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Abstract

The aim of this thesis is to simulate quantum spin chains at a finite temperature. This has been achieved by
using purification to write the incoherent thermal states of the spin chain as pure states, after which the matrix
product state (MPS) formalism to simulate the spin chain. The influence of temperature on the spin chain
has been tested by comparing chain magnetization to the strength of the external magnetic field at different
temperatures. Real time evolution has also been applied under the assumption that the time evolution is
adiabatic. The results have been compared to the analytical solution found by directly calculating the density
matrix. The model is very accurate for imaginary time evolution, which is required to evolve the system
to the desired temperature. During real time evolution the results oscillate slightly around the analytical
solution, which remains constant. This oscillation is a consequence of model truncation and the Suzuki-Trotter
approximation. The effect of allocating more numerical resources to limit this phenomenon is explored, and a
method to increase reachable timescales by decreasing entanglement growth in the chain over time is tested and
verified.

i



Contents

1 Introduction 1

2 Quantum Mechanics and Spin Chains 2
2.1 Quantum States and Many Body Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Spin Chains and the XY-Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Graphical Representation of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Matrix Product States 5
3.1 Schmidt Decomposition, Entropy and the Area Law . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Application of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Time Evolution of Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Quantum Systems at Finite Temperature 12
4.1 Time Evolution and the Thermal Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Analytical Solution using the Thermal Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 State Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Simulation Results 16
5.1 Imaginary Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Real Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Summary and Conclusions 23

A Maximizing Overlap Between Matrix Product States 26

B Additional Figures 28

C Python Code 31

ii



1 Introduction

Many-body quantum systems have long been an object of study for physicists as they pose some of the most
difficult challenges in physics, which are more often than not impossible to solve analytically. Computers have
often been the saving grace for physicists and mathematicians due to their ability to rapidly perform calculations,
which enables them to find solutions numerically. However, the complexity of quantum many-body systems
grows exponentially with the number of particles in the system due to entanglement, and even computers have
their limits. This has required physicists and mathematicians to come up with clever ways to describe quantum
systems rather than using a brute-force approach, restricting to specific situations and approximating when
necessary. Nevertheless, even when restricting to 1-dimensional lattices, the system size is a very limiting factor
for standard computer algorithms.

In the beginning of the 1990s a new method to study such systems near the ground state was developed by
Steven White[1], called the Density Matrix Renormalization Group (DMRG) algorithm. This method proved
vastly superior to other existing methods at the time and quickly rose in popularity. Some years later a ‘new
generation’ of DMRG arose, the Matrix Product State (MPS) method. Matrix product states already existed
at the time White published his original paper. However, it took some years before its relationship to DMRG
was recognized and adopted by researchers. Once this happened, researchers made swift progress extending the
model to (among many other topics) time evolution[2], the application of periodic boundary conditions[3] and
the extension of matrix product states to the operator space: matrix product operators[4].

Matrix product state algorithms have proven to be able to accurately simulate real world situations. For
example, see the thesis work of J. Bouwmeester [5], which makes use of matrix product states to simulate the
dynamics of a spin chain subject to excitations induced by a Scanning Tunneling Microscope and was thereby
able to replicate the experimental results obtained at the Otte lab at the TU Delft department of Quantum
Nanoscience [6].

In ref. [4] systems at finite temperature were simulated within the framework of matrix product states for
the first time. The main difficulty that had to be overcome, was the fact that finite temperature mixed states
are characterised by density operators instead of vectors and are therefore not suited to be written in MPS form.
This was solved by the use of a process called purification, which holds that a mixed state is written as a pure
state in a larger Hilbert space through the use of an auxiliary system. In this thesis we will use this approach to
simulate spin chains governed by an XY-Hamiltonian with a transverse magnetic field at finite temperatures.

This research is a follow-up on the works of A. Melo, P. Vree and J. Bouwmeester, in which matrix product
states were used to study different situations at zero temperature. In this research this model is extended to
simulate spin chains at finite temperatures. The thesis is structured as follows: chapter 2 develops a mathemat-
ical basis for many-spin systems and discusses the Hamiltonian used during simulations. Chapter 3 introduces
the notion of matrix product states and chapter 4 develops the theory of finite temperature systems, purification
and their incorporation in the frame of MPS. The results are presented in chapter 5 and the thesis finishes with
a summary and conclusion in chapter 6.
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2 Quantum Mechanics and Spin Chains

2.1 Quantum States and Many Body Systems

In this section a few core concepts of quantum mechanics crucial to this research are summarized. Topics include
the definition of spin states and how they are described mathematically, systems of multiple spin particles and
spin chains. This is followed with a section regarding the Hamiltonian of the simulated spin chain. The chapter
concludes with a short introduction on the graphical notation of tensors.

