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ABSTRACT

This thesis investigates the performance of vaneless radial and conical diffusers operating with su-
percritical carbon dioxide (SC-CO2) under various geometric configurations. The motivation arises
from the growing interest in compact, high-efficiency turbomachinery suitable for supercritical fluid
cycles. The study employs a combination of one-dimensional modelling (1D) and computational fluid
dynamics (CFD) to analyse pressure recovery in view of frictional effects and flow separation. All the
CFD simulations were conducted using commercial software Ansys CFX 2024 and 2025 integrated
into Ansys Workbench ($) and all the coding, including 1D modelling and post-processing was done
with Matlab 2024. The performance of SC-CO2 operating diffusers was compared against air simu-
lations at ambient conditions at matched Mach regime. The results show the advantageous pressure
recovery of SC-CO2. Furthermore, the comparison between 1D and CFD modelling shows acceptable
agreement for low expanding diffusers but reveals significant deviations in outcomes close to separated
flow conditions.
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1 INTRODUCTION

This work is a part of research stream focusing on supecritical carbon dioxide (SC-CO2) applications
in turbomachinery. In this study, the non-ideal characteristics of the SC-CO2 were addressed and
plausible ways of simulating a turbomachinery component - diffuser, examined. The current paper is
split into five sections. The first, current one, presents fundamentals of diffuser operations and non-
ideal compressible fluid dynamics. It outlines also the key challenges of simulating SC-CO2 diffusers.
The second section, Methodology, describes what was done to alleviate the challenges of SC-CO2. It
presents two modelling methods, one dimensional modelling (1D model) and full application of Navier-
Stokes equations via CFD. The third section, Results and Discussions, portrays what was achieved
with the two models and how they compare. In the fourth section, final thoughts on the models are
given, where they are critically assessed. Finally, in Conclusions and Suggestions, what ensues from
the study is explained and what are recommendations for future research in this domain.

1.1 MOTIVATION AND BACKGROUND

In modern times, the threat of global warming and its consequences significantly shape our technology.
With the current emphasis on producing more efficient and less polluting designs, supercritical carbon
dioxide (SC-CO2) cycles have emerged as a promising alternative to conventional power generation
or heat pumps. Due to the unique properties of SC-CO2 fluid, supercritical thermodynamic cycles
offer high thermal efficiency, high power density, and compact infrastructure requirements, making
single-stage turbines or pumps feasible (11). Notably, the application of SC-CO2 is being pursued in
heat pumps, nuclear engineering, and enhanced oil recovery processes.

Despite the great potential of SC-CO2 for reducing the carbon footprint, its application is unfor-
tunately hindered by challenges in the design process. The same characteristics that make SC-CO2
attractive also make it difficult to model in turbomachinery, where in some cases the working fluid
has even been assumed to be incompressible (15).

In the spirit of addressing some of these challenges, the present work is undertaken. It re-examines
diffuser modelling and provides insight into the flow phenomena inherent to SC-CO2 that will influence
the design process.

1.1.1 ROLE OF A DIFFUSER

A diffuser, whether conical or radial, is an inherent part of a compressor system. Whereas an impeller
adds energy to the flow by rotating, increasing the flow’s velocity, and as such increasing the total
properties of the fluid, a diffuser is tasked with recovering as much static pressure from the flow as
possible. It converts part of the flow’s energy contained in its kinetic movement into other form of
energy, embedded in pressure. This exchange is possible thanks to the flow expansion and deceleration
in changing cross-sectional area of a diffuser. Thermodynamic cycles rely on high pressures at which
heat is added to achieve better performance. Thus, achieving high pressure by a diffuser is crucial to
their operation.

In this work two types of diffusers were considered - conical and vanless radial. The conical diffuser
has fully axial inflow and the flow travels through a cylindrical geometry with increasing diameter.
The radial diffuser, in its simplest form, resembles a disc. The flow enters through the direction of
origin of that disk and leaves outwards in the plane of the disk in each direction. The two geometries
are presented in the Figure 2.1.

M. Dabrowski 1 of 56 June 2025
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1.1.2 FUNDAMENTALS OF DIFFUSER OPERATION

As seen in Figure 2.1, diffusers are passages with increasing cross-sectional areas. They manipulate
the flow through their shape to make it expand and slow down. The deceleration leads to increase in
pressure as governed by momentum conservation equation, which for inviscid flow can be simplified
to Euler equation(2):

dp = —pVdV. (1.1)

By further introducing incompressibility assumption it can be simplified to Bernoulli equation:
L oo
P+ ipV = const. (1.2)

The sum of the Bernoulli equation is equal to total (or stagnation) pressure in incompressible flow,
denoted by FPy. By analogy, the first term p is referred to as static pressure and the second %pV2
dynamic pressure. Together, they show that increase in one will result in decrease in the other. This
relation is the fundamental principle behind diffuser operation. For a case where flow has no losses,
no work nor heat addition the value of Py remains constant along a streamline (or in special cases
entire flow domain).

Using the the Equation 1.2 together with continuity equation, an expression for ideal pressure
recovery in inviscid, incompressible flow can be analytically derived. For ease of comparison of diffuser
performance, the magnitude of pressure recovered is non dimensionalised via use of pressure coeflicient
Cp defined in Equation 1.3.

D — Do
%Poo V02<>
Using this definition, in a conical diffuser, C'p is a function of only final to initial area ratio - AR:
1
Cpideal =1- AR? (14)

The relation for radial diffuser is different due to the flow inlet angle «;;,. As the flow swirls inside
a radial diffuser, the flow angle o changes, shown in the Figure 1.1.

decreasing ¢

—————

Figure 1.1: Deflecting streamline in radial diffuser flow

By recalling continuity equation in radial flow:
m = pC cos aA (1.5)

where cosaA is the effective area, it becomes clear that the velocity C' decreases not only due to
increasing A, but also due to decreasing «. Moreover, the longer the diffuser, the higher the deflection
of the streamline will be. Thus, the Cp in radial diffuser needs to capture the effect of the length of
the passage, hence Equation 1.6.

M. Dabrowski 2 of 56 June 2025
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1

) + S'L.TLQ(Oéin)(l — W

1
CPideal = 6032(041'71>(1 - TJ%Q ) (16)
If the inlet «y, reduces to ay, = 0° the Cp becomes the same expression found for conical dif-

fuser.

However, in real operation of a diffuser, losses do occur and cannot be neglected in a design. They
result in decrease of Py, rendering Equation 1.2 inadequate. The losses in diffusers, specifically vanless
radial ones, can be classified based on their origin(17):

o Wake mixing losses
e Secondary flow losses
e Boundary layer losses.

Starting with the first category, wake mixing losses relate to mixing of jet and wake flows leaving the
impeller. One, is the stream that leaves the pressure side of the impeller blade and the other the
suction side. After those two streams mix, the flow is considered to be mixed out. Simplified models
assume a fixed mass flow ratio between streams and solve for the mixed out state (28). Although
mixing is a very pertinent loss mechanism in diffuser study, it occurs rapidly after impeller discharge
(25) and depends strongly on rotor geometry (17). Accurately capturing this would require additional
assumptions. Therefore, in this study, the flow entering the diffuser is assumed to be fully mixed.

The second type of losses, being secondary flow, relates again to the discharge of the impeller. Due
to non-uniform distribution of velocity the flow will engage in secondary vorticity. This will have an
effect on boundary layer thickness, however, as it also depends on the geometry of the impeller, in
this work is omitted.

Lastly, the boundary layer losses, relate to all aspects that occur due to the boundary layer forma-
tion. Thus, the primary effects of viscosity are covered by this category. Those mechanisms can be
further divided into friction and separation. In design of a diffuser, those are the leading considera-
tions. Assuming a diffuser inlet flow is uniform, the friction and separation are the major effects on
the diffuser performance and are hence the core of this research. Thus, a brief explanation of both is
provided below.

Friction

Friction effects, as mentioned before, are actually due to viscosity. In real flow, due to interaction
with a surface such as diffuser wall, a boundary layer will develop. The flow velocity at the wall is
always assumed to be zero (called no-slip condition) and due to effect of viscosity the next streamline
cannot already have the velocity of the flow due to shear stresses experienced from the layer of fluid
at zero velocity. The shear stress for laminar flow, denoted as 7, is directly proportional to viscosity
and is given by:

ou
T = u@ (1.7)

This shear stress is referred to as friction when it is evaluated at the wall - 7,,4;. However, there
is also another aspect that influences the friction magnitude in a flow, namely turbulence. Despite
not being an actual transport property, it has a similar effect to viscosity due to velocity fluctuations
inclusion in the momentum equation. It may lower the value of Py same as u. The stress exerted
by the presence of turbulence is referred to as Reynolds stress and increases the 7 compared to
Equation 1.7(19). The total shear stress due to viscosity and turbulence is:

ou E—

T = ,ua—y — pu'v’ (1.8)

M. Dabrowski 3 of 56 June 2025
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where v/ and v’ are velocity fluctuations. The effect of turbulence is quite complex and there is
no general analytical expression that could be used to directly model its effect on friction. Thus,
reliance on (at least some) empirical data is necessary when modelling turbulent friction coefficient or
in general boundary layer.

In non dimensional form, 7,4y is shown via friction coeflicient C'f defined as

Twall
Cf = 1.9
/ %p‘m (1.9)

The value for Cf can be found analytically for certain simple shapes (such as a flat plate), however
for more complex surfaces (especially with turbulent flow) it is obtained empirically. A widely used
model in air operating radial diffusers was proposed by Japikse(28):

Oy = k(1.8¢5/Re)°. (1.10)

With the definition of Equation 1.9 the stress exerted by the wall on the flow can be integrated
to obtain for instance skin friction drag on an airfoil or in application to diffusers, it can be used in
momentum equation to find balance between flow momentum and the wall resistance. The effect of
the C'f will be directly experienced as a loss by lowering Py and increasing entropy. Moreover, as the
friction is a direct effect of interaction with the wall, the losses will be proportional to the area of the
wall. Thus, in a diffuser, longer passage increases friction losses due to larger wall surface area. This
is the first key consideration for a diffuser design, the length of the diffuser needs to be minimised in
order to decrease the losses due to viscosity at the wall - friction.

Another way of looking at friction losses stems directly from experiments performed in straight
pipes. It was observed that pressure decreases as the flow progresses, indicating loss. This effect
is a direct consequence of viscosity and it can be attributed to friction. From measuring pressure
difference AP between two stations in a pipe, another characteristic property called friction factor f
was derived:

f= AP D (1.11)

%pV2 L
where L is the segment length and D the pipe diameter (18). This semi-empirical relation, referred to
as Darcy - Weisbach formula, points to increasing losses with length of the passage. Additionally, it
provides insight into the influence of the diameter. Moreover, there exists a relation between friction
factor and friction coefficient, shown in the Equation 1.12.

f=4cCf (1.12)

From experiments with supercritical flows, relations for f were postulated to fit the results. As
they treated turbulent flows, they are all functions of Re and include effect of wall roughness <(8).
In this work, three expressions were considered. The first one chosen in this study was put forward
by Fang et al. in 2011 (10):

€\ 11007 60.525  56.291 \ °
f=1613 <log(0.234 (5) - gt Re1-0712> (1.13)
another, developed by Wang et al. (27) is defined as:
1 1 € 926 1 € 18.35
= _934 x1 - - = l & *=N0.95 —9-9941.108 1.14
VT 8 09(1.72d Re % <(29.36d) e (1.14)
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and the last one, by Fang et al. in 2019 (9) suggested introducing a dimensionless factor C'h, shown
in Equation 1.15, that would improve accuracy over a function just of Re and §.

Ch=—— (1.15)

w3
>
>
S

Here A stands for cross-sectional area through which the flow is passing and hg is the difference in
enthalpy of the supercritical fluid and its reference state of saturated liquid at 7' = 273, 15[K]. The
final expression follows:

99000

i )132 4 0.066Ch)]. (1.16)

f= 0.0127[ln(650(%)0~67 +(

Using the definition from Equation 1.9 the momentum equation can be appended by friction and
together with continuity, energy and equation of state solved analytically. Such a model was proposed
by Stanitz(25) and is described in detail in the appendix.

Separation

In intended operation, pressure increases as the flow progresses through the diffuser. Thus, the flow
encounters resistance from higher pressure zone. This is referred to as adverse pressure gradient and
is especially important in boundary layer formation. It increases the boundary layer thickness, which
reduces the available area where flow can expand and in critical case will lead to flow reversal. This is
called separation, where flow can no longer follow the wall resulting in reduction of pressure recovery.
The mathematical definition of separation is defined as:

() o o

where y is the normal distance measured from the wall and wu is the velocity component in z direction.
Predicting the maximum adverse pressure gradient that the flow can withstand is the crucial design
consideration. It is subject of many analytical and experimental investigations. The analytical models
are mostly based on the Prandtl boundary layer theory or its derivatives. Already by applying the
Prandtl equations (shown in appendix) it is possible to derive a meaningful, general conclusion for
the boundary layer shape in adverse pressure gradient. The ”first compatibility equation” in laminar
flow, which is the application of momentum equation at the wall, shown in Equation 1.18 dictates
that the shape of the boundary layer is initially concave for adverse pressure gradient.

5%u dp
= £ 1.1
2 <5y2 ) 40 dz (1.18)

The magnitude of the pressure gradient, will determine if the boundary separates. The influence of
the gradient is best portrayed in the Figure 1.2.

M. Dabrowski 5 of 56 June 2025
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A Adverse
Pressure
Gradient
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Figure 1.2: A Adverse pressure profile along surface. B Corresponding boundary layer velocity profiles.

\ A

The key takeaway from the separation losses is that the higher the pressure gradient, the higher the
likelihood of separation that leads to uncontrolled growth of boundary layer and decrease in pressure
recovered.

Thus, a design of diffuser needs to balance between friction losses that are proportional to the length
of the passage and separation (and boundary layer growth) losses that are inversely proportional to
length. The objective is to design such a diffuser that will convert the kinematic energy of the flow
as fast as possible without leading to flow separation (7). From experimental data it was observed
that as separation (referred to as stall in diffuser nomencalture) is approached, the pressure gain
is diminishing and reaches its peak slightly after the separation occurs (20). This is shown in the
Figure 1.3.

a b c
No Large Two~- Jet
appreciable transitory dimensional | flow
stall stall | stall

Cp

c

M/, constant
ST Jet flow

Figure 1.3: Pressure Coefficient as a function of AR leading to four distinct flow regimes. Adopted
from Renau et al. with permission(20)

1.1.3 INTRODUCTION TO SUPERCRITICAL CO2

A fluid is referred to as supercritical when its temperature and pressure simultaneously exceed the
critical point, defined for carbon dioxide at T, = 304.21[K] and p. = 73.773[bar|. What makes the fluid
at such conditions remarkable is its dual nature of having very high liquid-like density and relatively
low gas-like viscosity. This allows the fluid to expand more, like gas, which is very promising for
turbomachinery applications (6).

