
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2010

MSc THESIS

Parallel H.264 Decoding Strategies for Cell
Broadband Engine

C. C. Chi

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-04

How to develop efficient and scalable parallel applications is the
key challenge for emerging many-core architectures. We investigate
this question by implementing and comparing two parallel H.264
decoders on the Cell architecture. It is expected that future many-
cores will use a Cell-like local store memory hierarchy, rather than
a non-scalable shared memory. The two implemented parallel algo-
rithms, the Task Pool (TP) and the novel Ring-Line (RL) approach,
both exploit macroblock-level parallelism. The TP implementation
follows the master-slave paradigm and is very dynamic so that in
theory perfect load balancing can be achieved. The RL approach is
distributed and more predictable in the sense that the mapping of
macroblocks to processing elements is fixed. This allows to better
exploit data locality, to overlap communication with computation,
and to reduce communication and synchronization overhead. While
TP is more scalable in theory, the actual scalability favors RL. Using
16 SPEs, RL obtains a scalability of 12x, while the TP implementa-
tion only 10.3x. More importantly, the absolute performance of RL
is much higher. Using 16 SPEs, RL achieves a throughput of 139.6
frames per second (fps) while TP achieves only 76.6 fps. A large

part of the additional performance advantage is due to hiding the memory latency. From the results we
conclude that in order to fully leverage the performance of future many-cores, a centralized master should
be avoided and the mapping of tasks to cores should be predictable in order to be able to hide the memory
latency.

Parallel H.264 Decoding Strategies for Cell
Broadband Engine

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

C. C. Chi
born in Rotterdam, Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Parallel H.264 Decoding Strategies for Cell
Broadband Engine

by C. C. Chi

Abstract

H
ow to develop efficient and scalable parallel applications is the key challenge for emerging
many-core architectures. We investigate this question by implementing and comparing
two parallel H.264 decoders on the Cell architecture. It is expected that future many-cores

will use a Cell-like local store memory hierarchy, rather than a non-scalable shared memory.
The two implemented parallel algorithms, the Task Pool (TP) and the novel Ring-Line (RL)
approach, both exploit macroblock-level parallelism. The TP implementation follows the master-
slave paradigm and is very dynamic so that in theory perfect load balancing can be achieved. The
RL approach is distributed and more predictable in the sense that the mapping of macroblocks to
processing elements is fixed. This allows to better exploit data locality, to overlap communication
with computation, and to reduce communication and synchronization overhead. While TP is
more scalable in theory, the actual scalability favors RL. Using 16 SPEs, RL obtains a scalability
of 12x, while the TP implementation only 10.3x. More importantly, the absolute performance of
RL is much higher. Using 16 SPEs, RL achieves a throughput of 139.6 frames per second (fps)
while TP achieves only 76.6 fps. A large part of the additional performance advantage is due
to hiding the memory latency. From the results we conclude that in order to fully leverage the
performance of future many-cores, a centralized master should be avoided and the mapping of
tasks to cores should be predictable in order to be able to hide the memory latency.

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-04

Committee Members :

Advisor: B. Juurlink, CE, TU Delft

Advisor: C. Meenderinck, CE, TU Delft

Chairperson: Stamatis Vassiliadis, CE, TU Delft

Member: Z. Al-Ars, CE, TU Delft

Member: K. Goossens, CE, TU Delft

Member: H. Sips, CE, TU Delft

i

ii

iii

iv

Contents

List of Figures ix

List of Tables xi

Acknowledgements xiii

1 Introduction 1

2 Background 3

2.1 Cell architecture overview . 3

2.2 Overview of H.264 Decoding . 4

2.3 Parallelization Opportunities . 4

2.3.1 Task-Level Decomposition . 5

2.3.2 GOP-Level Parallelism . 5

2.3.3 Frame- and Slice-Level Parallelism 6

2.3.4 Macroblock-level Parallelism . 6

3 Experimental Setup 11

3.1 Development Environment . 11

3.2 Test Setup . 11

3.3 Communication Micro-Benchmarks . 12

3.3.1 Sequential DMA Throughput . 13

3.3.2 List DMA Throughput . 17

3.3.3 Synchronization Mechanisms . 20

3.3.4 Conclusions . 22

4 Parallel Strategies for H.264 Decoding 25

4.1 Task Pool Approach . 26

4.1.1 Task Pool Algorithm . 26

4.1.2 Scalability Analysis - Task Pool . 28

4.2 Ring-Line Approach . 30

4.2.1 Ring-Line Algorithm . 31

4.2.2 Motivation . 35

4.2.3 Scalability Analysis - Ring-Line . 37

4.3 Algorithms Compared . 45

4.4 Conclusions . 46

v

5 Implementation of H.264 on the Cell Processor 49
5.1 Original FFmpeg Code Structure . 50

5.1.1 Libavcodec Interface . 50
5.1.2 Libavcodec H.264 . 51

5.2 Common Changes to FFmpeg . 53
5.2.1 Decouple Entropy Decoding . 53
5.2.2 Porting Macroblock Kernels - Generic 54

5.3 Task Pool Implementation . 58
5.3.1 Interface Between PPE and SPE 58
5.3.2 Updating Dependency Table and Task Queue 61
5.3.3 Macroblock Processing . 62
5.3.4 Write Back and Impact on Scalability 67

5.4 Ring-Line Implementation . 73
5.4.1 Inter-Core Interface and Distributed Control 74
5.4.2 Local Store Buffers . 77
5.4.3 Macroblock Processing . 80
5.4.4 Write Back and Impact on Scalability 81
5.4.5 Pre-Buffering . 86

5.5 Conclusions . 91

6 H.264 Resource Analysis 95
6.1 Kernel Profiling . 95
6.2 Memory Requirements . 96

6.2.1 External Memory Requirements 96
6.2.2 Local Store Requirements . 97

6.3 Bandwidth Requirements of Macroblock Decoding 100
6.4 Conclusions . 103

7 Experimental Results and Analysis 105
7.1 Experimental Results . 105
7.2 Performance Analysis . 107

7.2.1 Practical vs. Theoretical Scalability 108
7.2.2 Memory Access Contention . 112
7.2.3 Synchronized Access Contention 113

7.3 Cell Efficiency Comparison . 114
7.4 Conclusions . 116

8 Future applications 119
8.1 Quad HD and Super HiVision . 119
8.2 Stereoscopic 3D and free viewpoint video 120
8.3 Embedded and Accelerator Integration . 121

9 Conclusion 123

Bibliography 127

vi

List of Figures

2.1 Schematic view of the Cell Broadband Engine architecture. 3

2.2 Block diagram view of the H.264 decoder. 4

2.3 Task-level decomposition of the H.264 decoder in a data flow fashion. . . . 5

2.4 A typical GOP sequence with its frame dependencies. In H.264, however,
it is allowed to use B-frames as reference. 6

2.5 MB dependencies within the spatial domain. 7

2.6 2D-Wave parallelization: MBs on a diagonal are independent and can be
decoded concurrently. The arrows represent the dependencies. 7

2.7 Ramping and dependency stalls reduce the scalability and performance of
the 2D-Wave parallelization. 8

2.8 Temporal MB-level parallelism. 9

3.1 External memory throughput of sequential DMA transfers with a 128-byte
alignment. 14

3.2 External memory throughput of sequential DMA transfers with a 16-byte
alignment. 15

3.3 Aggregated inter-SPE throughput of sequential DMA transfers with 128-
byte alignment. 16

3.4 Aggregated inter-SPE throughput of sequential DMA transfers with a 16-
byte alignment. 17

3.5 External memory throughput of list DMA transfers with a 16-byte align-
ment. 18

3.6 Aggregated inter-SPE throughput of list DMA transfers with a 16-byte
alignment. 19

4.1 The TP algorithm is based on a worker-server model. 26

4.2 Left: Dependency flow. Right: Dependency counts. 27

4.3 Parallelism ramping for a HD sequence with constant macroblock execu-
tion times. 28

4.4 Scaling of sequences with constant and variable macroblock execution times. 29

4.5 Normalized scaling efficiency of variable to constant macroblock execution
times. The efficiency loss is caused by the dependency stalls. 30

4.6 Normalized scaling efficiency of constant macroblock execution times to
perfect scaling. The efficiency loss is caused by the ramping stalls. 31

4.7 Simplified dependency flow of the RL algorithm. Dependencies flowing
from one block to another on the same line are implicit. 32

4.8 Uni-directional ring mapping of processing elements in the RL approach.
The C-node is the control node which provides start and stop signals once
a frame. 32

4.9 In multi-frame RL the decoding of the next frame start before the current
frame end, which effectively negates the ramping stalls. 33

4.10 Dependency and buffer stalls in the RL algorithm. 35

vii

4.11 Difference in communication and computation patterns between Task Pool
and Ring-Line. 38

4.12 Scaling of MFRL with constant and variable macroblock execution times.
The difference in scalability is caused by dependency stalls. 40

4.13 Normalized efficiency of sequences with variable to constant execution
times using MFRL. The efficiency loss is caused by the dependency stalls. 40

4.14 Normalized efficiency of SFRL to MFRL. The efficiency difference is
caused by the ramping stalls . 41

4.15 Deadlock incurred due to insufficient buffer size. All processing elements
cannot write data to the next, since all the buffers are full. 43

4.16 Normalized efficiency of several buffer size relations to the maximum buffer
size relation of Equation (4.4). 45

4.17 TP and RL scaling with variable macroblock execution times. 46

4.18 TP and RL efficiency with variable macroblock execution times. 47

5.1 DMA overhead due to alignment restriction of a motion reference data
block. 56

5.2 Motion vectors could point to a motion data block which encapsulates
unallocated memory. 57

5.3 Intra data transfer of the luma component. 65

5.4 Intra data alignment issues of the chroma components. In situation (a) it
is necessary to transfer 4 blocks, while for (b) this is done for consistency. 65

5.5 Overlaps in the write back step of the luma component by concurrent SPEs. 69

5.6 Overlaps in the write back step of the chroma components. 70

5.7 Resolving overlap by increasing the macroblock spacing. 70

5.8 Revised dependency structure and corresponding dependency table to im-
plement the additional spacing. 71

5.9 Impact on the scalability due to the additional spacing. 72

5.10 Macroblock ramping with reduced parallelism with constant macroblock
execution times. 73

5.11 Buffer conflict at the circular loop back. 79

5.12 Delayed and combined write back of previous two macroblocks to avoid
redundancy. 84

5.13 Write back targets of data in the DMA transfer buffers. The upper 16
lines go to the frame, while the lower 4 are sent to the target SPE as intra
data. 84

5.14 Impact of increased spacing on the Ring-Line scalability. 85

5.15 Initializing buffers and decode of first macroblocks. The DMA steps in
the non-rounded rectangles are non-blocking. 88

5.16 Motion data organization of the individual partitions in the mc ref buffer. 92

7.1 Average performance in frames per second of the HDVideoBench FHD
BlueSky, Pedestrian and RiverBed sequences. 106

7.2 Single core PPE sequential, Task Pool and Ring-Line frames per second. . 107

viii

7.3 Average scalability of the TP and RL implementation compared to the
theoretical scalability results obtained using the simulator. 109

7.4 Normalized efficiency of practical to theoretical scalability of FHD sequences.110
7.5 Breakdown of the average MB execution time for the Task Pool imple-

mentation using the BlueSky sequence. 111
7.6 Breakdown of the average MB execution time for the Ring-Line imple-

mentation using the BlueSky sequence. 111

ix

x

List of Tables

3.1 X86 test platform specifications. 12
3.2 Number of transfered list elements per second using DMA lists with 20

elements. 20
3.3 Average synchronization overhead of several synchronization mechanisms

in �s . 21

5.1 Categorization of code changes. 53

6.1 Average macroblock kernel times of the FHD HDVideoBench sequences. . 96
6.2 Local store usage - SPE program image size of TP and RL. 97
6.3 Size in bytes of the data structures of Task Pool, Ring-Line, and the

balanced Ring-Line implementation. 98
6.4 Motion compensation profile of the FHD HDVideoBench sequences. The

table list the average occurrences per frame. 100
6.5 Memory subsystem requirements for FHD BlueSky using the Task Pool

implementation. 101
6.6 Memory subsystem requirements for FHD BlueSky using the Ring-Line

implementation. 102

7.1 Profiling results of FHD Pedestrian. 113
7.2 Profiling results of FHD Riverbed. 113
7.3 Approximated average synchronized access latency per macroblock of the

Task Pool implementation. 114
7.4 Performance in frames per second of macroblock processing using FHD

sequences. 115

8.1 Hardware requirements for stereoscopic 3D-TV at 120 fps using the MFRL
decoding strategy. CABAC cores are assumed PhenomII cores at 3.2 GHz,
capable of processing 160fps at FHD . 121

xi

xii

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to com-
plete this thesis. I want to thank the Computer Engineering Department of the Delft
University of Technology for giving me permission to commence this thesis. I am deeply
indebted to my supervisors Prof. Dr. Ben Juurlink and PhD. Cor Meenderinck from the
Delft University of Technology whose help and stimulating suggestions helped me in all
the time of research and writing of this thesis. I want to sincerely thank Mr. Mauricio Al-
varez from the Department of Computer Architecture (DAC) of the Technical University
of Catalonia (UPC) for providing his earlier work on the FFmpeg code.

C. C. Chi
Delft, The Netherlands
February 1, 2010

xiii

xiv

Introduction 1
In the past performance improvements were mainly due to higher clock frequencies and
due to exploiting Instruction-Level Parallelism (ILP). ILP improvements, however, have
reached their limit and show diminishing returns in terms of area and power. Power
limitations also prevent further frequency scaling. As a result, industry has made a
paradigm shift towards multi-cores.

With the recent move to homogeneous multi-cores we have witnessed a doubling and
quadrupling of processor cores. This approach, however, is not scalable to the many-
core era. Slow inter-core communication, quadratic complexity of cache coherency, and
shared memory bandwidth limitations [30] will soon create bottlenecks. The IBM Cell
processor is a heterogeneous multi-core, which comes a long way in addressing these
issues. However, the price is paid in programmability, as tasks previously handled by
hardware, such as inter-core communication, are moved to software. Nevertheless, it is
expected that future processor architectures will integrate Cell-like features because it
is more scalable than homogeneous multi-cores. Investigating the programmability of
the Cell processor is therefore important to gain insight in defining future programming
models.

The main goal of this thesis is to investigate how to leverage the full performance
potential of future many-core architectures. The main obstacle in the move towards
many-cores is the increased programming complexity. Recently there is a lot of activity
in improving the parallel programming model. For this purpose, however, it is necessary
to have insight on how to map potential parallelism on future many-cores. In this
thesis we investigate this by parallelizing H.264 on a 16-SPE Cell Blade platform. The
H.264 coder/decoder (codec) [1] is presently the most widespread and advanced video
codec [20]. Until recently H.264 has been one of the main drivers in the need for more
compute capabilities. Due to recent advances in ILP, this is no longer the case. However,
H.264 is an evolving standard and future iterations require at least 10x as much compute
capabilities to satisfy the never ending need for better visual experiences. Therefore,
investigating efficient and scalable parallelization strategies of H.264 has great additional
value.

In this work we implement two parallel approaches of an H.264 decoder, both ex-
ploiting MB-level parallelism. The first implementation, referred to as the Task Pool
(TP), has been presented previously [2] and is based on the worker-server programming
paradigm. The server issues work (in this case macroblocks (MBs)) to the workers and
also keeps track of the dependencies between the MBs. The second implementation is a
novel approach referred to as Ring-Line. In the latter the workers process entire lines of
MBs rather than single MBs, enabling distributed control. Furthermore, its static and
predictable mapping of MBs to cores allows to overlap communication with computation
and reduces the memory bandwidth requirements.

1

2 CHAPTER 1. INTRODUCTION

We analyze the TP and RL approaches based on the theoretical scalability and
experimental results. The theoretical scalability is better for the TP implementation.
However, both the scalability and the absolute performance measured in the actual
implementations favor the RL approach. Most of the performance advantage originates
from hiding the memory latency.

Independently, Baker et al. [7] have implemented a similar approach to Ring-Line
on the Cell platform. It is similar in the sense that SPEs process entire lines and
a distributed control scheme is used. Surprisingly, they do not fully exploit one of
the key features of the Cell processor: explicit data management. In contrast to our
implementation, they do not apply pre-buffering neither do they use the possibility to
send data from one SPE to another directly. The latter is used to minimize memory
latency and off-chip bandwidth utilization, while the former is used to hide the memory
access latency. Compared to Baker’s implementation, our RL implementation is between
50% to 100% faster, with the caveat that this is derived from comparing the results at
6 SPEs. Baker et al. only provided results for up to 6 SPEs due to limitations of their
test platform (PS3).

The thesis is organized as follows. In Chapter 2 a brief overview of H.264 and the Cell
architecture is provided. In Section 3 the experimental setup of the test platforms is pre-
sented along with several communication micro-benchmarks of the Cell Blade platform.
Next, in Chapter4 the 2D-Wave and the novel Ring-Line algorithm is described. For
both a theoretical scalability analysis is performed. In Chapter 5, the implementation
of the parallel strategies is described. The focus of the implementation lies on porting
the FFmpeg [12] code to work with the Cell memory hierarchy. This is described in
detail. In Chapter 6 a resource requirements of the two implemented strategies is pro-
vided. We primarily focus on the memory and memory bandwidth requirements. The
experimental results are presented and discussed in Chapter sec:perfcomp. After the
analysis several conclusions are drawn in regards of the performance and scalability of
the two approaches. In Chapter 8 several case studies of future H.264 applications are
provided. Finally, in Chapter 9 the work is concluded and future work is discussed.

Background 2
2.1 Cell architecture overview

The Cell Broadband Engine [21] is a heterogeneous multi-core consisting of one PowerPC
Element (PPE) and eight Synergistic Processing Elements (SPEs). The PPE is a dual-
threaded general purpose PowerPC core with 512 kB L2 cache. Its envisioned purpose
is to act as the control/OS processor, while the eight SPEs provide the computational
power. Figure 2.1 shows a schematic overview of the Cell processor. The processing
elements, memory controller, and external bus are connected to an Element Interconnect
Bus (EIB). The EIB is a bi-directional ring interconnect with a peak bandwidth of 204.8
GB/s [10]. The XDR memory can deliver a sustained bandwidth of 25.6 GB/s.

SPE 1

SPU LS

DMA

SPE 8

SPU LS

DMA

PPE

PPU L1

L2 XDR DRAM
controller

Dual
channel

External
FlexIO bus

Rambus
FlexIO

EIB

Figure 2.1: Schematic view of the Cell Broadband Engine architecture.

What makes the Cell such an innovative design is not its heterogeneity, but its scal-
able memory hierarchy. In conventional homogeneous multi-core processors, each core
has several layers of cache. The cache provides ample speedup, because it reduces the
average latency and bandwidth usage of the external (off-chip) memory. With multiple
cores there are multiple caches and coherency actions are required. The cache coherency
actions grow with a complexity of O(n2) with increasing core count, which quickly be-
come unpractical in many-core architectures. In the Cell architecture, the SPEs do not

3

4 CHAPTER 2. BACKGROUND

feature a cache and rely on a local store and DMA unit instead for access to the mem-
ory. Each SPE has a local store of size 256 kB. The SPEs can only work on data in the
local store. The programmer is responsible for the data transfers using explicit DMA
operations. The programming style is that of the shopping list model. Instead of loading
every data item separately at the time it is needed (as is the case with cache based sys-
tems), all data required for a task is brought in at once and before execution of the task.
Moreover, loading the data of one task should be done concurrently with the execution
of another task in order to fully hide the memory latency.

2.2 Overview of H.264 Decoding

Currently H.264 [1, 27] is the best video coding standard is terms of compression rate and
quality [20]. Also, it is the most widespread standard for digital video. It is used in Blu-
ray, digital television broadcast, online digital content distribution, mobile video players,
etc. The compression rate is over two times higher compared to previous standards, such
as MPEG-4 ASP, H.262/MPEG-2, etc. H.264 uses the YCbCr color space with mainly
a 4:2:0 subsampling scheme. In this subsampling scheme the luma component (Y) has
the same resolution as the frame, while the chroma components (Cb and Cr) are at a
quarter resolution. Throughout the paper this subsampling scheme is assumed.

This thesis focusses on the decoding part of H.264, of which the block diagram is
depicted in Figure 2.2. In the entropy decoding the data of the MBs is extracted from
the H.264 stream. The remaining kernels use the extracted data to decode the MB. The
entropy decoding can be parallelized on the frame/slice level using the frame markers.
Parallelization of the MB kernels can be done on several levels. The next section briefly
reviews the parallelization opportunities.

H.264 stream Entropy
decoding

Inverse
quanti-
zation

Inverse
DCT

+
Deblocking

filter
YUV video

Intra
prediction

Motion
compen-
sation

Frame
buffer

Figure 2.2: Block diagram view of the H.264 decoder.

2.3 Parallelization Opportunities

A lot of work has been done to parallelize H.264 in general. However, most works
exploit only coarse-grain parallelism at the Group of Frames (GOP)-, frame-, and slice-
level or apply function-level decomposition. Using the latter, Gulati et al. [15] described
a system for encoding and decoding H.264. Data-level decomposition was applied by,

2.3. PARALLELIZATION OPPORTUNITIES 5

among others, the following. Rodriguez et al. [22] proposed an encoder that combines
GOP- and slice-level parallelism. Chen et al. [11] proposed a combination of frame- and
slice-level parallelism. Roitzsch [23] proposed a scheme bases on slice-level parallelism
by modifying the encoder. Baik et al. [6] has implemented a parallel version of H.264 on
the Cell processor. The design utilizes both data- and function-level decomposition by
partitioning MBs from inter coded frames among the available SPEs in a load balanced
fashion, and dedicating an additional SPE to deblocking. None of the parallelization
strategies above are sufficiently scalable to efficiently utilize emerging many-cores. MB-
level parallelization has proven to be much more scalable though and is, therefore, subject
of this paper.

In this section we give an short overview of the previously named parallelization
opportunities of H.264.

2.3.1 Task-Level Decomposition

In task-level decomposition the macroblock kernels are divided to run on different pro-
cessors. An example of a possible task parallel solution is given in Figure 2.3.

P1

P2

P3

Entropy
decoding

Inverse
quanti-
zation

Inverse
DCT

+
Deblocking

filter

Intra
prediction

Motion
compen-
sation

Frame
buffer

Figure 2.3: Task-level decomposition of the H.264 decoder in a data flow fashion.

The drawbacks of task-level decomposition are limited scalability and imbalanced
load. The scalability is limited by the number of kernels that can run in parallel. In
Figure 2.3 the parallelism is nearly depleted. Furthermore, not each task takes the same
time to complete.

2.3.2 GOP-Level Parallelism

The coarsest grained data parallelism is at the group of pictures (GOP) level. A H.264
streams is build up in GOPs. A GOP always start with an I-frame and all frames in
the GOP only have dependencies to other frames in the same GOP. A small GOP is
considered to have 25 frames, while a large GOP has around 250. The problem with
GOP-level parallelism is that memory requirements limit the scalability. For example a
16 core machine operating on a stream of GOPs with 100 frames would require 100x16x2
frames as a buffer. The additional factor 2 is required for double buffering. In case of
a FHD sequence this totals in 10 GB. Also the latency of the stream rises with more
processing elements. For 16 this is already 64 seconds.

6 CHAPTER 2. BACKGROUND

2.3.3 Frame- and Slice-Level Parallelism

Inside a GOP there is also parallelism in form of frame parallelism. Figure 2.4 shows
a typical sequence of frames in a GOP. In the figure the B-frames can be processed in
parallel after a P-frame is decoded. In most streams there are only two to three B-
frames between consecutive I- and/or P-frames. This limits the scalability to only a few
processing elements. The main problem, however, is that H.264 allows B-frames to be
used as reference to increase compression rate [13]. In the worst case there is no frame
parallelism at all.

I B B P B B P B B P

Figure 2.4: A typical GOP sequence with its frame dependencies. In H.264, however, it
is allowed to use B-frames as reference.

A frame consists of one or more slices. These slices can be decodes independently.
However, like the frame parallelism this is usually limited to a few slices. Also an
additional deblocking step has to be performed over the slice edges after the decode,
which impacts scalability. Also adding additional slices to a frame decreases compression
rate. It is found that this is up to 10% using 8 slices and up to 35% for 64 [18].

Both frame- and slice-level parallelism are dependent on the encoder settings and
have to sacrifice compression rate for parallel execution.

2.3.4 Macroblock-level Parallelism

MB-level parallelism can be exploited in the spatial (within a frame) and the temporal
domain (among frames). Spatial MB-level parallelism has first been introduced by Van
der Tol et al. [26]. Chen et al. [31] evaluated this approach on a Pentium machine with
SMT and multi-core capabilities. Those works also suggest the combination of MB-level
parallelism in the spatial and temporal domains. This is explored further in the work
of Meenderinck et al. [18] and was renamed to 3D-Wave parallelism. They showed that
the amount of available parallelism is very large. They also renamed spatial MB-level to
2D-Wave parallelism. This naming scheme is also used within this paper.

2.3.4.1 2D-Wave Parallelism

The 2D-Wave parallelization exploits MB-level parallelism within a frame. The amount
of parallelism is limited by the data dependencies in the spatial domain, referred to as

2.3. PARALLELIZATION OPPORTUNITIES 7

intra dependencies. Figure 2.5 shows all possible dependencies in the spatial domain.
To decode the current MB, data from four surrounding MBs is used. Therefore, those
must be fully decoded before the current MB can be processed.

MB

(a) Luma

Deblocking filter

Intra-prediction

MB

(b) Chroma

Figure 2.5: MB dependencies within the spatial domain.

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3

2,0 2,1 2,3 2,4

3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

1,4

2,2

3,0

Processed

Unprocessed

In flight

Figure 2.6: 2D-Wave parallelization: MBs on a diagonal are independent and can be
decoded concurrently. The arrows represent the dependencies.

As a result of those dependencies, the MBs must be decoded in a proper order. As
shown in Figure 2.6, MBs on a diagonal line are independent of each other and can
therefore be processed parallel. The figure also shows that the number of parallel MBs
is limited by the horizontal resolution. Only one available MB in an entire line exists at
the same time. Therefore, the maximum spatial parallelism can be defined as:

ParMBmax,2D = min(⌈NMB,ℎor/2⌉, NMB,ver), (2.1)

where NMB,ℎor and NMB,ver are the number of horizontal and vertical MBs in the
frame. The maximum 2D-Wave parallelism for FHD is min(⌈120/2⌉, 68) = 60. The

8 CHAPTER 2. BACKGROUND

equation shows that the parallelism increases with the frame size. In this paper the term
parallelism is interchangeable with the number of concurrent MBs when addressing wave
parallelization.

In the 2D-Wave the amount of available parallelism is not constant during the decod-
ing of a frame as it suffers from ramping and dependency stalls. The ramping stalls occur
at the start and the end of the frame when the number of available MBs is lower than
the number of Processing Elements (PEs). Using more PEs increases this inefficiency.
The dependency stalls are due to variable MB decoding times. Figure 2.7 illustrates
both effects.

P1

P2

P3

P4

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 4,0 4,1 4,2

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 5,0 5,1

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5

Time

Ramping stalls Dependency stalls

Figure 2.7: Ramping and dependency stalls reduce the scalability and performance of
the 2D-Wave parallelization.

2.3.4.2 3D-Wave Parallelism

The concept behind temporal MB-level parallelism is that concurrency can be exploited
in multiple frames at the same time. In addition to the intra dependencies, the mac-
roblocks that require motion compensation also have inter-frame dependencies. Hence,
data from reference frames is required to perform the decode. The exact reference areas
are pointed by the motion vectors. Only these areas of the reference frames are required
to perform the decode. MB-level parallelism among frames is referred to as temporal
MB-level parallelism. Figure 2.8 illustrates this.

Combining the spatial and temporal parallelism results in the 3D-Wave paralleliza-
tion. The amount of parallelism it provides is very large and increases proportionally
with the number of frames in flight. Meenderinck et al. [18] showed that the maximum
available parallelism for FHD sequences is between 4000 and 7000 while having more
than 200 frames in flight.

Although the 3D-Wave approach improves the scalability it is not applied in this
work. Introducing the third dimension in parallelization incurs additional overhead costs
which only pay of at very large scale systems. Our platform has 16 cores, in which case
the 2D-Wave approach provides sufficient parallelism.

2.3. PARALLELIZATION OPPORTUNITIES 9

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3

2,0 2,1 2,3 2,4

3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

1,4

2,2

3,0

Frame n

0,0 0,1 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

0,2

Frame n+1

Figure 2.8: Temporal MB-level parallelism.

10 CHAPTER 2. BACKGROUND

Experimental Setup 3
This chapter provides the details of experimental setup. The experimental setup is
split in two parts, namely the development environment and the actual test setup on
which the benchmarks are run. The details are presented in the first two sections of the
chapter. Additionally, several micro-benchmarks are performed on the Cell Blade test
setup. The focus of the micro-benchmarks is on the communication and synchronization
performance. The micro-benchmarks greatly help in choosing the right communication
and synchronization mechanisms for the parallel implementations. They will also be
very useful when analyzing the results.

3.1 Development Environment

The development environment is a PS3 machine. The PS3 has a single Cell processor,
however, only 6 SPEs are usable. The operating system running on the PS3 is the
Yellow Dog Linux 6.2 distribution. The kernel version is 2.6.29. The IBM Cell SDK
3.1 [9] has been installed to enable developing Cell programs. Furthermore, the PS3 has
a limited external memory of 256 MB XDR memory, of which only around 200 MB was
usable. The operating frequency of the Cell processor is 3.2 GHz. The XDR memory
can deliver up to 25.6 GB/s of bandwidth. On this platform the parallel H.264 decoders
and micro-benchmarks are developed.

3.2 Test Setup

There are several test setups used. The most important one is the Cell Blade located in
the Barcelona Supercomputing Center (BSC). The Cell Blade consists of two physical
Cell processors linked via the FLEXIO bus, which has a peak throughput of 37.6 GB/s.
The second Cell processor shares the memory controller of via the FLEXIO bus. The
amount of external memory is 1 GB and is fully usable. The rated memory bandwidth
is 25.6 GB/s. The operating system is Fedora Core 7 with kernel version 2.6.22. With
two fully accessible Cell processors up to 16 SPEs are usable. The micro-benchmarks
and the benchmarks of the parallel H.264 decoders are performed on the Cell Blade. For
the timing the hardware counters of the Cell are used. On the Cell Blade these timers
have a resolution of 14.8 MHz and negligible call latency.

For the benchmarks the Full High Definition (FHD) sequences of the HD-
VideoBench [4] are used. In particular we focussed on the sequences names BlueSky,
Pedestrian, and RiverBed. The movies are encoded with X264 [29] conform the High
profile level 4.0 H.264 standard using CABAC as the entropy decoding scheme. More
specifically the streams are encoded using two B-frames between I- and P-frames with
weighted prediction. The motion vector range is set to 24 pixels.

11

12 CHAPTER 3. EXPERIMENTAL SETUP

To compare the Cell processor to modern x86 processors, three x86 based machines
are used. The tests are run on an Intel Pentium 4 and Core2 Duo, and an AMD PhenomII
x4. The platform specifications are listed in Table 3.1.

Specifications Pentium 4 Core2 Duo PhenomII x4

Frequency 3.4 GHz 3 GHz 3 GHz
Core count 1 2 4
Parallel threads 2 2 4
L1 Cache 16 kB 2x64 kB 4x128 kB
L2 Cache 1024 kB 6 MB 4x512 kB
L3 Cache - - 6 MB
NB Frequency - - 2 GHz
Memory size 2 GB 4 GB 4GB
Memory speed 400 MHz DDR 800 MHz DDR2 800 MHz DDR2
Memory interface Dual 64-bit Dual 64-bit Dual 64-bit
Operating System Fedora Core 8 Suse 10 Ubuntu 9.04
32/64-bit 32-bit 64-bit 64-bit
Kernel version 2.6.26 2.6.27 2.6.29

Table 3.1: X86 test platform specifications.

3.3 Communication Micro-Benchmarks

In this section the communication performance of the Cell Blade is analyzed. The anal-
ysis of the performance characteristics is required for choosing the right communication
mechanisms. When interpreting the benchmark it should be kept in mind that the Cell
Blade contain 2 physical Cell processors. Reduced performance is expected when both
processors are used at the same time due to the off-chip latencies and shared memory
bandwidth.

The micro-benchmarks can be split in three categories. The first category involves all
benchmarks regarding sequential DMA transfers. The second category covers list DMA
transfers. The third category explores the latency characteristics of the synchronization
mechanisms available on the Cell platform. The overall goal is to investigate how the
performance scales with multiple cores. A better understanding of the Cell communica-
tion subsystem is required to, on the one hand, make the right choices in the parallel
implementation and, on the other hand, to be able to properly analyze the performance
of the parallel H.264 algorithm. While prior analysis has been made [17][16], there is a
need for more specific analysis. Therefore, the micro-benchmarks are custom made and
tailored to specific usage scenarios of the parallel H.264 implementations.

In the benchmarks the hardware decrementer is used for timing purposes. Each SPE
has access to an individual decrementing hardware timer, which has a very low latency
access latency. The resolution of the timers is 14.8 MHz.

In the following sections the benchmarks performed in each category are presented.

3.3. COMMUNICATION MICRO-BENCHMARKS 13

Each benchmark starts with a introduction, followed with the results and the analysis.
First, the sequential transfers benchmarks are investigated, followed by the list transfers.
Then the synchronization benchmarks are performed.

3.3.1 Sequential DMA Throughput

The micro-benchmarks performed in this section reveal the behavior of the sequential
DMA transfers. The benchmark scenarios are restricted to DMA transfers initiated from
the SPEs. While the PPE has a DMA unit, it is less powerful than the SPE variants.
A DMA unit is able to transfer data from the local store to a global memory space and
vice versa. The two types of global memory targets are the external memory and local
store spaces.