We will begin by examining the way a single quantum spin is described mathematically. A quantum spin is
characterized by two quantum numbers, written together as the ket |s ms⟩, where s is a positive (half-)integer
number called the spin number and ms ∈ {−s, −s + 1, ... , s − 1 , s} the z-component of the spin. Thus for
a particle with spin number s there are a total of (2s + 1) ≡ d possible combinations |s ms⟩. To each |s ms⟩
state an orthonormal basis vector in a (2s+ 1)-dimensional complex vector space can be assigned. These basis
vectors we denote |n⟩, where n = ms + s+ 1. The spin can be in any complex linear combination of these basis
vectors, provided it is normalized under the Euclidean norm.

Formally: the spin exists in the vector space {a | a ∈ C(2s+1) ∧ ⟨a|a⟩ = 1} equipped with inner product
⟨a|b⟩ ≡ a†b, where † denotes the Hermitian conjugate. This vector space is complete, making it a Hilbert space
we will denote as H. The quantum state vector of the spin we then denote as the ket |ψ⟩:

|ψ⟩ =

2s+1≡d∑
n=1

αn |n⟩ |ψ⟩ ∈ H. (1)

The Hermitian conjugate of the ket is called the bra: |ψ⟩† = ⟨ψ|. As previously stated all valid quantum states
are normalized: ⟨ψ|ψ⟩ = 1.

As an example we will look at a particle with s = 1
2 . Then ms ∈ { 1

2 , −
1
2} meaning we work in a two

dimensional vector space (d = 2). By convention the orthonormal basis consist of the standard unit vectors:
|n⟩ = en. Then

|ψ⟩ = α1 |1⟩ + α2 |2⟩ = α1

[
1
0

]
+ α2

[
0
1

]
.

Suppose we have a particle with spin s. This particle is fully described by equation (1). Now a second, identical
spin is introduced. It is possible to describe both spins with a single state vector by using the tensor product.
To avoid ambiguity we will introduce a new index that corresponds to each spin.

|ψ1⟩ =

d∑
n1=1

α[1]
n1

|1n1
⟩ |ψ1⟩ ∈ H1

|ψ2⟩ =

d∑
n2=1

α[2]
n2

|2n2
⟩ |ψ2⟩ ∈ H2

These two spins together can be described as a single vector in a d2-dimensional Hilbert space H by using the
tensor product:

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ =

d∑
n1=1

d∑
n2=1

α[1]
n1
α[2]
n2

|1n1⟩ ⊗ |2n2⟩ , (2)

|Ψ⟩ ∈ H = H1 ⊗H2.

Equation (2) is often written in a shorter form by leaving out the tensor product and dropping the site-specific
indices:

|Ψ⟩ =

d∑
n1,n2=1

αn1
αn2

|n1n2⟩ ≡
d∑

n1,n2=1

cn1n2
|n1n2⟩ . (3)
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The form of equation (3) can be generalized to an arbitrary number of spins L that can each be in d different
states.

|Ψ⟩ =
∑

n1n2...nL

cn1n2...nL
|n1n2...nL⟩ |Ψ⟩ ∈ H =

L⊗
i=1

Hi, (4)

where the summation bounds are left out for readability.

Operators and the Hamiltonian

Operators are matrices that act on states, which are vectors, by matrix-vector multiplication: Ô |ψ⟩. The
expectation value of an operator is found by multiplying this with the Hermitian conjugate of the state (the
bra): ⟨Ô⟩ = ⟨ψ| Ô |ψ⟩. One important operator is the Hamiltonian Ĥ, which is the operator that describes
the energy of the system. Moreover the Hamiltonian (which is always a Hermitian operator) determines what
happens to a system over time following the time dependent Schrödinger equation (TDSE):

iℏ
∂ |ψ⟩
∂t

= Ĥ |ψ⟩ , a PDE with solution: |ψ(t)⟩ = e
−iĤt

ℏ |ψ(0)⟩ . (5)

Here ℏ is the reduced Planck constant, which we set equal to 1 from this point forward. We will see in chapter
4 that time evolution has a close relationship to simulating quantum systems at finite temperature.

2.2 Spin Chains and the XY-Hamiltonian

A spin chain is a system where spins are arranged in a 1-dimensional lattice, where each spin interacts with its
nearest neighbors, meaning that the Hamiltonian is a sum of operators acting on two neighboring sites (with of
course the added possibility of single-site terms). Interactions other than nearest-neighbor are possible but are
not considered in this research.

