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Finding shortest and nearly shortest path
nodes in large substantially incomplete
networks by hyperbolic mapping

Maksim Kitsak 1,2 , Alexander Ganin 3,4, Ahmed Elmokashfi 5,
Hongzhu Cui6,7, Daniel A. Eisenberg8, David L. Alderson8, Dmitry Korkin 6,9,10 &
Igor Linkov 11

Dynamic processes on networks, be it information transfer in the Internet,
contagious spreading in a social network, or neural signaling, take place along
shortest or nearly shortest paths. Computing shortest paths is a straightfor-
ward task when the network of interest is fully known, and there are a plethora
of computational algorithms for this purpose. Unfortunately, our maps of
most large networks are substantially incomplete due to either the highly
dynamic nature of networks, or high cost of network measurements, or both,
rendering traditional path finding methods inefficient. We find that shortest
paths in large real networks, such as the network of protein-protein interac-
tions and the Internet at the autonomous system level, are not randombut are
organized according to latent-geometric rules. If nodes of these networks are
mapped to points in latent hyperbolic spaces, shortest paths in them align
along geodesic curves connecting endpoint nodes.We find that this alignment
is sufficiently strong to allow for the identification of shortest path nodes even
in the case of substantially incomplete networks, where numbers of missing
links exceed those of observable links. We demonstrate the utility of latent-
geometric path finding in problems of cellular pathway reconstruction and
communication security.

Being the tallest building in the Western Hemisphere, the One World
Trade Center (OWTC) is easily observable from virtually any point of
the lower Manhattan island. Tourists can find their way to the building
without a map as long as it stays in their line of sight. Another tourist
attraction is the Peace Maze in Northern Ireland. The maze’s exit is
placed in the center and can also be spotted from anywherewithin the

maze. Nevertheless, finding the exit path from the maze is not
straightforward. From the graph theory perspective, both the road
system of Manhattan and the Peace Maze are graphs or networks, and
both problems reduce to finding the shortest path connecting the
origin with the destination. What makes New York City’s most densely
populated borough navigable is the geometric grid-like structure of its
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intersections. The line of sight to the OWTC is nothing else but the
geodesic curve connecting the tourist’s current location to its desti-
nation point, and the tourist may find her way to the OWTC by taking
the streets with minimal deviation from this geodesic.

Different from the Manhattan road network, links in many real
networks, such as the Internet, social networks, and networks of
molecular interactions, are not determined by physical proximities of
their nodes. On the contrary, these networks are characterized by
effective geometries, which are often referred to as latent or hidden.
Nodes in these networks can bemapped to points in latent spaces by an
optimization procedure, often called network embedding, such that in
the resulting map, network links are likely to connect nodes separated
by small distances in the latent space1,2. Recent works indicate that
common topological properties of real networks, such as the hier-
archical organization, the heterogeneity in the number of connections
per node, strong clustering coefficient, and self-similarity3, are best
mapped into latent spaces, which are hyperbolic rather than Euclidean.
Notable examples of real networkswith effective hyperbolic geometries
are the PPI networks4, the Internet5, and social networks6,7. At the same
time, there is no consensus on the extent to which shortest paths in
these networks align along geodesic curves. While an earlier work
demonstrated that hyperbolic geometry could be used to find Internet
routing paths5, more recent work finds that the topologically shortest
paths are statistically different from geometrically shortest paths8.

In this work, we find that shortest paths in real networks—the
Internet at the Autonomous System level, the human similarity-based
PPI network, and the Pretty-Good-Privacy (PGP) web of trust—display
geometric localization in their hyperbolic representations. Nodes con-
stituting shortest paths in these networks can be directly identified by

their proximity to the geodesic connecting the shortest path endpoints:
the closer the node to the geodesic the higher the likelihood it belongs
to a shortest path. We establish that distance to geodesic is sufficiently
accurate in finding shortest path nodes in situations when large frac-
tions of network links aremissing in the network data. We demonstrate
that geometric localization of shortest paths can be used to validate
routing paths in the Internet and reconstruct cellular pathways.

Results
Distance to geodesic and path-finding accuracy
To demonstrate the main finding, we first visualize two shortest paths
of the AS-level Internet in its 2-dimensional hyperbolic representation.
In the AS-level Internet, nodes are Autonomous Systems (ASes), and
connections between them are contractual agreements governing
data flows between ASes, Section SV and Supplementary Data 1.