A sequential DMA transfer is restricted to continuous pieces of memory. The max-
imum size of a sequential DMA is 16 kB. For the transfer both the global memory and
local store targets need to be aligned to a 16-byte boundary. Aligning to 128-byte re-
sults in maximum throughput [17]. Both cases will be investigated to determine the
differences.

In each benchmark the results are deduced from timing 10,000 iterations of the
specific DMA operation. Even though a barrier command is used to synchronize the
start of the SPEs, some variations in actual start and end times cannot be avoided. In
case of multiple SPEs the results could therefore be inaccurate due to less load on the
memory subsystem at the start and the end of the run. To solve this, an additional
10,000 iterations are placed before and after the timed 10,000 iterations to maintain the
load on the memory subsystem. The transfer sizes ranges from 16 to 16384 bytes. The
number of SPEs ranges from 1 to 16.

3.3.1.1 Sequential DMA Characteristics - External memory

The results for the sequential DMA transfers from external memory are presented in
Figures 3.1 and 3.2, for 128- and 16-byte alignment respectively. Both figures present
the read performance. Write benchmarks have also been performed. However, the results
are not presented due to its similarity with the read performance.

The first thing to notice is that the maximum throughput is higher than the memory
is rated at. The XDR memory has a rated bandwidth of 25.6 GB/s, while the graph
peaks at 30 GB/s. We suspect that the PPE cache is used as a buffer to speed up the
transfers. The maximums are obtained at a rather low SPE number, which strengthens
this suspicion. With more SPEs the cache could be too small to have an effect. However
running the same benchmark on the PS3 did not exhibit this behavior and the numbers
did not exceed 25 GB/s. Therefore, no conclusive explanation can be given.

Furthermore, we can see that up to a DMA size of 1024 bytes the throughput scales
approximately linearly with the DMA sizes. The latency difference between a 16 and
1024 byte transfer is therefore quite small. It can be concluded that up to a transfer size
of 1024 bytes the memory subsystem is not bandwidth limited, but rather limited in the
number of memory operations per second (OPS). A calculation using the numbers from
the graphs provides us that the maximum number of memory OPS is around 23 million.

14 CHAPTER 3. EXPERIMENTAL SETUP

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
B

/s
)

SPEs

16
64

256
1024
4096

16384

Figure 3.1: External memory throughput of sequential DMA transfers with a 128-byte
alignment.

The throughput also scales linearly to about 5 SPEs. This scaling is exhibited for
both alignment situations. The difference between the alignment is mainly observed at
lower number of SPEs. The throughput with higher number of SPEs is roughly the
same.

3.3.1.2 Sequential DMA Characteristics - Inter-SPE

In the inter-SPE benchmark both of the DMA transfer targets are local stores. Each
SPE initiates DMA transfers to a pre-determined local store target. Because the SPEs
are connected to the EIB, which is basically a ring interconnect, the location of the
communicating SPE contexts has a big influence on the aggregated throughput [17]. If
the source and the target SPE are neighbors, the contention is minimal. Neighboring
SPEs can communicate without interference over the EIB. The runtime system, however,
does not allow for direct control in the context placement. Instead it has an affinity
option, which allows to specify the neighboring context. However, this is limited to
a maximum of 8 SPEs, while our benchmark ranges up to 16 SPEs. Independently of
using the affinity option it was discovered that the contexts occasionally are scheduled on
different Cell processors when using 8 or less SPEs. In most of the cases when using 8 or
less SPEs, the contexts would be scheduled on one Cell processor. However occasionally
it uses two processors. More control on the scheduling behavior is therefore desired.

A solution that provides control on the scheduling to use a custom algorithm to deter-

3.3. COMMUNICATION MICRO-BENCHMARKS 15

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
B

/s
)

SPEs

16
64

256
1024
4096

16384

Figure 3.2: External memory throughput of sequential DMA transfers with a 16-byte
alignment.

mine the SPE IDs. While this is implemented and considered as a working solution, it is
a rather messy way. Even if it is possible to determine the SPE IDs, it is still not known
what the relative placement of the SPEs are. This can only be determined by running
throughput benchmarks with every imaginable ring configurations. Developers will most
likely not use this because of the additional work overhead and code complexity. For the
same reason the optimal ring-placed results are not presented. The ring placement is for
the same reason not used in the implementation of the parallel strategies. However, it
is expected that even with sub-optimal placement the on-chip bandwidth does not form
the bottleneck as it is still is much higher than the memory bandwidth.

The results for the inter-SPE DMA transfers are presented in Figure 3.3 and 3.4,
for 128- and 16-byte alignment respectively. Again both figures present the read perfor-
mance, because it is similar to the write performance.

As expected the aggregated throughput scales with the number of SPEs. However,
the results vary significantly and the maximum is not nearly as high as the Cell is capable
of in theory. This is caused by a combination of the following reasons. First, the EIB is
used only in one direction by only reading or writing. The EIB is a bi-directional ring
with total throughput of 12.8 GB/s per link. This explains why with a single SPE a
maximum throughput of around 11 GB/s is observed. Second, the SPEs are scheduled
on physically different Cell processors. The FLEXIO link has lower bandwidth and forms
the bottleneck when multiple SPEs of different Cell processors communicate. The SPE

16 CHAPTER 3. EXPERIMENTAL SETUP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
B

/s
)

SPEs

16
64

256
1024
4096

16384

Figure 3.3: Aggregated inter-SPE throughput of sequential DMA transfers with 128-byte
alignment.

contexts are scheduled on different processors with more than 8 SPEs and occasionally
even when using 8 or less SPEs. The third reason is in the placement of the SPE contexts.
Since we did not use affinity or specified the placement of the contexts, contention will
occur on several links internally on the Cell processors.

The scaling graph of the 16-byte alignment has less variation. This is probably due
to the more regular SPE placement for up to 8 SPE contexts. It is observed that the
throughput is only a little lower than with a 128-byte alignment. Also the expected
drop in performance when moving to the 9e SPE is observed clearly. The link between
the two processors forms the bottleneck here. However, an unexpected drop also occurs
when moving to 16 SPEs, which most likely is caused by link contention.

Increasing the transfer sizes imposes similar effects as observed with the external
memory throughput benchmarks. The throughput scales approximately linear up to a
certain DMA size. With the external memory this was around 1024 bytes, however,
with inter-SPE communication this is already at 128-bytes. The memory subsystem is
designed to transfer up to 128 bytes at once. Transferring 16 or 128 bytes involves the
same amount of work. For the external memory benchmarks the scaling behavior was
observed up to 1024 bytes instead of 128. Transfers involving the external memory have
a higher initial latency, which causes the relatively small difference between 16 bytes and
1024 bytes.

From the performed micro-benchmark we conclude that sequential DMA transfers

3.3. COMMUNICATION MICRO-BENCHMARKS 17

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
B

/s
)

SPEs

16
64

256
1024
4096

16384

Figure 3.4: Aggregated inter-SPE throughput of sequential DMA transfers with a 16-
byte alignment.

should be kept on-chip using inter-SPE transfers when possible. The number of DMA
transfers to the external memory should be minimized by packing the data in a single
large structure. The effect of alignment is most visible with low number of SPEs. While
aligning the DMA targets to a 128-byte boundary optimizes the throughput, the penalty
is not very significant. This especially holds for the inter-SPE transfers. It is therefore
advised to only apply 128-byte alignment on external memory targets when the memory
overhead is relatively small. For local store targets it is advised to use 16-byte alignment
to conserve the limited local store space.

3.3.2 List DMA Throughput

In the previous section the characteristics of the sequential DMA transfers were inves-
tigated. In this section we continue with the list DMA transfers. In contrast to the
sequential DMA, the list DMA uses multiple global address targets. An array of list el-
ements is needed to specify each individual target and size. The number of list elements
in a single list DMA transfer can range up to 2048.

Being able to specify multiple targets is very useful for strided memory access. For
example, strided acceses are needed to transfer a macroblock from a frame. Normally it
would require a DMA transfer for each line of the macroblock, but with the list transfer
only a single operation is required. The maximal transfer size of 16 kB still holds for
the list transfer. However, this restriction applies to a single list element, instead of an

18 CHAPTER 3. EXPERIMENTAL SETUP

entire transfer.

For the list DMA benchmark only the results for benchmarks with 16-byte alignment
are presented. Also the list transfer element sizes are restricted to 16, 32 and 48 bytes.
The purpose of this restriction is to focus only on the list DMA variant used in the
implementation of the parallel H.264 strategies, presented in Chapter 5. The list DMAs
are used for transferring blocks of data, e.g., a 48x20 picture block. The width of these
blocks only vary in the options chosen in this benchmark. To further approach the
settings of the implemented strided transfers, the number of list elements is set to 20.

To investigate the performance difference of performing several sequential DMA ver-
sus a single list DMA the sequential DMA transfers are also benchmarked with the
same settings. The results of the external memory and inter-SPE micro-benchmarks are
presented in Figure 3.5 and 3.6 respectively.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
B

/s
)

SPEs

list 16
list 32
list 48

seq 16
seq 32
seq 48

Figure 3.5: External memory throughput of list DMA transfers with a 16-byte alignment.

The first observation to make is that the maximum throughput in the external mem-
ory benchmark is much lower than the rated 25.6 GB/s. The results top out at around 5
GB/s for the 48 byte list transfers. In Chapter 6 the composition of the DMA transfers
used in the parallel H.264 implementations is revealed to be mostly consisting of list
DMA transfers. Therefore, the results of this benchmark give a good view of when the
memory subsystem starts to become the bottleneck.

The difference between the list and small sequential DMAs is quite large and we can
conclude that sequential DMAs are not an option. We also see that moving to larger
widths increases the total throughput approximately linearly. Consequently, this means

3.3. COMMUNICATION MICRO-BENCHMARKS 19

that the latencies for different list widths are close to each other. Since the memory
subsystem transfers 128-byte at a time, this is to be expected.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
B

/s
)

SPEs

list 16
list 32
list 48

seq 16
seq 32
seq 48

Figure 3.6: Aggregated inter-SPE throughput of list DMA transfers with a 16-byte
alignment.

Moving to the inter-SPE benchmark results, a much higher throughput is observed.
While the absolute throughput is not as high as obtained with the sequential DMA
benchmarks, the ratio of inter-SPE to external memory is much higher for list DMAs.
From the figure it is seen that the aggregated throughput tops out at 50 GB/s with 16
SPEs, which is a factor 10 higher than from using external memory. This indicates that
the contention caused by sub-optimal context placement impacts the sequential DMA
throughput more. In both figures the logical drop in performance is observed when
moving from 8 to 9 SPEs. It is more clear in the inter-SPE benchmark since the external
link is stressed more.

Perhaps a more interesting parameter than the throughput is the number of list
elements transfered per second, shown in Table 3.2. In the table it is shown that the
width of the list elements has relatively little influence on the number of list elements
per second.

For the list DMA performance, the same conclusion can be drawn as for the sequential
DMAs as the inter-SPE throughput is much higher. Therefore, it is advised to keep the
transfers on-chip when possible. In case of the list DMAs, however, it has a much bigger
than with the sequential DMAs. The relative throughput difference of external memory
to inter-SPE is higher for list DMA transfers.

20 CHAPTER 3. EXPERIMENTAL SETUP

SPEs
External memory Inter-SPE
16 32 48 16 32 48

1 49 M 36 M 36 M 138 M 121 M 122 M
4 134 M 108 M 108 M 553 M 480 M 483 M

16 149 M 116 M 116 M 1358 M 1121 M 1119 M

Table 3.2: Number of transfered list elements per second using DMA lists with 20 ele-
ments.

3.3.3 Synchronization Mechanisms

With the last micro-benchmarks the synchronization performance of the Cell processor
is investigated. The 2D-Wave parallel algorithm, which is discussed in Chapter 4, has
shared data structures which need synchronized access. The focus in this section lies on
the synchronization mechanisms that can offer the synchronized access.

On the Cell, synchronized access can be implemented in several ways. First, it can
be implemented via the mailbox facilities. The PPE can communicate with a SPE
through mailbox messages. A mailbox message consist of a single 32-bit value. The
PPE can send mail to each individual SPE context. The arrival of the mail will not
generate a interrupt or any other notification. Checking the mailbox for messages has
to be done by the programmer. Each SPE can also send a message to the PPE, but not
other SPEs. On the PPE side also no notifications are given and the mailbox should
be checked actively. With the mailbox facilities a traditional worker-server model can
be implemented by using the PPE as the server and the SPEs as the workers. In this
implementation only the server needs to access the shared structures, which effectively
implements the synchronized access.

The second method is to use the mutex facility. The SPEs can use a mutex to acquire
a lock on the shared structure and then perform the operation. However, the SPEs can
only operate on data in its own local store. Implementing this will require two DMAs in
addition to transfer the shared structure to and from the external memory.

The third method is to use atomic operations. Atomic operations are the only way
the SPEs can work directly on the external memory. Atomic operations are always syn-
chronized, but have limited functionality. Several atomic operations might be necessary
to implemented the synchronized operation on the shared structures [14]. In some cases
the synchronized operation might be too complex to implement with atomic operations.
In those cases using atomic instructions is not a viable option.

The final method is to use the callback functionality. A PPE is able to register a
function as a callback function. After registering the callback function, it can be called
on the SPEs. The difference with regular functions is that the PPE executes them
instead. When a SPE calls the callback function, execution halts until it is serviced
by the PPE. This very similar to a classic interrupt mechanism in which a registered
interrupt routine is performed after raising a certain interrupt.

In the benchmarks the latencies of the four synchronization mechanisms are mea-

3.3. COMMUNICATION MICRO-BENCHMARKS 21

sured. The mailbox has two variants, one that is context safe and one that is not. The
difference lies in whether it is checked if the context is currently running on the SPE.
When there are more SPE contexts than physical SPEs, context scheduling is performed.
The context unsafe mailbox assumes that the SPE context will always be on the same
SPE. Both variants are investigated in the benchmarks.

The mutex benchmarks also include two sequential DMA transfers in the timings,
to simulate transferring a shared structure to the local store. The size of the structure
is set to 256 bytes. This is sufficient to transfer the required part of the shared data
structure.

Two types of atomic operations are benchmarked. The two types differ in whether
they have a return value or not. It is expected that the atomic instructions with a return
value are blocking calls and therefore have a higher latency. Both operations are needed
to implement the 2D-Wave synchronized function.

Lastly, the contents of the callback function simply contains a return-statement,
since we are only interested in the call and, thus, synchronization overhead.

The benchmark results are presented in Table 3.3. The mailbox, mutex and callback
results should be interpreted as the entire synchronization overhead. The atomic op-
eration numbers present the latency of one operation. Furthermore, the results are an
average of 10000 iterations and represent the latencies when little to no contention on
the synchronized access occurs.

SPEs Mbox-safe Mbox-fast Mutex Atomic-sub and test Atomic-inc Callback

1 1.75 0.43 0.83 0.13 0.13 15.78
4 1.75 0.41 1.50 0.26 0.26 14.58
8 1.76 0.41 1.57 0.26 0.26 9.28

16 2.31 0.86 1.76 0.36 0.26 9.07

Table 3.3: Average synchronization overhead of several synchronization mechanisms in
�s

The benchmarks have been for different number of SPEs. It can be seen that the
callback functionality is too slow for frequent use. The atomic operations have the lowest
latencies among the results. As expected the latency of the atomic increment, which does
not have a return value, is a little lower at 16 SPEs than the atomic subtract and test.
However, both types could be needed multiple times in more complex operations.

For both mailbox variants and the mutex, the time on 16 SPEs is a little higher than
the for 8 SPEs and less. This is logical as the PPE and several SPEs are located on dif-
ferent Cell processors. However, the latency remains within workable ranges. Therefore,
the method using the fast mailboxes is considered the best choice.

The results in the table represent the situation when no to little contention occurs.
In real applications of course contention could occur. When the work units are too small,
the different SPEs contend with each other for the synchronized access.

A defining factor for scalability is the sequential and parallel execution ratio. The
centralized synchronization belongs to the sequential part. The synchronization overhead
cannot be accurately simulated since it depends on both the platform and the runtime

22 CHAPTER 3. EXPERIMENTAL SETUP

circumstances. It is not possible to give hard figures for this. What can be done is short
investigation on what the synchronization to computation ratio should be to get achieve
good scaling.

In case of the mailbox facilities, the PPE handles the requests. Whenever this be-
comes the bottleneck, the contention turns in to congestion and performance not scale
any further. Therefore, the time spend in the work unit has to be larger than 16x0.86=
13.76 us to be able to scale to 16 SPEs. Still it is preferred that it is larger. The closer
it gets to this execution time, the higher the average synchronization latency is due to
contention.

3.3.4 Conclusions

In this section several communication micro-benchmarks are performed. With the Cell
memory hierarchy, the communication is also different. The inter-core and external
memory transaction have to be initiated explicitly through the DMA unit. There are
two types of DMA operations, the sequential and list variant.

With the sequential DMA transfers the rated bandwidth of 25.6 GB/s is obtained
only when using large DMA transfer sizes. With lower than 1 kB transfers the obtained
throughput decreased roughly linearly. The inter-SPE bandwidth is much higher and
more than 90 GB/s of aggregated bandwidth is achieved using 16 SPEs. However,
this is much lower than the theoretical 204.8 GB/s per Cell processors. This has two
main reasons. First, the SPE contexts are not optimally placed to each other in a ring
structure. This causes link contention over the EIB. Second, two physical processors are
used which are connected via the FlexIO bus, which has a maximum rated bandwidth of
37.6/GB. This causes a bottleneck when two or more SPEs of different Cell processors
communicate. But the inter-SPE bandwidth is still much higher, especially for smaller
DMA sizes. Therefore, the data should be kept on-chip when possible. If it is required
to use the external memory it is much more efficient to transfer large blocks, instead of
several smaller ones.

With the list DMA transfers strided memory accessed are possible. This is for exam-
ple required to transfer a macroblock from a frame. In the performed list DMA bench-
marks only stride sizes of 16, 32 and 48 were used. The maximum obtained throughput is
5.1 GB/s with a stride size of 48. Using the smaller stride sizes decreased the throughput
approximately proportional. This also holds for the inter-SPE list DMA benchmarks.
However, the obtained throughput is up to a factor 10x higher. Therefore, it is even
more important to keep list DMA traffic on-chip.

The effect of 16- and 128-byte alignment is also investigated. While the alignment
has a positive effect on the throughput, it was mostly visible when using lower number
of SPEs. Therefore, it is advised not to use the 128-byte alignment with small inter-
SPE transfers to conserve local store space. Also using 128-byte alignment on external
memory structures is only advised when the memory overhead remains small.

Additionally to the DMA benchmarks, several synchronization constructs were inves-
tigated. These constructs could be used to implement the synchronized access required
in the 2D-Wave strategy, discussed in the next chapter. The fast mailbox had the lowest
synchronization overhead with 0.86 us for an average round-trip from PPE-SPE-PPE

3.3. COMMUNICATION MICRO-BENCHMARKS 23

using 16 SPEs. This number represents latency with little to no contention. The real
synchronization overhead depends on the average contention and depends on the appli-
cation. However, it is expected that this quickly becomes the bottleneck when using
more than 16 SPEs in fine-grained parallel application.

The conclusion drawn in this section form the base the implementation decisions
discussed in Chapter 5. Also it provides the necessary insight for analyzing and discussing
the experimental results presented in Chapter 7.

24 CHAPTER 3. EXPERIMENTAL SETUP

Parallel Strategies for H.264
Decoding 4
Until recently H.264 has been one of the most important drivers in the need of more
compute capabilities. Todays state-of-the-art microprocessors are powerful enough to
run all variants of H.264. However H.264 is an evolving standard and in the near future
it is projected to scale dramatically to fulfill the need of higher levels of visual experience.
Future applications like 3D-TV and Super-Hivision are essentially an evolution of the
current H.264 standard. The projected computational need of these applications will
be more than 10x higher. Advances in ILP and technology alone will not be able to
provide the required compute capabilities. With the industry moving towards multi-
and many-core architectures, the need for a scalable and higher level of parallelization
seems clear.

In Section 2.3 several levels of parallelization in H.264 are reviewed. Current de-
coders implement only frame- and/or slice-level parallelism. For future many-core pro-
cessors this level of parallelism is insufficient. To solve H.264 parallelization for many-
core architectures, macroblock-level parallelism needs to be exploited. When applying
macroblock-level parallelism the entropy decoding is not considered. This is expected to
be done beforehand. However due to the presence of frame markers this can be done in
a data parallel fashion on the frame level. In this work the parallelization of the entropy
decoding is, therefore, not considered and we only focus on the macroblock decoding.

As revealed in Section 2.3.4, the potential amount of parallelism at the macroblock-
level is huge. To exploit this two strategies are presented: Task Pool (TP) and the novel
Ring-Line (RL) approach. The TP approach was first proposed by Van der Tol [26]. The
natural implementation of the scheme is a traditional centralized worker-server model in
which the work unit is a individual macroblock. The server in this model has to keep
track of the dependencies and dynamically provides the workers with the work units.
Since the macroblock-level parallelism is quite high it is expected that this scheme scales
as long the synchronization overhead remains low.

In contrast to the centralized TP approach, RL incorporates a fully distributed con-
trol mechanism. In this strategy the processing element process entire scan lines. Intra
data control signals flows from one processing element to the next. The processing ele-
ments can therefore be connected in a traditional ring network. On the algorithm level
the RL approach will prove to be not as scalable as the TP strategy due to its static
characteristics. However this strategy is still a very interesting one as it maps well on
the Cell architecture.

With TP and RL only the spatial macroblock-level parallelism is exploited. Meen-
derinck et al. [18] also proposed their 3D-wave strategy, which combines spatial and
temporal macroblock-level parallelism. This approach exhibits massive amounts of par-
allelism. RL can also exploit the temporal parallelism, albeit to a lesser extend. RL
is only able to have up to two frames in flight. In this work we will not fully review

25

26 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

these variants of H.264 decoding. The reason for this is of a practical nature. For the
implementation of the algorithms the open source FFmpeg code was used as a base. The
FFmpeg program structure does not allow for intuitive implementation of any strategy
needing multiple frames in flight. This requirement is a necessity for exploiting paral-
lelism in the temporal domain. Adding this feature could go as far as rebuilding the
entire program structure. Furthermore the number of processing elements in the target
platform is limited to 16. Up to 16 cores the difference between 2D and 3D-wave is fairly
small as will be revealed further in the chapter. For RL the temporal variant is included
in the theoretical analysis. With this it is possible to project real performances. RL and
single-frame RL (SFRL) denote the spatial MB-level RL variant. The combined spatial
and temporal variant is denoted by multi-frame RL (MFRL).

In this chapter the TP and RL strategies are discussed in detail on the algorithm
level. First, we start with TP followed by a theoretical scalability analysis. After this
we discuss RL and its differences to TP. This is also followed by a theoretical scalability
analysis.

4.1 Task Pool Approach

The TP approach exploits 2D-Wave parallelism, described in Section 2.3.4, in a worker-
server fashion. Only the part after the entropy decoding is parallelized. The entropy
decoding has to be done before the macroblock decoding starts. In this section the TP
algorithm is explained. After this scalability is analyzed in a theoretical analysis.

4.1.1 Task Pool Algorithm

Wn

Wn−1

W2

W1

S

Dependency table

Task queue

Figure 4.1: The TP algorithm is based on a worker-server model.

4.1. TASK POOL APPROACH 27

Figure 4.1 shows a high-level view of the TP implementation. From the figure clearly
a worker-server model can be observed. The work unit in the TP algorithm is a mac-
roblock. The server keeps track of the macroblock states and issues them to available
workers when they are ready for processing. For this a dependency table and a task
queue is used. The dependency table is a matrix with an entry for each macroblock.
The entry contains the dependency count. The dependency counts are initialized with 0,
1 or 2 depending on the index. The top, left and right borders of the table are initialized
to 1, while the rest initializes to 2. Only the entry with index (0,0) is initialized to 0.
Having a dependency count of ’0’ means that the dependencies have been resolved and
that the macroblock is ready to be processed. For each macroblock its corresponding
dependency count reveals the number of macroblocks it depends on. Figure 4.2 shows
the macroblock dependencies and dependency counts.

Figure 2.5, however, shows that each macroblock is dependent on the left, top left,
top and top right macroblocks. This means that the number of dependencies is four
and is consequently not correctly reflected in the dependency count. A more in depth
look in the dependency structure reveals that the dependencies of the top left and top
macroblock are redundant. On the left border there is no left macroblock. Likewise
the top and right border do not have a top right macroblock. Therefore these have a
dependency count of 1. The first macroblock (0,0) does not have dependencies at all and
therefore is assigned a 0.

0,0

1,0

2,0

3,0

4,0

0,1

1,1

2,1

3,1

4,1

0,2

1,2

2,2

3,2

4,2

0,3

1,3

2,3

3,3

4,3

0,4

1,4

2,4

3,4

4,4

0,5

1,5

2,5

3,5

4,5

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1 1 1 1 1

1

1

1

1

1

1

1

1

0

Figure 4.2: Left: Dependency flow. Right: Dependency counts.

When the dependency count is ’0’ the macroblock is appended to the task queue.
The task queue can be described as a circular first-in first-out append/consume buffer,
which contain the free macroblocks. The size of the task queue is equal to the maximum
parallelism of 2D-wave defined by Equation (2.1), since the maximum parallelism is equal
to maximum number of free macroblocks.

The algorithm can be described as follows. When there is work in the task queue
and a worker is available the work units are assigned to the worker. When the work unit
has been processed, the worker signals the server that its ready. The server first updates
the dependency table by decrementing the right and down left entry corresponding to
the processed work unit. If one or more of them become ’0’, they are appended to the
task queue. Now the server will check again for available workers and work units and

28 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

assign the work units accordingly. This will repeat until all work is processed. The task
queue is overwritten in a circular fashion.

The parallelism exhibited by this strategy is equal to the spatial macroblock-level
parallelism. Figure 4.3 shows the parallel macroblocks as a function of the time with
limited number of workers. The lines represents the parallelism of HD input. The graph
shows that parallelism ramping is relatively less with low number of workers, indicating
an efficiency loss with higher number of processing elements due to ramping stalls.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450

P
ar

ra
lle

l M
B

Time

8
16
32

Unlimited

Figure 4.3: Parallelism ramping for a HD sequence with constant macroblock execution
times.

In reality however, the macroblock execution times are far from constant. In H.264
the macroblock execution times are vary significantly. Figure 2.7 shows the possible
deficiencies caused by ramping and dependency stalls. In the next section the impact
on the scalability of the ramping and dependency stalls is investigated. The inefficien-
cies introduced by the synchronization overhead are not discussed as it a platform and
implementation specific parameter.

4.1.2 Scalability Analysis - Task Pool

The TP algorithm follows 2D-Wave parallelism very closely and extracts as much paral-
lelism as possible. However macroblock-level parallelism does not provide constant and
infinite parallelism. Therefore, TP does not scale linearly, apart from implementation
and platform inefficiencies. Inefficiencies are introduced by ramping and dependency
stalls.

Ramping happens for every frame in the TP algorithm. This, however, can be avoided
by extending the TP algorithm to exploit 3D-Wave parallelism. The ramping then only
occurs once a video sequence, which is negligible. The efficiency loss due to depen-
dency stalls, however, cannot be recovered. Therefore it is important to separate the

4.1. TASK POOL APPROACH 29

contribution of the individual sources to project theoretical performance of 3D-wave.

To investigate the inefficiencies at the algorithm level a TP simulator is used. The
simulator does not simulate H.264, but rather the scheduling behavior of the TP al-
gorithm. More specifically, the input of the simulator is not a H.264 stream, but the
execution times of the individual macroblocks. The simulator uses the execution times
calculate speedups for any number of workers. In the following experiments up to 64
processing elements are simulated. The input sequences have a length of 100 frames.
The input resolutions are restricted to 1920x1080 and 3840x2160. In the remainder of
the thesis these are referred to as FHD and QHD respectively.

To determine the impact of the dependency stalls, frame sequences with constant
and variable execution times are simulated for each of the two resolutions. For the
FHD resolution the variable MB execution times are extracted from three of the HD-
VideoBench [4] sequences. The BlueSky, Pedestrian and RiverBed are 100 frames each.
For variable QHD input Gaussian distributed random variables are used with a stan-
dard deviation of 5 and a mean of 20. On the FHD resoluiton these parameters provided
comparable results with the HDVideoBench sequences. The speedup as a function of the
number of workers is revealed in Figure 4.4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

S
pe

ed
-u

p

Processing elements

QHD constant
QHD variable
FHD constant
FHD variable

Figure 4.4: Scaling of sequences with constant and variable macroblock execution times.

From the figure can be seen that the QHD scales significantly better with larger
number of processing elements. This is expected as the parallelism increases with the
width of the resolution, which is in this case twice as large. The difference between
the constant and variable variant of each resolution is due to dependency stalls. To

30 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

further point out the impact of variable execution times the normalized efficiency is
plotted in Figure 4.5. The lines represent the efficiency of the variable execution times
normalized to constant execution times. From the graph it can be seen that increasing
resolution lowers the efficiency loss. This is expected since higher resolution provide
more parallelism. The dynamic behavior of the algorithm counters the effect of variable
MB execution times as long as there are other free macroblocks. Furthermore, the graph
shows that the impact of the dependency stalls is not very significant. The lines plot
stay above 90% efficiency most of the time, especially with small number of processing
elements.

Figure 4.6 shows the normalized efficiency of constant macroblock execution times
to perfect scaling. This efficiency loss is incurred by the ramping stalls. Since constant
macroblock execution times are used the only the ramping stall remain. This is true
until the number of processing elements hit the maximum parallelism defined by Equa-
tion (2.1). The additional efficiency loss introduced after this point is due to the lack of
parallelism. Moving to 3D-wave resolves not only ramping inefficiencies, but also vastly
increases parallelism. Up to 16 processing elements, however, the inefficiency losses are
still small. Implementing the TP strategy on the Cell Blades gives a good representation
of the 3D-Wave performance. The projected speedup of TP is 15x with 16 processing
elements using a FHD sequence.

 80

 85

 90

 95

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

N
or

m
al

iz
ed

 e
ffi

ci
en

cy

Processing elements

QHD
FHD

Figure 4.5: Normalized scaling efficiency of variable to constant macroblock execution
times. The efficiency loss is caused by the dependency stalls.

4.2 Ring-Line Approach

In the previous section the TP approach has been discussed and analyzed. The TP algo-
rithm exhibit excellent theoretical parallelism with a speedup of 15x with 16 processing
elements. In this section the novel RL strategy is introduced. RL builds on a data flow
principle and is expected to map well on the Cell architecture. First, the functionality of

4.2. RING-LINE APPROACH 31

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

N
or

m
al

iz
ed

 e
ffi

ci
en

cy

Processing elements

QHD
FHD

Figure 4.6: Normalized scaling efficiency of constant macroblock execution times to
perfect scaling. The efficiency loss is caused by the ramping stalls.

the algorithm is explained. Following this the RL strategy is motivated and compared to
TP. Finally, a theoretical analysis is presented to investigate the scalability in the same
fashion as for TP.

4.2.1 Ring-Line Algorithm

In contrast to the TP algorithm, RL incorporates a fully distributed control mechanism.
RL increases the granularity from individual macroblocks to macroblock lines, while
maintaining the macroblock dependencies. Each processing element is assigned a scan
line and processes the individual macroblocks in scan line order. Due to macroblock
dependencies (Figure 2.6) the macroblocks cannot not be processed until all the depen-
dencies are resolved. To satisfy this each processing elements has to communicate to
its neighbor. Figure 4.7 illustrates four processing elements with each assigned a line.
The arrows represent the dependencies. An important difference with TP is that instead
of having two arrows out of each macroblock, only the one pointing to the next line
requires synchronization actions. The arrow to the right has become implicit, since the
macroblocks are processed in scan line order. The dependencies do not allow the process-
ing elements to start execution until the previous processor has processed the depending
macroblock. This can be satisfied by having each processing element communicate to
its forward neighbor every time when it completes the execution of a macroblock. After
the first line, processing element P1 will continue with line five, the same way as the

32 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

second processing element will continue with line six. This continues for each processing
elements until all the lines are processed.

P1

P2

P3

P4

P1

Implicit dependency

Line dependency

Figure 4.7: Simplified dependency flow of the RL algorithm. Dependencies flowing from
one block to another on the same line are implicit.

From the figure only arrows to the next line are observed. Therefore, the processing
elements only need to communicate with their forward neighbors. To allow this the
processing elements can be mapped on a ring network. Figure 4.8 shows the mapping of
a ring with the controller attached to one of the processing element. The C -processor is
the controller and its task is to give start and stop signals to synchronize the macroblock
processors with the entropy decoding. These signals only occur once for each slice/frame.

C P1

P2 P3 P4

P5

P6P7P8

Figure 4.8: Uni-directional ring mapping of processing elements in the RL approach.
The C-node is the control node which provides start and stop signals once a frame.

Since RL exploits 2D-Wave parallelism, it shows similar parallelism characteristics.
The maximum parallelism is slightly different from Equation (2.1) and is described as:

4.2. RING-LINE APPROACH 33

ParMBmax,RL = min(⌊NMB,ℎor/2⌋, NMB,ver) (4.1)

When exploiting MB-level parallelism only one macroblock in a line can be processed
at the same time. This also holds for RL as it assigns one processing element to a line.
The only difference is that to avoid deadlocks the maximum parallelism has to reduced
by one for uneven horizontal number of macroblocks, hence the floor operation.