In this research a spin chain of length L consisting of spin- 12 particles with open boundary conditions will be
simulated at finite temperatures. The systems is governed by an XY-Hamiltonian with a transverse magnetic
field of strength h:

ĤXY = J
( L−1∑

i=1

(σ̂[i,i+1]
x + σ̂[i,i+1]

y ) +

L∑
i=1

hσ̂[i]
z

)
, (6)

where the upper indices inside square brackets indicate the site or sites the operator acts on:

σ̂[i]
x,y,z =

( i−1⊗
k=1

Î2×2

)
⊗ σ̂x,y,z ⊗

( L⊗
k=i+1

Î2×2

)
; σ̂[i,i+1]

x,y,z =
( i−1⊗

k=1

Î2×2

)
⊗ σ̂x,y,z ⊗ σ̂x,y,z ⊗

( L⊗
k=i+2

Î2×2

)
and σ̂x,y,z denote the Pauli spin matrices for the spin- 12 particle

σ̂x =

[
0 1
1 0

]
σ̂y =

[
0 −i
i 0

]
σ̂z =

[
1 0
0 −1

]
.

J is a constant, which we set equal to 1. If J > 0 we have an antiferromagnetic coupling between nearest
neighbours, if J < 0 the coupling is ferromagnetic [7].

The XY model features only nearest-neighbour interactions between spins and therefore it can be efficiently
simulated by Matrix Product States as entanglement between sites far apart will decay rapidly. This will be
elaborated upon in the next section. The XY model without a magnetic field has already been solved exactly
in 1961 by Lieb et al. [8]. However, it is not the aim of this study to examine the XY model specifically
but to simulate a spin chain at nonzero temperature with matrix product states. This model allows for easy
comparison between the influence of different magnetic field strengths and nonzero temperatures on ⟨Ŝz⟩.
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2.3 Graphical Representation of Tensors

In this work we will make use of a graphical tensor notation (the penrose graphical notation) for clarification
of concepts a number of times. In this section a short explanation will be given.

In the penrose notation a tensor with L indices is represented by a block (or any other shape) with L lines
protruding from it. Direction and length of the lines is irrelevant. Two tensors that are multiplied along a certain
axis are represented by two blocks that share a single line. For example see figure 1b, where a multiplication
between two matrices is represented. The result of a matrix product is again a matrix, which can be seen from
the two free lines that still extend from the combination of the two blocks. As a last note it should be mentioned
that a block without any lines extending from it is a scalar, see figure 1c.

(a) Two tensors in graphical nota-
tion. The upper is a tensor of order
2 (a matrix), the lower a tensor of
order 6.

(b) Multiplication of two matrices. (c) Two examples of a scalar in ten-
sor notation.

Figure 1: Examples of the graphical notation used to represent tensors and contractions in this thesis.
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3 Matrix Product States

Singular Value Decomposition

Before examining matrix product states there is an important concept from linear algebra that needs to be
discussed: the Compact Singular Value Decomposition, which we will from now on refer to as the Singular Value
Decomposition (SVD). Given any matrix C of arbitrary dimensions (n×m) there exists a decomposition

C = UΛV †, (7)

where the columns of U are the left singular vectors, the rows of V † are the right singular vectors and Λ is a
diagonal matrix containing the singular values. If r denotes the number of nonzero singular values λr in Λ,
then the dimensions of the matrices are: U (n× r), Λ (r × r) and V † (r ×m). Observe that there are an equal
number of left and right singular vectors, but the left and right singular vectors are not necessarily of the same
dimension. Moreover, the sets {ui} and {vi} of respectively the left and right singular vectors are orthonormal
and the number r of nonzero singular values equals the rank of matrix C. Lastly, the singular values are chosen
to be decreasing: Λ1,1 ≥ Λ2,2 ≥ ... ≥ Λr,r. The proofs of these properties and the exact procedure to find the
singular vectors and singular values is explained in detail in [9].

3.1 Schmidt Decomposition, Entropy and the Area Law

The matrix product states formalism finds its roots in the so called Schmidt decomposition [10], which we will
later see is closely related to the singular value decomposition. Consider a 1-dimensional system, consisting of
L d-level systems with nearest-neighbour interactions. The Hilbert space of the system we denote H. Suppose
at a certain location in the chain the system is partitioned into parts A and B where A (B) contains all particles
to the left (right) of the split. Similarly the Hilbert space is decomposed into parts A and B: H = HA ⊗HB ,
where HA(B) denotes the Hilbert space of all sites on the left (right) side. The Schmidt decomposition of a
quantum state |ψ⟩ ∈ H is then given as:

|ψ⟩ =
∑
α

λα |α⟩A ⊗ |α⟩B , |α⟩A(B) ∈ HA(B). (8)

The Schmidt indices λα are real, strictly positive, unique up to degeneracies and for a normalized state |ψ⟩ we
have

∑
α λ

2
α = 1. Moreover, the {|α⟩A(B)} form an orthogonal basis for their respective Hilbert spaces. Observe

that when only a single λα is nonzero we obtain |ψ⟩ = |α⟩A⊗|α⟩B , meaning that |ψ⟩ is a product state between
the left and right sides of the location of the split. Likewise, if more than one λα is nonzero then |ψ⟩ is an
entangled state.

