.00013. For all MLMC runs,
an initial exploratory run with =n 100(0) was used, followed by 10 runs
of approximately 60 s. The target risk measure for sample size opti-
misation was EPNS. Unless stated otherwise, thermal line ratings were
scaled to 80% of the nominal values, to tighten network constraints.

Table 1 compares the speed obtained with the individual models for
the estimation of both PLC and EPNS risk measures, and whether direct
evaluation of the expectation is possible (for an effective ‘sampling
speed’ of = ∞z ). These numbers were estimated at the end of 10-
minute conventional MC runs. The HL1 model is over one hundred
times faster than the HL2 model for both measures, but of course this
comes at the cost of an estimation bias.

Table 2 compares the results of three different estimators. The top
row is the conventional Monte Carlo estimator that directly performs
the HL2 study. The middle row represents a two-level MLMC approach
where HL2 sampling is combined with HL1 sampling, immediate
leading to significant speedups of 2.5 (for PLC) and 10 (for EPNS). In
the third configuration (bottom row), further speedups are obtained by
eliminating sampling of the lower level model, and computing the
lower level estimates =r XE[ ]PLC,0 PLC,0 and =r XE[ ]EPNS,0 EPNS,0 directly
by convolution using 1 MW discretisation steps.

An interesting observation is that, for the regular MC sampler, the
speed of PLC estimation (0.31 s−1) is larger than that of EPNS estima-
tion (0.17 s−1). However, the MLMC sampler sees much more sub-
stantial speedups for EPNS estimation than for PLC estimation. This is
only partially caused by the EPNS-focused sample size optimisation.
The other factor is that the discontinuous loss-of-load indicator (28) is
less amenable to successive approximation [5].

Table 3 gives insight into the multilevel structure of the regular
MLMC estimate. For both PLC and EPNS, the refinement term r̂1 is
substantially smaller than the crude estimate r̂0. More importantly,
sampling from the HL1 model is substantially faster (0.023 ms per
evaluation) than the HL2-HL1 difference term (5.4 ms per evaluation),
due to the linear program (26) involved in the latter. The MLMC al-
gorithm adapts to this cost difference by invoking the HL1 model nearly
50 times as often.

Finally, Table 4 shows the impact on convergence speed of varying
the thermal line ratings between 80% and 100% of the nominal values.
Higher line ratings cause fewer constraints, which results in a slight
reduction in speed for the regular MC sampler. On the other hand, the
MLMC sampler experiences very large speedups as the difference be-
tween the results from the HL1 and HL2 models becomes smaller, so

that fewer (expensive) HL2 evaluations are required. Once again, the
gains in EPNS estimation speed exceed the gains in PLC estimation
speed.

5. Dispatch of storage

The second example concerns the assessment of system adequacy in
the presence of energy-constrained storage units (e.g. batteries). The
energy constraints couple decisions in subsequent time slots, thus ne-
cessitating the use of time-sequential Monte Carlo simulations.
Convergence for time-sequential simulations tends to be much slower
than for snapshot problems, due to significant correlations in visited
system states. An additional complication is deciding an appropriate
dispatch strategy for energy storage units. A greedy EENS-minimising
discharging strategy was recently proposed in [11], as a reasonable
default dispatch strategy for adequacy studies.

5.1. Models

The Great Britain (GB) adequacy study from Evans et al. [11] is
reproduced here, with an eye on speeding up estimation of loss of load
expectation (LOLE) and expected energy not supplied (EENS) risks
using the MLMC approach. Individual simulations are run for a se-
quence of 8760 hours (1 year). The system performance in a simulated
year is driven entirely by the net generation margin trace

= + − ∈ …M ω g w d t( ) , {1, ,8760},t
i

t
i

t
i

t
i( ) ( ) ( ) ( ) (30)

where the sampled state ω(i) consists of the demand trace d ,t
i( ) wind

power trace wt
i( ) and conventional generation trace gt

i( ). Annual demand
traces are chosen randomly from historical GB demand measurements
for 2006–2015 (net demand, [12]). Annual wind traces are similarly
sampled from a synthetic data set for hypothetical GB wind power
output for the period 1985–2014, derived from MERRA reanalysis data
and an assumed constant distribution of wind generation sites with an
installed capacity of 10 GW [13]. Conventional generation traces are
generated using an assumed diverse portfolio of thermal units. The
portfolio of 27 storage units was based on storage units contracted in

Table 1
Composite system adequacy assessment - available models.