In SC-CO2, the thermophysical properties fluctuate significantly, especially in the vicinity of the
critical point. The thermopyhsical gradients are non-linear and the compressibility of the flow is much

M. Dabrowski 6 of 56 June 2025
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higher than given by ideal gas law. Moreover, the enthalpy H and internal energy U are no longer
functions of just temperature but also pressure (shown with Maxwell relations in appendix). Those
characteristics render use of the conventional ideal gas EOS inappropriate.

The non-ideal behaviour of SC-CO2 can be visualised by compressibility factor Z that defines
how actual density deviates from its ideal value (13). It is shown with specific volume v in the

Equation 1.19.
v

Z = (1.19)

Videal

The value of Z will vary depending on the conditions of the flow, as critical point is approached,
not only its value decreases but also the rate of that decrease is higher. The Figure 1.4 shows the
compressibility factor variation throughout thermodynamic domain.

a CO,, temperature-entropy diagram b CO,, pressure-temperature diagram

TIT,

v
§
~
§
3 I Idealgas |
S

1.0 O “ 5 -
cp ; ,ﬂ

0.9  Compressible T

liquid

08| E Ideal gas

1 1 1 1 1 1 1
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Figure 1.4: Magnitude of compressibility factor Z as a function of thermodynamic conditions. Adopted
from Guardone et al. under CC BY 4.0.(13)

All those aspects make the conventional modelling methods highly unsuitable for calculating flow
properties of SC-CO2. However, irrespectively of the gas properties, the fundamental conservation
equations of fluid dynamics and thermodynamics still hold. Thus, for an inviscid flow (with no losses)
the entropy remains constant which can be used to solve a non ideal gas problem via total properties
conservation, analogous to isentropic relations(12). The detailed description of non ideal gas dynamics
can be found in appendix.

1.2 NATURE OF THE ISSUE

The core issue of designing a diffuser suitable for working with SC-CO2 is that the design guidelines
were all developed for air or fluids that can be expressed with ideal gas law. Furthermore, the
experimental database for SC-CO2 turbomachinery is scarce and no paper focusing on the design of
SC-CO2 vaneless radial diffuser exists to the best author’s knowledge. Thus, a comprehensive study
is necessary that would address such flows.

The author distinguishes two main challenges when evaluating SC-CO2 flow characteristics, one
related to the model of the gas and the other to ensuing non-ideal gas dynamics.

1.2.1 GAS MODELLING

As shown in previous section, the SC-CO2 is characterised by highly non-linear thermophysical gra-
dients and non-ideal compressibility which render ideal gas law highly inaccurate for both meanline
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1D modelling and CFD applications.

One way to alleviate non-ideal compressibility is to use the compressibility factor Z in the ideal
equation of state:
pv = ZRT (1.20)

With this assumption, the isentropic relations can be re-evaluated and used in the same fashion as
the standard relations for ideal gas. However, they rely on the simplification that at a given point the
compressibility Z does not change between static and total conditions, which depending on the flow
regime and vicinity to the critical point may provide less accurate results. As shown in Figure 1.4
constant Z approximation is suitable only for limited range.

In order to capture full thermodynamic effects of supercritical flow, a model of Span-Wagner can be
applied (24). This model is considered to be state of art in current research trends and is included in
NIST database throughout a REFPROP software that allows for extracting all gas properties based
on two variables(16).

A comparison for outlet properties of an isentropic SC-CO2 flow evaluated with different gas models
is shown in the Figure 1.5.
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Figure 1.5: Outlet properties of isentropic SC-CO2 flow with inlet at T = 305 [K], p = 74 [bar] and
M = 0.5 evaluated with different gas models as a function of area ratio. A shows the magnitude of
density variation and B shows the non-dimensionalised values against inlet conditions

In the Figure 1.5 the ideal result stands for use of ideal EOS, the Approx. is the model with Z and
REFPROP uses the Span and Wagner model via a REFPROP library. The use of the constant Z
approximation provides some relevant insight into the flow characterises as portrayed by the figure B,
where pressure variation is almost indistinguishable from REFPROP result. However, investigating
temperature, reveals large deviations. Also, the density as shown in figure A, reveals shortcomings of
the approximation.

This is the first challenge related to SC-CO2 flows. Instead of using conventional 1D and CFD
modelling methods where EOS can be applied directly as a single equation, properties from REFPROP
library must be incorporated, significantly increasing computational effort.

1.2.2 DIFFUSER PERFORMANCE MODELLING

Conventional one-dimensional (1D) meanline models, such as the Stanitz model (25), require an equa-
tion of state (EOS) in explicit form to allow for analytical solutions. However, the REFPROP library
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does not support direct analytical use, which necessitates adaptations to the 1D model. Agromayor
et al. proposed one such adaptation (1), but their approach introduces additional limitations. Specif-
ically, the authors caution against using friction coefficient correlations in radial diffusers that were
not developed for swirling flows. Another researchers even postulated building an artificial neural
network in search of a data-drived approach that will produce a C' f most suitable for vaneless diffuser
flow(23). While this limitation does not affect conical diffuser modelling, it significantly complicates
the accurate simulation of radial diffusers with SC-CO2.

Another challenge arises from the uncertainty regarding which friction correlation, among those
presented in Equation 1.13-1.16, is most suitable for application in the 1D model. Each of those
expressions was derived from experimental data based on different supercritical fluids and operating
conditions, and as such, variations in their predictions are expected when applied specifically to SC-
CO2 flow scenarios.

The prediction of flow separation and its associated losses further compounds the modelling com-
plexity. Accurately capturing boundary layer reversal is difficult, and as such, diffuser design still
relies heavily on empirical guidelines. These guidelines are based on extensive experimental research
involving air-breathing diffusers and may not be directly applicable to SC-CO2 due to its distinct
thermophysical properties.

Lastly, resorting to CFD modelling to provide more insight into flow behaviour, will also pose
serious challenges. Changing the gas model to the SW, can be done by inclusion of "Real Gas
Properties” (RGP) tables(5). However, use of those significantly increases the computational time as
each thermphysical property needs to be interpolated from the tables at each iteration.

To alleviate the cumbersome process of calling RGP tables in CFD simulations, a barotropic gas
model can be deployed. It assumes that the thermophysical properties are only a function of pres-
sure(14). Through expression statements, a predefined relation between density and pressure p - p
as well as viscosity and pressure p - p can be imposed in the solver. As such, the energy equation
is switched off, and the model solves only the continuity, Navier-Stokes, and turbulence equations.
Thus, this is a simplification and as a result the effect of viscous work is neglected and the flow losses
(through entropy increase) are imposed due to p — p coupling.

Furthermore, accurate modelling of SC-CO2 with CFD requires a mesh of higher resolution. Due
to higher thermophysical gradients, the changes are expected to be more pronounced. Also, higher
turbulence resulting from high p and low u suggests that the element height for y™ = 1 needs to be
much lower than for air. This results in a mesh having overall more elements for SC-CO2 than for air
for the same geometry, directly increasing the computational effort
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1.3 OBJECTIVES AND SCOPE

The objective of the present research was to investigate the flow behaviour and frictional characteristics
of supercritical SC-CO2 in vaneless radial and conical diffusers, using both one-dimensional meanline
modelling and CFD. The scope of the work is outlined as follows:

Meanline Modelling:

e Implementation of a thermodynamic model for SC-CO2.

e Inclusion of frictional effects specific to SC-CO2 flow by use of C'f expression in conical and
radial diffusers.
e Integration of a separation prediction method based on the Stratford criterion.

CFD Simulations:

e Incorporation of a non-ideal gas model for SC-CO2 via a barotropic model.

e CFD analysis of vaneless radial and conical diffusers operating with air and SC-CO2 at matching
Mach number

e Extraction of friction coeflicients in axial and radial flow.

Research Contributions:

e Identification of the most appropriate friction factor model for various simulation conditions.
e Determination of the maximum achievable diffuser expansion ratio before flow separation occurs.

e Proposal of design guidelines for SC-CO2 diffusers based on the combined insights from meanline
and CFD analyses.
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2 METHODOLOGY

This section provides insight into methods used to achieve the objectives of the research. It firstly
covers the design space and the parameters that were chosen. Secondly, it explains how 1D meanline
modelling was achieved. Lastly, it delves into the properties of the CFD simulations that were necessary
to successfull evaluate SC-CO2 flow in a diffuser.

2.1 DIFFUSER TERMINOLOGY AND ASSESSMENT

The scope of this research was narrowed down to only consider diffusers with straight profiles. With
this assumptions, the geometry of a diffuser can be fully defined by the parameters shown in Fig-
ure 2.1.

Based on the nomenclature above, two ratios used for benchmarking diffusers are introduced: area
ratio (AR) and length over width (NW). Those two fully determine straight wall diffuser geometry.
Whereas the effect of AR is mostly responsible for the pressure recovery, the varying NW will be
changed to balance friction and separation losses. As length is crucial in determination of the friction
losses and pressure gradient responsible for separation. In the conical diffuser those parameters are

obtained as follows:
R2

AR = R‘%:t (2.1)
NW = 21%” (2.2)
and in radial diffuser:
AR = TP (2.3)
NW = R"“tB;R"” (2.4)

2.2 1D MEANLINE MODEL

2.2.1 FRICTIONAL EFFECTS

The first step in designing a diffuser (and in general turbomachinery) is often simplified calculations
assuming one dimensional flow, hence the name 1D Meanline Model. As mentioned before, the model
developed by Stanitz and updated by Agromayor et al. is not suitable for use with C'f expressions
found in literature for SC-CO2 flow. Instead a model based on evaluation of total properties is applied
that follows the idea presented in appendix in iterative routine shown by Grossman (12). This model,
designed with operation of radial diffuser in mind (with few alterations can be used for conical as well)
is property of LAMD and is a part of a larger meanline model of a compressor(21). It is a matlab
script that iteratively finds gas properties that satisfy the flow constraints.

The working principle of the 1D model is shown in the flow chart in Figure 2.2. To apply this
method, the diffuser should be split into many sections and the routine from the chart should be
applied iteratively.

The solver starts with inlet properties that comprise: static thermophysical values, flow velocity
and «;,. Based on them, the inlet total values are evaluated. Next, the outlet total value are derived
as follows. The flow is assumed to be completely adiabatic with no work exchanged, thus, the value
of total enthalpy Hj is taken to be constant. Then, to evaluate the value of outlet Py the pressure
drop dF, is calculated from frictional losses that are calculated via the Equation 1.11 and one of the
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Figure 2.1: Sketches of diffuser geometries with parametrisation, shown with side and cross-section
views. (A) Conical diffuser with radii and length denoted as R in, R out and L shown with blue
arrows indicating direction of streamlines entering and leaving. (B.1) Radial diffuser with radii and
widths denoted as R in, R out, B in and B out shown with blue arrows indicating direction of
streamlines entering and leaving, and red lines indicating streamlines within the diffuser.

(B.2) Definition of inlet flow angle in radial diffuser.
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1D MEANLINE MODEL
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Figure 2.2: Flowchart of the 1D meanline model routine for evaluating flow properties

experimental expressions for C'f. The diameter D is taken as the hydraulic diameter and the length
L as the flow path length. Based on the tangential momentum conservation from Stanitz model,
the tangential velocity Cy is computed (in conical diffuser this step is omitted). Subsequently, the
meridional velocity Cr (or for conical diffuser absolute velocity V') is estimated through incompressible
flow relation. Based on the estimate, absolute velocity is calculated and from that static enthalpy at
outlet is computed. Having, the estimate for static enthalpy and known entropy at outlet, from
REFPROP database other static thermophysical properties can be derived, notably density. With
new density, mass flow is evaluated. If the mass flow difference between inlet and outlet is deemed to
be acceptable, the solution is found. If the error for mass flow is too high, another estimate for C'r
can be taken and the calculations are done again. To increase convergence speed, this is done with a
Newton’s method.

2.2.2 SEPARATION PREDICTION

Separation, a consequence of flow reversal, takes effect due to adverse pressure gradient. In diffuser
design it is important to determine the critical value of adverse pressure gradient that the boundary
layer can withstand without reversal. An important aspect that will influence that is the turbulence of
the flow. Due to higher mixing and more energetic flow, the turbulent boundary layer can withstand
higher pressure gradients, shown with turbulent ”first compatibility equation”:

2i
N<5 u) B2 ()

- - = 2.5
dy? y=0 dz 0y (2:5)

Analogously to laminar flow expression in Equation 1.18, this expression was derived from boundary
layer equations model, here assuming turbulent flow(22). What Equation 2.5 shows, it that the
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concave shape of the boundary layer (determined by second derivative of u) in turbulent flow is not
only subject of pressure gradient but also fluctuating velocity terms (i.e. turbulence). The effect of
positive first term (adverse pressure gradient) is countered by the second in turbulent flow, which
conveniently, is negative in boundary layer. This is a clear evidence that separation prediction in
diffuser flow needs to include turbulence.

The intent was to include separation prediction in a 1D meanline model, without changing much the
nature of the code. As such, instead of lengthy process of iteratively finding boundary layer equations
solution that satisfies the core flow, a simplified model assuming independent core flow of boundary
layer was used. One of the most famous general models for prediction of boundary layer reversal is
due to Stratford (26). This method makes the following assumptions:

1. Incompressible boundary layer,

N

Similarity of boundary layer shape to a flat plate case,

@

Divides boundary layer into two sublayers,

e~

Due to adverse pressure gradient: outer sublayer does not change its shape but only magnitude,
inner sublayer changes shape.

Stratford provides analytical expressions for both sublayers and verifies if they can coexist within
the boundary layer thickness. The critical value of Cp for which they can be merged is then derived
to take the form of Equation 2.6. The full derivation is explained in the appendix.

1
. 2 — 2
(20p)"T° <xC§j’> = 1.068(10%Re)16  for (C’p < Z+ 1> (2.6)

The factor 3 is an empirical property derived from pertinent experiments and n is the factor used in
power law describing outer shape of boundary layer. The condition above, can be programmed into the
1D meanline code to check at each iteration if the C'p increase is not too high, leading to separation.
The condition also takes into account boundary layer development and predicts that for increasing

boundary layer length, the (%) is decreased. The separation criterion attractiveness stems from
ma:

its simplicity and ease of inclusion in 1D meanline code, without performing entire boundary layer
calculations.