Figure 1a demonstrates that nodes comprising the two shortest
paths are not random but tend to lie in the geometric vicinity of cor-
responding hyperbolic geodesics connecting the endpoints of the two
shortest paths. To quantify the observed alignment, we measured
distances from the shortest path nodes to the geodesic curve, Fig. 1b.
To do so, we employed an approximation for a distance from point C
to the hyperbolic geodesic curve γ(A, B) connecting points A and B in
hyperbolic disk H2:

dðC, γðA,BÞÞ= 1
2

dðA,CÞ+dðB ,CÞ � dðA ,BÞ� �
+ ln 2, ð1Þ

where d(X, Y) is the distance between points X and Y in H2, see
Methods.

Fig. 1 | Latent geometry uncovers shortest and nearly shortest paths in the
Internetat theAutonomousSystemlevel. aHyperbolicmapof the Internet at the
Autonomous System (AS) level. See Section SV for data collection and hyperbolic
mapping details. The latent space is the 2-dimensional hyperbolic disk and each
point corresponds to an Autonomous System. Yellow squares and red circles
highlight ASes corresponding to communication paths between AS5392-AS8875
and AS1224-AS11650 pairs. Shown are the nodeswith path relevance exceeding 0.1,

see Methods. Sizes of squares and circles are larger for nodes with higher path
relevance. b Schematic distance from point C to geodesic γ(A, B) drawn between
points A and B. c The distribution of distances to the γ(AS5392, AS8875) geodesic
from (light blue) shortest path nodes, (dark blue) nodes with path relevance larger
than 0.05, and (red) all Internet nodes. d Path relevance as a function of distance to
the γ(AS5392, AS8875) geodesic for all ASes.
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We calculated distances from all network nodes to the hyperbolic
geodesic connecting the AS5392-AS8875 node pair, finding that all
6 shortest path nodes are among the 12 closest to the geodesic nodes,
see Fig. 1c. Although not part of the original shortest path, the
remaining 6 closest to the geodesic nodes may form alternative
shortest paths if the Internet topology is perturbed. To verify this
claim,we calculated for eachnode its path relevance,whichwedefined
as the probability to be on the shortest path in case network links are
removed uniformly at random with probability q =0.5. We found, see
Fig. 1d, that node path relevance is anti-correlated with the distance to
geodesic, and the closest to the geodesic nodes are characterized by
the largest path relevance values, confirming our claim. The anti-
correlation between path relevance and the distance to geodesic also
indicates that distance to geodesic is capable of identifying not only
the shortest path nodes but also nodes that may belong to a shortest
path if the network topology is perturbed.

Before further explaining our results, we need to discuss some
technical challenges and provide some rigorous definitions. First,
many real networks are characterized by the small-world property:
network-based distances between the nodes scale logarithmically9 or
even sub-logarithmically10 as a function of network size N. Similarly,
the sets of the shortest path nodes are extremely small compared to
the network size, making the shortest path classification problem
extremely unbalanced11. Second, from the perspective of dynamic
processes, such as communication or viral spreading, the propagation
along nearly shortest paths is not much worse than the propagation
along the shortest paths. These two observations motivated us to
consider nearly shortest path nodes along with the shortest path
nodes. To do so, we combined both entities under the umbrella of the
path relevance metric, Fig. 1d, and defined nearly shortest path nodes
as nodes with path relevance values exceeding 0.05. Nearly shortest
path nodes address both challenges. Indeed, they contain not only the
original shortest paths but also nodes on slightly less optimal paths.
Also, the sets of the nearly shortest path nodes are larger than those of
the original shortest paths, reducing the classification imbalance.

To quantify the accuracy of the identification of nearly shortest
path nodes, we use two metrics. The first metric is the statistical pre-
cision score, defined as the fraction of true nearly shortest path nodes.

The second metric is the number of node removals necessary to dis-
rupt all paths between the pair of nodes of interest, Section SVIII.While
indirect, the second metric provides an insight into how effective a
path identification method of interest is in finding possible path
deviations.

We compare the accuracy of the distance to geodesic metric d(C,
γ(A, B)) to its network-based and random walk-based counterparts. In
analogy to distance to geodesic, we define network-based metric
dnb(C∣A, B) = ℓA,C + ℓC,B, which is the sum of the shortest path distances
from node C to path endpoints A and B. In addition, we consider a
random walk hit frequency drw(C∣A, B) and the average commute time
metric dcomm(C∣A, B), see Methods and Section SVIII.

