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SUMMARY

Battery-free energy-harvesting devices have the potential to operate for decades, since
they draw power from virtually unlimited energy sources, such as sunlight. However, am-
bient energy sources are volatile, and tiny harvesters can extract only weak power from
them. Thus, small energy-harvesting devices operate intermittently: first, they charge
their buffers then start operating, which depletes the buffered energy and causes the
devices to power down, letting the harvesters to refill the energy buffers for the next op-
erational round.

Classical programming architectures assume continuous power. Therefore, frequent
power failures render them useless; power failures reset the computational progress and
delete volatile data. Thus, the intermittent programming and execution paradigm has
emerged. Generally, there are two strategies being employed to support intermittent
execution: checkpoint-based and task-based. Prior checkpoint- and task-based systems
tackled mainly challenges related to enabling efficient computing on intermittent power.
However, they have ignored the challenges associated with sensing, which is the primary
application for intermittent systems. Therefore, from a sensing standpoint, these sys-
tems have several drawbacks.

Firstly, whilst sensing applications are inherently event-driven, these systems are
static; they only allow polling-based sensing (i.e., the software can initiate a sensing ac-
tion, but the environment cannot). Therefore, these systems are forced to oversample
the monitored environment, wasting energy and losing sensing opportunities. Secondly,
static intermittent systems face difficulties sizing their tasks (i.e., the size of the code
between two checkpoints): on one hand, small tasks are guaranteed to be executed on a
single buffer charge, but they drastically increase execution overhead; on the other hand,
large tasks impose little execution overhead, but they risk non-termination: the system
repeatedly tries executing a task but fails to finish it due to power interrupts. Hardware-
dependent checkpointing strategies enable a system to overcome the non-termination
problem. However, these strategies face difficulty respecting application-level atomicity
constraints. For example, they may collect a checkpoint in-between sensor initialization
instructions. If the system fails before placing a new checkpoint, on reboot, the sensor
will not be fully re-initialized, and therefore, it becomes inaccessible which may cause a
fatal error and crash the running application. Thirdly, there is no prior system that ad-
dresses the availability problem of intermittent sensors. A sensor that is frequently off,
charging most of the time, has little value and limited potential applications. Finally, in-
termittent sensors eventually need to communicate the processed data to other layers in
the system. Passive sensor-to-sensor communication is a promising candidate to enable
ultra-low-power communication between intermittent sensors. However, it suffers from
intermittent coverage due to a phenomenon called phase cancellation that happens due
to interference between the carrier and backscatter signal.
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4 SUMMARY

We address the above-mentioned limitations in this thesis. Chapter 3 introduces InK,
an Intermittently-Powered Kernel that supports event-driven intermittent execution. In
addition to ensuring data consistency and preserving forward progress, InK allows in-
termittent sensors to sleep in low-power mode waiting for an event to wake them up
and trigger the corresponding computational thread, greatly extending their availabil-
ity. Further, InK supports timer, energy, and hardware interrupts, and it employs pre-
emptive scheduling, which allows it to cancel the computation threads corresponding
to stale data. Chapter 4 proposes Coala a task-based system that features a hardware-
independent approach for on-the-fly task size adaptation. Its dynamic task-based inter-
mittent execution model uses the execution history as a metric to coalesce static tasks
and commits their progress only once at the end of the tasks sequence. This adaptive
execution strategy optimizes the granularity of the protection mechanism, speeding up
intermittent applications execution. Coala does not only take advantage of favorable
energy conditions, but it also splits non-terminating tasks to ensure forward progress.
This flexibility enables Coala to support heterogeneous devices without requiring appli-
cations to be reprogrammed and compiled. Chapter 5 tackles the availability problem of
intermittent sensors. It introduces a new virtual sensor, the Coalesced Intermittent Sen-
sor (CIS), which is a group of battery-less energy-harvesting sensors. A CIS exploits the
embedded randomization in the powering subsystem to spread the intermittent sensors’
on-times, increasing the overall availability of the system. The different power consump-
tion, the volatility of ambient energy, and event arrivals may cause intermittent nodes to
synchronize their power cycles, which hampers the overall availability of the CIS. There-
fore, the nodes need to be powering-state aware to artificially randomize their response
as to preserve the required availability of the system. In Chapter 6, we characterize the
performance of a backscatter tag-to-tag (T2T) multi-hop network. For this, we devel-
oped a backscatter T2T transceiver and a communication protocol suite. This protocol
is based on the new insight that backscatter reception is more energy costly than trans-
mission. Further, we show that multi-hopping is as resilient as single-hop phase-shift
technique to the dead spots in backscatter T2T networks, while it extends the coverage
of backscatter networks by enabling longer backward T2T links (a tag far from the exciter
sending to a tag close to the exciter).

In summary, this thesis tackled several important challenges to enable reliable and
efficient sensing on energy-harvesting battery-less sensors. As such we have taken im-
portant steps to realizing the dream of exploiting self-powered sensors for futuristic ap-
plications like smart and green cities.



1
INTRODUCTION

The vision of smart cities [1], through the use of Internet of Things [2], requires billions of
sensors (Figure 1.1). These sensors provide the necessary context to aid people in their
daily lives. For example, cars will no longer need to wait in front of traffic lights for non-
existing pedestrians to cross the road; doors, upon leaving, will provide people with the
latest weather forecast; and jackets will adjust air circulation based on body temperature.
However, realizing this vision is no mean feat, as a sustainable energy source for all these
sensors is needed

Tethered power requires infrastructure that is expensive, cumbersome to maintain,
and restrictive (if not infeasible) for many sensing applications. For example, smart
clothes cannot be powered via cables. Batteries, unfortunately, do not provide a viable
solution to power all sensors in smart cities. Batteries are usually bulky, for example, bat-

Figure 1.1: Generic smart city environment [3]. It shows that sensors are an integral part of a
smart city.
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teries are the largest and the heaviest internal part of current smartphones; they occupy
more than the half of the volume of a Crossbow Telos mote [4]; and they constitute 32%
of sensors fixed on a cyborg [5]. Furthermore, many types of batteries are hazardous, for
instance, nickel-cadmium batteries contain, as the name suggests, cadmium, which is
a highly toxic metal and exposure to it is known to cause cancer [6]. Moreover, battery
replacement can be very expensive, for example, replacing a battery of an implanted
sensor requires a surgery [7]. Finally, the raw materials for making batteries are limited.
Therefore, many futuristic sensors must leave batteries behind and rely on green, perpet-
ual energy sources.

Thankfully, energy-harvesting technology offers hope! It enables devices to take ad-
vantage of ambient energy, such as sunlight, electromagnetic waves, kinetic, and ther-
mal energy [8–11] to power themselves and be energy autonomous. These sources, how-
ever, are not always available (an obvious example is the absence of sunlight during
night), and their energy intensity is location- and time-dependent. For example, elec-
tromagnetic power has a quadratic inverse relationship with the distance between the
source and the destination [12]. Despite the volatile nature of these sources, the promise
of small form factors and perpetual power motivates researchers to actively work on the
development of energy-harvesting sensors [13–16]

1.1. COMPUTING ON INTERMITTENT POWER
An energy harvester of a tiny embedded sensor can only scavenge very limited power
from ambient sources [17]. For example, electromagnetic power ranges from nW-scale
when harvested from generic sources such as TV and radio transmissions to µW-scale
when collected from a dedicated radio wave emitter, and power varies from tens of µW
to tens of mW when harvested by a solar panel of a few cm2 illumination surface [18, 19].
To make efficient use of this weak and volatile power, it is usually buffered using a ca-
pacitor (or a super-capacitor). After sufficient energy is accumulated—when the voltage
level in the buffer becomes higher than the operational voltage level of the load—the
load is enabled to draw energy from the buffer. Often, however, the power consumption
of a sensor node outpaces its energy harvesting rate leading to frequent power failures
(Figure 1.2). These power interrupts hamper the execution of the software commanding
the sensor.

A power interrupt clears the volatile state of a microcontroller; the initialization of
peripherals, such as ADCs, DMAs, and UARTs; and the timers. On reboot (when a device
powers up again after a power failure) the execution control flows back to the beginning
of the program (i.e. main()). Therefore, applications running on intermittently-powered
platforms have a forward progress problem, i.e., computation is always reset by a power
failure.

Non-volatile memory can mitigate the effects of power failures. Microcontrollers
used in energy-harvesting platforms feature a mixture of volatile and non-volatile mem-
ory [20, 21]. For example, MSP430FR5969 [22] has 2 KB of volatile memory (RAM) and
64 KB of non-volatile memory (FRAM) [23]. Non-volatile memory does not need power
to retain its content; thus, it can be used to maintain the execution progress across power
failures. Applications, running on intermittently-powered devices, save their progress
state in non-volatile memory frequently. On reboot, they resume the execution from the
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Figure 1.2: Buffered energy profile of an energy-harvesting battery-less sensor node. First, the
node is off, and the energy being harvested accumulates up to the turn-on threshold. Upon
reaching this threshold, the node is enabled to draw energy from the buffer. Since power
consumption of a sensor node is usually much higher than the power harvesting rate, the
buffered energy level quickly declines to the cut-off threshold causing the node to be powered
down. This cycle of charge-discharge repeats.

last successfully saved state instead of re-executing their programs from the beginning.
This type of execution is known in the literature as intermittent execution [18, 24].

In general, there are two software-based approaches to enable intermittent execu-
tion:

1.1.1. CHECKPOINTS

Systems adopting this approach save the volatile state of a microcontroller frequently in
non-volatile memory. The volatile state may include the register file, the stack, the main
memory, and the heap depending on the specifications of the chosen technique [24–
27]. When the device powers up again, the microcontroller state is restored from the last
checkpoint and execution continues.

The checkpoints are distributed throughout the program either statically or dynam-
ically. Static distribution is done either manually [28] or with a help of a compiler [24].
Dynamic checkpointing uses hardware notification to trigger the checkpointing process.
When the voltage level at the energy buffer drops below a certain threshold, a monitoring
circuitry interrupts application execution and places a checkpoint. To ensure the atom-
icity of the checkpoint itself a certain amount of energy or memory must be reserved.
Systems that monitor the voltage level must allocate a sufficient amount of energy to
place the biggest checkpoint [25, 26]. Systems that do not monitor the energy level, on
the other hand, must use a form of double buffering [29]. One buffer holds a consistent
set of input data to the computation following the current checkpoint, and the second
holds the output of this computation. After placing a new checkpoint, the rules of the
buffers are switched (atomically).

Data Consistency Problem. Merely saving the volatile state is insufficient to ensure cor-
rect execution. The computation state can become inconsistent if an application check-
points its volatile state and subsequently modifies variables in non-volatile memory. If
the application between two checkpoints modifies a persistent variable with Write-After-
Read (WAR) dependency and fails—due to a power interrupt—the computation state
will become inconsistent on the next reboot. On the reboot, the computation state is
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restored from the checkpoint, but variables in non-volatile memory keep their modified
values across the power failure. Therefore, the system after the power failure will meet fu-
ture modifications, which cause the intermittent execution to deviate away from execut-
ing the application on a battery-powered device. To overcome this problem, the values
of these variables need to be included in the checkpoint. If the system modifies a per-
sistent variable and fails, it undoes this modification using the variable’s checkpointed
value [28].

Optimized Checkpoints. Copying the volatile state of a microcontroller is an energy-
expensive operation. Moreover, it includes copying non-modified data between volatile
and non-volatile memory. Therefore, it is considered an inefficient approach. Two broad
methods have been suggested to optimize the volatile state checkpoint technique. First,
the "light-weight" checkpointing method allocates the stack, the heap, and the global
variables are in non-volatile memory [29–31]. Consequently, a system needs only to
checkpoint the register file to maintain the computation process. All other modifications
are persistent as they happen directly in non-volatile memory. To ensure the correctness
of this approach there must not be a power failure between modifying a variable with
WAR dependency and the next checkpoint. This can be achieved either by checkpoint-
ing the progress at each WAR dependency [29] or ensuring that there is enough energy
to place the next checkpoint. Although such an approach reduces the checkpoint size,
accessing non-volatile memory is slower and more energy-expensive as compared to
volatile memory [22]. Moreover, the systems that checkpoint at each WAR dependency
is forced to checkpoint more frequently than what is essentially needed, which is one
checkpoint per power cycle. Systems that ensure sufficient energy to place a checkpoint
must sacrifice energy for a dedicated buffer monitoring circuit. As a result, this approach
may exhibit significant overhead. The second method suggests tracking the differences
between the last checkpoint and the changes in the volatile state and copying only the
modified data [32]. The benefit of such an approach is application-dependent as it uses
some energy tracking the changes in the volatile state to minimize data copying and its
associated energy consumption.

1.1.2. TASKS

The second approach requires a programmer (or a compiler) to decompose a program
into a chain of small static tasks: a region of code that produces output only if it is com-
pletely executed on a single energy buffer discharge [33–35]. The runtime keeps track of
the currently running task across power failures. The control flow of the program is ex-
plicitly expressed, i.e., each task activates the next task. The output of a task is saved into
non-volatile memory and made available as input for other tasks. The input and output
of the tasks are separated to prevent data inconsistency issues caused by power losses.
Task’s local variables are assumed to be volatile. Therefore, if the execution of a task is in-
terrupted, the system can safely roll back to the beginning of the interrupted task. Note
that, it does not need to re-execute previous tasks as their output is saved in non-volatile
memory, and is unaltered by the interrupted task. As a result, task-based systems do not
need to place checkpoints to protect the forward progress of an application.
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2 void dma_copy_page ( uint16_t source , uint16_t destination )
{

4

// Initialization instructions
6 DMA1SZ = PAG_SIZE_W ;

DMA1CTL = DMADT_1 | DMASRCINCR_3 | DMADSTINCR_3 ;
8

__data16_write_addr ( source );
10 __data16_write_addr ( destination );

12 // Enable and trigger the DMA .
DMA1CTL |= DMAEN | DMAREQ ;

14 }

Figure 1.3: dma_copy_page() instructs the DMA to move a data page from one location in
memory to another. If the system places a checkpoint in-between the instructions of dma_-
copy_page() and fails, before placing a new checkpoint outside the dma_copy_page() function,
the application will misbehave after rebooting. The system will instruct the DMA again, but
the internal volatile state of the DMA will not be fully reinitialized, making it irresponsive.

1.2. CHALLENGES OF SENSING ON INTERMITTENT POWER

One can conclude from the above summary that the main question researchers have
been trying to answer is “how to compute more efficiently on intermittently-powered
devices?” However, when we ask the question “how to sense on intermittent sensors?”
their proposed solutions fall short. First, static checkpointing [27, 29, 34] can suffer from
data inconsistency if the sensory data introduces WAR dependencies. Second, automatic
checkpoint placement [24, 31] faces difficulties with respect to application-level atomic-
ity constraints such as not to checkpoint between correlated sensor readings or periph-
eral initialization instructions. For example, if the system checkpoints between line 6
and line 13 in Figure 1.3 and powers down before placing a new checkpoint outside the
dma_copy_page() function, the system after rebooting will fail to access the DMA pe-
ripheral as the DMA’s internal state will not be fully re-initialized, which makes it irre-
sponsive. As a result, the application will not be able to make sure that the data page
has been moved to the intended location. Third, current task-based runtimes [33–35]
support sequential and polling-based execution model. Such an execution model pro-
hibits sensors from initiating execution threads. Therefore, task-based runtimes do not
consider data communication from a sensor to a task (a task may activate a sensor and
get the data, but not the other way around). Consequently, they are doomed to waste
energy by actively looking for changes in the surroundings (events) instead of passively
waiting for events to trigger the associated execution threads.

Intermittent sensors face other important challenges, namely, the fact that they are
frequently off, and the energy cost associated with communication.

Missed Sensing Opportunities. Energy-harvesting battery-less sensors are frequently
off, spending most of the time harvesting energy. Therefore, they miss many sensing op-
portunities, which makes them incompetent alternatives to their battery-powered coun-
terparts. For example, if a voice-controlled energy-autonomous switch used for control-
ling the light of a room has a duty cycle of 10%, it will usually require repeating a com-
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mand (e.g., “light on”) many times before changing the state of the light bulbs. Clearly, a
switch with such characteristics does not have a commercial value.

A Tiny Energy Buffer and its Constraints on Communication. Communication is an
essential part of any distributed system to function. Thus, it is also vital for intermit-
tent sensors to communicate. Active communication requires emitting energy in the air
to send messages. Supporting such an energy-expensive operation from a small energy
reservoir (i.e., a tiny capacitor) is a poor design decision, as it will further tighten the al-
ready minimal energy budget for other functionalities (i.e., sensing and computing). Pas-
sive communication, on the other hand, offers a more energy-efficient alternative [36].
Communication, by means of backscattering, enables battery-less tags (tiny sensors)
to piggyback their messages on top of existing-in-the-air signals to communicate. It
achieves that by leveraging the reflection properties of the antenna to induce systematic
changes to ambient signals, modulating information on top of them. A widely adopted
system that uses backscattering to enable battery-less devices to communicate is the
Radio Frequency and Identification (RFID) system. In this system, an RFID reader—a
continuously powered device—emits a signal toward an RFID tag to power it and to en-
able it to scatter its information on top of the incident signal. Eliminating the need for an
RFID reader-like device by enabling the battery-less tags to directly exchange messages
(tag-to-tag communication) has clear advantages (e.g., less monetary and energy costs).
However, tags primitive capabilities make realizing practical tag-to-tag backscatter net-
works challenging.

The limited energy available to battery-less energy-harvesting devices put many re-
strictions on their design. For example, passive RFID tags do not include active RF com-
ponents such as mixers and oscillators. Instead, they use passive electronic components
such as diodes, capacitors, and resistors to ensure minimal energy consumption. This
energy-aware design, however, limits the effective communication range between the
tags. Furthermore, the dis-locality between the carrier signal generator (e.g., an RF ex-
citor) and the information modulator (the backscattering tag) imposes additional chal-
lenges when tag-to-tag backscatter networks are considered. This dis-locality makes the
tag-to-tag links non-symmetric [37]: forward links (links going away from the carrier
generator) are more powerful than the backward links (links coming toward the carrier
generator). Second, it induces dead spots—locations where a receiver tag cannot receive
the backscatter signal—in the network. These spots happen when the relative phase-
shift between the backscattered signal and the original signal of the carrier generator
meet a certain condition [37]. In conclusion, there are still several challenges that need
to be tackled before intermittent sensors can gain widespread adoption.

1.3. PROBLEM STATEMENT

Energy-harvesting technology has the potential to enable tiny sensors to operate for
decades with near-zero maintenance. However, harvested power is usually weak and
volatile; therefore, it must be buffered until sufficient energy is accumulated. Energy
buffering takes time, usually much longer than the time needed to consume the buffered
energy. Therefore, energy-harvesting battery-less sensors operate intermittently.
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Current intermittent programming and executing models have addressed the com-
puting challenge on energy-harvesting intermittent platforms. However, they have ig-
nored other challenges associated with reliable and efficient sensing on these platforms.

• Event-driven Execution. Despite the success of the dynamic and event-driven op-
erating systems for the classical sensor network (e.g. Contiki, and TinyOS), state-
of-the-art intermittent runtimes are static and polling-based. They waste energy
by actively looking for changes in the environment instead of passively waiting for
the events to trigger the corresponding computation threads. Consequently, sen-
sors may not be able to capture events when they happen and change the threads
of execution accordingly.

• Energy-aware Execution. Task-based intermittent execution models are ambient-
energy oblivious. They cannot on-the-fly adjust task sizes according to the avail-
able energy. Therefore, if a task size is too big to finish on the maximum buffered
energy, they fail to progress. Consequently, they do not facilitate code portability
across different devices.

• The Availability Problem. Being energy-autonomous is a great feature of energy-
harvesting battery-less sensors. However, being off most of the time charging and
thereby missing sensing opportunities makes them unreliable sensors that have
no value for a wide range of real-world applications.

• Efficient Communication. Backscattering is a promising energy-efficient commu-
nication means between energy-harvesting sensors. However, it is limited in range
and suffers from dead spots in the network, which further restrict the communica-
tion range.

Given the aforementioned limitations, this thesis asks the following research question:

What does it take to reliably and efficiently sense on intermittently-powered sensors?

This dissertation addresses the limitations of prior work and fills the void of reliable
sensing on intermittent power. It starts by introducing a system-level software archi-
tecture to enable safe and efficient data gathering and processing on intermittent sen-
sors (Chapters 3 and 4). Then, it addresses the intermittent sensors availability problem,
showing how to meeting applications duty cycles (or on/off cycles) requirements with-
out changing harvesters dimensions (Chapter 5). Finally, it shows the effect of multi-
hopping on the dead spots and the range of sensor-to-sensor (or tag-to-tag) backscatter
networks (Chapter 6).

1.4. THESIS CONTRIBUTIONS
This thesis contains four chapters that detail the way toward reliable and efficient sens-
ing on energy-harvesting intermittent sensors.
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• InK: Reactive Kernel for Intermittent Sensors - Chapter 3. This chapter intro-
duces the Intermittently-Powered Kernel (InK), the first reactive task-based run-
time system for battery-less, energy-harvesting sensors. InK eschews the static
task execution model, and instead enables, event-driven, and time-sensitive ap-
plications for battery-less sensing devices. It features a preemptive scheduling pol-
icy that enables several (in)dependent task threads with different priorities to run
in an interleaved manner, responding to energy, time, and sensing events, while
preserving correct execution.

Compared to existing kernels for embedded systems, InK exhibits new properties
dedicated to battery-less systems. In particular, InK (i) ensures forward progress
of computation by executing restartable atomic tasks encapsulated by task threads
each with unique priority; (ii) ensures time constraints of task threads by employ-
ing preemptive and power failure-immune scheduling and building a timer sub-
system composed of persistent timers; (iii) ensures memory consistency during
event handling, as interrupt handlers are not inherently atomic and power failures
during their execution might lead to memory inconsistencies.

InK evaluation against state-of-the-art systems shows that it is up to 14 times more
responsive to events in realistic intermittent power conditions. InK’s event-driven
approach has enabled the development of a new category of battery-less appli-
cations that are characterized by their reactive feature (e.g., a small intermittent
battery-less robot).

• Dynamic Task-Based Intermittent Execution - Chapter 4. In this chapter, we in-
troduce Coala: an energy-aware task-based runtime. Coala addresses several chal-
lenges to optimize application execution under frequent power failure. Coala’s
first challenge is how to optimize on-the-fly task size given volatile ambient en-
ergy and heterogeneous energy buffer sizes. Coala uses recent execution history
as a metric to estimate available energy shots. Then, it coalesces (groups) static
tasks accordingly and commits their progress only once at the end of the tasks se-
quence.

Merging static tasks on the fly raises the need for dynamic memory-consistency
handling. This leads to the second challenge: how to dynamically detect inter-
coalesced-task data dependencies and ensure efficient protection against power
interrupts? Coala features a novel Virtual Memory Manager (VMM). The VMM
performs real-time dependency tracking on a coalesced task scope. Individual
variable tracking, however, slows down the system dramatically. Therefore, the
VMM keeps memory consistent through privatizing memory pages and optimizes
bulk data transfer through Direct Memory Access (DMA).

A static task decomposition model assumes that each task can execute to comple-
tion. However, if the energy requirement of a task exceeds the energy buffer size,
the program will not terminate [38]. This leads to the third challenge: how to en-
able the dynamic execution model to progress on a sub-task level? To avoid non-
termination under adverse energy conditions, Coala uses a timer-based partial
task commit mechanism. Partial execution avoids non-termination by commit-
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ting the intermediate state of a long-running task that has repeatedly failed and
restarted.

Comparing Coala’s performance to state-of-the-art task-based systems shows that
it is up to two times faster, and it is able to progress where static systems get stuck
in non-terminating tasks.

• Coalesced Intermittent Sensor - Chapter 5. In this chapter, we present the Coa-
lesced Intermittent Sensor (CIS), an intermittently-powered “sensor” that senses
continuously! CIS is the abstraction of a group of energy-harvesting intermittent
sensor nodes. The key observation is that if the power cycles of intermittent nodes
are different, then the distribution of their on-times resemble uniformly distributed.
As such, the emerging collective behavior of CIS can be modeled and the required
number of intermittent nodes to meet a certain collective on/off cycle can be de-
termined.

An important finding is that a CIS designed for certain (minimal) energy condi-
tions requires no explicit spreading of awake times due to randomness in the power
source and node hardware. However, when the available energy exceeds the de-
sign point, nodes employing a sleep mode (to extend their availability) do wake up
collectively by an external event. This synchronization leads to problems as multi-
ple responses will be generated, and (what is more worse) subsequent events will
be missed as nodes will now recharge at the same time. To counter this unwanted
behavior we designed an algorithm to estimate the number of active neighbors
and respond proportionally to an event.

We prototype, evaluate, and demonstrate the feasibility of the CIS concept in the
form of voice-control application recognizing individual words on solar-powered
nodes equipped with microphones. We show that when intermittent nodes ran-
domize their responses to events, in favorable energy conditions, the CIS reduces
the duplicated captured events by 50% and increases the percentage of capturing
entire bursts above 85%.

• Multi-hop Backscatter Tag-to-Tag Networks - Chapter 6. This chapter presents
our work on backscatter sensor-to-sensor (or tag-to-tag) networks: a communi-
cation technology that has the potential to enable battery-less wireless sensor net-
works. From a tag’s energy perspective, backscattering is very efficient communi-
cation means. However, tag-to-tag backscatter communication is limited in range,
and tag-to-tag networks suffer from a phase cancellation phenomenon that in-
duces dead spots in the network coverage.

To study how multi-hop communication affects the phase cancellation and the
range of a backscatter link, we built a fully operational multi-hop backscatter tag-
to-tag network. To this end, we built a novel backscatter tag, performed in-depth
characterization of tag-to-tag links (i.e., hop count, and per link packet error rate),
and developed a novel network stack tailored toward backscattering. Our Medium
Access Control (MAC) considers both selection of the phase with which frames
are transmitted, and the use of low-power listening to conserve the energy of the
microcontroller commanding the tag.
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Our results show that multi-hopping enables tags to exploit the full range provided
by the carrier signal generator, instead of being limited to the ranges of backward
links. Moreover, multi-hopping provides a “self-defense” mechanism against the
phase cancellation phenomena. As a result, multi-hop backscatter architecture
provides a much wider coverage than single-hop backscatter networks, and it mit-
igates the effect of phase cancellation as good as the phase-shifting technique.



2
RELATED WORK

This chapter discusses the related work relevant to the problem of intermittent sensing.
It reviews battery-less energy-harvesting devices; discusses intermittent computing ap-
proaches and highlights their limitations; and investigates a potential means for com-
munication between intermittent sensors.

2.1. BATTERY-LESS ENERGY-HARVESTING SYSTEMS
Sensing technology underpins a vast number of applications, such as, monitoring peo-
ple and structural health, predict disasters, and manage traffic flows. [7, 39–41]. Non-
tethered sensing technology was first powered by batteries [4, 42–45]. Battery-powered
sensors require regular service for battery replacement to operate longer. Replacing bat-
teries, however, is labor-intensive and impractical for large wireless sensors networks [46].
The battery-replacement problem was mitigated by the use of energy-harvesters and
rechargeable batteries as a power source [47–55]. This combination gives birth to the
Energy-neutral systems. These systems have the objective to support a desirable perfor-
mance forever (subject to hardware failure) [56–58]. Unfortunately, even rechargeable
batteries wear out after a number of charging cycles and require replacement. For ex-
ample, Eneloop batteries have a nominal service life of ≈ 2000 charging-discharge cy-
cles [59]. Moreover, batteries are chemical devices that produce toxic waste when dis-
posed [60–62]. Therefore, they require dedicated efforts and specialized tools for safe
disposal [63]. In conclusion, batteries and battery management impede the realization
of the pervasive sensing that futuristic smart cities require.

Recent advances in ultra-low-power microcontrollers and energy-harvesting circuitry
have enabled us to leave batteries behind and build energy-autonomous sensors. These
sensors extract power from perpetual energy sources such as light, radio frequency waves,
and vibrations [26, 64, 65]. Consequently, they have the potential to provide decades-
long sensing with near-zero operational costs. These features have motivated researchers
to propose the use of energy-harvesting battery-less devices in many domains such as
healthcare [66–68] , environment monitoring [13], energy-efficient buildings [69], and

15
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(a) WISP extracts energy from a dedicated
RF energy source [77].

(b) Ambient tag harvests energy from am-
bient RF signals [17].