A measure of the entanglement between the left and right parts of the system is given by the Von Neumann
entropy, which is defined as (ρ̂ = |ψ⟩⟨ψ|):

S = −Tr(ρ̂ log2(ρ̂)). (9)

In the case that the composite system AB is in a pure state, then S(A) = S(B) = S [11]. With this assumption
and by writing |ψ⟩ as in (8) evaluating formula (9) yields [12]

S = −
∑
α

λ2αlog2(λ2α), (10)

meaning all information regarding the entanglement between systems A and B is contained in the Schmidt
indices λα. A product state has only a single nonzero Schmidt value, which has value 1. Therefore product
states have entropy 0.

As a rule, for a general state in the Hilbert space H the entropy follows a volume law, meaning it scales
linearly with the volume of the system, as is similar to classical statistical mechanics (where entropy is an
extensive quantity). However in some situations this rule does not necessarily hold. For systems with local
gapped Hamiltonians that are near the ground state, the entropy follows an area law instead. Seeing as a
1-dimensional system has a constant boundary this means that the entropy will also be constant. An intuitive
explanation is given by the fact that at lower energies particles further away will be very lowly entangled, thus
only particles close to the system split will entangle the two partitions, see also figure 2. A proof of this theorem
is presented in [13]. It should be noted that the area law states make up but a small part of the total Hilbert
space. A useful property of area law states (which we will make use of later) is that the Schmidt values quickly
decrease due to low entanglement, only a few contribute significantly. Thus the Schmidt decomposition of an
area law state can be described by a small number of Schmidt values with a relatively small error.
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Figure 2: Visual motivation for the area law: only spins close to the system split (vertical dashed line) entangle
the two systems while particles further away do not contribute to entanglement. Thus all particles more than
a few sites away can be ignored and the system does not follow a volume law.

3.2 Matrix Product States

In this section we will develop the matrix product state formalism, which is the basis for most of this research.
Matrix product states make use of the rapidly decaying Schmidt values of area law states to reduce the storage
complexity of the system with minimal loss of information, and there exists an efficient time evolution algorithm
(TEBD) based on the Suzuki-Trotter approximation that exploits the fact that the Hamiltonian only contains
nearest-neighbor interaction. This makes matrix product states a powerful tool for analyzing spin chains with
local Hamiltonians. This section is based on [5, 14].

We start with a general pure state |ψ⟩ on a chain of L sites, with {|ni⟩} a d-dimensional orthonormal basis
for the local states at site i. The state can be written as in equation (4), repeated here for convenience

|ψ⟩ =
∑

n1n2...nL

cn1n2...nL
|n1n2...nL⟩ |ψ⟩ ∈ H.

Recall that H is the system Hilbert space and |n1n2...nL⟩ =
⊗L

i=1 |ni⟩.
It is our aim to write the coefficient cn1n2...nL

as a product of matrices An1
An2

...AnL
resulting in the matrix

product state form:

|ψ⟩ =
∑

n1n2...nL

A[1]
n1
A[2]

n2
...A[L]

nL
|n1n2...nL⟩ . (11)

To ensure the product of the matrices results in a scalar coefficient, the first and last matrices (A
[1]
n1 and A

[L]
nL)

are row and column vectors respectively. The upper indices indicate that each site in the chain has its own set
of matrices. From this point on the upper indices will be dropped for readability.

To obtain the matrix product state we start by reshaping the dL dimensional vector cn1n2...nL
into a d×dL−1

dimensional matrix C and performing a singular value decomposition. Explicitly: we create a matrix C where
Cn1, n2...nL

= cn1n2...nL
and perform a singular value decomposition

Cn1, n2...nL
=

r1∑
a1=1

Un1, a1
Λa1, a1

V †
a1, n2...nL

, (12)

where a1 is the bond index and r1 the bond dimension. Observe that each row in U corresponds to a single
value n1. These d row vectors (of length r1 ≤ d) will be our An1 ’matrices’. Next, we reshape the (r1 × dL−1)
sized matrix (ΛV †)a1, n2...nL

into a new matrix Ca1n2, n3...nL
of size (r1d× dL−2) and perform another singular

value decomposition:

Ca1n2, n3...nL
=

r2∑
a2

Ua1n2, a2
Λa2, a2

V †
a2, n3...nL

. (13)

Again each Ua1n2, a2 corresponds to a single value of n2, thus we get a set of d (r1 × r2) matrices An2 with
r2 ≤ d2. If we substitute equation (13) back into (12) we get:
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cn1n2...nL
= Cn1n2, n3...nL

=

r1∑
a1=1

r2∑
a2=2

An1, a1An2, a1, a2Λa2, a2V
†
a2, n3...nL

. (14)

By continuing this process of contracting, reshaping and decomposing for each site in the chain we obtain the
entire set of Ani

matrices, with the last one (AnL
) being a column vector. Upon completion we are left with:

cn1n2...nL
=

∑
a1a2...aL−1

An1, a1
An2, a1, a2

...AnL, aL−1
≡ An1

An2
...AnL

. (15)

To finish the derivation we substitute this back into equation (4) and obtain equation (11).
An important detail we should pay attention to are the dimensions of the Ani , the previously mentioned

bond dimensions. These originate from the singular value decomposition, thus by construction they are bounded
to be ri ≤ min{di × dL−i}, increasing first and decreasing again after i ≥ L

2 , resulting in a row-vector product.