However, as the Stratford criterion is a simplification, it will suffer from the following limita-
tions:

1. Cannot predict separation accurately for significantly curved surfaces,
2. Relies on experimental factor 5 that was determined for ideal gas like fluids,

3. Does not account for boundary layer growth and consequent decrease in Cp (due to lower ex-
pansion area for the flow) just before the separation,

4. Cannot evaluate pressure recovered after separation occurred.

2.3 CFD MODEL

To validate the findings from 1D meanline model, CFD simulations were performed. To conduct
simulations, commercial software ANSYS CFX was used(3). Using the definition of geometry from
Figure 2.1 CADs of the diffusers were created and meshed. In order to limit the effect of numerical
diffusion, structured meshes were designed. For the conical diffuser an O-grid mesh with inflation layer
at the walls. The mesh element size at the wall was evaluated to aim at a given y value by applying
one of the C'f expressions(19). In radial diffuser mesh, to save computational resources the domain
was decreases to a 45° slice. To make it work, the boundary conditions were selected as periodic,
meaning that the result on one will be directly copied to the other. The mesh for conical diffuser is
shown in Figure 2.4 and for radial diffuser in Figure 2.5. The turbulence model selected for the study
was k-omega SST due to its good performance on prediction of separation(5).
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To model the thermophysical properties of the gas, a barotropic approach was employed in place of
RGP tables. This method was selected as it is more robust. Close to critical point the thermphysical
gradients make the isotherms and isobars in T - s diagram parallel, meaning that a minute change in a
property will result in very high change in entropy. This limits the accuracy of prediction as the solver
struggles to find an appropriate solution. As a result, the simulations with barotropic model that does
not call entropy, demonstrated greater numerical stability than those using RGP tables for SC-CO2.
Moreover, the barotropic model inherently simplifies property variations outside the expected solution
domain, which further contributes to improved convergence behaviour.

The incorporation of barotropic model in CFX was done via ”expressions” functionality. In material
creation, instead of providing a constant value for density and viscosity, an expression linking it to
pressure can be inserted. The other information necessary is the molar mass and specific heat. The
material model does not contain as such information on entropy or temperature. Thus the simulations
do not solve the energy equation.

The disadvantage of using the barotropic model is that it provides less accurate solution. Through
imposed relation between pressure and density, efficiency of the process is imposed. Moreover, the
effects related to viscosity in energy equations, such as viscous work or heating, are not included(5).
Lastly, as the model does not have access to entropy information, the total pressure values are evalu-
ated as if they were incompressible through Equation 1.2 which makes the total pressure results less
reliable(4 ).

The selection of the exact barotropic model relies on selection of process efficiency. As the Iso-
Thermal and Iso-Enthalpic process were actually predicting decrease in entropy for increasing pressure
in SC-CO2, they were discarded as potential candidates for use in CFD. Instead, process with imposed
polytropic efficiency were explored. However, as it is generally not known a priori which efficiency is
most suitable for a diffuser flow, another process was derived from 1D meanline model solution. By
knowing pressure and density evolution along the diffuser, it is possible to extract a T'— s process by
use of REFPROP library. The chosen process for barotropic model are shown for conical (A) and
radial (B) diffusers in Figure 2.3.

A

B
313 / ]
312.5 / 380
312 /
¥3115 X375
— / =
311
/ —1D based
310.5 370 Eta = 0.95[]
/ —1D based —Eta=0.97
310 _EtafO.QQ,, —Eta =0.99
Etla =1 —Eta=1
365 :

1591 1591.2 15914 15916 1591.8 1592

1769 1770 1771 1772 1773 1774 1775
S [J/(kg K]

S [J/(kg K)]

Figure 2.3: Barotropic models polytropic efficiency (A) Conical and (B) Radial diffuser.
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3 RESULTS AND DISCUSSIONS

In this section, the results of two approaches: 1D model and CFD, are presented for conical and radial
diffusers operating with SC-CO2. Throughout the study, more than one hundred different geometries
were tested in spirit of assessing a parametric performance aiming to provide design guidelines.

To provide insight into flow phenomena and limitations of 1D approach, three geometries were
chosen (for radial and conical each). The first is when the flow undergoes benign change due to
low AR, second is when the flow achieves its maximum Cp value as predicted by CFD and the last
when flow is separated. All tested geometries were assumed to have the same inlet geometries and
thermodynamic conditions.

Having looked in detail into low phenomena differences in 1D and CFD, results of parametric study
are revealed. Using the C'p metric, the CFD SC-CO2 results are systematically compared with their
corresponding air-based cases to highlight the influence of non ideal gas effects on flow behaviour.

Furthermore, the CFD analysis includes an evaluation of the C f in SC-CO2 for fully developed flow
in a straight pipe and a radial diffuser and compares it against the Cf models from literature.

3.1 1D MODEL

3.1.1 CONICAL DIFFUSER

The three geometries that were chosen in conical diffuser are: AR equals 1.6, 2.4 and 3 with fixed
length of the diffuser - 0.06]m] making NW equal 3. Furthermore diffuser was taken to have inlet
of 0.05[m] length and outlet 0.08[m]. Inlet and outlet have constant area. Plots of properties found
in conical diffuser with 1D meanline model as a function of the diffuser length were derived with C'f
model of Fang et al. presented in the Equation 1.13. Whereas the absolute values of the results vary
depending on C'f model, the overall trends are maintained. This section aims to discover limitations
of the 1D nature of the model, details on selection of an appropriate C'f will be considered later.

Figure 3.1 shows results for those three geometries as a function of the axial location. In order to
best assess the performance of the 1D model, each plot will be discussed separately. Starting with
observations of the Figure 3.1 plot A, showing evolution of static pressure, the following can be said.
Pressure initially decreases in the inlet region, followed by rapid increase in pressure in the expansion
region. Lastly, pressure decreases in the outlet region, however less steeply than at inlet. The same
trends are shown regardless of AR.

The reason for predicting pressure decrease in a constant area channel (straight pipe) is due to
effect of friction incurred by the surrounding walls. This is a direct implication of including the C'f in
the simulation. Next, the crucial section of the diffuser begins, where pressure recovery occurs. The
flow slows down to be able to fill up the passage. This decrease of kinetic energy is manifested by
increase in static pressure as the simplified momentum equation in 1.1 shows. Lastly, the outlet is
again a straight pipe, so frictional effects decrease the pressure. The reason for the lower gradient than
in the inlet can be seen in Equation 1.11, which shows that the pressure drop is proportional to the
square of velocity and inversely proportional to the diameter of the pipe. At the outlet, the diameter
is the largest, and the velocity the lowest. Hence the lower pressure loss. The same explanation can
be give to why the gradient of outlet pressure for AR = 3 is the lowest.

In the Figure 3.1 plot B evolution of axial velocity along the diffuser is plotted. In constant area
sections, inlet and outlet, the velocity remains constant. In the expanding part, the flow decelerates.
With changing the AR, flow reaches different velocities as can be expected.

Lack of change of the velocity in the inlet and outlet is a numerical limitation. In general, the
solver is able to predict increase in velocity in constant area pipes, however, in SC-CO2 application,
the accuracy of the error check, neglects that effect. In reality, due to pressure decrease, the density
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Figure 3.1: Results from the 1D meanline model of SC-CO2 for a conical diffusers with length NW = 3,
using the friction correlation from Fang (2012). Inlet conditions are: velocity Vi, = 58.3 [m/s], pressure
P, = 80.1 [bar], and temperature T3, = 310 [K]. The plots illustrate: (A) Static pressure, (B) Velocity,
(C) Total pressure, and (D) Entropy distributions along the diffuser.

is also lowered, and that leads to increase in velocity due to continuity equation. Regarding, the
deceleration in the expanding section, the fundamental assumption of 1D model is that the flow is
indeed one dimensional and fills up the entire passage. Consequently, by expanding the cross sectional
area, the flow is forced to slow down to be able to fill up the entire passage. As density does not
decrease (actually increases), the velocity has to decrease to satisfy the continuity. Thus, increasing
cross section area decreases the velocity of the flow. This is also the reason for lower final velocity
reached for higher AR designs.

The total pressure plot in the Figure 3.1 plot C shows P, decreasing throughout the domain.
Initially, the decrease is the steepest, gradually flattening. At the point where inlet ends, the curves
diverge and follow different gradients. The evolution of Py is a direct consequence of the geometry.
As shown in 1D model flow chart in Figure 2.2, this is the very first property that is evaluated. It
is weakly dependent on Re and primarily a subject to geometry - diameter, through Equation 1.11.
Thus, for larger cross section area the loss will be lower.

To benchmark the efficiency of the process, the entropy plot in Figure 3.1 D can be addressed. Its
result is tightly linked to that for total pressure. For the lowest AR, the highest loss is predicted as the
diameter is the lowest. The entropy values were called from REFPROP, based on total enthalpy and
total pressure, as the second property evaluated through 1D model. Thus, they again depend almost
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exclusively on geometry, through total pressure. Looking at the absolute values, all three results are
of comparable magnitudes. However, for a CFD simulation using the barotropic model to be more
accurate, the model parameters should ideally be derived from a 1D meanline analysis conducted on
the same geometry.

Regarding the evolution of other properties such as density or temperature, they are extracted from
REFPROP too. They follow the same trends that pressure plot does, however their magnitudes vary.
The density evolution was used in construction of barotropic model but other than that, they do not
provide more insight into this section, and hence were omitted here.

As is visible, in the plots above, 1D model as taken from Figure 2.2 does not predict pressure
drop due to flow separation at AR = 3. Without lengthy boundary layer calculations and iterative
solving of the flow domain, predicting flow recovery after separation is not possible. What can be
done however, is to use the Stratford condition to provide a limit to which solution is possible to be
achieved.
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Figure 3.2: Separation in a conical diffuser: (A) Prediction of 1D code - red dot indicates stall and
green lack of stall. (B) Experimental data of Renau et al. 1967, adopted with permission(20)

In the Figure 3.2 A, a binary plot shows whether the given combination of AR and NW results
in separation (red dot) or not (green dot). This figure was obtained for specific inlet conditions and
geometry. It portrays similar trend to the experimental results in B, where a-a line indicated the
appearance of stall. The separation limit line predicted by the model exhibits an approximately linear
trend. This behaviour aligns well with theoretical expectations, indicating useful prediction frame-
work. Flow separation is primarily governed by the adverse pressure gradient, and the accuracy of its
prediction is sensitive to two key factors: the inlet boundary layer thickness (specifically, the momen-
tum thickness) and the empirical Stratford parameter, 3. The Stratford criterion assumes a boundary
layer development analogous to that over a flat plate; however, in highly curved geometries, such as in
high AR diffusers, the boundary layer may grow more rapidly, potentially affecting separation onset.
In the case of conical diffusers, both the channel length and the outlet area influence the pressure
gradient, which is the dominant driver of separation as described by Stratford’s theory.

However, upon further testing, the Stratford criterion proved to be not fully adequate. The main
issue is that its applicability is limited by the theoretical boundary layer thickness over a flat plate.
To satisfy that, the maximum Cp condition was given. For diffusers with higher AR it often breached
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that value. Thus, the Stratford condition can only be used under specific flow regimes.

3.1.2 RADIAL DIFFUSER

For the radial diffuser, three geometries that were selected are: AR equals 1, 1.65, and 2 with NW =
5.42 . To obtain these results, the friction factor model proposed by Wang et al. (from Equation 1.14)
was applied. Similarly to the conical diffuser case, the choice of friction model affects the absolute
values of the results, but not the overall trends. The outcomes of the 1D model are presented in
Figure 3.3 as functions of radial location.
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Figure 3.3: Results from the 1D meanline model of SC-CO2 for radial diffusers with length NW = 5.42,
using the friction correlation from Wang (2014). Inlet conditions are: velocity Ci, = 135[m/s],
pressure P, = 130.71 [bar|, and temperature Ti, = 364 [K]. The plots illustrate: (A) Static pressure,
(B) Velocity, (C) Total pressure, and (D) Entropy distributions along the diffuser.

The results for the radial diffuser configurations reveal several notable trends across different area
ratios. Starting with the plot A in Figure 3.3, the static pressure increases along the radial direction,
with the steepest gradient occurring at the beginning. Beyond an AR of 1.65, the gain in pressure
recovery is marginal. Another important finding is that pressure recovery occurs also for case where
geometric area at the outlet is the same as at inlet - AR = 1.

This behaviour is consistent with the theoretical relationship shown in Equation 1.6, where pressure
recovery scales non-linearly with both AR (which could be viewed as a function of radius AR(R) shown
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in appendix) and diffuser length NW (expressed through the radius ratio, RR). As the geometry was
taken to have straight walls, the area does not scale linearly with radius. Instead, it increases the
most at the beginning, hence the steepest profile there.

The ultimate pressure recovery for those three geometries differs only due to AR as they have the
same length (again shown by Equation 1.6). Thus by looking at the term (1 — ﬁ) it is clearly visible
that final pressure recovered is not linearly dependent on AR, hence marginal benefit of AR = 2 over
AR = 1.65.

Lastly, the reason for having pressure increase in a diffuser with AR = 1 is due to effect of o and
RR as shown in the Equation 1.6. As the flow travels throughout the diffuser, 1D model (as well as
an ideal one) suggest that, its angle o changes making flow leave more radially than when it entered.
As mass flow needs to be conserved in the system, the absolute velocity C' must decrease. It can be
seen by inspecting the continuity equation for radial diffuser stated in Equation 3.1.

m = pcos (a)CA (3.1)

If the angle o decreases then cos () increases and finally the absolute velocity C' must decrease and as
such provide pressure recovery despite area being constant. This explanation holds for a compressible
case and for a case with friction, albeit they require other expressions to fully evaluate the flow.

Similar findings and conclusions are found for the velocity evolution in plot B in Figure 3.3. The
velocity decreases gradually throughout the radius of the the diffuser, being the steepest at the begin-
ning. This again is attributed to the area changing the most at the beginning. Moreover, the same
trends for different final AR is present as in pressure plots. Changing AR beyond 1.65 has minimal
effect. The pressure and velocity plots complement each other according to the momentum equation.
Again, the exchange between kinetic energy and pressure, like in Equation 1.1 is portrayed.

Moving to the plot C Figure 3.3, the total pressure decrease is the property that can be seen as the
sign showing how much the pressure recovery deviates from its ideal form of Equation 1.1. Similarly
to the results in conical diffuser, the value of Py is the first property that 1D code evaluates. However,
an expression for hydraulic diameter is very different to a conical case. In radial it is defined as follows
from the Equation 3.2.

Dh = 2v/2R;, Bout (3.2)

As the variation in diffuser width B does not change significantly throughout the diffuser and between
the designs with different AR, the effect of different Dh is marginal, leading to similar values in all
three geometries.

Lastly, entropy from Figure 3.3 D is discussed. Entropy increases in a manner inversely proportional
to the decrease in total pressure, and again, the impact of AR on this trend is minimal. Entropy was
directly calculated from total pressure and total enthalpy using REFPROP. As total enthalpy was
assumed constant, the entropy distribution effectively mirrors the total pressure profile, like in the
conical case. The diffuser losses predicted by the 1D model show limited sensitivity to changes in
geometry. As a result, efficiency estimates are nearly independent of final AR, supporting the use of
the simplified barotropic gas model derived from one geometry in all radial simulations.