Figure 2.1: Battery-less energy-harvesting platforms. WISP is a wireless sensing and identifi-
cation platform [77]. It can only talk back to a dedicated RFID reader [78]. Ambient tags
exchange messages by backscattering them on top of ambient RF signals (e.g., TV transmis-
sions) [17].

human-nature interaction [70]. Moreover, tiny energy-harvesting platforms have begun
to be commercially adopted. Some of the companies that are driving the development
of the commercial energy-harvesting products are EnOcean [71], Powercast [72], and
NOWI [73].

A typical energy-autonomous sensor consists of a general-purpose computing unit
(e.g., a microcontroller), one or more sensors, a communication module, an energy har-
vester, and an energy buffer (i.e., a capacitor) [18]. Such a sensor operates intermittently,
as its power consumption is usually higher than its energy harvesting rate. A typical up-
time of such sensors is 100 ms [24, 29]. However, depending on the chosen size of the
energy buffer and the amount of available ambient energy, the uptime can vary signif-
icantly [74]. Similarly, energy consumption varies dramatically depending on the func-
tionality of the sensors. For example, the power consumption of a WISPcam [75] while
taking a photo is 74 mW, whereas the FM backscatter tag [76] consumes only 24µW to
communicate its sensed information.

Platforms. Many energy-harvesting battery-less platforms with different capabilities
have been proposed. WISP (Figure 2.1a) is a commonly used energy-harvesting battery-
less platform [79]. It is an RFID tag with a general-purpose microcontroller and an ac-
celerometer [79]. Its microcontroller is the ultra-low-power MSP430FR5969 [80], which
features non-volatile memory based on Ferroelectric RAM (FRAM) technology [23]. As
compared to Flash memory, widely used non-volatile memory [81, 82], FRAM is signif-
icantly more energy efficient [23, 29]; it is, however, less dense, which is less of a con-
cern for energy-harvesting devices. WISP extracts energy from RF signals generated by
an RFID reader [78] with a central frequency of 915 MHz. The harvested energy is then
stored in a 47µF capacitor. WISP’s harvester allows the microcontroller to draw power
when the voltage in the buffer reaches 2.4 V. When the voltage in the buffer becomes 1.8 V
the microcontroller powers off, allowing the harvester to recharge the buffer. For com-
munication, WISP relies on backscatter technology. It scatters back the signal emitted by
the RFID reader to communicate its information back to the reader. SolarWISP triples
the effective communication range of the original WISP by harvesting power from light
(instead of harvesting energy from RF transmissions) [64]. Parks et al. [83] showed the
feasibility of utilizing the RF power emitted by public transmitters (e.g., TV and cellular
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towers) to power a battery-free sensor node (or a tag). Then, Liu et al. [17] proposed tags
(Figure 2.1b) that use public RF transmissions for powering and exchanging messages,
using backscattering. Dementyev et al. [84] presented a wirelessly powered display tag:
an NFC powered tag with an e-paper display. This tag needs power only during a con-
tent update. Once the update process is finished, the power source can be removed as
the e-paper does not need power to maintain the displayed image on the screen. The
tag’s content can be updated with an NFC-enabled smatphone. Battery-free cameras
have also been developed. For example, WISPcam is an adapted WISP platform with a
camera [75]—it accumulates 20 mJ in a 6.08 mF supercapacitor to activate the Omnivi-
sion OV7670 camera and takes a photo—and a battery-free video camera [85] that har-
vests energy from both RF signals and light to capture and backscatter 13 frames per
second. Talla et al. [86] presented the world’s first battery-free cell phone. The phone
can be powered by a nearby RF basestation (≈9 m) or ambient light. When the power
is extracted from light the cell phone can communicate with a basestation that is 15 m
away. KickSat is a battery-free solar-powered nano-satellite [87]. It senses temperature
and magnetic field, processes the collected data, and transmits the information back to
Earth. Human-powered devices have been also proposed, such as a self-powered push-
button [88]; and paper-like interactive materials that harvest energy from touching, tap-
ping, and sliding [89].

Tools. The unique characteristics of battery-less energy-harvesting devices necessitate
the development of dedicated debugging and prototyping platforms. CleanCut [38] con-
sists of an intermittent program checker and checkpoints placer. The checker analyses
an intermittent program for a non-terminating path: a set of instructions that demand
more energy than what the corresponding intermittent device can buffer. CleanCut’s
placer inserts checkpoints in such paths to eliminate non-termination. Baghsorkhi and
Margiolas [90] proposed a closely related system that analyzes a C program and gener-
ates multiple intermittent versions of it with different task sizes and empirically selects
the version that best suits the corresponding hardware.

Flicker [21] is a modular prototyping platform for developing energy-autonomous
devices. It supports federated energy storage, which means that each element has its
own energy buffer. Its modular design and smart energy management unit fasten the de-
velopment process of energy-harvesting battery-less platforms by allowing developers
to easily experiment with different components. Capybara [91] dynamically tunes the
size of the capacitor (by switching to a larger or smaller one) to a task’s energy demand.
Capybara’s API allows the programmer to associate energy labels (modes in Capybara’s
terminology) with tasks. Dynamic energy allocation is desirable because a fixed energy
storage architecture faces the following dilemma: on one hand, a large capacitor allows
executing energy-intensive tasks without a pause for a recharge, but it takes a long time
to charge, making the system unavailable for a long interval of time; on the other hand,
a small capacitor charges fast, but it does not allow energy-intensive tasks to be timely
or atomic. Gomez et al. [92] also explores the concept of dynamic energy scaling to min-
imize the cold start of intermittent systems. Ekho [93] enables the reproducibility of am-
bient energy conditions. It records ambient energy levels and reproduces them. Using
Ekho, energy-harvesting devices can be re-tested on the same power trace for inspection



2

18 2. RELATED WORK

or comparison between different applications. EDB [94] is an energy-interference-free
debugger for intermittent devices. It operates in one of two modes, active or passive.
In passive mode, it monitors input-output (I/O) operations between the microcontroller
and attached peripherals such as sensors and radios without powering the device-under-
test (DUT). In the active mode, EDB gives the developer the ability to check the state of
the program and manipulate data. It also supports inserting breakpoints, assertions, and
energy guards. Before enabling an interactive debugging session between the DUT and
the host, EDB records the voltage level of the energy buffer. During a debugging ses-
sion, the DUT is continuously powered. Upon exiting the interactive session the target’s
buffer voltage is restored to the recorded level. Stork [95] is an over-the-air programming
protocol for computational RFIDs (CRFIDs) tags. It includes a bootloader the ensures a
power-interrupt immune software update (e.g., a firmware update). Aantjes et al. [16]
presented a testbed for experimenting with CRFIDs. It makes use of an online server,
Stork [95], and dedicated RFID readers to enable over the Internet CRFIDs reprogram-
ming.

2.2. INTERMITTENT EXECUTION

Despite the success of the operating systems commanding battery-powered wireless sen-
sor networks [96–99], they cannot operate energy-harvesting battery-less sensors. Fre-
quent power failures reset their compuation progress and render their scheduling and
interrupt-handling mechanisms useless. Therefore, new energy-aware runtimes have
been proposed and built. Dewdrop [100] was the first runtime to use unstable harvested
energy to run tasks. A task is considered a short program that should complete without
a pause: putting the microcontroller into sleep mode for energy recharge. To maximize
the chance of successful task execution, Dewdrop goes into low-power mode until suf-
ficient energy is accumulated. To not overcharge the energy buffer, wasting time and
energy, Dewdrop adjusts the charging time based on the rate of successful task execu-
tions and the execution time. QuarkOS [101] divides a given task (i.e., sending a mes-
sage) into small segments and sleeps after finishing a segment for energy recharge. Both
systems, however, are not power-failure immune since they do not maintain the compu-
tation state across power failures. Consequently, if a system fails and reboots—because
the rate of harvesting is less than the energy consumption rate—all volatile state is lost
and the execution is reset to the beginning of the program.

Ambient energy is volatile and scarce. For example, light intensity can differ by or-
ders of magnitude depending on the characteristics of the source and the environment
[102, 103]; RF signals are affected by many factors such as the noise, interference, multi-
path, and movements, and therefore, it is constantly changing across a wide interval. As
a consequence, tiny energy-harvesting sensors operate intermittently. Intermittent oper-
ation necessitated the development of software that allows the execution to span across
power failures [24]. We can classify the proposed intermittent software architectures un-
der two broad approaches: the checkpoint-based approach and task-based approach.
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2.2.1. CHECKPOINT-BASED INTERMITTENT COMPUTING

The first approach to support intermittent execution is based on the concept of check-
pointing: the volatile state of the microcontroller unit is frequently backed up in persis-
tent memory. MementOS [24] was the first runtime that enabled applications to span
their execution over power failures. To this end, it periodically saves (or checkpoints)
the volatile state (i.e., register file, and main memory) of a program into non-volatile
memory—a form of memory that does not need power to retain its content, such as
FRAM [23]. MementOS compiler injects trigger points (or function calls) at functions re-
turns and in loops to check the voltage level of the energy buffer. If the voltage level is
below a certain threshold, MementOS checkpoints the application’s progress. It also in-
cludes a timer-aided mode, optimizing the rate at which trigger points check the voltage
level. On reboot, MementOS resumes the application execution from the last success-
fully saved checkpoint, instead of restarting from the beginning of the program.

HarvOS [27] operates at compile time to enable application execution on intermit-
tent power. It divides the Control Flow Graph (CFG) of a program into subgraphs. Each
subgraph is analyzed and instrumented with a trigger point at the location that corre-
sponds to the smallest checkpoint needed to maintain the computation state across
power failures. At each trigger point, the voltage level is checked. HarvOS places a check-
point only if it concludes that the remaining energy is insufficient to reach and place the
next checkpoint.

Hibernus [25] proposed an event-driven approach—as compared to MementOS and
HarvOS polling-based approaches—to checkpoint the volatile state of a program. It
takes advantage of the internal on-chip comparator to notify the runtime about the volt-
age level of the energy buffer. When the voltage drops below a predefined threshold
(the hibernation threshold), Hibernus snapshots the progress of the running application
and puts the microcontroller into sleep mode. Once the energy level has risen again and
surpassed a certain threshold (the restore threshold), Hibernus resumes the execution of
the application from the checkpoint. If it fails to collect a complete checkpoint, it restarts
the application from the beginning. Hibernus++ automatically adjusts the hibernation
threshold when a non-valid checkpoint is found [26].

DICE (DIfferential ChEckpointing) [32] reduces the amount of data being copied dur-
ing a checkpoint. Once an initial checkpoint is placed, DICE records the modified data
cells in the main memory and updates only the corresponding slices of the last check-
point. DICE optimizes its modification tracking technique based on the variables’ con-
text. Global variables are tracked on an individual level, reducing the checkpoint size.
Local variables of a function are tracked on a stack frame level as they are likely to be
updated frequently during the function execution, reducing tracking overhead.

DINO [28] showed that checkpointing the volatile state alone does not ensure data
consistency when the intermittent program accesses non-volatile memory. In particular,
non-volatile data structures can become inconsistent when they have Write-After-Read
(WAR) dependencies. Figure 2.2 illustrates how the state of a data structure becomes in-
consistent in intermittent execution using a simple example of an average operation over
an array of integers. The non-volatile variable sum introduces the WAR, being read and
written sequentially by the increment operation. If a power failure occurs right before up-
dating the non-volatile index i (Figure 2.2b, Line 6), sum gets erroneously incremented



2

20 2. RELATED WORK

1 NV int i, sum, x[];
2 i = sum = 0;
3 while (i < N) {
4 checkpoint();
5 sum += x[i];
6 i++;
7 }
8 sum = sum / N;

(a) WAR-affected code

1 NV int i, sum, x[];
2 sum += x[i]; // i = 0
3 i++;
4 checkpoint();
5 sum += x[i]; // i = 1
6 � // power failure
7 � checkpoint();
8 sum += x[i]; // i = 1

(b) WAR-affected execution

Figure 2.2: WAR dependency example. NV marks non-volatile variables, checkpoint() is a
checkpoint of volatile state.

twice consecutively by the same array element (Figure 2.2b, Lines 5 and 8). DINO over-
comes this problem by offering an API to programmers to include problematic persis-
tent variables within the checkpoints preceding them. Consequently, on reboot, both
the volatile and non-volatile state of a program are rolled back to the state of the last
checkpoint and made consistent.

Ratchet [29] eliminates the need for hardware support—to monitor the energy level
before checkpointing—and programmer intervention—to instrument the code. Instead,
it leverages the information available to the compiler to preserve correct execution under
frequent power interrupts. Ratchet analyzes a program code to extract idempotent code
sections: code segments that do not have WAR dependencies. Then, it places check-
points at the beginning of these sections. Checkpointing the entire volatile state of a
program is an energy-expensive solution [27]. Therefore, Ratchet [29] proposed the use
of non-volatile memory as the main memory. As a result, Ratchet needs only to check-
point the processor register file (i.e., general-purpose registers, the stack pointer (SP),
and the program counter (PC)) to preserve the forward progress of the running appli-
cation. However, the protection mechanism of such a compiler-based approach does
not reason about energy availability. Consequently, it generates inadequate idempotent
regions, leading to significant performance degradation. While, too small idempotent
regions force the system to checkpoint more than necessary (i.e., more than once per
power cycle), too large idempotent regions may cause the system to get stuck in a non-
termination problem: repeatedly failing to reach to the next checkpoint because the
energy needed, to do so exceeds the maximum capacity of the energy buffer. Ratchet
overcomes the non-termination problem with help of timer-based technique. However,
it is an inefficient approach as the system must first fail several times before the timer
mechanism kicks in. Even worse, Ratchet proposed a fixed interval timer that does not
completely eliminate the non-termination problem. Using non-volatile memory as the
main memory is also a disadvantage. Writing to non-volatile memory is slower and more
energy-expensive as compared to volatile memory access (Figure 2.3).

QuickRecall [30] adopted a similar approach to that of Hibernus—-monitoring the
energy buffer and placing a checkpoint only when the voltage drops below a certain
threshold. It, however, requires a unified main memory (similar to Ratchet). Therefore,
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it features a constant voltage threshold as the size of the checkpoint is fixed (only the
register file). QuickRecall utilizes modified linker script to map all the memory sections
of the binary file (i.e., .bss, .text, .data, and .stack) into non-volatile memory. Therefore,
to checkpoint the forward progress, QuickRecall needs only to save the register file into
non-volatile memory. However, since all the data modifications are persistent QuickRe-
call’s correctness hinges on the following condition: there must be no execution between
a checkpoint and a power failure. Therefore, QuickRecall spin-waits after a checkpoint
until sufficient energy is accumulated again.

Recent work have addressed the limitations of prior work from a sensing perspec-
tive [104–107]. Briefly, compiler-based (static) systems may suffer from data consistency
problems if accessing a peripheral leads to a WAR dependency with a persistent vari-
able. Hardware-dependent (dynamic) checkpointing may break the correctness of ap-
plications by placing a checkpoint in sensitive locations such as between peripheral ini-
tialization instructions and the instructions to access it. If the system checkpoints in
such locations and fails, on reboot, the system will attempt to access an uninitialized
peripheral (i.e., an unavailable peripheral), which may lead to a fatal error that crash the
running application. To overcome these problems Maeng and Lucia [104] proposed the
use of dynamic checkpointing with atomic regions. Before these regions, the system col-
lects a checkpoint and then disables checkpointing to enable safe peripheral access (first
initialization, and then utilization). However, in sensing scenarios hardware interrupts
(e.g., timer interrupts) are extremely common. The system after disabling checkpointing
may be requested to serve an ISR (Interrupt Service Routine) before executing the atomic
region (or after it, but before placing a new checkpoint). Now, the system is unable to
checkpoint its progress and is requested to execute, which violates the correctness condi-
tion of the dynamic checkpointing systems. From a science fiction perspective, [104] is a
broken time machine, as detailed in [108] and highlighted in Figure 2.2. Furthermore, in
sensing scenarios, nodes spend most of the time in low-power mode waiting for an exter-
nal event to wake them up. Therefore, monitoring the energy buffer results in significant
energy waste [29]. As opposed to the approach presented in [104], Branco et al. [106]
adopted a static checkpointing based system to enable safe asynchronous operations on
intermittent devices. The presented intermittent system features a middle-ware layer in-
terfacing between the drivers of peripherals and the running application to ensure safe
I/O operations. Furthermore, it is able to roll the peripheral state forward and the com-
putation state backward to ensure the consistency of an intermittent application after a
power failure. A potential point of concern of this system is the size of the checkpoint, as
each peripheral is represented by a state-machine and a queue that must be added to the
program context during checkpointing. Such a checkpoint technique may scale poorly
and/or consume a significant amount of energy to maintain the application state. The
checkpoint size limitation has been addressed in [109, 110] through the use of a paged
memory management system.

To summarize, current checkpointing systems (except for [106]) make it difficult for
the programmer to respect application-level atomicity constraints. For example, if the
application-level logic is to sample a signal four times and compute their average, then
checkpointing between these four samples breaks this logic as the time intervals be-
tween these samples are not the same. Moreover, a checkpoint-based system may check-
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Approach Model Data Copied to/from NVRAM

Checkpointing

Mementos [24], HarvOS’s [27] Registers + Stack + global variables

Hibernus [25, 26] Registers + all volatile state (i.e., SRAM)

DINO [28] Registers + Stack + WAR NV variables

Ratchet [29], Clank [31], QuickRecall [30] Registers (requires NV main memory)

Task-based

Chain [33], InK [111] PC + NV variables used in task

Alpaca [34] PC + WAR NV variables used in task

Region Formation [90] Registers + Updated variables in task

Coala [74] PC + privatized pages

Table 2.1: Non-volatile memory access for data consistency; PC: program counter, WAR vari-
ables: variables involved in WAR dependencies, NV: non-volatile.
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Figure 2.3: Energy cost of writing to the FRAM and SRAM memory of the MSP430FR5969-
based platform, WISP [20]. The reported values are the mean energy consumption of 1000
write operations. These values were obtained using EDB [94], and each measurement was
repeated 100 times.

point between the initialization of a peripheral and its access instructions. Such a check-
point may cause the system to fail if the power is interrupted right after the checkpoint
as the peripherals do not maintain their internal state across power failures.

2.2.2. TASK-BASED INTERMITTENT COMPUTING

The second approach to support intermittent execution is based on the concept of static
tasks. Task-based programming and execution models require a programmer [33, 35] or
a compiler [34, 90] to statically decompose a program into a collection of tasks. A task is
a section of code with well-defined input and output. It does not expose output to other
tasks until it is completely executed. Once a task execution is finished, its output is saved
in non-volatile memory using a form of two-phase commit to ensure that non-volatile
data is updated in an atomic manner. The tasks’ execution flow is explicitly defined by
the user. Therefore, the runtime needs only to maintain a persistent pointer to the cur-
rently running task to span the computation progress over power failures.

Chain [33] proposed a programming model that requires a programmer to construct
their software into a chain of idempotent tasks. Tasks should use Chain’s persistent input-
output channel abstractions to ensure data consistency. Mayfly [35] tackled the data
freshness problem under intermittent execution. It extends Chain with timing function-
ality. It does that by using an external (RC-based) timer to maintain the notion of time
across power failures. Further, it associates a timestamp with each data channel. These
timestamps are used to determine the freshness of the data. As compared to Chain’s
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non-volatile memory interface, Alpaca’s [34] interface is more efficient. It is based on au-
tomatic privatization and redo-logging. Alpaca’s compiler identifies the data structures
with WAR dependencies and provides private task-local backups for them to preserve
task idempotency. Table 2.1 summarizes the data that get copied to and from the non-
volatile memory in service of memory consistency and progress preservation. The differ-
ences in the amount of data being backed up is justified by applications’ requirements
(e.g., accessing non-volatile memory or not) and hardware capabilities (e.g., monitoring
voltage level).

The protection mechanisms of the task-based systems are ambient-energy agnostic.
Therefore, they must be conservative and use small tasks to avoid being stuck trying to
execute a non-terminating task: a task that requires more energy than the capacity of
the energy buffer. Moreover, they support only sequential execution, which is ill-suited
for sensing applications that often include event-style (interrupts) processing. However,
the concept of a task well-suits the development of intermittent sensing applications,
as it enables a programmer to respect applications atomicity constrains despite power
interrupts. Therefore, our proposed runtimes are also based on the concept of tasks.

2.2.3. HARDWARE ARCHITECTURE FOR INTERMITTENT EXECUTION

Integration of non-volatile memory to the processor architecture ensures immunity to
power loss [112], which removes the burden of explicit checkpointing and recovery with
software. Researchers have proposed several non-volatile processors concepts that inte-
grate different non-volatile memory technologies. For example, FRAM-based processors
were presented in [113–115]; the benefits of MRAM-based non-volatile processors was
discussed in [116]; and the concept of ReRAM-based processors was introduced in [117].
Such processors are emerging especially for energy-harvesting scenarios in which the
available power supply is unstable [118]. However, these processors are still in the experi-
mental stage [26, 31]. Therefore, the work in this thesis targets conventional off-the-shelf
processors that have both volatile and non-volatile memory.

2.3. COMMUNICATION FOR ENERGY-AUTONOMOUS SYSTEMS
In contrast to active communication where a device emits its own energy to commu-
nicate, passive communication enables devices to communicate by means of reflected
power [119] (currently, known as backscattering). Radio frequency and identification
(RFID) systems take advantage of this energy-efficient communication means to enable
battery-less tags to communicate with the energy exciter, the RFID reader [120]. How-
ever, an RFID tag has a dedicated purpose; therefore, it is equipped with an application-
specific integrated circuit (ASIC) that has very limited capabilities.

Sample et al. [77] presented a Computational RFID (CRFID) tag: An RFID tag with a
general-purpose microcontroller. They also added sensing capabilities to their proposed
CRFID, WISP, which sparked the idea of a battery-less wireless sensor network (WSN).
However, realizing a battery-less WSN based on CRFIDs faces two major obstacles: (i)
CRFIDs do not directly exchange messages; and (ii) CRFID tags are rendered unusable
without RFID readers, providing power and instructions. Nikitin et al. [121] tackled the
first problem. They showed the feasibility of direct tag-to-tag (T2T) communication in
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the context of papers tacking, using RFID paperclip tags, in a smart office environment.
In [122] the hardware design of a reader tag—a tag capable of sending commands that
are normally sent by an RFID reader—was presented. However, this tag-to-tag commu-
nication system still requires a dedicated energy source. This problem was addressed
in [17]. The authors presented the design of a tag that can backscatter on top of sig-
nals generated miles away from a TV tower to communicate with other tags. Ryoo et al.
[123] discussed the reported energy level presented [17] and proposed a new tag archi-
tecture and showed that their tags are able to communicate at double the distance re-
ported in [17]. The tag-to-tag range of the ambient backscatter system was dramatically
improved by using multi-antenna cancellation and CDMA coding techniques tailored
towards backscattering [124]. Researchers have also proposed tag architectures that are
capable of backscattering on top of signals emitted by widely adopted active RF devices
such as Bluetooth, WiFi and LoRa [36, 125–128].

Shen et al. [37], Ryoo et al. [123] showed that tag-to-tag networks suffer from a unique
problem that they call the phase cancellation problem. Basically, if the relative phase
shift difference between the signal from the exciter and the backscattered signal meets a
certain value the backscatter signals representing the logic “1” and the logic “0” will be
indistinguishable. Consequently, the receiver tag cannot detect the backscatter signal
at this location (a dead spot). The authors suggested to backscatter on two (or more)
phases to elevate this problem. This solution, however, sacrifices half of the bandwidth.

To summarize, most of the presented intermittent systems focus on enabling safe
computing on intermittent power supply. However, the main expected application of
intermittently-powered devices is sensing. Sensing requires reliable data gathering, on
the individual level, and it is at odds with intermittent operations, on the application
level. Furthermore, intermittent sensors have access to a small energy budget per power
cycle. Therefore, communication by means of backscattering is preferred. However,
backscatter tag-to-tag networks suffer from dead spots and weak backward links. This
dissertation takes the first steps toward reliable sensing on intermittent power, and it
promotes the backscatter communication paradigm to enable backscatter-based inter-
mittent sensor networks.
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INK: A REACTIVE KERNEL FOR

INTERMITTENT SENSORS

3.1. INTRODUCTION
Tiny energy-harvesters power battery-less sensor nodes intermittently. Intermittent exe-
cution introduces several new challenges, such as preserving the computation progress
and maintaining a consistent set of data. As has been discussed in Chapter 1 and 2, prior
intermittent systems [24, 26, 27, 30, 33–35], dealt with these challenges from a computa-
tion standpoint: they do not consider the scenario where a change in the environment
triggers a computation thread. Consequently, these systems progress in a sequential
and surrounding-oblivious manner. Such an execution model is ill-suited for sensing
applications: it forces the system to frequently poll sensors’ state (and thereby wasting
energy), instead of sleeping in low-power mode waiting for the sensors to trigger the ex-
ecution when an event arrives (saving energy and thereby increasing the probability of
successful sensing). Making these systems event-driven, i.e., reactive to environmental
changes, is not straightforward because they completely miss a control layer that alters
the execution thread when necessary, and they do not provide means (e.g., language ab-
stractions) for safe sensory data reception.

On the other hand, instrumenting the current event-driven operating systems of
wireless sensor networks (e.g. TinyOS [96] and Contiki [97]) with checkpoints is insuf-
ficient to ensure safe intermittent execution. Power failures, in particular during inter-
rupt handling, can leave non-volatile memory partially updated, leading to data incon-
sistency problems. For example, if a signal is sampled multiple times, and the power is
interrupted while updating the corresponding data structures in non-volatile memory,
then the saved data does not reflect the current environmental (sensor-environment in-
consistency).

In this chapter we introduce the Intermittently-Powered Kernel (InK), the first reactive
task-based run-time system for battery-less, energy-harvesting sensors. InK extends the

Parts of this chapter have been published in ACM SenSys’19, Shenzhen, China [111].
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Figure 3.1: State of the art Intermittent programs, based on e.g. Chain [33], Alpaca [34],
Mayfly [35], opportunistically gather data, missing important events and wasting scarce energy.
Model Control flow Mem. type Journaled Data No Dedicated HW ISR interaction Concurrent Apps. C1 C2 C3 C4

TinyOS [96], Contiki [97] Task-based DRAM + Flash None 3 3 3 3 3 3 3

Dewdrop [100] Task-based + Scheduler SRAM + FRAM None 3 7 7 3 7 3 7

Mementos [24] Instruction-based SRAM + FRAM Reg. + SRAM 3 7 7 3 7 3 7

DINO [28] Instruction-based SRAM + FRAM Reg. + SRAM + NV vars. 3 7 7 3 7 3 7

Hibernius++ [26] Instruction-based SRAM + FRAM Reg. + SRAM 7 7 7 3 7 3 7

QuickRecall [30] Instruction-based FRAM Reg. 7 7 7 3 7 3 7

Ratchet [29] Instruction-based FRAM Reg. 3 3 7 3 7 3 7

Clank [31] Instruction-based FRAM Reg. 7 7 7 3 7 3 7

HarvOS [27] Instruction-based SRAM + FRAM Reg. + SRAM 3 3 7 3 7 3 7

Chain [33] Task-based SRAM + FRAM PC + Channel data 3 7 7 7 7 7 7

Alpaca [34] Task-based SRAM + FRAM PC + NV vars. 3 7 7 7 7 7 7

Mayfly [35] Task-based + Scheduler SRAM + FRAM PC + Edge data 3 7 7 7 3 7 7

InK (this work) Task-based + Scheduler SRAM + FRAM PC + NV vars. 3 3 3 3 3 3 3

Table 3.1: A comparison of relevant models to program embedded devices. Among them, InK
is the only one that overcomes challenges C1–C4 (Section 3.1.1); NV vars.: variables in non-
volatile memory , ISR: interrupt service routine, Mem.: memory, PC: program counter, Reg.:
registers.

C language with several new abstractions (e.g., tasks, task threads, and persistent pipes)
to enable event-driven and time-sensitive intermittent applications.

Compared to existing kernels for embedded systems, InK exhibits new properties
dedicated to battery-less intermittent systems (see Table 3.1). In particular, InK (i) en-
sures forward progress of computation by executing restartable atomic tasks encapsu-
lated by task threads each with unique priority; (ii) ensures time constraints of task threads
by employing preemptive and power failure-immune scheduling and building a timer
subsystem composed of persistent timers; and (iii) ensures memory consistency during
event handling, as interrupt handlers are inherently not atomic and power failures dur-
ing their execution might lead to memory inconsistencies.

3.1.1. EVENT-DRIVEN SENSING CHALLENGES
First, we start by discussing in details the challenges associated with using state-of-the-
art intermittent programming models: Chain [33], Alpaca [34] and Mayfly [35], to im-
plement an event-driven application with three threads of execution listed in Figure 3.2:
TH1–TH3.