Since shortest paths are known to traverse the most connected
nodes in networks12, it is tempting to use node degree as an alternative
path relevance metric. The node degree is, however, of limited prac-
tical use since it is usually hard, if not impossible, to control large-
degree nodes. The most connected Internet ASes are the largest
Internet Service or Content Providers that are rarely affected by
adverse events13. Proteins with large numbers of interaction partners
arehard tomanipulate due to the increasedpossibility of side-effects14.
Large degree nodes are usually shared bymany communication paths,
as quantified by the betweenness centrality15, and manipulating them
will affect not only the path of interest but also all other paths in the
network. As seen in Fig. 2a, removing nodes with the largest degree
values affects the lengths of all paths, decreasing the average inverse
network diameter.

Finding nearly shortest paths in incomplete networks
To quantify the alignment of nearly shortest paths, we conducted a
series of path-finding experiments on the AS Internet, the PGP web of
trust, and the similarity-based human PPI network with varying frac-
tions ofmissing links. The similarity-basedPPI network is thederivative
of the traditional PPI network. In our construction, two proteins are
linked if they have a statistically significant number of common
interaction protein partners, see Section SVI and Supplementary
Data 2. Since two proteins with common interaction partners can be
interpreted as similar, we refer to the resulting network as the
similarity-based PPI network. Nodes in the PGPnetwork are certificates

Fig. 2 | The accuracy of nearly shortest path finding in the AS Internet. a The
average inverse network-based distance between the Autonomous System (AS)
node pairs as a function of the number of removed nodes. The average inverse
distance for each data point is estimated over 1,000 randomly selected node pairs.
The average inverse distance serves as the measure of the collateral damage to the
network: the smaller is the value, the larger are the network-based distances
between nodes. We consider three node removal strategies: (i) nodes with the
largest degree, (ii) nodes with the smallest hyperbolic distance to γ(AS5392,
AS8875) geodesic, and (iii) nodes with the smallest network-based distances to the
AS5392-AS8875 pair. The largest degree strategy is the most invasive, resulting in a

nearly two-fold decrease of the average inverse network-based distance upon
removing 100 largest degree nodes. This result is consistent with earlier fundings
on attack tolerance of complex networks40. b The accuracy of distance to geodesic
in finding nearly shortest path nodes in the incomplete AS Internet network. The
distance to geodesic strategy is juxtaposed against the network-based strategy and
random walk-based strategies, see Methods. We evaluate the average precision
scores and the average number of node removals needed to disrupt node pairs of
interest. Each data bar is the average over 1000 randomly selected node pairs, and
error bars display one standarddeviation. Note that the relative performance of the
distance to geodesic increases as the fraction of missing links increases.
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of public PGP keys and links are trust relationships between them, see
Section SVII. In all experiments, we first computed the true nearly
shortest path nodes using the original network. We then removed
randomly selected links and tried to identify nearly shortest path
nodes on incomplete networks. In the case of the distance to geodesic,
we obtained hyperbolic maps of the incomplete networks. For every
node pair A-B of interest, we then determined corresponding hyper-
bolic geodesic γ(A, B) and then used distance to geodesic d(C, γ(A, B)),
Eq. (1), to quantify the proximity of other network nodes to γ(A, B). For
comparison, we computed the alternative network-based and random
walk based scores dnb(C∣A, B), drw(C∣A, B), and dcomm(C∣A, B) directly on
incomplete networks.

We observe that the accuracy of the distance to geodesic only
decreases mildly as the fraction of missing links increases, Fig. 2b,
Fig. S12, and Fig. S13. This result is in sharp contrast with the accu-
racy of the network-based method, which decreases fast as the rate
of the missing links increases. While both the network-based
method and the distance to geodesic yield comparable results on
complete networks, in cases of substantially incomplete networks,
70% and 90% of the missing links, the precision of the distance to
geodesic is approximately twice than that of the network-based
method, Fig. 2b. Similarly, in the case of the 70% missing link rate, it
takes six times more node removal steps, on average, to disrupt all
paths with the network-based ranking, compared to that of the
distance to geodesic ranking, Fig. 2b. This is the case since network-
based path finding methods are extremely sensitive to missing
network data, Section SIV. Traditional shortest path finding meth-
ods, like the classical Dijkstra algorithm16, iteratively explore
network-based neighborhoods of the path end-nodes. As a result,
network-based methods rely on the accuracy of the network data
and are doomed to fail if some of the network data ismissing. Latent-
geometricmaps of networks, on the other hand, provide an effective
mean-field image of the network, which is not very sensitive to
uniformly missing network data17, Section SIV. As a result, the dis-
tance to geodesic is reliable even in the case of substantially
incomplete networks, where the number of missing links exceeds
that of known links. While the random-walk-based metrics drw(C∣A,
B), and dcomm(C∣A, B) are less sensitive to missing data compared to

network-based metrics, their overall accuracies appear to be subpar
than that of the distance to geodesic, Figs. 2, 3, S12-S15.