As with the conical diffuser, the 1D model does not account for the effects of boundary layer
reversal on pressure recovery. The highest AR provides highest pressure recovery, which is not the
case in reality. To address this limitation, the Stratford criterion was applied in the radial direction to
estimate the upper limit of pressure recovery before flow separation occurs. Only the radial component
of the flow path was considered in evaluating the pressure gradient, focusing on the pressure rise along
the radius. This approach is hypothesized to implicitly incorporate the influence of the inlet flow angle
(e 777

The analysis, shown in Figure 3.4 indicates that increasing the length NW leads to a reduction in
the maximum area ratio AR,,q; achievable without flow separation. This trend contrasts with that
observed in conical diffusers and runs counter to initial expectations. However, this does not imply
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Figure 3.4: Separation in a radial channel - red dot indicates stall and green lack of stall

a decrease in the maximum pressure recovery coefficient Cpyqae, as the prediction still supports that
higher Cp values can be obtained with longer diffusers at a fixed AR. This is due to the fact that
pressure recovery in radial diffusers, as shown with Cp;geqr, is also a function of NW through the
radius ratio (RR). Yet still, due to the complex nature of flow separation and stall phenomena in
radial diffusers, the Stratford criterion appears to be insufficient for accurately predicting the stall
limit. The model lacks the representation of boundary layer—core flow interactions that appear to be
more significant than in conical diffusers, thereby oversimplifying the actual flow behaviour.

3.2 CFD

The same geometries evaluated using the 1D model were replicated with the CFD simulations. Inlet
conditions were chosen to closely match those used in the 1D analysis, ensuring consistency in the
flow regime. The simulations employed barotropic models, as described in section 2.3. The primary
motivation for performing CFD on the same design points was to gain deeper insight into the flow
behaviour and to assess the limitations of the 1D model, particularly its inability to predict stall
phenomena in radial diffusers. Moreover, to assess the benefits of SC-CO2, reference cases were run
with air.

Setting up a model with high quality mesh and properly stated boundary conditions takes time
and is often a trial-and-error process, especially for SC-CO2. The boundary conditions outlined in
Figure 3.5, represent the configurations under which the simulations achieved desirable convergence
and numerical stability. Although, in principle, any physically admissible set of boundary conditions
should be valid (as suggested by CFX documentation), practical implementation is often constrained
by solver-specific factors such as relaxation parameters and iteration step sizes. These numerical
considerations can lead to the solution entering unstable regimes, producing non-physical results. For
instance, in the case of the radial diffuser, a boundary condition prescribing mass flow proved overly
permissive, resulting in excessively high Mach numbers prior to simulation failure.
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Table 3.2: Radial diffuser
Table 3.1: Conical diffuser

- Air SC-CO2
Air SC-CO2
Cin [m/s] | 136 136
Py in [Pa] | 107417 | 8569011
. in [deg] | 73.78, 70, 65 | 73.78, 70, 65
Mout [ke/s] | 0.037928 | 6.000489
Pout [Pa] | 105507.8 15000000

Figure 3.5: Boundary conditions for CFD simulations

3.2.1 CONICAL DIFFUSER

The three design points from section subsubsection 3.1.1 evaluated with 1D model are replicated with
CFD. The results of those simulations are shown in this section. To compare the CFD results with
1D model results faithfully, it was aimed to select the same inlet conditions for both. However, as
shown above, specifying boundary conditions in CFD software differs from imposing inlet values in
1D. Thus, the resulting inlet values vary slightly as shown in Table 3.3. However, as the deviation is
negligible, the comparison is deemed to be valid.

AR [ NW [V [m/s] | M [-]| P [Pa] | T [K]
1.6 3 58.4 0.3 80.1 eb 310
2.4 3 58.3 0.3 80.1 eb 310
3.0 3 98.3 0.3 80.1 eb 310

Table 3.3: Conical Diffuser inlet properties for selected design points

To provide deeper insight into the flow development within the diffuser, CFD contour plots are
presented in Figure 3.6 and Figure 3.7. Three flow variables are visualized: static pressure, axial
velocity, and total pressure. These results are shown for two geometries—one exhibiting gradual
changes in area ratio and flow conditions (AR = 1.6), and another where flow reversal was observed
and consequent decrease in pressure recovery(AR = 3).

Starting with the solution for fully attached flow, the CFD results in contour (B.1) Figure 3.6
indicate that the boundary layer develops along the wall, but no flow reversal is observed, as the axial
velocity remains positive throughout the domain. From (A.1) Figure 3.6, the static pressure field
exhibits a gradual, nearly one-dimensional distribution, with the outlet and inlet pressures remaining
almost uniform. Furthermore, the total pressure field in (C.1) Figure 3.7 closely follows the velocity
field, consistent with the expectation that dynamic pressure scales with the square of the velocity.
However, upon closer look, it is visible that the values increase slightly at the core of the flow.

These observations suggest that the uniformity of the pressure field and no noticeable upstream
effects make this case more amenable to accurate prediction by the 1D model. Although the velocity
and total pressure distributions exhibit some two-dimensional characteristics due to thin boundary
layer, it is deemed to be local and its effects captured by friction approximation. Moreover, the
variation of the total pressure in the core flow can be attributed to the inability of the CFD software
with barotropic model to evaluate total pressure values for compressible flow.
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Pressure [Pa] A. 1
79.6e5 80.7e5 82.1e5 83.4e5

Pressure [Pa] A2
78.9e5 80.9e5 82.8e5 84.8e5

Velocity u [m s”-1] B.1

Velocity u [m s?-1] B.2
-10 5 20 35 50 65

Figure 3.6: SC-CO2 flows in conical diffusers with NW = 3 and fully attached AR = 1.6 (1) and
separated AR = 3 (2). Fields of: Pressure (A), Velocity (B)
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Total Pressure [Pa] C.1

78.9e5 81.23e5 83.56e5 85.9e5

Total Pressure [Pa] C.2

78.9e5 81.23e5 83.56e5 85.9e5

Figure 3.7: SC-CO2 flows in conical diffusers with NW = 3 and fully attached AR = 1.6 (1) and
separated AR = 3 (2). Field of Total Pressure (C).

Moving to the assessment of the flow field in a diffuser with separated flow, in Figure 3.6 (A.2),
pressure field exhibits a nearly one-dimensional distribution normal to the diffuser walls, indicating
uniformity across the cross-section. Looking at the end of the inlet, some upstream effects are visi-
ble. Another key observation is that, some pressure recovery still occurs at the outlet with constant
area.

The 1D characteristics of pressure supports the underlying assumption in boundary layer theory
that the pressure gradient normal to the wall (%) is negligible, even in cases where the boundary
layer appears separated. In inlet some upstream effect is visible due to significantly higher pressure
occurring at the expanding section and slowing down the flow already before it leaves inlet. Finally,
the continued pressure rise in the outlet is due to further flow expansion, as the walls no longer diverge
significantly and thus allow the flow to reoccupy the passage.

In terms of boundary layer behaviour, best visible in Figure 3.6 (B.2), the simulation shows signif-
icant thickening of the boundary layer beginning roughly one-third into the expansion region. Near
that point, areas of reversed flow (i.e. negative axial velocity) become apparent, indicating the onset
of separation as given by the definition in Equation 1.17. However, as the flow proceeds into the out-
let, the reversed velocity transitions back to positive, suggesting at least partial reattachment. This
behaviour is consistent with boundary layer separation followed by gradual recovery, as the passage
area ceases to increase and the flow is able to expand. This explains why there is noticeable pressure
recovery in the outlet.

Lastly, the total pressure distribution in Figure 3.7 (C.2) reveals a distinctly two-dimensional
profile, analogous to the velocity one. The core flow maintains a nearly constant total pressure, with a
slight increase observed, likely due to barotropic model assuming an incompressible relation for total
pressure. This region exhibits minimal viscous and turbulence (as was verified with eddy viscosity
contour) losses, resembling ideal, inviscid behaviour where the conversion between static and dynamic
pressure closely follows Euler’s equation (Equation 1.1). In contrast, the boundary layer near the
walls shows the most significant total pressure loss, attributed to high velocity gradients and high
turbulence leading to associated shear stress. These mechanical energy losses dominate in the region
of boundary layer separation, particularly in the expansion zone, where the lowest total pressure values
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are observed. As the flow reattaches downstream, a partial recovery in total pressure is evident, further
confirming the dynamic interaction between flow expansion, boundary layer development, and viscous
dissipation.

To facilitate comparison between the 1D model results from Figure 3.1 and CFD results, two plots
showing core flow values and one with averaged values are presented in Figure 3.8.

A B
\ T 60_’-\\ T e T
AR =16 /| =1
—AR=24 \ —AR =24,
| 53 —AR =3

84 —|—AR=3

85

va i
83
// 45 \\
= )
Se2 £.40
o >
35
81 ,
30 ~—
25 \
79 20
0 0.05 0.1 0.15 0 0.05 0.1 0.15
L [m] L m]
C
85.7
AR=16
—AR =24
85.6 [
85.5 -
S|
85.4 <
T
8,853
o /
85.2 /
85.1
85|
84.9
0 0.05 0.1 0.15
L [m]

Figure 3.8: SC-CO2 CFD Results for NW = 3 at the middle of the profile. Plots of: (A) Pressure,
(B) Velocity, (C) Total Pressure where dashed line is mass-flow-averaged and solid is area-averaged
result.

The pressure distribution shown in Figure 3.8 (A) across the diffuser shows several notable trends.
Initially, pressure decreases at the inlet region for all geometries, primarily due to wall friction, an
effect consistent with predictions from the 1D model. However, 1D model overestimated largely the
magnitude of that pressure drop. Within the expansion section, a steep pressure rise is observed,
corresponding to the deceleration of flow as the cross section area increases. The gradient of this
pressure recovery is strongly dependent on the rate of area change: for instance, at the highest area
ratio (AR = 3), the pressure gradient is the steepest until around one third of length of the diffuser
where boundary layer separation was identified in Figure 3.6 (B.2).

At the outlet, the pressure field behaves differently depending on AR. For AR = 1.6, pressure
becomes nearly constant, suggesting that almost all of the flow expansion has already occurred within
the designated expansion section. The losses due to friction are reduced compared to inlet due to
the increased diameter and lower velocity. Thus, they do not manifest themselves as pressure drop,
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as suggested by the 1D prediction. For AR = 2.4, gradual expansion continues beyond the formal
expansion section, indicating that the flow did not reach its maximum expansion within the designated
region. However, the pressure curve remains smooth, indicating no flow separation. This effect, is
not visible in the 1D prediction. In the AR = 3 case, the pressure profile reveals a change in gradient
within the expansion section, signalling the onset of boundary layer separation. Although pressure
remains relatively uniform afterwards, further expansion continues until the diffuser exit, allowing
some degree of pressure recovery despite the separation.

A consistent pressure rise is observed just before the outlet across all geometries; this is a nu-
merical artifact attributed to boundary conditions at the outlet, where the solver resolves slightly
higher core pressure than in the surrounding flow (as evidenced in Figure 3.6, particularly upon close
inspection).

It is important to note that diffuser performance is evaluated between the inlet and outlet of
the expansion section, excluding entrance and outlet effects. This approach isolates the intrinsic
performance of the expansion geometry and ensures meaningful comparisons across designs.

From plot (B) Figure 3.8, velocity behaviour in core flow is investigated. The velocity profiles
mirror the pressure distributions due to their coupling through the momentum equation. Regions
of slower flow correspond to regions of higher pressure. The flow decelerates as the cross-sectional
area increases, thereby enabling pressure recovery in accordance with diffuser function. As pressure
decreases in inlet section, leading to higher density, velocity increases to satisfy continuity. This effect
was not captured by 1D due to its accuracy.

For the geometry AR = 3, again, the trend indicating separation is clear. Around the same location
where the gradient of pressure changes visibly, significant change of gradient of velocity takes place,
again, pointing to pressure - kinetic energy exchange in core flow.

Whereas the pressure and velocity distributions can be reasonably discussed using core flow values,
the total pressure at the core is not particularly meaningful in this context. It even shows a slight
increase, due to implementation of the barotropic model. Therefore, to enable a more meaningful
comparison with the 1D model predictions, area-averaged and mass-flow-averaged total pressure values
are considered in Figure 3.8 plot (C) instead.

Due to lack of entropy information in the gas model, the total pressure is calculated by CFX from
Equation 1.2. As barotropic model further assumes fixed relation between pressure and density, the
total pressure is essentially a function of velocity and pressure fields. The values, when averaged across
the cross-section, reveal distinct differences between area-averaged and mass-flow-averaged results. For
all AR cases, area-averaged values are consistently lower. This is because the boundary layer, which
is characterised by low total pressure values, occupies a larger proportion of the cross section area
than the proportion of the mass carried within the boundary layer compared to the entire mass flow
passing through the section.

In the inlet region, the boundary layer develops while the core flow accelerates slightly and decreases
its pressure. As the velocity - pressure exchange occurs in core flow without significant losses, the low
total pressure values will induce a modest but consistent drop in both area and mass-flow-averaged
total pressure, nearly identical across all AR values due to having identical inlets.

A notable shift in total pressure trends occurs at the transition between the inlet and expansion
sections. In the very initial portion of the expansion section (roughly until 0.07[m]), the area-averaged
total pressure remains relatively constant—velocity drops while static pressure and density rise. How-
ever beyond the initial section of the expansion zone, as the boundary layer grows more significantly,
it introduces a broader region of low total pressure, thereby reducing the area-averaged values. In
contrast, the mass-flow-averaged total pressure initially increases in the expansion section. This occurs
because the central core, which carries the majority of the mass, experiences increased static pressure
and density, and the boundary layer remains relatively thin. As explained before, due to inaccuracy of
CFD in calculating total pressure, the core values are overpredicted, hence, showing increasing values.
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However, later as the boundary layer thickens further downstream and velocity is dissipated, both
averages begin to decrease, with mass-flow one, continuing until the end.

Moving to the outlet zone, the area-averaged result produces a sharp change in two larger AR
designs at the entrance to the outlet. This is an effect caused by the fact that the cross-sectional
area of the outlet is constant and the boundary layer can finally start recovering. Thus, the values
in boundary layer become higher again. Interestingly, the final values for the flows which did not
experience separation (AR 1.6 and 2.4) converge to almost the same values. This could be explained
by the fact that their losses could be almost solely attributed to friction. Furthermore, the slightly
lower value for AR = 2.4 is consistent with expectations, as the wall length is longer due to the larger
expansion angle (horizontal diffuser length remains fixed, but actual wall length increases with aegp,
following L/cos(ceyp))-

Lastly, when referring to the results from 1D model in Figure 3.1, the values for total pressure
in AR 1.6 and 2.4 are of similar magnitudes, however, 1D model puts higher emphasis on effect of
hydraulic diameter than length, hence the prediction of lower final total pressure for lower expansion,
opposite to the CFD result. This is the same effect that predicted significantly higher pressure drop
in the inlet section.