C1–Responding to Events: With Chain, Alpaca and Mayfly these three task threads can-
not operate concurrently. To enable event response, another task that constantly polls
the energy level (TH1), the motion (TH2), and the elapsed time (TH3) has to be inserted
that can trigger the execution of these threads. However, as shown in Figure 3.1 where
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Figure 3.2: An InK sensing application that measures and sends data depending on available
energy, motion triggers, and the output of a power failure-resistant timekeeper. The simulated
task execution trace is shown. InK is the first event-driven runtime for battery-less, energy
harvesting sensor networks. InK fairly schedules concurrent task threads that span power
failures and respond to events—like high energy availability, hardware interrupts, and elapsed
time. InK sleeps when there is nothing to do, storing harvested energy for the most impactful
tasks. EWMA: Exponentially Weighted Moving Average.

an application samples an accelerometer, events can be missed and energy wasted. Task-
based and checkpoint-based programming models for intermittent computing are rigid
in their specification and inherently non-reactive. To approximate event-driven sens-
ing, tasks frequently check shared global variables in order to change the control flow
when events have been captured. Such polling-based decision making puts extra effort
on the programmer, wastes considerable amounts of energy, might interrupt timely re-
sponses and also breaks the memory model—see C3. In order to respond to events in a
timely manner, battery-less systems require a dynamic scheduling mechanism that can
switch between different threads at runtime. However, this is not an easy task since the
scheduler itself should work correctly despite power failures, ensure forward progress
of computation, and maintain memory consistency of the running threads—a crucial
difference as compared to the existing schedulers.

C2–Scheduling Tasks: Aforementioned programming models cannot schedule events in
the future, or perform periodic sensing tasks as in TH3. Scheduling tasks using one-shot
or periodic timers is a common action in battery-powered sensors with a reliable notion
of time and persistent power. Again, shared global variables need to be polled contin-
uously by tasks in order to detect periodic events. Scheduling events, like sampling an
accelerometer, are a way for a developer to gather information or perform a task at the
exact planned moment in time. Without this ability, intermittent programs are doomed
to oversample at the wrong time, miss important events or actions in the environment,
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and waste precious energy and compute resources. Keeping track of time is challeng-
ing as compared to general-purpose embedded systems. To schedule tasks, battery-less
systems need a power failure resilient timer subsystem that will not lose track of time de-
spite intermittent power. Scheduling mechanisms can leverage this subsystem to make
scheduling decisions.

C3–Handling Interrupts: The memory model of Chain, Alpaca and Mayfly allow tasks
to access internal non-volatile memory via input/output abstractions (e.g. channels in
Chain). Global memory is not accessible to tasks: each task can only read the outputs of
predecessor tasks and write to the inputs of the successor tasks. By this means, memory
consistency issues are avoided. As a consequence, sharing global variables among tasks
and interrupt service routines breaks existing memory models—making event-driven ap-
plications infeasible and continuous sensing to be the only approach. To support event-
driven applications, interrupt service routines (ISRs) should be able to activate tasks. A
reactive scheduler is required that eliminates polling and abstractions are needed to let
tasks receive data from ISRs without data races and breaking memory consistency. All
these issues, in particular memory inconsistencies arising from the fact that ISRs are not
atomic and in turn re-executable, are unique challenges belonging to intermittent sys-
tems.

C4–Adaptation: With Alpaca, Chain, and Mayfly tasks run a high risk of starvation as
control flow cannot be interrupted or changed based on the changing external environ-
ment, or programmer insights. Tasks in intermittent computing applications always run
the risk of starvation; sometimes there is not enough energy in the environment to power
any computation, but the rigid task models of the state-of-the-art make this more likely.
If a single link in the chain of tasks is never able to complete, either because of low energy
or a programmer error, then all subsequent tasks starve. Consider that sometimes appli-
cations have multiple actions that can be done at any given time: with current program-
ming models, these actions must be put in a sequence with rigid control flow. Devel-
opers have few avenues to respond to this; they cannot bake in runtime logic to handle
changing and unpredictable energy situations or new application requirements.

Contributions: In this chapter, we make the following contributions to the intermittent
domain:

1. Event-Driven Programming: we introduce a new programming model and sev-
eral new abstractions for intermittent computing; comprised of task threads with
different priorities, inter- and intra-thread control flow declarations, inter-thread
communication interfaces, event notification and handling mechanisms, and time
management.

2. Reactive InK Runtime: we design and implement a reactive runtime featuring a
preemptive scheduling policy; enabling several (in)dependent task threads and ap-
plications with different priorities to run in an interleaved manner, responding to
energy, time, and sensing events, and ensuring power failure resilience, memory
consistency, and correct control flow.

3. Performance Comparison and Reactive Applications: we evaluate InK against state-
of-the art systems and find our approach is up to 14 times more responsive to
events in realistic intermittent power conditions. We develop, for the first time,
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Figure 3.3: InK system overview; developers define task threads comprised of multiple tasks
that are compiled with user and InK libraries in the application layer. The kernel layer interfaces
with hardware to gather events, schedule task threads, manage time, and connect events to
application level event handlers.

event-driven and reactive applications for battery-less sensors and tested them
on different platforms like an intermittently-powered small battery-less robot. We
also conduct a user study that demonstrates usefulness of InK.

4. Open Source Release: we release InK [129]1 as a open-source resource to the com-
munity; with example applications to increase the impact of this work and battery-
less sensor networks.

3.2. INK: THE REACTIVE KERNEL
InK’s kernel and programming model, discribed in this section, enable the development
of timely event-driven applications for intermittently-powered battery-less sensors. InK
simplifies or eliminates the event management and intermittent programming challenges
described in Section 3.1 in three key ways:

1. Event classification: We classify three categories of events that are encountered in
energy harvesting sensors that could lead to longer periods of failure, task starva-
tion, and inability to precisely schedule or time execution of a task.

2. Task threads Abstraction: To respond to events, we introduce a novel concept,
task threads, that have unique priority and encapsulate multiple restartable atomic
tasks dedicated to a particular job.

3. InK Kernel: We design a scheduler and kernel that efficiently manages multiple
task threads, handles forward progress of computation, ensures memory consis-

1We invite the reader to explore the source, documentation, and resources for InK: https://github.com/
TUDSSL/InK.

https://github.com/TUDSSL/InK
https://github.com/TUDSSL/InK
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tency, and keeps track of time. InK kernel provides a new programming model and
language structures to develop event-driven battery-less programs including ser-
vices for inter-task thread communication, event notification and handling, and
timekeeping.

The Intermittent Kernel (InK) (shown in Figure 3.3) enables developers to write
adaptive programs, reduces task starvation, and allows periodic sensing and timely re-
sponse to externally generated.

3.2.1. INTERMITTENT COMPUTING EVENTS

Development of InK is motivated by the lack of proper event handling in current inter-
mittent runtimes. Certain types of event can cause problems if not handled differently
in the context of intermittent computing versus a traditional continuously powered (bat-
tery laden) device. Handling each of these events requires a new programming model
and a more dynamic runtime operation beyond the static task-based models and the
rigid and inflexible time focused models in the state-of-the-art. We integrate the han-
dling of each of the following event types in InK.

Energy Thresholds: Energy harvesting battery-less devices only store small amounts of
energy and expend it quickly. The amount of energy available for any period is not con-
stant; it changes based on the time of day (for example in outdoor solar environments),
the weather, and the location (if mobile). Static-task models are not robust to this energy
irregularity; if a high energy radio broadcast is set to execute in a low energy situation,
that task will never complete. Moreover, if a low energy reading on an accelerometer
executes in a high energy situation, excess energy is wasted. Recent hardware designs
like UFoP [130], Flicker [21], and Capybara [91] can capture this energy thresholding
phenomenon, however current programming models do not associate tasks with their
energy requirement, potentially exposing them to starvation.

Timers: Scheduling events in the future is difficult with intermittently powered devices
because maintaining time through power failures is not trivial. When the microcon-
troller loses power, an external device powered by a small capacitor can support time-
keeping until the microcontroller turns back on. A notion of time beyond timestamps
and data expiration like in Mayfly [35] can provide useful scheduling mechanisms for
periodic or single-shot tasks.

Hardware Interrupts: Nearly all sensing devices generate interrupts of some kind. Sen-
sors like accelerometers, gyros, and magnetometers can gather data without any involve-
ment from the microcontroller, storing this in a buffer and then alerting the microcon-
troller via an interrupt pin when the buffer is full. Analog sensors have thresholding
circuitry that will wake a microcontroller when a point is reached. These hardware in-
terrupts are not captured by current programming models, but are incredibly valuable
to battery-powered sensors for extending battery life and will be valuable to battery-less
sensors by increasing microcontroller responsiveness (by allowing the microcontroller
to sleep).
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3.2.2. INK DESIGN SPACE

Before proceeding with the design and implementation details of InK, we outline trade-
offs in the design space for intermittent programming models and clarify some of our
high-level design decisions.

Task-based versus Checkpointing. Two programming models dominate intermittent
computing; task-based and checkpoint based (see Table 3.1). In our view, a task-based
system provides language scaffolding that enables reactivity without high runtime cost
or extensive static analysis. Tasks have traditionally been seen as a useful abstraction
to implement scheduling and to enable concurrent applications. Moreover, task-based
systems handle forward progress and memory consistency with less overhead. However,
the task abstraction puts a burden on the programmer to decompose the program code
into tasks (or task threads composed of several tasks, in the case of InK) and define the
control flow. This also requires explicit data handing to ensure memory consistency
which is seen in other task-based systems [33, 34]. An alternative method using auto-
matic checkpoints can be imagined to implement a reactive system. This requires the
programmer, compiler, or runtime to place checkpoints correctly while respecting mem-
ory consistency during event handling. Novel checkpoint placement policies to ensure
a correct and consistent system execution would be required. Tasks, instead of check-
pointing, lend themselves more naturally to scheduling unique threads of execution and
provide scaffolding for dynamic execution to overcome starvation and ensure timely ex-
ecution.

Dynamic versus Static Scheduling. In battery-less systems tasks should only start exe-
cution when sufficient energy is available. On the other hand, tasks that do not require
much energy that are executed frequently will starve high energy tasks. For program-
ming models with static tasks, this starvation possibility depends on how the program-
mer defines the task graph and the size of tasks. Once deployed this static schedule can-
not react to changing energy conditions. A dynamic scheduling method can solve this
at the expense of higher computational overhead. We take a dynamic approach with en-
ergy level-driven scheduling enabled by priorities that identify energy requirements as
well as the criticality of the task. This introduces a higher programmer burden as priori-
ties are decided by the programmer. The tension then becomes managing programmer
burden, complexity of dynamic scheduling, and starvation. Our choice of scheduling al-
gorithm matches the requirements of most applications with an implementation which
introduces reasonable overhead. We provide details in following sections.

Preemption. Dynamic scheduling requires some concept of preemption to provide flex-
ibility in the face of changing energy availability. The design trade-off comes from the
coarseness of the preemption strategy. InK scheduler preempts task-threads on individ-
ual tasks’ boundaries. This task level coarseness of preemption ensures reactivity with
less switching overhead (if for example the level of preemption was at the instruction
level) while maintaining task atomicity and avoiding concurrency errors. This comes
with the price of less reactivity since the control flow is changed only after the execu-
tion of the active task is finished. Alternatively, the scheduler could preempt tasks at any
point during their execution. However, this requires checkpointing that introduces extra
memory and compute overhead as well as the possibility of memory inconsistencies.



3

32 3. INK: A REACTIVE KERNEL FOR INTERMITTENT SENSORS

InK Language Construct Explanation

__shared(...) Declares task-shared protected variables

TASK(name) Declares an atomic task with given name

ENTRY_TASK(name) Declares a task that will be the entry point of a task thread

NEXT(name) Delivers control flow to the task with a given name

__EVENT_DATA Holds the pointer to the event data in the event queue of a task
thread that should be accessed by the entry task

__EVENT_TIME Holds the timestamp of the current event in the event queue of a
task thread

__GET(x) Returns the value of the task-shared variable X

__SET(x,val) Sets the value of the task-shared variable X to val

_CREATE(priority,entry) Declares a task thread with a given entry task entry and priority

_SIGNAL(priority) Activates the task thread with given priority within the context of a
task thread

_STOP(priority) Stops the task thread with given priority within the context of a task
thread

_interrupt(signame) Defines an interrupt handler with given service point signame

__SIGNAL_EVENT(priority,event) Pushes event data event to the event queue of the task thread with
given priority and activates it from ISR

__CREATE_PIPE(src,dst,size) Creates a pipe structure of given size between task threads src and
dst in order to share data between them

__GET_PIPE_DATAPTR(src,dst) Returns the pointer to the data stored in the pipe between task
threads src and dst

__SET_PIPE_TIMESTAMP(src,dst,x) Sets the timestamp of the pipe between task threads src and dst to
the given value x

__GET_PIPE_TIMESTAMP(src,dst) Returns the timestamp of the pipe between task threads src and dst

Table 3.2: Summary of InK Language Constructs. The system API includes necessary calls
for task and task thread declaration, memory consistency and control flow handling, event and
interrupt management, as well as inter-task thread communication. ,

3.2.3. INK EXECUTION MODEL AND TASK THREADS

Taking into account these event types and design trade-offs we discuss the implementa-
tion of InK. InK handles the previously mentioned events by introducing power failure
proof task threads. These task threads are the main building blocks of an InK program. A
task thread responds to events and ISRs that triggers corresponding event-handling. An
example implementation of [TH2: Activity] as described in Figure 3.2 is presented
in Listing 3.1 and the corresponding execution and memory model is presented in Fig-
ure 3.4. A summary of InK language constructs are given in Table 3.2.

Task Threads: A task thread is a lightweight and stack-less thread-like structure with
a single entry point that encapsulates zero or more successive tasks. These tasks can
do computation, sensing, or other actions, are idempotent, atomic, and have access to
shared memory. Each task thread has a unique priority and accomplishes a single objec-
tive, e.g. periodic sensing of accelerometer. In order to preserve the progress and time-
liness of computation despite power failures, InK kernel keeps track of each task thread
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Listing 3.1: Task thread code for TH2 and Energy ISR.

// task - shared persistent variables .
2 __shared (int data [10]; int i;);

4 // the entry task of the thread
ENTRY ( Sense ){

6 // sample sensor
int read = __sample_acc ();

8 // data [i] = read
__SET (data[ __GET (i)],read);

10 ...
NEXT ( Features ); // next task is sample

12 }
...

14 TASK ( Classify ){
...

16 // write pipe
__WRITE_PIPE (TH2 ,TH1 , value );

18 ...
NEXT (null); // thread finishes

20 }
...

22 _interrupt ( HIGH_energy )
{

24 ...
event .data = dataptr ; // data pointer

26 event .size = datasize ; // data size
event . timestamp = __getTime ();

28 // post to TH1 ’s event queue
__SIGNAL _EVENT (TH1 ,& _event );

30 ...
/* turn on CPU */

32 __bic_SR_register_on_exit ( LPM3_bits );
}

Sense Features Sleep 

HIGH
Energy …

signal 
event

ISR

Event Queue

int data[10];
int i;

Shared Buffer __GET(…)

Sleep int send[10];

Shared Buffer

Transmit State

TH2: Activity

TH1: Send

int buf[10];
int timestamp;

PIPE

__SET(…)

__WRITE_PIPE(TH2,TH1)

__READ_PIPE(…)

__SIGNAL_EVENT(TH1)

Classify

Figure 3.4: Overview of InK execution/memory model and task threads/ISRs interaction. Ar-
rows indicate API calls of InK services.



3

34 3. INK: A REACTIVE KERNEL FOR INTERMITTENT SENSORS

by maintaining a task thread control block (TTCB) in non-volatile memory2. TTCB holds
the state and the priority of the task thread, pointers to its entry task, to the next task in
the control flow and to buffers in non-volatile memory that holds task-shared variables.

Task Thread Scheduling: The InK kernel implements preemptive and static priority-
based scheduling of task threads: the InK scheduler always executes the next task in the
control flow of the highest-priority task thread. Upon successful completion of this task,
the pointer in the corresponding TTCB is updated so that it points to the next task in the
control flow. In InK, tasks run to completion and can be preempted only by interrupts.
Therefore, task thread preemption may only happen at tasks boundaries. When an ISR
preempts the current task, it might activate other task threads of high-priority that are
waiting for the corresponding event. Then, InK does not switch control to the higher
priority task thread immediately; it waits for the atomic completion of the current task.

3.2.4. INK MEMORY MODEL

Tasks inside a task thread communicate with each other by manipulating task-shared
variables. InK adheres to the data encapsulation principle by limiting the scope of these
variables to the tasks of the corresponding task thread. Therefore task-shared variables
are bound to the tasks that manipulate them and they are kept safe from misuse and in-
terference by other task threads. InK allocates these variables in the non-volatile mem-
ory and they are double-buffered [28] to preserve data consistency across power losses—
namely an original buffer holding the original copies and a privatization buffer holding
the task-local copies [34].

Data Privatization: The TTCB of each task thread holds pointers to these buffers. Before
running any task, InK initializes the privatization buffer by copying the contents from
the original buffer. Tasks can read/modify only the content in the privatization buffer
(via __GET and __SET interfaces). On successful task completion, the buffer pointers are
swapped so that the outputs of the current task are committed atomically.

Inter-Thread Communication: InK facilitates inter-thread communication through per-
sistent pipes. A pipe is a unidirectional buffer in non-volatile memory with a timestamp.
Any task inside the producer task thread can write to a dedicated pipe so that any task in
the consumer task thread can read and perform computation by considering the timeli-
ness of the data. Since tasks cannot preempt each other and also pipes are unidirectional,
pipe access does not lead to data races even upon power failures.

For the sake of efficiency and simplicity, we did not provide extra protection over the
persistent pipes that enable data sharing among task thread—the consistency of these
shared memory regions should be explicitly handled by the programmer. Alternatively,
this protection could be handled by InK, however, this increases the implementation
complexity and overhead of our system.
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thread = getHighestPrio();
task = getNextTask(thread);

READY

init(task);
event = lock_event();
run(task);

ENTRY

release(event);

RELEASE-EVENT

init(task);
run(task);

non-entry task

NON-ENTRY

commit()

COMMIT

stop(thread)

SUSPEND

SLEEP

no active
thread entry task

wake-up

no remaining tasks
or events

remaining tasks
or events

Figure 3.5: The InK scheduler state machine that selects the next task in the control flow of
the thread of highest priority, ensures forward progress and puts the CPU in sleep mode when
possible.

3.2.5. REACTIVE EXECUTION

In order to ensure reactivity and adaptability, InK implements the state machine de-
picted in Figure 3.5 and maintains a scheduler-state variable in non-volatile memory in
order to ensure forward progress despite power failures.

The Scheduler Loop: At each loop iteration, the scheduler selects the task thread of high-
est priority and executes the next task in the control flow of the selected thread. During
task execution, the scheduler (i) initializes the task privatization buffer via init; (ii) for
the entry tasks, it locks the event data that triggered thread execution via lock_event
(to eliminate data races between ISRs and tasks—see following sections), (iii) it executes
the task via run, (iv) for the entry tasks it releases the event via release, (v) it commits
the tasks modifications by swapping buffer pointers, (vi) it suspends the thread if there
are no dedicated events or remaining tasks. If there is no thread in a ready state, the
scheduler puts the micro-controller into low-power mode, saving energy and waiting for
an interrupt for activation. The state machine enables the progress of computation since
it continues from the state it is interrupted.

Reducing Starvation: Tasks inside task threads and ISRs can activate and deactivate
other task threads and change control flow dynamically. In existing run-times, e.g. Mayfly
and Alpaca, control flow is static, in the sense that all subsequent tasks in the chain
should wait for the completion of predecessor tasks. This leads to the problem of pri-
ority inversion since high-priority tasks can be blocked due to the lower-priority tasks

2Commercial off-the-shelf microcontrollers like the MSP430FRxxxx (a common microcontroller for intermit-
tent computing) have volatile SRAM and non-volatile FRAM memory segments. The MSP430FR5969 has only
2KB of SRAM and 64KB of FRAM.
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holding the CPU. On the contrary, since the InK scheduler alternates between the afore-
mentioned states, it can switch execution to the high-priority thread: first, the kernel
awaits the completion of the interrupted current task inside the lower priority thread;
then it starts executing the entry task of the high-priority thread.

Responding to Events: Each task thread in InK has a dedicated non-volatile event queue
that holds the events generated by ISRs. When any event is generated, the corresponding
task thread is activated so that the thread execution will start from its entry task. In InK
execution model, the event data is only accessible by the entry task of the task thread:
the entry task locks the event data (see lock_event in Figure 3.5) to eliminate data races
between ISRs and tasks. The entry task reads the event data and modifies necessary
task-shared variables and then the event lock is released so that the event data will be
removed from the event queue.

Event Handling: Circular buffers hold the data to be shared between an ISR and a task
thread to prevent data races. The buffer handling introduces additional implementa-
tion and execution overhead but eliminates the need for the programmer to be involved
in this process. As an alternative, unbounded buffers could be implemented, however
management of a dynamically growing buffer introduces extra overhead at run-time for
already memory constrained devices2.

Interrupt Management: The pre-processing of an interrupt is performed by the corre-
sponding ISR. Then, the rest of the computation is done by a task thread. When an in-
terrupt is generated, the corresponding ISR delivers the received or generated data to
the upper layers of the system and notifies task thread. Event queues are ring buffers
dedicated for each task thread. They form an intermediate layer that prevents race con-
ditions and preserves the event data consistency by eliminating ISRs from modifying
task-shared data directly. When the event queue is full InK removes the event that has
the oldest timestamp from the event-queue to increase the probability of having fresh
data. Once an interrupt is generated, the task threads is notified by creating an event
holding a pointer to the ISR data and its size, and a timestamp indicating the time at
which interrupt is fired. The corresponding task thread is notified (via __SIGNAL_EVENT)
by passing the pointer event structure so that the event will be placed in the event queue
of the given task thread atomically.

3.2.6. SCHEDULING EVENTS AND TIMERS

InK builds a timer sub-system using an external persistent timekeeper [131] that keeps
track of time across power failures: (i) when the microcontroller is running, its internal
timers are used to measure elapsed time; (ii) upon a power failure, the external time-
keeper keeps running and provides elapsed time until recovery. The timer system im-
plements a timer wheel algorithm to provide two types of timers for the task threads:
expiration timers and one-shot/periodic timers.

Expiration Timers: Task threads set expiration timers in order to enable timely execu-
tion of task threads and stop unnecessary and outdated computation if necessary; anal-
ogous to Mayfly [35] concepts of expiration. As an example, data read from a sensor
should be processed within a time constraint and if computation exceeds the required
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deadline the outputs of the computation are not useful anymore. When an expiration
timer fires, the corresponding task thread is evicted so that it does not consume systems
resources, e.g. CPU, anymore.

One-Shot/Periodic Timers: One-shot and periodic timers are used in order to schedule
events in the future and generate periodic events, e.g. activating task thread at a given
frequency. Since most of the sensing applications are periodic, these timers are the foun-
dations of task threads that perform periodic sensing, these timers build on the persistent
timekeeper to keep time across power failures.

3.3. EVALUATION OF INK
We proceed with the experimental evaluation of InK. We compare InK against its coun-
terparts by implementing sensing applications that require timely response to various
events. In our evaluation we measure several metrics to observe the reactiveness as well
as overhead in terms of time, energy and system resources. Considering these metrics,
we show that InK improves the reactivity of battery-less sensing applications up to 14
times as compared to its counterparts, by introducing a reasonable system overhead. Fi-
nally, our case studies show that InK enables new, never before seen sensing applications.
We aim to help developers in learning and contributing to InK by providing resources to
the community with a dedicated website [129].

3.3.1. EXPERIMENTAL SETUP

We describe the experimental setup used in assessing the performance of InK against ex-
isting state-of-the-art runtimes and as a stand-alone system. Our setup considers repli-
cability of results and varying types of energy supply.

Target Embedded Platform: The experiments were conducted using TI MSP-EXPFR5969
evaluation boards [132]. This platform uses 16 MHz MSP430FR5969 MCU with 64 kB and
2 kB of non-volatile (FRAM) and volatile memory (SRAM), respectively. We set the micro-
controller frequency to 1 MHz during our experiments. Whenever necessary, InK sensing
system interacted with low-power accelerometer [133], microphone [134] and infrared
transmitter (Vishay Semiconductor TSOP38238)/receiver (generic 950 nm infrared LED)
pair.

Runtimes for Intermittently-Powered Devices: InK was compared against two state-of-
the-art runtimes: MayFly [35] and Alpaca [34]. For each runtime, we have prepared the
same application introduced in the subsequent sections and composed of the same set
of tasks and control flow.

Measurement Equipment: We used the Saleae logic analyzer [135] to measure the per-
formance metrics of all applications that were implemented during experiments. Data
was parsed with dedicated, on-line accessible [129], Python scripts.

Intermittent Power Supply: We used two setups to provide repeatable experimenta-
tion: a real wireless power supply (used in InK case studies) and emulated power (for
repeatability and replicability of comparative measurements). Real wireless power sup-
ply: To power MSP430 evaluation boards, we used Powercast [72] TX91501-3W trans-
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mitter emitting RF signal at 915 MHz center frequency to P2110-EVB receiver [72] (one
per each MSP430 board) co-supplied 6.1 dBi patch antenna. Controlled-power supply:
we considered two approaches per different experiments. Approach (1) used the Ekho
platform [136] that replays a realistic and repeatable (recorded from real harvesters) I-V
surface to the MSP430 evaluation board. Approach (2) is based on a dedicated MSP430
evaluation board that interrupts the power supply of the other board by controlling the
RST pin [22, Sec. 5.12.2], with a uniformly distributed interrupt period in the interval of
[0, 0.5] seconds.

3.3.2. REACTIVE APPLICATION PERFORMANCE

We start by demonstrating the main strength of InK: by fastest reactivity of programs for
transiently-powered devices.

Implementation: We implement a battery-less condition monitoring application in InK.
Two threads are considered: one (first priority) that detects whether a new event hap-
pens (like the arrival of a new item to a CNC router), and a (second priority) event which
detects the condition of a device (like specific vibration of a machine). The first thread
is triggered by a sound overthreshold and implements an FFT (analyzing data from a
microphone), while the second samples and records data from the accelerometer peri-
odically. This application was also implemented using MayFly [35] and Alpaca [34] run-
times for comparison. Since Mayfly and Alpaca are not event-driven and they do not
allow interaction with interrupts, the only way to implement this application was to use
a control flow that implements a polling loop: the microphone is checked to catch the
sound overthreshold and perform FFT if required; and then reading the accelerometer
and performing sensor data related computations continuously. Since Alpaca has no no-
tion of time (contrary to InK and MayFly) we could not consider timeouts. Also, Alpaca
makes it impossible to use external libraries, e.g. accelerated FFT library for TI MSP430
MCU. Therefore, in the comparison, we mimic the FFT operation by a constant delay
loop.

For the replicability of power failures from energy harvesting, an Ekho [136] emulator
powered the target embedded platform. Ekho repeats, in an infinite loop, a pre-recorded
one minute (i.e. a maximum length Ekho can support) I-V curve recorded from one of
two energy harvesting sources: (i) 22×7 mm IXYS Solarbit solar panel [137] which was
relocated from indoor to cloudy outdoor sunlight—representing the trace with long pe-
riods of energy availability; and (ii) a WISP harvester powered by Impinj Speedway 420
RFID reader [78] with readers’ antenna at initial 25 cm distance from WISP was relocated
to 10 cm and again to 25 cm—representing trace with very high power intermittency rate.
Data from the condition monitoring application was collected for five minutes of contin-
uous operation, for five runs with each runtime.

Metrics: We have measured the following reactivity metrics for each runtime: Success
Rate—the rate of successfully executed highest priority events; Missed event rate—how
many high priority events are missed due to either power failures or on-going low-priority
computation; Maximum ‘Power On’ Time—the longest duration that the device was alive
(at intermittent power); and Death Rate—the number of power failures (at intermittent
power) during the experiment.
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Figure 3.6: Performance metrics of reactive sensing application, implemented using InK, MayFly
and Alpaca. Performance of all runtimes is compared to the continuous power case. InK
improves the reactive application performance by orders of magnitude for all metrics.