In practice, incomplete networks contain not only missing but
also spurious links. Therefore, it is logical to ask if the latent geometric
localizations of nearly shortest paths are strong enoughwhen spurious
links arepresent. To answer this questionwe repeatedour path-finding
experiments for various rates of missing links q∈ [0, 0.9] when a
constant fraction of 10% of spurious links were added uniformly at
random, arriving at the same conclusions, Fig. S14. We also found that
distance to geodesic is accurate in finding nearly shortest paths when
only spurious links are present, Fig. S15. When only spurious links are
present, however, distance to geodesic offers accuracy inferior to that
of the network-based methods. This is the case since randomly added
spurious links preferentially connect small degree nodes in scale-free
networks and, as a result, rarely affect original nearly shortest paths
that tend to pass mid and high-degree nodes, see Section SVIII.

Identifiability limits for nearly shortest paths
To explore the limits of the distance to geodesic metric in the identi-
fication of shortest path nodes, we conducted experiments on
incomplete random hyperbolic graph (RHG) models18,19. RHG models
are obtained by sprinkling network nodes into a 2-dimensional
hyperbolic disk H2 and connecting node pairs with distance-
dependent probabilities, Section SIII. RHGs are used as null models
in hyperbolic network embedding methods and also allow the gen-
eration of synthetic networks with scale-free degree distribution
P(k) ~ k−λ with variable exponent λ∈ (2, 3) and variable degree of geo-
metricity that is controlled by the temperature parameter T∈ [0, 1]. In
the limiting case of T =0, network links are only allowed between node
pairs at small latent distances inH2. In this case, network geometricity
is the strongest since all network links are short-range. As T increases,
connections at larger distances are allowed with increasing prob-
abilities, leading to weaker network geometricity, Section SVIII.

To identify paths in RHGs using distance to geodesic, we first
erased their original node coordinates inH2 and then re-learned them
using theHL embedder17. Our pathfinding experiments for incomplete
RHGs suggest that the accuracy of the distance to geodesic is nearly
independent of the degree distribution exponent λ and strongly

Fig. 3 | The accuracy of nearly shortest path finding in synthetic networks
incomplete synthetic networks. Synthetic networks are constructed as Random
Hyperbolic Graphs (RHGs) of N = 5, 000 nodes, average degree 〈k〉 = 10, and vari-
able degree distribution, λ∈ (2, 3), and geometricity T∈ (0, 1) parameters. After the
construction of each network, we remove each of its links with probability p =0.5.
The heatmaps consist of 9 × 9 = 81 points, each point corresponding to the average
of 100 randomly selected node pairs separated by the Δθ= π

8 angle in H2. For
technical details and other angles, see Section SVIII. Panel a displays precision
scores, while panel b displays the number of node removals needed to disconnect
all paths between the node pair of interest. Note that the path-finding accuracy is

nearly independent of degree distribution. The highest path-finding accuracy is
achieved at temperature T =0, when the geometricity of RHGs is the strongest and
decreases as T increases. Marked on panels a, b are inferred parameters of real
networks. These networks are the Internet at the autonomous system (AS) level
(λ = 2.1, T =0.7) similarity protein-protein interaction (PPI) network (λ = 2.1,T =0.4),
and the pretty-good-privacy (PGP) web of trust PGP web of trust (λ = 2.1, T =0.6)
that are studied in this work, the network of humanmetabolic interactions (Human
metabolism, λ = 2.55, T =0.65), Ref. 41, and the network of protein-protein inter-
actions (original PPI, λ = 2.65, T =0.7), Ref. 4.
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depends on network geometricity, as quantified by temperature T,
Fig. 3a, b. As T increases, the latent-geometric path finding accuracy
decreases and becomes comparable to that of the network-based
method, Fig. 3a, b and Figs. S8a, S9a, S10a, S11a. For comparison, we
obtained similar heatmaps for the network-based distance, Figs. S8b,
S9b, S10b, S11b, observing the distance to geodesic is superior to the
network-based distance nearly in the entire range of λ-T parameters,
except for the largest T values, as shown by the dashed lines in
Fig. 3a, b.