Since it is based on macroblock parallelism, RL also exhibits ramping inefficiencies.
Like in TP, temporal macroblock-level parallelism can be exploited to solve this ineffi-
ciency. In case of RL this is quite intuitive by viewing the input video as one large frame
created by concatenating consecutive frames in vertical direction. Instead of stopping at
the end of the frame and wait until all the processing elements are ready to move to the
next frame, the processing element can directly continue with the next frame. Figure
4.9 illustrates this.

P3

P4

P1

P2

P3

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7 2, 8 2, 9 2, 10 2, 11 2, 12

3, 0 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8 3, 9 3, 10 3, 11 3, 12

4, 0 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8 4, 9 4, 11 4, 12

5, 0 5, 1 5, 2 5, 3 5, 4 5, 5 5, 6 5, 7 5, 9 5, 10 5, 11 5, 12

6, 0 6, 1 6, 2 6, 3 6, 4 6, 6 6, 7 6, 8 6, 9 6, 10 6, 11 6, 12

4, 10

5, 8

6, 5

P4

P1

P2

0, 0 0, 1 0, 2 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 0, 10 0, 11 0, 12

1, 0 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 10 1, 11 1, 12

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 7 2, 8 2, 9 2, 10 2, 11 2, 12

0, 3

Processed Unprocessed In flight

Figure 4.9: In multi-frame RL the decoding of the next frame start before the current
frame end, which effectively negates the ramping stalls.

Looking at the figure shows that this approach has a maximum of two frames in
flight for input sequences with a practical width to height ratio. This is quite different
from what 3D-Wave allows in TP, which could have 200+ frames in flight with FHD
resolutions. By using multi-frame RL the ramp-up and ramp-down can be neglected,
since it now only occurs once in a video. The maximum parallelism, however, does not
change. In exchange the average parallelism is now equal to the maximum. Even if this
is not nearly as good as 3D-Wave, it still enables an increase up to two times depending

34 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

on the ramping characteristics of the input resolution. Furthermore only two frames in
flight are required reducing the memory requirements and latency.

When moving to multi-frame RL the inter-frame dependencies also need to be con-
sidered. Since the H.264 standard defines a maximum motion vector of 512 pixels in
vertical and 2048 pixels in horizontal direction, it is possible to violate the dependencies
by having too many lines in flight. Most of the time the motion vectors are much smaller
than this. However, to avoid screen corruption at all times the standard must be obeyed.
To meet this condition some parallelism must be sacrificed. Since the motion vectors are
a maximum of 512 pixels in vertical length, the maximum number of lines in flight can
be defined as:

Linesmax = NMB,ver − VMV Lmax/16 (4.2)

where VMVL is the vertical motion vector length. This will ensure that when moving
to the next frame the top 32 lines are processed. Therefore, the macroblocks in the next
frame always have there inter-frame dependencies resolved. However this does sacrifice
parallelism. By combining Equation (4.1) with Equation (4.2) the maximum parallelism
for multi-frame RL is found:

ParMBmax,MFRL = min(⌊NMB,ℎor/2⌋, NMB,ver − VMV Lmax/16) (4.3)

In case of FHD inputs the maximum parallelism will drop from 60 to 36. In
Section 4.2.3.2 a scalability graph will be presented regarding the scalability loss of
taking inter-frame dependencies into account.

When looking at the dependency structure of RL it can be concluded that the pro-
cessing elements cannot ’gain’ on each other in horizontal direction. The processing
elements cannot process more macroblocks than the processing element it is dependent
on. As in TP the variable macroblock execution times lead to dependency stalls.

On the other hand, the distance between two processing can also get larger. This
could pose a problem as a buffer is needed to store the intra data of the line directly
above. If the distance between two processing element becomes larger more buffer space
is needed. When memory constraint dictates a smaller buffer, buffer stalls could occur.
Figure 4.10 illustrates these two situations. Processing element P2 had a dependency
stall at macroblock (1,9). P1 has not processed (0,10) yet, which is required to satisfy
the intra dependency. For the buffer stalls it is assumed that P4 has a buffer size which
fits intra data of 6 macroblocks. Because P4 has not processed macroblock (3,1) yet, the
intra data of macroblock (2,0) to (2,5) is still needed. This means that all the data in
the buffer of P4 is still needed for processing macroblocks. P3 is not allowed to write the
intra data of macroblock (2,6) and is stalled until a buffer slot comes free in P4, which
happens after P4 processes macroblock (2,1).

Both TP and RL 2D-Wave parallelism. In contrast to TP, RL exhibits minor paral-
lelism increase when extending to temporal macroblock-level parallelism. Furthermore
the buffer and dependency stalls can be seen as additional drawbacks compared to TP.
Taking these into account one might abandon further investigation of RL decoding.

4.2. RING-LINE APPROACH 35

P1

P2

P3

P4

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 0, 11 0, 12

1, 0 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 10 1, 11 1, 12

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 7 2, 8 2, 9 2, 10 2, 11 2, 12

3, 0 3, 2 3, 3 3, 4 3, 5 3, 6 3, 7 3, 8 3, 9 3, 10 3, 11 3, 12

0,10

1,9

2,6

3,1

In flight Buffer stall Dependency stall

Processed Unprocessed

Figure 4.10: Dependency and buffer stalls in the RL algorithm.

However, RL potentially has several advantages. In the next section the advantages
of RL are motivated. A scalability analysis follows afterwards, in which we investigate
the impact of ramping, dependency and buffer stalls in detail.

4.2.2 Motivation

In terms of theoretical parallelism RL is inferior to TP due to buffer stalls and increased
dependency stalls. Also when considering temporal macroblock-level parallelism, multi-
frame RL is not as scalable as 3D-wave. However, it is well known that parallelism
and (theoretical) scalability do not equal performance. The possible performance im-
provement lies in the distributed and scalable control mechanism, intuitive architecture
mapping, and concurrent communication and computation.

4.2.2.1 Distributed and Scalable Control

The TP approach has a centralized control mechanism. The dependency table and
task queue are both shared data structures which requires synchronized access. In Sec-
tion 3.3.3 several possible Cell implementations for synchronized access to the shared
data structures were investigated. It was concluded that none of these are highly scalable
solutions. This is not surprising as centralized models inherently have limited scalability
due to contention on the single synchronization point. Additionally MB-level paral-
lelism is fine-grained with relatively small work units. The synchronization overhead
could become the bottleneck with relatively low number of processing elements.

RL does not suffer from this as it features a distributed control mechanism. Also the
control signals are one-way and non-blocking as no responses are necessary. The syn-
chronization overhead stays constant and small independent of the number of processing
elements. In TP the contention and ultimately congestion on the synchronized access of
shared structures impacts efficiency. The constant and small overhead can be considered
as a big advantage. However, RL deals with increased dependency stalls instead. It can

36 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

only process the macroblocks in the assigned line. It is interesting to see which of the
two effects have more impact.

4.2.2.2 Architecture Mapping

As described in Section 2.1, the SPEs on the Cell are connected via the EIB, which can
be described as a bi-directional ring. Combining this with the fact that each SPE has
dedicated memory in form of the local store results in the ability to send the intra data
control signals directly to the SPE. Being able to explicitly exploit data locality is one
of the key feature of the Cell processor. In Section 3.3.1 and 3.3.2 it was found that
on-chip bandwidth on the Cell was much larger than off-chip bandwidth.

The RL algorithm maps very well on the Cell memory hierarchy. The Cell offers
explicit on-chip data management, which can be used to offload the external memory
bandwidth. Compared to TP, RL requires less external memory bandwidth to do the
same work. This also improves scalability in bandwidth constraint scenarios.

Because of the explicit memory management it is capable to pre-send the intra data
directly to the target SPE. The memory latency is hidden since the DMA unit can do
memory operations in parallel to the computation. In the next section we further discuss
the use of the DMA unit and how this benefits RL.

4.2.2.3 Concurrent Computation and Communication

In the Cell processor the SPEs do not have a traditional cache. Instead this is replaced
by a DMA unit and a local store. The SPEs communicate via their DMA units. As
described in Section 2.1, the DMA unit can best be described as a memory co-processor.
The DMA unit can move data from external memory to the local store and vice versa.
It can also transfer data between local stores. The strength of the DMA unit is that it
can process operations concurrent to the SPE. When properly exploited, the memory
latency can be hidden behind the computation. To properly exploit the DMA unit,
further examination of the application is required. More specifically, implicit memory
accesses in H.264 must be uncovered.

Before a macroblock can be decoded, the output of the entropy decoding is required.
This contains among others the DCT coefficients, macroblock types and subtypes, pre-
diction coefficients and (arguable) the motion vectors. Also the intra data is needed
for the intra-prediction and deblocking filter. Furthermore, motion data is required to
perform the motion compensation. Finally, the resulting picture data has to be written
back to the frame.

To create concurrent communication and computation behavior the required data
must be predicted and requested before it is needed. While the programmer can do
a much better job than the hardware there is a requirement that must be met. The
algorithm must have a predictable nature.

After taking a better look at TP, we can conclude that it does not fall in this category.
The specific macroblocks that are processed by each worker cannot be predicted at the
algorithm level. This depends on the number of processing elements and the individual
macroblock execution times, which cannot be determined at compile time. A static

4.2. RING-LINE APPROACH 37

schedule could solve this, but this impacts scalability and performance. Therefore, pre-
buffering data on the macroblock-level is not possible. The DMA unit can also not be
used to hide the latency of writing back data to the frame. The resulting picture data
contains the intra data for processing other macroblocks. The data must be written back
before resolving the dependency of these macroblocks. In short, the dynamic macroblock
assigning of TP results in unpredictability. Therefore, it is not possible to exploit the
Cell architecture in this regard.

In contrast, the RL algorithm is very predictable since the processing elements know
which lines they need to process. This information can be used to pre-buffer the entropy
output of the next macroblock. If the motion vectors are pre-calculated, the motion
compensation reference data can also be pre-buffered. The intra data should already
be present due to pre-sending of the previous processing element in the ring. Also the
latency of writing back the resulting output to the frame can be hidden. The intra data
is explicitly sent to the next processing element in the ring. It is not needed to request
this from the shared memory as is the case for TP.

Figure 4.11 shows the memory request patterns. In this figure it is assumed that the
work unit is a single macroblock. While it is possible to request a group of blocks [26]
or multiple free macroblocks, it reduces parallelism.

For RL the memory accesses are concurrent to the computation. For TP this is
not possible since it cannot predict the next work unit. The figure shows a much more
efficient usage of the resources. In RL two times as many blocks are processed in the
same time slots. However, keep in mind that the size of the blocks hold no value in
terms of real communication and computation timings. In Chapter 6 the ratios are
investigated further. Depending on the actual ratios the speedup exploiting concurrent
communication and computation ranges from 1x to 2x.

4.2.3 Scalability Analysis - Ring-Line

In this section a scalability analysis is presented for the RL approach in the same fashion
as for TP. Again a simulation program is written, this time to simulate the RL algorithm.
The interface of the simulation program is fairly similar to the one used with TP. The
input of the simulator is macroblock execution timings. The simulator calculates the
resulting speedup with any number of processing elements. All the algorithm specific
effects are taken into consideration. This includes the ramping, buffer, and dependency
stalls. Additionally the simulator simulates performance of multi-frame RL.

As in TP the input sequence is again 100 frames in length. The number of processing
elements ranges up to 64. The video resolutions used are FHD and QHD. For obtaining
the variable execution times of FHD the HDVideoBench videos are used, while for the
QHD Gaussian random variables are used. For RL a standard deviation (std) of 15
is used. This is a lot higher than the std of 5 used in TP. This is necessary because
the results for the FHD with std 15 were similar to the one obtained using the variable
macroblock execution times. The RL is relatively better at dealing with Gaussian like
distributions than TP. The effects of the variable execution times are not felt if it does
not cause dependency or buffer stalls. The standard deviation of a Gaussian distribution
becomes lower when it is averaged with more samples. The H.264 macroblock execu-

38 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

Memory access Computation

Work unit 1

Intra data 1

Intra
prediction 1

IQ +
IDCT 1

Deblock 1

Write
back 1

Signal
+ wait

Work unit 2

Intra data 2

Motion
data 2

Motion
pred 2

IQ +
IDCT 2

Deblock 2

Write
back 2

Signal
+ wait

Task Pool
Ti

m
e

Memory access Computation

Work unit 1

Work unit 2
Intra

prediction 1

Motion
data 2

IQ +
IDCT 1

Work unit 3 Deblock 1

Write back
forward 1

Motion
pred 2

Motion
data 3

IQ +
IDCT 2

Work unit 4 Deblock 2

Write back
forward 2

Motion
pred 3

Motion
data 4

IQ +
IDCT 3

Deblock 3

Write back
forward 3

Motion
pred 4

IQ +
IDCT 4

Deblock 4

Write back
forward 4

Ring-Line

Figure 4.11: Difference in communication and computation patterns between Task Pool
and Ring-Line.

tion times, however, do not match a Gaussian distribution as the variations are more
clustered.

As in the scalability analysis of TP, the synchronization overhead is neglected. The
purpose of the analysis is to determine platform independent limits of the RL strategy.
The results presented should be interpreted as best case scenarios. However, we expect
that the results obtained for RL will to be closer to reality than is the case for TP. Due to
the distributed nature of the RL algorithm the synchronization latency remains constant
and hidden behind computation.

4.2. RING-LINE APPROACH 39

In TP two sources of inefficiency were identified, the dependency and ramping stalls.
However for RL a third source is present. Recall that in RL the intra data is pre-sent to
the next processing element. When the buffer size is insufficient, the sending processing
element has to wait until a slot opens up. This effect is referred to as a buffer stall. The
analysis of the performance impact the buffer size will be preceded with an analysis of
the theoretical lower and upper limit of the buffer size.

We start with the scalability impact of variable macroblock execution times. This is
followed by the impact of ramping and finally the buffer stalls are discussed.

4.2.3.1 Dependency Stalls

The dependency stalls originate from variations in macroblock execution times. If all
macroblocks have identical execution times the ramping is the only source of performance
loss. However real videos the macroblocks have a lot of variation in execution time.
Figure 4.4 shows that TP is not effected significantly due to its dynamic nature. It is
expected that RL is affected more since it has a relatively static nature.

To investigate how much RL is affected by the dependency stalls the effect must be
isolated. This can be done by comparing two variants of multi-frame RL (MFRL), one
with constant and one with variable macroblock execution times. Since the simulation
takes 100 frames long video sequences, the ramping of multi-frame RL can be neglected.
The buffer width is also taken sufficiently large to avoid buffer stalls. The only remaining
inefficiency is the caused by the dependency stalls.

Figure 4.12 shows the scaling of constant and variable multi-frame RL. Observing
the plot reveals that the plot lines corresponding to input with constant macroblock
execution times scale perfectly up to a point after which they do not scale anymore.
Since with constant multi-frame RL no inefficiencies are present the only limitation
is the macroblock-level parallelism described in Equation 4.1. As expected the lines
stop scaling when the maximum parallelism equals the number of processing elements.
The lines with variable macroblock execution times scale far from perfect. The FHD
asymptote is about a factor 2x lower than its constant counterparts. It is expected that
this also holds for QHD when using more than 64 processing elements.

A more accurate look at the efficiency loss is shown in Figure 4.13. The scalability
with variable execution times is normalized to their constant counterpart. Since constant
multi-frame RL exhibits perfect scaling the normalized efficiencies can be considered as
real efficiencies, until they reach the maximum parallelism. To stay more than 90%
efficient the processing elements needs to stay below 18 and 38 respectively for FHD and
QHD. The cross-over points are about 1/3 of the maximum available parallelism and
1/6 of the horizontal macroblock resolution.

A way to view this is that the processing cores need a few macroblocks in between
them to act as a buffer for the variations in execution times. When the buffer is too
small the processing elements constantly bump in to each other. An analogy is to view
the processing elements as cars on a road. The cars cannot catch up on each other and
have the same average speed. However the cars do have a acceleration behavior that
varies significantly. Imagine that the cars cannot be further away from each other than
10m. This will cause a lot of stalling to avoid bumping in the front car. If the cars would

40 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

 0

 10

 20

 30

 40

 50

 60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

S
pe

ed
-u

p

Processing elements

QHD constant
FHD constant
QHD variable
FHD variable

Figure 4.12: Scaling of MFRL with constant and variable macroblock execution times.
The difference in scalability is caused by dependency stalls.

 50

 60

 70

 80

 90

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

N
or

m
al

iz
ed

 e
ffi

ci
en

cy

Processing elements

QHD

FHD

Figure 4.13: Normalized efficiency of sequences with variable to constant execution times
using MFRL. The efficiency loss is caused by the dependency stalls.

4.2. RING-LINE APPROACH 41

be 100m apart this would become much less of an issue. In the case of RL a gap of six
macroblocks will avoid most ”bumping”.

4.2.3.2 Ramping Stalls

To determine the impact of ramping the effect must be isolated. This can be accom-
plished by comparing multi-frame RL (MFRL) to single-frame RL (SFRL). The differ-
ence of these two simulations can be completely accounted to the ramping inefficiency.
The impact of ramping is shown in a normalized efficiency graph of the SFRL and MFRL
scalability in Figure 4.14. FHD is affected more than QHD, which is in line of the ex-
pectations since in the higher resolutions relatively more time is spent between the two
ramping phases with the same number of processing elements.

 60

 65

 70

 75

 80

 85

 90

 95

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

N
or

m
al

iz
ed

 e
ffi

ci
en

cy

Processing elements

QHD

FHD

Figure 4.14: Normalized efficiency of SFRL to MFRL. The efficiency difference is caused
by the ramping stalls

The efficiency drop is quite significant. To stay above 90% efficiency the number
of processing elements should not exceed 10 and 18 respectively for FHD and QHD
resolutions. It needs to be noted that this efficiency loss can be recovered by moving to
MFRL. Implementing MFRL improves the efficiency significantly with higher number of
processing elements.

4.2.3.3 Buffer Size and Buffer Stalls

In RL the intra data is sent from one processing element to the next. By keeping the data
on-chip the off-chip bandwidth requirements are reduced. Furthermore the latency and
synchronization overhead are also lowered considerably. However, the on-chip memory
is very limited in size, which could pose as a problem. Optimizing the use of on-chip

42 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

memory is important. In embedded or application specific designs, using less memory
directly impact the necessary die size. Also for the implementation of the Cell processor,
which has a fixed on-chip memory size, it is important to know the requirements and the
effects of the the buffer size. For this reason the buffer size requirement and its impact
on the scalability are investigated.

To stay platform and implementation independent no hard memory requirements in
byte quantities are provided. Instead the derived relations are defined in terms of buffer
slots. A buffer slot can contain the dependency data of a single macroblock.

First let us consider the minimum and maximum buffer requirements. The maximum
buffer size is defined as the number of buffer slots required to totally avoid buffer stalls.
To determine this the cause of buffer stalls needs to be understood. Buffer stalls occur
when the gap between the macroblocks is be larger than the buffer size. The gap is
defined by the difference of the horizontal positions of the macroblock that is currently
processed by two adjacent ring elements. When the gap reaches the limit of the buffer
size, the buffer is filled with relevant data. When a macroblock is processed a buffer slot
is freed and the gap grows smaller. Therefore, the buffer size determines the maximum
allowed gap.

One of the implicit rules of RL is that the processing elements cannot catch up on
each other in horizontal direction. From this can be concluded that the largest possible
gap is always less or equal to the number of macroblocks in a scan line. The number of
processing elements also affects the possible gap size. The minimum distance between
processing elements is two macroblocks due to intra-dependencies. Therefore, for each
processing element the maximum possible gap size is reduced by two. Putting this
together results in the maximum buffer size:

BufferRLmax = NMB,ℎor − 2(p− 2) (4.4)

, where p is the number of processing elements for p >= 1. For p = 1 the buffer needed
is two slots larger than the MBwidtℎ. To process a macroblock, intra data of the top
three blocks are required. The buffer needs to be able to support this and, therefore,
the Buffermax is two slots larger than the maximum macroblock gap. Remember that
the maximum buffer size is specified so that even the maximum possible macroblock gap
does not cause a buffer stall. Therefore, applying the maximum buffer size fully avoids
buffer stalls.

The minimum buffer size is also dependent on the same factors as the maximum
buffer size. The relation between them differs however. The minimum buffer size is
defined as the smallest buffer size to avoid deadlocking of the algorithm. Figure 4.15
illustrates deadlocking due to a too small buffer. The figure shows that all the buffer
slots in all processing elements are occupied. Processing element P4 cannot continue
since P1 has not yet processed (3, 0) and (3, 1). Because P4 is stalled P3 is also stalled.
A stall chain can be observed up to P1. When this occurs the algorithm is in a deadlock
state.

There are two ways to solve this problem. First the buffer size of each processing
element can be increased from four to five. Each processing element is able to move
further apart and deadlocking is avoided. Another way to solve this is to introduce

4.2. RING-LINE APPROACH 43

P1

P2

P3

P4

P1

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 0, 10 0, 11 0, 12

1, 0 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 1, 11 1, 12 1, 13

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, 8 2, 9 2, 10 2, 11 2, 12 2, 13

3, 0 3, 1 3, 2 3, 3 3, 5 3, 6 3, 7 3, 8 3, 9 3, 10 3, 11 3, 12 3, 13

4, 0 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 4, 7 4, 8 4, 9 4, 10 4, 11 4, 12 4, 13

0, 13

1, 10

2, 7

3, 4

3, 0 3, 1 3, 2 3, 3

Buffer P1

0, 9 0, 10 0, 11 0, 12

Buffer P2

1, 6 1, 7 1, 8 1, 9

Buffer P3

2, 3 2, 4 2, 5 2, 6

Buffer P4

Processed Unprocessed Buffer stall

Occupied buffer slot

Figure 4.15: Deadlock incurred due to insufficient buffer size. All processing elements
cannot write data to the next, since all the buffers are full.

another processing element, P5. The additional processing element bridges the gap
between P4 and P1, effectively avoiding deadlocks.

The common ground for the two solutions is that the total number of buffer slots
increases. To avoid the deadlocks the total number of buffer slots must be enough to
cover an entire line. Putting this together results in the minimum buffer size relation:

BufferRLmin = ⌊NMB,ℎor/p⌋+ 2 (4.5)

The +2 term is needed to ensure a large enough buffer to prevent overwriting of the
top left and top macroblock dependency data.

Using the maximum and minimum buffer sizes both have their advantages and disad-
vantages. Using the maximum buffer size fully avoids buffer stalls. However, the amount
of buffer slots may be too large to implement. For FHD this would mean having more
than a hundred buffer slots. Furthermore, the buffer size needs to scale with horizontal
resolution. On the other hand the minimum buffer size forces the macroblocks to be
processing in semi-lockstep. The scalability and efficiency clearly suffer from this.

To form a hypothesis about the ideal buffer size, a closer look at the effects of the
minimum buffer size on the algorithm behavior is required. When using the minimum
buffer size the processing elements are forced to maintain a certain distance between

44 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

each other. Consequently dependency stalls cannot occur since the processing elements
cannot bump into the forward processing element. Therefore, all the efficiency loss
is incurred by the buffer stalls. This reveals a correlation between the efficiency loss
incurred by buffer stalls and dependency stalls. Only the more dominant effect is visible
in the efficiency loss.

In the situation of the minimum buffer size the buffer stalls are certainly dominant.
And with the maximum buffer size the dependency stalls are dominant. We cannot
improve on the dependency stalls since it is part of macroblock parallelism. Therefore,
we only need to decrease the effect of the buffer stalls to the degree of the dependency
stalls.

Imagine the minimum buffer size situation with three processing elements. The
three processing elements are processing the macroblocks in lockstep and have an equal
macroblock gap. A lot inefficiency is introduced since the execution time is equal to the
maximum of the three macroblocks in flight. Now if the middle processing element would
be able to move freely in the between the next and the previous processing element all
the buffer stalls would be resolved for the middle processing element. Increasing the
buffer size would not help since the processing elements cannot catch up. This effect can
be realized by using a buffer size equal to Equation 4.6.

BufferRLℎyp,opt = ⌊2 ∗NMB,ℎor/p⌋ (4.6)

In the hypothetical optimal buffer size is defined by two times the lockstep distance
between two macroblocks. This buffer size is always larger or equal to the minimum buffer
size. Also note that the attractive properties of the minimum buffer size are retained.
The buffer sizes scale down when using more processing elements. Furthermore this
also allows to scale the number of processing elements when higher resolutions are used
without changing the buffer sized. With increases in resolutions additional computational
capabilities are required. By increasing the number of processing elements the buffer size
per processing element can remain the same, while addressing the compute requirements.

To put the hypothesis to the test a simulation is performed with the different buffer
size relations. Among the them are the maximum, minimum and optimal buffer equa-
tions. Also an additional buffer size relation is simulated, which has a buffer size in
between the minimum and optimal. To determine the effect of the buffer stalls the input
needs to have a variable macroblock execution time. To take the ramping out of the
equation multi-frame RL is used. Figure 4.16 shows the normalized efficiency of the
buffer size relations to the maximum buffer size.

The plot should be interpreted as additional performance loss due to buffer stalls.
Observing the plot reveals that the hypothetical optimal buffer size performs exactly the
same as the maximum buffer size. The other two perform below optimal. Therefore,
the hypothesis can be viewed as proven by experimental results. Furthermore, it can be
seen that the three plot lines all converge to 100%. This is to be expected, since with
increasing the number of processing elements the effect of the dependency stalls become
more dominant to the point where the the macroblocks are processed in lock step. When
this happens the effect of buffer and dependency stalls are equal and will result in equal
performance. A more accurate way to view this is that at the crossover point at 60
processing elements all the buffer size relations become equal. The same explanation

4.3. ALGORITHMS COMPARED 45

 75

 80

 85

 90

 95

 100

 105

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

N
or

m
al

iz
ed

 e
ffi

ci
en

cy

Processing elements

2*MBwidth/proc
max(1.5*MBwidth/proc, MBwidth/proc+2)

MBwidth/proc+2

Figure 4.16: Normalized efficiency of several buffer size relations to the maximum buffer
size relation of Equation (4.4).

can be given for the fact that at 24 processing elements the minimum and ”in between”
buffer size relations cross-over.

However, the figure also shows some irregular spiking of efficiencies for the minimum
buffer size relation. The graph only presents results of even number of processing ele-
ments. If uneven results were to be included, the spiking would be more frequent. Also
experimental results for the QHD resolution showed deeper downward spikes.

The spiking occurs because the total number of buffer slots is not monotonically
increasing with the number of processing elements. Because the floor operator rounds
down the number of buffer slots, the total number of slots could become lower. For ex-
ample a downwards spike is observed at the transitions of 12 and 14 processing elements.
The total number of processing elements is (⌊120/12⌋ + 2) ∗ 12 = 144 for 12 processing
elements, while this is only (⌊120/14⌋+ 2) ∗ 14 = 140 for 14 processing elements.

With the minimum buffer size relation it is assumed that every processing element
has the same amount of buffer slots. In a lot of cases the total number of buffer slots
allocated is more than absolutely necessary, than when unequal buffer sizes are allowed
for the processing elements. Having more redundant buffer slots improves performance.
When the floor operation in Equation 4.5 performs a larger rounding, the performance
is also lower.

4.3 Algorithms Compared

In previous sections the scalability of TP and RL were investigated. The focus lied
on identifying the contributions of the ramping and dependency stall effects. For RL
also the buffer stalls were included in the analysis. In this section the scalability of the
two strategies are compared. In Figure 4.17 shows the scaling of the two strategies.
For the FHD resolutions the same variable macroblock execution times are used as

46 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

previously. For the QHD resolution the Gaussian random variables are used with a
standard deviation of 5 for TP and 15 for RL. As mentioned in the previous section
these standard deviations are used because they provided similar results with the FHD
resolutions. The mean is set to 20 in both cases. The buffer size for RL was set to the
optimal buffer size relation of Equation (4.6).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

S
pe

ed
-u

p

Processing elements

QHD Task Pool
QHD Ring-Line
FHD Task Pool
FHD Ring-Line

Figure 4.17: TP and RL scaling with variable macroblock execution times.

The results are in favor of TP. This is not surprising as in the previous section it
was observed that due to the static behavior of RL it is has more dependency stalls. At
16 processing elements a speedup of 14.8x is observed for TP and 12x for RL using the
FHD sequence. The maximum speedup is also in favor of TP with 26.7x to 21.1x. To
have a better look at the efficiency behavior an efficiency plot is shown in Figure 4.18.

The efficiency quickly diminishes for RL. For FHD at 16 processing elements the ef-
ficiency is already at 75%.However a large part of the efficiency loss can be recovered by
using multi-frame RL(MFRL). According to Figure 4.14 at the same number of process-
ing elements the normalized efficiency of SFRL is at 84% of MFRL. A quick calculation
gives us that with MFRL the efficiency would be 90%. This is still less than the efficiency
of TP, however those results are only attainable with zero synchronization overhead.

4.4 Conclusions

In this chapter two parallel strategies for exploiting MB-level parallelism are discussed.
The 2D-Wave parallelism introduced by Van der Tol [26] can be naturally implemented

4.4. CONCLUSIONS 47

 30

 40

 50

 60

 70

 80

 90

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

E
ffi

ci
en

cy

Processing elements

QHD Task Pool
QHD Ring-Line
FHD Task Pool
FHD Ring-Line

Figure 4.18: TP and RL efficiency with variable macroblock execution times.

as a worker-server model using the TP approach. The work units in this model are the
macroblocks and the server synchronizes the access to the shared dependency table and
task queue. The theoretical scalability for this approach is found to be excellent. With
16 processing elements a 14.8x speed-up is realized with FHD sequences.

In the novel RL approach, the processing elements are assigned entire scan lines
instead of the individual macroblocks. It features a distributed control mechanism where
only communication with the neighboring ring elements is necessary. Because of its more
static nature the theoretical scalability is less attractive than TP. Only a 12x speedup
is seen with 16 processing elements working on a FHD sequence. However, there are
opportunities to map the RL approach efficiently on the Cell architecture. Due to its
predictability concurrency in communication computation can be exploited on the Cell
architecture by using the DMA units. Therefore, it is expected that the RL approach, if
properly implemented, has a better performance per core. Furthermore the theoretical
analysis performed in this Chapter has neglected the synchronization overhead, since
this is a platform specific parameter. It is expected that the synchronization effects are
more visible in TP, which will have a bigger impact on the performance and scalability.

To compare the theoretical scalability to the real performance, the two approaches
have to be implemented. In the next chapter the implementation of TP and RL for
the Cell architecture is presented. As stated before, the Cell architecture allows for an
efficient mapping of the RL algorithm, therefore the actual performance may be higher
despite showing less theoretical scalability. It is believed that future architectures will

48 CHAPTER 4. PARALLEL STRATEGIES FOR H.264 DECODING

also use a Cell-like memory hierarchy. Therefore, it has great value to use the Cell
architecture for the implementation. In Chapter 6 the memory usage and bandwidth
requirements of the implemented solution are investigated. Following this in Chapter 7
the performance results are presented and compared with the theoretical results revealed
in this chapter.

Implementation of H.264 on
the Cell Processor 5
Advances in ILP have slowed down and technology cannot scale performance further due
to the power wall. Nowadays multi-core architectures are quite common and the focus
has shifted to exploiting TLP. As Moore’s Law continues to hold true, adding more cores
is a logical step to effectively use the increasing transistor budget.

Modern x86 compatible multi-core architecture fall in the category of shared memory
homogeneous design. The cores are identical and are general purpose in the widest
sense. Programmers can easily create threads and have them execute among multiple
cores, while maintaining all the advantages of the abstracted memory hierarchy. This
approach, however, does not scale well.

With the move to multi-core, caches will increasingly pose problems. Since each
core has individual layers of cache, coherency actions need to be performed in multi-core
architectures. The complexity to perform the cache coherency actions with increasing
number of cores is O(n2). The second problem is the memory bandwidth. In shared
memory multi-cores the external memory is accessible for all cores. This also implies
sharing the memory bandwidth. Thus, memory bandwidth should scale with the number
of cores or it forms a bottleneck. In the near future it will be important to increase the
data locality. The third problem applies to cache based architectures in general. Caches
were introduced to reduce the average penalty of an external memory access. Cache
misses nowadays can have a penalty of up to 300 cycles and is projected to increase
further.

Instead of a regular multi-core platform, the Cell platform is chosen for implementing
the parallel H.264 decoder. The Cell architecture solves the problems of modern x86
multi-core architectures by explicit control in memory traffic. The Cell processor has
one PPE and eight SPEs. The PPE can be considered as a traditional general purpose
processor, which features the traditional memory hierarchy abstraction. The SPEs can
best be described as SIMD processing elements without a cache. This is replaced with a
256 kB local store and a DMA unit. In contrast to the PPE, the SPEs cannot implicitly
access the shared memory. Instead the DMA unit has to be explicitly issued to move
data to and from the external memory. The Cell memory hierarchy completely solves the
cache coherency problems by having only one cache in the system. Since the memory
management is done explicitly on the Cell, memory bandwidth can be conserved by
keeping data on-chip. The DMA unit can be used to directly send data from one local
store to another. Also the increasing effect of the memory latency is no longer an
issue when using predictable algorithms. The downside is that the responsibility has
shifted from the hardware to the programmer to find and exploit this predictability. The
performance and efficiency of a Cell program depends more heavily on the programmer.

Due to its attractive properties, it is expected that future architectures will have
a Cell-like memory hierarchy. Therefore, it has a lot of added value to implement the

49

50 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

H.264 decoder on the Cell platform. In the Chapter 4 the Task Pool (TP)and the novel
Ring-Line (RL) strategy were discussed. The TP strategy is naturally implemented in a
traditional worker-server model. In contrast, the novel RL strategy build on a data flow
like principle. In this chapter we discuss the implementation of both strategies on the
Cell platform. To avoid implementing the H.264 decoder from scratch the FFmpeg [12]
open source code is used as a base. The FFmpeg code is widespread and used in almost
every personal computer for decoding video.