Results: The result is presented in Figure 3.6. We observe that InK is the most reactive
runtime of all, improving over the success rate of Alpaca and Mayfly by 14 and 13 times,
respectively (for the solar power case). Naturally, InK cannot obtain a perfect success
rate, simply because of death during the interrupt arrival. Also, InK misses the least
number of priority threads (Figure 3.6 (top, right)) compared to other runtimes. Mayfly
is less reactive compared to Alpaca, as it must check the timing constraints of every sin-
gle task in between actual task execution; for sophisticated programs with more than ten
tasks, this reduces the percentage of time Mayfly can poll for events. We note that Mayfly
died fewer times in our experiments, due to implementation differences in the systems
startup code where Mayfly stores energy to enable timekeeping, however, we note that
this reduced death count did not increase reactivity as Mayfly was unavailable for com-
puting during this startup period. InK had the highest effective ‘power on’ time and the
lowest death count among all runtimes: Figure 3.6 (bottom left and right).

3.3.3. REAL-WORLD EVENT-DRIVEN APPLICATIONS

We demonstrate several never before seen battery-less applications enabled with the
event-driven programming supported by the InK kernel. The development of these ap-
plications is not feasible with existing runtimes like Alpaca or Mayfly due to the chal-
lenges C1–C4 listed in Section 3.1.
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Power Power Failures Motion over Threshold Catch Rate IR Trans.

Continous 0 8 1 6

RF 36 6 0.66 1

Table 3.3: The response to the activity event of the battery-less voice-controlled activity recog-
nition application.

BATTERY-LESS EVENT-DRIVEN SENSING

We start with the first case study: voice-controlled battery-less activity recognition.

Application Challenges: We used a low-power accelerometer [133] for the classification
of activity and a microphone [134] for voice recognition connected to TI MSP430 board.
Initially, the system is sleeping and a voice recognition task thread is waiting to respond
to the accelerometer interrupt to detect motion over a threshold (requirement for C1
and C3 ). When this event is detected, the voice recognition task thread starts respond-
ing to the interrupts generated by the microphone and recognizes the ‘start’ command
(requirement for C1 and C3 ). After the start command is detected, the activity recog-
nition task thread is activated to periodically sense and classify ongoing activities (re-
quirement for C2 ). When the available energy is over 2.5 V the comparator COMP_E
of MSP430fr5969 is programmed to generate an interrupt. When this energy threshold
interrupt is generated (requirement for C4 ), the control is switched to task thread that
sends the classification results using an infrared transmitter via simple OOK modulation.

Results: We collected the success rate of activity recognition for five minutes. The system
is powered continuously (to use as a reference for comparison) and by using the Pow-
ercast transmitter. Table 3.3 shows our measurement results. With continuous power,
8 motion threshold interrupts were detected and all of them were processed on time.
Among them, energy levels allowed to perform 6 IR transmissions after activity classifica-
tion. With RF power, power failures were observed 36 times, 6 motions above thresholds
were detected and almost 4 of them processed on time. Energy levels allowed to perform
only 1 IR transmission in this case.

BATTERY-LESS INTERMITTENT ACTUATION

We continue with the second case study: a tiny battery-less robot designed to perform
autonomous reconnaissance sensing tasks. Using this robot, we demonstrate that InK
enables reactive control of battery-less energy-harvesting actuators.

Battery-less Robot Motivation: Referring to Table 3.4, state-of-the-art robotic platforms
are battery-dependent and require physical/proximity contact to recharge. Our idea is
to remove these obstacles by providing power directly from the harvesting source (solar
panel) to the environmentally-friendly storage (super-capacitor). The consequence is
the intermittent movement of a robot. Movement stops after short move duration (in
the order of seconds).

Robot Design: Figure 3.7 provides our robot design overview. The robot is designed
around a WISP 5 [20] which allows the observer to send control messages from the RFID
reader. WISP’s TI MSP430FR5969 MCU serves as the main robot control system. DC
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Figure 3.7: Battery-less small autonomous robot: top figure—block diagram; bottom left—
robot PCB design (front side): harvester (U1), gyroscope (U2) and H-bridge (U3); bottom
center–robot PCB design (back side): super-capacitor), bottom right—complete robot.

Design Motion Speed Size Weight Storage Time to Recharge

(cm/s) (mm) (g) (mAh) recharge method

Roverables [138] wheel N/A 40×26 36 100 45 min inductive

Zooids [139] wheel 50 26×26 12 100 1 h manual

mROBerTO [140] shaft 15 16×16 10 120 1.5 h manual

GRITSBot [141] wheel 25 31×30 60 150 1 h contact

Kilobot [142] vibration 1 33×33 17.6 160 3 h manual

HAMR-VP [143] legged 44 44×44 2.3 8 3 min manual

This robot wheel 25 35×40 22 0.006 <5 s solar

Table 3.4: Comparison of our battery-less harvesting robot against state-of-the-art small robotic
platforms.

motors were used as actuators. Two motors are mounted diagonally opposite from each
other in a 3D-printed frame. Small plastic wheels with rubber tires are mounted directly
on each of the motor shafts. Behind the motors, a free-running caster wheel is mounted
to the frame. PWM controls the robot’s speed and is used to reduce the average current
consumed by the motor. A large bulk capacitor supplies short high current demand from
the motors.3

3In-depth information about the robot hardware and software and InK implementation of robot control algo-
rithm is provided in [144, 145] and InK repository [129], respectively.
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Figure 3.8: Intermittent communication experiment result: two MSP430 boards are connected
together using UART RX/TX ports exchanging messages in an infinite loop, also connected to
Powercast receiver boards and powered by the RF. Left figure: completion time, right figure:
the number of resets at different distances to the transmitter.

Robot Control: We implemented a simple PID controller feedback loop to drive the
robot. Our transiently-powered robot can make one movement, which requires multi-
ple power cycles to complete. To finish the required move upon power failures and to
capture the progress towards the movement target, several InK services are used. The
PID control loop is implemented as a task thread that is scheduled to execute every time
a robot is powered. At each periodic activation, the thread samples the yaw-rate using
the gyroscope and executes the tasks of the control algorithm to update the motor pa-
rameters.

BATTERY-LESS INTERMITTENT COMMUNICATION

We conclude with the final case study. We demonstrate that InK enables a basic dis-
tributed processing system via communication over the serial port.

Battery-less Communication Challenges: Two master and slave TI MSP430 boards are
powered using independent energy harvesting sources; each board was connected to
a Powercast receiver and placed at several distances away from the corresponding RF
Powercast transmitter. The master board implemented two task threads (requirement
for C1): the main thread generates a random signal composed of 16 floating-point values,
transmits the signal to the slave board and computes the DFT of this signal; meanwhile
another thread waits UART RX events (requirement for C1 and C3 ), receives the DFT
result of the slave node composed of 16 floating-point values and pushes the result to
the pipe of the main thread and activates it (requirement for C1 ); then the main thread
compares its results with the one in the pipe and toggles an output port if they are equal.
The slave board implemented one task thread that waits for UART RX interrupt to receive
the random signal from the master node (requirement for C1 and C3 ), computes the DFT
of the received signal, sends the result to the master node. In order to keep track of the
delivered packets, the sender side sets a one-shot timer (requirement for C2 and C3 ) and
awaits acknowledgment (ACK) from the receiver side. If ACK is not received, the packet
is re-transmitted.



3.3. EVALUATION OF INK

3

43

InK Alpaca MayFly

Time (ms)
Memory (B)

Time (ms)
Memory (B)

Time (ms)
Memory (B)

.text .data .text .data .text .data

AR 4151 3442 4459 8361 7970 724 4464 8700 2496

BC 546 2922 4433 912 6290 818 1019 8066 846

CF 495 2648 4693 199 8494 2352 — — —

Table 3.5: Execution time and memory consumption for three benchmark applications written
in InK, Alpaca and MayFly. Since it was not feasible with Mayfly to develop CF application, its
corresponding values are shown with —. Overall results show that InK’s overhead is comparable
with its counterparts.

Results: We monitored the output ports of the boards for 15 minutes per each Powercast
transmitter/receiver distance. Figure 3.8 present our measurement results. During the
execution of the application, not only the computation but also the communication is
interrupted frequently, especially at distances 80–120 cm—since time to charge is longer
at further distances, this led to the longer duty-cycles, less power failures and number
of completions. We observed that the applications on both master and slave nodes are
always completed successfully despite frequent power losses.

3.3.4. INK SYSTEM OVERHEAD

We continue with assessing the overhead of InK by implementing common computation-
based benchmarking applications and comparing their execution time, code size and
memory requirements.

Implementation: The complete suite of benchmarking is composed of: (a) Activity Recog-
nition (AR): machine-learning enabled physical activity classification using locally gen-
erated accelerometer data, (b) Bitcount (BC): bit counting in a random string based on
sever different methods, cross-verifying correctness, and (c) Cuckoo Filtering (CF): runs
a cuckoo filter over a set of pseudo-random numbers and performs the sequence recov-
ery using the same filter. We implemented these applications in InK, Alpaca and Mayfly
using the same task partitioning and control flow. Unfortunately, loops are not allowed
in a Mayfly task graph as the data and control flow are the same (leading to infinite data
growth). Therefore, non-sensing applications like CF cannot be implemented in Mayfly
because of the multi-level loops and control flow disassociation from data flow.

Results: For the fairness of the comparison, we run the aforementioned benchmarking
applications on continuous power. To measure the execution time, we sampled the out-
put port of the MCU using the logic analyzer that is toggled after the program completed
its execution successfully and the results are correct.

Table 3.5 presents the summary of evaluation. We conclude that InK is always faster
than MayFly and only slower than Alpaca for CF. Additionally, we measured the memory
overhead and code size for all runtimes. The increased memory and execution overhead
in selected applications are due to the fact that InK maintains queues and data structures
in order to manage/schedule task threads and makes scheduling decisions at runtime for
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Operations ≈Overhead (in µsec)

Initial Boot 7900

Reboot 70

Scheduling and Selecting Next Thread 89

Task Init (10 B/1 KB shared data, resp.) 121/315

Task Commit 42

Activating Thread 75

Event Register 778

Table 3.6: Approximate overhead of the initialization and scheduler overhead.

the sake of reactivity. Our results show that InK enables an event-driven paradigm shift
for battery-less devices while introducing a reasonable overhead as compared to Alpaca
and Mayfly.

Point to Point Overheads: Table 3.6 presents detailed overhead of the InK runtime op-
erations. When InK runs for the first time, all of the internal non-volatile state variables
are initialized (denoted as the Initial Boot overhead). After the first boot, each Reboot
requires only the initialization procedures of the MCU, peripherals and the recovery op-
erations of the InK scheduler. The Scheduling overhead is introduced to select the thread
of highest priority and execute the next task. Task Init and Task Commit overheads are in-
troduced to prepare the privatization buffer and commit the modifications on this buffer
to the original buffer atomically, respectively. The time spent for Activating Thread is re-
quired to change the state of the corresponding task thread to ready so that the scheduler
will consider to run it later. Event Register is the overhead of committing an event in the
event queue.

3.3.5. USER STUDY

We have performed an on-line user study to assess the usability of InK in programming
intermittently-powered devices. The study is approved by the Human Research Ethics
Committee of Delft University of Technology. The study suggests that (i) InK is intuitive
and applicable to a varying set of sensing applications, and (ii) InK provides the necessary
constructs to write periodic sensing applications.

Methodology: Participants were provided a link to the on-line survey (questionnaire and
detailed answers in [129]) via a personal invitation. The survey was accompanied by a
short document introducing the concept of intermittently-powered devices and the is-
sues associated with programming such devices. Then, participants assessed three pro-
grams implementing non-ISR [sense] → [compute] → [transmit] loop written in
InK, Aplaca and MayFly languages, after which a set of questions were asked. Addition-
ally, participants had to assess the same program written only in InK, but implemented
using interrupt service routines. Finally, the participants were asked to write a simple
InK program themselves (submitted to us for inspection) and again assess InK usability.
An answer to each question was one from a five-level Likert-type scale (From Strongly
disagree to Strongly agree). There was no time limit on the assignment and the survey
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could have been performed at the most convenient location and time for each partici-
pant.

User Pool: We have collected 22 responses in total from a pool of graduate (MSc/PhD
level) students studying embedded systems, computer science and experienced scien-
tific developers. 63% of the participants had more than five years of formal computing
education. 82% of the participants had more than five years of programming experience.
C was considered the language of choice for the majority of participants, while 68% of
them considered their knowledge of C as average and above average. Also, 42% self-
assessed themselves with above-average knowledge of embedded systems (compared
to others with a similar background, age and education). 73% of them considered their
knowledge of intermittently powered embedded devices as low and very low. Partici-
pants were located in at least four different countries in Europe and North America.

Results and Discussion: Participants assessed the ease and intuitiveness of using all
three languages in writing generic applications for intermittent devices: Alpaca being
the easiest (18 strongly agreed or agreed), followed by InK (13 respective answers) and
MayFly (only 8 respective answers). The same order applied to questions on the pro-
gramming model flexibility. All thee codes were assessed equally in terms of program-
ming mode completeness. All of them were assessed as the language that could be used
for a variety of sensing applications(InK being the most selected one for this task).

Considering the task of assessing the reactive programming difficulty with InK, all
responders provided their example InK code. 59% of the participants agreed that it
was easy to understand how InK handled interrupts for intermittently-powered systems,
while 57% agreed that it would be harder to understand if the code was written in plain
C. 76% of respondents strongly agreed or agreed that InK provides the necessary con-
structs to write periodic sensing applications, with only 38% and 30% respondents for
Alpaca and Mayfly, respectively. Only 23% agreed that it was hard to write InK program.

We acknowledge that our study is limited due to the small sample size and difficulty
in preparing the comparable program in three programming languages. Nonetheless,
survey results indicate that InK is the right tool for reactive programming of intermittently-
powered devices.

3.4. DISCUSSION AND FUTURE WORK

InK application developer effort: An InK programmer does not need to reason about
power failures or memory inconsistency—which confuse and frustrate even experienced
developers—but needs to follow a new programming model that is different from ex-
isting ones targeted for continuously-powered systems. In particular, the programmer
needs to (i) identify task-shared variables; (ii) provide a task-division and annotate task
boundaries/inter-task dependencies; and (iii) define an explicit control flow. Future
work can address removing this burden from the programmer: for example with a guided
compilation tool that translates programs into InK, or with additions of features like
module reuse.

Limits of reactivity: Although InK’s goal is to enable reactivity for systems powered in-
termittently, it will never be able to provide the same reactivity as battery-powered or
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tethered devices. Simply, with no control over available power there is no feasible way to
make a sensing system reacting immediately to stimuli. The question remains how big
is the set of applications that can accept reduction of system responsiveness, while not
compromising the quality of service. Using our transiently-powered robot as an exam-
ple: what is the acceptable number of stops (and their duration) in-between consecutive
moves that would make robot still considered reactive? Future work could investigate
networked approaches to this problem, with higher density of cheap battery-less sens-
ing devices, overall coverage increases. Multiple challenges in networking and synchro-
nization must be resolved to make this a reality.

Dealing with peripheral I/O: Sensing systems must manage peripherals (sensors, mem-
ories, radio) that have a volatile state. On power failure, this state is lost and peripherals
must be reinitialized. InK leaves this as a programmer burden. A common solution is
to split input operations into two tasks: one task reads the sensor value and another
task consumes it accordingly. This guarantees consuming the value once since tasks run
in order and cannot preempt each other: the consumer task can be re-executed safely
since its output is produced by the former task. However, to re-execute output opera-
tions safely at intermittent power, e.g. blink an LED exactly once, hardware assistance is
required. Future work could leverage emerging non-volatile sensors, or build software
models for handling of failure in peripherals.

Starvation, fairness, multi-tenancy: task threads shows the potential for multi-tenancy
on battery-less, energy harvesting devices. However, multiple issues surround the prac-
tical use case where third party applications coexist peacefully on a single intermittently
powered device.

3.5. CONCLUSIONS
We have shown that state-of-the-art programming and execution models for intermit-
tent systems are inadequate for developing real-world sensing applications: they do not
respond to events in a timely manner, they do not schedule events to perform periodic
sensing, and they do not handle interrupts while preserving memory consistency. To
address these limitations, we introduced InK: the first reactive task thread scheduling
kernel that facilitates event-driven applications for intermittently-powered systems. We
evaluated InK based on software benchmarks and compared its performance against
task-based runtimes (i.e., Mayfly and Alpaca) using real hardware and real energy har-
vesting traces. Our results showed that InK significantly improves the reactivity of battery-
less sensing applications by up to 14 times, introducing a reasonable overhead. A signif-
icant portion of this overhead is attributed to InK’s inability to optimize the task size ac-
cording to the available energy. The ambient energy level can change significantly. When
it rises, it creates opportunities for intermittent systems to execute more instructions be-
fore suspending application execution for computation-progress protection. Moreover,
tasks energy demand is not fixed, when it is low the system has the chance to execute
more tasks per power cycle. Prior task-based systems including InK are oblivious to
these opportunities. Next, we investigate what does it take for an intermittent system
to optimize its task size without hardware support.
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DYNAMIC TASK-BASED

INTERMITTENT EXECUTION

4.1. INTRODUCTION
A task-based programming and execution model requires a programmer [33, 34] or a
compiler [90] to statically decompose a program into a collection of tasks. Tasks, top-
level functions, can include arbitrary computation that should be executed despite power
failures. At each task transition, a task-based system incurs an overhead to track and
atomically commit modifications to non-volatile memory, to maintain consistency of
program state [33, 34]. An obvious objective of such systems is thus reducing task tran-
sitions overhead. For that, a programmer may create very large tasks. A large task, how-
ever, may require more energy to complete than what a device’s fixed hardware energy
buffer can hold, which may lead to a task non-termination problem (Figure 4.1, right):
the system repeatedly tries to execute a task but fails to finish it due to power failures.
Therefore, statically optimizing task size faces the following dilemma: should large tasks
be used, that are efficient but risk non-termination, or small tasks that are guaranteed
to complete but incur a high task transition and commit overhead? Additionally, energy-
harvesting battery-less devices have access to a varying power source (ambient energy).
And, the energy demand of a task is not fixed. These variations in the required/available
energy budget make opportunities for intermittent systems to execute more tasks per
power cycle. However, static task-based systems are oblivious to energy conditions and
consequently to such opportunities.

Challenges and Contributions. We introduce Coala: a new task-based system that
employs adaptive task size execution by task coalescing and splitting. By means of this
novel technique, small tasks can be executed efficiently by trimming unnecessary over-
head dynamically, meanwhile avoiding the risk of non-termination. Coala accepts any
static decomposition and it coalesces (groups) tasks or splits them (see again Figure 4.1)

Parts of this chapter have been published in ACM TOSN [74].
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T1 T2 T3

T1 T2 T3
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coalesced tasks
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large static task

split task

reboot power failure reboot power failure
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Figure 4.1: Task coalescing reduces commit overhead (left), while task splitting enables termi-
nation of large tasks (right). S: static legacy task-based runtime, C: Coala (this work).

based on the estimated energy availability without demanding any hardware support.
To the best of our knowledge, Coala is the only system that eliminates restructuring and
re-compilation of applications considering a device’s energy buffer—enabling energy-
storage independency for the applications, while keeping execution efficient.

The unique contributions of Coala in relation to challenges of task-based systems
revealed by this work are listed below.

C1 Overcoming Task Transition Overhead: given unpredictable incoming energy, how
to save computation state at task transitions as rare as possible? Coala tries to
minimize task transition overhead by estimating energy conditions at run-time
using recent execution history as a metric.

C2 Dynamic Memory Consistency Handling: merging static tasks on the fly rises the
need for dynamic memory consistency handling. This leads to the second chal-
lenge: how to dynamically detect inter-coalesced-task data dependencies and en-
sure efficient protection against power interrupts? Coala addresses this challenge
by relying on its novel Virtual Memory Manager (VMM). The VMM performs real-
time dependency tracking to enable protection on a task transition. Individual
variables tracking, however, slows down a system dramatically. Therefore, the
VMM keeps memory consistent through privatizing pages and optimizes bulk data
transfer through Direct Memory Access (DMA).

C3 Ensuring Task Termination: a static task decomposition model assumes that each
task can execute to completion. If the hardware energy buffer provides inadequate
energy to execute each task to completion, a program will not terminate [38]. This
leads to a third challenge: how to enable the dynamic execution model to progress
on a sub-task level? To avoid non-termination under adverse energy conditions,
Coala uses a timer-based partial task commit mechanism. Partial execution avoids
non-termination by committing the intermediate state of a long-running task that
has repeatedly failed and restarted.

To asses the benefits of Coala over existing task-based systems, we implemented and
tested six benchmarks on a real energy-harvesting platform. Our evaluation shows that
Coala reduces run time overhead by up to 54% and solves task non-termination problem
where existing static task-based systems fail.
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Figure 4.2: Coala top-level view. APP: application, ATS: adaptive task scheduler, VMM:
Virtual Memory Manager, PM: physical memory.

4.2. COALA SYSTEM OVERVIEW
Coala is a new programming and execution model that supports adaptive task-based
execution and eliminates restructuring and re-compilation of applications considering
the device’s energy buffer. Coala addresses the challenges given in Section 4.1 by making
task-based intermittent applications portable in the sense of different energy storage
sizes while keeping their execution efficient. Fig. 4.2 shows an overview of Coala.

Programming and Execution Model. To use Coala, a programmer must (i) convert a
plain C code into tasks by encapsulating the code in a top-level set of functions, (ii) se-
quence the control-flow between these tasks, and (iii) annotate memory accesses that
manipulate task-shared data. Then, they compile and link the code against Coala’s run-
time, producing a Coala-enabled binary. The runtime relies on Coala’s novel adaptive
task scheduler to adapt its execution to the energy conditions. Facilitating efficient task
adaptation requires dynamic memory protection which Coala’s virtual memory man-
ager handles through page privatization.

Adaptive Task Scheduler. Coala’s adaptive task scheduler (ATS) makes energy-aware
scheduling decisions to group tasks together or split a task. By coalescing tasks Coala
amortizes commit and transition costs, and by splitting a task, after it repeatedly failed
to complete, it avoids the task non-termination problem. The scheduler uses its recent
execution history—i.e. it is hardware independent—as a metric to estimate energy avail-
ability and eventually to decide on the coalesced task size. Section 4.3 describes ATS.

Virtual Memory Manager. Coala virtual memory manager (VMM) is the key enabler
to ensure memory consistency while coalescing tasks. VMM allows applications to inter-
face with only fast volatile memory pages and privatizes the pages demanded by a coa-
lesced task in order to solve a novel data consistency problem; namely task coalescing-
induced WAR dependencies. VMM achieves page privatization by keeping all page mod-
ifications in non-volatile memory on a coalesced task transition. Section 4.4 explains
VMM.
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Algorithm 1 Coalescing

1: C ← fREBOOT(z) ▷ Update coalescing target by reboot update function
2: H ← 0 ▷ Initialize history
3: while true do
4: j ← 0
5: while j ≤C do
6: EXECUTE_TASK(Ti) ▷ Ti is the i th task executed since the last power failure
7: W ← fWEIGHT(Ti) ▷ Assign new task-dependent weight
8: j ← j +W
9: H ← H +W

10: COMMIT_TO_FRAM()
11: C ← fCOMMIT(C ) ▷ Update coalescing target by commit update function

4.3. COALA TASK ADAPTATION
Coala’s design includes a novel task scheduler. It uses efficient, energy-aware task coa-
lescing to amortize static task overheads, and a timer-based task-splitting mechanism to
avoid non-termination of tasks too long for a device’s energy buffer.

4.3.1. TASK COALESCING
When a device’s buffered energy is sufficient to run multiple tasks without a power failure,
committing state after each task is unnecessary overhead. Coala reduces this overhead
by coalescing a sequence of tasks and deferring commit operations for all tasks to the
end of the sequence. In general, committing involves moving state manipulated by a
task into its permanent location in non-volatile memory. In particular, Coala’s commit
procedure copies dirty pages of memory that a task updated from fast, volatile working
memory to slower, non-volatile main memory. We defer the details of paging privati-
zation and commit to Section 4.4. An effective coalescing strategy must be aggressive
enough, attempting to coalesce a large number of tasks to amortize commit overhead.
However, it must also be conservative enough, coalescing only as many tasks as will ex-
ecute to completion given certain energy conditions, reducing the risk of re-execution
penalty for long coalesced tasks.

GENERIC DESIGN OF TASK COALESCING STRATEGIES

Algorithm 1 shows the general structure of a coalescing strategy. In the algorithm, C
(coalescing target) is total number of static tasks that Coala will next attempt to coalesce.
Ti is the i th task executed since the last power failure. H (history) is the total number of
tasks executed since the last power failure. Wi is the weight of a task. A task’s weight is
an arbitrary quantity associated with the task that represents its cost in time or energy
to execute. Different coalescing strategies may apply different weights to a task, e.g.,
Wi = 1 ∀i , or Wi = αE(Ti) where E(Ti) is the average execution time of Ti and α is a
constant.

TASK COALESCING STRATEGIES

Different coalescing strategies adhere mainly to the template in Algorithm 1, varying in
only a few characteristic operations that the algorithm leaves deliberately abstract. The
reboot update function, freboot, updates C , the coalescing target, after a reboot. The
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Figure 4.3: EG coalescing sample execution across two power cycles. C : coalescing target, H:
history.

weight lookup function fweight returns a task’s weight. The commit update function
fcommit updates C after a successful commit. The following paragraphs detail three coa-
lescing strategies that we developed for Coala, albeit not the only possible. In fact, Coala
allows programmers to design their own strategy to implement and link against Coala’s
task scheduler.

Energy-Oblivious Coalescing. Energy-Oblivious (EO) coalescing strategy treats all tasks
as having unity weight and varies the size of the coalescing target linearly. In such a
scheme, the number of tasks to coalesce, C , increases by a constant x when a coalesced
sequence of tasks commits and decreases by the same constant x when a coalesced se-
quence of tasks fails to complete, i.e., after a power failure. The characteristic operations
of EO are

freboot(C ) =C −x,

fweight(Ti) = 1,

fcommit(C ) =C +x.

(4.1)

EO reacts slowly to the variation in the energy required to execute different tasks and to
the variation in the effective quantum of energy available to the device. With the suc-
cessful commit of each coalesced task sequence, C increases. Eventually, the target may
be too high and only a coalesced task composed of a few units will commit without inter-
ruption by a power failure. The strategy then linearly decreases C , eventually reaching
a value that allows completion. A key limitation of this algorithm lies in the equality of
the target decrease in freboot and the increase in fcommit. Let us assume x = 1. If, after k
successful commits, the target must decrease to its original value C −k due to an energy
drop, EO requires k successive reboots to progress.

Energy-Guided Coalescing. The Energy-Guided (EG) coalescing strategy adapts its co-
alescing target more quickly, to adhere to changes in energy conditions, addressing a key
limitation of the EO. It uses its recent execution history, H, to estimate energy availabil-
ity and alters its target accordingly. The EG algorithm is characterized by the following
functions

freboot(H) = ⌈ρH⌉,

fweight(Ti) = 1,

fcommit(C ) = ⌈γC⌉,

(4.2)

where ρ,γ ∈ [0,1]. By relying on the history of execution EG eliminates the problem of
frequent power failures on a single coalesced task. In fact, at each reboot, EG will con-
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Figure 4.4: Anatomy of Coala coalescing. A snapshot of measured data showing how Coala
coalesces static tasks. Coala takes advantage of the guarantee that an energy buffer offers after
a reboot: code execution resumes after energy accumulation reaches the operational threshold
(a maximum threshold). Thus, Coala starts with a big coalesced task and shrinks it gradually
as the risk of a power failure increases. T stands for task code execution and C for commit or
power cut.

servatively try to coalesce only a fraction (ρ) of tasks that had successfully completed
during the last power cycle. Fig. 4.3 illustrates a snapshot of the operation of EG, with
ρ = γ = 0.5. The figure shows two power cycles following the i th, the latter having an
execution history H (i ) = 4. Based on that, C is initially set to two and then decreases to
one. Once the value of C reaches one, EG is expecting a power failure, justifying the con-
servative approach. After the reboot, EG uses the most recent history H (i+1) = 8 to set
C = 4 and continue execution.

Weighted Energy-Guided Coalescing. The Weighted Energy-Guided (WEG) coalescing
strategy accounts for non-uniform energy and time costs of a program’s tasks when set-
ting C . Each different task in the program consumes a different amount of energy to
run to completion. The EO and EG coalescing strategies assume that each task has the
same cost: for these strategies, C simply corresponds to a target count of tasks to coa-
lesce, regardless of the individual cost of each task. However, if one task executes for
ten seconds and another executes for one second, counting tasks misjudges the amount
of work in the coalesced tasks (and the history). Instead, WEG associates a non-unity
weight with each task in the program, and tracks the sum of the weights of tasks in a
coalesced sequence. When the sum of weights reaches C , the target, WEG commits the
coalesced task. WEG is characterized the same way as EG (equation (4.2)), except that
fweight(Ti) =Wi.