Model Description zPLC [1/s] zEPNS [1/s] Direct evaluation

�1 HL2 0.31 0.17 no
� 0 HL1 34.3* 18.6* optional

*: Inherent estimation bias.

Table 2
Composite system adequacy assessment - comparison of approaches .

PLC estimation EPNS estimation

Estimator Models used Run time [s] PLC zPLC [1/s] Speedup EPNS [MW] zEPNS [1/s] Speedup

MC �1 582 1.17(13) × 10−3 0.31 n/a 0.238(24) 0.17 n/a
MLMC (sampling) � ,1 � 0 627 1.50(7) × 10−3 0.79 2.5 0.190(6) 1.73 10
MLMC (with expectation) � ,1 � 0 601 1.48(6) × 10−3 1.04 3.3 0.186(5) 2.54 15

Table 3
Composite system adequacy assessment - multilevel contributions.

term PLC EPNS [MW] τl [ms] nl

r̂1 4.0(7) × 10−4 0.051(5) 5.4 93,158

r̂0 1.101(16) × 10−3 0.139(3) 0.023 4,380,194

sum 1.50(7) × 10−3 0.190(6)

Table 4
Composite system adequacy assessment - thermal ratings.

Relative PLC estimation EPNS estimation

Line rating zMC zML Speedup zMC zML Speedup

0.8 0.31 1.04 3.3 0.17 2.54 15
0.9 0.26 1.38 5.3 0.14 4.69 34
1.0 0.25 2.11 8.6 0.12 16.7 143
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the GB 2018 T-4 capacity auction. The reader is referred to [11] for
further model details.

We consider four different storage dispatch models. The resulting
storage dispatch (with sign convention that consumption is positive) is
denoted by St,l(ω), and is entirely determined by the net generation
margin Mt(ω(i)). All four models are defined on the same sample space
Ω, providing an example of the model pattern described in
Section 3.1.2. However, the models differ tremendously in computa-
tional complexity, as is clear from the descriptions below.

5.1.1. Model �2 - EENS-optimal dispatch
The storage dispatch St,2(ω) is computed using the EENS-minimising

algorithm given in [11]. It is sequential and requires complex logic for
each step.

5.1.2. Model �1 - Sequential greedy dispatch
The storage dispatch St,1(ω) is computed using a heuristic approx-

imation of the EENS-minimising policy. Storage units �∈s are sorted
by decreasing time to go (from full) e p/ ,s s where es and ps are energy and
discharge power ratings, respectively. Then, a sequential greedy dis-
patch is performed, charging when possible, and discharging only when
required to avoid load curtailment. Evaluating this model requires one
sequential pass per storage unit, but the simulation steps are trivial.

5.1.3. Model � 0 - Constant peak-shaving dispatch
The storage fleet is optimistically approximated by a single storage

unit with = ∑e es s and = ∑p ps s. A mean daily demand profile d̃1:24 is
computed by averaging demand over all historical days. This profile is
used to compute a single daily dispatch pattern s̃1:24 that solves to fol-
lowing quadratic optimisation problem to flatten the average total de-
mand profile + =d s( ˜ ˜ )h h h 1:24:

∑= +
=

s d s˜ arg min ( ˜ ) ,
s e h

h h1:24
, 1

24
2

1:24 1:24 (31)

subject to

− ≤ ≤ = …
≤ ≤ = …
= + × = …
= + ×

+

p s p h
e e h

e e s h
e e s

, 1, , 24
0 , 1, ,24

1 hour, 1, ,23
1 hour.

h

h

h h h1

1 24 24

This problem was solved using the Python quadprog package. The
resulting annual storage dispatch is obtained by repeating the 24-hour
dispatch pattern:

=S ω s( ) ˜ .t t,0 ( mod 24) (32)

Because St,0 is a deterministic load offset, risk measures for this model
can be computed by convolution.