The implementation discussed in this chapter supports the H.264 High Profile except
for interlaced sequenmces. Both parallel decoders support level 4.x input video with the
condition that CABAC is used for the entropy decoding. For research reasons it has no
added value to implement all variants of H.264. Since H.264 supports a lot of settings
and profiles not all videos decode with our implementation. Still, with High Profile -
level 4.x - CABAC most videos are supported since it is the most common used profile
and setting. Note that the High Profile does not support slices and therefore the FFmpeg
base code has to handles these type of videos sequentially.

Before starting the discussion of the parallel implementations, an overview is given of
the original FFmpeg code structure. This provides the necessary insight for implementing
the parallel strategies. Afterwards we discuss the common changes to the FFmpeg
structure needed for both parallel strategies. Finally the implementation of the parallel
strategies is revealed starting with the TP followed by RL.

5.1 Original FFmpeg Code Structure

FFmpeg is a complete, cross-platform solution to record, convert, and stream audio and
video. It includes the libavcodec audio/video codec library [12]. FFmpeg is the market
leader for audio and video decoding on consumer PCs. In this section the FFmpeg
code structure is presented. For obvious reasons we only focus on the video decoder
part of FFmpeg. This includes the interface with libavcodec and the structure of the
libavcodec H.264 decoder. The FFmpeg code is actively maintained by the community.
The FFmpeg revision used in this thesis dates from May 2009 with revision number
19030.

5.1.1 Libavcodec Interface

The libavcodec library should be seen as the core of FFmpeg. The actual decoding and
encoding is done by the codecs contained in this library. The task of FFmpeg is to parse
the video container and call the appropriate codec in libavcodec for the video content.
The interface of FFmpeg to the codecs in libavcodec consists of three functions. These
functions are decode init, decode frame and decode end.

The codec is initialized with the decode init call. This initialization step consists,
among others, of initialization of the lookup tables and allocation of the necessary mem-
ory structures. To decode a frame, the decode frame function is called, supplied with a
start marker of a frame. The decode frame function returns the decoded frame as the
result. To decode the entire video this function is called for each frame. After all frames

5.1. ORIGINAL FFMPEG CODE STRUCTURE 51

are decoded, the decode end function is called to clean up the codec by freeing all the
memory allocations made in the initialization.

The interface is quite straightforward and provides the necessary abstraction. How-
ever, there is another issue that requires attention. The codec needs to be initialized
before the frames can be decoded. In FFmpeg the decode init function is used for
this, which has to be called before any decode frame. In H.264, certain size information
is needed to allocate the structures in the initialization which is embedded in the slice
header. This poses a problem since the slice header is decoded in decode frame, which
can only be called after decode init. FFmpeg and libavcodec solves this by doing a
dummy decode run of the first frame, before the actual decoding.

The objective of the dummy decode is to extract the necessary slice parameters. In
the following real decode the saved slice parameters are used to do a full decode. Instead
of opting to update the interface, this (hacked) approach is most likely preferred for its
compatibility. This is observed quite often in the software world, since the programmers
are usually not very fond of recreating code, especially in programs as old and large
as FFmpeg. Updating the interface would require changes to every codec in the entire
libavcodec.

In our case the limitations of the libavcodec interface poses great difficulty in imple-
menting 3D-Wave and multi-frame RL, discussed in Chapter 4. FFmpeg and libavcodec
is a good example of code that is build without considering a parallel approach. The only
way to decode the video stream is to call decode frame for every frame in the stream.
The interface of decode frame dictates that it produces a frame as output. Since no
other frame is able to start due to frame dependencies the number of frames in flight is
limited to one. Changing the interface of FFmpeg and libavcodec requires such a quan-
tity of work that it is wise to consider a complete restart. Since this is not a desirable
solution, we decided not to implement 3D-Wave and multi-frame RL.

Because no changes are made to the interface, all changes are restricted to the libav-
codec library. In the following section the structure of the H.264 decoder of libavcodec
is analyzed in order to decide which parts of the code needs to be modified.

5.1.2 Libavcodec H.264

The libavcodec library consists of a large variety of audio and video codecs. An H.264
codec is also included in this library. In this section a simplified overview is provided of
the libavcodec implementation of the H.264 decoder. After this the necessary changes
are identified and grouped as common and/or strategy specific.

As stated before the interface of libavcodec is build up with a sequential mindset.
This is also the case for the libavcodec H.264 decoder. Listing 5.1 is a pseudo code of
the H.264 decode frame function.

In libavcodec each codec has its own Context-type which holds all the shared infor-
mation in a central structure. Each function in the libavcodec H.264 decoder operates
on this structure. First the decode slice header function extracts the slice parameters
from the H.264 stream and stores them in the H264Context. After this the macroblock
processing starts. The macroblocks are processed one by one in scan line order. The
processing of a macroblock has two steps. First, the decode mb cabac extracts the mac-

52 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.1: H.264 decode frame

1 H264Context h ;
2

3 de c od e s l i c e h e ad e r (h) ;
4

5 f o r each l i n e in frame{
6 f o r each macroblock in l i n e {
7 decode mb cabac (h) ;
8 decode mb interna l (h) ;
9 }

10 }

roblock parameters from the stream and saves them in the H264Context. Second, the
macroblock is decoded by applying the macroblock kernels. The kernels operate directly
on the frame to avoid unnecessary copy operations. This scheme is quite straightforward
and is fully coherent with the macroblock dependencies.

To be able to apply macroblock-level parallelism several changes must be made.
Observe that decode mb cabac is hindering the parallelization. CABAC is a sequential
operation that can only be parallelized on the frame/slice level. In this scheme every
time decode mb cabac is called it extracts the parameters for one macroblock. However
the macroblocks cannot be extracted in parallel since the data extracted from the stream
is context-sensitive. In other words the interpretation of the extracted data is dependent
on the history. Therefore the start and end points of the macroblocks are not known
beforehand.

The first change, to enable macroblock-level parallelism, is decoupling the CABAC
step from the decoding step. This requires the decode mb cabac to be moved outside
of the loop to extract the data for each macroblock in the frame. The decoupling step
needs to be performed before the macroblock processing and is necessary for strategies
based on macroblock-level parallelism in general.

Second, on the Cell platform it is required that the code is split in two separate
programs, one for the PPE and one for the SPEs. To implement macroblock-level par-
allelism the SPE program needs to perform the decode mb internal function, while
the PPE handles the rest. To be able to do this on the SPE, the entire content of
decode mb internal has to be ported. This mainly consists of the four macroblock
kernels described in Section 2.2.

Programming the SPE is entirely different from programming the PPE. On the SPE
there is no direct access to the external memory. Instead it has to operate on its private
local store, which has a limited size of 256 kB. Furthermore the program image also
resides in the local store space which leaves even less space for the data. Several steps
can be identified in creating the SPE program.

The first step of porting the macroblock kernels to the SPE is to be able to make
use of the SPE memory architecture. The libavcodec macroblock kernels operate on the
entire frame. Also the motion compensation kernels can use up to 16 reference frames.
Since the size of a single FHD frame is about 3 MB, it will be impossible to fit them in
the local store. To solve this, the kernels need to be ported to work only the relevant

5.2. COMMON CHANGES TO FFMPEG 53

part of the frame.
The second step is to make use of the SIMD capabilities of the SPEs. To optimize in

performance and possibly code size the kernels need to be vectorized. In memory limited
cases, reducing the code size has the priority. FFmpeg already includes a vectorized
implementation for the Altivec extensions of the powerPC. The SPEs have a very similar
instruction set, which reduces the porting effort.

Finally, since the PPE and SPE program are separate programs, there is need for a
communication interface/protocol. To create a suitable communication interface, several
ways of inter-core synchronization were investigated in Section 3.3.3. It was observed
that the combination of direct memory mapped mailbox functions and a polling PPE
have the best latency characteristics when sending 32-bit messages. To make use of this
in TP, the server role is assigned to the PPE. The PPE will initiate the processing of
every macroblock by using the mailbox functions to message the SPEs. For RL the role
of the PPE is different. The task of the PPE is to start the SPEs once each frame and
wait for their completion. While it is still needed to setup an interface between the PPE
and SPE, the focus shift to the more important inter-SPE interface.

Changes Common Specific

Decouple entropy decoding X
Port macroblock kernels X X
Define PPE-SPE interface X

Table 5.1: Categorization of code changes.

In Table 5.1 the high level changes are summarized and categorized in Common and
Specific. In the next section the implementation of the common part is discussed. In the
two subsequent sections the strategy specific implementation is discussed for respectively
TP and RL.

5.2 Common Changes to FFmpeg

In the previous section the code structure of FFmpeg is analyzed. The focus lied on
the video decoding part of the program. This revealed that to apply macroblock-level
parallelism first the entropy decoding has to be decoupled and performed beforehand
on the frame level. The second step is to create a separate SPE program image for the
parallel part of the strategies. In this section the common parts of implementing the
TP and RL algorithms are discussed. First we start with the decoupling of the entropy
decoding, followed by the general part of porting the macroblock kernels.

5.2.1 Decouple Entropy Decoding

In the original code the output of the entropy decoding is stored in the H264Context.
The H264Context contains fields for the output of the CABAC step. However, these are
overwritten every time a macroblock is decoded. This is not a problem for the original
code since the CABAC data is directly used after the entropy decoding. It does hinder
the decoupling in order to apply macroblock-level parallelism.

54 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

The decoupling of the entropy decoding builds loosely further on an implementation
made by Alvarez et al. [2]. The implementation required several DMA transfers to be
performed per macroblock. Transferring large structures in one DMA is much more
efficient than several small ones. Furthermore, unnecessary information was transfered.
In our implementation the output of the entropy decoding is grouped in two types of
data structures: H264mb and H264slice. These structures are a both a subset of the
fields located in H264Context. As the names suggest the H264mb contains the macroblock
parameters and H264slice contains the slice parameters.

Each H264mb structure contains macroblock specific parameters of one macroblock.
To save the data for an entire frame the same number of H264mb as the number of
macroblocks in a frame are needed. This is allocated in an array of H264mb structures
named blocks. To keep things coherent the array is indexed in the same order as the
entropy data produces the output, which is scan line order.

The H264slice is not needed to save the slice parameters before they are overwritten,
since new slice data only occur once a frame. The reason for using a H264slice is to
save memory on the SPE. Alternatively, the entire H264Context could be copied to the
local store. However, the size of this structure is at least 170kB and would not fit in the
local store along with the program image.

Both H264slice and H264mb only contain the minimal needed subset of
H264Context. These structures are needed on the SPEs. To keep the local store us-
age to a minimum only necessary information should be saved. After carefully making
this selection a H264slice structure is around 12 kB in size and a H264mb is around 2
kB. A quick calculation shows that for a FHD frame around 15.6 MB of external memory
additionally is needed. To fit the slice and a single macroblock data on the of local store
14 kB is needed. This is a big improvement over the 170kB of the H264Context.

The way the H264slice and H264mb are filled is by copying the necessary fields from
the H264Context. By doing this at the right times, after decode slice header and
each decode mb cabac, the right parameters are stored. This is done in this fashion to
minimize the coding effort and to keep the adjustments as decoupled as possible. The
downside is that the extra copy step introduces additional overhead. Alternatively, the
output could be directly written to the corresponding H264slice and H264mb structures
instead of the H264Context. This would increase the performance of the entropy decod-
ing by about 10%. However, at this time we are not interested in the performance of the
entropy decoding. Therefore the additional overhead was taken for granted.

5.2.2 Porting Macroblock Kernels - Generic

The generic part of porting the macroblock kernels to SPE code involves adjusting a
portion of the code to handle the SPE memory hierarchy and the SIMD vectorizing.
As stated before libavcodec has a vectorized implementation for the Altivec extensions.
However, this applies only to the IDCT and motion compensation kernels. These two
kernels can be relatively easy ported by using the SPE intrinsics, since there are a lot
of similarities to the Altivec extensions. Alvarez et al. [2] provided the ported version
although some small modifications were necessary. For the other two kernels, intra-
prediction and deblocking filter, libavcodec does not provide a vectorized version. Instead

5.2. COMMON CHANGES TO FFMPEG 55

the regular scalar implementation is used as a base. Although vectorizing the remaining
two kernels could improve performance [24][5], it is not the main goal of the research. For
the same reason the vectorization is only briefly covered by two more statements. The
first one is that vectorizing the motion compensation kernel was a necessary optimization
in terms of code memory, while it increased performance. Second, attempts were made
to implement the SIMDimized version of the deblocking filter provided by Azevedo [5].
However performance improvements were minimal while the code size actually increased
with 6 kB. This is largely caused by the overhead involved in aligning the data for
SIMDimized execution [4].

In the remainder of the section, the general impact of the SPE memory hierarchy on
the implementation is discussed. First, the restrictions of the SPE memory hierarchy are
analyzed to grasp the necessary modifications. Following this the solution to retrieving
the motion data is revealed, which is the common part of the two SPE programs.

5.2.2.1 SPE memory hierarchy restrictions

As stated before the SPE does not have implicit access to the external memory. Memory
requests have to be issued explicitly through a DMA unit. However, there are additional
limitations imposed by the architecture. First the maximum size of the DMA transfer is
16 kB. In our case this is not a problem since our largest single DMA transfer is 12 kB
for the H264slice structure.

Second, the maximum number of DMA accesses in flight is 16. When the DMA
queue is full a DMA request stalls until a slot opens up. This could pose a problem
when pre-buffering the motion data. In Section 2.2 the motion compensation kernel was
discussed. This revealed that a macroblock could be divided in up to 16 sub-blocks.
Each sub-block could need bi-weighted prediction. A quick calculation reveals that in
the worst case 96 DMA operations per macroblock are needed. While this could pose as
a performance problem, it remains to be seen how much these stalls actually occur.

Third, the DMA accesses have to be aligned to a 16-byte boundary. The micro-
benches of Chapter 3.3 revealed that for optimal bandwidth characteristics the DMAs
should be aligned to a 128-byte boundary. However, it is advised to only use this when
the memory overhead is low. Furthermore, the size of the DMA requests has to a multiple
of 16 bytes.

This last restriction requires some effort to work around. To avoid unnecessary
memory copy actions in the local store all data structure should be aligned to a 16-
byte boundary as much as possible. Furthermore, the inability to byte address the
external memory leads to increased memory bandwidth requirements and local store
requirements. The design decisions made in the TP and RL implementation are greatly
impacted by this restriction. This is mostly discussed in the strategy-specific sections.
In the next section we discuss retrieving the motion data, the common part for TP and
RL.

5.2.2.2 DMA Access to Motion Reference Frames

As stated earlier the motion compensation kernel needs to operate on up to 16 sub-blocks.
For each of the blocks a different piece of a motion reference data is required. Since a

56 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

reference frame is located in the external memory and is too large to fit in the local
store entirely, only the relevant part of the frame should be brought in. The relevant
part is the area pointed to by the motion vector. For the luma part of the reference
block a border of two pixels above and left and three pixels below and right is needed
additionally to the size of the sub-block. For the chroma components only a border of
one pixel below and right is required. This translates to maximum block sizes of 21x21
and 9x9 pixels for luma and chroma respectively.

The width of the blocks are not multiples of 16. Also motion vectors point to indi-
vidual pixels, which are mostly not aligned to a 16-byte boundary. This means that to
bring in the data from the reference frame a certain overhead cannot be avoided. An
example of the resulting DMA target of a reference block is shown in Figure 5.1.

Reference
block 21x21

Overhead

Figure 5.1: DMA overhead due to alignment restriction of a motion reference data block.

The figure shows a reference block of 21x21 pixels. Each pixel has the size of a byte.
Since the width is 21 pixels the block at least crosses one 16-byte boundary. Our example
shows it is able to cross two boundaries. The green area represents the overhead data
due to the DMA alignment restrictions.

Another issue is that the block does not reside in continuous memory space. Each
block line is part of a different scan line. Transferring this block to the local store
would require 21 sequential DMA operations. Fortunately, Cell supports strided external
memory access in form of the list DMA operations. A DMA list operation uses an
array of global memory space addresses and its corresponding sizes. The local store
target is a sequential memory space, the same as in the normal DMA operations. The
maximum throughput of list operations is about five times lower compared to regular
DMA operations, which is investigated in Section 3.3.2. However, it is still much more
favored than using up to 21 DMA operations per block.

The libavcodec macroblock kernel functions are designed to operate on an entire
frame. Since only a sub-block of the motion reference data is transfered from the frame,
the kernel functions need to be modified as well. To keep the code complexity low the
kernel functions for luma are modified to operate on a stride base of 48 pixels and for
chroma on 32 pixels. This requires that every DMA operation for luma reference block
has a width of 48. For chroma the width has to be 32. For luma the maximum reference

5.2. COMMON CHANGES TO FFMPEG 57

block size is 21x21, which means it can cross at most two 16-byte boundarys. For chroma
the maximum size is 9x9 so it can only cross one boundary and hence only a width of
32 bytes is needed.

With this the SPE can perform motion compensation without having access to the
entire reference frame. However there is a second issue that needs to be solved. In H.264
the motion vectors can point to somewhere outside the frame boundaries as long as the
the reference block encapsulates at least one pixel of the frame. The rest of the block
would then be filled by extending the edges of the actual frame date in vertical direction
followed by an extension in the horizontal direction. In the original libavcodec this is
handled by the ff emulated edge procedure.

FFmpeg has made an optimized by using a 16-byte border around the frame. The
ff emulated edge is relatively costly procedure. With the extra border it is only re-
quired when the reference block crosses the extra border. In our SPE solution the same
optimization can be used. However, the DMA transfer of the reference block needs an
additional check. Figure 5.2 illustrates a case where it poses problems.

Reference block

1
6

p
ix

els

16 pixels

Extra border

Non-allocated

Reference frame

Figure 5.2: Motion vectors could point to a motion data block which encapsulates unal-
located memory.

In the figure the reference block crosses the extra border. When this occurs the
reference block resides partly in non-allocated frame memory. When trying to transfer
this with a DMA the system might generate segmentation faults. To prevent this for these
situations the starting points provided by the motion vector cannot be used. Instead the
reference block must be moved back into real memory space. After this the pixels must
be copied to their real position and extended the same way as in ff emulated edge. This
also means an extra buffer needs to be reserved to support the extending. The copying
and extending are all byte operations and cannot be vectorized due to the variable size.
These cases ,however , do not occur often by using the extra border optimization on the

58 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

SPE. The average occurrence rate decreases even further when the resolution increases.

5.3 Task Pool Implementation

In the previous sections the common part of the parallelization is discussed. In this
section the focus is on the TP implementation. The implementation of TP is discussed
in four parts. The first part is the interface between the PPE and SPE. The second
part considers the server side code that runs on the PPE. The task of the PPE is to
provide synchronized access to the shared dependency table and task queue. The third
part considers the implementation of the worker code on the SPE for processing the
macroblocks. Due to alignment restriction the write back step required changes that
impacts the parallelism. This is discusses in the final part.

Throughout the section we present simplified code fragments. The code fragments
serve as a starting points for discussing the implementation decisions.

5.3.1 Interface Between PPE and SPE

The mailbox functions have the best latency characteristics for low volume (single 32-bit)
PPE to SPE communication. Therefore, the interface is build on the mailbox functions.
The interface has several requirements. First the interface should allow for the PPE to
issue work to the SPEs. Second the interface should be able to handle the H264mb and
H264slice structures. Finally, the ability to differentiate between types of workload is
needed. For example, new slice parameters only occur once each frame and must be
differentiated from a work unit. Also an exit signal must also be supported, which exits
the SPE program.

In the chosen implementation some design rules are followed. The first one is to keep
DMA transfer SPE initiated as much as possible. This increases concurrency and lowers
the operations of the PPE. The second rule is to use as little as possible communication
steps. Listing 5.2 presents a simplified version of the implemented SPE main loop.

In this code fragment the communication protocol is clearly visible. When the SPE
image is loaded the first thing it does is to confirm the PPE that it has actually started.
The SPE program then moves to a ready state. The ready state is simply a while loop
in which is stays until the PPE sends the exit code. The spu read in mbox function has
the property to block until it has received mail from the PPE. Therefore no additional
polling mechanism is needed. Mailbox functions can only send over 32bit messages. The
best way to utilize this is to send over a task id. The task id can represent one of three
things: the exit code, the slice task code or a macroblock ID. The macroblock IDs range
from 0 to the number of macroblocks in a frame. Since the actual range depends on the
resolution it is decided to use -2 for the exit code and -1 for slice code. The macroblock
IDs represent the macroblock number in scan line order.

For this scheme to work two things need to be known. First is the location of
H264slice and second the location of the blocks array of H264mb. The pointer to the
H264slice is passed to the SPE program as an argument. The blocks pointer resides in
the H264slice structure. All the SPE programs use the same H264slice and, therefore,
have shared access to the H264mb array.

5.3. TASK POOL IMPLEMENTATION 59

Listing 5.2: SPE main loop in TP.

1 H264Context spu h context ;
2

3 int main (u in t 64 t s l i c e e a) {
4 H264Context spu∗ h= &h context ;
5 // send confirm to PPE
6 spu write out mbox (1) ;
7

8 while (1) { // ready s t a t e
9 t a s k i d = spu read in mbox () ;

10 switch (t a s k i d) {
11 case −2: // e x i t code
12 return 0 ;
13 case −1: // s l i c e t a s k id
14 spu dma get(&h−>s l i c e , s l i c e e a) ;
15 break ;
16 case pos s i b l e mb id :
17 H264mb∗ nextmb= h−>s l i c e . b locks + t a s k i d ;
18 spu dma get(&h−>mb, nextmb , sizeof{h−>mb} , ID mb) ;
19 wait dma id (ID mb)
20 h l decode mb in t e rna l (h) ;
21 break ;
22 }
23 // send back the t a s k id as conf i rmat ion
24 spu write out mbox (t a s k i d) ;
25 }
26 }

This results in an efficient implementation of the SPE program interface. The PPE
only needs to use a single mailbox function to provide the SPE worker with a work unit.
At the end of execution the work unit another one is needed to report back to the PPE.

Now let us discuss the server side interface and implementation of the TP algorithm.
The code fragment of Listing 5.3 shows the simplified version of the server control loop.
The first step is to fill the H264slice structure. This is done in copy context to slice

by copying the necessary field from H264Context to the H264slice. After this a slice
signal is send to every SPE through a mailbox. Note that the status and task id is stored
in the PPE program.

After this the actual control loop starts. This loop continues until all macroblocks are
processed. The control loop contains an inner for-loop. In this loop each SPE mailbox
is checked for a message. If a message is present first the status of the SPE is set to
IDLE. After this the dependency table is updated if the message contained a macroblock
ID and the number of macroblocks left is decremented. The second step is to check if
a task and the SPE are available. If this is true a macroblock ID is popped from the
task queue. This macroblock ID is send to the free SPE to start the processing and the
status is set to BUSY. This continues until all the macroblocks are processed.

Using a while loop implies active waiting. Mostly this is not desired since it consumes
a lot of resources. In this case we know from Section 3.3.3 this approach is faster than
using mutexes or the callback function. Furthermore mailbox functions are blocking

60 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.3: The TP server control loop executed on the PPE.

1 // s t a r t a l l t h reads wi th the s l i c e t a s k id
2 c o p y c o n t e x t t o s l i c e (s l i c e e a , h) ;
3 for (i =0; spe th r eads ; i++){
4 spe [i] . s t a tu s = BUSY;
5 spe [i] . id = −1;
6 spe in mbox wr i t e (spe mbox [i] , task [i] . id) ;
7 }
8 // s t a r t s e r v e r c on t r o l loop
9 while (mb le f t) {

10 for (i =0; i<spe th r eads ; i++){
11 if (task [i] . s t a tu s == BUSY) {
12 // check i f the spe has send the ” ready ’ msg
13 if (spe out mbox status (i)) {
14 int dataok= spe out mbox read (spe mbox [i]) ;
15 spe [i] . s t a tu s = IDLE ;
16 if (task [i] . id>=0 && task [i] . id==dataok) {
17 update tq and deptab le (spe [i] . id) ;
18 mb left−−;
19 }
20 }
21 }
22 if (t a s k a v a i l a b l e () && spe [i] . s t a tu s == IDLE) {
23 int mb xy = get mb from queue () ;
24 spe [i] . s t a tu s = BUSY;
25 spe [i] . id = mb xy ;
26 spe in mbox wr i t e (spe mbox [i] , mb xy) ;
27 }
28 }
29 }

calls. If no mail is present it will loop around until mail is received. Making use of the
mailbox facilities always implies a polling procedure either way. Additionally tests show
that the responsiveness does not suffer significantly when running another thread on the
PPE. Also the performance degradation of the extra thread was neglectable.

However an interrupting mechanism is still preferred. This not only saves power,
but makes the the code more comprehensible. The TP algorithm needs serialized access
to the task queue and dependency table. The traditional interrupt system would be
able to provide this. Nowadays this is only available in the embedded domain for the
programmer. On the Cell, a software implementation of an interrupt is present in form of
the callback function. A callback function is a function that is executed on the PPE, but
called on the SPE. When a callback functions is called on the SPE the execution halts
until the PPE has serviced it. In other words an interrupt. However in Section 3.3.3 it
is discovered that this feature is horrendously slow and cannot be used when frequent
synchronization is required.

5.3. TASK POOL IMPLEMENTATION 61

5.3.2 Updating Dependency Table and Task Queue

In the control loop of Listing 5.3 the functions update tq and deptable and
get mb from queue are used. These functions update the dependency table and the
task queue of TP. These two shared structures require synchronized access. Since only
the PPE thread uses these functions this requirement is met. If the workers would
directly operate on these structures without synchronization the result might become
erroneous. Elements in the dependency table and task queue could be modified at the
same time, which results in unpredictable behavior.

A different approach to solve this is using atomic operations issued directly from the
SPE. The atomic implementation requires six atomic operations to complete on aver-
age [14]. In Section 3.3.3 the latencies of the atomic operations were investigated and it
was revealed that it was two to three times lower as a mailbox. However using six oper-
ations results in a higher latency than a mailbox round-trip. The number of operations
required to complete the table and task queue update are very limited. Compared to
the mailbox latencies this can be neglected.

A simplified version of the dependency table and task queue functions is presented
in Listing 5.4.

In Listing 5.3 some abstractions were made to simplify the understanding of the
scheme. For instance init task queue is never used. In this function the macroblock
id 0 is submitted to the task queue, which is necessary to start the process. Another
abstraction is that the task queue is not assigned a size. In Section 4.1 it was found that
the size of the task queue was defined by Equation (2.1), which represents the maximum
parallelism.

The functions in Listing 5.4 implement the dependency table and circular task queue
of TP. In update tq and deptable the dependency table entry to the right and down
left are decremented. If the dependency count reaches 0 the macroblock ID is submitted
to the task queue. The operations on the task queue are implemented in the functions
submit mb to tq and get mb from queue. To know in which position the macroblock
IDs need to be pushed and popped two index parameters are used. The parameter
tq next empty slot stores the index of the insertion slot of the next macroblock ID.
Every time a macroblock is inserted this index is incremented. The same holds true for
tq next mb which stores the next macroblock ID to process. The indexes are stored in
the non-modulo form to be able to check for an available task in a single compare.

In circular buffer schemes one needs to take care of circular overwrites of valid en-
tries. In the task queue this can happen in two directions since there are two indexes.
Overwriting in the first direction is already prevented by using task available. This
ensures that get mb from queue returns a legal macroblock ID. Overwrites in the sec-
ond direction could happen if there were more tasks available than could fit in the task
queue. This is prevented by taking a queue size of the maximum macroblock parallelism
defined by Equation (2.1). The valid entries of the task queue are the entries with an
unprocessed macroblock ID. Since the number of free macroblocks cannot exceed the
maximum macroblock parallelism, it cannot overwrite the valid entries.

62 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.4: Dependency table and task queue functions.

1 int tq nex t empty s l o t ;
2 int tq next mb ;
3 int t q s i z e ; // equa l to max p a r a l l e l i sm
4 int task queue [t q s i z e] ;
5 int mb width , mb heigth ;
6

7 void submit mb to tq (int mb xy) {
8 task queue [tq nex t empty s l o t++ % t q s i z e] = mb xy ;
9 }

10

11 void i n i t t a s k qu eu e () {
12 tq next mb= 0 ; // index o f next mb in t q
13 tq nex t empty s l o t= 0 ; // index next empty s l o t
14 submit mb to tq (0) ; // submit f i r s t mb to queue
15 }
16

17 int t a s k a v a i l a b l e () {
18 return (tq next mb < tq nex t empty s l o t) ? 1 : 0 ;
19 }
20

21 int get mb from queue () {
22 return task queue [tq next mb++ % t q s i z e] ;
23 }
24

25 void update tq and deptab le (int mb) {
26 int tota l mb = mb width∗mb height ;
27 // check i f the curren t mb has an mb on the r i g h t
28 if (((mb+1) % mb width) != 0) {
29 int mb right = mb+ 1 ;
30 int dep count = −−dep tab l e [mb right] ;
31 if (dep count==0)
32 submit mb to tq (mb right) ;
33 }
34 // check i f the curren t mb has a down l e f t mb
35 if ((mb%mb width > 0) && (mb < (total mb− mb width))) {
36 int mb down left = mb− 1+ mb width ;
37 int dep count = −−dep tab l e [mb down left] ;
38 if (dep count==0)
39 submit mb to tq (mb down left) ;
40 }
41 }

5.3.3 Macroblock Processing

In the previous section the main program structure is discussed with Listings 5.2 and 5.3.
The two code fragments implement the interface of the SPE program to the PPE. In
this section we discuss the actual macroblock processing on the SPE. In Listing 5.2
the function hl decode mb internal is called to perform the processing and the write
back step. We primarily focus on the data flow from and to the local store. The
macroblock kernels are only elaborated on when needed. Due to its size, the code of

5.3. TASK POOL IMPLEMENTATION 63

hl decode mb internal is split in four listings. Each listing contains a part of the
simplified hl decode mb internal function. The first three listings are discussed in this
section. The last listing contains the write back step, which is discussed in the next
section.

5.3.3.1 Transfer H.264 intra data

Before the kernels can be applied the intra data is needed. In the first part of the
hl decode mb internal, presented in Listing 5.5, the intra data is transfered by DMA
operations. To do this, the start pointer to current block in the frame is calculated using
the macroblock indexes. Note that linesize and uvlinesize are equal to the horizontal
resolution of luma and chroma including the extra borders. After this the intra data is
transferred using get frame blk. This function is a wrapper around mfc getl, the DMA
list function. Get frame blk creates the DMA list and issues the transfer.

The result of the transfer is a 48x20 block of the frame around the current block
for the luma component and 32x10 for the chroma components. From Section 2.2 it
is known that the intra data consists of two parts: unfiltered borders and deblocking
filter data. The unfiltered borders are already on the local store in the H264mb. The
deblocking filter data needs in case of luma, 4 vertical borders of the left macroblock
and 4 horizontal borders of the top macroblock frame data. This could be transferred
in a list DMA transfer of 32x20.

Transferring a block of size 48x20 block is done for optimization reasons. To avoid
additional copy steps after the DMA transfer the DMA buffer is also used as a working
buffer. This means that the kernels operate on it. However a working buffer must be
able to include all the dependency data. From Section 2.2 it is known that a piece of
the top-right lower border is used in the intra-prediction. Since the kernel functions can
only work on a buffer with a constant stride the line width needs to be increased to 48
for the entire block.

The DMA list still has 20 list elements. The only difference is the width of each
transfer. This does not impact performance much as in Section 3.3.2 it was showed that
list element sizes up to 128 bytes have roughly the same latency. Figure 5.3 illustrates
the reserved luma intra data.

For chroma the same principle is used. However the implementation differs due to
the difference in size of chroma blocks and different intra data requirements. From
Listing 5.5 we see that the size of the chroma transfers are 32x10 pixels. A chroma
block is in our case 8x8 due to the 4:2:0 sub-sampling. This means that the transfer
spans over four horizontal chroma blocks. From Section 2.2 we know that the chroma
components are not depending on the top right macroblock. The kernels only operate
on a coverage of two chroma blocks, which equates to a width of 16 pixels. The reason
to use a buffer width of 32 is again due to alignment restrictions. Because the chroma
blocks have a width of 8 pixels a pair of blocks is aligned on a 16-byte boundary only
half of the time. In the other half of the cases a transfer width of 32 is necessary to
successfully transfer the intra data. Figure 5.4 illustrates the two possible situations of
the chroma DMA transfers. In the top situation a transfer with a block width of 16
suffices by only transferring the last two blocks. However, to satisfy the kernel functions

64 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.5: Macroblock processing part 1 - Get intra data

1 DECLARE ALIGNED 16(u in t8 t , d e s t y l s [4 8 ∗ 2 0]) ;
2 DECLARE ALIGNED 16(u in t8 t , d e s t c b l s [3 2 ∗ 1 0]) ;
3 DECLARE ALIGNED 16(u in t8 t , d e s t c r l s [3 2 ∗ 1 0]) ;
4

5 void h l decode mb in t e rna l (H264Context spu ∗h) {
6 H264s l i c e ∗ s l i c e = &h−>s l i c e ;
7 H264mb ∗mb = &h−>mb;
8 const int mb x= mb−>mb x ;
9 const int mb y= mb−>mb y ;

10 const int mb type= mb−>mb type ;
11 u i n t 8 t ∗dst y , ∗dst cb , ∗ d s t c r ; //ea p t r s
12 u i n t 8 t ∗ a l i gn cb , ∗ a l i g n c r ; // a l i gn ed ea p t r s
13 // l s p t r s (a b s t r a c t s the f a c t i t i s opera t ing on a l s b u f f e r)
14 u i n t 8 t ∗dest y , ∗ dest cb , ∗ d e s t c r ;
15

16 int l i n e s i z e = s l i c e −> l i n e s i z e ;
17 int u v l i n e s i z e = s l i c e −>u v l i n e s i z e ;
18 int s t r i d e y = 48 ;
19 int s t r i d e c = 32 ;
20 int i ;
21

22 dst y = s l i c e −>dst y + (mb x + mb y ∗ l i n e s i z e) ∗ 16 ;
23 dst cb = s l i c e −>dst cb + (mb x + mb y ∗ u v l i n e s i z e) ∗ 8 ;
24 d s t c r = s l i c e −>d s t c r + (mb x + mb y ∗ u v l i n e s i z e) ∗ 8 ;
25

26 ge t f r ame b lk (d e s t y l s , dst y−4∗ l i n e s i z e −16, s t r i d e y , 20 , l i n e s i z e ,
ID get) ;

27 des t y = d e s t y l s + 4∗ s t r i d e y +16;
28

29 a l i g n cb = (u i n t 8 t ∗) ((unsigned) ds t cb & 0xFFFFFFF0) ;
30 ge t f r ame b lk (d e s t c b l s , a l i gn cb −2∗uv l i n e s i z e −16, s t r i d e c , 10 ,

u v l i n e s i z e , ID get) ;
31 des t cb = d e s t c b l s + ((unsigned) ds t cb&0xF) + 2∗ s t r i d e c + 16 ;
32

33 a l i g n c r = (u i n t 8 t ∗) ((unsigned) d s t c r & 0xFFFFFFF0) ;
34 ge t f r ame b lk (d e s t c r l s , a l i g n c r −2∗uv l i n e s i z e −16, s t r i d e c , 10 ,

u v l i n e s i z e , ID get) ;
35 d e s t c r = d e s t c r l s + ((unsigned) d s t c r&0xF)+ 2∗ s t r i d e c + 16 ;
36

37 wait dma id (ID get) ;

a total width of 32 is needed.