Fig. 4.4 shows a real measurement of Coala coalesced tasks. It shows how Coala co-
alesces aggressively when the execution is just re-started, taking advantage of the full
energy buffer, and how it reduces the coalesced task gradually to minimize the risk of
significant progress loss when a device fails. The average measured static task size is
≈ 0.28 ms while the commit time (time needed to save the data into non-volatile mem-
ory) averages at ≈ 0.64 ms. This highlights the importance of coalescing.

4.3.2. TASK DOWNSCALING

Coala uses task downscaling to make progress through a task that is too large to com-
plete using the buffered energy. Task downscaling executes part of the long task and
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Figure 4.5: Task coalescing-induced WAR dependency (in the case of this example, at variable
x). Such dynamic dependencies cannot be resolved at compile-time and they break memory
consistency.

interrupts its execution with a partial commit, after which the long task continues. This
timer-based solution is similar to the one proposed in [29]. If power fails, the partial com-
mit preserves the progress through the task, and execution resumes from the point of the
partial commit, rather than from the start of the task. Eventually, after some number of
partial commits and power failures, the task will complete and execution will proceed.

Detection of Non-terminating Tasks. The key design issue for task downscaling is de-
ciding when to partially commit. A task is likely to be non-terminating if it fails to run to
completion twice consecutively. The second incomplete run executes after a power fail-
ure, when the device will have fully recharged its energy buffer. If a task cannot complete
when executing with a full energy buffer, Coala marks the task as non-terminating. Task
downscaling violates task atomicity in a non-terminating execution, favoring continued
progress over atomicity. If a programmer requires a task’s atomicity to be preserved, they
can disable task downscaling for that task or a portion of it.

4.4. COALA MEMORY MANAGEMENT

Resolving WAR (Write-After-Read) dependencies by considering static task boundaries
is not sufficient to keep non-volatile memory consistent when tasks are coalesced. Not
handling WAR dependencies on a coalesced task scope introduces a new problem, which
we denote as task coalescing-induced WAR dependency. This problem is illustrated in
Fig. 4.5. Therefore, Coala implements a novel Virtual Memory Manager (VMM) that en-
ables safe task coalescing and ensures efficient data manipulation.

VMM overview is given in Fig. 4.6. VMM abstracts the physical address space of the
non-volatile memory (FRAM) and divides it into private and shadow (underlined loca-
tions are non-volatile) buffers, and each buffer is divided into pages. private holds the
consistent version of pages after each commit (and on a reboot), while shadow enables
atomic two-phase commit: it allows Coala to ensure a persistent and consistent set of
non-volatile pages before copying them to private (Section 4.4.3).

The VMM prohibits applications from directly accessing these buffers. Instead, it
redirects any request to the working buffer: a relatively small buffer located in the volatile
memory (SRAM), which has a lower latency and energy cost to access than FRAM. It
populates the working buffer with the privatized pages from non-volatile memory re-
quested by tasks. With the help of shadow, the working buffer can serve more pages
than its own capacity.
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Figure 4.6: Interaction between task, memory manager and memory buffers upon RP and WP,
and order of occurrence. Steps 2, 3, 4 and 5 are conditional.
Algorithm 2 RP(variable v)

1: t ← GETTAG(v)
2: i ← { j | GETTAG(working[ j ]) = t } ▷ Search page
3: if i =; then ▷ Variable in a resident page?
4: i ← PAGEFAULT(t ) ▷ Swap page in

5: o ← GETOFFSET(v)
6: return working[i ][o] ▷ Return from page

When a coalesced task completes, the VMM ensures that dirty, i.e., modified, pages
are committed to FRAM and visible to subsequent tasks. If a power failure interrupts a
task, all temporary modifications to pages in working (and shadow) occurred after the
last commit are discarded in order to keep data consistency. On a commit, the VMM
atomically copies, through a two-phase commit, all dirty pages back into their location
in the non-volatile memory.

4.4.1. ADDRESS TRANSLATION AND VARIABLE ACCESS
A task must access protected non-volatile variables through Coala’s restricted memory
interface. The interface includes RP(v), to read the value of variable v , and WP(v) to as-
sign a value to variable v . The implementation of RP is shown in Algorithm 2, and WP’s
implementation is similar except that accessed page are marked as dirty. RP and WP op-
erations translate a variable’s physical address in non-volatile memory into a virtual ad-
dress in working in volatile memory. In Coala, a virtual address is composed of a page
tag that identifies the page and a page offset that identifies a byte.

After address translation (Fig. 4.6, Step 6), a task accesses the protected variable’s
location in the volatile working buffer (Step 7). The VMM keeps track of the page tags
for the pages currently resident in the working buffer. When a task accesses a variable,
it compares the variable’s page tag to tags of the pages in working (Algorithm 2, Line 2).
If the accessed variable’s page tag is not found in the page buffer, the operation incurs a
page fault (Line 4). The byte is accessed in the page buffer at the index of the resident
page and the variable’s page offset (Lines 5–6).

4.4.2. PAGE FAULTS AND PAGE SWAPPING
When accessing a protected variable with RP or WP, the memory manager first searches
the variable’s page in the working buffer (Fig. 4.6, Step 1). If the page is not found there,
a page fault is incurred and a new page needs to be swapped in. If the working buffer is
full, a page fault on memory access requires the VMM to swap out one of the pages in the
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working buffer (a victim page) preserving updates made to that page. If a task modified
any byte in the victim page (i.e., using WP), then the page is dirty and its changes have to
be persisted to non-volatile memory (Fig. 4.6, Step 2). If the accessed page was previously
modified and swapped out since the last power failure, the most recent version of the
page is in shadow (Step 3), otherwise it has to be retrieved from private (Step 4). Finally,
the page is copied to the volatile buffer (Step 5).

4.4.3. ATOMIC TWO-PHASE COMMIT OF DIRTY PAGES
When the last task in a sequence of coalesced tasks completes, Coala must commit all
dirty pages in working and shadow, copying them back to their original locations in
private.

To make the commit atomic, Coala commits dirty pages in two phases, as shown
in Algorithm 3. The first phase copies dirty pages from working to the non-volatile
shadow (Line 4). The second phase commits pages from shadow to private (Line 12).
If power fails during the first phase, the whole commit is aborted, and the execution
restarts from the most recently committed point (i.e., from the beginning of a coalesced
task). If power fails in the second phase, the commit process safely resumes on reboot.
The second phase depends on some run-time metadata. The committing bit indicates
that a commit is in progress and is set before the first page is committed (Line 9) and
cleared after the last page is committed (Line 16). The shadowCount records the number
of dirty shadow pages to be committed and the VMM clears the counter when commit
completes (Line 14). The commitIndex indexes the next page to be committed (Line 11)
and the VMM clears the index at the end of the phase (Line 15).

Coala’s commit is efficient because it maintains an index of dirty pages instead of
iterating through all potentially dirty pages to check their state. Another source of ef-
ficiency lies in the second phase of the commit: the VMM does not copy page content
from shadow to private, instead it swaps pointers in an indirection table that maintains
the pages as a double buffer.

Memory Consistency. Coala’s paging mechanism ensures that a task only ever exe-
cutes using consistent protected data. During task execution, modifications to protected
data do not affect the private buffer, as a task reads and writes the volatile working
buffer only, and modified pages are kept in shadow until commit. A power failure erases
the contents of the working buffer, preventing a re-executing task from observing up-
dates from a previous execution attempt. Clearing shadowCount as part of the second
phase commit (Line 14) ensures that all accesses to protected variables in subsequent
tasks correctly access their consistent memory locations in private. This solves the
coalescing-induced WAR dependency problem (see Fig. 4.5 again).

4.4.4. DYNAMIC PAGING OF COALA
Coala asks the programmer to use its RP and WP API methods on every access to a pro-
tected variable (Section 4.5.1). These API invocations present a risk of high overhead
because there is a dynamic check on every read and write. Despite the risk of per-access
overhead, Coala’s dynamic memory protection scheme brings several benefits over a
static approach (i.e., [34]). First, the limitations of static analysis preclude some uses
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Algorithm 3 Two-phase commit

1: procedure COMMITPHASE1 ▷ On completion of a coalesced task
2: for i ∈ 0..|working|−1 do
3: fdirty, t ← TAGFLAG(working[i ])
4: if fdirty then ▷ Is the page content modified?

5: shadow[TAG(working[i ])]
DMA←−−−− working[i ]

6: shadowList[shadowCount] ← t
7: shadowCount← shadowCount+1

8: COMMITPHASE2
9: procedure COMMITPHASE2 ▷ commitIndex 0 on first boot

10: committing← true
11: while commitIndex < shadowCount do
12: t ← shadowList[commitIndex]
13: COMMITTOPRIVATE(shadow[t]) ▷ Copy shadow to private by swapping their pointers
14: commitIndex← commitIndex+1

15: shadowCount← 0
16: commitIndex← 0
17: committing← false

18: procedure ONBOOT ▷ Invoked on every boot
19: if committing then COMMITPHASE2

20: shadowCount← 0

of pointers due to potential pointer aliasing. For example, in the presence of arbitrary
pointer operations, a function call using a function pointer, or an interrupt within a task,
the system cannot statically analyze the memory behavior. Second, a static approach
cannot handle task coalescing, because a protected variable’s lifetime, i.e., from first use
to commit, is unknown at compile-time. Coala’s dynamic, per-access instrumentation
supports arbitrary use of pointers and enables task coalescing.

4.5. COALA IMPLEMENTATION
We implemented Coala’s programming and execution model as a runtime library and
API that a programmer can use to make a plain C program intermittency-safe.

4.5.1. APPLICATION PROGRAMMING INTERFACE

Coala’s API adds only a few syntactic constructs to a C-based language, summarized in
Table 4.1.

New Tasks. The TASK annotation on a function declaration statically allocates a non-
volatile constant variable holding a task’s weight and declares that the function is a task.

Task Transitions. NEXT_TASK marks the task to be executed after the current one and it
can be invoked along any control path to dynamically determine the next task.

Protected Variables. The PV annotation on a variable statically allocates a protected non-
volatile variable. The variable must then be accessed with the RP and WP API methods
at run-time to ensure correct operation. The SM annotation is used to align C structure
data type within a page.
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Table 4.1: API summary; T: set of all tasks, V: set of all protected variables, [, s]: optional
argument.

Method Arguments

INIT(t ) t ∈ T: scheduled task on first boot

RUN() —

TASK(t , wt ) t ∈ T: task name, wt : weight of task t

NEXT_TASK(t ) t ∈ T : task to be run next

PV(p, v [, s]) p: type, v ∈ V: name, s: array size

u := RP(v) v ∈ V: protected variable to read, u: dest. operand

WP(v) := u v ∈ V: protected variable to write, u: source operand

SM(p, m [, s]) p: type, m: name, s: array size

DISABLE_PC() —

ENABLE_PC() —

Initialization. The behavior of the API method INIT is very similar to NEXT_TASK, with
the addition of performing preliminary kernel initializations, including hardware setup.

Execution. The programmer passes control to Coala’s task scheduler by calling RUN after
device initialization.

Partial Commit. The DISABLE_PC() and ENABLE_PC() allow a programmer to disable
partial commit around certain code.

4.5.2. INITIALIZATION PROCEDURE

On a reboot, Coala’s scheduler does a number of system level operations before execut-
ing a task. First, it updates the coalescing target according to the applied coalescing
strategy. Then, it finishes any interrupted commit and clears the list of dirty shadow
pages. After that, the scheduler sets the program counter to the next task to run, which
Coala tracks in non-volatile memory. Before executing the task, Coala checks whether
there is a partially committed task to resume, which requires Coala to restore the volatile
state, including the program counter. If there is no in-progress, partially committed task,
Coala starts executing and coalescing tasks.

4.5.3. TASK COALESCING

Parameters. Equations (4.1) and (4.2) parametrize the behavior of the coalescing strate-
gies in terms of x, ρ and γ. We experimented with a range of values, and then used the
ones that yielded the best performance: x = 1 (for EO) and ρ = γ= 1 (for EG and WEG).

Weights for WEG. The effectiveness of the WEG hinges on correctly identifying the
weight of each task, which WEG assumes is statically available. Profiling the time and
energy cost of tasks in a program is a difficult, orthogonal problem [38, 90]. WEG could
use the result of an arbitrarily sophisticated profiling procedure. To produce a concrete
result, we give WEG access to a simple profile of task run time (collected offline) using a
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single fixed input. WEG stores the profile in a lookup table that maps a task’s identifier
to its weight, making the information available to Coala’s scheduler at run time.

4.5.4. TASK DOWNSCALING
Timer Strategy. After identifying a task as likely non-terminating, Coala must decide
when during the task’s execution to partially commit the task’s state. Coala sets a timer
at the start of the likely non-terminating task, initializing it to a very large value (e.g., an
estimate of the maximum execution time using the device’s energy buffer). If the timer
expires before power fails, Coala partially commits, retaining the timer value to use for
future partial commits. If the timer does not expire before power fails, Coala halves the
timer and tries again. The exponential decrease of the timer value converges rapidly to a
usable one.

Partial Commit and Task Atomicity. Some applications may prevent downscaling a
task because of a need for task atomicity. For example, sampling an analog signal re-
quires consecutive samples at a known interval, or the digitally sampled signal is mean-
ingless. In such a case, the programmer can disable partial commit for a task or a span of
code, marking the code with a pair of DISABLE_PC and ENABLE_PC annotations. These
annotations respectively halt and resume the partial commit timer.

4.5.5. PAGING
Efficiency. Coala uses address-based page tagging to make finding a variable efficient.
The upper bits of a variable’s memory address identify its page, and the lower bits denote
the variable’s offset in its page. The total number of pages in memory, P , determines
the number of tag bits, which is log2 P . Furthermore, the VMM moves pages of data
efficiently using hardware-accelerated DMA support.

Alignment. Page tagging imposes a data alignment requirement. The page size S must
be a power of two. Pages must be aligned to an S-byte boundary for efficient memory
access. To preserve alignment, when typedef’ing a C structure for protected variables,
the programmer has to use the API method SM on all members of the structure (only
when defining the structure).

Page Eviction. When a page in working has to be swapped out to make room for a
newly requested one, an eviction policy has to be chosen. While we opted for the sim-
plicity of FIFO, any other replacement policy, such as Least Recently Used, could work in
its place.

We experimented with 32-, 64-, 128- and 256 B pages, an 8 kB non-volatile shadow
buffer and an 8 kB non-volatile private buffer, and a working buffer of 1 kB.

4.6. METHODOLOGY
We prototype Coala and use its API to implement a set of benchmark applications repre-
sentative of the embedded domain. We build the applications and deploy the binaries
onto a real energy-harvesting device.
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Table 4.2: Characteristics of benchmarks used for evaluation.

App. Tasks SLOC Description

ar 10 428 activity recognition using a KNN

bc 10 371 several bitcount algorithms

cuckoo 14 426 Cuckoo Filter with pseudo-random values

dijkstra 5 198 Dijkstra shortest path algorithm

fft 8 449 Fast Fourier Transform

sort 4 167 selection sort algorithm

4.6.1. EXPERIMENTAL SETUP
We used three different setups to evaluate Coala: (i) an RF-powered energy-harvesting
device, WISP 5.1 [20, 77], with a fixed capacitor size of 47µF; (ii) an MSP-EXP430FR5969
launchpad [146] powered by a BQ25570 [147] solar power harvester that is connected to
an IXYS SLMD121H04L solar cell [148] for experimenting with different energy buffers;
and (iii) an MSP-EXP430FR5969 launchpad [146] that is continuously powered.

Every benchmark used in Section 5.4 was run repeatedly on each platform for a few
minutes to ensure capturing a diverse power trace. The exact number of iterations de-
pends on the ambient power intensity and the application itself. In our experiments, the
number of complete runs ranges from 4 to 125.

WISP contains a low-power MUC (MSP430FR5969 [149]) with 64 kB of non-volatile
(FRAM) memory and 2 kB of volatile (SRAM) memory and was configured to 1 MHz clock
speed. WISP was powered using an RF signal generator emitting a 20 dBm sinusoidal
wave at 915 MHz. The signal generator was connected to the Laird RFMAX S9028PCRJ
8 dBic antenna [150]. The antenna was oriented towards and in parallel with WISP’s an-
tenna, and no objects obstructed the path. We affixed WISP with a paper harness at the
edge of a table at a height, from the table surface, of 10 cm. For distance-controlled ex-
periments we positioned WISP at d = {15,30,50} cm from the exciter antenna. To obtain
execution time, the software toggled GPIO pins at sections of the code under profile, and
the Saleae [135] logic analyzer measured intervals between edges in the signal. For con-
tinuous power experiments, the execution time was measured using the clock features
in TI Code Composer Studio IDE version 7.1.

4.6.2. SOFTWARE BENCHMARKS
We evaluated Coala using six benchmarks that are often used in embedded systems
(summarized in Table 4.2). All applications were compiled using MSP430 GCC [151] ver-
sion 6.4.0 with -O1 as optimization flag. The source code for all benchmarks is released
via [152].

Comparison with Alpaca using the GCC compiler. We compare Coala against Alpaca,
a state-of-the-art task-based system for intermittent computing. For a fair comparison,
the task decomposition of the benchmarks is ensured to be the same for both systems.
Since Alpaca’s compiler pass is implemented only for LLVM, we could not use that im-
plementation to instrument the benchmarks and compile them with GCC. Instead, we
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Figure 4.7: Breakdown of overhead for the proposed coalescing strategies: NC (no coalescing),
EO (energy-oblivious), EG (energy-guided), WEG (weighted energy-guided). All coalescing
strategies reduce total overhead and maximize useful work. EG and WEG perform better than
EO.

manually performed the instrumentation done by the compiler pass. The instrumen-
tation consists of identifying WAR dependencies and adding code and memory alloca-
tions to make a private copy of the affected variables. By compiling both systems with
the same compiler (GCC), we ensure that our comparison in Section 5.4 is fair.

4.7. COALA EVALUATION
Our evaluation quantitatively demonstrates that Coala (i) reduces memory protection
overhead, (ii) improves execution speed in most cases, and (iii) is able to progress where
static systems suffer from a task non-termination loop.

4.7.1. CHARACTERIZATION OF OVERHEAD

To characterize Coala’s overhead we experimented with WISP positioned at 15 cm away
from the signal generator antenna. We have broken down Coala’s overhead to explain
the source of its improved performance.

Overhead Reduced by Coalescing. For each coalescing strategy from Section 4.3 (EO,
EG, and WEG) and for a baseline without coalescing (NC), we have measured the time
spent on executing (i) useful task code, (ii) task code wasted due to a power failure, and
(iii) commits to non-volatile memory at the end of each (coalesced) task. The overhead
incurred by each coalescing strategy is broken down in Fig. 4.7. Without coalescing en-
abled (NC), the re-execution penalty is the smallest, because the amount of work that
can happen between commits and may have to be re-executed if interrupted is reduced
when work from multiple static tasks is not combined. However, any gain from a reduced
re-execution penalty is canceled out by the increased commit overhead that is incurred
at the end of each static task. Across all benchmarks, all Coala’s coalescing strategies
reduce more commit overhead than the re-execution overhead they add. This net over-
head reduction is greatest in EG and WEG strategies compared to the EO strategy. We
attribute this discrepancy to EO’s energy-unaware adjustment to the coalescing target.
In the subsequent experiments, we focus on the better-performing EG and WEG.
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Figure 4.8: Coala’s internal overhead. NC: no coalescing, EG: energy-guided, WEG: weighted
energy-guided.

Coala’s Kernel Overhead. Fig. 4.8a breaks down the time spent on executing user task
code versus the time spent on kernel operations. When coalescing is not enabled the
commit overhead is highest. The overhead for memory accesses increases in percentage
when enabling coalescing, but not in absolute terms. For both coalescing strategies (EG
and WEG) accesses to protected variables constitute about 30% of the runtime overhead.
Dynamic address translation necessary on each protected access is the most critical bot-
tleneck for Coala.

Protected Memory Accesses Breakdown. Fig. 4.8b breaks down protected memory ac-
cesses into three categories. Each type of protected access incurs a different overhead.
Accessing the most recently used SRAM page is of the cheapest kind. Accessing a differ-
ent page in SRAM has a slightly higher cost. Finally, accessing a page that needs to be
swapped in from FRAM into SRAM is the most expensive. The results in the figure show
that the overwhelming majority of accesses are of the cheapest kind, which motivated
us to optimize this accesses in our implementation. Only cuckoo, dijkstra, and fft have
non-negligible number of accesses to a different SRAM page, which is due to the larger
working set and a less regular access pattern in these applications. In general, memory
access patterns are shaped by the application, and the more program state is protected,
the higher the rate of page swaps.
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Figure 4.9: Coala’s coalescing performance. Application execution time with coalescing (EG
and WEG) normalized to the execution time without coalescing (NC).

Cap. size (µF) Exp. time (s) On/Off cycle Coal. task (ms) Runs Run time (ms)

47 1205 12.93% 33 85 183

470 1205 12.79% 88 87 177

Table 4.3: Comparison of Coala performance running the sort application on two different
capacitor sizes. The results show that Coala optimizes its coalesced task size based on the
energy buffer size. Coal. task refers to the length of the first coalesced task after a reboot,
Exp. time shows the experiment duration, the Runs column lists the number of complete runs
of the application during the experiments. Run time is the device collective uptime needed to
finish a single iteration of the sort application.

4.7.2. EXECUTION TIME
Having shown in Section 4.7.1 that coalescing reduces overhead, we now investigate the
outcome of this reduction on the total execution time. We first investigate different vari-
ants of Coala and then compare the best variant to Alpaca [34]. Additionally, we compare
Coala performance running with different energy buffer sizes.

Speedup with Coalescing. Fig. 4.9 shows Coala’s run time of two coalescing strate-
gies (EG, WEG) normalized to the run time without coalescing (NC). The results show
that all benchmarks complete faster with coalescing than without coalescing: from 25%
(ar) up to 70% (sort). This speedup is a consequence of the reduced overhead demon-
strated in Section 4.7.1. However, the magnitude of the speedup is (1) highly application-
dependent and (2) largely similar across the two coalescing strategies, with the exception
of fft. In some cases (bc, cuckoo, sort) WEG’s task weighting system is counter-productive.
This occurs in task decompositions with energy-uniform tasks, where counting tasks dis-
regarding their energy consumption provides an equal amount of information with a
smaller effort. In fft, tasks are not uniform, and accounting for their different weights
is beneficial. In fact, the lack of task energy awareness is detrimental: with EG fft runs
slower than without any coalescing (NC). The speedup is highest for bc, cuckoo, dijkstra
and sort, because their tasks are relatively small and are easily coalesced.

Benefits of Adaptive Tasks. We now compare Coala’s performance to Alpaca [34]—a
non-adaptive task-based system with tasks fixed at compile-time. Fig. 4.10 shows the
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Figure 4.10: Coala’s execution time normalized to Alpaca’s, for three distances from the energy
source (15, 30 and 50 cm).

average execution time of each application for Coala and Alpaca, normalized to the latter
or, when not possible, to one second. Coala provides a performance benefit compared to
Alpaca for most applications. For example, it is 54% faster than Alpaca when executing
the bc application. In general, the speedup is greatest for applications with repeated
WAR dependencies throughout their code, particularly involving arrays (dijkstra, fft and
sort). Coala’s VMM successfully amortizes the overhead of protecting memory that is
accessed in such patterns. In applications without locality among accesses to protected
variables Coala incurs overhead from memory virtualization that causes its performance
to be comparable to (or worse than) Alpaca (ar, cuckoo).

Due to its static progressing behavior, Alpaca was unable to complete the fft bench-
mark on distances larger than 15 cm1. This is marked with ∞ signs in Fig. 4.10. Coala,
however, managed to complete fft by enabling its task downscaling at 30 cm and 50 cm
from the energy source.

Different Capacitor Sizes Table 4.3 shows how Coala optimizes its Coalescing task size
based on the amount of buffered energy at runtime. This means that applications im-
plemented in Coala are portable across devices with different capacitor sizes without
recompilation; they are also more resilient to degradation in capacitor size due to tem-
perature and device lifetime.

We see that Coala scales up its coalesced task size with a bigger energy buffer and vice
versa. This allows it to reduce the time-to-completion of the applications. For example,
the sort run-time is reduced from 183 ms to 177 ms when the capacitor is changed from
47µF to 470µF. It should be emphasized that a device with a bigger energy buffer suffers
less from power failures (but requires longer charging time).

Overall, Coala shows better performance than its counterpart, and it is able to over-
come the big task (i.e. fft tasks) problem that the static task-based systems suffer from.

4.7.3. VIRTUAL MEMORY PERFORMANCE
We characterize the performance of Coala’s virtual memory sub-system in an experi-
ment on a continuously-powered evaluation board, as described in Section 4.6.1.

1At distances less than 15 cm the total amount of energy available for task execution includes significant
amount of energy being harvested while the device is executing in addition to the stored energy.
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Figure 4.11: Effect of page size (in bytes).

Effect of Page Size on Runtime. Fig. 4.11a shows the execution time as a function of
page size (in bytes), normalized to the lowest per-application performance among the
set of page sizes. The data suggest that there is a page size that minimizes execution
time. The best page size is not the same for each application. Nevertheless, if a choice
must be made for all applications, 128 B pages are the best option.

Effect of Page Size on Page Faults. Fig. 4.11b reports the number of page faults, per
application run, as a function of page size (in bytes). The smaller the page the more
likely that a memory access will land outside that page and that a new page will have to
be swapped in. This trend is visible for all applications, except for bc. The total amount
of data accessed by bc, as well as its working set, is small. Even with the smallest page,
all accesses are contained within that page, and no page fault occurs. Without any page
faults to begin with, increasing the page size only yields overhead.

4.8. CONCLUSIONS
Software for intermittently-powered energy-harvesting devices requires a dedicated run-
time system. Coala is a new task-based system whose distinguishing feature is its adapt-
ability to changing energy conditions at run-time. When more energy is available, Coala
makes faster progress through the computation by coalescing statically-defined tasks.
When less energy is available, progress is latched at sub-task granularity. Coala’s page
privatization system ensures that program state in non-volatile memory remains con-
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sistent and amortizes the cost of state transfer between volatile and non-volatile mem-
ory. Our evaluation across applications on a real embedded energy-harvesting device
demonstrates the utility of Coala, as well as its practicality when heterogeneous devices
are considered.

The primary application of tiny energy-harvesting battery-less devices is sensing. InK
and Coala provide reactive and dynamic execution, which enable efficient intermittently-
powered sensors to directly react to external events. Energy-harvesting battery-less sen-
sors, however, are most of the time off charging. Therefore, they miss many sensing op-
portunities, which violates the available requirement of many real-world applications.
This limitation is addressed in the next chapter.
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5
COALESCED INTERMITTENT

SENSOR

5.1. INTRODUCTION
An intermittent power supply introduces a set of new challenges. In Chapters 1 and 2,
we have argued that prior work has addressed challenges associated with intermittent
computing. Then, Chapter 3 and 4 detailed what it takes to enable reactive (InK) and dy-
namic execution (Coala) on intermittent power. Such an execution model is well suited
for driving sensing applications because these applications are reactive in nature (e.g., a
sensor reacting to a change in temperature). Despite that, intermittently-powered sen-
sors still suffer from a fundamental shortcoming: the intermittent availability of the sys-
tem. Being frequently off compromises the value of these devices. For example, a sensor
that has a low probability (e.g., 10% [74]) to be available when an event of interest occurs
has no value. Overcoming the intermittent availability challenge without changing the
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Figure 5.1: Harvested energy profile of an intermittently-powered device. Ambient power is
weak; therefore, it is usually buffered. The buffered energy is then consumed to operate the
device. The operation period is often short as power consumption is much higher than the
energy harvesting rate.
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EH sensor
25% on

CIS sensor
+97% on

light off

Figure 5.2: A Coalesced Intermittent Sensor (CIS) is a group of energy-harvesting (EH) battery-
less nodes that sense continuously despite the intermittent power supply. Being a collection
of tiny sensors facilitates embedding a CIS in patterns without significant distortion (the dots
in the flowers). A CIS exploits the inherent randomization of energy-harvesting systems to
approach continuous sensing availability. On the left, we see that collective availability of a
CIS is +97% while its individual sensors are only 25% of the time on.

size of the device or re-including batteries requires a novel approach that explores new
design dimensions.

5.1.1. VISION AND APPLICATION
Miniaturized sensors are non-intrusive devices. Therefore, they can be embedded in
new locations and enable new applications. Miniaturizing sensors, however, signifies
their powering challenge. On one hand, batteries make these sensors continuously avail-
able -for sensing opportunities- but for a short period of time (even rechargeable bat-
teries wear out after a certain number of charging-discharging cycles [59, 153]). On the
other hand, removing batteries and relying on ambient energy make them available for
extended period of time, but intermittently. Our vision is that by combining multiple
battery-less energy-harvesting sensors we can create a new virtual sensor that operates
permanently (no batteries) and reliably (continuously available): we call this sensor the
Coalesced Intermittent Sensor (CIS).