3.2.2 CONICAL GEOMETRY BASED STUDY SC-CO2 vs. AIR

Finally, one of the key findings of the study can be presented. Using the CFD model, a series of
simulations were performed for both SC-CO2 and air. To evaluate and compare the performance of
these working fluids, the pressure recovery coefficient C), was selected as the primary metric. Figure 3.9
shows two plots illustrating results for identical geometries using each fluid. Both simulations were
carried out at the same inlet Mach number to ensure a consistent basis for comparison.
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Figure 3.9: CFD Parametric study for M;, = 0.3 (A) SC-CO2 and (B) Air.

To begin, the relationship between the pressure recovery coefficient C, and the area ratio AR is
examined. For each NW, the observed trends reflect the combined influence of wall friction and flow
separation. For clarity, first the results corresponding to NW = 3 in A are considered. At low area
ratios AR < 2, the flow remains fully attached, and the boundary layer is relatively thin. Under these
conditions, pressure losses are primarily attributable to wall friction. In contrast, when the same AR
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value is considered for a longer diffuser, such as the case with NW = 10, the resulting C, values
are noticeably lower. This reduction is a direct consequence of increased frictional losses associated
with the larger wall surface, highlighting the sensitivity of C), to diffuser length even when geometric
expansion remains constant. The same trends are visible in the results with air.

However, as Cppqe is approached for NW = 3 geometry, at AR = 2.6, the curve starts flattening.
This is due to the boundary layer being thicker with higher AR and finally reaching its maximum
thickness before separating, shown in the Figure 3.6 (B.2). The AR for separation can be increased
to achieve an overall higher Cp by decreasing the gradient of the pressure in axial direction. Thus,
by choosing a design with a longer diffuser, the separation occurs later, with a much higher Cp. For
instance for NW = 5 it is possible to reach AR = 3.4 without separation and achieve C'p ~ 0.82.

Thus, as explained in the introduction, on one hand, longer diffuser accumulated more frictional
losses, but due to lower pressure gradient, the separation limit is delayed, enabling it to reach overall
higher Cp.

By comparing the results for SC-CO2 in Figure 3.9 (A) with those for air under ambient-like con-
ditions in Figure 3.9 (B), two key observations can be made. First, the pressure recovery coefficient
Cp achieved with SC-CO2 is consistently higher across all geometries. Second, for a given NW, the
onset of flow separation in SC-CO2 appears to occur at slightly higher area ratios AR compared to
air. These two characteristics—enhanced pressure recovery and delayed separation—underscore the
performance advantages of SC-CO2 and contribute to its attractiveness as a working fluid. Notably,
these anticipated advantages were suggested in the introduction and served as a primary motiva-
tion for this investigation. The CFD results now, provide strong evidence in support of the initial
hypothesis.

The higher values of C'p observed for SC-CO2 can be attributed to the high density as well as
greater change in its value in SC-CO2 diffuser than in an air one (3.2% vs. 2.6%). By looking at the
continuity equation (m = puA), it is evident that both density and cross-sectional area increase will
lead to velocity reduction. As in SC-CO2, p variation is larger, the velocity reduction will be higher
than in air. Lower velocity translates to higher pressure due to kinetic energy - pressure exchange.
Moreover, by inspecting Equation 1.1, it is clear that not only the flow deceleration dV is of importance
but also the p value itself. Thus, a flow with its higher absolute value will achieve higher pressure
recovery.

The influence of working fluid on separation can be best assessed by investigating the critical geom-
etry. With the data in Figure 3.9, a linear function for maximum AR achievable without separation
for given NW can be derived. It is given for SC-CO2 and air respectively:

ARpae = 0.35- NW + 1.58 (3.3)
ARpae = 0.35- NW + 1.32 (3.4)

As the slope of the two functions is the same, it can be deduced that the separation mechanism
remained consistent between two fluids. However, in SC-CO2, the stall line is positioned above the
result for air, indicating that the maximum allowable adverse pressure gradient that SC-CO2 can
withstand is higher.

The delay in flow separation in SC-CO2 can be explained in two ways. First, more intuitive and
qualitative, points to the fact that SC-CO2 flow carries more momentum, due to its high density.
Thanks to that, it can withstand higher adverse pressure gradient, as it is more difficult to slow it
down.

Second explanation is more quantitive and revolves around looking at Equation 2.5. The first
compatibility equation, a check of the boundary layer profile at the wall, provides good insight into
how SC-CO2 properties may affect the separation onset. Firstly, investigating the viscosity of SC-
CO2, it is found to be higher, than for air. The sum of the two terms on the RHS of Equation 2.5
is positive just before separation as the profile is already concave due to adverse pressure gradient.
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However, with higher viscosity, the magnitude of the RHS is lower. Thus, higher pressure gradient is
needed to make it ”excessively” concave to actually produce flow reversal. Thus higher viscosity of
SC-CO2 adds more stability to the boundary layer.

Secondly, looking at the second term of the RHS of Equation 2.5 the influence of turbulence can
be assessed. As explained before, it plays an essential role in delaying flow separation due to the
product /v’ being negative in boundary layers. The value of that product is consistently significantly
higher in SC-CO2 than in air as suggested by eddy viscosity results. Moreover, also density is sig-
nificantly higher. Thus the second term in the RHS of Equation 2.5 will be larger for SC-CO2 than
for air, allowing for higher pressure gradient without excessively concave boundary layer, leading to
separation.

3.2.3 RADIAL DIFFUSER

Proceeding to the evaluation of the radial diffuser, the three design points previously examined using
the 1D model in Section 3.1.2 are now analysed through CFD simulations. In order to ensure a mean-
ingful comparison between the two modelling approaches, an effort was made to maintain consistent
inlet conditions across both methods. However, as indicated in Figure 3.2, the boundary conditions
that provided satisfactory convergence in the CFD simulations were specified as inlet velocity and
outlet static pressure.

As a consequence, the resulting inlet thermodynamic properties exhibit some variation due to
pressure recovery based on diffuser geometry. They are summarized in Table 3.4. Despite this, the
maximum deviation in inlet pressure across the design points remains below 4%. This relatively small
discrepancy suggests that the operating conditions remain within the same flow regime, and thus
the results from CFD and 1D models can be considered comparable for the purpose of performance
analysis.

AR [NW |V [m/s] [ M [-]] P [Pa] |T [K]
1.00 | 5.42 135.8 0.50 134.92 e5 364
1.65 | 5.42 135.8 0.50 132.75 eb 364
2.00 | 5.42 | 1358 | 050 | 133.75¢5 | 364

Table 3.4: Radial Diffuser Alpha = 65[deg] inlet properties

In the same manner that CFD contour plots were discussed in section 3.2.1 of the conical diffuser,
this section will provide insight for radial diffuser. The Figure 3.10 provides flow contour plots of
pressure, velocity and density for one flow with benign change due to low AR (1) and the second for
a case where significant separation occurred (2). Notable difference in the radial contour plots is that
the flow is actually swirling throughout the diffuser, thus, to simplify the visualisation of a flow path,
black and red lines were added, showing 2D and 3D streamlines respectively.

The CFD results for the attached flow case exhibit several key characteristics across multiple flow
variables. Firstly, the pressure distribution in Figure 3.10 (A.1) shows a smooth and nearly one-
dimensional profile, with negligible pressure gradient in the direction normal to the walls. The gradual
deceleration of the flow allows a consistent conversion of kinetic energy into pressure, with the most
pronounced pressure increase occurring near the diffuser inlet, which is consistent with predictions from
the 1D model. The near one-dimensional nature of the pressure field confirms that the assumptions
underlying the 1D model are valid in this regime.

As explained before, in a straight wall diffuser, the area does not scale linearly with radius. Thus
for the AR = 1, the initial geometry exhibits a slight increase in cross-sectional area, which promotes
flow expansion and pressure recovery. Moreover, as explained before, in radial diffusers, also the
length of the diffuser strongly influences pressure recovery (due to term RR in Equation 1.6). This
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Figure 3.10: SC-CO2 flows in radial diffusers with «;, = 65[deg] NW = 5.52 and fully attached AR
= 1.00 (1) and separated AR = 2.00 (2). Fields of: (A) Pressure, (B) Velocity, (C) Total Pressure.
Black and red lines are flow 2D and 3D streamlines respectively.
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was explained to take place because of the decrease of the flow angle a.. It is now possible to validate
that hypothesis by inspecting the streamlines obtained from CFD, visible in contour in Figure 3.10
(A.1). Both 2D and 3D streamline deflect significantly from a constant angle shape cure. It may be
difficult to state that just by visual observation, however, with access to the CFD data the gy, was
measured and it was indeed lower than «y,. Therefore, the 1D model’s observations concerning the
evolution of a are supported by the CFD findings.

For the velocity field Figure 3.10 (B.1) is addressed. No tangential velocity gradient is observed,
and the boundary layer remains thin throughout. Furthermore, the low AR leads to a weak adverse
pressure gradient, which in turn results in slow boundary layer growth. The gradual reduction in
velocity is facilitated by the changing of the oy, as explained above. The smooth profile of pressure and
velocity fields point to this case being appropriate for modelling with a 1D model, such as introduced
before.

Regarding total pressure from Figure 3.10 (C.1), the core flow maintains a nearly constant value,
with marginal increase in the core as shown with the iso-lines in the side view, particularly near the
outlet. This effect is again attributed to limitations of the barotropic model. As with the conical
diffuser, total pressure losses are primarily confined to the boundary layer, where elevated velocity
gradients enhance viscous dissipation.

In the case of separated flow, the pressure field Figure 3.10 (A.2) remains remarkably uniform
in the direction normal to the walls, even in the presence of unsteady separation. This observation
implies that the pressure measured at the centreline of the flow width, as shown in Figure 3.11
(A), remains representative of the overall pressure distribution. Consequently, comparisons with 1D
model that assumes uniform pressure across the cross-section remain valid despite the presence of flow
separation.

The velocity field Figure 3.10 (B.2) reveals that the flow becomes asymmetrically attached to one
side of the channel, with the boundary layer dominating the outlet region. This behaviour arises from
flow separation induced by excessive expansion, leading to a quasi-transient state. As a result, the
simulation residuals do not fully converge, indicating the presence of unresolved unsteady behaviour.
A transient simulation would be required for a more accurate capture of these dynamics. Additionally,
boundary layer growth is significantly more pronounced than in conical diffusers. Although the NW
may be of similar order, the effective path length in radial diffusers is extended due to the swirling
flow, which enhances boundary layer development. Furthermore, the larger AR also contributes to
the effective flow path length significantly.

The total pressure field Figure 3.10 (C.2) closely resembles the velocity field and exhibits non-
uniformity in both radial and axial directions. This correspondence can be explained by the barotropic
gas model, where total pressure is given by Equation 1.2. Since pressure (and thus density) is ap-
proximately constant in the width-wise direction, spatial variations in total pressure are governed
predominantly by the velocity distribution. The non-uniformity observed in the tangential direction
is likely attributable to the unsteady flow regime and the incomplete convergence of residuals, which
remained above le—6.

To facilitate comparison between the 1D model results from Figure 3.3 and CFD results, two plots
showing core flow values and one with averaged values are presented in Figure 3.11.

Pressure evolution observed in Figure 3.11 (A) increases throughout the domain for all three design
points. Each case has different inlet pressure and the same outlet pressure due to selection of boundary
conditions in CFD. However, as explained before, the regime is comparable.

Among the results for three geometries, the case with the highest area ratio AR = 2, which exhibits
flow separation as discussed before from Figure 3.10 (B.2), is the only one where the pressure gradient
trend changes mid-domain. This occurs around R = 0.047[m] and can be indicative of a location of
onset of boundary layer reversal. The pressure evolution for AR = 2 highlights that, despite its larger
AR, the separated flow design performs worse in terms of pressure recovery due to separation losses
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accumulation, clearly visible through the pressure difference (AP) between inlet and outlet.

Furthermore, the pressure gradient is steepest near the inlet, which corresponds to the rapidly
increasing cross sectional area in this region, and inducing of the oo change as was hypothesised in the
1D model results.

Similarly to the fixed outlet pressure in Figure 3.11 (A) between different AR, the inlet velocity is
fixed in Figure 3.11 (B) due to inlet boundary condition of flow velocity. Inspection of the velocity
evolution indicates that velocity profiles for the non-separated cases closely mirror the corresponding
pressure trends, as measured at the core flow. However, for the separated case (AR = 2), a notable
deviation occurs: the point of abrupt change in the velocity profile does not align exactly with the
pressure trend break. This discrepancy stems from the unsteady nature of the separated flow in
this example, where the core flow becomes asymmetric, often attaching to one wall. As a result,
the flow field becomes quasi-transient and convergence is not fully achieved. During separation,
the boundary layer grows to occupy a significant portion of the diffuser width and crosses into the
center line. Therefore, velocity measured at the channel midline no longer represents true core flow
conditions.
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Figure 3.11: SC-CO2 CFD Results for NW = 5.42 at the centreline of the profile. Plots of: (A)
Pressure, (B) Velocity, (C) Total Pressure where dashed line is mass-flow-averaged and solid is area-
averaged result.

Comparing area-averaged and mass-flow-averaged total pressure plots from Figure 3.11 (C) reveals
a few interesting features. The initial values are different for each case. This is due to having fixed
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velocity and different static pressure between the designs. A general trend is that area-averaged values
are consistently lower due to the influence of boundary layer regions where total pressure is reduced.
However, mass-flow averaging assigns lower weight to these low-velocity (and thus lower Py) boundary
layer zones, resulting in higher averaged values.

In the AR =1 case, where the flow remains largely attached and losses are minimal, distinguishing
trends in total pressure is more challenging. As shown in Figure 3.10 (C), the boundary layer thickness
increases towards the outlet, thinning the core region. Therefore, if inlet and outlet mass-averaged
values remain equal, the total pressure in the core must have increased, suggesting again shortcoming
of barotropic model in prediction of total pressure. It is not possible to see the effect of friction just
by inspection of the plot.

The prediction of the increase of mass-flow averaged total pressure across all the designs is in
general attributed to the barotropic model assumption of incompressibility between static and total
values.

Regarding, the separated case (AR = 2), it is partially in line with expectations. It shows the
highest drop in total pressure value. This is a case for area as well as mass-flow averaged result. The
trends are comparable to the AR = 1.65 design, suggesting that the losses due to separation may be
looked at as the difference between results of the two (normalized with their Py inlet values).