The dest y, dest cb and dest cr pointers store the start position of the current
macroblock. For the chroma pointers the pointers are not always the same. It will
depend on what the current alignment situation is.

Before we can continue, a DMA wait request is issued to wait for all the transfers
with DMA identifier ID get. Using the DMA unit in this manor is not optimal. Re-
member that with the Cell memory architecture it is possible to solve the memory stalls
introduced by cache misses. However, this cannot be implemented in TP in general.

5.3. TASK POOL IMPLEMENTATION 65

Current
block

DMA block transfer Intra data

Figure 5.3: Intra data transfer of the luma component.

(a)

(b)

DMA block transfer Intra data

Figure 5.4: Intra data alignment issues of the chroma components. In situation (a) it is
necessary to transfer 4 blocks, while for (b) this is done for consistency.

Using the DMA in this manor results in waiting for the DMA data instead of cache
misses. We do ensure that the wait only occurs once, something that cannot be ensured
for caches.

5.3.3.2 Macroblock processing

In the second part of hl decode mb internal the actual processing starts. Listing 5.6
reveals that the intra-prediction or motion compensation kernel is applied depending on
the macroblock type. In case of a intra-block the borders must be exchanged before

66 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

applying the prediction kernel. As mentioned before, the intra-prediction kernel works
on the unfiltered borders. The borders are part of in the H264mb work unit.

There are two variants of the border exchange, which differentiate themselves in the
last argument. In the first call an actual exchange is performed. The filtered borders in
the working buffer are swapped with the unfiltered ones in H264mb. After the prediction
step the filtered borders are put back. However the unfiltered borders are no longer
needed. Instead of a swap the second xchg mb border call just replaces the borders as
an optimization.

Listing 5.6: Macroblock processing part 2 - Border exchange and intra/motion prediction
kernel.

1 if (IS INTRA(mb type)) {
2 if (s l i c e −>d e b l o c k i n g f i l t e r)
3 xchg mb border (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c ,

1) ;
4

5 i n t r a p r e d i c t i o n {h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c } ;
6

7 if (s l i c e −>d e b l o c k i n g f i l t e r)
8 xchg mb border (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c ,

0) ;
9 }else {

10 hl mot ion (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c) ;
11 }

If the current macroblock is not of the intra-type, the motion compensation kernel
is applied. In Section 5.2.2 the SPE implementation for transferring motion data was
discussed. In hl motion this is used to transfer the motion data to the luma and chroma
local store buffers. To support the maximum needed size, the luma buffers are of size
48x21 and the chroma buffers are of size 32x9. In total two luma buffers and 4 chroma
buffers are needed to support the bi-weight prediction mode. For each partition of the
motion compensation the buffers are reused.

Listing 5.7 shows the third part of hl decode mb internal. In the third part the IQ,
IDCT and deblocking filter kernels are applied. Only the chroma block requires inverse
quantization. In the IDCT kernel the encoded variables are converted and applied to
the local store buffers.

Recall that the unfiltered borders are located in H264mb. The code before filter mb

is responsible for storing the borders in unprocessed H264mb work units residing in the
external memory. Before applying the deblocking filter kernel the macroblock borders are
saved in backup mb border. After the intra-prediction step the unfiltered border fields
are not used anymore. These fields are reused in backup mb border as a transfer buffer
for the unfiltered borders. After this the border fields are transfered to the corresponding
H264mb structures. This step ensures that each H264mb contains the unfiltered borders
before it is processed. The right border is transfered to the right neighboring H264mb

structure. The lower border is needed by the down and down-left H264mb. After issuing
the border transfers the deblocking filter is applied.

5.3. TASK POOL IMPLEMENTATION 67

Listing 5.7: Macroblock processing part 3 - IQ, IDCT and deblocking filter kernels.

1

2 IDCT luma(h , dest y , b l o c k o f f s e t , s t r i d e y) ;
3 IQ chroma (h) ;
4 IDCT chroma(h , dest cb , de s t c r , b l o c k o f f s e t , s t r i d e c) ;
5

6 if (s l i c e −>d e b l o c k i n g f i l t e r) {
7 H264mb ∗mb right , ∗mb down , ∗mb down left ;
8 int mb width = s l i c e −>mb width ;
9 int mb height = s l i c e −>mb height ;

10

11 // save u n f i l t e r e d borders
12 backup mb border (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c) ;
13

14 // put u n f i l t e r e d borders to the corresponding H264mb in e x t e r na l
memory

15 if (mb x+1 < mb width) {
16 mb right = s l i c e −>b locks +mb x +mb y∗mb width +1;
17 spu dma put (mb−>l e f t b o r d e r , mb right−>l e f t b o r d e r , sizeof (mb−>

l e f t b o r d e r) , ID put) ;
18 }
19 if (mb y < mb height −1){
20 mb down = s l i c e −>b locks + mb x +(mb y+1)∗mb width ;
21 spu dma put (mb−>top border , mb down−>top border , sizeof (mb−>

top border) , ID put) ;
22 if (mb x>0){
23 mb down left = mb down −1;
24 spu dma put (mb−>top border , mb down left−>top border next ,

sizeof (mb−>top borde r next) , ID put) ;
25 }
26 }
27 f i l t e r mb (h , mb x , mb y , dest y , dest cb , de s t c r , s t r i d e y ,

s t r i d e c) ;
28 }

Note that we do not issue a wait dma id. As an optimization this is combined in a
single wait statement in the write back step. This is discussed in the next section.

5.3.4 Write Back and Impact on Scalability

After the macroblock kernels are applied the working buffer contains picture data that
needs to be written back to the frame. In the write back step the working buffers are
written back to the frame. However due to the width of the working buffers write overlaps
could occur when using multiple SPEs. The solution does not only involve the SPE code,
as changes in the macroblock dependency structure are required. The latter also has its
consequences on the scalability.

First, the write back step on the SPE is discussed. Second, the problem of overlapping
write backs is revealed and the implemented solution is presented. Finally the impact
on the scalability is analyzed in a similar fashion as in Chapter 4.

68 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

5.3.4.1 Write Back Step

In the write back step the content of the luma and chroma working buffers is transferred
back to the appropriate location in the frame. From Section 2.2 it is known that the
deblocking filter does not only change the contents of the current macroblock, but also
the surrounding borders. In case of luma, this applies to the lower three lines of the top
macroblock and the right three lines of the left macroblock. The same holds for chroma,
only in this case it applies to a single adjacent line. Therefore, the entire working buffer
is transferred back except the first line. Listing 5.8 shows the write back step.

Listing 5.8: Macroblock processing part 4 - Write back step TP.

1 put f rame b lk (d e s t y l s + s t r i d e y , dst y−3∗ l i n e s i z e −16, s t r i d e y , 19 ,
l i n e s i z e) ;

2

3 if (mb x%2 >0){
4 r e du c e s t r i d e (d e s t c b l s + s t r i d e c , 9) ;
5 put f rame b lk (d e s t c b l s + s t r i d e c , a l i gn cb− uv l i n e s i z e , 16 , 9 ,

u v l i n e s i z e) ;
6 }else{
7 put f rame b lk (d e s t c b l s + s t r i d e c , a l i gn cb− uv l i n e s i z e −16,

s t r i d e c , 9 , u v l i n e s i z e) ;
8 }
9

10 if (mb x%2 >0){
11 r e du c e s t r i d e (d e s t c r l s + s t r i d e c , 9) ;
12 put f rame b lk (d e s t c r l s + s t r i d e c , a l i g n c r− uv l i n e s i z e , 16 , 9 ,

u v l i n e s i z e) ;
13 }else{
14 put f rame b lk (d e s t c r l s + s t r i d e c , a l i g n c r− uv l i n e s i z e −16,

s t r i d e c , 9 , u v l i n e s i z e) ;
15 }
16

17 wait dma id (ID put) ;
18 }

The write back is quite similar to retrieving the intra data, described in Sec-
tion 5.3.3.1. In the write back step also three list DMA calls are issued and the same
local store and global memory addresses are used. The difference is in the additional
reduce stride procedure issued before transferring the chroma blocks. This is part of
the solution for solving overlaps in the write back step. As the function name suggests,
the stride of the chroma blocks is reduced. The stride is reduced from 32 to 16 to have
a less wide block to prevent the overlap. From Figure 5.4 it can be seen that this is only
possible when the current macroblock has an odd x-coordinate, which is the case in the
upper block. In the next section this problem is presented in more detail.

Before returning a wait dma id is issued to wait for all the transfers to complete.
After the write back step the SPE sends a mailbox message to the PPE, which updates
the dependency table and task queue. The resolved macroblock are allowed to be sched-
uled and the intra data produced by processing the current macroblock is required. This
is the last moment possible to flush the pending DMA transfers.

5.3. TASK POOL IMPLEMENTATION 69

5.3.4.2 Overlapping Write Back

The macroblock dependencies limit the number of concurrent macroblocks by at most one
free macroblock per scan line. Furthermore the horizontal coordinates of the concurrent
macroblocks have to be at least two apart. However due to the DMA restriction the
write back is implemented with additional overhead in the horizontal directions. In the
write back step, the content of the working buffers is written back to the appropriate
locations in the frame. For luma, the block size is 48x19 and for chroma this is 32x9.
Since the heights of the blocks is larger than one macroblock, the contents spans over two
scan lines. This combined with the additional horizontal overhead causes overlapping
frame writes when the concurrent macroblocks are to close to each other.

Since the macroblocks have variable execution times, this results in unpredictable
behavior and erroneous data. Figure 5.5 illustrates the overlap for the luma component.
The data values of the overlapping areas depend on the retire order of the concurrent
macroblocks (CMBs).

CMB

CMB

CMB

CMB

CMB

Figure 5.5: Overlaps in the write back step of the luma component by concurrent SPEs.

The overlap occurs for both luma and chroma components, albeit for different reasons.
In case of luma the overwrites occur because we do not want to reduce the stride of the
local store buffer. In the write back step only the right and current macroblock needs
to be written back. This not desired as this would introduce additional copy steps.
However, it is possible to perform to resolve the overlap.

For chroma blocks we cannot reduce the stride. Chroma blocks have a size of 8x8
pixels. Due to DMA alignment and size restrictions, half of the time it is required
to write back a block of 32x9. When the current macroblock is aligned to a 16-byte
address the left adjacent macroblock is not aligned and vice versa. In Listing 5.8 the
reduce stride is used to reduce the stride of the chroma blocks for uneven numbered
blocks. Because this is only possible for odd blocks, overlaps still occur for even blocks
as shown in Figure 5.6.

The simplest and best solution is to increase the minimal horizontal spacing of the
CMBs. In Figure 5.6 the overlap ranges over two macroblocks. Increasing the spacing
from two to four would resolve the problem. However, due to the stride reduction overlaps
only occur when the CMB are on an even horizontal position. Increasing the spacing by
only one also trigger an alternating effect on the CMBs. Increasing the spacing from two

70 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

CMB

CMB

CMB

CMB

CMB

CMB

Figure 5.6: Overlaps in the write back step of the chroma components.

to three, therefore, resolves the overlapping. This is shown graphically in Figure 5.7.

Increasing the macroblock spacing effects both the luma and chroma components.
The luma component technically does not require the additional spacing. However, the
forced spacing does allow the stride size of the the luma component to remain the same.
In Listing 5.8, no additional reduce stride procedure is performed for luma.

CMB

CMB

CMB

CMB

CMB

CMB

Figure 5.7: Resolving overlap by increasing the macroblock spacing.

Implementing the increased macroblock spacing requires a revised dependency struc-
ture. When updating the dependency table we can simply update the down-left-2 in-
stead of the down-left macroblock. This ensures that a spacing of three macroblocks
is maintained. Figure 5.8 shows the revised dependency structure and corresponding
dependency table.

The drawback of the revised dependency structure is that it reduces the parallelism.
The additional spacing reduces the average number CMBs as only one can occur on each
line at same time. In the next section the impact of the revised dependency structure
on the scalability is analyzed in detail.

5.3.4.3 Impact on Scalability

The solution to the overlapping write backs, discussed in the previous section, reduces
the parallelism by increasing the macroblock spacing. In Equation (2.1) the maximum
macroblock-level parallelism is defined. The equation states that both the frame width
and height can limit the maximum parallelism. In case of FHD and all other 16:9

5.3. TASK POOL IMPLEMENTATION 71

0,0

1,0

2,0

3,0

4,0

0,1

1,1

2,1

3,1

4,1

0,2

1,2

2,2

3,2

4,2

0,3

1,3

2,3

3,3

4,3

0,4

1,4

2,4

3,4

4,4

0,5

1,5

2,5

3,5

4,5

2

2

2

2

2

2

2

2

2

2

2

2

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

0

Figure 5.8: Revised dependency structure and corresponding dependency table to im-
plement the additional spacing.

resolutions the limit is in the frame width component.

The equation is set up to abide the macroblock dependencies. In our case, how-
ever, this is changed with the increased spacing. Equation (5.1) is a revised version of
Equation (2.1), which now takes a spacing variable into account.

ParMBrevised = min(⌈NMB,ℎor/Spaceℎor⌉, NMB,ver) (5.1)

With the regular dependency structure the horizontal spacing is two and Equation 5.1
equals Equation 2.1. In our case it is three which results a maximum parallelism of 40 for
FHD, down from 60 originally. The additional horizontal spacing reduces the parallelism
by 1/3. This reduction clearly impacts the scalability and efficiency of TP.

In Chapter 4 the efficiency losses on the algorithm level were investigated. The
efficiency loss incurred by the reduced parallelism is platform specific. Hence, if the
DMA unit could work with an 8-byte alignment this would not be a problem. The
platform specific effects, e.g. synchronization overhead, were not taken into account due
to the complexity of accurate simulation. However, the solution for overlapping write
backs required a revision of the TP algorithm. The effects can be simulated with some
small modifications in the simulator.

In Figure 5.9 the results for the simulation of the reduced parallelism are plotted
together with the TP results of Figure 4.17. The plot uses FHD sequences with variable
macroblock execution times and QHD with Gaussian random variables with a standard
deviation of 5 and a mean of 20.

As the plot shows, the additional spacing definitely impacts the scalability. The max-
imum speedup is lower and reached with lower number of processing elements. However,
if we focus on the scalability up to 16 processing elements the impact is minimal. The
speedup for FHD at 16 processing elements is 14.3x for a spacing of 3 compared to 14.8x
with the regular spacing.

The relative low decrease in speedup is quite surprising since the maximum par-
allelism has been reduced from 60 to 40, a reduction of 1/3. However the maximum
speedup is only around 20% lower. To understand this, first take a look at Figure 5.10.
The plot shows the macroblock ramping for a FHD frame with unlimited number of pro-

72 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

S
pe

ed
-u

p

Processing elements

QHD spacing=2
QHD spacing=3
FHD spacing=2
FHD spacing=3

Figure 5.9: Impact on the scalability due to the additional spacing.

cessing elements. Constant macroblock execution times are assumed. It can be clearly
seen that both the maximum number of free macroblocks and the ramping slope has
decreased by 1/3. However the time necessary to complete the frame is 318 compared
to 251 for regular spacing. This coincides with the reduced speedup as 21% less time
is required to perform the regular TP decoding, with unlimited number of processing
elements.

The difference of the two plot lines is in the horizontal part between the ramping.
For larger spacings this is much longer. This means that the maximum parallelism is
sustained longer and in turn results in a lower scalability drop. The number of time
units the maximum parallelism is maintained is proportional to difference of the vertical
macroblock resolution and the maximum parallelism. The factorial difference of how long
the maximum parallelism is maintained for the two spacings is 68−40

68−60 = 3.5. Note that
even with the reduced parallelism TP still has better efficiency and scaling compared to
RL.

In the next section we discuss the implementation of RL. The main differences in the
implementation lie in the concurrent communication and computation model, the local
store memory management, and the distributed control mechanisms. These implemen-
tation differences originate from the data flow characteristics of the RL algorithm.

5.4. RING-LINE IMPLEMENTATION 73

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350

P
ar

ra
lle

l M
B

Time

1920x1080 Spacing=2
1920x1080 Spacing=3
1920x1080 Spacing=4

Figure 5.10: Macroblock ramping with reduced parallelism with constant macroblock
execution times.

5.4 Ring-Line Implementation

In the previous sections the implementation regarding the common and TP parts have
been discussed. The focus has been on working with the memory hierarchy of the Cell
processor. In this section we continue this with the RL implementation. A distinct
difference, however, is that the Cell memory hierarchy is no longer seen as a burden as
the RL algorithm maps efficiently on the Cell architecture.

The RL implementations is discussed in several parts. First, the inter-core interface
is discussed. On the Cell it is required to create separate programs for the PPE and
SPE. To communicate between them an interface needs to be defined. Due to the
distributed control mechanism in RL, also a SPE to SPE interface is required. In the
second part the local store buffers are discussed. This part concerns the arrangement of
the working buffers and the RL buffers, discussed in Section 4.2.3.3. In the third part
the actual macroblock processing is discussed. The macroblock processing itself is quite
straight forward. The interesting part is in the surrounding steps which provide the
data. Compared to TP this has been simplified and is more efficient. Following this is
the write back step. Like the data transfers for the macroblock processing, this is more
efficient in RL. However, the solution also impacts the scalability. The impact on the
scalability is analyzed and discussed in detail. The final part concerns the pre-buffering
step. Pre-buffering is the most important step in terms of performance improvement
compared to TP. The goal of the pre-buffering is to hide the latencies of the motion
data and work unit transfers. In the motion compensation kernel the communication
had to be decoupled from the computation This required a relatively large revision in
the motion compensation code.

Throughout the section simplified code fragments are presented. The code fragments
serve as the starting points for discussing the implementation decisions.

74 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

5.4.1 Inter-Core Interface and Distributed Control

5.4.1.1 Interface Between PPE and SPE

In RL the interface between the PPE and SPE is quite simple. The PPE does not need
to act as a server as was the case for TP. The PPE only needs to start the SPEs once
each frame. The simplified code fragment of this process is shown in Listing 5.9. The
entropy decoding is done beforehand and its result is assumed to be in the blocks array.

First, the slice informations is copied to a H264slice structure pointed to by
slice ea. Then the slice code is send to each SPE. For convenience the slice code
is the same as in TP. After this the PPE simply waits for all SPEs to finish processing
their macroblock lines and message back. After the SPEs have signaled back, the frame
is completely processed.

Listing 5.9: PPE program interface of RL.

1 // s t a r t a l l t h reads wi th the s l i c e t a s k id
2 c o p y c o n t e x t t o s l i c e (s l i c e e a , h) ;
3 for (i =0; spe th r eads ; i++){
4 spe [i] . id = −1;
5 spe in mbox wr i t e (spe mbox [i] , task [i] . id) ;
6 }
7

8 for (i =0; i<spe th r eads ; i++){
9 spe out mbox read (s p e c on t r o l a r e a [i]) ;

10 }

The simplified SPE main code is listed in Listing 5.10. At the start of the code, before
it messages back to the PPE, a DMA transfer is initiated to bring in a H264spe structure.
In TP the main argument contains the slice ea and no other information is needed. For
RL several other parameters are also required for successful execution. These parameters
are spe id, spe total and the tgt spe pointer. The H264spe structure packs these
parameters together with the slice ea. The spe id and spe total are used to find out
the which lines the SPE needs to process. The tgt spe pointer is the global memory
pointer of the target SPE local store space. It is used as an memory address offset to
transfer control and intra data directly to the target local store. Then, a confirmation
is sent to the PPE and the SPE enters the ”ready” state.

In the ”ready” state, the SPE expects one of two signal codes via the mailbox. In
case the stop signal is received, it simply returns and exit. When it receives a slice signal
the processing of the frame/slice starts. With this the PPE to SPE interface is defined.
Compared to TP only a single mailbox message is required each frame.

The first step in decoding the macroblocks is to issue a DMA get operation for the
H264slice structure. After slice is filled and some initialization functions it enters a
while loop in which the actual macroblock processing is performed. The functions in the
while loop take care of the distributed control, data pre-buffering, macroblock processing
and write back. In the next section the SPE to SPE interface and the distributed control
are discussed.

5.4. RING-LINE IMPLEMENTATION 75

Listing 5.10: The SPE main loop of the RL implementation.

1 H264Context spu h context ;
2 int main (u in t 64 t argp)
3 {
4 H264Context spu∗ h = &h context ;
5 H264spe∗ spe = &h−>spe ;
6 H264s l i c e ∗ s l i c e = &h−>s l i c e ;
7 H264spe ∗ spe params = (H264spe ∗) argp ;
8

9 spu dma get (spe , spe params , sizeof (h−>spe) , ID spe) ;
10 wait dma id (ID spe) ;
11

12 // send confirm to ppu
13 spu write out mbox (1) ;
14 while (1) {
15 t a s k i d = (int) spu read in mbox () ;
16 if (t a s k i d==−2) {
17 return 0 ;
18 }
19 else if (t a s k i d==−1){
20 spu dma get (s l i c e , spe−>s l i c e params , sizeof (h−>s l i c e) ,

ID s l i c e) ;
21 wait dma id (ID s l i c e) ;
22 int s t r i d e y = (s l i c e −>mb width%2)? (s l i c e −>mb width+1) ∗16 :

s l i c e −>mb width ∗16 ;
23 int s t r i d e c = s t r i d e y >>1;
24

25 i n i t b l o c k o f f s e t (s t r i d e y , s t r i d e c) ;
26 i n i t mb bu f f e r (h) ;
27 while ((h−>mb=(H264mb ∗) get next mb (h))) {
28 while (! d ep r e so lv ed (h)) ;
29 h l decode mb in t e rna l (h , s t r i d e y , s t r i d e c) ;
30 update tg t spe dep (h , 0) ;
31 }
32 }
33 spu write out mbox (t a s k i d) ;
34 }
35 }

5.4.1.2 SPE Distributed Control

One of the main differences between the TP and RL implementation is the distributed
control. The control task in TP is assigned to the PPE and has a centralized behavior.
In RL each SPE is part of the controller. In the algorithm each RL processor is only
dependent on its neighbors. The processors are connected in a ring structure. This
provides a scalable synchronization structure as every processor has a different target.

The functions dep resolved and update tgt spe dep in Listing 5.10 handle the
distributed control. These functions respectively stall the execution when the macroblock
dependencies are not met and send the control data. The function bodies are presented
in Listing 5.11.

76 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.11: Functions implementing the distributed control mechanism.

1 DECLARE ALIGNED 16(spe pos , dma temp) ; //dma temp fo r sending
2 DECLARE ALIGNED 16(volatile spe pos , s r c s p e) ; // wr i t t en by SPE ID −1
3

4 static i n l i n e int dep re so lv ed (H264Context spu ∗h) {
5 H264s l i c e ∗ s l i c e = &h−>s l i c e ;
6 int s p e i d = h−>spe . s p e i d ;
7 int mb proc dep = s r c s p e . mb proc ;
8 if (s p e i d==0)
9 return (h−>mb proc < mb proc dep−1 +s l i c e −>mb width) ? 1 : 0 ;

10 else

11 return (h−>mb proc < mb proc dep−1)? 1 : 0 ;
12 }
13

14 static void update tg t spe dep (H264Context spu ∗h) {
15 H264mb ∗mb = h−>mb;
16 H264s l i c e ∗ s l i c e = &h−>s l i c e ;
17 H264spe ∗ spe = &h−>spe ;
18 int mb x = mb−>mb x ;
19

20 if (mb x%2==0 && mb x!=0) ∣ ∣ mb x==s l i c e −>mb width−1){
21 spe pos ∗ dma spe = &dma temp ;
22 spe pos ∗ t g t s p e = spe−>t g t s p e + (unsigned) &s r c s p e ; // l o c a t e d in

t a r g e t spe l o c a l s t o r e
23 dma spe−>mb proc = h−>mb proc ;
24 spu dma barr i e r put (dma spe , tg t spe , sizeof (dma temp) , ID put) ;
25 }
26 h−>mb proc++;
27 }

The function dep resolved checks if the dependencies are resolved. The function
is repeatedly called in a while loop until the dependency resolves. The algorithm for
determining if the dependency is resolved is quite small and contains only a few basic
operations. It check if the source SPE has processed two macroblocks more than the
current SPE. If this is the case the next macroblock in the line can be processed. In RL
there is an implicit rule that states that the SPEs cannot gain on each other. This check
satisfies this rule for all SPEs except the first one. To close the ring structure SPE 0 is
dependent on the last SPE. The last SPE can never have processed more SPEs than the
first. This is solved by offsetting the number of processed macroblocks with one line for
SPE 0.

As you can see the dep resolved ”polling” fashion. When a thread has to wait in
traditional programs it often goes in a sleep state and is waken up by a signal. This
synchronization construct is relatively slow and not useful in fine-grained parallelism.
The polling mechanism implemented here has a very fast response, since dep resolved

contains only a few basic operations. Furthermore, polling on a SPE does not consume
shared resources. The local store and the processing engine both reside in the SPE.

The only parameter required for the synchronization is the number of macroblocks
the current SPE has processed. This allows for a very simple communication. In

5.4. RING-LINE IMPLEMENTATION 77

update tgt spe dep this parameter is packed in a 16-byte spe pos structure and send
via a barrier DMA. The use of a barrier DMA is required as it synchronizes the DMA
queue. When a barrier command is issued, the previous issued DMAs must retire before
the barrier command is processed. This ensures that the intra data arrives before the
synchronization data. The number of macroblocks processed is incremented afterwards.

An if-condition is present around the barrier DMA operation. The condition spec-
ifies that the target SPE should only be updated for every even block and the last
macroblock in the line. This has to do with implementation issues regarding the write
back and write intra data step issued at the end of hl decode mb internal. More on
this is revealed in Section 5.4.4.

5.4.2 Local Store Buffers

The actual macroblock processing is done in hl decode mb internal. The internal
structure is quite different from TP, despite using the same function name. While the
kernels themselves are mostly the same, the memory management needed an overhaul in
order to support the advantages of the data flow behavior of the RL algorithm. As is the
case for TP, the Cell memory hierarchy requires additional effort for the programmer.
The RL algorithm, however, can make efficient use of this as it maps well on the memory
hierarchy of the Cell architecture. In this section we focus on the data management of
the local store buffers with exception of the motion data and work unit buffers. These
buffers are part of the pre-buffering scheme, which is explained later in the chapter.

As explained in Section 4.2 the RL algorithm needs a buffer to store pre-sent intra
data. The larger the buffers the better the performance until it reaches the maximum
buffer size specified by Equation (4.4). An optimum in the buffer size is found in Equa-
tion (4.6), which delivers the same performance with only two times the minimal buffer
size. While in theory this is an attractive trade-off between memory requirements and
performance, additional parameters are to be considered in the practical implementation.

Before continuing explaining the choices regarding the buffers and buffer sizes, we
should take a look at the implemented buffers in Listing 5.12. Each of the buffers
allocated in the listing is discussed in the next sections.

5.4.2.1 Combined Ring-Line and Working Buffer

The line buffers act as both the working buffers and RL buffers. The requirements of the
RL buffer are that it is able to fit the intra data of the source SPE. The requirements
of the working buffer are to be able to fit the intra data and the current macroblock, to
serve as DMA targets and sources, and to have the macroblock kernels operate on them.
By combining these buffers the memory organization becomes more efficient in terms of
performance.

The line buffers are statically allocated to contain 20 lines of a FHD image. This
results in the luma buffer dest y ls of 120*16*20=38400 bytes and the two chroma
buffers dest cb ls and dest cr ls of 120*8*10=9600 bytes. The choices made regarding
the buffer allocations are to extract maximal performance from the SPEs. In Chapter 6
a more balanced approach is discussed, which makes a trade off between buffer size and
additional copy steps.

78 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.12: Local store allocation of the combined working and RL buffers, border
buffers and write back buffers.

1 //mb l i n e b u f f e r s − s t a t i c a l l y a l l o c a t e d f o r up to 1920 width v ideo
2 DECLARE ALIGNED 16(u in t8 t , d e s t y l s [120∗16∗20]) ;
3 DECLARE ALIGNED 16(u in t8 t , d e s t c b l s [1 20∗8∗10]) ;
4 DECLARE ALIGNED 16(u in t8 t , d e s t c r l s [1 20∗8∗10]) ;
5

6 // border b u f f e r s
7 DECLARE ALIGNED 16(u in t8 t , t o p bo r d e r l s [1 2 0] [1 6 + 2∗8]) ;
8 DECLARE ALIGNED 16(u in t8 t , l e f t b o r d e r l s [17+2∗9 + 13]) ; // l a s t 13 i s

padding
9

10 // wr i t e back b u f f e r s
11 DECLARE ALIGNED 16(u in t8 t , dma y ls [3 2 ∗ 2 0]) ;
12 DECLARE ALIGNED 16(u in t8 t , dma cb ls [1 6 ∗ 1 0]) ;
13 DECLARE ALIGNED 16(u in t8 t , dma cr l s [1 6 ∗ 1 0]) ;

With a height of 10 and 20 lines the line buffers are the same as the working buffers
used in TP in this regard. The height allocation allows the source SPE to directly write
the intra dependency data into the working buffer. An additional copy step would be
required in case the working and RL buffers were separated.

The width of the buffer is chosen with the optimal RL buffer size of Equation 4.6 in
mind. Equation 4.6 specifies that the optimal buffer size is equal to two times the frame
width in terms of macroblocks divided by the number of ring processors. This means that
with more processors, less buffer slots per processor are needed. The implementation,
however, needs to support a range of processing elements for the sake of investigating the
scalability. The required buffer size is largest when there is only one processor decoding
a FHD sequence. In this case the number of buffer slots would equate to 2*120/1=240.
However 240 buffer slots does not fit in the local store. Therefore, only two or more
SPEs are supported in the RL implementation. Two SPEs requires a buffer with 120
slots, which fits in the local store.

Since the buffers are statically allocated, they are used with every resolution video
and SPE configuration. When using a lower resolution only part of the line buffer is
used. This does not impact performance. However, the same cannot be said for using
less available buffers with increasing number of SPEs. According to Equation (4.6),
using more processors results in a lower buffer size requirements while maintaining equal
performance. In practice, however, it still is desired to use a line buffer for every SPE
configuration. This has two distinct reasons, both concerning the performance.

First, using a smaller buffer requires extra communication with the source SPE. When
using a buffer size lower than the maximum buffer size specified by Equation (4.4), it
is necessary to inform the source SPE which buffer slots are free. While it is unlikely
to have a buffer stall with the optimal buffer size, it is still possible that this occurs.
Therefore, it is required to communicate with the source SPE to prevent overwriting
buffers with valid data at all time. Communicating with the source SPE is not needed
if the maximum buffer size is used. In this case buffer stalls are fully resolved.

5.4. RING-LINE IMPLEMENTATION 79

The second reason is to prevent a copy step when the buffers run full. Recall that the
line buffers are acting both as the working buffers and RL buffers. As working buffers
the intra data should always be placed relatively to the current macroblock, as shown
in Figure 5.3. As RL buffers the buffer slots are used circular. These two requirements
conflict at the circular loop back as illustrated in Figure 5.11.

7 2 3 4 5 6

Figure 5.11: Buffer conflict at the circular loop back.

In the figure we see that the left intra data is at the end of the buffer while the top
intra is at the beginning. When using this as a working buffer it would not be possible to
decode macroblock 7. A possible solution is to put another buffer slot at the front. This
slot should not be used by the source SPE to write dependency data. Before decoding
macroblock 7, in now the second slot, macroblock 6 should be copied to the first buffer
slot. Smaller buffers require this additional action more often than larger buffers.

However, the loop back conflict can be completely avoided by using an entire line as
a buffer. For the first macroblock in the line no left intra data is needed. By taking the
buffer the same size as an line, the circular loop back and the line start will coincide. In
this case no additional actions are necessary.

In Chapter 6 the memory usage of both TP and RL is investigated more in depth.
In the same chapter we also comment on a possible adjustments to support higher than
FHD resolutions. This is not possible by scaling the current implementation due to local
store size limitations.

