Optimized Façade Design towards Nearly Zero-Energy Residential High-Rises

Facade Design Assessment Criteria for Residential High-Rise Buildings in the Netherlands

2018/2019

Cristina Maria Mărginean

BACKGROUND TO THE SECOND BACKGROUND

Human overpopulation gives rise to environmental problems...

35% of the global resources

40% of the total energy

12% of the world's drinkable water

40% of global carbon emissions

80-90% Operational Energy

10–20% Embodied Energy

2020

New energy regulations: BENG Bijna Energie Neutrale Gebouwen

BENG 1 Energy Need kWh/m² < 70	70	180	100
BENG 2 Primary Fossil Energy Use kWh/m² 50	30	80	60
BENG 3 Share or Renewable Energy %	50	40	40

Concentrating people on smaller plots by building vertically...

...more sustainable?

RESEARCH PROBLEM

UCL's Energy Institute:

high-rise buildings >20 stories are $2^{1/2}$ times more energy-intensive than low rise buildings

Godoy-Shimizu et al., 2018

orientation, shape & facade the main influential parameters that determine the energy performance of a high-rise

Raji, Tenpierik, Dobbelsteen, 2017

orientation & shape usually limited by urban conditions

RESEARCH QUESTION TO THE RESEARCH QUESTION

'What is the impact of facade design on energy, daylight and thermal comfort to achieve a nearly zero-energy residential high-rise building in a temperate climate?'

- Which are the most influential facade parameters?
- Which is the best combination of parameters in terms of energy demand, energy production, daylight and thermal comfort?
- How much can the BENG requirements for residential buildings be met in high-rises through an optimized façade?
- Does a variation in façade with respect to height lead to better performance?

Mech.Vent.

Heat Recovery 95%

Radiant Cooling

COP 15

Hot Water

COP 3.95

COP 3.95

Simulation Workflow 5 _____6

SIMULATIONS

GEOMETRY

Rhinoceros

INPUT DATA

THERMAL COMFORT

ENERGY

DESIGN ITERATIONS

RESULTS

FUNCTIONS

VARIABLES

Window Ratio

X and Energy

5 Glazing X Type

Shading + x System

3 Natural X Ventilation

2 Thermal X Insulation

VARIABLES

Window Ratio

X and Energy

5 Glazing X Type

Shading + x System

3 Natural X Ventilation

2 Thermal X Insulation

Double Glazing

	1	2	3
U-value	1.21 W/m ² K	1.16 W/m²K	1.16 W/m ² K
SHGC	60 %	60 %	30 %
VLT	60 %	80 %	60 %

Triple Glazing

		Z
J-value	$0.9~\text{W/m}^2\text{K}$	$0.9~\mathrm{W/m^2K}$
SHGC	60 %	30 %
VLT	80 %	60 %

VARIABLES

Window Ratio

+ × and Energy

Shading X System

3 Natural X Ventilation

2 Thermal X Insulation

VARIABLES

Window Ratio

X and Energy

5 Glazing X Type

Shading X System

3 Natural X Ventilation

2 Thermal X Insulation

Tilting Windows

Openable Windows
+Perf. Screen

-25% wind speed

Openable Windows +Vegetation

-50% wind speed

VARIABLES

Window Ratio

X and Energy

5 Glazing X Type

Shading X System

3 Natural X Ventilation

2 Thermal X Insulation

 $R = 4.5 \text{ m}^2\text{K/W}$

 $R = 6.0 \text{ m}^2\text{K/W}$

VARIABLES

480 DESIGN COMBINATIONS

ASSESSMENT

METHOD

ASSESSMENT

METHOD

FAÇADE VARIABLES IMPACT DAYLIGHT

IMPACT ENERGY (BENG)

IMPACT
THERMAL
COMFORT

METHOD

FAÇADE VARIABLES

IMPACT ENERGY (BENG)

ASSESSMENT

METHOD

FAÇADE VARIABLES IMPACT DAYLIGHT

IMPACT ENERGY (BENG)

IMPACT
THERMAL
COMFORT

ASSESSMENT

METHOD

FAÇADE VARIABLES IMPACT DAYLIGHT

IMPACT ENERGY (BENG)

IMPACT
THERMAL
COMFORT

ASSESSMENT

METHOD

How much can the BENG requirements for residential buildings be met in high-rises through an optimized façade?

BENG 1 Energy Need kWh/m²

< 70

70% of analyzed Façade Designs

BENG 2
Primary Fossil
Energy Use
kWh/m²

< 50

X

Only with Facade

BENG 3

Share or Renewable Energy %

> 40

X

Only with Facade

VARIABLES

25m

Does a variation in facade with respect to height lead to better performance?