Sensors with such characteristics would allow us to add a cheap and maintenance-
free sensing layer to many objects, making them smart and interactive. For example, one
can imagine developing smart wallpaper that users can interact with. Smart wallpaper
with embedded microphones can enable direct in-building human-to-object communi-
cation (Figure 5.2). Such a permanently operating sensor can be deployed, for example,
in kids’ playgrounds to monitor their occupancy. These battery-less sensors can enable
interactive and safe-to-dispose sports rugs (that count how many times a person has
jumped on them) or play rugs for kids. In short, we would like to develop small sensors
with permanent and continuous sensing capabilities.

5.1.2. RESEARCH CHALLENGES
Many sensing applications require the sensor to be available when there is a change in
the monitored environment. Energy-harvesting battery-less sensors can provide cheap
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and maintenance-free sensing, but they do not meet the availability requirements of
many real-world applications.

C1-Approach continuous availability on intermittent power: A battery-less sensor col-
lects energy from ambient sources to power its operations. Such a sensor, however, is
frequently off, spending most of the time charging. One way to increase the system avail-
ability is by using multiple nodes. However, coordinating the nodes’ awake times using
communication may introduce prohibitive overhead as a scattering algorithm must be
regularly executed, and messages for synchronizing nodes’ clocks and reserving time
slots need to be repeatedly exchanged. Thus, the question is can we exploit some of
the inherent characteristics of energy-harvesting battery-less sensors to distribute nodes’
awake times without the need for communication?

C2-Continuous sensing on intermittently-powered sensors: Even when the collective
availability of intermittent sensors approaches 100%, the emerging overall sensing be-
havior may still be intermittent. Event-triggered sensors sleep in low-power mode wait-
ing for an event to wake them up. When ambient energy rises, the energy-harvesting
rates of these sensors may equal (or approximate) their sleeping mode power consump-
tion. Under such energy conditions, these sensors become available for an extended
period of time. Therefore, when an external event arrives, nodes respond collectively,
which exhausts their energy buffers, making them unavailable for the next set of events.
This is a significant problem when events arrive in bursts, like a command of a few words
(e.g., “light on”). Thus, the question is, how to prevent energy-harvesting battery-less sen-
sors from synchronizing their power cycles on some of the incoming events?

C3-Efficient sensing on intermittent sensors: One of the main factors that determine
the intermittency pattern of an energy-harvesting battery-less sensor is the richness of
ambient energy. For example, at mid-noon under direct sunlight, even a small solar
panel can power a sensor node continuously. In such conditions (i.e., favorable energy
conditions), using plenty of intermittent sensors would only result in duplicated work
that leads to duplicated messages when the data is being communicated to a sink node:
a continuously-powered node acts as a gateway for such sensors to communicate with
the outside world. These messages will collide as they will be generated at approximately
the same time, and if some of them are received by the sink, then they waste energy as
they carry the same information. Thus, the question is, how to reduce the number of
duplicated event detections?

5.1.3. CONTRIBUTIONS

In this chapter, we tackle the paradox of continuous sensing on intermittently-powered
sensors. We studied the relationship between the power cycles of energy-harvesting
battery-less devices, the emerging collective behavior, and the effect of the change in
ambient energy on this behavior. In particular, we make the following contributions:

• We show how continuous sensing can be approached using multiple intermittently-
powered sensors. For that, we modeled the collective effective availability—the
system availability that leads to successful sensing—of a group of intermittent sen-
sors and validated our models using simulation and on real hardware against dif-
ferent ambient energy sources.
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• We introduce a new type of virtual sensor, showing its capabilities and limitations.
This Coalesced Intermittent Sensor (CIS) is the abstraction of a group of energy-
harvesting battery-less sensors that achieves maximum statistical availability by
exploiting (inherent) randomization to approach uniform distribution of nodes’
awake times.

• Contrary to common sense, we show how favorable energy conditions can dete-
riorate the performance of a CIS. We, therefore, equipped the CIS with an new
algorithm that makes it ambient-energy aware. This algorithm enables the nodes
to determine their own duty cycles (without requiring additional hardware), and
the average number of alive nodes (without requiring communication). This infor-
mation can effectively be used by the nodes to decide when to back off to avoid
duplicated event detection and availability interruptions.

• We prototype, evaluate, and demonstrate the feasibility of the CIS concept in the
form of a voice-control commands recognizer, the Coalesced Intermittent Com-
mand Recognizer (CICR). We chose to develop a command recognizer as voice is
a natural way for the human to interact with small devices. Moreover, words al-
low us to easily experiment with individual event arrivals and events that arrive
in bursts. However, our goal is not to present a novel word recognition technique.
Instead, we adapts a classical word recognition algorithm to make it power-failure
immune. Yet, our CICR prototype is the first intermittent command recognizer,
shedding light on the potential of intermittent systems.

5.2. COALESCED INTERMITTENT SENSOR
The Coalesced Intermittent Sensor (CIS) is the abstraction of a group of energy-harvesting
battery-less sensor nodes seeking to approximate the continuous sensing availability
characteristic of a battery-powered sensor. The design of a CIS needs to consider four
main aspects: (i) how the nodes’ awake time is distributed; (ii) the consequence of emu-
lating continuous sensing availability by chaining multiple short on-times; (iii) the effect
of the environment on the CIS’s availability; and (iv) the spatial coverage of the event of
interest, which determines the diameter of the CIS.

Let us first characterize the power cycle of an energy-harvesting battery-less device.
An energy-harvesting intermittent node frequently switches between off and on, charg-
ing energy and operating. We can characterize the time of this charge-discharge (or
power) cycle using the following notation, (ton, tp), where ton is the node’s on-time in-
terval, and tp := ton + toff, where toff is the node’s charging time interval.

5.2.1. SENSING
The ability of a CIS to sense depends on the availability of its intermittent nodes and on
the characteristics of the event of interest.

COALESCED AVAILABILITY

The CIS’s availability is the projection of its underlying intermittent nodes’ on-times on
the time axis. To determine the expected availability of a CIS, the strategy to distribute
its nodes’ on-times must be first specified.
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Figure 5.3: A Coalesced Intermittent Sensor’s availability is the emerging collective availability
of its intermittent nodes. Difference between the power cycles of intermittent nodes lead
to constant relative shifts between their duty cycles. This, in turn, causes their on-times to
approach uniformly distribution on the CIS power cycle. The red bars indicate a minimum CIS
time span—CIS’s nodes are overlapping—whereas the green bars show the maximum time span
of the CIS.

Explicit on-time division strategy A CIS can build on top of the recent advancements
in passive (light or RF) communication [17, 154] and ultra-low-power timers [35] to apply
a time-division multiplexing strategy, minimizing on-times overlapping. For example, a
node calculates its average on-time ton and off-time toff for a certain number of power
cycles. Then, it encodes the information (toff, ton) in a message and broadcasts it at the
beginning of its power cycle. When a node receives this message it will have full knowl-
edge about the transmitting node’s power cycle. It can then alter its power cycle, relative
to the transmitting nodes cycle, by increasing (or decreasing) its power consumption to
shorten (or lengthen) its on-time and subsequently shift its power cycle to a different
time slot.

With such explicit on-times control strategy, a CIS of N nodes with on-time of ton and

off-time of toff will have an availability = min
(
N ton

tp
,100%

)
. However, we expect such an

approach to introduce significant overhead as a scattering algorithm (e.g., [155]) must
be frequently executed, messages need to be exchanged, and clocks should be synchro-
nized. Therefore, we propose a different on-times spreading strategy.

Implicit on-time division strategy With no information being exchanged between in-
termittent nodes, the best CIS can do is to uniformly distribute its nodes’ on-times and
maintaining this distribution over time. The key observation to approach uniform distri-
bution is to ensure that the lengths of the nodes’ power cycles are randomized, avoiding
nodes being in lockstep indefinitely.

Let us start by assuming that we have a CIS of two nodes with idealized power cycles
and these nodes have the same initial conditions. The availability of this CIS equals ton

as the nodes are in perfect synchronization (the two nodes wake up and power down
together). To extend the availability of this CIS, one of the nodes should shift its on-time
away from the other. If one of the nodes sleeps for t units of time, then the on-time of this
power cycle will be ton +∆t . Consequently, the length of this power cycle will be tp +∆t ,
delaying the next awake time by ∆t . If the node sleeps only once, then availability of the
CIS will equal min(2× ton, ton +∆t )
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Figure 5.4: Coalesced Intermittent Sensor availability for a different number of nodes and
different duty cycles. The nodes are uniformly distributed and the average CIS on-time evolves,
when adding new nodes, according to equation 5.1.

However, if the initial conditions are unknown, then shifting a node’s on-time a con-
stant number of times may cause the initially desynchronized nodes to become synchro-
nized, collapsing the CIS’s availability instead of extending it. Therefore, a safer option is
to constantly shift the awake time of the node. In this case, the on-time will shift over the
entire power cycle of the other node, spending toff

tp
and ton

tp
of the time overlapping with

the other node’s off-time and on-time, respectively. This behavior is illustrated in Fig-
ure 5.3, where node 1 and node 2 have power cycles of (2,6) and (1,5). Following the time
axis from the left to the right, we can observe that the position of the on-time of node
2 is shifted by -1 unit of time relative to the on-time of node 1 after each power cycle of
node 1. This implies that the on-times of the two nodes are 1

3 of the time cluster together
and 2

3 of the time they are apart (from an external event standpoint, the on-times are
uniformly distributed over the longest power cycle, as they have the same probability to
be anywhere when the event arrives). To model the availability of a CIS of N nodes, we
first model the nodes’ on-times and power cycles. If we represent the on-time of a node
with a random variable Rn and find its expected value E(Rn) then we can approximate
any CIS node’s on-time with mean of the expected values of the nodes’ on-times, i.e.,
ton = 1

N

∑N
i=1 E(Rn)i (intuitively, since we are assume CIS’s nodes have the same energy

buffer, then their expected on-times should approach the same value). Using a similar
analogy, we can define the mean of the expected values of the power cycles lengths as
tp = 1

N

∑N
i=1 E(Rp)i . Now, we can model the availability of a CIS of N nodes as

Av(N ) = Av(N −1)+ (1− Av(N −1))
ton

tp
, (5.1)

for the initial case where N = 1 we define Av(0) := 0. Figure 5.4 shows the availabil-
ity of CIS when N ∈ {1,2, ..,20} and nodes’ duty cycles ton

tp
∈ {10%,20%,..,50%}. We can
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(a) Light (680µF). Each MSP430FR994 lauch-
Pad [156] was powered by a BQ25570 solar
power harvester [147] that is connected to an
IXYS SLMD121H04L solar cell [148] and a
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(b) RF (47µF). An RFID reader [157] con-
nected to a circular antenna [158] were used
to enrgize the WISP tags [77].

Figure 5.5: Nodes’ power cycles length for different ambient energy sources, and different
energy buffer sizes.

conclude from the above discussion that to approach uniform distribution of nodes’ on-
times, the lengths of the power cycles need to be randomized 1.

The power cycles of energy-harvesting battery-less devices are inherently random-
ized and different because the power source (ambient energy) is volatile and the har-
vesters are not perfect devices (notice that, even battery-powered wireless sensor nodes
require a synchronization protocol to correct for the drift in their local clocks). Our own
measurements using different energy-harvesting devices and different energy sources,
i.e., solar and RF, also confirm that the power cycles of intermittent nodes are different
and randomized (Figure 5.5). Therefore, we expect their on-times to approach uniform
distribution (we will challenge this expectation in Section 5.4).

EVENTS CLASSIFICATION

The availability of a CIS is not a single stretched interval: it is a chain of short intervals.
Therefore, it is important to classify from a CIS perspective which types of events the CIS
is best suited for.

• Short events: are events that can be captured using a single intermittent node. For
example, a spoken word can be seen as a short event if the energy needed to record
it is less than what the energy buffer, i.e., the capacitor, can store.

• Long events: are events that need more energy to be completely captured than
what the energy buffer can store. Long events can be subdivided into three cate-
gories:

– Simple: is a long event that can be captured using a single intermittent node—
capturing part of it is sufficient to obtain all the information of interest—such
as the sound produced by the friction between two moving parts of an en-
gine.

1Note that, power cycles of lengths that are multiples of each other is very unlikely because nodes’ energy
buffers are assumed to be of the same size.
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Figure 5.6: Simulating the availability, the effective availability, and successfully captured events
of a CIS of 10 nodes with a node duty cycle ∈ {10%,20%,...,50%}.

– Burst: is a group of short events that requires multiple intermittent nodes
to be captured such as a command of a few words (e.g., “room temperature
up”).

– Complex: is a long event that must be fully captured to be recognized. For
example, sampling a gyroscope attached to a moving device (e.g., a tooth-
brush).

Based on the above classification, we can argue that designing a CIS for long events is
not like designing it for capturing short ones. For example, while capturing a short event
may require continuous CIS availability, capturing a long simple event that is longer than
the power cycle tp does not require extending the availability of a single intermittent
node. Furthermore, capturing a long complex event may require data fusion and pro-
cessing that require the CISs’ nodes to communicate the raw data to a more powerful
node, which may lead to significant overhead. However, we opt to focus on short and
long bust events as they cover a wide range of applications (e.g., voice-controlled human-
object interface).

EFFECTIVE AVAILABILITY

Approaching continuous availability does not mean that a CIS can successfully capture
all events. It can happen that an event is being only partially captured by one or more
nodes, which may lead to unsuccessful event detection. Therefore, it is important to
specify the effective availability of a CIS that leads to a successful event capturing (which
we assume leads to successful sensing).

Polling-based Sensing Let us assume that we have a CIS of a single intermittent node
monitoring a short event of length te. For capturing the entire event, the event has to
arrive within the interval, ton − te, which we call, the effective on-time of an intermittent
node. Therefore, the effective availability of a CIS of N nodes is the joined effective on-



5.2. COALESCED INTERMITTENT SENSOR

5

75

times of the underlying intermittent nodes, which can be modeled as,

Av(N ) = Av(N −1)+ (1− Av(N −1))
ton − te

tp
. (5.2)

Event-driven Sensing An intermittent sensor has a limited energy budget per power
cycle. When it is tasked with a polling-based sensing activity, its energy consumption
switches between two levels: zero when charging and maximum when sensing. However,
in event-based sensing, a node puts its microcontroller into low-power mode and waits
(or listens) for an external event to wake up the microcontroller. For example, in our pro-
totype, a voice-controlled command recognizer, we exploit the microphone’s wake-on-
sound feature to send an interrupt to the microcontroller, which will then start record-
ing the sound samples from the microphone. This wake-on-event style of operation is
important as the minimal energy consumption during sleep significantly prolongs the
period during which an event can be handled (for example, our prototype consumes 7
times less energy during sleep compared to being active). To model the effective CIS
availability when it is tasked with event-based sensing, the change in energy consump-
tion between the sleep and active mode must be taken into account. Since the event
itself times when the node changes its energy consumption, we can model the effective
availability as

Av(N ) = Av(N −1)+ (1− Av(N −1))
ts −

(
te × pa

ps

)
tsp

, (5.3)

where ts is the expected sleep time of the CIS’s nodes, tsp := ts + toff, and pa and ps are
the power consumption in active and sleeping mode, respectively. Notice that, there
is a subtle point about (5.3) as when an event arrives the node wakes up, consuming
more energy. Therefore, its uptime shrinks. For simplicity, we modeled this effect by
extending the event time with the same factor. This is sufficient to say if the event will be
fully captured or not (effective availability).

SIMULATION

To perform a first sanity check on our models, we developed a Python-based simulator.
For each data point presented in Figure 5.6, the simulator generated 105 power cycles of
a CIS of 10 nodes. We ranged the duty cycles from 10% to 50%, while keeping the length
of the event fixed at 3% of the power cycle length, tp. The on-times and event arrivals
were uniformly distributed over the power cycles. The results clearly confirm our models
and support our argument about the distinction between CIS’s availability and effective
availability (notice that the percentage of captured events matches the effective avail-
ability). The importance of this distinction—availability versus effective availability—is
a function of the value te

ton
; observe the difference between availability and effective avail-

ability when nodes’ duty cycle is 10% (large effect) and 50% (negligible effect).

5.2.2. ENVIRONMENT
Ambient energy controls the availability of a CIS’s nodes. Consequently, it also controls
their collective response to external events. When it rises, it extends nodes’ on-times
that may cause nodes’ power cycles to be synchronized on the arrival of some external
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Figure 5.7: Capturing events may lead to power cycles synchronization of nodes that were in
low-power mode. In particular, if some of the nodes power down while capturing the event,
then this implies that these nodes slept (prior to the event) longer than the nodes that capture
the event. This means that the nodes that have died spent their energy slower (they stayed
longer in sleep mode); therefore, their overall uptime is longer than the uptime of the node the
captured the event. In other words, the nodes that woke up earlier have stated longer on, and
therefore, the next power cycles are more synchronized, see the ∆t before and after the event.
The red and green line graphs represent the power consumption of nodes R and G when they
are charging, sleeping and capturing events.

events, compromising the CIS’s overall availability. To overcome this problem the CIS’s
nodes must be power-state aware and able to estimate the number of active nodes in the
CIS.

POWER STATES

A CIS can experience a wide range of ambient power intensities. For example, a solar-
powered CIS may harvest no energy at night, modest energy from artificial light, and
abundant energy from direct sunlight. Generally, we can identify four different CIS pow-
ering states:

• Targeted power state:- These are the powering conditions that a CIS is designed
for. In these conditions, the CIS should work intermittently and have sufficiently
randomized power cycles to uniformly distribute its intermittent nodes on-times
and meet the desired availability (Figure 5.4). In general, the targeted powering
conditions should be near worst energy harvesting conditions to ensure that the
system is properly functioning for the majority of the time.

• Under-targeted power state—Ultimately, the ambient energy is an uncontrollable
power source, and it is not hard to imagine scenarios where a CIS will be under-
powered or even comes to a complete and long power down (for example, a so-
lar CIS will come to a perpetual power down in darkness). In general, for under-
targeted energy conditions, the CIS behavior can be considered as undefined.

• Hibernating power state:- In event-driven sensing, nodes sleep in low-power mode
waiting for an event to wake them up. This mode extends CIS’s nodes’ on-times
and makes them overlap significantly. Moreover, the on-times overlap even more,
when ambient energy level rises (favorable energy conditions). If an event arrives
in such conditions, it will wake up many nodes, causing them to consume their
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buffered energy faster. Some of these nodes will power down before capturing the
entire event, while others survive. This difference in how much energy is spent
in active and sleep mode causes these nodes to tend to synchronize their power
cycles after the event. To understand this let us analyze the example presented in
Figure 5.7. The figure shows the power traces of two nodes. the nodes consume 7
times more power in active than in sleep mode (our prototype has a similar power
consumption ratio, Table 5.3). Further, it shows that a node sustains the low-power
mode for 90 units of time, ts = 90; therefore, the maximum buffered energy can be
calculated as Ebuf = ts×ps, where ps is a node’s power consumption in sleep mode.
If we focus on the power cycle with the first event, then we see that node R powers
up at t0, and it remains in low-power mode for 50 units of time, whereas node G
spends only 20 units of time before the event arrives. Now, we can calculate when
these two nodes will power down and compare the difference, ∆t , before and after
the event. A node will turn off when the buffered energy is depleted. This can be
expressed as

Ebuf = tse ×ps + ton ×pa,

where tse is the sleep time of the power cycle that an event arrives in, ton is a node’s
on-time and pa is the power consumption in active mode, which can be expressed
as pa = δ

ps
. tse and δ are given and ps can be eliminated; thus to find when the

nodes will power down we need to find ton for both nodes. By substituting the
given values we find ton to be 10 and 5.7 units of time for the G and R node, respec-
tively. Therefore, ∆t becomes 4.3 while it was 30 before the event (notice, 30

7 ≈ 4.3).
In general, nodes that die while capturing the event must have started their power
cycles before the nodes that capture the event. Further, the uptime of the died-
while-capturing nodes is longer than the nodes that capture the event because
they spend less time in active mode. Therefore, the difference, ∆t , between the
power cycles of a died-while-capturing node and a node the successfully captures
the event becomes smaller. This difference shrinks by the factor δ or pa

ps
. When the

events arrive in burst this becomes a significant problem, as the CIS will capture
multiple copies of the first event, while missing the subsequent ones.

• Continuous power state:- Under direct mid-noon sun a tiny solar panel may pro-
vide sufficient power to run a sensor node continuously. In such conditions, a CIS’s
node will be available and able to sense continuously. Therefore, the job of a sin-
gle node will be repeated N times, and instead of sending a single message to a
sink—to push the data to the Internet—N identical messages will be sent. These
messages will collide as they are sent at about the same time, causing the informa-
tion to be lost; if they arrive, however, they—except the first one—will waste energy
of the sink as they carry the same information.

The inefficiencies highlighted in the hibernating and continuous power states can be
mitigated by enforcing randomization on the response of intermittent nodes: when a
node is woken up by an external event it responds to that event with a certain probabil-
ity. However, if the randomized response is enforced all the time, then the CIS will have a
lower probability of catching events during the targeted energy conditions state. There-
fore, the CIS has to distinguish between the targeted and above-targeted energy condi-
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Figure 5.8: The difference in the time of discharging the energy buffer—a node’s on-time—
when an energy-harvesting device is allowed to charge while operating, and when it is not
allowed.
Algorithm 4 off-time estimation

1: Rcntr++ ▷ reboot counter
2: Ebuf ▷ Size of energy buffer
3: ta ▷ time of discharging Ebuf at load a, no harvesting
4: Xcy ▷ time every X power cycles

5: ▷ Code executed on each X power cycles

6: if (Rcntr == Xcy) then
7: fLOAD(a) ▷ set node load to a
8: ton ← TIME() ▷ measure time until power down

9: ▷ Code executed on each X +1 power cycles

10: if (Rcntr == Xcy +1) then
11: ∆t = ton − ta ▷ time difference due to charging
12: Ehar ← Ebuf × ta

∆t ▷ harvested energy
13: Pin ← Ehar ÷ ton ▷ incoming power
14: toff ← Ebuf ÷Pin
15: Rcntr = 0

tions and randomize its response only during the hibernating and continuous power
states.

Furthermore, responding with a constant probability during the above-targeted en-
ergy conditions is inefficient, as the number of active nodes is a function of the total
number of intermittent nodes and the power intensity at that time. Therefore, efficient
randomization requires intermittent nodes to estimate the number of active nodes and
respond proportionally. Our proposed algorithm for estimating the number of active
nodes depends on the nodes’ ability to measure their on-times and off-times.

INTERMITTENT TIMING

Timing is a key building block of sensing systems. It is, however, missing on intermittent
nodes unless an additional dedicated (RC-based) timer is included [35]. Here we propose
an alternative that does not require additional hardware. This alternative does not only
enable time estimation but also ambient energy richness, which is very important for
estimating the number of a node’s active neighbors. But, how a node can time its own
on/off cycle?
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Figure 5.9: The average duty cycles of 8 solar-powered and 6 RF-powered intermittent nodes
for different ambient energy sources and energy intensities. In general, the average duty cycle
of a node is a good indicator of the average duty cycle of the other CIS’s nodes.

Intermittent nodes fail abruptly; therefore, a persistent timer is needed to measure a
node’s on-time. A simple way to emulate persistent timer is by using a persistent counter,
or sampling the volatile built-in timers of the microcontroller and save the obtained val-
ues in the non-volatile memory. To estimate the off-time, toff in Figure 5.8, a node needs
to determine the incoming power (harvesting rate). The average harvesting rate can be
induced from the on-time as follows. The node measures its on-time while harvesting,
see ton in Figure 5.8, and compares it to the time required to drain the energy buffer with-
out charging, see ta in Figure 5.8. The additional on-time, ∆t , is the result of the energy
accumulated while executing. If ton and ta are measured on the same load—thus, they
have the same power consumption—then the amount of the energy harvested while the
device is on can be calculated as in Algorithm 4, Line 12. And, the average input power
can be found as in Line 13 that, in turn, enables the node to estimate its own toff (Line 14).
Since calculating the off-time requires constant load, the sensor cannot run arbitrary
code during time measurement. Therefore, the sensor needs to sacrifice a certain per-
centage of its power cycles for measuring time (Line 1-8). Once the on-time and off-time
are found the node’s power cycle for load a is determined.

Notice that, when the harvested power is very low the accuracy of inferring the charg-
ing time from the discharging degrades. However, for the CIS this is not a serious prob-
lem as the intermittent nodes need to randomize their response to events only in favor-
able energy conditions.

ALIVE NODES ESTIMATION

To estimate the number of active nodes, a CIS’s node needs to determine the following
information: (i) the total number of nodes in its CIS, which is a typically constant value
that can be loaded to the device memory; (ii) the on-times distribution, which is uniform
in our case; and (iii) its own average ton and toff.

Since, we assume that a CIS’s nodes have the same energy buffers and are in the
vicinity of each other (thus, they are exposed to the same energy conditions) then their
duty cycles should approach the same value. Figure 5.9 shows the average duty cycles
of the nodes of a solar- and RF-powered CISs. In general, we can conclude that a node’s
average duty cycle is a good estimator of other CIS’s nodes’ duty cycles. Now, a node
can estimate the maximum time span, tmax, of its CIS, which is the total duration of the
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Table 5.1: Measuring intermittent nodes overlapping of a CIS of 8 intermittent nodes for
different light intensities. Nactive is the expected number of active nodes and σ is the standard
deviation.

Light (lux) On/off cycle (%) Nactive σ

300 8 1.01 0.85

500 17 1.63 0.98

800 31 2.88 1.50

1200 62 5.05 1.08

nodes’ on-times when they are aligned next to each other, as follows

tmax = N × ton. (5.4)

Then, from (5.1), the node calculates the CIS availability, Av(N ). As we argued in Sec-
tion 5.2.1, nodes on-times are uniformly distributed; therefore, the overlapping on-time
is also uniformly distributed. As such, a node can calculate the average number of active
intermittent nodes, Nactive, using,

Nactive = tmax

tp × Av(N )
. (5.5)

RESPONSE RANDOMIZATION FACTOR

Once a node has estimated the number of active neighbors, Nactive, it can use the follow-
ing formula to determine the response probability,

Presp =
{ Nresp

Nactive
, if

Nresp

Nactive
< 1,

1, otherwise,
(5.6)

where Nresp is a system parameter that reflects the desired redundancy factor required
by an application.

Table 5.1 shows the average number of active nodes of an 8-nodes CIS for different
light intensities. These measurements provide a sanity check of (5.5). For example, at
1200lux an individual node of our CIS has a duty cycle of ≈ 62%, i.e., it is on average
0.62 tp operating. If we multiply that by the number of nodes (5.4) we get about 5 tp.
Figure 5.4 indicates that a CIS with eight nodes of duty cycles above 50% has near 100%
availability. From (5.5), we find that the expected number of clustered nodes is 5, con-
firmed by the measurements presented in Table 5.1.

5.3. PROTOTYPE: COALESCED INTERMITTENT COMMAND REC-
OGNIZER

The coalesced intermittent command recognizer (CICR) is a prototype of the Coalesced
Intermittent Sensor. The CICR consists of eight battery-less intermittent nodes. Each
node is capable of performing isolated word recognition.
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Figure 5.10: Coalesced Intermittent Command Recognizer: an instant of a Coalesced Intermit-
tent Sensor. CICR features a power failure-immune word recognition algorithm. First a word is
recorded. Then, its spectral features are extracted. The resulting features vector is compared
against previously-stored words’ templates for recognition. The comparison is done using a
liner distance matching algorithm

5.3.1. HARDWARE

A CICR node consists of three main parts: a microphone, a microcontroller, and a har-
vester. MSP430RF5994 [156], an ultra-low-power microcontroller, is used for data ac-
quisition and processing. This microcontroller has a 16-bit RISC processor running
on 1 MHz, 8 kB of SRAM (volatile), 256 kB of FRAM (non-volatile), and a 12-bit ana-
log to digital converter (ADC). It also features a Low Energy Accelerator (LEA), which
offloads the main CPU for specific operations, such as FFT. For recording we use the
PMM-3738-VM1010-R piezoelectric MEMS microphone, which features Wake on Sound
and ZeroPower listening technologies [159], allowing both the microcontroller and the
microphone to sleep in a low-power mode until a sound wave is detected. The microcon-
troller and microphone are powered by a BQ25570 solar power harvester [147] connected
to an IXYS SLMD121H04L solar cell [148] and a super-capacitor of 470 µF. For debugging
we used the Saleae logic analyzer [135].