Distance to geodesic can be invaluable in the analysis of paths in
incomplete networks. One family of applications, to this end, concerns
the validation of existing communication paths. The validation of
communication paths is much needed in distributed communication
networks, such as the Internet. Another family of applications stems
from the ability of distance to geodesic to find alternative nearly
shortest paths. The latter task of finding possible path deviations is
relevant not only in communication networks but also in cellular
pathways, as we discuss below.

Assessing the integrity of routing paths with distance to
geodesic
Autonomous Systems (ASes) comprising the Internet are independent
organizations. Hence, the information on how to reach devices in
another AS is not readily available to them. This reachability informa-
tion is disseminated by the Border Gateway Protocol (BGP)20. BGP
belongs to the family of path-vector routing protocols: ASes sharewith
their neighbor ASes paths to various destinations known to them. BGP
routing is based on trust: ASes accept routing paths advertised by their
neighbors without strict integrity tests, Fig. 4a. With the increasing
number of recent cyberattacks and routing instabilities, path integrity
checks are becoming much desired21. One class of cyberattacks is the
BGP prefix hijacking. During a BGP prefix hijack, an AS either claims
ownership of IP address prefixes that are owned by other ASes or
falsely announces that it can provide transit to a prefix or a set of
prefixes. This attack can compromise the affected data flows by either
exposing them tomalicious actorsor simplymisrouting them21, Fig. 4a.

While interdomain Internet routing paths are known to be longer
than shortest paths due to many factors, including AS business
relationships22, the extent of their inflation, as found in Ref. 23, places
them into the category of nearly shortest paths. Since the latter tend to
align along geodesics in the Internet hyperbolic representation, we
propose that the integrity of Internet routing paths can be assessed by
charting them in the latent hyperbolic space. We expect genuine
routing paths to localize in the vicinity of the hyperbolic geodesic
connecting path endpoints, Fig. 4b. Fake routing paths, on the other
hand, are expected to significantly deviate from corresponding geo-
desics, allowing for their detection, Fig. 4c.

To quantify the alignment of routing paths, we propose the
hyperbolic stretch DΩ(A, B), which we define as the maximum normal-
ized distance from path Ω(A, B) to the geodesic curve γ(A, B) con-
necting path endpoints, DΩðA,BÞ =maxC2ΩðA,BÞ

dðC,γðA,BÞÞ
dðA,BÞ , Section SV. We

studied three recent BGP instability events involving MainOne Tele-
com in Nigeria, Malaysia Telecom (MT), and Rostelecom (PJSC),
respectively, Section SV. We analyzed routing paths involving the
affected ASes that were advertised both before and during each
instability event. As seen from Fig. 4d and Fig. S4, stretches of routing
paths advertised during the hijack events are significantly larger than
those before the event, suggesting that ASes may use the hyperbolic
stretch to reject questionable routing paths, Section SV. In contrast to
network-based methods, ASes do not need to know the exact AS-level
network to assess routing path integrity. To compute the hyperbolic
stretch, one only needs to know the hyperbolic coordinates of ASes
constituting the routing path of interest. Our results indicate that AS
coordinates can be computed with sufficient accuracy even when a
large fraction of network links is unknown.

Exploring the neighborhoods of cellular pathways in human PPI
network
Complex cellular processes and many diseases involve multitudes of
genes and their products that are organized into molecular pathways.
It is also not uncommon for the same pathway to be linked to several
diseases or be intrinsically involved in more than one molecular pro-
cess. One of the key questions arising from the point of view of net-
work biology is the functional relationship between the pathway genes
and the genes located in their proximity.

Are cellular pathways akin to communication paths? There is no
clear-cut answer to this question: different from the communication
paths, cellular pathways often have no single origin and destination.
Neither do cellular pathways conduct traffic.While the communication
paths have a clear objective to be optimal, there is no such a require-
ment for cellular pathways, although there is an expectation that the
cellular pathways evolved to become optimal24. In the light of these
differences, an intriguing finding of our work is that some cellular
pathways align along the geodesic curves when drawn on the hyper-
bolic representations of PPI networks, see Fig. 5a and Fig. S6.

We studied the ubiquitin-proteasome (UPP), the transforming
growth factor beta (TGFb), and the cell cycle pathways. For each
pathway, we identified its localizing hyperbolic geodesic curve using
the least squares fitting for pathway proteins, Section SVI. We have
observed that the two halves of the geodesic curves in these pathways
often naturally split the proteins associated with the pathways to the
functionally related subsets of proteins. For the UPP pathway, Fig. 5a,
we found that proteins in the geometric vicinity of the fitted geodesic
are associatedwith E2 and E3 enzyme classes. We found that the larger
geodesic branch at 10 o’clock is associated with E2 and E3 classes but
not with E1. The 12 o’clock branch, on the other hand, is exclusively
associated with the E3 class, Fig. 5a.