3.2.4 ErrFECT OF INLET FLOW ANGLE ON PRESSURE RECOVERY

Another parameter of interest in radial diffuser flow is the the inlet flow angle, «;,. It plays a crucial
role in determining the pressure recovery performance and stall characteristics of radial diffusers.
While increasing «;, can, in theory, enhance C'p by extending the flow path and promoting more
effective diffusion, it also introduces the risk of flow separation and stall.

Figure 3.12 presents the influence of inlet flow angle () on the pressure recovery coefficient (by
means of Cp) for a fixed-geometry radial diffuser. The CFD results indicate that increasing oy, initially
improves Cp, as longer streamlines enhance flow turning and facilitate more effective kinetic energy -
pressure conversion. This behaviour aligns with the idealized trend predicted by Equation 1.6, where
a higher «;, increases Cp.

However, the ideal relation assumes «;, can increase without bound, peaking at «;, = 90°, which
corresponds to a fully tangential flow. This scenario is clearly unrealistic. CFD simulations reveal
that beyond «;, =~ 75° for diffuser with AR = 1 and NW = 5.42, flow separation occurs, causing a
sharp decline in Cp. The onset of stall can be attributed to a reduction in radial momentum, which
compromises the flow’s ability to counteract the adverse pressure gradient. Moreover, higher o, leads
to longer streamlines and increased boundary layer development, eventually reducing the effective core
flow area. As shown in Figure 3.10 (B.2), this boundary layer thickening can cause the core flow to
vanish entirely, even though the local pressure gradient may remain modest. However, the true nature
of the critical inlet angle is more complex and the analytical modelling of that phenomenon could be a
subject of a separate study(29). This points to the difficulty or even implausibility of capturing stall
effect in 1D modelling.

Additional parametric studies (presented in the appendix) confirm that higher Cp values can be
achieved at lower «;, when combined with larger AR. These findings underline the critical role of
radial stall in diffuser performance and demonstrate that reducing o, has a stabilizing effect, delaying
separation and improving overall pressure recovery.

M. Dabrowski 34 of 56 June 2025



3
TuDelft =PFrL 3.2 CFD

= |deal
0.58 { = CFD

0.57

0.56 -

p

U 0.55 -

0.54

0.53 A

0.52

66 6|8 ?ID 72 74
Alpha In [degrees]

Figure 3.12: Effect of inlet angle o, on pressure coefficient in radial diffuser with AR = 1 and
NW = 5.42

3.2.5 RADIAL GEOMETRY BASED STUDY SC-CO2 vs. AIR
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Figure 3.13: CFD Parametric study for M;, = 0.5 at a;, = 65[deg] (A) SC-CO2 and (B) Air.

Finally, the crucial findings of the study are presented. The CFD analysis reveals that the maximum
pressure recovery, Cppqz, for air occurs at approximately the same area ratio, AR, as for SC-
CO2 when the NW | is fixed. However, the magnitude of C'p achieved with SC-CO?2 is significantly
higher than that for air, underscoring the enhanced compressibility and expansion characteristics of
the supercritical fluid leading to greater capacity for flow deceleration as explained when discussing
the conical diffuser.
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Furthermore, increasing NW shifts AR, to higher values, a trend contrary to predictions from
the 1D separation model. Notably, higher values of NW result in substantially greater C), values.
Furthermore, the trend outlined by the ideal relation (Equation 1.6) and 1D model of positive influence
of the length of the diffuser on pressure recovery is confirmed.

The critical geometry can be again benchmarked with a trend that fits the dataset best. In case
of a conical diffuser, a linear trend was sufficient, however, in radial diffuser, a quadratic trend seems
to be more appropriate. Given the results in Figure 3.13, SC-CO2 seem to be limited by the same
ARz for given NW, despite a bit higher values at NW = 7.29 and NW = 8.33 for air. Thus, only
one expression that is said to fit both is provided.

ARpae = —0.019- NW? +0.34- NW +0.33 (3.5)

These findings suggest that the critical geometry of radial diffusers does not need to be fundamen-
tally altered when switching from air to SC-CO2, as the underlying stall mechanisms, driven by the
similar maximum adverse pressure gradient, remain similar.

3.3 1D vs. CFD PERFORMANCE PREDICTION COMPARISON

In the two previous sections, results for 1D and CFD models were presented separately. Certain trends
in flow evolution were discussed and some differences between models highlighted. Thus, the major
shortcomings of the 1D model, such as: lack of upstream effects, boundary layer growth neglection,
lack of pressure recovery modelling after separation, no turbulence and viscosity inclusion other than
through Cf, semi-empirical assumption on total pressure drop, and more, are clear. In this section,
the effects of those assumptions are portrayed through a systematic assessment via a performance
metric Cp and underlying frictional effects via C'f.

3.3.1 FricTION COEFFICIENT IN AXIAL FLOW

The CFD model, was firstly used to compare friction models from literature to a result obtained from
a simulation. The objective here was to determine the influence of the friction solely, thus a simulation
for AR = 1, a straight pipe, was conducted. In a pipe, flow does not experience expansion and losses
due to adverse pressure gradient boundary layer build up and separation. Thus, the measured loss
can be said to be stemming only from friction.

As the simulations was conducted with a RANS k-omega SST model, the shear stress measured
in the flow is evaluated through Equation 1.8, which will include the effect of viscosity as well as
turbulence. This will also have consequence for total pressure evolution throughout the pipe, that is
expected to decrease more than it would just because of viscosity. However, as modelled eddy viscosity
is an approximation of the true complexity of a turbulent flow, it is important to visualise how it relates
to experimental data, for which the models from literature were derived. In the Figure 3.14 results
from CFD simulations are compared to the values for corresponding flow conditions determined with
friction models from literature.

In the Figure 3.14 there are two results addressed 'CFD 1’ and "CFD 2’. They are both from the
same simulation, but they were calculated using different expressions. The ’CFD 1’ was evaluated
by first obtaining friction factor f using the semi-empirical expression with total pressure drop from
Equation 1.11 and then converting it into C'f with Equation 1.12. The 'CFD 2’ was found by using
the more analytical expression based on the shear stress at the wall as given by Equation 1.9.

The CFD results reveal several key observations. First, in both simulation approaches, the skin
friction coefficient C'f decreases along the pipe length. Secondly, the shear-stress-based method yields
a lower Cf value compared to the method derived from total pressure loss. Additionally, the C'f
models from literature appear nearly constant at the scale of the tunnel, with variations so minor that
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Figure 3.14: Comparison of friction coefficient C'f along a pipe for SC-CO2 flow. Result CFD 1
calculates C'f from the total pressure drop between monitoring stations, while CFD Case 2 derives C'f
from the wall shear stress. Additional C'f values were obtained using friction models from literature,
based on the same inlet flow conditions as the CFD simulations.

they are not visually distinguishable in the plots. Among these, the model proposed by Wang et al.
demonstrates the closest agreement with the CFD - based C'f values.

This behaviour can be explained as follows: the initial section of the pipe experiences the highest
velocity gradient (%‘) near the wall due to boundary layer development, resulting in elevated shear
stress and, consequently, a greater initial drop in total pressure. As the flow progresses, the boundary
layer thickens, reducing the local velocity gradient and wall friction, which in turn lowers the C'f. As
flow is not experiencing any expansion induced by changing cross sectional area, the boundary layer

remains almost constant after /L = 0.3. Hence the C f profile predicted by both CFD methods.

Moreover, the total pressure drop is influenced not only by wall shear stress 7,4 but also by the
losses in the entire boundary layer, which are a consequence of shear stresses in a larger region of the
flow. As a result, the C'f derived from total pressure loss (despite not having accurate values due to
barotropic model) is higher than that calculated purely from shear stress at the wall.

Most literature-based models for C'f are primarily functions of geometry and exhibit only weak
sensitivity to fluid properties, which are included through Re (and Ch in Fang et. al 2020). The
strong agreement of Wang’s model with the CFD-derived C f suggests it may be the most appropriate
choice for use in the 1D conical model. This is likely because Wang’s correlation was developed
specifically for SC-CO2, whereas the models: Fang 2011, and Fang 2019 were formulated for a broader
range of supercritical fluids. Interestingly, the Japikse model, despite being originally developed for
ideal gas flows, shows second best agreement with CFD results.
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3.3.2 CONICAL GEOMETRY BASED STUDY 1D vs. CFD

To assess the predictive capability of 1D modelling approach in conical diffuser, a comparative study
was conducted against CFD results. To achieve that goal, the metric of C'p was adopted. The analysis
is carried out across the range of area ratios AR tested previously with CFD. The Figure 3.15 presents
the comparison of 1D model predictions with different friction models against CFD results for two
representative cases: NW = 3 and NW = 5. These cases provide insight into the influence of channel
length on flow behaviour and model fidelity.
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Figure 3.15: Pressure recovery as a function of AR, comparison with 1D model results with C'f models
from literature. (A) NW = 3 (B) NW = 5.

The comparison of 1D and CFD results shows that, for lower area ratios AR, the predictions from
the 1D model align closely with those from CFD. At low AR geometries, boundary layer development
is limited and separation losses are minimal. In such cases, the flow resembles pipe flow conditions,
for which SC-CO2 friction models used in the 1D simulations, were originally formulated. As a result,
the inclusion of frictional effects provides an accurate approximation.

For longer channel, NW = 5, the agreement between the 1D model and CFD results improves
further, even at higher AR values leading up to separation. This trend is evident in Figure 3.15(B),
where separation is delayed due to the extended diffuser length, allowing the flow to remain attached
for longer, and separate less abruptly. Thus, influence of the boundary layer build up and separation
is visible later, allowing 1D modelling to predict the flow better.

Among the friction models assessed, Wang’s model exhibits the best overall agreement with CFD
data, followed by Japikse’s model. The superior performance of Wang’s correlation is likely due
to the nature of the experimental database on which it was based as suggested before. It was the
only model developed specifically for SC-CO2. This is again consistent with the result found from
Figure 3.14.

M. Dabrowski 38 of 56 June 2025



3 |:P|-L
TUDelft =Fi™ 3.3 1D vs. CFD PERFORMANCE PREDICTION COMPARISON

3.3.3 FRicTiION COEFFICIENT IN RADIAL FLOwW

Similarly to the section 3.3.1, it is important to verify if the friction models from literature are suitable
for radial diffuser flow by comparing them with values from CFD. The notable difference between axial,
pipe flow and the radial flow is that boundary layer and flow turbulence could be significantly different,
leading to different values of C'f as per Equation 1.8. In order to assess purely the effect of friction,
not influenced boundary layer growth due to expansion, a geometry of a radial diffuser with AR =1
was tested. As shown before, such a geometry will still develop pressure recovery due to the changing
angle « of the flow, however, the change with respect to boundary layer is still relatively benign. In
the Figure 3.16 Cf value extracted from the CFD simulation is presented against the models found
in literature.

The CFD result in the Figure 3.16 was obtained through the relation for 7. The initially higher
values are again indicative of boundary layer formation at the beginning. Further, as the boundary is
more developed it does not grow as fast, leading to relatively constant value of C f measured.

The value found in radial diffuser is indeed different to the one shown in a pipe flow (Figure 3.14),
however, this difference is marginal. Thus, one more time, the Wang’s model proves to be the best
fit.

What merits attention, is the model of Japikse predicts some variation in C'f as the flow develops
throughout the diffuser. As Japikse is specifically intended for use in radial diffusers, this evolution
could be intended by the design, to account for higher losses at the outlet where boundary layer grows
higher. Thus, including implicitly more losses than just friction.
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Figure 3.16: Comparison of friction coefficient C'f along radius of radial diffuser for SC-CO2 flow.

Result CFD derives C'f from the wall shear stress. Additional C'f values were obtained using friction
models from literature, based on the same inlet flow conditions as the CFD simulations.
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3.3.4 RADIAL GEOMETRY BASED STUDY 1D vs CFD
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Figure 3.17: Pressure recovery as a function of AR at a;, = 65[deg], comparison with 1D model results
with Cf models from literature.( A) NW = 5.42 (B) NW = 6.25.

The analysis in Figure 3.17 shows that all evaluated 1D friction models tend to overpredict the pressure
recovery largely when compared to CFD results. It is likely attributable to the dual application of
the friction coefficient, C'f, within the 1D framework. In the current implementation, Cf is used
both to calculate wall shear stress, Tyqi, and to estimate the loss in total pressure, dPy. As it was
shown in Figure 3.16, the shear wall value predicted by Wang’s model is very close to the CFD result,
suggesting that the limitation resides in the calculation of dFy in the 1D model.

This discrepancy becomes more pronounced as AR increases, indicating a growing deviation between
1D predictions and real flow behaviour under greater expansion. This happens as the boundary layer
grows, and the flow approaches separation, which is not modelled by 1D. Specifically, the 1D model
overestimates flow deceleration and compressibility, assuming that the entire cross sectional area is
filled up by fluid. Furthermore, variations in the NW appear to have little influence on the accuracy
of 1D predictions.

Among the models tested, Wang’s correlation exhibits the closest agreement with CFD results across
all configurations. This again is due to the model being developed specifically for CO2 supercritical
flow and being the closest to the CFD extracted value, Figure 3.16.

Interestingly, a result opposite to the conical case can be observed, namely, the higher the C'f value,
the higher the Cp predicted by 1D model. This result is counter-intuitive and indeed, is a major
limitation of the model, likely stemming from the calculation of dP, that assumes proportionality to
hydraulic diameter of the section. This simplification was not a problem in conical case where axial
flow passing through a cone is more similar to a straight pipe.

Furthermore, the systematic overprediction of C}, by the 1D model provides a plausible explanation
for why the 1D-based separation check anticipates stall earlier than observed in CFD.

Whereas the agreement between 1D and CFD was deemed acceptable in the conical diffuser, in
radial geometry it is highly unsatisfactory. For that reason, an effort was made to adapt the 1D model
to achieve a better fit. However, the issue was that values for d Py could not be derived from CFD due
to the local nature of Fy. Thus, through an iterative process, certain correction factors were applied
to find such, that provide best results. As the dual nature of the C'f was appointed to be the source
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of the problem, the correction factors were applied as follows:
Cfr = Cfwang * 0.6 (3.6)

Cfdpo = CfWang * 5 (37)

where C'f; is to be used in tangential momentum equation to evaluate Ct and C fyp, is to be applied
to evaluate total pressure drop.The values were determined solely based on the agreement with the
results. The influence of the changed C'f values is visible with the MD curve in the Figure 3.18.
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Figure 3.18: Pressure recovery as a function of AR, CFD comparison with 1D model results with a
new Cf model.( A) NW = 5.42 (B) NW = 6.25.