Figure 3: A graphical representation of the decomposition from a state where the coefficients are stored in a
rank L tensor to a matrix product state by applying SVD’s repeatedly.

To obtain a better understanding of what the consecutive singular value decompositions represent it is useful
to examine how they relate to Schmidt decompositions. Suppose we want to find the Schmidt decomposition of
|ψ⟩ at site i. It is shown in [14] that performing SVD’s from the left side of the chain up to site i and from the
right side up to site i + 2 we obtain a decomposition cn1n2...nL

=
∑ri

ai
An1

...Ani, ai
Λai, ai

Bni+1, ai
Bni+2

...BnL
.

Then we can introduce vectors

|ai⟩A =
∑

n1...ni

An1
...Ani

|n1...ni⟩ |ai⟩B =
∑

ni+1...nL

Bni+1
...BnL

|ni+1...nL⟩

and we obtain the Schmidt decomposition

|ψ⟩ =
∑
ai

Λai, ai |ai⟩A ⊗ |ai⟩B .

Note that the Schmidt values Λai,ai
are the singular values form the i-th singular value decomposition (and

are therefore decreasing). In section 3.1 we discussed that area law states have rapidly decreasing Schmidt
values, making it possible to discard many of them with little loss of information. This translates to the matrix
product states formalism as truncating the Ani matrices. Say we want to keep the first χ Schmidt values, then
all matrices Ani are truncated to be at most (χ×χ). The new bond dimensions are then r̃i ≤ min{di, dL−i, χ}.
Doing so reduces the storage complexity of the system to be O(dLχ2) which scales linearly with system length
instead of exponentially[15].

For the application of operators it is useful to write the MPS in the so called canonical form by inserting
Λ[i](Λ[i])−1 between each Ani and Ani+1 , resulting in equation (16).

|ψ⟩ =
∑

n1n2...nL

Γn1
Λ[1]Γn2

...Λ[L−1]ΓnL
|n1n2...nL⟩ , (16)

where Γni
= (Λ[i−1])−1Ani

for i > 1 and Γn1
= An1

. We will use expression (16) for the application of operators,
which is described in further detail in the next section. The canonical form is presented graphically in figure 4.
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Figure 4: The tensor notation representation of the canonical form, as written in equation (16).

3.3 Application of Operators

An important aspect of quantum mechanics is the application of operators and the calculation of expectation
values. The MPS formalism allows us to calculate these in an efficient way. The mathematical procedures
for the application of single-site and two-site operators as well as an efficient method of calculating the inner
product between two states are explained in this section. This section is based on previous works [5, 10, 15].

A useful consequence of the matrix product states formalism is the fact that the application of a single-site
operator acting on site i (Ô[i] = Î[1] ⊗ ...̂I[i−1] ⊗ Ô ⊗ Î[i+1]... ⊗ Î[L]) only affects the Γni

, all other matrices
remain the same. As a consequence all identity operators can be disregarded and we only need to focus on the
application of Ô .To apply this operator we first perform two Schmidt decompositions: one between sites i− 1
and i, and the other between sites i and i+ 1, resulting in the following description of our state:

|ψ⟩ =
∑
ni

∑
αi−1αi

Λ[i−1]
αi−1

Γni
Λ[i]
αi

∣∣aαi−1

〉
A
|ni⟩ |aαi

⟩B ≡
∑
ni

∑
αi−1αi

Θαi−1αi
ni

∣∣aαi−1

〉
A
|ni⟩ |aαi

⟩B ,

where Λ
[i]
j is used as shorthand for Λ

[i]
j,j . We now apply the operator Ô[i] and insert the unit operator Î =∑

n′
i
|n′i⟩ ⟨n′i|:

Ô[i] |ψ⟩ =
∑
ni

∑
αi−1αi

∑
n′
i

Θαi−1αi
ni

⟨n′i| Ô[i] |ni⟩
∣∣aαi−1

〉
A
|n′i⟩ |aαi

⟩B =
∑

αi−1αi

∑
n′
i

Θ̃
αi−1αi

n′
i

∣∣aαi−1

〉
A
|n′i⟩ |aαi

⟩B ,

(17)
where Θ̃

αi−1αi

n′
i

≡
∑

ni
Θ

αi−1αi
ni ⟨n′i| Ô[i] |ni⟩. In the last step we return to the canonical MPS form with the new

matrices Γ̃ni :

Γ̃ni
= (Λ[i−1])−1Θ̃n′

i
(Λ[i])−1.