To further explore the analogy between cellular pathways and
communication paths, we asked if other genes that are functionally
similar to the ones in the geodesic but lie outside of it can be found
using their proximity to the geodesic. To answer this question, we
considered 100 genes in the latent-geometric proximity to the
ubiquitin-proteasome pathway (UPP), as quantified by the distance to
the fitted geodesic, Eq. (1). We used DAVID tools25, a bioinformatics
framework specifically designed to provide systematic functional
analysis for a large groupof genes, to functionally cluster groups of the
proximal genes independently from the genes in the geodesic cluster,
finding 6 major clusters, Section SVI. As expected, the most highly
ranked cluster contained the terms related to ubiquitination, cluster 1,
Fig. S7a, and Supplementary Data 3. Interestingly, the other clusters
include genes associated with the immune response signaling path-
way, cluster 2, Fig. S7b, viral infections, clusters 3, Fig. S7c and 4,
Fig. S7d, pathways associated with several types of cancer, clusters 3
and 4, aswell as zinc fingers, cluster 5, Fig. S7e, and DNA repair, cluster
6, Fig. S7f and Supplementary Data 3. Each of the functional groups is
naturally associatedwith ubiquitination26–30. Indeed, ubiquitination is a
key mechanism regulating signal transduction and mediating both
innate and adaptive immune responses26. On the other hand, the
principal role of protein containing zinc finger domains in ubiquiti-
nation has emerged only recently31–34.

Our observations indicate that the UPP, TGFb, and cell cycle
pathways are organized similarly to communication paths. Not only
are these pathways aligned along geodesic curves, but other genes in
the latent geometric vicinity to them appear to be functionally related.
To complete the analogy, it is tempting to askwhetherperturbations in
protein interaction networks result in perturbed pathways, which fol-
low the same geodesic. While we do not have the answer to this
question yet, we hypothesize that two likely scenarios can happen
when replacing a malfunctioning gene, e.g., due to a deleterious
mutation. The first scenario is when the new gene is a parlor of the
replaced gene, and the reason that it was not in the original pathway is
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that it performs the function less efficiently than the original gene. In
this case, the newpathwaywill be longer compared to the original one.
The second scenario is when the new gene corresponds to an alter-
natively spliced variant that could perform the function in the same
manner or even more efficiently but is under-expressed compared to
the original gene that is the primary spliced variant. In this case, if the
original gene is removed, the new node will become the new primary
splice variant, with a much higher relative expression due to the
absence of the old primary splicing variant. As a result, we expect the
new pathways to be of the same length or even shorter.

Discussion
There is no one-size-fits-all solution to the shortest path problem. In
order to identify shortest path nodes in a partially known network, one

needs to know both the mechanisms of network formation and the
character of missing data. Distance to geodesic, in this respect,
assumes that link formation in the network is captured by its latent
geometry, and unknown links are missing uniformly at random.

The first condition is amust: one cannot expect to identify shortest
paths in non-geometric networks using geometric methods. More than
that, the embedding space must agree with network topology, and
learned embeddings must be of sufficiently high accuracy. How do we
know if the network of interest has effective hyperbolic geometry? It is
well known that spatial network models built in hyperbolic spaces are
sparse, self-similar, have strong clustering coefficients, and are char-
acterized by scale-free degree distributions3. These topological prop-
erties can be regarded as necessary conditions of network hyperbolic
geometricity.Many real networks, including the ones in this study, have

Fig. 4 | Anomaly detection in interdomain Internet routing. a Interdomain
routing at a glance. Shown is toy networkof the Internet at the Autonomous System
(AS) level, where nodes are autonomous systems and links are data transfer
agreements. Shownon the right-hand side is thedistributed calculations of paths to
AS8. The generation of paths on the left-hand side is an example of routing
instability. AS1 falsely claims the direct connection to AS8. This information is
propagated by the border-gateway-protocol (BGP) first to AS4 and then to AS7. As a
result, AS4 and AS7 have fake path information to AS8. Routing paths following the
hijack of the Google AS prefixes by the MainOne AS, see Section SV. b An example
of a routing path traversing Nigerian Internet Service Provider MainOne (AS37282)
announced before the prefix hijack. Green circles are ASes constituting the path;
the solid red line is the hyperbolic geodesic connecting the origin-destination pair.
Distance to geodesic for every node constituting the routing path is shown above
the hyperbolic map. The hyperbolic stretch of the BGP path, Eq. (1), is the largest