5.4.2.2 Border Buffers and Data locality

Next to the line buffers in Listing 5.12, there are two border buffers. The border buffers
contain the unfiltered borders send by the source SPE. The same as for the line buffers,
the top border ls contains enough slots for a line of a FHD image. The left border ls

contains the left border of one macroblock.

The left border buffer can only contain the unfiltered right border of one macroblock.
Because the SPEs process an entire line the right border is used by the same SPE. The
SPE can keep the unfiltered borders locally since it is only used while processing the
next macroblock. This structure is actually quite similar to the approach used in the
original libavcodec in which the macroblocks are also decoded in scan line order.

In TP the unfiltered borders resides in the H264mb work units. With TP, intra data
would always be transfered via the external memory through the frame buffer and the
H264mb work units. The predictability of the RL algorithm allows us to keep all the
intra data on-chip. In the RL structure only the next SPE requires the intra data as
it processed the next line. Due to the unpredictable dynamic assigning, this was not
possible in TP.

80 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

5.4.2.3 Write Back Buffer

The write back buffers are used as the source buffer for writing the picture data back to
the frame, residing in the external memory. The buffers are needed to sequentialize the
picture data from the line buffer. The DMA unit is not capable of strided local store
accesses. Since the processed data resides in a line buffer it is not possible to send an
entire block with a DMA list operation directly. An alternative is to use a separate DMA
operation for each block line. However this would decrease performance even further due
to DMA setup overhead.

The size of the DMA transfer buffers is chosen to contain two macroblocks in width.
This automatically means that two macroblocks are written back at once. It is necessary
due to the alignment restrictions of the Cell platform. The write back procedure is
explained further in Section 5.4.4.

5.4.3 Macroblock Processing

As explained in the previous section, the RL macroblock kernels operate on a line buffer.
By combining the RL and working buffers less local copy steps are required. This section
shows what consequences this has on the macroblock processing. The implementation
of the RL hl decode mb internal used the TP version as a starting point.

The first part of hl decode mb internal is shown in Listing 5.13. The first thing to
notice is that the stride size is no longer fixed. Now it is equal to the line width since
our working buffer is an entire line. Second, there is no longer a DMA step at the start
to bring in the intra data. What remains is calculating the start point of the current
macroblock in the line buffer. Before decoding the macroblock the top intra data is
already present due to pre-sending by the source SPE. The left intra data is inherently
present due to decoding of the previous macroblock.

The function calls to the intra and motion prediction kernel remain the same. For
both kernels internal modification were needed to support the variable stride sizes. Fur-
thermore, the xchg mb border function now has to operate on the new border buffers
instead of the ones located in H264mb. In addition to the variable stride size, the code in
hl motion needed a big overhaul to support pre-buffering of the motion reference data.
This, however, is abstracted from hl decode mb internal. The overhaul in hl motion

is part of the pre-buffering and is discussed in Section 5.4.5.

The second part of hl decode mb internal is shown in Listing 5.14. The same as
for the previous kernels the IDCT, IQ and deblocking filter now need to operate on a
line buffer, which has a stride size depending on the resolution. Adding the support for
variable stride sizes has little to no impact on the performance.

The main difference in Listing 5.14 is in storing the unfiltered borders. The new
border buffers are used in backup mb border, similar to xchg mb border. The H264mb

fields for the borders are not needed in RL as the intra data is kept on-chip. Remember
that in TP a DMA was issued before filter mb which executes the deblocking filter
kernel. This is no longer present since it is moved to the write back phase. This is
actually more natural as it is part of the intra data, which is now send together. The
border DMA was issued as soon as possible in the TP version for optimization reasons.

5.4. RING-LINE IMPLEMENTATION 81

Listing 5.13: Macroblock processing part 1 - Prediction and border exchange.

1

2 void h l decode mb in t e rna l (H264Context spu ∗h , int s t r i d e y , int s t r i d e c) {
3 H264s l i c e ∗ s l i c e = &h−>s l i c e ;
4 H264mb ∗mb = h−>mb;
5 const int mb x= mb−>mb x ;
6 const int mb y= mb−>mb y ;
7 const int mb type= mb−>mb type ;
8

9 u i n t 8 t ∗dest y , ∗ dest cb , ∗ d e s t c r ; // l s p t r s (a b s t r a c t s the f a c t
i t i s opera t ing on a l s b u f f e r)

10 int i ;
11

12 des t y = d e s t y l s + mb x∗16 + 4∗ s t r i d e y ;
13 des t cb = d e s t c b l s + mb x∗8 + 2∗ s t r i d e c ;
14 d e s t c r = d e s t c r l s + mb x∗8 + 2∗ s t r i d e c ;
15

16 if (IS INTRA(mb type)) {
17 if (s l i c e −>d e b l o c k i n g f i l t e r)
18 xchg mb border (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c ,

1) ;
19

20 i n t r a p r e d i c t i o n {h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c } ;
21

22 if (s l i c e −>d e b l o c k i n g f i l t e r)
23 xchg mb border (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c ,

0) ;
24

25 }else {
26 hl mot ion (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c) ;
27 }

Another important difference is that only the lower unfiltered borders are transfered
to the target SPE. Recall that in TP both the lower and right borders are transfered to
the corresponding H264mb structures in the external memory. This was necessary because
it is not known which SPE processes which macroblock. However in RL the SPEs process
an entire line. The right borders are only used when processing the right macroblock,
which is processed on the same SPE. The lower borders of the three components are
packed in a single DMA transfer and sent to the top border buffer of the target SPE.

The predictability of the RL algorithm is exploited to simplify transferring the intra
data, while also making it more efficient. Less transfers are needed and more data is
kept on-chip. Furthermore, the data transfers are non-blocking. The same holds for the
transfers in the write back step discussed in the next section.

5.4.4 Write Back and Impact on Scalability

After applying the kernels the picture data has to be written back to the frame. Recall
that in TP this was quite inefficient. For every decoded macroblock a size of two to four
blocks were written back. Also three transfers of the unfiltered borders to the external

82 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.14: Macroblock processing part 2 - IDCT, IQ and deblocking filter.

1

2 IDCT luma(h , dest y , b l o c k o f f s e t , s t r i d e y) ;
3 IQ chroma (h) ;
4 IDCT chroma(h , dest cb , de s t c r , b l o c k o f f s e t , s t r i d e c) ;
5

6 if (s l i c e −>d e b l o c k i n g f i l t e r) {
7 int mb height = s l i c e −>mb height ;
8

9 // save u n f i l t e r e d borders
10 backup mb border (h , dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c) ;
11

12 /∗ border DMA moved to wr i t e back ∗/
13

14 // deb l o c k in g f i l t e r
15 f i l t e r mb (h , mb x , mb y , dest y , dest cb , de s t c r , s t r i d e y ,

s t r i d e c) ;
16 }

memory were required per macroblock. It is already revealed that the latter is no longer
needed. Data locality and pre-sending the intra data have replaced this completely.

The RL algorithm also allows us to optimize the necessary write back operations.
This is actually as much as an optimization as it is an obligation. With the RL algorithm
the write back is delayed until two blocks can be written back at once. The chroma blocks
have a width of 8 pixels and cannot be written back by itself due to the DMA alignment
restrictions. In TP up to four blocks in width were written back.

During the write back step also the intra data is pre-sent to the the target SPE. For
the same reason as delaying writing the picture data to the frame, this is also delayed.
However, delaying the intra date pre-send step effectively causes a larger spacing of the
concurrent macroblocks. The larger spacing impacts the scalability negatively. In this
section both the write back step and its impact on the scalability are discussed in detail.

5.4.4.1 Write Back

In the write back step of the RL implementation the picture data and the intra data
is transferred to the external memory and target SPE respectively. The code fragment
in Listing 5.15 takes care of the write back to frame and inter-SPE transfers. In the
listing the actual DMA transfers are issued in dma pic data. This is always preceded
by a wait dma id and a prepare buffer call. The wait dma id is necessary to ensure
that the previous write back has completed to prevent valid data overwrites in the write
back buffers. The prepare buffer function fills the write back buffers with the to be
transferred data. The wait dma id call normally does not block as the time between
write back steps mostly equates the decoding time of two macroblocks.

From the if-conditions we can see that the write back step should only start if the
current macroblock has a non-zero even x-coordinate or is the last one in the line. If
both apply the write back is issued twice. Furthermore, each condition has an offset.

5.4. RING-LINE IMPLEMENTATION 83

Listing 5.15: Macroblock processing part 3 - Write back step RL.

1 int o f f s e t ;
2 // send output data to t g t spe and p i c t u r e in main mem
3 if (mb x%2==0 && mb x!=0){
4 o f f s e t = 2 ;
5 wait dma id (ID put) ;
6 p r epa r e bu f f e r (dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c , o f f s e t

) ;
7 dma pic data (h , mb x−o f f s e t , mb y , s t r i d e y , s t r i d e c) ;
8

9 if (mb x == s l i c e −>mb width−1){
10 o f f s e t =0;
11 wait dma id (ID put) ;
12 p r epa r e bu f f e r (dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c ,

o f f s e t) ;
13 dma pic data (h , mb x−o f f s e t , mb y , s t r i d e y , s t r i d e c) ;
14 }
15 }else if (mb x == s l i c e −>mb width−1){
16 o f f s e t = 1 ;
17 wait dma id (ID put) ;
18 p r epa r e bu f f e r (dest y , dest cb , de s t c r , s t r i d e y , s t r i d e c , o f f s e t

) ;
19 dma pic data (h , mb x−o f f s e t , mb y , s t r i d e y , s t r i d e c) ;
20 }
21 }

The offset indicates which blocks should be transfered. The write back buffers have a
width of two macroblocks. This means that always the width of two blocks is transferred
once. An offset of two means that the previous two blocks are transfered. An offset

of one means the previous and the current, and zero means the current and the next.
For now let us focus on the most common condition, which is when offset equals two.

In the write back step two adjacent blocks are paired due to the DMA alignment
restriction. For luma the alignment is not a problem, since it is always aligned to a
16-byte boundary. However, chroma has a width of 8 pixels and is only aligned half
of time. If we would have transfered the paired blocks separately, it would result in
writing the exact same area twice directly after each other. Combining them prevent
the redundancy.

The reason to use the two previous blocks is that the operations on the blocks have
not finished before the current macroblock has been decoded. Recall that the deblocking
filter modifies not only the current macroblock, but also the left and top adjacent borders.
In TP the right adjacent block had to be written back as well for this reason. Again,
because in RL an entire line is decoded on the same SPE, the write back can be delayed
until all processing has been performed. Doing so prevents any redundant transfers in
the horizontal direction. Figure 5.12 illustrates the write back timings for a short line.

At the end of the line the blocks are written back directly after it is processed. For
the last macroblock in the line there is no next macroblock that performs the deblocking
filter. For an even line size (last MB has an odd x-coordinate) an offset of one is

84 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

0 1 2 3 4 5 6 7

Figure 5.12: Delayed and combined write back of previous two macroblocks to avoid
redundancy.

needed. For uneven line sizes the last block has no adjacent pairs and an offset of zero
is used. The offset also applies for the unfiltered border and intra data transfer to the
target SPE. By applying this scheme no picture data is written more than once in the
horizontal direction.

In the vertical direction, however, frame overwrites still occur, since the top four lines
are written back as well. In TP this caused concurrent write overlaps and the blocks were
spaced out further to prevent unpredictable and erroneous results. While this solved the
overlapping, it did not reduce the number of transfers. In RL we can keep the data
on-chip until all processing has been performed. The lower four(two for chroma) lines
are sent to the target SPE since they are needed as intra data and the data in these
lines can still change. The solution is to let the target SPE write the lower four lines of
the current MB back to the frame after it has processed them. Only the top 16 (8 for
chroma) lines of the write back buffers are transferred to back to the frame, while the
lower four(two for chroma) are pre-sent to the target SPE. Figure 5.13 shows that this
cannot be applied for the top and bottom line. In practice the top macroblock line can
be treated the same since there is an extra border around the frame. With the bottom
line of frame the lower lines are not needed as intra data and the write back buffer is
fully written to the frame. All the actual DMA operations are issued in dma pic data,
which consist of both the write back to frame and pre-send of the intra data for the luma
and chroma components.

Write to frame

Intra data target SPE

Frame

Figure 5.13: Write back targets of data in the DMA transfer buffers. The upper 16 lines
go to the frame, while the lower 4 are sent to the target SPE as intra data.

5.4. RING-LINE IMPLEMENTATION 85

Back in Listing 5.11 the function update tgt spe dep updates the mb proc counter
on the target SPE. This can only be increased after the intra data is present. Therefore,
the same if-conditions surround the barrier DMA. The counter is only incremented once
in two blocks on the target SPE to synchronize with the intra data.

However delaying the pre-send of the intra data will reduce parallelism. Recall that
additional spacing reduces the parallelism for TP. By delaying pre-sending the intra
data the spacing is effectively increased. Looking at Figure 5.12 reveals that the spacing
between macroblocks is either three or four macroblocks. In the next section the impact
of the delayed intra data pre-send on the scalability is analyzed.

5.4.4.2 Impact on Scalability

The combining and delaying of the write back results in a larger horizontal spacing of
the concurrent macroblocks. Since the implementation affects the algorithm, the effects
can be simulated. For this purpose the earlier used simulator of Section 4.2.3 is updated
to exactly simulate this write back behavior. To investigate the effects of the additional
spacing, the regular and practical RL variants are compared. For both variants variable
MB execution times and the maximum buffer size are used. The results of the simulations
are plotted in Figure 5.14.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

S
pe

ed
-u

p

Processing elements

QHD spacing=2
QHD spacing=4
FHD spacing=2
FHD spacing=4

Figure 5.14: Impact of increased spacing on the Ring-Line scalability.

From the figure we see that the scalability suffers considerable with higher number of
processing elements. Compared to the reduced parallelism results of TP, in Figure 5.9,

86 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

we see that the impact on RL is larger. This is not surprising as the parallelism with a
spacing of four decreases to half the original, according to Equation 5.1. The effect on
16 processing elements and less remains small for both FHD and QHD. The attained
speedup for FHD using 16 SPEs is 11.7x, down from 12x. It can be seen that the
scalability remains close to the regular spacing up to a certain point. After this point
the scalability is quickly saturated.

5.4.5 Pre-Buffering

The final part of the RL implementation concerns arguably its most important task. In
Figure 4.11 it was shown that it is possible to concurrently do the communication and
computation in RL. The write back and intra data pre-send step already are concur-
rent as they are implemented with non-blocking DMA calls. To have full concurrent
communication the work units and the motion data must be pre-buffered.

Decoupling predictable communication from computation allows for very efficient use
of the Cell architecture. It is generally believed that future architectures will incorpo-
rate a Cell-like memory hierarchy. However, most programmers cannot properly handle
the responsibility of managing the data flow. Often this is an even larger burden than
thread-level parallelization. Furthermore, the application is not always eligible for ex-
ploiting concurrent computation and communication. However, in a lot of situations it
is possible and when this is the case the performance advantages can be considerable.
The memory latencies are hidden and the effects off the ”Memory Wall” are avoided.
The implementation of H.264 could, therefore, serve as an example for programmers as
well as a reference for future programming models.

The pre-buffering implementation is discussed in several parts. First, the ac-
tual pre-buffering strategy is discussed as it is shown in Listing 5.10. The functions
init mb buffer and get next mb called in main loop abstract the pre-buffering pro-
cess. Following, the communication decoupling of the motion compensation kernel is
discussed. Finally, the motion data buffer allocation is revealed.

5.4.5.1 Pre-buffering mechanism

The function calls of init mb buffer and get next mb in Listing 5.10 abstracts pre-
buffering process. It is good programming practice to keep things ordered and di-
vided as much as possible. The body of the two functions are mostly the same. For
init mb buffer the difference is that it must handle the irregularities of starting the
pre-buffering. We first focus on get next mb and comment on init mb buffer in a later
stage. Now take a look at get next mb in Listing 5.16.

In the get next mb function several steps are taken. At the start of the function
an if-condition checks if there is still work to do. When all macroblocks have been
processed a zero is returned and the main loop in Listing 5.10 exits. If this is not the
case, up to two DMA transfer tasks are performed. The first one is to pre-buffer a H264mb

working unit. The second is to pre-buffer the motion data if applicable.
In normal situations one level of pre-buffering suffices in form of double buffering.

While one of the buffers is used in the processing, the other is filled by the pre-buffering
and vice versa. However, in this case pre-buffering the motion data is dependent on its

5.4. RING-LINE IMPLEMENTATION 87

Listing 5.16: Implementation and abstraction of the pre-buffering step.

1 #define TAG OFFSETMB ID buf1
2 #define TAG OFFSETMC ID mc buf1
3

4 static void ∗ get next mb (H264Context spu ∗h) {
5 H264s l i c e ∗ s l i c e = &h−>s l i c e ;
6 H264spe ∗ spe = &h−>spe ;
7 H264mb ∗mb buf = h−>mb buf ; //H264mb mb buf [3]
8 H264mc ∗mc buf = h−>mc buf ; //H264mc mc buf [2]
9 H264mb ∗next mb , ∗next dma mb ;

10

11 if (h−>mb proc >= h−>mb total)
12 return (void ∗) 0 ;
13

14 if (h−>mb proc < h−>mb total−2){
15 next dma mb = s l i c e −>b locks + h−>mb id ;
16 spu dma get(&mb buf [h−>mb dma] , next dma mb , sizeof (H264mb) , h−>

mb dma + TAG OFFSETMB) ;
17 h−>mb dma = (h−>mb dma+1)%3;
18 h−>mb id++;
19 if (h−>mb id%s l i c e −>mb width ==0)
20 h−>mb id+=(spe−>s p e t o t a l −1)∗ s l i c e −>mb width ;
21 }
22

23 h−>mc = &mc buf [h−>mc idx] ;
24 wait dma id (h−>mc idx + TAG OFFSETMC) ;
25 h−>mc idx = (h−>mc idx+1)%2;
26 if (h−>mb proc < h−>mb total−1){
27 wait dma id (h−>mb mc + TAG OFFSETMB) ;
28 H264mb ∗mb = &mb buf [h−>mb mc] ;
29 H264mc ∗mc = &mc buf [h−>mc idx] ;
30 if (! IS INTRA(mb−>mb type)) {
31 calc mc params (mb, mc) ;
32 f i l l r e f b u f (h , mb, mc) ;
33 }
34 }
35 h−>mb mc = (h−>mb mc+1)%3;
36

37 next mb = &mb buf [h−>mb dec] ;
38 h−>mb dec = (h−>mb dec+1)%3;
39

40 return next mb ;
41 }

work unit. If we directly try to pre-buffer the motion data, the work unit would becomes
a blocking transfer. This is solved by increasing the pre-buffering level of the work units
to triple buffering. The motion data remains double buffered.

Figure 5.15 illustrates the scheduling of the first couple of macroblocks. The first
two steps differ from the others, because there is no processing done and is taken care
of in init mb buffer. Each of the DMA steps, in the non-rounded rectangles, are non-
blocking. They are checked on completion before initiating their equivalent step in the

88 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

next slot. From the figure can be derived that triple buffering is used for the work units.
In the same slot as macroblock x is processed, the work unit of x+2 is pre-buffered.
Similar for the motion data it can be derived that double buffering is used. In the same
slot as macroblock x is processed, the motion data of x+1 is pre-buffered. At slot four
there is an empty slot to indicate that not all macroblocks need motion compensation.

1 2 3 4 5 6 7

Work unit MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7

Motion data MB 1 MB 2 MB 4 MB 5 MB 6

Processing MB 1 MB 2 MB 3 MB 4 MB 5

Write back MB 1,2 MB 3,4

Figure 5.15: Initializing buffers and decode of first macroblocks. The DMA steps in the
non-rounded rectangles are non-blocking.

If we move back to the code, several if-conditions surrounding the buffering are
observed. The second condition prevents pre-buffering a work unit in the the last two
iterations, because of the triple buffering. Also at the end of a macroblock line it is
necessary to continue pre-buffering the macroblock data of the next line. To calculate
the next line the SPE ID and the total number of SPEs is used. This information resides
in H264spe.

Before proceeding with the actual transfer calls for the motion data, a wait-statement
is issued to ensure that the previous issued motion data has arrived. It is required to
check if the previously issued transfer has completed before issuing an overwrite and
before using it. In this case the latter applies. Before the next motion data can be
pre-buffered we also need to wait on its depending work unit. Since triple buffering is
used the waiting time is mostly zero.

Note that several pointers have been updated. With the pointer updates two things
are accomplished. First, the pre-buffering mechanism is abstracted from the process-
ing. The processing step can simply use the data structures addressed by the pointers.
Second, additional local store copy steps are avoided.

With these steps the pre-buffering mechanism is revealed. This can be applied to
any predictable algorithm. It is important to remember that pre-buffering mechanism
should be abstracted from the actual processing. Also the necessary levels of pre-buffering
should be investigated. Finally, it is required to check the completion of the previous
transfer before using the data and reusing the buffer slot.

However, to successfully perform the pre-buffering often another step is needed. In
more complex cases it is necessary to force code changes for explicitly decoupling the
communication and the computation. This applies to the motion compensation. From
Listing 5.16 it can be seen that two functions are used to pre-buffer the motion data,

5.4. RING-LINE IMPLEMENTATION 89

calc mc params and fill ref buf. These functions decouple the communication from
the computation of the motion compensation kernel. In the next section the body of
these two functions is discussed.

5.4.5.2 Decoupling the Motion Compensation

To pre-buffer the motion data it is required to decouple the communication from the
computation in the motion compensation. This process is similar to the decoupling of
the entropy decoding from the macroblock processing, discussed in Section 5.2.1. In
this case also a new structure is introduced in form of H264mc. The H264mc structure
functions as a communication structure between the pre-buffering and the processing, in
the same way as the H264mb is used.

Looking back at Listing 5.16 shows that two functions are used for pre-buffering the
motion data. Both functions operate on the H264mc structure. First, calc mc params

is called to calculate the motion compensation parameters for identifying the necessary
transfers. Among others this consist of the partitioning and the motion vectors. This
information is stored in the H264mc structure. Second, the fill ref buf procedure
issues the actual DMA transfers by using the H264mc structure. Furthermore, the local
store pointers of each individual motion block are stored in the H264mc. The H264mc is
used for decoding the next macroblock. Since the motion data is double buffered this is
also the case for H264mc.

Showing the body of the two functions is too large for its purposes. Instead the
contents of the H264mc and the actual double buffered motion data buffer are shown in
Listing 5.17. This provides a good base for the detailed analysis of the communication
decoupling.

The H264mc structure contains two fields. The first field is an array of 16 H264mc part

structures. For the motion compensation kernel the macroblock can be split up in up
to 16 quadrants. Each H264mc part contains the parameters associated to a quad-
rant. The possible quadrant configurations were discussed in Section 2.2. The second
field stores the number of partitions the macroblock consists of. The contents of each
H264mc part is filled during the calc mc params call. These parameters are both needed
by fill ref buf to issue the transfers and the modified hl motion to perform the mo-
tion compensation.

The last field of H264mc part, ref, is filled by fill ref buf. In fill ref buf the ac-
tual DMA transfers are issued for each quadrant by using the parameters in H264mc part.
For example, the x offset and y offset fields are the two parts of the motion vector.
The ref data structure contains the local store pointers of the motion data of its corre-
sponding quadrant. The local store start pointers of each component of the motion data
is stored in the pointer array data. Two of these ref data structures are needed, to
support bi-weighted prediction. Several of the others fields of H264mc part, for instance
weight, list0 and list1, are used as switches for the possible motion compensation
options of H.264.

The rest of the fields in ref data are only filled in case edge emulation is required.
In Figure 5.2 an example situation was presented when this is the case. These fields are
needed in two-fold, one set for luma and one for chroma. Most of the time edge extension

90 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

Listing 5.17: Motion pre-buffering structures and motion data buffer.

1 typedef struct r e f d a t a {
2 u i n t 8 t ∗data [3] ;
3 int emu ;
4 int s t a r t y s r c [2] ;
5 int s t a r t y d s t [2] ;
6 int end ysrc [2] ;
7 int end ydst [2] ;
8 int s t a r t x s r c [2] ;
9 int s t a r t x d s t [2] ;

10 int end xsrc [2] ;
11 int end xdst [2] ;
12 } r e f d a t a ;
13

14 typedef struct H264mc part{
15 int n , chroma height ;
16 int x o f f s e t ;
17 int y o f f s e t ;
18 int i t p ;
19 int weight ;
20 int l i s t 0 , l i s t 1 ;
21 int use we ight ;
22 r e f d a t a r e f [2] ;
23 }H264mc part ;
24

25 typedef struct H264mc{
26 H264mc part mc part [1 6] ;
27 int npart ;
28 }H264mc ;
29

30 // ac t ua l doub l e b u f f e r f o r motion data
31 DECLARE ALIGNED 16(u in t8 t , mc re f [2] [2∗ (16∗ (4+5) ∗48 + 2∗16∗(2+1) ∗32)]) ;

is not required and these fields are not used.

After the operations the H264mc structure contains all the parameters needed in the
motion compensation. The pointers to the motion data of all partitions is contained
in the structure. When the motion compensation requires motion data it can simply
look up the local store pointer, instead of requesting it via a DMA transfer. However, a
step still remains as the allocation of the motion data buffers on the local store has not
yet been revealed. In the next section the mc ref buffer where the actual motion data
resides is discussed.

5.4.5.3 Motion Data Buffer Allocation

For the motion compensation kernel a variable number of buffers are needed to store
each component of the motion data partitions. Furthermore, the required size of the
buffers is variable. Different buffer sizes are required often. Therefore, dynamic memory
allocation would have a negative impact on the performance. Instead a custom simplified
memory allocation scheme is implemented. The implementation is discussed in two part.

5.5. CONCLUSIONS 91

First, we investigate the worst case memory size requirements, followed by the memory
allocation procedure.

The size of the buffer is chosen to fit the worst case amount of reference data. This
is done as efficiently as possible without having an negative impact on the performance
and code complexity. The mc ref buffer of Listing 5.17 is allocated to contain the
double buffered motion data.The listing reveals that the size of a single buffer equals
[2*(16*(4+5)*48 + 2*16*(2+1)*32)] pixels/bytes.

From Section 2.2 we know that for luma the motion data block has the size of the
partition with an additional border of two pixels. Therefore, the width and the height
of the block increases a total of four pixels. Due to interpolation this has to be increased
by another pixel for both luma and chroma resulting in the extra 5 and 1 respectively.
The worst case situation in terms of memory is when the macroblock is tiled in 16 4x4
partitions. This explains the factor 16 and, a height of 4 and 2 for respectively for luma
and chroma.

The width of the blocks is 48 for luma and 32 for chroma. In Section 5.2.2.2 it was
explained that transferring the motion data requires additional overhead. Finally the
entire buffer size needs to be doubled to support bi-weighted prediction. With this buffer
size the mc ref buffer always has enough space. Furthermore, the kernels can directly
operate on the buffers, since sufficient memory is allocated to support the fixed strides
of 48 and 32.

The pointers in the data array point to locations in the mc ref buffer. While there is
sufficient memory in total, the allocation of the individual blocks still is left unexplained.
To keep the memory allocation efficient and ordered a custom algorithm is used to handle
the memory distribution. The solution is to implement a simplified version of malloc.
The implementation requires a pointer, which is referred to as memptr. At the start of
every pre-buffer step one of the motion buffers is ”freed”. This is done by setting the
memptr to the start of the to be freed motion buffer. Every time a motion data buffer
is requested, the current memptr is returned and incremented with the requested size.
Figure 5.16 shows an example content of one of the buffer slots of the mc ref buffer. In
this simple scheme only one increment is required each time a motion buffer is needed.

5.5 Conclusions

In Chapter 4 two parallel H.264 decoding strategies were discussed. Both TP and RL
exploit macroblock-level parallelism. In this chapter the implementation of both strate-
gies on the Cell platform is discussed. For the implementation the open source FFmpeg
code [12] is used as a base. The core of FFmpeg is the libavcodec library. The libavcodec
contains the actual audio and video codecs, including a H.264 decoder. It was discovered
that the interface to libavcodec poses problems for parallelizing the entropy decoding.
Therefore, no attempts were made to implement 3D-Wave and multi-frame RL.

For both parallel implementations the entropy decoding had to be decoupled from
the macroblock processing. For this the H264mb and H264slice structures are used.
A H264mb structure holds the output of the entropy decoding for one macroblock. The
number of H264mb structures needed is equal to the number of macroblocks in the frame.
The H264slice holds the slice parameters of which only one is required. These structures

92 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

1

2

3

Partitioning

Y1 21x48

Cb1 9x32

Cr1 9x32

Y2 13x48

Cb2 5x32

Cr2 5x32

Y3 13x48

Cb3 5x32

Cr3 5x32

A
d

d
re

ss
sp

a
ce

Corresponding buffer layout

Figure 5.16: Motion data organization of the individual partitions in the mc ref buffer.

are a subset of H264Context and only hold the necessary field to vastly reduce the
memory requirements.

The role of the PPE is different for TP and RL. In TP the PPE has the task of the
server, which provides synchronized access to the shared structures. The server assigns
the work units(MB) to the SPEs and also updates the shared structures after a SPE
has processed a work unit. For the messaging the fast mailbox facilities are used. In
RL the PPE only needs to start the SPEs for each slice. In RL there is are no shared
structures as it uses a distributed control mechanism. This is implemented using barrier
DMA transfers to the target SPE. The only required information to satisfy the line
dependencies is the number of macroblocks it has processed in total.

The main challenge of programming the Cell platform is making use of the memory
hierarchy. The SPEs do not feature the memory abstraction of traditional cache-based
processors. Instead, they can only operate on data residing in their local stores. Com-
munication with the external memory is explicit via the DMA unit. Since the local store
size is limited, the required data for the macroblock kernels is carefully studied. It is
revealed that the intra prediction and deblocking filter required intra data from the cur-
rent frame, while the motion compensation required motion data from up to 16 reference
frames as. The relevant part of the frames, however, is small and could be transferred
instead of the entire frame. The macroblock kernels required some adjustments to work
on a smaller parts of the frame.

In TP the DMA transfers are sequential to the computation. The intra data is first
brought in by a transferring a 48x20 frame block surrounding the current macroblock.

5.5. CONCLUSIONS 93

The block size is chosen so that it contains the intra data, while abiding to the DMA
restrictions. This data is transferred to the working buffer on which the macroblock
kernels are applied. For the motion compensation every partition requires different
motion data pointed to by the motion vectors. This is brought in before processing each
partition. After the kernels are applied the working buffer is written back to the frame.
Due to DMA alignments and size restriction and unpredictable macroblock assigning
more data has to be written back than necessary. This causes possible overlapping
frame writes for concurrently processed macroblocks. The solution is to increase the
horizontal macroblock spacing from two to three and reduce the stride of uneven chroma
blocks from 32 to 16. For each macroblock a frame block of 48x19 is written back for
luma. For chroma this alternates between 32x9 and 16x9 for macroblocks with even and
uneven x-coordinates.

However, the increased macroblock spacing decreases the macroblock parallelism.
While the maximum parallelism has decreased by 1/3, the impact on the scalability is
small. Simulation results indicate the maximum speedup decreased only 21% for FHD.
This can explained by the fact that the average parallelism has only decreased by 21%.
Decreases in the maximum parallelism increases the duration this lower maximum can
be maintained. For 16 processing elements the speedup only dropped from 15x to 14.5x.

In RL the DMA transfer latency is hidden behind the computation. This is possible
due to the predictable nature of RL. The intra data is pre-sent to the target SPE and,
therefore, also kept on-chip. This conserves a lot of external memory bandwidth. A
line buffer is used to act both as the target for the pre-sent intra data and as working
buffers. Using a line buffer has advantages as no additional local store copy steps are
required. The motion data is pre-buffered to the local store in a double buffered fashion.
For this the communication had to be decoupled from the computation in the motion
compensation kernel. In the pre-buffering scheme the entire motion data of the next
macroblock is transferred to the local store, while processing the current.

In the write back step a pair of two adjacent macroblocks is send back to the frame.
The intra data is also pre-sent in this step. The combined write back is a result of the
DMA restriction and a memory bandwidth optimization. Due the alignment and size
restrictions the 8x8 chroma components cannot be written by themselves. In RL the
write back can be delayed after the adjacent macroblock has been decoded, since the
entire line is decoded on the same SPE. However, the write back is delayed another slot,
since the processing of the previous macroblock has not completed until the deblocking
filter of the current macroblock is applied. For the same reason only the top 16 lines of
the transfer buffer is written back to the frame, while the lower 4 are sent as intra data
to the target SPE. In RL, the write back only writes each pixel of the output frame once.
In TP this is written three to six times.

However, delaying the write back has the same effect as increasing the spacing to four
in TP. The simulation results presented a drop of 30% in maximum speedup for FHD
sequences, which is in line with average parallelism drop. For 16 processing elements the
effects were also minimal. For FHD the speedup dropped from 12x to 11.7x. However
after this point the scalability was quickly saturated.

In the next chapter a static resource analysis of the two implementation is provided.
This includes among other the memory size and bandwidth requirements. The TP

94 CHAPTER 5. IMPLEMENTATION OF H.264 ON THE CELL PROCESSOR

implementation requires less local store memory, while RL is more efficient in terms of
memory bandwidth. Also a more local store efficient buffer strategy is presented, which
allows the RL to scale to Super HiVision resolutions with the current SPE local store
size. In Chapter 7 the experimental results are presented. These results are analyzed and
compared to the theoretical values of the reduces parallelism presented in this chapter.

H.264 Resource Analysis 6
In Chapter 5 the Cell processor implementation of the Task Pool (TP) and Ring-Line
(RL) parallel strategies have been revealed in detail. Before presenting the performance
results in Chapter 7, the resource requirements of the parallel strategies are analyzed.
This allows for better interpretation of the performance results.