Thus in the end the application of a single-site operator on site i results in the change Γni
→ Γ̃ni

. This operation
is of complexity O(dχ2).

A similar procedure can be done for a two-site operator Ô[i,i+1] acting on site i and i + 1. Again we per-
form two Schmidt decompositions, now resulting in

|ψ⟩ =
∑
ni

∑
αi−1αiαi+1

Λ[i−1]
αi−1

Γni
Λ[i]
αi

Γni+1
Λ[i+1]
αi+1

∣∣aαi−1

〉
A
|nini+1⟩ |aαi+1⟩B

=
∑
ni

∑
αi−1αiαi+1

Θαi−1αi+1
nini+1

∣∣aαi−1

〉
A
|nini+1⟩ |aαi+1⟩B .

We apply the operator, insert I =
∑

n′
in

′
i+1

∣∣n′in′i+1

〉 〈
n′in

′
i+1

∣∣ and define

Θ̃
n′
in

′
i+1

αi−1αi+1 ≡
∑

nini+1

Θαi−1αi+1
nini+1

〈
n′in

′
i+1

∣∣ Ô[i,i+1] |nini+1⟩

as before. We then obtain

Ô[i,i+1] |ψ⟩ =
∑

αi−1αi+1

∑
n′
in

′
i+1

Θ̃
αi−1αi+1

n′
in

′
i+1

∣∣aαi−1

〉
A

∣∣n′in′i+1

〉
|aαi+1⟩B , (18)
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However, for the two-site operator there is a key difference from the procedure we had with the single-site
operator. The state is still contracted between sites i and i+ 1, meaning we must reshape Θ̃ into a matrix and
perform an SVD to obtain the matrices for the individual sites

Θ̃
αi−1αi+1

n′
in

′
i+1

→ Θ̃(n′
iαi−1),(n′

i+1αi+1) = U
αi−1αi

n′
i

Λ̃[i]
αi
V

αiαi+1

n′
i+1

. (19)

Then lastly the updated matrices are defined as:

Γni → Γ̃ni = (Λ[i−1])−1Uni

Λ[i] → Λ̃[i]

Γni+1 → Γ̃ni+1 = Vni+1(Λ[i+1])−1.

During this operation the size of the new Γ̃ and Λ̃ matrices may increase, however they can easily be truncated by
discarding the lowest singular values, resulting in minimal loss of information. Normalization can be maintained
by scaling the matrices. The application of the two-site operator is of complexity O(d4χ2). The process of
applying a two-site operator is visualised in figure 5.

Figure 5: Application of a two-site operator.

The expectation values for single-site and two-site operators are given by [5]

⟨ψ| Ô[i] |ψ⟩ =
∑

αi−1αi

∑
n′
i

(Θ
αi−1αi

n′
i

)†Θ̃
αi−1αi

n′
i

⟨ψ| Ô[i,i+1] |ψ⟩ =
∑

αi−1αi+1

∑
n′
in

′
i+1

(Θ
αi−1αi+1

n′
in

′
i+1

)†Θ̃
αi−1αi+1

n′
in

′
i+1

.

The dot product between two quantum states |ψi⟩ and |ψ2⟩ in MPS form can be calculated using the zip-up
method[15]. This method scales polynomial with system length whereas calculating the dot product directly
scales exponentially. The idea of the zip-up method is to start at one end of the chain and creating a matrix
M1. This matrix is used to calculate the next matrix M2 and continuing this process through the chain. If we
have states

|ψ⟩ =
∑

n1n2...nL

Γn1Λ[1]Γn2 ...Λ
[L−1]ΓnL

|n1n2...nL⟩

|ϕ⟩ =
∑

n1n2...nL

Ωn1K
[1]Ωn2 ...K

[L−1]ΩnL
|n1n2...nL⟩ ,

then we calculate ⟨ψ|ϕ⟩ as follows:

M
α′

1α1

1 =
∑
n1

(Γ
α′

1
n1 )†Ωα1

n1
(Λ

[1]
α′

1
)†K [1]

α1

M
α′

2α2

2 =
∑
n2

∑
α′

1α1

M
α′

1α1

1 (Γ
α′

1,α
′
2

n2 )†Kα1,α2
n2

(Λ
[2]
α′

2
)†Ω[2]

α2
.

The process continues until the end of the chain is reached. The number of calculations to calculate Mi scales
with order O(dχ4).
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Figure 6: Graphical representation of the zip-up method for calculating the dot product.

3.4 Time Evolution of Matrix Product States

The time-dependent Schrödinger equation tells us that a quantum state |ψ⟩ under Hamiltonian Ĥ evolves over
time according to equation (5) repeated below (ℏ = 1)

|ψ(t)⟩ = e−iĤt |ψ(0)⟩ .