normalized distance to geodesic from routing path nodes, DΩ(A, B) = 0.23. c An
example of a routing path announced during the prefix hijack of MainOne AS.
MainOne announced adirect connection toGoogle AS (AS15169), leading to a large-
scale cascade of false BGP path announcements. Shown is one of these false BGP
paths originating at AS29140, traversing the MainOne AS (AS37282) and ending at
the Google AS (AS15169). Distance to geodesic for every node constituting the
routing path is shown above the hyperbolic map. The hyperbolic stretch of the
routing path is DΩ(A, B)=0.74, indicating that the BGP path is less conformal to the
latent-geometric geodesic, compared to the one in panel b. Red squares are ASes
constituting the path; the solid red line is the hyperbolic geodesic connecting the
origin-destination pair. d PDFs of hyperbolic stretches for BGP paths announced
(blue) before and (red) during theMainOne AS prefix hijack. BGP paths announced
before the hijack are characterized by smaller hyperbolic stretch values than those
announced during the hijack.
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been shown to meet these necessary conditions. Whether the same
topological properties are also sufficient conditions of network hyper-
bolic geometricity is an open research problem. The first result in this
direction is the equivalence between network ensembles with fixed
clustering and expected degree and random geometric graphs on a
straight line35. The extension of this equivalence result to random
geometric graphs in hyperbolic spaces is not easy3.

In this work, we demonstrated that hyperbolicmaps of incomplete
networks can be used to find shortest and nearly shortest path nodes.
Can Euclidean spaces also be used in path-finding tasks? To answer this
question, we employed two classical Euclidean embedding methods,
Node2Vec36 and DeepWalk37. Our experiments on the incomplete AS
Internet network suggest that these embedding methods, in their ori-
ginal formulation, are not capable of finding nearly shortest paths with
sufficient accuracy, see Fig. 6. We do observe, however, that higher
dimensionality D in Euclidean embedders improves the path-finding
accuracy, suggesting that Euclidean spaces of sufficiently high dimen-
sionality combined with properly tuned embedding parameters may
result in embeddings suitable for path-finding tasks. The observed
effect of higher Euclidean dimensionality improving path-finding
accuracy is hardly surprising: higher dimensionality makes Euclidean
spaces conceptually closer to their hyperbolic counterparts, which
grow exponentially in any dimension. Returning back to hyperbolic
embeddings, we asked how accurately does one need to learn node
coordinates to be able to identify nearly shortest paths? To answer this
question we added synthetic noise of variable magnitude to learned
hyperbolic coordinates of the incomplete AS Internet network. As
expected, the path-finding accuracy does decrease as the noise mag-
nitude increases. Yet, the observed moderate decrease rate suggests
that the latent-geometric path-finding approach can tolerate small
inaccuracies in learned coordinates, Fig. 6. Somewhat more surprising,
we observed a sharp drop in path-finding accuracy as synthetic noise
magnitude exceeds a certain threshold, suggesting a possible phase
transition in latent-geometric path predictability.

The second assumption – of uniformly missing links—could
probably be relaxed in future research. A relatively straightforward

step in this direction is to assume that the probabilities of missing and
spurious links are also certain functions of latent distances between
the nodes. A more general framework for arbitrary missing and spur-
ious links, however, may prove substantially more challenging.

In summary, we established that latent-geometric geodesics
serve as fairways for shortest and nearly shortest path nodes in
geometric networks. Nodes in the vicinity of these geodesics are
likely to lie on shortest paths or may become shortest path nodes if
the network topology is perturbed. We found that distance to
geodesic offers a reliable way to find nearly shortest path nodes
even in substantially incomplete networks. Our finding can be either
a curse or a blessing, depending on the circumstances. One could
exploit the geometric localization of shortest paths to disrupt or
eavesdrop on communication paths of interest. On the other hand,
the knowledge of geodesic fairways may help identify alternative
optimal paths and rule out inefficient or fraudulent paths in com-
munication networks.

Methods
Path relevance and nearly shortest path nodes
We define the relevance of node C to paths connecting nodes A and B
as the probability thatC belongs to the shortest path connecting A and
B if network links are removed uniformly at randomwith probability q.
The path relevance metric allows to identify not only the original
shortest path nodes but also nodes thatmay become shortest either if
the network topology is perturbed or if the original shortest path
becomes unavailable. In all experiments, we set the missing link
probability to q =0.5.Wedefine nearly shortest path nodes connecting
nodesA andB as thenodeswith theA-Bpath relevance exceeding0.05.