What is remarkable is that the ideal value for C'p as evaluated through Equation 1.6 shows outstand-
ing agreement with CFD data. This is naturally a result of the ideal method highly overpredicting
the results for incompressible flow due to neglection of friction and as such, does not merit any sci-
entific basis for being a suitable model. Yet, it is a fortunate result that may suggest using the ideal
expression for initial calculations in a design process.
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4  FINAL THOUGHTS ON MODELLING ASSESSMENT

This section presents a more in-depth and critical evaluation of the results, with particular emphasis on
assessing their validity and the implications of the methodological assumptions introduced in section 2.
While some points may reiterate earlier discussions, the aim here is to consolidate key insights and
provide a comprehensive perspective on the findings.

4.1 1D MODEL ASSESSMENT

Several important limitations of the 1D modelling approach must be highlighted to critically assess
the accuracy and applicability of the results.

First, in inlet and outlet sections of the conical diffuser, (straight pipe geometry), velocity is ex-
pected to increase as the density decreases due to decreasing pressure. However, the iterative solver
often accepts errors larger than the actual velocity variation, particularly when operating near the
critical point. For instance, operating the same geometry at ambient conditions indeed predicts ve-
locity increase. Reducing the accepted error threshold can improve accuracy but frequently leads to
numerical instabilities under SC-CO2 conditions.

Viscous losses are accounted for solely through the skin friction coefficient, Cr, and total pressure
loss, dPy, which are evaluated based on either average or hydraulic diameters of the cross section
under consideration. This expression is in nature semi-empirical and thus, an approximation. Also,
the model does not account for upstream flow development or geometric discontinuities at the inlet
and outlet, where abrupt changes can occur.

By construction, the 1D model assumes a single representative result per section. This simplification
ignores the coupled evolution of the boundary layer and core flow. Consequently, pressure recovery
is not diminished in the lead-up to separation, which contradicts physical expectations observed in
more detailed simulations. Once separation occurs, the model cannot resolve downstream flow fields,
as this would require solving the full boundary layer equations which was deemed beyond the scope
of the current framework. Thus, the change of gradient of pressure recovery was not captured by 1D
modelling.

The solver also neglects the upstream effects stemming from adverse pressure distribution. It was
demonstrated in the CFD analysis section that in a conical diffuser, the effect of area change in
expansion zone was visible at the end of the inlet. Making the transition between inlet and expansion
zone smooth. In 1D solver, this effect is not captured as only one iteration for the diffuser geometry
is evaluated.

In radial diffusers, discrepancies are further exacerbated by the dual use of Cy definitions. While
literature-based values of Cy are derived from correlations involving dFy, the 1D model also employs
C in the tangential momentum conservation equation (from Stanitz model found in appendix), which
relies on wall shear stress, Tywa. This mismatch introduces inconsistencies. As noted in Agormayor
et al. (1), applying C from straight-channel studies to radial geometries is generally discouraged.
However, the CFD simulations revealed that the Cy correlation from Wang et al. showed very good
agreement with the swirling flow value from the simulations, pointing to the use of the Wang’s model
in obtaining 7w to be justified. Thus, it is believed that the semi-empirical dP, expression is the
source of the discrepancy. To improve accuracy of the estimation of 1D model, the entire procedure
presented by Agromayor et al. could be followed.

The Stratford criterion, after calibration of the 8 parameter, provides reasonably accurate predic-
tions of flow separation in conical diffusers even when using SC-CO2. However, as explained before,
due to its simplistic assumptions and max Cp limitations, cannot be applied reliably in wide range
of operation. Furthermore, its application to radial diffusers reveals even more discrepancies. The
underlying assumption of similarity to flat-plate boundary layers becomes invalid due to the complex
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flow behaviour inherent to radial expansion, resulting in poor predictive capability even after tuning
through 3.

4.2 CFD MODEL ASSESSMENT

A number of key modelling assumptions and limitations must be considered to critically evaluate the
accuracy and physical fidelity of the CFD simulations presented in this study.

Firstly, the mesh quality and near-wall resolution were assessed using the dimensionless wall dis-
tance, y. The simulations maintained y™ values within an acceptable range for most of the domain,
ensuring the validity of wall-function-based turbulence modelling. However, locally, especially at the
inlet in radial diffuser simulations, the maximum y™ often reached values of above 80. Even though a
local occurrence, this may have affected flow field further downstream, influencing final pressure and
velocity distribution.

The CFD simulations employed a barotropic gas model, which assumes a fixed functional relation-
ship between pressure and density. As a result, the same p — p relation governs flow behaviour at the
inlet, outlet, and within the expansion region. This approximates the friction loss process in straight
pipe geometry.

Barotropic model simplification allows for higher computational efficiency, however, it omits thermal
effects, as the energy equation is not solved. Consequently, any flow features driven by heat transfer
or temperature gradients are not captured. As the flow simulated in a diffuser is not at high velocity,
aerodynamic heating is deemed negligible. However, CFD cannot validate that without solving energy
equation. Thus, model’s applicability may be questioned in other flow simulations involving significant
work or heat transfer.

Furthermore, turbulence modelling was performed using an eddy viscosity approach through use
of k-omega SST model. As a result, the turbulence effects captured in simulations are analogous
to those in air, although the final values in SC-CO2 simulations were higher than in corresponding
air simulations. A dense fluid such as SC-CO2, has drastically different molecular structure to air,
which could point to its microscale mixing being different as well. Thus, extracting C'f from RANS
simulation with eddy viscosity model cannot be treated as a final validation even if energy equation
was incorporated.

Lastly, transient flow phenomena, particularly in the context of separation, merit attention. Effects
such as rotating stall or asymmetric flow attachment were observed in CFD but cannot be adequately
resolved in steady-state simulations that were key in this study. Capturing accurately these dynamics
would require unsteady (transient) simulations to properly characterize the evolution and impact of
such instabilities. Only then, final answer could be provided to what happens to pressure recovery of
SC-CO2 flow after separation.

Overall, while the CFD methodology offers valuable insight into flow behaviour, it is constrained by
modelling assumptions that should be addressed through advanced turbulence models and transient
analyses for comprehensive validation. This study would therefore benefit from a few transient LES
simulations with very fine meshes.
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5 (CONCLUSIONS AND SUGGESTIONS

Throughout this study, the development, performance and limitations of 1D and CFD modelling
methods were presented with the goal of assessing their applicability in the design process of SC-CO2
operating diffusers. This section will highlight the key findings and conclusions. Finally, it will also
provide a few recommendations for future research and further validation ideas.

It was confirmed with CFD simulations that use of SC-CO2 in vaneless radial and conical diffuser
promotes higher pressure recovery compared to air. This effect was attributed to large density and
higher expansion of SC-CO2 fluid. Furthermore, in the conical diffuser it was found that the flow
separation is delayed, reaching maximum pressure recovery for slightly higher AR. It was motivated
by the fact that the turbulence and viscosity in SC-CO2 is higher, making the boundary layer profile
more resistant to separation, allowing for higher maximum adverse pressure gradient. Those findings
point to the guidelines changes that can be done for conical diffusers, as indicated by the expression
for critical geometry. For radial diffuser, the difference in stall in air and SC-CO2 was not visible, and
the critical geometry was suggested to be kept unaltered.

Furthermore, using CFD results, the value for C'f was obtained for axial and radial flows. It
emerged that the closest model from literature was the one proposed by Wang et al.(27). This was
the case for both flow types that showed very similar C f values, contrary to the initial scepticism that
swirling flow would have very different (higher) value.

Regarding 1D modelling, the conical prediction using Wang et al. model was deemed satisfactory
for geometries far from stall. This being attributable to similarity of axial flow within pipe and conical
diffuser. The friction influence is comparable and until the boundary layer growth is not significant,
the prediction of 1D model provides meaningful results. This is despite it not accounting for boundary
layer interaction and upstream effects.

In the case of radial diffuser, the agreement between 1D and CFD model was initially weak. The
reason for that was identified to be the use of friction coefficient to obtain total pressure drop via
pipe relation with hydraulic diameter. To improve the prediction, correction factors were successfully
applied that changed the friction coefficient magnitude depending on its use. Moreover, it was dis-
covered that the incompressible, inviscid relation for pressure coefficient provided remarkably close
results to CFD. This was explained to be a coincidental outcome, resulting from the ideal expression
significantly overpredicting the air simulation results.

The effort of implementing a separation criterion in 1D modelling was deemed unsuccessful due to
Stratford condition oversimplifying the boundary layer profile and its limited applicability to relatively
low pressure coefficient values.

Finally, a few recommendations for further research can be made. It would be insightful to redo
the radial diffuser simulations with a 1D model based on full Stanitz equations(25) transformed for
non-ideal gas(1). This routine could be followed with the friction model of Wang et al. as it proved
to be close to the friction values extracted from CFD.

Regarding CFD simulations, to gain better insight into turbulence dynamics specific to SC-CO2 a
Reynolds stress model or an LES study should be conducted. Also, to better understand the pressure
recovery after separation, transient simulations should be performed.

A deeper study into Mach number influence should also be performed. In this research only one
value was tested per diffuser, however, it is expected that as compressibility effects become more
significant at higher Mach numbers, the SC-CO2 will promote even higher pressure recovery compared
to air.

Lastly, the study would benefit from more simulations assessing «;, influence on stall. Based on
the simulations performed, it was assumed that for a;, = 65[deg] the critical geometry for SC-CO2
and air radial diffusers does not vary significantly. Moreover, it was assumed that the geometry varies
quadratically. However, a deeper study into stall phenomena in radial flow would be beneficial.
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Ideal pressure recovery is often used to give initial estimate of performance of a diffuser. It assumes
that the flow has not losses such as fiction and it incompressible.

The ideal pressure recovery in conical diffuser is a derivative of two equations, conservation of mass
and Bernoulli, summarised as follows:

1 1
P+ ngf =ps + 5pV§ (A.2)

assuming incompressible flow, from the continuity equation velocity can be evaluated and substituted
into Bernoulli to fully express pressure. By considering two stations 1 and 2, the pressure at the latter

follows: ) . 4
_ Lov2_ o 2142
p2=p1+ 2PV1 5 % Az) (A.3)

by further recalling the definition of pressure coefficient:

P — Do
Cp= A4

pressure recovery in conical diffuser can be summarized as a function of area ratio (AR):

1

In the radial diffuser, the following relations are used to derive ideal recovery:

pCh cosag Ay = pCo cos ag Asg (A.6)
[ [

p1+ 5/)01 =p2+ §P02 (A7)

RlCl sin a1 = RQCQ sin (0%) (AS)

which are continuity in radial flow, Bernoulli and conservation of angular momentum in absence of
friction. The velocity at station 2 can be derived by solving the system of the first and the last
equations after some trigonometric manipulations it is given as:

1 by \ 2
Cy = C1 cos alAR\/(tan al(bi)> +1 (A.9)

where b stands for diffuser width. After substituting it into the Bernoulli equation and Cp definition,
some mathematical manipulations yield:

1

) + sin?(aq)(1 — W)

Cp = cos*(a)(1 (A.10)

b
AR?

where RR stands for radii ratio.
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B CROSS-SECTIONAL AREA IN DIFFUSERS

In a conical diffuser where the profile is assumed to have straight walls, the radius varies linearly with
length:
Ry Ry

R(x) T

T+ Ry (B.1)

and the area follows:
A(z) = TR*(x) (B.2)

thus in a straight conical profile, the AR is not varying linearly with length.

In radial diffuser with straight walls, width scales with:

bg—bl b2—b1

bo — " R B.3
+ 02 RQ—R12 (B.3)

b(r) = Ry R1 er

and the area follows:
A(r) = 2mrb(r) (B.4)

thus in radial diffuser, the straight wall profile results in quadratic cross sectional area evolution as a
function of characteristic length.

C St1ANITZ RADIAL DIFFUSER FLOW MODEL

Stanitz states that "Even with relatively low friction coefficients and neglecting mixing losses near
the impeller tip, the friction losses in most vaneless diffuser designs are considerable [...] and these
losses result from the usually large ratios of wetted surface to flow area in vaneless diffusers.” Stanitz
proposed a model that includes the effects of friction (25). It is summarised by the following equations:
Radial momentum conservation:

1dP dCh, C’g C? cos o

Tangential momentum conservation:

dCy  CpCy C?sina
p— -2
o + . +Cf 2 0 (C.2)

Cm

Continuity conservation:
1dp 1 dC, 1db 1
pdr "o dr Thar Tr 0 (€-3)

Energy equation:

v—1
To=T+ —— A
0 + IR C (C.4)
Ideal EOS:
P =pRT (C.5)
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Firstly, the flow of the gas itself is addressed in a straight pipe. Assuming that the flow is inviscid,
adiabatic and without body forces the energy and momentum conservation equations dictate:

dh + udu =0 (D.1)

dp + pudu = 0. (D.2)

It is important to realise here that they do not differ to the relations in ideal flow as they stem from
conservation of fundamental concepts. Thus, when applied in the Gibbs equation an interesting result
is observed:

ds =0 (D.3)

which says that in such a flow, the non-ideal effects themselves do not produce any losses, a result
that was not visible from the Equation E.16. It follows then that the same as for the ideal gas flow,
the total properties (enthalpy and pressure) are conserved along a streamline in absence of viscosity
(friction), body forces and heat/work exchange. Naturally, the same conclusion can be made by just
investigating the energy and momentum equations.

In general, total enthalpy of the fluid is constant even with addition of friction and viscosity as
the loss of momentum of fluid (which is postulated by the total pressure drop) is manifested in the
increase in average kinetic speed of agitated molecules, that is temperature. Thus, the same statement
as for the ideal flow can be made, that total enthalpy can be only changed by the means of energy
transfer - heat or work.

In order to evaluate properties in an adiabatic (also with no work) real gas flow, the iterative
scheme suggested by Grossman can be applied (12). To use that method, a library of thermophysical
properties is necessary. Ideally, for CO2 one derived from SW model should be used. Database
contained in REFPROP developed by NIST or an open source CoolProp library are two known sources.
Such a library will be able to derive all properties of a point in gas based on two others.

Firstly, given the p, T, p at the inlet of the flow, the entropy is evaluated through a real gas library,
here referred to as RealGasLib:
s = RealGasLib(p,T') (D.4)

which is a crucial result as according to the definition of total properties it is the same for static and
total properties of a given point (total/stagnation property is defined as property which is slowed done
isentropically). Having obtained that, the total enthalpy is now derived:

u2

htot = hstat + 5 (D.5)
that is constant along the streamline. Now, to obtain the conditions at the outlet, the continuity
equation can be introduced to obtain u.,: in order to evaluate hg,¢. That, together with s from the

Equation D.4 will be sufficient to evaluate all the static properties at the outlet through:
p,h, T, p = RealGasLib(hstqt, S)- (D.6)

However, there is a major problem with that procedure as the continuity equation relates not the
Uin, 10 Ugye only but pintin t0 Pouttion: (assuming known geometry). As the EOS in a linear form is
not available an analytical solution cannot be, p can be only derived from RealGasLib. Instead an
iterative searching scheme must be applied that based on a guess of uy,: will evaluate py,: through
RealGasLib and then check if the continuity equation is satisfied (up to a certain desired error). Thus,
it is necessary to use iterations to find a solution, which noticeably increases computational time. The
effect of friction on losses can be added by relating friction effects to total pressure drop.
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As explained before, the supercritical gas has significantly different compressibility compared to the
ideal case. In an attempt to capture the deviation a variable Z called compressibility factor can be

introduced. It is defined as: v

7 = (E.1)

Videal

thus it compares the ideal specific volume predicted by the ideal EOS to the real one. Based on that
definition, the EOS can be amended to:
pv = ZRT. (E.2)

Naturally, use of this expression instead of ideal EOS will not produce results that fully capture
the complexity of the real gas as Z is not constant across different thermoproperties. Yet, it will
significantly improve the simplistic, ideal EOS.