In the previous section we have presented a way to efficiently apply single-site and two-site operators to a state
in MPS form. If the Hamiltonian of a spin chain can be written in terms of such operators the system can be
evolved through (imaginary) time in an efficient way using matrix product states. This idea is at the heart of
the Time-Evolving Block Decimation algorithm, the focus of this section.

Suppose we have a Hamiltonian that we split into two parts: Ĥ = ĤA + ĤB , so that we can write the

Hamiltonian time evolution as e−iĤt = e−i(ĤA+ĤB)t = e−iĤAte−iĤBt. If ĤA and ĤB commute this is possible,
however when they do not commute this expression does not hold[16]. A problematic property of the consec-
utive nearest-neighbor coupling present in spin chains is that it is not possible to write the Hamiltonian in
such a way that the two terms commute, and therefore we cannot write it in terms of two-site operators. The
Suzuki-Trotter approximation[17] states that doing so will result in an error of O(t2)

e(Â+B̂)t = eÂteB̂t + O(t2) ; [Â, B̂] ̸= 0. (20)

Let us look at our Hamiltonian:

ĤXY = J
( L−1∑

i=1

(σ̂[i,i+1]
x + σ̂[i,i+1]

y ) +

L∑
i=1

hσ̂[i]
z

)
≡

L−1∑
i=1

K̂ [i,i+1] +

L∑
i=1

K̂ [i].

We will split this Hamiltonian into two non-commuting parts Ĥodd and Ĥeven. The former contains all two-site
operators where i is an odd number, the latter contains those where it is an even number. The single-site
operators are split evenly between both parts, except for the last site, which is added to Ĥodd is the chain is of
even length and to Ĥeven if the chain is of odd length. For a chain of even length Ĥodd and Ĥeven will therefore
have the following form:

Ĥodd =

L−1∑
i=1
i odd

K [i,i+1] +
1

2

L−1∑
i=2

K̂ [i] + K̂ [1] ≡
L−1∑
i=1
i odd

Ô[i,i+1]

Ĥeven =

L−1∑
i=1

i even

K̂ [i,i+1] +
1

2

L−1∑
i=2

K̂ [i] + K̂ [L] ≡
L−1∑
i=1

i even

Ô[i,i+1]

ĤXY = Ĥodd + Ĥeven,

where we introduced the operators Ô[i,i+1] = K̂ [i,i+1] + 1
2 (K̂ [i] + K̂ [i+1]). For completion 1

2K̂
[1] and 1

2K̂
[L] are

added to Ô[1,2] and Ô[L−1,L] respectively. It is clear that Ĥodd and Ĥeven do not commute with each other,
however all terms inside Ĥodd and Ĥeven are mutually commuting. That is to say: all terms in Ĥodd (Ĥeven)
commute with all other terms in Ĥodd (Ĥeven). Therefore the exponents involving them can be decomposed
exactly:
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e−iĤoddt =

L−1∏
i=1
i odd

e−iÔ[i,i+1]t

e−iĤevent =

L−1∏
i=1

i even

e−iÔ[i,i+1]t.

Consequently the entire time evolution operator can be decomposed to a product of two-site operators by
performing a single Suzuki-Trotter decomposition

e−iĤt = e−iĤoddte−iĤevent + O(t2) =

L−1∏
i=1

e−iÔ[i,i+1]t + O(t2). (21)

Notice that instead of using the Hamiltonian matrix of size (dL × dL), we use L − 1 matrices of size d × d by
exploiting the fact that the chain only has nearest neighbor interactions.

With the expression from equation (21) we can now evolve the spin chain trough (imaginary) time by
consecutively applying two-site operators with time step ∆t. A graphical representation of this process, known
as Time-Evolving Block Decimation (TEBD) is shown in figure 7.

Figure 7: Application of a Hamiltonian on a spin chain of L = 6, red operators are part of e−iĤoddt, yellow

operators are from e−iĤevent.

We have now finished the derivation of the TEBD algorithm and are able to evolve the MPS through time.
However there is a last approximation we make to make it slightly easier for ourselves to compute the time
evolution. Instead of working with matrix exponentials we will write the two-site operators in terms of matrices
directly through the use of the Crank-Nicolson approximation, which states:

e−iÔ∆t =
(
Î− iÔ∆t

2

)(
Î +

iÔ∆t

2

)−1

+ O(∆t3) (22)

Recall that the error resulting from the Suzuki-Trotter approximation (equation 20) was of order O(∆t2),
thus the error over time evolution is governed by the Suzuki-Trotter approximation resulting in a global error
of O(∆t) (aside from the error due to the truncation of the MPS).
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4 Quantum Systems at Finite Temperature

Pure and Mixed States

A quantum system can be either in a pure state or a mixed state. Matrix Product States work with pure states,
where the system can be fully described by a wavefunction |ψ⟩ represented by a vector in the system’s Hilbert
space. In isolated systems the application of an operator maps the current state vector to another state vector
in the same Hilbert space, this is not a problem. However, in real world situations a system is never isolated.
There is always an environment present that interacts with the system, for example a heat bath or measurement
device.