Distance to geodesic
Distance between two points {ri, θi} and {rj, θj} in the 2-dimensional
hyperbolic disk H2 is given by the hyperbolic law of cosines

cosh ζdij = cosh ζ ri cosh ζ rj � sinh ζ ri sinh ζ rj cosΔθij , ð2Þ

Fig. 5 | Latent-geometric localization of the ubiquitin-proteasome pathway
(UPP) pathway. a the hyperbolic map of the similarity-based human protein-
protein interaction (PPI) network and the UPP pathway. Pathway proteins are
colored according to their functional groups, background nodes are non-pathway
proteins comprising the network. E1, E2, and E3 are the three classes of enzymes
associated with ubiquitination: E1 and E2 correspond to ubiquitin-activating and

ubiquitin-conjugating enzymes, respectively, while E3 correspond to ubiquitin-
protein ligases. The solid line displays the hyperbolic geodesic fitting the pathway
proteins. Panel b depicts 6 clusters of proteins in the latent-geometric vicinity of
the UPP pathway geodesic. Proteins are colored based on the number of clusters
they belong to. Black squares depict UPP pathway proteins. See also Fig. S7, which
depicts each of the 6 clusters separately.
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and for sufficiently large ri and rj values is closely approximated by
xij = ri + rj +

2
ζ ln sinðΔθij=2Þ

� �
, see Section SII.

Distance from point C to geodesic γ(A, B) as the shortest distance
from C to any point on X∈ γ(A, B):

dðC, γðA,BÞÞ= mindðC,X Þ, ð3Þ

s:t: X 2 γðA,BÞ ð4Þ

The distance to the hyperbolic geodesic d(C, γ(A, B)) is closely
approximated by Eq. (1), see Section SII.

Alternative path-finding metrics
In our work, we compare the accuracy of distance to geodesic to
several alternative metrics.

Network-based metric: dnb(C∣A, B) = ℓA,C + ℓC,B, where ℓX,Y is the
shortest path distance between nodes X and Y. dnb(C∣A, B) isminimized
when C lies on a shortest path between A and B. The larger dnb(C∣A, B)
the less the relevance of C to paths between A and B.

Random walk-based metric 1: dcomm(C∣A, B) = n(A, C) + n(C, B),
where n(X, Y) is the average commute time between X and Y. n(X,
Y) ≡m(X∣Y) +m(Y∣X), wherem(X∣Y) is themean first passage time from Y
to X. n(A, C) can be computed efficiently with the pseudoinverse of the
network’s Laplacian matrix, Ref. 38, see Section SVIII. We were able to
commute dcomm(C∣A, B) for the similarity-based PPI and the PGPweb of
trust networks but not for the Internet due to its large size.

Random walk-based metric 2: drw(C∣A, B) is the random walk hit
frequency. To compute thismetric, we initiateM independent random
walks from nodes A and B of fixed length D, counting the number of

times random walks visit C from A and B. In our simulations we use
M = 1000 and D = 20.

Network mapping
Networkmapping or embedding into a latent spaceM is a procedure of
determining the coordinates of nodes constituting the network in this
space. In this work we map AS Internet and the similarity-based protein
interaction network to the 2-dimensional hyperbolic disk using the HL
Embedder algorithm17. Similar to other hyperbolic embedders, HL
embeddermaps network nodes to points {ri, θi}, i= 1,...,N, in a hyperbolic
disk H2 by maximizing the posterior probability Lðfri, θig∣aijÞ that the
network with the adjacencymatrix aij has given node coordinates and is
generated as the RHG model, Section SIII. By the Bayes’ rule,
Lðfri,θig∣aijÞ /

Lðaij ∣fri ,θig∣Þ
Probðfri ,θigÞ , where Lðaij ∣fri,θig∣Þ is the likelihood that the

network aij is generated as the RHG, given node coordinates {ri, θi}, and
the Prob fri,θig

� �
is the prior probability of node coordinates generated

by the RHG. Since links {ij} in the RHG are established independently
with probabilities depending on hyperbolic distances {xij} between the
nodes, Lðaij ∣fxigÞ=

Q
i<j ½pðxijÞ�aij ½1� pðxijÞ�1�aij . The HL embedder is

freely available at the github repository39.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data pertaining to the analysis of the AS Internet and the PPI network
are included as Supplementary Data 1 and Supplementary Data 2,
respectively.

Code availability
The hyperbolic embeddings are performed using the Hyperbolic
Embedder, which is hosted by the Bitbucket repository39.
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