130m

40 **TUDelft**Cristina Maria Mărginean

+6% more energy consumption with every 100m

VARIABLES

ANSWER: A façade design variation with height would not lead to better performance

BUT the impact of the façade design on the energy performance is greater with height

—Façade Designs 25m —Façade Designs 130m —Façade Designs 600m

| IMPACT FAÇADE PARAMETERS

DAYLIGHT | ENERGY | THERMAL COMFORT

WWR

35% 50% 65% 80%

Energy

35%: PV/T Facade 50%: PV/T Facade 65%: PV/T Louvres 80%: PV/T Louvres

Glazing

DoubleG 1.21,0.6,60 DoubleG 1.16,0.6,80 DoubleG 1.16,0.3,60 TripleG 0.9,0.6,80 TripleG 0.9,0.3,60

Shading

None Interior Blinds Electrochrom. Glz Exterior Louvres (PV/T)

Nat. Ventilation

Tilting Windows Open W. + Vegetation Open W. + Perf. Panel

Insulation

 $R = 4.5 \text{ m}^2\text{K/W}$ $R = 6.0 \text{ m}^2\text{K/W}$

Cristina Maria Mărginea

IMPACT GLAZING TYPE

DAYLIGHT | ENERGY | THERMAL COMFORT

\//\/R

35% 50% 65%

80%

Energy

35%: PV/T Facade 50%: PV/T Facade 65%: PV/T Louvres 80%: PV/T Louvres

Glazing

DoubleG 1.21,0.6,60 DoubleG 1.16,0.6,80 DoubleG 1.16,0.3,60 TripleG 0.9,0.6,80 TripleG 0.9,0.3,60

Shading

None
Interior Blinds
Electrochrom. Glz
Exterior Louvres (PV/T)

Nat. Ventilation

Tilting Windows
Open W. + Vegetation
Open W. + Perf. Panel

Insulation

 $R = 4.5 \text{ m}^2\text{K/W}$ $R = 6.0 \text{ m}^2\text{K/W}$

Cristina Maria Mărginear

IMPACT NATURAL VENTILATION

DAYLIGHT | ENERGY | THERMAL COMFORT

35% 50%

65%

80%

Energy

35%: PV/T Facade 50%: PV/T Facade 65%: PV/T Louvres

80%: PV/T Louvres

Glazing

DoubleG 1.21,0.6,60 DoubleG 1.16,0.6,80 DoubleG 1.16,0.3,60 TripleG 0.9,0.6,80

TripleG 0.9,0.3,60

Shading

None
Interior Blinds
Electrochrom. Glz
Exterior Louvres (PV/T)

Nat. Ventilation

Tilting Windows Open W. + Vegetation Open W. + Perf. Panel

Insulation

 $R = 4.5 \text{ m}^2 \text{K/W}$ $R = 6.0 \text{ m}^2 \text{K/W}$

Cristina Maria Mărginear

Tilting Windows

130m **410** hours

Openable W. + Vegetation

130m 1397 hours

Openable W. +Perf.Screen

130m **772** hours

48 **TUDelft**Cristina Maria Mărginean

.. . .

13

Lighting [kWh/m²]

50%

13.5

12.5

Heating [kWh/m²]

35%

14

PARAMETER

COMBINATIONS

PARAMETER

COMBINATIONS

Triple Glz 0.9, 0.6, 80

No Shading/Interior Blinds

Open.W. + Perf. Screen/ Vegetation

50%

BIPVT Façade

 $4.5 / 6.0 \text{ m}^2\text{K/W}$

35%

BIPVT Façade Triple Glz 0.9, 0.6, 80 No Shading/Interior Blinds Open.W. + Perf. Screen/ Vegetation $6.0 \text{ m}^2\text{K/W}$

■ Daylight [%] 28.6

Heating 54.2 $[kWh/m^2]$

Cooling 0.10 $[kWh/m^2]$

Renewable Energy [%]

11

39.3 53.9 0.12

65% **PVT** Shading Triple Glz 0.9, 0.6, 80 Exterior PVT Shading

Open.W. + Perf Screen/ Vegetation $4.5 / 6.0 \text{ m}^2\text{K/W}$

46.4

56.1

0.16

14

9

17.5 ■ PPD [%]

17.7

17.9

130m ENERGY

PERFORMANCE

Redesign

WWR: 65%

Energy: PVT Shading

Glazing: Triple Glz 0.9, 0.6, 80 Shade: Exterior PVT Shading

NatVent: Open. W. + Vegetation

Insulation: 6.0 m²K/W

130m ENERGY

PERFORMANCE

Before _0 0 V8 Architects

After

THERMAL

COMFORT

65% WWR, DoubleGlz, No Shading, Tilting Windows, 4.5 m²K/W

Current Situation

% Time Too HOT

■ 25m ■ 130m

THERMAL

COMFORT

65% WWR, TripleGlz, PVT Shading, NV with Vegetation, 6.0 $\text{m}^2\text{K/W}$

Redesign

THERMAL

COMFORT

50% WWR, TripleGlz, Interior Blinds, Tilting Windows, 6.0 m²K/W

% Time Too HOT

65% WWR, TripleGlz, PVT Shading, NV with Vegetation, 6.0 m²K/W

Redesign

■ 25m ■ 130m

OUTDOOR COMFORT ANNUAL N 24% time comf. 53% time comf. 11% time comf. 20% time comf. 31% time comf. 20% time comf. 8% time comf. 12% time comf. N 41% time comf. 67% time comf. 20% time comf:.... 27% time comf. W 40% time comf 50% time comf.

17% time comf.

64 **TUDelft**Cristina Maria Mărginean

'What is the impact of facade design on energy, daylight and thermal comfort to achieve a nearly zero-energy residential high-rise building in a temperate climate?'

PARAMETER

IMPACT

Window to Wall Ratio

Energy Production

Thermal Insulation

Shading System

Glazing Type

Glazing Type

Natural Ventilation

Combined

-10%

-3%

ENERGY

-35%

 -30 kWh/m^2

THERMAL COMFORT +15%

DAYLIGHT

-4%