The power usage of a node differs according to its activity. When a node is waiting
for a voice event, it is in low-power mode. Recording a voice event activates the mi-
crophone, ADC and microcontroller (maximum power consumption). Processing the
recorded data requires only the microcontroller to be on. Table 5.3 lists a node’s power
consumption for each of these states (sleeping, recording, and processing), as measured
with a Monsoon power monitor [160].

5.3.2. SOFTWARE

The CICR runs power interrupts immune command recognizer. The recognizer is capa-
ble of recognizing the isolated-word type of speech. The main parts of the recognizer are
illustrated in Figure 5.10 and explained below:

Data acquisition The Wake-on-Sound feature of the microphone triggers the data ac-
quisition process once the energy level in the sound signal crosses a certain level. The
ADC samples the output of the microphone at 8 kHz. This sampling rate is sufficient to
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Table 5.2: Word testing set for CICR

on off stop clear load

go pause resume edit cancel

Table 5.3: Power usage of a CICR’s node

State Current (µA) Time (ms)

Sleeping 64 ±20 —

Recording 423 ±20 285

Processing 282 ±20 600

cover most of the frequency range of the human voice. The recording length was set to
285 ms, which suffices to get all the acoustic features needed to recognize the words.

Feature extraction For word recognition, we adopted the method presented in [161].
Here, we briefly describe the algorithm for convenience. The CICR starts by dividing the
signal into frames of 256 samples (≈ 33 milliseconds). Then, it computes a 256-point
Fast Fourier Transform for each frame. The resulting feature vectors are normalized (by
computing the binary logarithm of each entry of that vector) to reduce detection errors
that result from differences in the amplitude of the speech input. These feature vectors
are the basis for the word-identification process.

Feature matching Feature matching is achieved by computing the squared Euclidean
distance between the normalized feature vectors of the recorded word and the feature
vectors of the words stored during the training phase (templates, see Table 5.2). Once the
recorded word has been compared to all template words, the template with the smallest
distance to the recorded word is considered the correct word. However, if the smallest
distance is bigger than a confidence threshold, then the CICR will return “undefined
word”.

We have experimented with two feature matching algorithms: the Linear Distance
Matching (LDM) and Dynamic Time Warping (DTW) algorithm [162]. While LDM com-
pares the feature vectors of two words successively, DTW looks for the minimum dis-
tance between the two vectors. In our implementation, the DTW was about 10 times
slower than LDM, whereas the detection accuracy was comparable; therefore, we default
our implementation to LDM.

Power Failure Protection In order to preserve the progress state and to protect CICR
data against randomly timed power failures, we split the recognition program into 19
atomic regions. We ensured that each of these regions requires less energy than what the
energy buffer can provide with a single charge. The program state is checkpointed in the
non-volatile memory (FRAM) on the transition between these regions. This prevents the
program from falling back to its starting point (main()) after each power failure. Data
in the non-volatile memory with Write-After-Read dependency is double-buffered to en-
sure data integrity when the power supply is interrupted.
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Code profiling The entire command recognition software was written in C. The total
program consists of 973 lines of code, excluding the FFT function, which is imported
from the Texas Instrument DSP library. The memory footprint on the microcontroller is
20,064 B of FRAM and 1,134 B of SRAM.

5.4. EVALUATION
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(a) The CIS is powered by uncontrollable light
sources—artificial light (night) and sunlight
(day).
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(b) The CIS is powered by a controllable array
of LEDs.
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(c) The CIS is powered by an RF reader [78]
located 30-70 cm away from the RF tags
(WISPs [79]).

Figure 5.11: The Coalesced Intermittent Sensor’s availability for differed numbers of intermit-
tent nodes and energy sources. The modeled availability—represented by the dashed lines
when the average node duty cycle is 15%—approximates the measured availability with high
accuracy.

To evaluate the performance (availability) of the Coalesced Intermittent Sensor, we
conducted several experiments in different energy conditions and with different event
arrivals patterns.

5.4.1. AVAILABILITY
Irrespective of the energy source (RF or light) we showed in Figure 5.5 that the power
cycles of a CIS’s nodes are different, which leads to a uniform distribution of their on-
times, as we argued in Section 5.2.1. We captured the expected joined availability of these
nodes in Model 5.1. Here, we validate the model by comparing the modeled availability
of a CIS against data captured with different hardware (solar- and RF-powered nodes) in
different scenarios.
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Figure 5.12: CIS availability observed with a 5 seconds time window.

Figure 5.11 shows the availability of three CISs when they are powered by sunlight, ar-
tificial light, and RF and for a different number of intermittent nodes. The results clearly
confirm our expectation: when the power cycles are slightly different, the on-times ap-
proach uniformly distributed. The results also validate our model; the dashed lines rep-
resent the modeled availability when nodes’ duty cycle is 15%.

AVAILABILITY ON A FINE SCALE

Since the nodes’ on-times are in a constant shift relative to each other (Section 5.2.1),
the collective availability of the CIS fluctuates when it is observed in a short time win-
dow. Figure 5.12 captures CIS availability on a time window of 5 seconds for thee differ-
ent ambient energy conditions. In these experiments, the average power cycles of the
CIS’s nodes are (3,18), (3.9,12.3), and (4.3,11.5) seconds when ambient light intensity is
500, 800, and 900 lux, respectively. If we focus on the line graphs associated with 500 and
800 lux and compare the system availability within the interval [20,50] seconds and the
rest, we can observe that the CIS gradually alternates between low and high collective
availability; nodes’ on-times gradually transition from maximum to minimum separa-
tion and vice versa (Section 5.2.1). Notice that, when ambient light intensity was 800 lux
the CIS collective availability transited from low to high to low, while this pattern hap-
pened to be reversed when light intensity was 500 lux. For the 900 lux the 8-node CIS
achieved near-continuous 100% availability.

5.4.2. SENSING

EXPERIMENT SETUP

After validating our observation on different energy sources, we designed a testbed with
controllable light intensity for clarity and reproducibility. To this end, we blocked un-
controllable light sources with a box of 60×40×40 cm. On the box ceiling, we attached
a light strip of 2.5 m with 150 LEDs that can produce 15 different light intensities. On the
bottom, a CICR of 8 intermittent nodes is placed (see Section 5.3.1 for hardware descrip-
tion).
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Figure 5.13: Duplicate and unique events captured by a coalesced intermittent command
recognizer of eight solar-powered nodes. In general, the number of captured events increases in
two cases: when light intensity rises and when inter-event arrival time increases. Red numbers
indicate events arrival interval in seconds.
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Figure 5.14: The CIS response to events arrive in bursts of 4 without enabling response ran-
domization. We see that the majority of the nodes react to the first event in a burst and power
down shortly after, missing other events in the burst. Red numbers indicate events indices in
a burst.

The events in our experiments are spoken words (Table 5.2). Short events (see events
classification in Section 5.2.1) are represented with individual words, while burst events
are represented with phrases of a few words. We recorded different patterns of inter-
event and inter-bust arriving time. We used a Bluetooth speaker [163] to replay a certain
recording. The data were collected using a logic analyzer [135] and processed on a laptop
running Ubuntu 16.04 LTS.

EVENTS DETECTION RATE

Here we experiment with the behavior of a CIS when events arrive individually or in
bursts without enabling randomized response in favorable energy conditions.
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Figure 5.15: The CIS response to events arrive in bursts of 4 when nodes randomize their
response. We see when response randomization is enabled the CIS capture the entire burst
of events with high rates, while reducing the number of duplicated detections. Red numbers
indicate events indices in a burst.

Individual events. Figure 5.13 shows the percentages of capturing duplicate and unique
events when light intensity varies from 300lux to 1400lux and the inter-event arrival time
ranges from 1second to 6seccond. For each experimental trial 20 words were played, re-
sulting in a total of 240 playbacks.

Figure 5.13 clearly shows a positive correlation between light intensity and the num-
ber of detected events. In particular, the number of duplicate detections upsurges when
light intensity increases, demonstrating the overpowering problem (Section 5.2.2). More-
over, increasing the inter-event arrival time also surges the number of duplicated events.
The reason for this phenomenon is that when the time between events increases, the in-
termittent nodes get the chance to sleep longer in low-power mode, consuming less en-
ergy. Therefore, nodes’ on-times expand, reducing their inherent randomization, which
leads them to be in hibernating power state (Section 5.2.2).

Bursty events. Figure 5.14 shows the capturing behavior of a CIS when the events ar-
rive in bursts. A burst of four events with one second between the individual events was
fired every 20 seconds. Each burst was repeated 10 times and under four different light
intensities. The nodes sleep in a low-power mode when they finish processing an event,
waiting for the next one.

In general, we observe that in favorable energy conditions (above 500lux) intermit-
tent nodes react to the first event of a burst and power down shortly after, missing the rest
of the burst. These results confirm our argument about the side effect of the hibernating
power state of a CIS (Section 5.2.2). These results also demonstrate that the hibernating
power problem happens on a wide range of power intensities, showing its significance.
Next, we will show how randomizing the response can mitigate the problems generated
when ambient energy exceeds the design point.
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(lux, second) (800,6) (1400,4) (1400,6)

randomization 205/432 236/675 223/493

no randomization 240/831 240/938 240/1802

Table 5.4: These results are presented in the following format unique/total detected events. A
CIS’s node responds with a probability of 65% in the first two scenarios, (800,6) and (1400,4),
and 30% for the last one. Randomizing the response reduces the number of duplicated events
by 50% while losing only 7% of the unique events.

EVENTS DETECTION RATE WITH RANDOMIZATION

Here, we examine the effect of enabling artificial randomization on the CIS’s response.

Individual events. Table 5.4 compares the number of detected events when the CICR’s
response is randomized and not randomized. When randomization is enabled, nodes
respond to events with a probability of 65% for the scenario of (800lux,6seconds) and
(1400lux,4seconds), and for the highest energy level and the longest inter-event arrival
time the responding probability was set to 30%.

Table 5.4 shows that randomizing the response reduces duplicated events by an aver-
age of ≈50%, while only marginally lowers the number of the uniquely detected events
(7% on average).

Bursty events. To enable a CIS to capture events arrive in bursts, the response prob-
ability for each events in a burst should be different. The CIS should respond with a
minimum probability to the first event in a burst and gradually increase the response
probability for the subsequent events in the burst (we assume that between the bursts
the CIS resumes to its expected collective availability). This gradual increment to the
responding probability is motivated by the observation that when a node captures an
event it becomes unavailable for the subsequent ones in the burst. In this experiment,
the nodes reacted with a probability of 40%, 50%, 70% and, 100% on the first, second,
third and fourth event, respectively. Since the event distribution is known these proba-
bilities were fixed during the development stage.

Figure 5.15 shows how randomizing the CIS response spreads the nodes’ awake times,
as compared to Figure 5.14, and enables the CIS to capture the entire burst with a high
probability, i.e., above 85%. Additionally, we also observe a positive impact of randomiz-
ing the response when the system is under-powered (500lux).

5.5. CONCLUSION AND FUTURE WORK
This chapter addresses the availability problem of intermittent sensors that fail to cap-
ture (and process) events while charging their energy buffer. As the power to drive a
node is much higher than what can be harvested from ambient sources, the chance of
capturing an event can be as low as just 8% (sunlight) and 4% (RF) (cf. the duty cycles re-
ported in Figure 5.9). To address this problem of missing most events we presented the
Coalesced Intermittent Sensor (CIS), which is the abstraction of a group of intermittently-
powered sensors, whose collective duty cycle (on-time) can approach the desired 100%
availability. The inherent differences in the powering subsystem of intermittent sensors
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result in (slight) differences in the sensor nodes’ power cycles causing the nodes’ on-
times to be uniformly distributed. This implies that simply selecting the right number of
nodes is all that is required. To this end, we have modeled the (effective) availability of a
CIS and validated its accuracy against data collected on real hardware.

Experimentation with an 8-node prototype CIS, a basic voice-control application rec-
ognizing up to 4-word commands, showed that the inherent randomization in the power
cycles can easily be disrupted. In case the ambient power exceeds the (worst-case) de-
sign point and nodes employ an efficient wake-on-event sleep mode, all nodes wake-
up on the same (rare) event. If the energy buffer is small then they all enter the charg-
ing state at approximately the same time (unwanted synchronization) and subsequent
events (words) will be missed (compromising availability). To counter this unwanted
behavior, we proposed to use a probabilistic approach in which the number of active
neighbors is determined and nodes respond proportionally to an event. This approach
was shown to be effective for our prototype, capturing burst events with above 85% de-
tection accuracy.

Similar to battery-powered sensors, intermittent sensors will need to communicate
their data to the external world. Backscattering is a promising candidate to drive the
communication between energy-harvesting devices as it does not require them to emit
signals. However, sensor-to-sensor backscatter networks suffer from dead spots that pre-
vent a senor from reaching all its potential neighbors. This limitation is investigated in
the next chapter.



6
MULTI-HOP BACKSCATTERING FOR

TAG-TO-TAG NETWORKS

6.1. INTRODUCTION
Energy-harvesting battery-less sensors need to communicate their sensory data to other
layers in the system to take proper actions. However, their extremely limited energy
budget calls for energy-efficient communication. Backscatter technology provides ultra-
low-power communication [165]. It enables sensors to communicate their data by in-
ducing changes to ambient signals, instead of emitting signals. Despite its energy effi-
ciency, however, sensor-to-senor (or tag-to-tag) backscattering has a number of draw-
backs. First, backscatter signals are weak as compared to their carrier signals. Therefore,
they have short propagation ranges. Second, due to the dis-locality between the carrier
signal generator (e.g., an RF reader) and the information modulator (a backscattering
tag), the communication links are non-symmetric, which restricts the tag-to-tag range of
communication to the weaker link [37]. Finally, this dis-locality between the energy and
information sources causes permanent dead spots in tag-to-tag backscatter networks,
which further limits the communication range [37].

In this chapter, we study the effect of multi-hopping on the range of backscatter net-
works and the dead spots in them. To this end, we developed a discrete component-
based backscatter T2T transceiver and a communication protocol suite composed of
(i) flooding-based link control tailored towards backscatter transmission, and (ii) low-
power listening MAC. Our MAC design is based on a new insight that backscatter recep-
tion is more energy costly than transmission. We show that the multi-hop benefits the
backward T2T link (tag far from the exciter sending to the tag close to the exciter) much
more than the forward link. Furthermore, we show experimentally that the decode-and-
relay T2T network improves the robustness of single-hop T2T transmission as good as
state-of-the-art phase-shifted message repetition mechanism, while (i) being capable of

Parts of this chapter have been published in IEEE INFOCOM’19, Paris, France [164].
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(a) Standalone backscatter T2T tag (b) T2T transceiver

Figure 6.1: Two prototypes of backscatter T2T tag. Figure 6.1a: Integrated version (dimen-
sions: 6.9 cm×10.1 cm) with main sections marked as a: T2T transceiver, b: sensors, c: digital
section with TI MSP430-family MCU [80], d: solar panel, e: power and energy harvesting. Fig-
ure 6.1b: T2T backscatter transceiver board only (dimensions: 3 cm×4.4 cm) as an add-on for
embedded platforms.

extending the T2T communication range by a factor of two, already at four hops trans-
mission range, and (ii) enabling connecting T2T networks served by separate exciters.

6.2. MULTI-HOP BACKSCATTER T2T NETWORK ANALYSIS

We now proceed with a set of theoretical results that show the benefit of multi-hop T2T
networks. This analysis will provide fundamental insights that will be observed in real
T2T network implementation, presented in Section 6.6.

6.2.1. BACKSCATTER T2T MODEL DEFINITION

Let us define a flat, square area of length Sa with one exciter E at position (xE , yE ) and N
static tags located at uniform random positions within the area. The exciter transmits
a non-modulated signal of wavelength λc and power PE , which tags can backscatter
to communicate with other tags with reflection coefficients k0,k1 for symbols 0, 1, re-
spectively. The receiver sensitivity threshold for all tags is Ps and the available power to
backscatter at tag n is [37, eq. (2)]

Pn = PE GE (θE ,n)Gλ2
c

(
4πdE ,n

)−2 (6.1)

where dk,l is the distance from device k to l (tag or exciter), GE (θE ,n) is the antenna gain
of the exciter in the angular direction to tag n, θE ,n , and G the antenna gain of the tags.
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Figure 6.2: Illustration for received power analysis of T2T network; CW: carrier wave, E: exciter,
BS: backscatter.

Then, the power received at tag m from tag n is [37, eq. (6)]

Pn,m = Pn (k0Gλc )2 (
4πdn,m

)−2 . (6.2)

For simplicity, we consider only line of sight, free-space propagation with no fading or
noise, as our goal is to provide the simplest bounds on network performance. As k0 < k1,
(6.2) serves as a lower bound to the received power.

The T2T network is modeled as a weighted graph with a set of nodes {1,2, . . . , N } and
a set of directional links {Ln,m}. The weight of a link Ln,m from tag n to tag m is defined
as Ln,m = Pn,m iff Pn,m ≥ Ps and Ln,m =∅, otherwise. A single-hop T2T network is con-
nected if Ln,m ̸= ∅,∀n,m. Conversely, a multi-hop T2T network is connected if there
exists a path ∀n,m node pairs.

6.2.2. ANALYSIS OF BACKSCATTER T2T NETWORK

NON-SYMMETRIC T2T LINKS

A tag’s available power depends on its distance from the exciter. This implies the follow-
ing simple observation.

Observation 1. The ratio of received power between tags n and m in the forward link
(from n to m, Figure 6.2) over the power received in the backward link (from m to n) is
quadratically proportional to dE ,m/dE ,n .

Proof. Directly from (6.2) we can write

Pn,m

Pm,n
= GE (θE ,n)

GE (θE ,m)

(
dE ,m

dE ,n

)2

. (6.3)

This implies that in the useful case where tags are spread away from each other, each T2T
link is non-symmetric, with much higher reception probability at the forward link (i.e., a
link from the tag closest to the exciter to a tag further away), meaning that Pn,m/Pm,n ≫ 1.

MULTI-HOP RANGE

Next, let us analyze the range capabilities of T2T multi-hop networks in two ways: com-
paring received power with single-hop, and computing the maximum distance such net-
works can cover.

Observation 2. Considering tags 1 and N (Figure 6.3), the received power from the trans-
mitting tag using multi-hop is always greater than that using single-hop in the backward
link (from the most distant tag from the exciter to the tag closest to exciter).
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di,N dE,i

Figure 6.3: Multi-hop T2T received power analysis scenario.

Proof. Consider the linear topology depicted in Figure 6.3. With a little abuse of notation,
let dE ,1 = d1 and dk−1,k = dk ,∀k ∈ [2, N ]. As shown in this figure, the received power
in the backward link is PN ,1 for single-hop and Pi ,1 for multi-hop, which depends on
the tag i over which the last hop is performed. For presentation compactness, define
ℓb

a ≜ ∑b
k=a dk that denotes the length of the path between tag a and tag b on the line

topology. Using (6.2) again we can compute the power ratio

Pi ,1

PN ,1
= Pi (dN ,1)2

PN (di ,1)2 =
(

dE ,N dN ,1

dE ,i di ,1

)2

=
(
ℓN

1 ℓN
2

ℓi
1ℓ

i
2

)2

. (6.4)

Note that (6.4) greater than one, as i ∈ (1, N ).

Corollary 1. Assume that tags are equally spaced on the line topology; i.e., ∀k ∈ [2, N ] :
dk = d1 = d. Then, node i that maximizes the received power in the backward link is 2.

Proof. For the backward link (N to 1)

argmax
i

Pi ,1

PN ,1

∣∣∣
dk=d

= argmax
i

(N (N −1))2

(i (i −1))2 = 2 (6.5)

Let us now analyze the network’s maximum range.

Observation 3. Consider the multi-hop network of N tags placed on a line. The optimal
value of the distance between any two tags i and i −1 that maximizes range and ensures
communication in both ways is given by

d∗
i = 1

2

(√(
ℓi−1

1

)2 +4ϵ−ℓi−1
1

)
(6.6)

with ϵ≜λ2/(4π)2Gk0
√

PE GE (θE ,i )G/Ps .

Proof. As shown in Observation 1, the forward link (from i −1 to i ) is less costly in power.
Then, it suffices to guarantee communication in the backward link (from i to i − 1) by
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Table 6.1: Backscatter T2T Network Efficiency Analysis Results; ‘MHR’: multi-hop range,
‘SHR’: single-hop range

Case A: phase shifting Case B: multi-hop flooding

E [m] = 2 E [m] = H

MHR E [t ] = 2t f E [t ] = H(t f + tp )− tp

Known Pr(s) = 0 Pr(s) = 1

topology E [m] = 2 E [m] = 1

SHR E [t ] = 2t f E [t ] = t f
Pr(s) = 1 Pr(s) = 1

E [m] = 2 E [m] = M +1

MHR E [t ] = 2t f E [t ] = M
(
t f + tp

)
+ t f

Unknown Pr(s) = 0 Pr(s) = 1−pM+1
c

topology E [m] = 2 E [m] = M +1

SHR E [t ] = 2t f E [t ] = M
(
t f + tp

)
+ t f

Pr(s) = 1 Pr(s) = 1−pM+1
c

ensuring Pi ,i−1 = Ps so that the received power is greater than the receiver sensitivity
threshold. Therefore, it follows

dE ,i di−1,i −ϵ= d 2
i +ℓi−1

1 di −ϵ= 0,

from which d∗
i = di can be solved.

As more tags are added, they are placed closer together and eventually d∗
i becomes

small enough so that tags would be placed in the near field of their antenna. Therefore,
we set a minimum inter-tag distance (equal to the Fraunhofer distance) as dmin = dF =
2D2/λ≤ d∗

i with D being the largest linear dimension of tag’s antenna.

COMBATING PHASE CANCELLATION

Stemming from the fact that the energy source is dislocated from the T2T transmitter,
it is possible that the backscatter signal and the un-modulated exciter signal arrive at
a receiver with opposite phases and interfere destructively. This phenomenon is called
phase cancellation [37] and depends on the phase difference of arrival θd ,n : the differ-
ence of the phases of the signals arriving at T2T tag n coming from the exciter and the
transmitter. Phase cancellation effectively creates blind energy spots in the network and
happens when [37, Eq. (18)]

θd ,n = θc = cos−1
(
− (k0 +k1)dE ,mλcGn

8πdE ,ndn,m

)
. (6.7)

The state-of-the-art solution to combat phase cancellation in T2T networks consists
of sending every packet twice with a phase offset between them to ensure correct re-
ception [37, 123]. We will assess the performance of the network when the phase-shift
technique is applied and when our multi-hop protocol is used.

Analysis Let us look at the average number of messages E [m] and average transmis-
sion time E [t ] it takes to deliver a frame for any source-destination T2T pair, as well as
the probability of successfully doing so, Pr(s). Then, let us consider two network typolo-
gies: (i) a known network topology in which all nodes have complete information of the
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Table 6.2: Realistic model of T2T network used in numerical example

Symbol Value Units Description

fc 868 MHz Center frequency

(k0 ;k1) (0.4; 0.9) — Reflection coefficients for 0 and for 1

(PE ; Ps ) (33; -50) dBm Output power of exciter, sensitivity of tags

(G ;GE ) (0; 4) dBi Antenna gain: tags; exciter

(θE ; θc ) (-45; 40) ° Exciter antenna beam direction; beam width

(xE , yE ) (0; 3) m Cartesian coordinates of exciter

Sa 30 m Side of the square area of the T2T network

d1 3 m Distance from exciter to tag 1 (in Figure 6.4b)

network connections, and (ii) an unknown topology. These two cases are, in turn, split
into cases where the source and the destination tags are within single-hop range or not
(denoted as ‘SHR’ and ‘MHR’, respectively).

Table 6.1 collects all combinations for cases A and B. Case A is the single-hop phase
shifting solution—repeating the same message twice with 90◦-shifted phase, as proposed
in [37, 123] and case B is the multi-hop protocol. When network topology is known the
optimum path can be computed, which also enables avoiding links that are down due
to phase cancellation effect (which we assume to happen with probability pc ) by switch-
ing the phase of the transmitted frame. Furthermore, the minimum hop count, H , is
reached and E [t ] is minimized, which is composed of the time-of-flight of a frame, t f ,
and the processing time taken by a node to forward a frame, tp . In the case of unknown
topology, we assume an average number of relay nodes M which are able to forward the
message and reach the destination.

Result Comparing cases A and B, Table 6.1, we see that our solution, i.e., Case B, im-
proves network utilization or communication success probability in most cases. How-
ever, if source and destination happen to be in range at unknown topology, it is possible
that the usage of the T2T network is increased and/or the success rate is reduced depend-
ing on M and pc .

6.2.3. BACKSCATTER T2T NETWORK: NUMERICAL RESULTS
We illustrate core analytical results with a numerical example. We simulate an instance of
a backscatter T2T network with the parameters given in Table 6.2. Simulation code [166]
is written in Matlab. We generate each instance of a T2T network by randomly placing
nodes on a square of side Sa and checking connectivity at every iteration. Each simula-
tion point is an average of 10000 runs. The results are given in Figure 6.4.

Result 1—Multi-hop coverage. We define coverage when all T2T tags are connected
with each other. Backscatter T2T single-hop coverage does rapidly decrease with N , see
Figure 6.4a, and more so when accounting for phase cancellation, improving the multi-
hop gain. Also, the phase cancellation effect becomes less relevant with a denser T2T
network.

Result 2—Maximum multi-hop range. Figure 6.4b presents the maximum commu-
nication range as a function of the number of nodes achieved by a one-dimensional
backscatter T2T network while ensuring two-way communication. The maximum range
was computed according to the analysis presented in Observation 3. When dN < dmin,
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Figure 6.4: Backscatter T2T network numerical example with simulation parameters listed in
Table 6.2. Figure 6.4a: multi-hop versus single-hop full connectivity (probability that all nodes
are connected with each other, either only directly, SH, or through hop, MH) with and without
phase cancellation; Figure 6.4b: multi-hop maximum range in one-dimensional T2T network;
NC : no phase cancellation, C : phase cancellation, MH: multi-hop, SH: single-hop.
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Figure 6.5: Backscatter T2T tag block diagram.

T2T network range can no longer be increased, but until then, the multi-hop range in-
creases logarithmically, opposite to inter-tag distance dN .

Remark:—Limitation of T2T network. The main bottleneck of T2T network is the
small coverage, caused by the low signal detection threshold of the tags, Ps . Precisely
because of this, traditional tag-to-reader networks would outperform a T2T counterpart
in the range of communication.

6.3. BACKSCATTER T2T TAG DESIGN: HARDWARE
We proceed with the description of backscatter T2T tag architecture, see Figure 6.5. This
section will introduce the T2T tag hardware, while Section 6.4 will introduce the support-
ing carrier generator and design choices on the tags deployment.

6.3.1. BACKSCATTER T2T TAG: BACKSCATTER TRANSCEIVER
Our T2T backscatter transceiver is designed with energy consumption reduction in mind.
It, therefore, avoids all energy-hungry components such as ADCs or multi-stage power
amplifiers. Its complete hardware design, introducing novel adaptations with respect
to [17, Figure 6], [124, Figure 4], [167, Figure 3] is presented in Figure 6.6 and discussed
stage-by-stage below. We note that to design and simulate the transceiver’s (i) RF (includ-
ing on-PCB antenna matching circuit) and (ii) the low-frequency part (including filter
and amplifier parameters), ADS version 2012 [168] and OrCAD Capture version 17 [169]
software suites were used.
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Figure 6.6: Backscatter T2T transceiver; its implementation is shown in Figure 6.1b.

ANTENNA MATCHING

The transceiver is preceded by 50Ω antenna matching circuit tuned at 868 MHz center
frequency, i.e., working within 863–870 MHz (SRD860) band. Matching is built with a
transmission line and passive SMD components.

BACKSCATTER TRANSMITTER

It is composed of an Analog Devices ADG904 SP4T RF switch inducing three modula-
tion states (reflecting, reflecting with 90◦phase shift, and non-reflecting an impinged
radio frequency signal from external transmitter: non-dedicated as in [124, 170], or ded-
icated). The phase shift enables the tag to combat the phase cancellation problem of
a T2T link [37] discussed also in Section 6.2.2. The phase-shift technique implementa-
tion is based on a design proposed in [37, Sec. IV-A], i.e., phase change-inducing switch
connected in-between antenna and the SMA port of the transceiver to reflect the same
bit with an inverted phase. The embedded version of the tag, Figure 6.1a, uses an SMD
version of the switch, while transceiver-only version, Figure 6.1b, used ADG904 RF SP4T
switch evaluation board connected via the antenna port (not shown on the photograph).
The RF switch is controlled digitally by an embedded microcontroller (MCU), which is
described in Section 6.3.3.