5.1.4. Model � ′0 - No storage
This alternative lowest level model does not use storage at all, so

that =S 0t,0 .

5.1.5. Risk measures
The net generation margin Mt(ω) and storage dispatch St,l(ω) result

in a curtailment trace as follows

= − + ∀C ω M ω S ω t( ) max[0, ( ) ( )], .t l t t l, , (33)

The LOLE and EENS risk measures can be computed using the perfor-
mance measures

∑=
=

>X ω( ) ,l
t

C ωLOLE,
1

8760

( ) 0t l,
(34)

∑= ×
=

X ω C ω h( ) ( ) 1 .l
t

t lEENS,
1

8760

,
(35)

5.2. Results

Table 5 compares the speed obtained with the individual models for
the estimation of both LOLE and EENS risk measures, and whether di-
rect evaluation of the expectation is possible with each model. All
numbers were estimated at the end of 10-minute conventional MC runs.
Very large differences in model speed are visible, with the detailed
model �2 being over 500 times slower than the crude model � ′0.

For MLMC simulations, an exploratory run with =n 20(0) was used,
followed by 10 runs of 60 s, where sample sizes were optimised for the
EENS risk measure. In all cases, the crude estimate =r YE[ ]0 0 was
evaluated using a convolution approach. Results are shown in Table 6,
comparing the performance of three MLMC architectures with direct
MC simulation. A three-layer architecture using model � ′0 (without
storage) as a bottom layer achieved speedups of 10 (LOLE) and 30
(EENS), but much better results were obtained when the daily average
dispatch model � 0 was used - even when a two-layer MLMC stack was
created by omitting the intermediate sequential greedy dispatch model.

The results show that the MLMC performance is very sensitive to the
choice of levels, but robust speedups are available even for sub-optimal
model choices. The best performing architecture is further analysed in
Table 7. It can be seen that the contribution from the final refinement r̂2
is minimal, i.e. the heuristic model is very accurate, which is key to the
observed speedup of 2113. The MLMC algorithm dynamically adjusted
sample sizes to generate more samples evaluating = −Y X X1 1 0 than on
the costly evaluation of = −Y X X2 2 1. Moreover, no samples are spent on
the contribution r̂ ,0 which can be computed directly by convolution. As
a result, the speed zEENS is able to exceed even that of the fastest model
in Table 5 (for regular MC estimation).

6. Conclusions and future work

This paper has set out how the MLMC approach can be applied to
power system risk analysis, and specifically to system adequacy as-
sessment problems. Common model patterns were identified that are
particularly amenable to MLMC implementation, and a computational
speed measure (17) was introduced to quantify simulation speed in a
way that is easily comparable across tools, Monte Carlo methods and
risk measures. Two case studies illustrate the potential for speeding up
estimation of risk measures, and the ability to apply the method to
complex simulations.

In future work, we will consider automatic selection of optimal
model stacks, and explore the scope for the application of multi-index
Monte Carlo schemes [14].
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Time-sequential simulation with storage - model comparison .

Run LOLE estimation EENS estimation

Estimator Models used time [s] LOLE [h/y] zLOLE [1/s] Speedup EENS [MWh/y] zEENS [1/s] Speedup

MC �2 620 1.54(19) 0.105 n/a 2,100(400) 0.053 n/a
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r̂1 −0.42(3) −150(9) 167 1,771

r̂0 2.14 2,548 n/a n/a

sum 1.72(3) 2,397(9)
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