We start with analyzing the HDvideobench sequences, which are used as benchmarks
in Chapter 7. The time spent in the entropy decoding and the macroblock kernels are
measured. For the timings the sequential version of the algorithm is used. Similar work
has been done by Alvarez et al. [3], but on different target platform. This is followed by
investigating the additional memory usage of the two parallel implementations. More
specifically, the size of the additional structures for decoupling the entropy decoding
and the local store memory footprint is investigated. Finally, an analysis is given of
the memory bandwidth requirements for both parallel implementation. In the previous
chapter it was noted that the bandwidth requirement for Ring-Line were lower than for
the TP implementation. This is investigated in detail, since it provides the insight in
what manner the memory bandwidth is the bottleneck of the performance.

6.1 Kernel Profiling

In this section the time spent in the entropy decoding and macroblock kernels is in-
vestigated to provide insight on what the ratio is between the entropy decoding and
macroblock processing. While we have limited ourselves in investigating the macroblock
processing, it is still desirable to see what part this is of the entire application. The tim-
ings of the macroblock processing also provide a good view of the size of the work units.
The ratio between the size of the work unit and the synchronization overhead determine
the scalability. Furthermore, the macroblock timings are also needed to determine the
effectiveness of hiding the memory latency in RL.

The results are obtained by running the sequential FFmpeg executable on the test
platform described in Section 3.2, which implies that only the PPE is used. The ex-
ecutable was built with the FFmpeg optimizations and Altivec support enabled. The
test sequences are the HD and FHD versions of the BlueSky, Pedestrian, RiverBed and
RushHour videos from the HDVideoBench. Table 6.1 lists the timing results for the
FHD sequences. The HD sequences provided almost identical results and are therefore
not presented.

The table shows the average time spend in the specific kernels per macroblock.
The average total macroblock time is between 10 and 20 us. The sequences BlueSky,
Pedestrian and RushHour show similar results. The time spent in the entropy decod-
ing (CABAC) is around 25%. BlueSky does a bit more motion compensation, while
Pedestrian is a little more intra-prediction orientated. RushHour is in between.

95

96 CHAPTER 6. H.264 RESOURCE ANALYSIS

Kernels
FHD Bluesky FHD Pedestrian FHD RiverBed FHD RushHour
�s % �s % �s % �s %

Cabac 3.05 23.00 3.02 27.69 7.40 39.95 3.12 26.32
Intra 0.06 0.46 0.27 2.44 1.17 6.30 0.15 1.27
Motion 6.33 47.82 3.61 33.08 1.56 8.43 4.43 37.41
IQ + IDCT 0.41 3.10 0.48 4.45 1.82 9.84 0.39 3.32
Deblock 2.82 21.27 2.80 25.68 5.34 28.82 3.11 26.28
Other 0.57 4.34 0.73 6.66 1.23 6.65 0.64 5.41

Total 13.24 100.0 10.91 100.0 18.52 100.0 11.85 100.0

Table 6.1: Average macroblock kernel times of the FHD HDVideoBench sequences.

RiverBed, however shows a completely different profile. All the kernels except for
the motion compensation need a lot more time. Riverbed is a highly predictive sequence
and relies heavily on the intra-prediction. In Section 6.3 the exact ratio of intra and
motion prediction is investigated for determining the memory bandwidth. While intra-
prediction requires less work than motion compensation, the time spend in the entropy
decoding increases.

Regular H.264 streams are more like the other three sequences. The intra prediction,
inverse quantization, and IDCT only take a fraction of the total time. The “other” kernel
contains overhead and the border exchange, and is also only a small part. The ratio of
the entropy decoding to macroblock processing is about 1 to 3. If we assume the SPEs
are as fast as the PPE, multiple entropy decoders are necessary to balance the system.

6.2 Memory Requirements

In this section the memory usage requirements for the parallel implementations are
investigated. The differences with the original sequential algorithm are determined.
This includes the extra structures for the decoupled entropy decoding in the external
memory and the local store usage.

6.2.1 External Memory Requirements

Decoupling the entropy decoding requires to store all its results in H264mb structures for
each macroblock in a frame. Each H264mb structure has a size of 1.9-2 kB. Additionally,
each slice has a H264slice structure of 12 kB. However this can be neglected as it is
only needed once for each slice. For single-sliced frames, a total of 15.5 MB is needed
for a single FHD frame to store the entropy data in work units. For QHD this goes up
to 62.2 MB and for Super Hi-Vision resolutions this goes up even further to 249 MB.

This memory size poses a limit on the number of frames in flight. Each frame in
flight requires a separate matrix of H264mb structures to store the entropy data. The
memory size requirements could limit the parallelization of the entropy decoding. The
higher the resolution the higher the need for having multiple frames in flight in order

6.2. MEMORY REQUIREMENTS 97

to speed up the entropy decoding. The memory requirements increase quadratically
for higher resolutions. Therefore, parallelizing the entropy decoding for future H.264
standards still remains an open topic. At the same time this also sets a practical limit
to 3D-Wave parallelism [18], which requires tens of frames in flight to fully exploit the
available parallelism.

To reduce memory requirements for parallelizing the entropy decoding for future high
resolution H.264 standards, it might be wise to allow slicing for only the entropy decoding
part. For example by slicing the QHD frames in 4 rectangles allows it to be parallelized
with 4 processing cores, while only requiring the memory needed for 1 frame. In contrast
to regular slices, this will not require a additional deblocking step after the macroblock
processing. The sacrifice in compression rate by having additional slice headers can be
neglected.

6.2.2 Local Store Requirements

In this section the local store memory requirements is investigated for both the TP
and the RL implementation, discussed in Chapter 5. Each SPE has a local store with
a size of 256 kB. The local store is shared between the SPE program image and local
variables. First, the program image is depicted, followed by the local variables. Table 6.2
shows the total size and partitioning of the SPE images of both parallel implementations.
The code is compiled with the -O2 optimization level, which strikes a balance between
performance and image size. The same setting is used for obtaining the performance
results in Chapter 7.

Object file
Task Pool Ring-Line

bytes % bytes %

dsputil cell.o 64986 56.1 64336 54.3
h264 decode mb spu.o 8192 7.1 7680 6.5
h264 filter spu.o 5384 4.6 4816 4.1
h264 idct spu.o 1880 1.6 1880 1.6
h264 intra spu.o 28440 24.6 28312 23.9
h264 main spu.o 384 0.3 2896 2.4
h264 mc spu.o 6376 5.5 8376 7.1

ff h264 spu 115824 100.0% 118496 100.0%

Table 6.2: Local store usage - SPE program image size of TP and RL.

The two SPE program images are about the same size. The RL image is a little
larger due to the extra code for implementing the pre-buffering of the motion data and
the distributed control. The program images are quite large as they occupy almost half
of the local store. The object files dsputil cell.o and h264 intra spu.o are mostly
responsible for this. The object file dsputil cell.o consists mainly of functions used
in the motion compensation kernel, while h264 intra spu contains the intra prediction
functions.

98 CHAPTER 6. H.264 RESOURCE ANALYSIS

The SPE programs are about equal in size. This does not, however, apply to the
size of the local variables. RL requires more local store space for implementing the
pre-sending and pre-buffering schemes discussed in Section 5.4.2 and 5.4.5. With the
implemented RL buffer scheme it is not possible to scale to resolutions beyond FHD.
The main goal of the implementation is to extract as much performance as possible,
while abiding the standard. In Chapter 5, it was promised that we would introduce a
more balanced approach in this chapter for scaling beyond FHD. Table 6.3 depicts the
local variable sizes for TP and RL as well as the to be elaborated balanced RL approach.

Local store Task Pool Ring-Line Ring-Line balanced

Working buffer 1600 57600 11520 +1600

Edge data - 3888 3888

Motion data
-(pre)buffer 1584 39936 30720
-biweight 1280 1280 1280
-edge extend 15840 15840 15840

Write-back 320 960 960

DMA list elements 504 4160 4160

H264Context spu
-H264mb 2000 5712 5712
-H264slice 12624 12624 12624
-H264mc - 6280 6280
-other 688 1048 1048

Other H.264 related 3004 3460 3460

Total 25188 138532 84836

Table 6.3: Size in bytes of the data structures of Task Pool, Ring-Line, and the balanced
Ring-Line implementation.

The size difference between TP and RL is quite high for the local data structures.
Adding the SPE program image to the local data variables shows that the RL imple-
mentation uses almost all of the available local store. The stack is also allocated in the
local store.

In contrast, the local store usage of TP is quite economical. Furthermore, the size of
the TP structures stays constant for larger resolutions. For RL, however, the working
buffer and the edge data need to scale with the width of the video sequence. In Sec-
tion 5.4.2 it was revealed that to optimize performance, the RL and working buffers were

6.2. MEMORY REQUIREMENTS 99

combined. Furthermore, buffer slots equal to the number of macroblocks in an entire line
are allocated in the local store. Due to local store size limititations, only resolutions up
to FHD can be supported. For QHD the working and edge buffers need to be doubled
in size. This would require an additional 57600+3888=61488 bytes of local store space,
which simply is not available.

When considering the balanced RL approach, the memory footprint is a lot smaller.
Around 53 kB less local store space is needed to enable the same support for FHD as
in the implemented RL. However, the reduced memory requirement comes with a per-
formance cost. In the balanced RL approach, the working buffers and the RL buffer are
separated. In Section 5.4.2 it was discussed that when combining the working and RL
buffers, additional copy steps are avoided. By separating the two buffers they are rein-
troduced. The balanced buffer strategy can be best explained by looking at Listing 6.1.

Listing 6.1: Local store buffers of the balanced Ring-Line approach.

1 //Ring−Line b u f f e r − s t a t i c a l l y a l l o c a t e d f o r up to 1920 width v ideo
2 DECLARE ALIGNED 16(u in t8 t , r l y l s [1 20∗16∗4]) ;
3 DECLARE ALIGNED 16(u in t8 t , r l c b l s [1 20∗8∗2]) ;
4 DECLARE ALIGNED 16(u in t8 t , r l c r l s [1 20∗8∗2]) ;
5

6 //Working b u f f e r
7 DECLARE ALIGNED 16(u in t8 t , d e s t y l s [4 8 ∗ 2 0]) ;
8 DECLARE ALIGNED 16(u in t8 t , d e s t c b l s [3 2 ∗ 1 0]) ;
9 DECLARE ALIGNED 16(u in t8 t , d e s t c r l s [3 2 ∗ 1 0]) ;

The balanced approach still maintains the idea of allocating buffer slots for an entire
line. Because of this no backwards communication to the source SPE is necessary. When
comparing the buffers to the ones in Listing 5.12, we see that the balanced RL buffers
are 5 times smaller than the implemented working buffers. In this buffering scheme only
the intra data is put in the RL buffer, therefore only 4 and 2 lines are needed for luma
and chroma respectively. The intra data has to be copied from the RL buffer to the
working buffer before processing. Also in the working buffer data must be shifted by
one block before processing the next macroblock. The kernels are then applied to the
working buffer in the same fashion as in TP. Based on the number of copy operations,
it is expected that performance loss incurred by the additional copy steps is within 5%.

In the balanced approach scaling to QHD only requires an additional
11520+3888=15408 bytes. With this approach it is therefore possible to even scale
to Super HiVison (8k x 4k) resolutions with current SPEs. Scaling further with equal
local store space is not possible without applying the RL buffer relations discussed in
Section 4.2.3.3.

From Table 6.3 it is also seen that the motion data pre-buffer reduced in size from
39936 to 30720. This can be accomplished by modifying the motion compensation func-
tions to enable processing on luma blocks with a stride size of 32. The luma buffer has
a static width of 48 pixels to contain the widest motion data block of 21x21. However,
when the highest amount of motion data is required the luma blocks are all 9x9. Since
this can only cross one 16-byte alignment border, only a motion data block with a width
of 32 bytes is required. This has not been implemented to keep down the coding effort.

100 CHAPTER 6. H.264 RESOURCE ANALYSIS

When properly implemented only a few additional conditions need to be checked, and it
is expected that the performance loss is negligible.

6.3 Bandwidth Requirements of Macroblock Decoding

In Chapter 5 the Cell implementations of TP and RL were discussed. It was concluded
that the TP implementation required more external memory operations and bandwidth
than RL due to two reasons. First, RL keeps the intra data on-chip by using local store
to local store transfers. The second is that the write back step only occurs once for every
two blocks, where with TP it has to be performed at the end of every macroblock. The
analysis of the memory bandwidth requirements is neccesary to analyze the performance
results presented in Chapter 7 in order to asses in what matter the memory bandwidth
forms the bottleneck.

To investigate the memory bandwidth requirement, the video sequences must first
be profiled. The bandwidth requirements depend on the frequency and mode motion
compensation is required. More specifically, the bandwidth requirements depend on the
motion compensation partitioning of the macroblock. The four FHD video sequences
have been analyzed in this regard and the results are presented in Table 6.4.

Partitioning List elements BlueSky Pedestrian RiverBed RushHour

Intra - 569 1770 6769 1092

16x16 39 2400 3093 749 3522
16x8 23 451 110 457 263
8x16 39 201 67 119 128
8x8 23 898 277 626 371
8x4 15 70 1 4 3
4x8 23 49 1 1 2
4x4 15 68 0 0 1

Bi-weight
16x16 78 3803 3033 89 3076
16x8 46 0 3 20 6
8x16 78 202 72 127 133
8x8 46 2862 267 128 435
8x4 30 0 0 0 0
4x8 46 0 0 0 0
4x4 30 0 0 0 0

Total list elements 579705 386789 82500 427626

Table 6.4: Motion compensation profile of the FHD HDVideoBench sequences. The
table list the average occurrences per frame.

The table shows the average occurences of the different motion compensation parti-

6.3. BANDWIDTH REQUIREMENTS OF MACROBLOCK DECODING 101

tions per FHD frame. The BlueSky sequence requires the most motion compensation,
while RiverBed primarily depends on intra prediction. The other two sequences are in
between but tend more towards BlueSky.

Since the BlueSky sequence has the highest memory bandwidth requirements, its
profile is used for further analysis. The profile should be seen as optimistic. The fact that
B-frames uses more motion compensation than I/P-frames is neglected. Furthermore,
the BlueSky numbers are an average over 100 frames.

The bandwidth requirements also have a static part. For TP the work unit and intra
data need to be brought in for each macroblock. The unfiltered borders and resulting
picture block need to be written back. These memory operations are static for each
sequence as its size and occurence rate is the same for each macroblock.

Table 6.5 shows the total number of DMA transfers and the relative load on the
memory bandwidth for the TP implementation. For the list elements this is determined
by using the results of Table 3.2, which lists the number of list elements per second.
Since all the transfers for TP have a width of either 32 of 48 byte the average is used,
which equates to 116 M list elements per second.

The work unit and unfiltered borders are sequential DMA transfers. It was shown
that the characteristics for this type of transfer is very different from the list DMA.
This needs to be compensated by reducing the its weigth accordingly. For the sequential
DMA the base is set to the results obtained in Section 3.3.1. For both cases the results
obtained from the experiments with 16 SPEs are used.

List DMA List elements Occur/frame Total elements Rel. BW load

Get intra data 40 8160 326400 0.28%
Write back 37 8160 301920 0.26%
Motion data (See Table 6.4) 579705 0.50%

Sequential DMA DMA size Occur/frame Total size Rel. BW load

Put unfiltered 32 24480 765 kB 0.07%
borders
Get work unit 2000 8160 15.6 MB 0.07

Relative bandwidth load per frame per second 1.18%

Maximum frames per second 84.7 fps

Table 6.5: Memory subsystem requirements for FHD BlueSky using the Task Pool im-
plementation.

In the table the steps involving list DMA and sequential DMA are separated. The
total elements presented the number of list elements transferred per frame. The table
shows that most of the bandwidth is used for list DMA operations. The highest frame
rate before the bandwidth becomes the bottleneck is 84.7 fps. While this is sufficient for
any FHD sequence, it quickly becomes the bottleneck when moving to higher resolutions
or frame rates. For example, QHD has four times the number of macroblocks and,
therefore, requires four times as much bandwidth. Using TP for QHD sequences would

102 CHAPTER 6. H.264 RESOURCE ANALYSIS

result in a maximum of 21.2 fps, which is not sufficient for smooth playback. As stated
earlier, the used profile can be considered optimistic for BlueSky as unbalance on the
memory subsystem load is not considered. In addition the ramping of TP adds to this.
Furthermore, the results of Table 6.5 only consider the macroblock processing part of
H.264. The entropy decoding also requires memory bandwidth. In our implementation
of TP and RL the entropy decoding is done before the macroblock processing. Therefore,
it does not cause additional contention on the memory subsystem. However in a real
application, the entropy decoding will run concurrent with the macroblock processing.
In this case additional memory bandwidth is required.

The RL implementation requires less memory bandwidth. By keeping the intra
data on-chip and having a combined write back step, the number of DMA list transfers
decreased significantly. In Chapter 3.2 it was revealed that the on-chip bandwidth was
a factor 10x higher than the memory bandwidth. Therefore, the on-chip bandwidth is
not a bottleneck. The bandwidth requirements for RL are investigated and presented
in Table 6.6. For calculating the relative bandwidth load the results from Table3.2 were
used. As base for the write back step, the average of the results of the list element width
16 and 32 are used. In RL the write back step only uses these two widths. The average
equals 132.5 M list elements per second. For the motion data the same base is used as
in TP, which equals 116 M list element per second.

List DMA List elements Occur/frame Total elements Rel. BW load

Put intra data 8 8160 65280 -
Write back 32 4080 130560 0.10%
Motion data (See Table 6.4) 579705 0.50%

Sequential DMA DMA size Occur/frame Total size Rel. BW load

Put unfiltered 32 8160 255 kB -
borders
Get work unit 1904 8160 15.5 MB 0.07

Relative bandwidth load per frame 0.67%

Maximum frames per second 149.2 fps

Table 6.6: Memory subsystem requirements for FHD BlueSky using the Ring-Line im-
plementation.

With RL the intra data and unfiltered borders are not transfered via the external
memory and have no contribution. Also the write back requires far less memory band-
width than is the case with TP. The total requirements of the memory subsystem per
frame is 0.67%, which is 43% lower compared to the bandwidth requirements of TP.
With less motion compensation oriented sequences, the relative difference is even higher.
The reduced load on the memory subsystem results in a 76% increase of the maximum
frames per second. This is considerable since the bandwidth is sufficient to support QHD
sequences with RL. Again these numbers should be regarded as optimistic figures for the
BlueSky sequence.

6.4. CONCLUSIONS 103

6.4 Conclusions

In this chapter several investigations have been performed. First, the relative compu-
tational requirements of the entropy decoding, and macroblock processing have been
analyzed for the HDVideoBench sequences. This revealed that in most cases the entropy
decoding, motion compensation and deblocking filter require the most computation. The
ratio of the entropy decoding to the macroblock processing time is found to be around
1 to 3.

Second, the memory usage of both the external memory and the local store are inves-
tigated. This revealed that for each frame in flight, 15.5, 62.2, and 249 MB are required
for respectively FHD, QHD and Super Hi-Vision sequences. The memory requirements
limits the amount of parallelism that can be exploited by the 3D-Wave.

Third, the memory bandwidth requirements are investigated. This revealed that
the more efficient RL implementation could scale up to 149.2 fps before you hit the
bandwidth wall. For TP this limit is reached at 84.7 fps. These numbers correspond
to the FHD BlueSky sequence. Other sequences require less motion compensation and
have a higher limit.

In the next chapter we will investigate the actual performance of the parallel im-
plementations. The results obtained in this chapter are used in the analysis of the
performance results. This is especially the case for the analysis regarding the memory
bandwidth requirements, performed in Section 6.3. In Chapter 8 the resource analysis
is used in projecting the hardware requirements of future applications of parallel H.264
decoders.

104 CHAPTER 6. H.264 RESOURCE ANALYSIS

Experimental Results and
Analysis 7
In Chapter 4 the theory behind two parallel H.264 macroblock decoding strategies were
discussed in detail. The first one was the Task Pool (TP) strategy, which builds on a
centralized worker-server model. The second one was the novel Ring-Line (RL) strategy,
which builds on a data flow like principle. The theoretical analysis, which assumes perfect
conditions, revealed that the TP strategy has better scalability. Following in Chapter 5
the two strategies are implemented. Here it is revealed that RL maps better on the Cell
architecture than TP, since RL allows for concurrent communication and computation.
Therefore, a better performance per core is expected. In Chapter 6 it was revealed that
RL has 1.75x to 3x lower memory bandwidth requirements compared to TP.

In this chapter the actual performance of the TP and RL implementations is inves-
tigated. First, we present the experimental results of the two implementations using
the HDVideoBench sequences. Thereafter, the obtained performance is analyzed. The
differences between the theoretically expected and the actual performance is explained
through further analysis. The analysis allows us to project the performance and scal-
ability on future many-cores. Finally, also the performance and efficiency of the Cell
processor using the parallel H.264 strategies is compared with modern state-of-the-art
x86-processors from Intel and AMD.

7.1 Experimental Results

In this section the two H.264 parallel implementations are benchmarked. The test plat-
form is the Cell Blade which consists of two Cell processor. A total of 16 SPEs is usable.
The FHD sequences of the HDVideoBench are used as input. For more details, see
Section 3.2.

The FFmpeg binaries for TP and RL are build on our development platform, which
is a PS3 running Yellow Dog Linux 6.2. The FFmpeg build is configured with code opti-
mizations enabled and makes use of the PowerPC Altivec extensions. The optimization
flag for the code running on the PPE is -O3, while the SPE code is compiled with -O2
for a good balance between speed and size.

In the benchmarks only the performance of macroblock decoding is measured. In
both implementations this is separated from the entropy decoding, which is performed
before the macroblock decoding. The performance metric used is the average frames per
second for decoding the 100-frame sequences.

The time spent in the macroblock processing is measured once a frame. This is real-
ized by placing the timer readouts around the equivalent of the simplified code fragment
of Listing 5.3 for TP and Listing 5.9 for RL. The PPE hardware timer is used for the
measurement. The timer has a resolution of 14.8 MHz on the Cell Blades. The command
used to run the FFmpeg program is:

105

106 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

./ffmpeg -threads p -i input.h264 -y dropoutput.yuv

where p ranges from 2 to 17 indicating the number of SPEs+1, input is the input sequence
and dropoutput.yuv is a symbolic link to /dev/null.

The average performance in frames per second using the FHD HDVideoBench se-
quences are presented in Figure 7.1.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
ra

m
es

 p
er

 s
ec

on
d

SPEs

RL
TP

Figure 7.1: Average performance in frames per second of the HDVideoBench FHD
BlueSky, Pedestrian and RiverBed sequences.

The results show that both the TP and RL implementation show scalability. Using
more SPEs increases the frames per seconds over the entire range. The performance
of RL is between 1.6x to 2x higher than the performance of TP. For TP the maximum
attainable fps is 160 and 82 for HD and FHD respectively, while RL scales up to 300
and 157 fps.

The RL implementation running on 16 SPEs has sufficient processing performance to
perform the macroblock processing of QHD sequences in real-time. Since QHD sequences
have 4 times as many macroblocks per frame, the projected performance is 31 to 40
fps. The TP implementation is not capable of this. In terms of performance the RL
implementation is clearly superior.

The performance on a single SPE, which is shown in Figure 7.2, is also much higher
for RL. The difference is mainly caused by having concurrent communication and com-
putation. The figure also shows that the single SPE performance of RL is close to
the performance of the PPE running the original sequential FFmpeg. In a single case
(BlueSky FHD), it matches the attained frames per second. This is quite good consid-

7.2. PERFORMANCE ANALYSIS 107

ering that in terms of chip area the PPE is about twice as large as a SPE.

 0

 5

 10

 15

 20

 25

 30

 35

 40

BlueSky HD BlueSky FHD Pedest. HD Pedest. FHD RiverB. HD RiverB, FHD

F
ra

m
es

 p
er

 s
ec

on
d

HDVideoBench sequence

PPE
2D-Wave
Ring-Line

Figure 7.2: Single core PPE sequential, Task Pool and Ring-Line frames per second.

For the HD sequences the scalability seems to be almost at its limits for both im-
plementations with 16 SPEs. For the FHD sequences the scaling is also leveling off, but
has not reached its maximum yet. It should also be noted that the two implementation
have a different preference for the video sequences. Ordered in terms of performance
from high to low for RL they are Pedestrian, BlueSky and RiverBed. TP performs worst
with BlueSky and approximately equally with Pedestrian and Riverbed.

The experimental results show that the actual scalability of TP is worse compared
to RL. This could be seen as a surprise as in Chapter 4 the theoretical scalability of TP
is shown to be superior. In the next section we investigate the deviation of the obtained
results with the theoretical expectancy.

7.2 Performance Analysis

In the previous section the experimental results were presented and several observations
were made. The most important was the fact that scalability of TP is lower than RL.
While also the performance of RL is higher than TP, it can be explained by the fact that
RL maps better on the Cell architecture. Therefore, the performance per SPE is higher
and in turn translates to better overall performance. Explaining the attained scalability,
however, requires further investigation.

108 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

In Section 4 the theoretical analysis of TP shows a scalability of 15 with 16 pro-
cessing elements, for the FHD BlueSky sequence. From the experimental results only a
scalability of approximately 10 is observed. The TP implementation discussed in Sec-
tion 5.3 revealed that the additional spacing incurred a scalability loss. However, the
impact is also investigated in Section 5.3.4.3. The scalability for the BlueSky sequence
only dropped slightly to 14.5. In this section we mainly focus on the differences (and
the lack of difference) in practical and theoretical scalability of both implementation. In
the course of this investigation the other observations are also explained. These include
the sequence preference, the attained frames per second and, the performance differences
with a single SPE and PPE.

First, the practical and theoretical scalability is compared to have a detailed view of
the impact over the full range of 1 to 16. This is performed for both TP and RL. The
theoretical scalability is defined as the scalability with perfect platform conditions, e.g.
zero communication delay and infinite bandwidth. Following, to find the cause of the
additional inefficiency, the code is profiled to uncover the bottlenecks when scaling up
the SPEs. After the bottleneck are identified these are discussed further and finally the
several conclusions about the performance and scalability are drawn.

7.2.1 Practical vs. Theoretical Scalability

In this section, as the first step in tracing back the scalability loss, the exact differ-
ences of the practical and theoretical scalability are investigated. In Chapter 5 it was
revealed that the Cell implementation of the TP and RL strategy reduced the theoret-
ical parallelism. For the sake of determining the platform-specific efficiency losses, the
simulator has to mimic the exact scheduling behavior of the implemented solutions. Fig-
ure 7.3 shows the differences between the actual scalability and the expected scalability
obtained via the simulator. In Figure 7.4 the actual scalability is normalized to the
expected scalability.

The figure shows interesting results. First, the normalized efficiencies of RL are
actually higher than 100%. This implies that the scalability of the implemented RL is
higher than theoretically possible, which should not be possible. The difference originates
from the method of obtaining the theoretical limits. The input of the simulator are the
macroblock execution times obtained by timing the them on the TP implementations
using a single SPE. From the results can be derived that the executions times are less
variable in the RL implementation, resulting in less efficiency loss due to dependency
stalls. The fact the normalized efficiency drops a little when approaching 16 SPEs,
implies that the scaling is actually is a little lower than theoretically possible at the end.
Still the scalability is impressive as it manages to stay approximately the same as the
theoretical limits.

The normalized efficiency of TP is also very interesting. The results show that TP
does not manage to scale the same as theoretically expected. In the theoretical results
the platform-specific effects are not taken into consideration. The difference between the
theoretical and practical results are caused by these effects. A good example of such an
effect is increasing synchronization overhead.

When looking at the TP plot lines, two stages can be identified. In the first stage, up

7.2. PERFORMANCE ANALYSIS 109

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ca

la
bi

lit
y

SPEs

TP theoretical
RL

RL theoretical
TP

Figure 7.3: Average scalability of the TP and RL implementation compared to the
theoretical scalability results obtained using the simulator.

to 8 SPEs, the rate of decline is smaller than in the second stage ranging from 8 to 16. In
both stages the rate of decline with respect to the normalized efficiency, is approximately
constant. The slope change is caused by the additional latency incurred by using off-chip
SPEs. As shown in Figure 3.3 the average latency of a mailbox round-trip increases from
0.41 us to 0.86, when moving from 8 to 16 SPEs.

The initial decline is caused by two platform-specific effects, both contention related.
First, there is a additional contention at the synchronized access via the PPE. With
increasing number of SPEs the average synchronization latency increases and therefore
also the average macroblock execution time.

The second effect is contention on the external memory access. With additional SPEs
the average time spend waiting for a DMA operation to complete is higher when several
SPEs are trying to do the same.

With RL these problems are avoided with the distributed control, SPE-SPE commu-
nication, and the concurrent communication and computation.

With this the causes of the scalability differences are identified. However, it is un-
known what the relative contributions are of each effect. It could be the case that
the contention on accessing the shared structures is mostly the cause and the memory
contention is insignificant, and vice versa. Therefore, the exact contributions of the
platform-specific effects on the scalability loss are investigated.

To investigate the contributions of the effects, the profiling divides the execution

110 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

 70

 75

 80

 85

 90

 95

 100

 105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
or

m
al

iz
ed

 e
ffi

ci
en

cy

SPEs

Ring-Line
Task Pool

Figure 7.4: Normalized efficiency of practical to theoretical scalability of FHD sequences.

times in four parts. These parts are the actual macroblock processing, DMA steps,
synchronization latency and dependency stalls, and the ramping stalls. The profiling
results are shown in Figure 7.5 and 7.6 for TP and RL, respectively. The FHD BlueSky
sequence is used in both cases. It was not possible to separate the dependency stalls and
synchronization latency in the profiling. However, the synchronization latency can be
deduced by using the RL results of this part. Since RL follows the theoretical scalability,
the synchronization latency contributions is has to be constant for all number of SPEs.
In the results for 1 SPE it is seen that the contribution of this step is zero and, therefore,
it can be assumed that the increase with more SPEs in this part is entirely due to
dependency stalls.

The figures show interesting results and mostly confirm the expected behavior of both
implementations. In both cases the macroblock processing part is constant and about the
same. The relative time spent in ramping stalls is also within the expectation described
in Chapter 4. The other two steps are clearly the cause of the observed performance
differences.

The first to notice is the difference in the DMA step contribution. One of the ad-
vantages of RL is that the memory latencies can be hidden behind the computation.
This clearly has its contribution to its performance advantage. For TP the DMA step is
relatively large. Furthermore it also increases steadily when scaling the number of SPEs.
With more than one SPE, contention on the external memory access occurs.

The dependency stalls and synchronization latency is much higher for TP. This is

7.2. PERFORMANCE ANALYSIS 111

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 m
ac

ro
bl

oc
k

ex
ec

ut
io

n
tim

es
 (

us
)

SPEs

Processing
DMA steps

Sync. + Dep.
Ramping

Figure 7.5: Breakdown of the average MB execution time for the Task Pool implemen-
tation using the BlueSky sequence.

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

 m
ac

ro
bl

oc
k

ex
ec

ut
io

n
tim

es
 (

us
)

SPEs

Processing
DMA steps

Sync. + Dep.
Ramping

Figure 7.6: Breakdown of the average MB execution time for the Ring-Line implemen-
tation using the BlueSky sequence.

112 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

especially the case for more than 8 SPEs. As previously noted, this is partly caused by
the off-chip latency. However, the increase in the dependency stall and synchronization
latency implies that contention plays a significant role in the scalability loss.

In the next two sections the memory access contention and synchronized access con-
tention is discussed in detail. This is followed by a conclusion on the scalability of the
two parallel implementation.

7.2.2 Memory Access Contention

The DMA step consists of local store moves, creating DMA lists, issuing the DMA oper-
ation and waiting for their completion. With increasing SPEs the waiting for completion
time increases, while the rest is constant. From the RL profile it can be seen that the
DMA step is constant until around 12 SPEs, after which it increases a little. From this
it can be derived that the constant part is around 1.7 us as generally RL does not have
to wait for DMA completion.

When we look at the DMA step contribution of TP, it can be seen that it is much
larger. In TP the time for the DMA step starts at 7.5 �s and goes up to 11.3 �s. As in
RL this step also consists of a constant and variable part. In Section 6.3 it was shown
that the number of memory operations of TP is around 1.6x higher than RL. Therefore,
the static part of TP is approximated to 2.7 �s. This means that the dynamic part of
the DMA step ranges from 4.8 to 8.6 �s. The time waiting for DMA completion has
increased almost two-fold due to the memory access contention.

This, however, is not surprising when considering that in the same section it was
found that 84.9 fps was approximated as the maximum frames per seconds. After this
the memory bandwidth becomes a hard bottleneck. From Figure 7.1 it is seen that at
16 SPEs, the BlueSky performance is at 68.8 fps. This means that already 81% of the
memory bandwidth is used. Furthermore, 84.9 fps is considered an optimistic limit.

Running into the memory bandwidth bottleneck also explains the fact that the DMA
step increases for the RL implementation. After 12 SPEs the DMA step increases rela-
tively aggressive. At 16 SPEs the DMA step has increased from 1.7 to 2.5 us. From the
fact that this increases, we can derive that the memory latency cannot be completely
hidden behind the computation. This can be viewed as surprising as RL uses less mem-
ory bandwidth and the average time that the DMAs have to complete is 9-10 us, which
is the time of the macroblock processing.

In Section 6.3 it was shown that the maximum performance for the RL implementa-
tion is 149.2 fps. In Figure 7.1 it is shown that a performance of 136 fps is attained at 16
SPEs. This means that 91% of the optimistically approximated bandwidth is used. Con-
sidering this it could actually be seen as surprising that the DMA step has not increased
more.