Having defined Z, its use can be employed in further derivation of non-ideal gas flow relations.
Firstly, the compressibility 3 is derived for two cases:

1 /0ov 1 1 /0Z
- — = = E.3
Pr v (8p>T p Z <8p)T’ (E-3)

1 /0ov 1 1 /07
== ==4+=2(=) . E4
bo=73 <8T>p T 7 <8T>p (B4)
With those relations, Maxwell relations can be evaluated to lead to the caloric equations in terms of
enthalpy and internal energy as:

dh = cpdT + [v(1 — TB,)] dp (E.5)

U = cv @D—T— )] v
d dl’ + {p<ﬁTp dv. (E.6)

Subsequently, to be able to evaluate total properties, isentropic exponents are introduces. It is assumed
that relations of form:
pu™s = const. (E.7)

Tp~™s = const. (E.8)

exist, so that the isentropic (and adiabatic) derivation give:

v
= E.
" Brp (E.9)

m _y—1pBrp
° Y BpT

With those exponent the isentropic relations between total and static conditions can be derived to

(E.10)

give:
M2(ng —1 ms =1
Biot _ <(n8 )+ 1) (E.11)
P 2
and m
T P v

It is crucial to remark that to obtain the expressions above, it was assumed that the isentropic
exponents are constant between total and static conditions: ptvps; = pv™. This is not strictly the
case for supercritical flow in which compressibility changes depending on conditions. However, to
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obtain an analytical model, this assumption is necessary. Furthermore, the speed of sound can be
expressed as:

a = y/nspv = \/nsZRT. (E.13)

Based on the Equation E.11, Equation E.12 and Equation E.13 properties of inviscid, adiabatic with
no body forces flow type can be evaluated. By assuming total properties are constant across channel,
a system of equations with continuity equation to get Mach number and an isentropic relation can be
solved. Thus, an analytical model can be used that is solved in the same manner as the one for ideal
gas flow.

Furthermore, losses in form of entropy, for a real gas flow can be addressed. Starting from the
Gibbs as in the Equation E.14:
dh =Tds + vdp (E.14)

and substituting enthalpy as found through the Maxwell relations in the Equation E.5 the following
relation is obtained:
cpdT + [v(1 —TBy)|dp = Tds + vdp (E.15)

and can be rearranged to:
ds = %’dT — vBydp (E.16)

which is an analytical formula for expressing losses. However, in reality it does not have a direct
application as evaluating an integral of v/3, would be a major challenge.

Lastly, in order to visualise further the non-ideality of the real gas, one can look at the fundamental
(also called Landau) derivative I'. It is defined as:

& (0%

and for ideal gas it simplifies to I' = %(7 + 1) as pvY = const which gives a value I" > 1. The value of
the derivative shows the curvature of the isentropes in p — v space. For real gases however, the value
of I drops below 1. This effect is represented in for instance behaviour of M due to v. In ideal gas,
for expanding channel with M > 1 the M will increase monotonously. However, for real gases, is is
not the case.

' STRATFORD CRITERION

Using the theory outlined above it is still a major challenge to determine the risk of separation in a flow
at adverse pressure gradient. It often involves solving a system differential equations without simple
solutions for more complex flows. To simplify that procedure an alternative solution was proposed by
Stratford.

This condition is said to be a rapid method for prediction of flow separation in turbulent boundary
layer that, as in case of boundary layer theory by Prandtl, is a result of approximate solution of
equations of motion. Stratford’s method only requires a single empirical factor. Stratfrod starts by
distinguishing two layer in the turbulent boundary layer, outer and inner. It is important to remark
that the notation used by Stratford omits the bar above variables to express their average, as commonly
used when describing turbulent flows. Despite that, it is still believed that the relations suggested
below are meant for the averaged values.

Outer region

Firstly, for the outer layer, it was determined that the increase of pressure downstream has effect
of lowering the dynamic head % pu? however, the shape of the boundary layer in the outer region is
unaffected. This is said to be a consequence of low shear forces compared to the stronger inertia forces
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(or pressure gradient) for a rapid pressure rise. The solution for the outer boundary layer velocity
profile is obtained by comparison of a case with and without pressure gradient. The flow properties
for constant pressure flow will be denoted with a dash e.g. P’. The two considered flows have the
same static and total pressures at xy. Also, the distribution of g—; at xo will be identical far from wall
and it is assumed that it is the same for two cases also downstream (not too far from zp). Starting
with the Bernoulli equation for total pressure including shear forces:

or  or

95 = oy (F.1)

where P denotes total pressure and s is the path along the streamline. It is paramount not to mistake
it for entropy despite the same symbol being used in the rest of this review. The Equation F.1 can be
integrated to:

P(z,9) = P(xo,¥) + 9: g;ds (F.2)

where v is used as a parameter to distinguish the outer layer:

b= /0 ’ udy. (F.3)

Due to the assumption that the gi profile is the same for constant and adverse pressure flows, the

total pressures will be equal at x downstream of x( for ; < .

P(z,¢) = P'(x,) (F.4)

rewriting it by expanding total pressure into static and dynamic (head):

p+ %qu(l’, V) =p + %pua(w, ) (F.5)

also, for the flow with constant static pressure p’ = pg and py is identical for two cases:

1 1

U’ (@) = Spu(w,v) = (p = po) (F.6)
Thus, the dynamic pressure (head) can be evaluated at a given point by subtracting pressure rise from
dynamic pressure in constant pressure flow. This includes the viscosity as its effect is hidden in the
head loss % pu'?(x,). For the outer boundary layer profile it carries an important consequence as by
differentiation of the Equation F.6 the following result is found:

!
%), o] )
Y1 () Y1)

meaning that the boundary layer velocity profile for a case where adverse pressure gradient exists is
the same as fro the case of constant static pressure for the outer layer of the boundary layer. This is
effect of the assumption that g—; is the same for two cases. Having proved that the shape of the outer
boundary layer region is unaffected by rapid pressure rise, the standard solution for boundary layer
without pressure rise can be used. Stratford proposes the following semi-empirical model:

/ 7\ (1/n)
v _ (¥ (F.8)
Uy o
R WQ/ (F.9)
n
¢ = 0.036zRe"5 (F.10)
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which assumes the power law for the velocity profile. Its accuracy was questioned before by the
Nieuwstadt et al. (19), thus, the solution for the outer region can be improved. Also, the common
value taken for n is 7, however, in reality it varies moderately with Re.

Inner region

Contrary to the outer layer, in the inner layer the fluid inertia is too small to balance the back
pressure. The flow has significantly lower velocity close to the wall with w = 0 at the wall. Thus, the
pressure force is assumed to be balanced purely by the gradient of the shear force. At the wall, the
momentum conservation dictates:

dp Ot

ar = oy at y = 0. (F.11)
The no-slip condition is the very reason why at the inner layer the sudden pressure rise causes not
only the lowering of the dynamic head but also changes the shape of the profile due to its ”anchored”
outset u =0 at y = 0.
Further analysis makes use of the mixing length theory to portray a profile of the inner layer. For
very small distance y from the wall with positive du/dy (thus still not separated flow) shear stress is
given by:

T 2 (F.12)

as given by Durand in 1943. The constant K denoted the Karman constant. Now, the assumption of
flow just beginning to separate is made so that du/dy = 0 and 75 = 0. With that the Equation F.11

can be integrated to:
Jp

Y o
by assuming that pressure gradient is constant along y. By combining and integrating the two expres-
sions for shear stress, the following expression for velocity profile at the inner layer is found:

1
4 Op\2? 1
(o) s (F.14)
This expression shows the velocity profile of the inner layer when the flow starts to separate. However,

this is an idealised result as pressure gradient effect on the mixing length is not included. Thus, to
account for it, Stratford, suggests introducing an experimental factor 5 to obtain:

4 ap\? .
u:<p(5K)2£> y2. (F.15)

The factor 3 is the single empirical factor that has to be introduced from pertinent experiments.

(F.13)

T =

Merging point

The outer layer can be explicitly determined based on the pressure gradient and boundary layer
theory for a flat plate. The inner profile, however, was derived for a flow that is starting to separate.
Thus, it can be said that when two profiles agree at the intersection, the flow experiences separation.
At the joining point v; the flows are compared by equating their 1(d0u/dy)? and u?/(0u/dy). Also,
as explained before, for the shape of the outer layer, the relation for a flat plate is used at the same
position. Based on the above, the separation condition is given as:

n—2

1
(2Cp) T <xﬁp> - 1.063(10 Re)10  for <C’p < Z;f) (F.16)

where the Karman constant K = 0.41 and an approximation was made for a polynomial of n. They
Reynolds number Re is calculated for the local value of x and peak velocity Uy (appears from Equa-
tion F.10 so the same values should be used as in that model). The pressure coefficient Cp is defined
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as:

P—Dpo
Cp = (F.17)
20U

where following the convention from the Equation F.6 p is the static pressure due to the pressure
gradient and pg is the static pressure at the outset. The condition given for Cp is the limiting case
for which the the merging point of inner and outer layers would occur at the boundary layer edge.
Regarding the value of 3, Stratford conducted extensive experiments and found that it is independent
of Cp; however, there exists influence of its second derivative d?p/dz?:

&’p
dx?
d’p

B8 =0.66 for <0,

(F.18)

Lastly, the value taken for n stems from the comparison with flat plate case as it is used to approximate
the velocity profile of the outer layer. Stratford suggests to use values between 6 — 7 and claimed that
the Equation F.16 is not sensitive to n. However, for more educated choice of the value the it was
advised to follow:

n = logipRes (F.19)
where Re; is the Reynolds number on a flat plate at separation point x:

WU
Rey =~ - (F.20)

Thus, Stratford has preposed a convenient method for evaluating the risk of flow separation with the
Equation F.16. The method is said to be more conservative as predicting too low pressure gradients
necessary for flow separation. However, it is stated that the results are at most 10% too low, which is
deemed acceptable.

G CFD

G.1 CONICAL DIFFUSER

Barotropic model based on 1D solution of a diffuser with AR = 3.03 and NW = 3. With inlet
properties of M = 0.29, P = 80[bar] and T' = 310[K] derived with Fang 2011 C'f model.

ANSYS CFX DENSITY EXPRESSION

if(AbsolutePressure >= 8.436500E + 06[Pal,

1.2955467673048429¢ + 02 + 2.4751250978659324¢ — 05 * Absolute Pressure/1[Pal,
if(AbsolutePressure >= 7.943296 E + 06[Pal,

— 1.0778470282123003¢ + 02 * (Absolute Pressure/7.943296 E + 06[Pal)? +
4.2554739711782531e + 02 * (Absolute Pressure/7.943296 E + 06[Pa))! +
7.9837911343779506¢ + 00 * (AbsolutePressure/7.943296 E + 06[Pa))°,
3.2574648543097322¢ + 02 x exp((Absolute Pressure/7.9432961048442917e + 06[Pa] — 1.0)/
(1.5530793999479489¢ + 00))))  1[kg/m?]
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ANSYS CFX VISCOSITY EXPRESSION

if(AbsolutePressure >= 8.4364999630011152¢ + 06[Pal,

1.0687230265575134e — 05 + 1.6655069773502198¢ — 12 * Absolute Pressure/1[Pal,
if(Absolute Pressure >= 7.9432961048442917¢ + 06[Pal,

— 3.8351689368471245¢ — 06 * (Absolute Pressure/7.9432961048442917¢ + 06[Pa])? +
2.1375733548013965¢ — 05 * (Absolute Pressure/7.9432961048442917e + 06[Pa))! +
6.3615247446601546¢ — 06 * (Absolute Pressure/7.9432961048442917e + 06[Pa))°,
2.3902089355826994¢ — 05 x exp((Absolute Pressure/7.9432961048442917¢ + 06[Pa] — 1.0)/
(1.7450588761362522¢ + 00)))) * 1[Pa * s]

(.2 RADIAL DIFFUSER

Barotropic model based on 1D model solution of a diffuser with AR = 1.65 and NW = 5.42. With
inlet properties of o, = 73.79° C' = 175.52, P = 133.58[|bar| and T' = 364.76] K] derived with Fang
2019 C'f model.

ANSYS CFX DENSITY EXPRESSION

if(AbsolutePressure >= 1.704426 E + 07[Pal,

1.5686260109187032F + 02 + 1.1533292713961627F — 05 x Absolute Pressure/1[Pal,
if(AbsolutePressure >= 1.335823E + 07[Pal,

— 6.1011234753138332F + 01 * (Absolute Pressure/1.335823E + 07[Pa])? +
3.0931203744973470F + 02 * (Absolute Pressure/1.335823F + 07[Pa])! +
5.8103518188663834F + 01 * (Absolute Pressure/1.335823F + 07[Pa))°,
3.0640432088526023F + 02 * exp((Absolute Pressure/1.3358225381853979FE + 07[Pa] — 1.0)/
1.6568387176101111F + 00))) * 1[kg/m?]

ANSYS CFX VISCOSITY EXPRESSION

if(AbsolutePressure >= 1.7044262304828115F + 07[Pal,

1.4788488361044561E — 05 + 8.4342987536865194F — 13 % AbsolutePressure/1[Pal,
if(AbsolutePressure >= 1.3358225381853979F + 07[Pal,

— 2.5078729096669038 E — 06 * (Absolute Pressure/1.3358225381853979E + 07[Pal)? +
1.7648199187172545E — 05 * (Absolute Pressure/1.3358225381853979F + 07[Pa))! +
1.0728986375899744F — 05 * (Absolute Pressure/1.3358225381853979F + 07[Pa))°,
2.5869312653405386 E — 05 * exp((Absolute Pressure/1.3358225381853979FE + 07[Pa] — 1.0)/
2.0636692451961496 E + 00))) * 1[Pa - 5]
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Figure G.1: SC-CO2 (in green) and Air (in blue) flows comparison of CFD results (A) Inlet Alpha =

70[deg], (B) Inlet Alpha = 73.8[deg].
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