BACKSCATTER RECEIVER

It is composed of (i) an envelope detector (to filter out the mix of carrier and other tag’s
backscatter signal), (ii) a low-pass/high-pass filtering block, (iii) a baseband amplifier,
and (iv) a Texas Instruments LMC7215 comparator (i.e., a one-bit ADC).

Envelope Detector To filter out the RF components of the carrier, a rectifier diode (Av-
ago HSMS286) followed by a parallel RC network are used. We enhance the voltage swing
of the detector input RF signal by biasing the diode to overcome its threshold voltage.
This distinguishes our design from the envelope detector introduced in [167, Figure 4]
which uses voltage doubler. The benefit of biasing is a lower junction resistance of the
diode, which enables easier matching to a 50Ω transmission line [171, p. 6]. A shunt
resistor is added before the diode for improved matching (reducing reflection losses) for
a desirable S11 < −10 dB. For our design S11 = −32.31 dB. This result was obtained with
ADS.
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High-Pass Filter The output of the envelope detector is passed to a high-pass filter to
block the DC component (since there is information in it) of the carrier wave.

Ultra-Low-Power Amplifier We propose to amplify the output of the high-pass filter1.
Although the diode is biased to improve the baseband signal swing, this voltage swing
is still in µV range at low power levels. If the comparator would be directly connected
to the envelope detector, such as in [17, Figure 6], [124, Figure 4], the total sensitivity
would be limited due to the comparator offset of typically few millivolts. In our design
we use the off-the-shelf amplifier, Maxim Integrated MAX9914, (Figure 6.6), instead of
a custom-build one like in [167, Sec. III]. This way, we keep the monetary costs low,
enabling widespread use of our platform among the research community [166]2. The use
of an amplifier is being traded for increased energy consumption compared to existing
state-of-the-art tags—nevertheless, it is still many times lower than low-power active
radios [36, Figure 3]. A gain of 100 was chosen for amplification.

Comparator The output of the amplifier is fed into the inputs of the comparator. The
comparator’s inverting terminal includes an averaging circuit to specify the right thresh-
old for bits detection3. Finally, to minimize the number of false triggers due to noise, a
hysteresis of 10 mV is added. The used comparator was Texas Instruments LMC7215.

6.3.2. BACKSCATTER T2T TAG: POWER SUPPLY
The communication distance of a passive backscatter tag, i.e., powered by the RF energy
of a carrier generator, is limited by the minimum power that needs to be supplied at
the RF harvester (which should be greater than -25 dBm [172, Sec. 2]). Therefore, to ex-
tend tags communication range, and to simplify the design, we choose for semi-passive
(energy-assisted) architecture [173, Sec. II] by powering tags from the non-RF energy
source, i.e., a solar panel.

Specifically, to power the transceiver and the MCU of our tags, two monocrystalline
2 V/44.6 mA IXOLAR SLMD121H04L solar panels [148] were connected in series to TI
BQ25570EVM-206 evaluation board [147] (in case of transceiver design only) hosting TI
BQ25570 [174] harvester power management circuit. Finally, we note that the param-
eters of the regulating nano-power management circuit of TI BQ25570 were set follow-
ing TI BQ25505/70 Design Help V1.3 tool [174]. The energy is stored in a 470µF super-
capacitor, while for prototyping and measurement tags were powered directly via the
USB interface of the MCU or via a battery.

6.3.3. BACKSCATTER T2T TAG: COMPUTING ENGINE
The backscatter transceiver is connected to TI MSP430FR5969 MCU, i.e., with non-volatile
memory. MCU’s role is to encode and decode incoming frames of the protocol intro-
duced in Section 6.5. In the case of transceiver-only fabrication of the T2T tag (Fig-

1This idea was independently proposed in [167, Sec. III-B].
2We note that up to now regrettably no tag-to-tag hardware, including [17, 124, 167, 170] has been open-

sourced.
3Potential improvements such as dynamic tracking of a threshold for comparator and self-interference cancel-

lation circuit advocated in [165, Sec. 2.2] were left out for future design.
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ure 6.1b), the transceiver is connected to a launchpad [175] (for ease of prototyping),
in contrary to the self-contained fabricated tag (Figure 6.1a).

6.3.4. BACKSCATTER T2T TAG: COMPLETE DESIGN
We have fabricated two types of T2T tags, both presented in Figure 6.1. The first one is a
transceiver board only which can be connected to any MCU, energy harvester or power
supply of choice (Figure 6.1b). All components of this transceiver were hand-soldered
on a two-layer 3 cm×4.3 cm printed circuit board. The second design is an all-in-one
tag (Figure 6.1a), containing all required components on a single PCB. Both types of
fabricated tags used 868 MHz 3 dBi gain 50Ω omni-directional whip antenna connected
through an SMA connector to the input port. In the rest of the chapter, we have exper-
imented only with the first option due to cost considerations. The total cost of the T2T
tag transceiver, based on standard hardware suppliers, did not exceed 25e.

6.4. BACKSCATTER T2T TAG DESIGN: TAGS AND CARRIER GEN-
ERATORS

T2T Tag Population. We locate our T2T network indoors. Tags can be placed anywhere—
either in line-of-sight to the exciter or not. Each T2T tag has the same level of hierarchy,
master-master, in contrast to architecture of [122].

Number of Carrier Generators. Favoring mono-static setup against complex/costly
multi-static one [173] we use Ng = 1 carrier generators (with no connectivity options
either with other T2T tags or the outside world). Naturally, in any T2T network N ≫ E is
desired.

Carrier Generator. In our experiments, we used two carrier generators: Agilent E4438C
ESG and Hewlett-Packard HP8648C (use of which specific generator will be reported
explicitly in the respective experimental results in Section 6.6)4. Any signal generator
is connected to Liard S928PCR 902–928 MHz 8 dBic, right-hand circularly polarized an-
tenna. The maximum output power of the generator is set to 20 dBm (for comparison, a
13 dBm output power carrier generator was used in [173]). We do not perform any duty
cycling, which is allowed by the regulatory bodies for some RFID spectrum ranges, i.e.,
915–921 MHz [176, Sec. 4.3.7.3].

6.5. BACKSCATTER T2T TAG DESIGN: PROTOCOL SUITE
We proceed with the introduction of our protocol suite of the backscatter T2T network.
In particular, we introduce a MAC design that perfectly fits with the energy constraints
of the T2T tags, followed by the link and application layer.

6.5.1. BACKSCATTER T2T MEDIUM ACCESS CONTROL
The MAC layer of the studies [17, 123] implements a continuous carrier sensing mecha-
nism to detect incoming bits as well as to avoid interference between neighboring tag-

4We note that although our tags were designed to work with ambient carrier signals, due to extremely weak
signal levels and lack of control over the location of the carrier wave, we have tested our network with signal
sources we had full control of.
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Table 6.3: Energy consumption of T2T Tag; Transceiver (as in Figure 6.1b) connected to
MSP430 evaluation board [175]

Operation mode Energy consumption (mW)

Reception only 1.3

Transmission only⋆ 0.7

MCU only (Low Power Mode 0)‡[80] 2.2
⋆ T2T transmitter set to transmit continuous stream of bits
† Measurements using [160], powered at 3.6 V; 16 MHz MCU clock cycle
‡ Includes powering all on-board peripherals, including USB controller

to-tag links. This approach demands the receiver and the MCU to be always kept on in
order to receive incoming packets—leading to considerable energy overhead.

Observation 1—Backscatter reception is more costly. Backscatter transmission is
cheap, since it is performed only by toggling the MCU port connected to the RF switch
(see Figure 6.6 or [36, Figure 3]). However, contrary to active radios5, backscatter recep-
tion is far more energy costly as compared to backscatter transmission. This is due to the
additional energy cost of the receiver circuitry and the uncontrollable MCU false inter-
rupts during the reception window. This is proven by our example T2T tag energy con-
sumption measurements, see Table 6.3: reception is almost twice as expensive as trans-
mission. All in all, the MCU is the most power-hungry component of the tag requiring
sleep scheduling.

Observation 2—Ambient noise prevents energy-efficient wake-up radio operation.
Since the comparator circuit triggers MCU at each bit transition, the backscatter receiver
can be seen as a wake-up radio, which eliminates idle listening [178]. However, due to
ambient noise, the MCU can also be triggered in the absence of any backscatter trans-
mission. These false triggers are dependent on the selection of the comparator threshold
and will wake-up the MCU from the sleeping state quite frequently—leading to wasted
energy due to false wake-up and listen periods.

Observation 3—Packet detection using carrier sense is inefficient for low data rates.
Employing carrier sense to detect if there is an incoming packet, as e.g. in [17, Sec. 4.2.1],
requires the backscatter receiver to be always kept on in order to process incoming bits.
However, this leads to significant overhead due to the energy cost of the reception (vide
Observation 1) and false triggers (vide Observation 2).

Observation 4—Synchronous operations are infeasible. Introducing synchronous
protocols; e.g. forcing tags to wake-up their backscatter receivers just before their as-
signed slots as in TDMA, is not feasible as of now due to the reasons being [179, Sec. 3]:
(i) backscatter tags would not have timekeeping mechanism with frequent power losses;
(ii) there is no central entity in the network which is continuously powered, assigning
transmission schedules (such as RFID reader)—making approaches such as [36, Sec.
3.5] inapplicable.

Proposition—MAC Paradigm for Backscatter Tags: Low-Power Listening Given Ob-
servations 1–4 we advocate for asynchronous MAC design based on low power listening
inspired by [180, Sec. 3].

5Refer to, e.g., LTE Cat NB1 radio [177, Table 4.2.3], where transmission expenditure increases with transmis-
sion output power.
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Figure 6.7: Schematic representation of the proposed MAC protocol.
Table 6.4: Selected T2T MAC parameters; see [166] for details

Parameter Description Value Unit

br , bt RX and TX buffer size 8, 8 Frames

lb Bit length Section 6.5.1 CC⋆

ts Sleep period 26.5 ms

tx Frame reception timeout 15 ms

tp Frame preamble length 36 ms

ts , tg Inter-frame time 0.25 ms

tl , th Timer jitter low and high 25, 37.5 µs

to Channel observation period 6.1 ms

no Min bit transitions within to 8 Bits
⋆ CC: cycles of SMCLK clock of MCU [175] at 16 MHz

LOW POWER LISTENING AND MAC STATE MACHINE

High-level design of our MAC is illustrated in Figure 6.7a, while MAC finite state ma-
chine is presented in Figure 6.7b. Briefly, a T2T node wakes up periodically every 26.5 ms
(see Table 6.4), detects the preamble (by reading bits at the comparator output port and
searching for the predefined preamble, Table 6.4) and synchronizes to the delimiter of
the received frame. A frame validation is started by calculating the CRC of the received
frame and comparing it to the CRC bytes of the frame. If they match the freshness of the
frame is checked by searching a ring buffer that keeps track of the most recent y (in our
implementation y = 10) frames. If the frame is new and the frame Receiver ID equals
the node ID, then the payload is saved in the memory and made accessible to the appli-
cation layer. However, if the IDs mismatch the frame will be saved in the transmission
buffer to be forwarded.

In order to avoid collision each data transmission is preceded by channel observa-
tion (preamble sampling) and a long preamble (see Table 6.4) is transmitted to wake up
surrounding nodes. Once a frame is received or discarded the MCU transitions to the
low-power mode (i.e., Low Power Mode 0 of the MSP430 MCU used [80]) turning off
the T2T backscatter receiver until the next wake-up. Furthermore, the MAC cycle is ran-
domized to prevent nodes from waking up and estimating the channel at the same time,
which may lead to concurrent transmission, see Figure 6.7b. Our MAC enables nodes to
transmit with and without a phase shift, of 90◦, to enable nodes to cope with the dead
spots in backscatter networks [37].
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Table 6.5: Frame Structure of the Implemented T2T MAC Protocol

Field Length (B) Notes

Preamble Time based 0xBB⋆

Start Frame Delimiter 1 0xAA⋆

Sender ID 1 Node ID

Receiver ID 1 Node ID

Message Type† 1 Broadcast ID Byte = 0xFF
Message ID 1 —

Payload 4 —

CRC 2 CRC-CCITT hardware-based [175]
⋆ Values obtained experimentally
† In experiments only Broadcast used; other types like ACK, Beacon, Data pos-

sible

MAC FRAME STRUCTURE

We implement a frame structure described in Table 6.5. Bits in the frame are coded with
FM0 modulation. Finally, we note that bit lengths can vary in a set [1600, 16000, 31250]
of SMCLK clock cycles that corresponds to respective [10 k, 1 k, 512] bps data rates. In
the actual implementation, we have chosen for the highest clock rate/bit rate, i.e., 1600
clock cycles/10 kbps, respectively.

T2T TAG ADDRESSING

All tags have a predefined addresses of 1 B long (Table 6.5). We do not implement any tag
discovery protocol at this stage.

6.5.2. BACKSCATTER T2T LINK LAYER
To increase the robustness of the T2T network we chose to implement a flooding mech-
anism to forward the messages. Flooding also implicitly eliminates the need for imple-
menting error correcting mechanism, since multiple copies of a frame are forwarded. To
limit the number of the messages being forwarded each node is allowed to backscatter
a new frame z times (in our implementation z = 1). Furthermore, to reduce the proba-
bility of collisions each tag observes the channel before backscattering and its wake-up
cycles are randomized within a range of [0, 5] ms.

6.5.3. BACKSCATTER T2T PROTOCOL IMPLEMENTATION DETAILS
The footprint of our protocol implementation was 8 kB (program memory) and 606 B
(RAM). The complete protocol was implemented in C language, amassing to 2113 lines
of code.

6.6. BACKSCATTER T2T NETWORK: EVALUATION
We now proceed with describing the experimental results of our backscatter T2T net-
work. We start by introducing the T2T network setup and measurement methodology.

6.6.1. BACKSCATTER T2T NETWORK: EXPERIMENT SETUP
We performed all experiments indoors, in a large office space with many metallic shelves
and concrete walls of mixed thickness. A total of seven tags were used in the experiments.
Tags and the exciter’s antenna were mounted on tripods, elevated 1 m above ground.
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Figure 6.8: T2T link metrics for forward and backward link. Figure 6.8a: the backward link
has a higher multi-hop gain, doubling the range as receiving tag moves away from the exciter;
Figure 6.8b: frame distribution per hop (ordered from left to right in each bar group)—backward
link is less prone to errors .

6.6.2. RESULT 1—T2T RANGE AND MULTI-HOP PERFORMANCE
Measurement Methodology. Each measurement (data point in Figure 6.8) is the average
of five runs, each of them consisting of a hundred frames sent by the source tag, see
Table 6.5. The maximum distance of a hop is assumed to be reached when 75% of the
frames are correctly received at the destination.

Figure 6.8 presents the core results on the multi-hop T2T link properties. Measure-
ments of the range improvement that multi-hop brings in backscatter T2T networks are
given in Figure 6.8a, both for forward and backward links. The figure shows the max-
imum distance that can be covered in a one-dimensional (line) multi-hop backscatter
T2T network as a function of the number of hops and the distance d1 from the exciter to
the first T2T tag. The maximum number of hops is shown, meaning that, for instance for
d1 = 0.25 m only two hops were achievable in the forward link.

The core observation is that the ratio of first versus subsequent hops distance (i.e.,
multi-hop gain) increases with d1 mainly because the first hop becomes shorter as less
power to backscatter is available at the first tag. Furthermore, when T2T tags move away
from the exciter, equivalent changes in the distance have less impact on available carrier
power due to the logarithmic nature of path loss, increasing both the number and the
length of the subsequent hops. As predicted by Observation 2, the multi-hop gain is
higher in a backward link, increasing the range by about a factor of two already at four
hops.

In Figure 6.8b the cumulative received frame distribution per hop is shown as a func-
tion of d1, for both forward and backward links. Bars are grouped in order of hops, such
that the leftmost bar of a group refers to the first hop, and the rightmost to the last pos-
sible hop for that distance. The main observation here is that the backward link has a
more stable behavior.

6.6.3. RESULT 2—PHASE CANCELLATION AND NETWORK ROBUSTNESS
Measurement Methodology. A 2 m×2 m area is divided into a grid of 0.5 m increments.
The exciter and source tag are positioned at relative location (0,0) m and (0.5,0.5) m, re-
spectively. Each data point is the average of three runs of twenty-five frames each.
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Figure 6.9: Photograph of the setup to evaluate phase cancellation countermeasures in T2T
networks, discussed in Section 6.6.3: Three backscatter T2T tags on tripods, next to white
panel antenna; grid coordinates marked with yellow squares on the floor.
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Figure 6.10: Backscatter T2T network phase cancellation experiment. EX and TX mark the
positions of the exciter and transmitter, respectively. (N)PS: (no) phase shifting. Figure 6.10a
and 6.10b: forward link. Both methods yield comparable results. Figure 6.10c and 6.10d:
backward link. Multi-hop is superior in network coverage. Note: 1H and NPS is the same
case.

We now cover the performance of multi-hop as a solution against phase cancellation
and compare it to phase shifting for the same purpose (i.e., sending every frame twice
with a phase offset of 90◦). This experiment also shows the robustness increase in the
T2T network by the use of multi-hop. Furthermore, adding or subtracting relaying tags
simulates the case of message forwarding during interference and network reshaping,
e.g. from T2T tag mobility.
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Table 6.6: T2T Network Coverage: Summary of Figure 6.10 results

Vanilla⋆(%) Phase shifting†(%) Multi-hop flooding†(%)

Forward link 58.1 67.3 65.0

Backward link 28.0 40.9 54.3
⋆ No phase cancellation fighting mechanism, i.e., traditional single-hop T2T
† As analyzed in Section 6.2.2

We proceed by placing a destination tag and measuring the rate of correct frame re-
ception at each coordinate of the grid. Then, we compare this benchmark with the two
approaches. The relaying tags are added at the closest grid coordinates to the middle
point between source and destination tags, forming a two-dimensional network, see Fig-
ure 6.9. For the sake of comparison fairness, this approach only uses one relaying tag (e.g.
two hops) so that both solutions are balanced in network utilization: twice the original
number of frames in both cases.

Figure 6.10 presents the results of the experiment, while global (average) coverage
values are shown in Table 6.6. Note that for the backward link the network area was
reduced to 1.5 m×1.5 m due to the weaker nature of this link. Points of weak reception
in the area could be caused by phase cancellation or by multi-path fading due to the
unfavorable testing environment. This hypothesis gains relevance when we look at the
cases in which reception is greatly improved by adding a relay tag or by using phase
shifting. However, other points could not be enhanced by either method.

In the forward link, multi-hop and phase shifting as means to fight phase cancella-
tion report close results, improving coverage moderately by about 1.13×. On the other
hand, the backward link is better handled by the multi-hop solution, almost doubling
T2T network coverage. Multi-hop is therefore preferred in either case, as it also adds
range extension and robustness to the T2T network.

6.6.4. CASE STUDY: JOINING TWO T2T BACKSCATTER CLUSTERS

As a final experiment, we present a case study showcasing the junction of two tag clusters.
This study displays the possibility of joining distinct T2T networks with their own exciters
by positioning a middle tag connecting both groups 6.

The first cluster consists of three tags, spanning a total distance of 2.5 m from their
exciter. At the other side of the laboratory, there is a second cluster, also composed of
three tags, reaching 1.8 m in the other direction. Figure 6.11 depicts this scenario. By
placing the seventh tag in the middle of the two groups, we are able to join them and
successfully establish communication from one side to the other. There is a forward link
in the first cluster, followed by a backward one in the second cluster of tags, covering a
total distance of 5.65 m.

6.7. LIMITATIONS OF THIS WORK
Hardware Improvements. Beyond the improvement to increase the receiver sensitivity
of the T2T tag, which would increase the T2T communication distance, other develop-

6Note that, the exciters should not transmit at the same time, e.g., they need to apply a Time-Division-Multiple-
Access (TDMA) technique or randomize their transmission slots.
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T2T cluster 1 (forward link)
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T2T cluster 2 (backward link)

Information flow

Figure 6.11: A scenario of T2T clusters junction by adding a bridging T2T node. Antenna
symbols represent exciters and crosses represent tags.

ments are required. These include building a full-duplex or multi-antenna transceiver
(enabling space-time coding, for instance).

Protocol Improvements. T2T network was not designed with security in mind (to
speed up the design time), i.e., transmitted data is not obfuscated. Other improvements
include a better (non-flooding) routing algorithm and link adaptation mechanism (based
on link packet error rate measurements, for instance). Moreover, we have not performed
experiments on harvested power only, so the consideration of T2T networking under in-
termittent power [18] is another critical research step.

6.8. CONCLUSIONS
In this chapter, we built, characterized and evaluated a network composed of backscat-
ter tag-to-tag (T2T) links. In short, we reported the first successful demonstration of the
largest multi-hop decode-and-relay T2T network using distributed embedded backscat-
ter transceivers. Our results show that the T2T multi-hop approach is superior to the
phase-shifted frame repetition technique in mitigating the effect of dead spots in T2T
backscatter networks.
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CONCLUSIONS

The main obstacles to achieve truly ubiquitous sensing are (i) the limitations of battery
technology—batteries are short-lived, hazardous, bulky, and costly—and (ii) the unpre-
dictability of ambient power. The latter causes energy-harvesting sensors to operate in-
termittently, breaking an underpinning assumption of current software architectures—a
power failure is a rare event—and violating the availability requirements of many real-
world applications. This intermittent power supply necessitates rethinking classical soft-
ware architectures and the design of energy-harvesting battery-less sensors.

Reactive, Dynamic Software Architecture will Drive Future Intermittent Platforms.
Prior intermittent systems considered the challenges associated with intermittent-power
supply mainly from a computing standpoint. As a result, these systems are inherently
static: they do not enable intermittent systems to react to environmental changes. This
thesis envisions that the primary application of intermittent platforms is sensing. Sens-
ing applications are inherently reactive: sensor nodes sleep in low-power mode wait-
ing for an event to wake them up and to trigger the corresponding computation thread.
Therefore, it proposes InK, a reactive intermittent kernel. InK features a power-failure
immune scheduler to enable event-driven intermittent execution. Further, it extends
C with new language abstractions to enable safe data gathering despite frequent power
failures. This wake-on-event style of operation is particularly important for intermittent
systems as they have limited energy budget per power cycle. Therefore, putting sensors
in low-power mode waiting for events prolongs their on-times, which increases the prob-
ability of successful event capturing.

The variation in the ambient energy and differences buffer sizes—when heteroge-
neous devices are considered—translate into varying uptimes. Dynamic uptime creates
opportunities to execute more instructions before suspending application execution to
commit and protect the computation progress. Static protection approaches are agnos-
tic to these opportunities, and therefore, they are doomed to be overprotecting, wasting
energy and thereby effective on-time. Furthermore, if a static task demands more en-
ergy than what the buffer can provide, the system will get stuck in this non-terminating

107
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task. This thesis introduces Coala to address the limitations of static task-based systems.
Coala uses efficient, energy-aware task coalescing strategy to amortize static task over-
heads and capitalize on the variation of devices on-times. Further, it uses a timer-based
task-splitting mechanism to avoid non-termination of tasks too long for a device’s energy
buffer.

Intermittent Sensors Approximate Continuous Availability when Grouped Together.
The unique characteristics of energy-harvesting battery-less devices do not only create
new challenges, but also new opportunities for new design dimensions. Prior to this
thesis, to meet a certain on/off duty cycle of an intermittent device, the energy harvester
needed to be custom designed for particular ambient energy conditions. For example,
given certain light intensity, a solar panel must be of a particular size to deliver certain
output power that results in a particular charge-discharge cycle.

This thesis proposes an alternative way to meet the availability required of an appli-
cation. It exploits the little differences between the charge-discharge (or power) cycles
of energy-harvesting battery-less sensors to arrive at a uniform distribution of a group of
intermittent nodes’ on-times (Chapter 5). The emerging joined availability of these sen-
sors is a function of their number. As such, the targeted system availability can be met
not only by changing sensor hardware (e.g., a bigger solar cell), but also by increasing the
number of intermittent sensors.

However, the variation in energy-harvesting rate and power consumption compli-
cate the design of the proposed Coalesced Intermittent Sensor (CIS): a group of energy-
harvesting battery-less sensors. In event-driven sensing nodes typically employ sleep
mode to minimize energy consumption. As a consequence, nodes become available on
longer time intervals, and therefore, nodes’ awake times overlap more. Favorable en-
ergy conditions extend the overlapping intervals even further. In such situations, many
nodes will respond to the first incoming event, and consequently, power down at roughly
the same time as event processing consumes the rest of their buffered energy quickly.
This unwanted synchronization minimizes the overall availability of the system as nodes
power up and down together. To overcome this limitation energy-harvesting battery-less
sensors must be to estimate the number of active nodes and respond proportionally to
incoming events. For that, intermittent nodes need to know the total number of nodes in
their CIS; their current power cycles, which can be estimated by measuring the on-time
on a fixed load; and nodes’ on-time distribution, which is naturally uniform.

Multi-hop is resilient to Dead Spots in Backscatter Networks. From a sensor perspec-
tive, backscattering is much more energy-efficient than active communication. This is
because backscatter communication allows sensors to reuse existing-in-the-air signals
instead of emitting their own. However, due to the dis-locality between the energy source
(the carrier generator) and the information source (the sensor), backscatter sensor-to-
sensor networks have persistent dead spots. The reason behind the discontinuous cov-
erage is a phenomenon called phase cancellation; at certain locations, the backscatter
signal representing the logic “1” and “0” induces the same change to the carrier signal,
and therefore, it is indistinguishable. Multi-hop backscattering (Chapter 6) is naturally
resilient to the phase-cancellation problem, as it allows a message to arrive at the re-
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ceiver from different paths with different phase shifts. Furthermore, multi-hopping is
extremely important for backscatter networks as backscatter signals are weak as com-
pared to their carrier signals. Thus, by chaining these short backscatter sensor-to-sensor
links, multi-hopping allows the sensors to exploit the full range of the ambient signals,
instead of being limited to the ranges of the weak backscatter signals.

To conclude, this thesis detailed the way from intermittent computing to reliable
sensing on intermittent power. For that, it introduced an intermittently-powered kernel
that enables reactive and dynamic execution (Chapter 3 and 4), and a virtual sensor that
abstracts a group of intermittently-powered sensors to provide reliable and continuous
sensing (Chapter 5). Further, this dissertation advocated for a passive communication
means between intermittent sensors, and therefore, it proposed a multi-hop backscatter
sensor-to-sensor network architecture (Chapter 6).

FUTURE WORK
Here, we speculate on potential future research directions of intermittent sensors and
their impact on everyday life.

Coalesced Intermittent Sensors Networks Intermittent sensors eventually need to com-
municate the processed data. From the energy perspective, backscatter communica-
tion is a promising technology to drive the communication between intermittent nodes.
However, backscatter links are short; therefore, these nodes need to be cooperative, i.e.,
forward the messages of other nodes, to deliver sensory data to a sink. Given the limited
energy per power cycle, it is interesting to investigate the cooperative strategy that maxi-
mizes nodes’ probability of successful sensing while preserving network connectively.

Intermittent Systems and Machine Learning Intermittent sensors can partially cap-
ture events. Classical algorithms for recognizing and classifying events might have a
hard time dealing with partially captured data. Thus, follow-up work can investigate
if and how much machine learning algorithms can improve the quality of intermittent
sensing.

From Intermittent Systems to Smart Buildings We think that our work forms a basis
for developing smart and energy-autonomous skins, wallpapers, etc., which will have a
great social impact. For example, walls that can hear and see (through smart wallpapers)
might enable instant and anywhere in-building communication (without smartphones).
Furthermore, the smart wall concept, in turn, might require to re-think the architectural
design of the future smart buildings.
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Propositions

accompanying the dissertation

CONTINUOUS SENSING ON INTERMITTENT POWER

by

Amjad Yuosef MAJID

1. Intermittent kernels should be developed as reactive systems (Ch. 3).

2. Intermittent kernels can estimate their uptime by counting executed tasks (Ch. 4).

3. The on-times of a group of intermittent sensors are uniformly distributed (Ch. 5).

4. Multi-hop backscattering is resilient to the phase-cancellation problem (Ch. 6).

5. Active and passive communication can co-exist.

6. A computer scientist works either with or for a computer.

7. There is a great similarity between a scientific researcher and a mountaineer.

8. Time and immortality are mutually exclusive.

9. Worthless content on social media costs society more than fighting cancer.

10. The biggest problem humanity can face is that there is no problem.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor Prof. Dr. K. Langendoen. and the co-promotor Dr. P. Pawełczak.
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