When we look at the profiling results of the other sequences in Table 7.1 and 7.2,
the prior deduction can be confirmed. In Section 6.3 it is shown that RiverBed is much
less demanding in terms of memory bandwidth. This is also less strongly the case for
Pedestrian. Calculating the maximum frames per second for Pedestrian and RiverBed
in the same fashion as for BlueSky, results in 98.5 and 132.8 fps respectively for TP. For
RL this is 196.2 and 357 fps.

7.2. PERFORMANCE ANALYSIS 113

At 16 SPEs, the TP bandwidth usage is at 80% for Pedestrian and 62% for RiverBed.
The bandwidth usage of the three sequences correlates well with the duration increase
of the DMA step. At 16 SPES, the RL bandwidth usage is at 80% for Pedestrian and
only at 35% for RiverBed. As expected the DMA step of RiverBed remains equal for all
SPE configurations. For Pedestrian only a slight increase is seen at the end from 1.31 to
1.42 us. When comparing this to BlueSky, a similar increase can be noted at 13 SPEs,
at which the performance is 121.4 fps. At this point the bandwidth usage is at a very
similar 81%.

Task Pool Ring-Line
SPEs 1 8 16 1 8 16

Processing 8.76 8.76 8.76 8.31 8.31 8.31
DMA steps 5.83 6.69 8.94 1.30 1.31 1.42
Dep + Sync 0.58 1.29 5.30 0.08 0.33 0.87
Ramping 0.00 0.57 2.08 0.00 0.65 1.59

Total(us) 15.17 17.31 25.08 9.69 10.60 12.19

Table 7.1: Profiling results of FHD Pedestrian.

Task Pool Ring-Line
SPEs 1 8 16 1 8 16

Processing 11.96 11.96 11.96 11.81 11.81 11.81
DMA steps 3.61 4.00 5.15 0.76 0.76 0.77
Dep + Sync 0.58 1.32 5.18 0.10 0.31 0.58
Ramping 0.00 0.39 1.62 0.00 0.90 2.39

Total(us) 16.15 17.67 23.91 12.67 13.78 15.55

Table 7.2: Profiling results of FHD Riverbed.

7.2.3 Synchronized Access Contention

In the previous section the effects of the memory access contention were discussed. In
this section we continue with the other cause of the TP scalability loss, namely the
synchronized access contention. From Figure 7.5 it is seen that for TP the increase in
dependency and synchronization stalls is as much contributing to the efficiency loss as
the memory access contention. RL does not suffer from this and only shows increase due
to dependency stalls.

In TP more SPEs causes the PPE to distribute work at a higher rate. Even if the
PPE is able to handle the work distribution throughput wise the scalability still suffers
due to contention effects. This is much like the memory access contention discussed in
the previous section. Compared to RL, which features a distributed control, the increase
in synchronization stalls is quite significant.

114 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

The distributed control of RL is only part of the difference. More importantly is that
in RL the synchronization is one-way and non-blocking. It simply sends an incremented
value to the target SPE. The contribution of the synchronization step in RL can be
considered close to zero. For TP the synchronization is two-way and blocking. The SPE
send a message to the PPE and has to wait for a response before continuing.

To make a calculated guess at the synchronization delays of the TP implementation,
this is equaled to the difference between the dependency and synchronization stall of
the TP and RL step. As stated earlier, separate measuring the dependency stalls and
synchronization latencies is not possible due to practical reasons. The results are shown
in Table 7.3.

SPEs 1 2 4 6 8 9 10 12 14 16

BlueSky 0.49 0.54 0.65 0.73 0.84 1.19 1.57 2.33 3.17 4.01
Pedestrian 0.48 0.55 0.69 0.82 0.97 1.32 1.73 2.57 3.44 4.43
RiverBed 0.48 0.55 0.69 0.84 1.01 1.43 1.86 2.72 3.68 4.61

Table 7.3: Approximated average synchronized access latency per macroblock of the
Task Pool implementation.

The synchronization latencies are about the same for the three sequences. The results
for Pedestrian and BlueSky are a bit higher. This is expected as the performance of these
sequences is higher. With higher fps, the synchronized access request rate is also higher
and in turn causes more contention. We also clearly see the a rapid increase for more
than 8 SPEs. This is mostly caused by the fact that part of the SPEs is located off-chip.
It is expected that if all the SPEs are located on a single chip the access latencies would
have been around 2 us with 16 SPEs.

However, 2 us is still quite large as it is already at 20% of the processing time.
This is simply too much for efficient scaling. In the current implementation of TP
running on the Cell, the performance is for a great part bottlenecked by the memory
subsystem. If this would be taken out of the equation and more SPEs were to be added,
the synchronized accesses would quickly become the bottleneck. Also increasing the
IPC of the current SPEs results in lower scalability. When the average macroblock time
decreases, the average synchronized access request rate increases. This in turn will cause
more contention and higher average access latencies.

In Section 3.3.3 the synchronization mechanisms were investigated and the fast mail-
box was chosen because of its low latency characteristics. It can be concluded that the
currently available synchronization mechanisms simply do not meet the requirements to
provide a sufficiently scalable TP. Adding parallelism with 3D-Wave would not increase
scalability as it is already bottlenecked by the centralized design.

7.3 Cell Efficiency Comparison

In the previous sections the performance of the two parallel implementations have been
revealed. The RL implementation has proven to be the faster and more scalable solution.

7.3. CELL EFFICIENCY COMPARISON 115

(Dual) Cell processor X86 processor
SFRL 8 SFRL 16 MFRL 16 Pentium4 Core2 Duo PhenomII x4

BlueSky 81.8 136.1 160.6 33.9 80.6 81.2
Pedestrian 92.9 156.9 186.1 36.8 83.1 85.8
RiverBed 71.3 125.8 150.7 23.5 51.2 61.2
RushHour 87.0 149.1 176.8 32.7 74.1 76.9

Average 83.2 142.0 168.6 31.7 72.3 76.3

Transistors 234M 468M 468M 125M 410M 758M
Fps/MTrans. 0.36 0.30 0.36 0.25 0.18 0.10

MB time(us) 11.8 13.8 11.6 3.9 1.7 1.6

Table 7.4: Performance in frames per second of macroblock processing using FHD se-
quences.

In this section the RL performance results of the Cell processor are compared to the
performance results of several x86 consumer processors. For the comparison a Pentium
4 3.4 Ghz Prescott, Core 2 Duo E8400 and a Phenom II x4 940 are used. The exact
specifications of the test platform can be found in Section 3.2.

As is the case for the Cell processor, the tests only measure the macroblock decoding
times. For the three processors the original version of FFmpeg, prior to the parallelization
changes, is used. Since the x86 platforms do not offer access to a hardware counter, the
clock gettime facility is used. This timer is not as accurate and low latency as the PPE
and SPE timers. To compensate for this the average clock gettime latency is measured
and subtracted from the final results for every time it is used.

The FHD sequences of the HDVideoBench are used in the test. The sequences are
encoded to contain only one slice per frame. Since FFmpeg only has support for slice
parallelism, the processors cannot benefit from there multi-threading capabilities. For
the sake of a clear comparison, the presented results of the processors are normalized
to 3.2 GHz. Since the processors all run close to 3.2 GHz the inaccuracy is minimal.
Table 7.4 shows the performance results.

In the table the results for the (regular) single-frame RL (SFRL) and multi-frame RL
(MFRL) are listed with 8 and 16 SPEs. Since the MFRL is not implemented, the results
are extrapolated from the SFRL results. This is done using the scalability analysis of
Chapter 4. The scalability difference of SFRL and MFRL is simply factored in.

The table shows that the Cell processor using the RL algorithm is clearly the most
efficient solution. The comparison is not completely fair, since the Core2 Duo and
PhenomII x4 are multi-core processors. However, parallelizing the macroblock processing
is a similar way as TP or RL for the x86 homogeneous CMPs is projected to provide little
speed-up. The average macroblock decoding time per core is below 2 us. Synchronization
has to be very fast, even with the limited core count of 2-4, to gain improvements. It is
expected that even with a properly parallelized solution the CMPs will not be as efficient

116 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

as the Cell RL implementation.
The x86 processors performance does scale well when the IPC improves. This can be

clearly seen from moving from a Pentium4 to a Core2 Duo or PhenomII processor. The
average macroblock time has been decreased by a factor 2.4. This is not surprising as
the sequences are decoded sequentially. However, the improvements in IPC are slowing
down and power limitations have put a halt to frequency scaling. It is expected that
the practical limit will be reached at around 1 us per macroblock. Decoding a QHD
sequence is still possible, but moving further will not be feasible.

In terms of absolute performance the projected performance of MFRL with 16 SPEs is
impressive. Furthermore, RL is expected to both scale with IPC per core improvements
as well as the number of cores, given that the memory subsystem capabilities scales
accordingly. Judging from the x86 performance results, the Cell processor still has a lot
of room for improvements in terms of IPC. The average macroblock execution time per
core is a factor 7-8 times higher compared to the PhenomII.

On the other hand moving to higher resolution allows for higher number of processing
elements, while maintaining the same efficiency. For MFRL it is expected that for
Super HiVision resolutions, which has 4 times the width of FHD, 64 SPEs can be used
while maintaining an efficiency ratio of 90%. In Chapter 8 the requirements for future
applications of the RL algorithm is discussed further.

7.4 Conclusions

In this chapter the performance results of TP and RL have been presented and analyzed.
The performance results of RL are impressive. With 16 SPEs, the obtained frames per
second for macroblock processing is between 125 and 160 fps for FHD sequences. For
TP the performance is lower at 68 to 82 fps depending on the used sequence. The
performance difference is between 1.6x and 2x and originate from a better scalability
and base performance, both in favor of RL.

The scalability of RL with 16 SPEs is observed to be around 12x. This coincides
with the theoretical expectations. It has been observed that the Cell implementation
of RL follows the theoretical scalability over the entire range of 1 to 16. On the other
hand, TP only showed a scalability of 10x with 16 SPES. This is much lower than the
theoretically expected 14.3x.

The difference in theoretical and actual scalability of TP is caused by the influence
of platform-specific effects. These effects are the memory access contention and syn-
chronized access contention. Both these effects have an approximately equal negative
influencing on the scalability. They both contribute about 4-5 us in the average mac-
roblock decoding time at 16 SPEs compared to 1 SPE, in the FHD BlueSky sequence.

The RL implementation is virtually unaffected by the platform-specific effects. This
follows from three features of RL. First, the non-blocking distributed control has been
mapped on the Cell to send synchronization messages to the neighboring SPE. This
synchronization is non-blocking as it does not expect a response. Second, the concurrent
communication and computation hides the memory latencies. Therefore, the memory
access contention only starts to have a visible influence on the performance, when the
available memory bandwidth has been saturated for more than 80%. After this point the

7.4. CONCLUSIONS 117

memory latencies can no longer be completely hidden behind the computation. Finally,
using explicit SPE-SPE communication conserves a lot of memory bandwidth compared
to TP. Therefore, the performance is able to scale further in terms of performance before
becoming memory bandwidth limited.

In contrast, the TP implementation suffers from both the memory and synchronized
access contention. The centralized worker-server scheme requires synchronized access to
the shared structures. Increasing the number of SPEs in turn increases the contention at
the PPE, which acts as the server. The synchronized access latency is still relatively low
up to 8 SPEs t at 1 us. After this point, the latency increases rapidly to around 5 us.
The additional latency of the off-chip SPEs causes the accelerated increase. The memory
access contention is also affecting the scalability of TP. Since the memory latencies are
not hidden behind the computation, the effects of the contention are directly visible in
the execution time.

It can be concluded that the TP implementation is not very scalable in practical
application. The scalability will improves if both the memory bandwidth and synchro-
nization latency characteristics improve. However, from a performance and efficiency
point of view it is better to opt for the RL solution, instead of trying to improve on the
TP. Due to its algorithmic characteristics it is able to leverage both improvements in
IPC per core and in the core quantity. In both cases TP would quickly be bottlenecked
by the synchronization contention.

When comparing the Cell processor using the RL implementation to modern state-
of-the-art x86 processors using a the original FFmpeg decoder, it can be concluded that
the Cell processor is superior in both absolute performance and performance/transistor.
Furthermore, it is shown that the SPEs have a lot of room for improvement in terms
of IPC. The average macroblock execution times are 7-8 times higher compared to the
Core2 and PhenomII processors.

In the next chapter several case studies of future applications of RL are discussed.
The case studies concern possible future iterations of the H.264 standard.

118 CHAPTER 7. EXPERIMENTAL RESULTS AND ANALYSIS

Future applications 8
8.1 Quad HD and Super HiVision

As the name suggest Quad HD stands for a resolution of 3840x2160, which is four
times FHD. Super HiVision goes another step further and represents a resolution of
7680x4320, which has 16 times the pixel count of FHD. With the unending urge for
better visual experiences these resolutions are likely to be standardized in future H.264
iterations. More compute capabilities are required to decode these type of sequences.
With diminishing IPC and frequency improvements, single-threaded performance will
not fulfill this need. The scalable Ring-Line (RL) approach, however, can make use of
future many-cores to deliver the necessary performance.

To investigate the hardware requirements for Quad HD and SuperHiVision, the ob-
tained results in Chapter 7 are used as a base. More specifically, the performance of
the projected MFRL with 16 SPEs is 168 fps for FHD. To be a bit conservative we use
150 fps as the base performance. The projected efficiency of the MFRL at this setting
is 90%. The required frame rate of todays HD video sequence is between 24 to 30 fps.
This is enough for smooth playback most of the time. However, if fast motion sequences
a higher frame rate still brings a better experience. Therefore, in addition the frame rate
requirements in our analysis is set to 60 fps.

Quad HD video has two times the horizontal width of FHD. In Section 4.2.3 it is
derived that increasing the width of the video allows us to proportionally increase the
number of SPEs, while maintaining equal efficiency. Therefore, 32 SPEs could be used
with an efficiency of 90%. With 32 SPEs the performance would be 75 QHD fps. This
is more than the required 60 fps and even 25 SPEs would be enough.

With Super HiVision the horizontal resolution doubles again and 64 SPEs can be
used with an efficiency of 90%. The projected performance at this resolution is 37.5
fps, which does not meet the 60 fps requirement. While adding more SPEs is a possible
solution, it decreases the efficiency. It might be more efficient, area and/or power wise,
to increase the IPC of the SPEs instead. In Section 7.3 it was discovered that there is
still a lot of headroom to improve in this area. Therefore, it is suggested to increase the
IPC with a factor 60/37.5=1.6 compared to the current SPEs.

The entropy decoding should be performed on a high performance ILP centric core
like the AMD PhenomII x4 cores. The single-threaded CABAC performance on this
processor is measured to be around 160 FHD fps. The number of entropy decoding
instances should be kept as low as possible to conserve memory. Each entropy decoding
instance requires two work unit matrices to operate in a double buffered fashion. For
QHD ⌈1.5⌉ of these cores are needed, which results in 4x62.2=248.8 MB of external
memory. For Super HiVision this increases to 6 cores and 12x249=3 GB. As you can see
the memory requirements rise up quickly as supporting higher resolutions requires more

119

120 CHAPTER 8. FUTURE APPLICATIONS

cores and more memory per core.
Using less powerful cores like the Cell PPE or SPE for the entropy decoding, requires

a factor 6-8 more memory. Clearly this is not desired. A standard revision in regards
of the entropy decoding might solve the problem. By using slices only on the entropy
decoding, inversely proportional memory is required. Since only the entropy decoding
is sliced the macroblock decoding part stays the same. The compression rate suffers a
little due to the extra slice headers, however this is negligible for low number of slices.

8.2 Stereoscopic 3D and free viewpoint video

Stereoscopic 3D video has been a hot topic for several years. In the envisioned application
of stereoscopic 3D, the screen images are quickly alternated for each eye in a synchronized
pace with the blackening of the shutter glasses. Our eyes receive frames from two different
viewpoints of the video, thus creating a 3D effect. Free viewpoint video allows the user
to freely navigate in real world visual scenes, as known from virtual worlds in computer
graphics.

Up to now there has not been a real breakthrough to the consumer market, however,
at the moment there is a lot of movement in the 3D-TV direction. It is expected that a
real breakthrough is imminent in 2010. With current high refresh rate LCD television,
ranging up to 240 Hz, 3D functionality can simply be added by upgrading the external
player [28]. No new televisions are necessary, which lowers the threshold for adoption.

Several proposal have been applied for extending the H.264 standard to enable mul-
tiple view paths [25][8]. The proposals have in common that they suggest inter-path
frame dependencies to increase compression rate, while maintaining the picture quality.
In other words, no frame parallelism can be exploited. The desired solution is to pro-
cess the frames sequentially at a much higher frame rate. The RL approach has great
potential in this regard.

For our case study we focus on stereoscopic 3D video. We assume 60 frames per
second per view path totaling in 120 frames per second to satisfy both eyes. Extending to
free point video simply translates to adding more view paths. The considered resolutions
are FHD, QHD, and Super HiVision, discussed in the previous section.

To decode 3D FHD at 120 fps even the current single-frame RL implementation on
16 SPEs suffices for the macroblock processing. In Section 7.1 it is shown that the
performance is between 125 to 160 fps. As explained in the previous section, using
fast ILP centric cores for the entropy decoding is important in terms of memory usage
requirements. The CABAC performance of the PhenomII core is measured to be 160
fps. Since only one instance of the CABAC decoder is needed, two work unit buffers are
used, with a size of 2x15.5=31 MB.

Going further to QHD requires more compute capabilities. Since QHD is essentially
four times FHD, the computational requirements also quadruple. For the entropy de-
coding 3 PhenomII cores are needed. The size of the work unit buffers is in this case
6x62.2=248.8 MB. For the macroblock processing more cores are required. In QHD the
horizontal resolution is doubled which enable us to use 32 SPEs, while maintaining 90%
efficiency. The projected performance of 32 SPEs is around 75 QHD fps. Therefore,
using 32 SPEs does not deliver sufficient performance. To maintain the scaling efficiency

8.3. EMBEDDED AND ACCELERATOR INTEGRATION 121

it is suggested to increase the IPC with a factor 120/75=1.6 to meet the performance
requirements.

Finally, moving to stereoscopic 3D in Super HiVision resolutions requires immense
compute capabilities. First, for the CABAC decoding another factor 4 in entropy de-
coding cores is required, totaling in 12 cores. The memory requirements are in this case
24x249 MB=6 GB. For the macroblock decoding the number of SPEs can be doubled
again to 64, which results in a performance of 37.5 Super HiVision fps. As the perfor-
mance is now clearly not up to the required level adding more SPEs cannot solve the
problem on its own. A factor 120/37.5=3.2 in performance is lacking. This can be solved
by increasing the IPC of the cores with a factor 3.2 compared to the current SPEs. To
put this into perspective this is at the same level as the Pentium 4 Prescott core, which
still has a factor 2-2.5 lower IPC compared to the PhenomII core.

Table 8.1 summarizes the requirements. The memory bandwidth requirements should
be interpreted as a factorial performance improvement over the current Cell memory
subsystem.

CABAC
cores

Memory
size

SPEs SPE IPC Memory
bandwidth

Full HD 0.75 31 MB 16 1x 1x
Quad HD 3 248.8 MB 32 1.6x 4x
Super HiVi-
sion

12 6 GB 64 3.2 16x

Table 8.1: Hardware requirements for stereoscopic 3D-TV at 120 fps using the MFRL
decoding strategy. CABAC cores are assumed PhenomII cores at 3.2 GHz, capable of
processing 160fps at FHD

For free view point video at the QHD and Super HiVison resolutions a standard revi-
sion is suggested. Both the memory requirements and the inter-path frame dependency
will hinder further parallelization.

8.3 Embedded and Accelerator Integration

Devices like set-top boxes, bluray players, mobile phones, and televisions integrate H.264
decoding capabilities. As a trade-off to between power consumption, time-to-market and
production cost a embedded solution is used. The embedded SoCs consist of a semi-
custom processor to do the task at hand. Often these processors are designed to meet a
certain performance specification. The RL algorithm could be used as the base for these
chips to perform the H.264 decoding as it has proven to be both efficient and scalable.

A possible design for a embedded chip would be to use a further specialized SPE core
for the macroblock processing. Work has been done in this direction by Meenderinck [19].
A speed up of 2x was achieved by adding 12 instructions to the SPE ISA. For the entropy
decoding one might opt for one or more CABAC ASIC to conserve memory requirements.
A small control processor is needed to perform the synchronization.

122 CHAPTER 8. FUTURE APPLICATIONS

The RL approach could also motivate the integration of SPE like cores as accelera-
tors. With transistor budget doubling every 18-24 months, filling the chip with useful
components becomes increasingly difficult. Adding more cores does not always help as
programs can only be parallelized to a certain extend. Also due to power restriction we
might end up with a processor that can only have part of the executions cores active.

Conclusion 9
In this thesis we have analyzed, implemented, and compared two parallel H.264 de-
coding strategies on the Cell architecture. The implementation and comparison of the
two strategies has great value for gaining insight on programming the Cell architecture
and future many-cores in general. Both the Task Pool (TP) and the novel Ring-Line
(RL) approach exploit macroblock-level parallelism. Investigating the parallelization of
H.264 is also important for solving the compute requirements of future iterations and
applications of the H.264 standard.

The first step in our investigation was to provide a theoretical scalability analysis
of the TP and novel Ring-Line approach. The TP algorithm builds on a worker-server
model, in which the macroblocks act as the work units. By using the dependency table
and task queue structures, the state of the macroblocks is updated according to the
macroblock dependencies. When the dependencies of a macroblock resolves it is pushed
in to the task queue, where it waits for an available worker. The theoretical speedup
found through simulation a FHD sequence is found to be 14.8x with 16 processing ele-
ments. The platform-specific effect like synchronization overhead are not considered in
the simulation.

In the novel RL approach each processing element processed an entire scan line of
macroblocks. When this is finished, it continues with the next available line until the
entire frame is decoded. No shared structures are required as it is build on a distributed
control mechanism. The processing elements are mapped in a ring network and only re-
quire to synchronize with their neighbor(s). The RL simulation results show a speedup
of 12x with FHD and 16 processing elements. The dynamic macroblock scheduling of
TP is less affected by the dependency stalls, resulting from variable execution times. In
exchange the RL algorithm is predictable, as it can be exactly predicted which process-
ing element processed which macroblocks. This allows us, among others, to hide the
communication latencies behind the computation.

For both TP and RL the DMA alignment restriction causes parallelism loss. For TP,
the overlapping writes to the frame would cause faulty images. The solution is to increase
the minimal horizontal spacing of the concurrent macroblocks by one. This caused the
parallelism to drop from 60 to 40 with FHD sequences. The effect on the scalability
remains small with 16 SPEs as the speedup dropped from 14.8x to 14.3x. In RL this is
solved by combining and delaying the write back step of two adjacent macroblocks, which
also conserves memory bandwidth. The speedup drop of 12x to 11.7x was marginal at
16 SPEs.

In RL, by keeping the intra data on-chip and the more efficient write back, the
memory bandwidth requirements are between 1.75x to 3x lower. It is investigated that
for TP using the FHD BlueSky sequence a maximum of 84.7 fps is attainable, before
saturating the memory bandwidth. For RL this is 149.2 fps. In less motion compensation

123

124 CHAPTER 9. CONCLUSION

demanding sequences as RiverBed the difference is even higher with 132.8 vs 357 fps.
The experimental results showed that RL is between 1.6x and 2x times faster than

TP. With the FHD Bluesky sequence using 16 SPEs a performance of 68.8 and 136.1 fps
is attained for TP and RL respectively. The performance level of RL is impressive as it
is close to the memory bandwidth limits. Even more impressive is that the scalability
follows the theoretical expectancy almost perfectly. In contrast, the performance and
especially the scalability of TP is poor. Most of the performance difference originate from
the concurrent communication and computation of RL. However, a theoretical speedup
of 14.3x is expected, but only 10.3x is observed. The practical scalability has dropped
below the (theoretically) less scalable RL. This is caused by platform-specific effects,
namely the memory access contention and synchronized access contention.

While TP exhibits excellent scalability in theory, it can be concluded that TP is not
a very scalable solution in practice. The scalability deficiencies will be even more visible
by using more and/or faster cores. In contrast, the practical results of RL show that
it is virtually unaffected by platform effects. This property indicates a truly scalable
implementation. It is expected that RL scales effortless to higher number of cores, when
using larger resolutions.

Since RL is only applicable to the macroblock decoding part of H.264, the paral-
lelization of the entropy decoding remains an open topic for future work. It has been
shown that parallelizing the entropy decoding on the frame level requires large amount
of memory, increasing quadratically with the resolution. A related future work is imple-
menting the multi-frame RL. In this thesis we have restricted ourselves to single-frame
RL, due to implementation difficulties. The projected performance gain of multi-frame
RL is 20% for FHD sequences using 16 SPEs, increasing the efficiency to 90%.

From the comparison of TP and RL a more general conclusion of programming the
Cell and local store architectures can be drawn. Extracting maximum performance out
off the Cell requires a level of predictability in the algorithm to exploit concurrent com-
munication and computation. Furthermore, predictability also allows for a distributed
control mechanism. When exploiting fine-grained parallelism the latter is a requirement
to scale to many-core processors. To extract performance out of future heterogeneous
many-cores parallelism with a distributed data flow is required. Future parallel program-
ming languages and models should stimulate the programmer to specify the parallelism
in a data flow manner.(We are currently working on a parallel programming model based
on function block-level parallelism. Implementing this requires large innovation in the
programming language, compilers, runtime system, operating system, and the architec-
ture.)

Bibliography

[1] International Standard of Joint Video Specification (ITU-T Rec. H.264— ISO/IEC
14496-10 AVC), 2005.

[2] M. Alvarez, A. Ramirez, A. Azevedo, C.H. Meenderinck, B.H.H. Juurlink, and
M. Valero, Scalability of macroblock-level parallelism for h.264 decoding, Proc. Int.
Conf. on Parallel and Distributed Systems, 2009.

[3] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, A Performance Characteriza-
tion of High Definition Digital Video Decoding using H.264/AVC, Proc. IEEE Int.
Workload Characterization Symposium, 2005, pp. 24–33.

[4] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, HD-VideoBench: A Bench-
mark for Evaluating High Definition Digital Video Applications, IEEE Int. Symp.
on Workload Characterization, 2007.

[5] A. Azevedo, C.H. Meenderinck, B.H.H. Juurlink, M. Alvarez, and A. Ramirez, Anal-
ysis of Video Filtering on the Cell Processor, Proceedings of International Sympo-
sium on Circuits and Systems (ISCAS), May 2008.

[6] H. Baik, K.H. Sihn, Y. Kim, S. Bae, N. Han, and H.J. Song, Analysis and Par-
allelization of H.264 Decoder on Cell Broadband Engine Architecture, Proc. of the
Intl. Symp. on Signal Processing and Information Technology, Samsung Electron.
Co., 2007.

[7] M.A. Baker, P. Dalale, K.S. Chatha, and S.B.K. Vrudhula, A Scalable Parallel H.264
Decoder on the Cell Broadband Engine Architecture, Proc. IEEE/ACM Int. Conf.
on Hardware/Software Codesign and System Synthesis, vol. 7, 2009.

[8] C. Bilen, A. Aksay, and G.B. Akar, A multi-view video codec based on H.264, Pro-
ceedings of the IEEE International Conference on Image Processing (ICIP?6), 2006,
pp. 541–544.

[9] CBEA JSRE Series, Spe runtime management library 2.3, 2008.

[10] T. Chen, R. Raghavan, JN Dale, and E. Iwata, Cell Broadband Engine Architecture
and its First Implementation: a Performance View, IBM Journal of Research and
Development 51 (2007), no. 5.

[11] Y.K. Chen, X. Tian, S. Ge, and M. Girkar, Towards efficient multi-level thread-
ing of h.264 encoder on intel hyper-threading architectures, Proc. Int. Parallel and
Distributed Processing Symposium, vol. 18, 2004.

[12] The FFmpeg Libavcodec, http://ffmpeg.org.

[13] M. Flierl and B. Girod, Generalized B pictures and the draft H.264/AVC video-
compression standard, IEEE Transactions on Circuits and Systems for Video Tech-
nology 13 (July 2003), no. 7, 587–597.

125

http://ffmpeg.org

126 BIBLIOGRAPHY

[14] M. Greenwald and D. Cheriton, The synergy between non-blocking synchroniza-
tion and operating system structure, ACM SIGOPS Operating Systems Review 30
(1996), no. si, 123–136.

[15] A. Gulati and G. Campbell, Efficient mapping of the H.264 encoding algorithm
onto multiprocessor DSPs, Proc. Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, vol. 5683, 2005.

[16] D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez, Performance analysis of cell
broadband engine for high memory bandwidth applications, May 2007, pp. 210–219.

[17] M. Kistler, M. Perrone, and F. Petrini, Cell multiprocessor communication network:
Built for speed, IEEE micro 26 (2006), no. 3, 10.

[18] C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez Mesa, and A. Ramirez, Par-
allel Scalability of Video Decoders, Journal of Signal Processing Systems 57 (2009),
no. 2.

[19] C. Meenderinck and B. Juurlink, Specialization of the Cell SPE for Media Applica-
tions, Proceedings of the 2009 20th IEEE International Conference on Application-
specific Systems, Architectures and Processors-Volume 00, IEEE Computer Society,
2009, pp. 46–52.

[20] T. Oelbaum, V. Baroncini, T.K. Tan, and C. Fenimore, Subjective Quality Assess-
ment of the Emerging AVC/H.264 Video Coding Standard, Proc. Int. Broadcast
Conf., 2004.

[21] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, et al., The Design and Implementation of a
First-Generation CELL Processor, Proc. IEEE Int. Solid-State Circuits Conference
(ISSCC), 2005.

[22] A. Rodriguez, A. Gonzalez, and MP Malumbres, Hierarchical Parallelization of an
H.264/AVC Video Encoder, Proc. Int. Symp. on Parallel Computing in Electrical
Engineering, 2006.

[23] M. Roitzsch, Slice-Balancing H.264 Video Encoding for Improved Scalability of Mul-
ticore Decoding, Proc. IEEE Real-Time Systems Symposium, vol. 27, 2006.

[24] H. Shojania, S. Sudharsanan, and Chan Wai-Yip, Performance improvement of
the h.264/avc deblocking filter using simd instructions, Proc. IEEE Int. Symp. on
Circuits and Systems ISCAS, May 2006.

[25] A. Smolic, H. Kimata, and A. Vetro, Development of MPEG standards for 3D and
free viewpoint video, Three-Dimensional TV, Video, and Display IV 6016.

[26] E.B. van der Tol, E.G. Jaspers, and R.H. Gelderblom, Mapping of H.264 Decoding
on a Multiprocessor Architecture, Proc. SPIE Conf. on Image and Video Communi-
cations and Processing, 2003.

BIBLIOGRAPHY 127

[27] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, Overview of the
H.264/AVC Video Coding Standard, IEEE Transactions on Circuits and Systems
for Video Technology 13 (2003), no. 7, 560–576.

[28] A. Woods, T. Rourke, and K. Yuen, The Compatibility of Consumer Displays with
Time-Sequential Stereoscopic 3D Visualisation, Proceedings of the K-IDS Three-
Dimensional Display Workshop, vol. 2006, Citeseer, 2006, p. 21.

[29] X264. A Free H.264/AVC Encoder, http://www.videolan.org/developers/

x264.html.

[30] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell, Performance,
Area and Bandwidth Implications on Large-Scale CMP Cache Design, Proc. Work-
shop on Chip Multiprocessor Memory Systems and Interconnects (2007).

[31] X. Zhou, E. Q. Li, and Y.-K. Chen, Implementation of H.264 Decoder on General-
Purpose Processors with Media Instructions, Proc. SPIE Conf. on Image and Video
Communications and Processing, 2003.

http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html

128 BIBLIOGRAPHY

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Background
	Cell architecture overview
	Overview of H.264 Decoding
	Parallelization Opportunities
	Task-Level Decomposition
	GOP-Level Parallelism
	Frame- and Slice-Level Parallelism
	Macroblock-level Parallelism

	Experimental Setup
	Development Environment
	Test Setup
	Communication Micro-Benchmarks
	Sequential DMA Throughput
	List DMA Throughput
	Synchronization Mechanisms
	Conclusions

	Parallel Strategies for H.264 Decoding
	Task Pool Approach
	Task Pool Algorithm
	Scalability Analysis - Task Pool

	Ring-Line Approach
	Ring-Line Algorithm
	Motivation
	Scalability Analysis - Ring-Line

	Algorithms Compared
	Conclusions

	Implementation of H.264 on the Cell Processor
	Original FFmpeg Code Structure
	Libavcodec Interface
	Libavcodec H.264

	Common Changes to FFmpeg
	Decouple Entropy Decoding
	Porting Macroblock Kernels - Generic

	Task Pool Implementation
	Interface Between PPE and SPE
	Updating Dependency Table and Task Queue
	Macroblock Processing
	Write Back and Impact on Scalability

	Ring-Line Implementation
	Inter-Core Interface and Distributed Control
	Local Store Buffers
	Macroblock Processing
	Write Back and Impact on Scalability
	Pre-Buffering

	Conclusions

	H.264 Resource Analysis
	Kernel Profiling
	Memory Requirements
	External Memory Requirements
	Local Store Requirements

	Bandwidth Requirements of Macroblock Decoding
	Conclusions

	Experimental Results and Analysis
	Experimental Results
	Performance Analysis
	Practical vs. Theoretical Scalability
	Memory Access Contention
	Synchronized Access Contention

	Cell Efficiency Comparison
	Conclusions

	Future applications
	Quad HD and Super HiVision
	Stereoscopic 3D and free viewpoint video
	Embedded and Accelerator Integration

	Conclusion
	Bibliography