As previously stated an isolated system can always be described by a single vector |ψ⟩ that follows a
Hamiltonian ĤS . A non-isolated system, or open system, is a quantum system that is coupled to an external
environment with Hamiltonian ĤE . This coupling is described by the coupling Hamiltonian ĤSE . Thus the
system and environment are described by the total Hamiltonian Ĥ = ĤS + ĤE + ĤSE . When the system is
coupled to an environment it may become entangled with it, meaning that the system can no longer be described
by a single wavefunction but is described by an ensemble of wavefunctions: a mixed state. Mixed states cannot
be written as a vector but are instead defined by a density matrix ρ̂ ≡

∑
i pi |ψi⟩ ⟨ψi|, where |ψi⟩ are state

vectors in the system Hilbert space and pi are scalars subject to
∑

i pi = 1.

4.1 Time Evolution and the Thermal Density Matrix

In isolated systems, the time evolution can be fully described by the TDSE (equation (5), repeated here for
convenience), where the state at time t is related to the state at time 0 by

|ψ(t)⟩ = e−iĤt/ℏ |ψ(0)⟩ ≡ Û(t) |ψ(0)⟩ .

Therefore the time evolution of the corresponding density matrix of this closed system is given as

ρ̂(t) = |ψ(t)⟩ ⟨ψ(t)| = e−iĤt/ℏ |ψ(0)⟩ ⟨ψ(0)| eiĤt/ℏ = Û(t)ρ̂(0)Û(t)†. (23)

One might wonder why the time evolution of the density operator is relevant in the case of finite tempera-
ture spin chains. Before we tackle that, we must look at how a quantum system at finite temperatures is
described. If |ψi⟩ are the Hamiltonian eigenstates corresponding to eigenenergy Ei, then the probability for a
system to be in state |ψi⟩ is given by

pi =
e
− Ei

kBT

Z(β)
=
e−βEi

Z(β)
,

where Z is the partition function

Z(β) =
∑
i

e−βEi = Tr(e−βĤ).

Combining these two formulas with the definition of the density matrix results in the following formula for the
thermal density matrix ρ̂β :

ρ̂β =
∑
i

pi |ψi⟩ ⟨ψi| =
∑
i

e−βEi

Z(β)
|ψi⟩ ⟨ψi| =

e−βĤ

Z(β)
. (24)

Let us now analyse the thermal density matrix at infinite temperature (β = 0). In this case the operator in the

exponential becomes a matrix of only zeros: e−βĤ = e0̂ = Î. Substituting this result into equation (24) yields

ρ̂0 = Î
Z(0) , the maximally mixed state [11].

If we rewrite equation (24) in the following way:

ρ̂β =
Z(0)

Z(0)Z(β)
e

−βĤ
2 Î e

−βĤ
2 =

Z(0)

Z(β)
e

−βĤ
2 ρ̂0 e

−βĤ
2 (25)

and compare it to equation (23) we see that the finite temperature density matrix ρ̂β can be found by evolving
the density matrix at infinite temperature ρ0 through imaginary time [14, 18]. This observation is crucial as it
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forms the basis of our analysis. Explicitly, disregarding the factor Z(0)
Z(β) in front, by evolving the system through

imaginary time to t = −iℏβ/2, equation (23) becomes equation (25). Thus we have found a way to describe
quantum systems at finite temperatures. Real time evolution of the system is then calculated as expected[19]:

ρ̂β(t) = Û(t)ρ̂β(0)Û†(t). (26)

It is important to keep in mind that by calculating time evolution this way we make an implicit assumption:
we assume that the temperature remains constant over time: the time evolution of the system is adiabatic.

4.2 Analytical Solution using the Thermal Density Matrix

In equation (24) we found that the thermal density matrix is defined as ρ̂β = e−βĤ

Z(β) . To evaluate this expression

we must find the exponential of a matrix. The matrix exponential is defined similar to the normal exponential
function: if A is a square matrix and t ∈ C , then [20]

eAt =

∞∑
n=0

Aktk

k!
. (27)

In nontrivial cases calculating this series exactly might prove difficult. Luckily however, if our matrix A is
diagonizable there is another method for calculating (27).

Theorem 1 Let A a diagonizable matrix such that A = PDP−1, where P is the column matrix containing the
eigenvectors of A and D a diagonal matrix containing the corresponding eigenvalues

P =

 ↑ ↑ ↑
v1 v2 ... vn
↓ ↓ ↓

 D =


λ1

λ2
. . .

λn

.
Then ∀t ∈ C:

eAt = PeDtP−1, (28)

where

eDt =


eλ1t

eλ2t

. . .

eλnt

.
Proof: The proof can be found in [20].

This theorem allows us to easily calculate the thermal density matrix at any temperature provided we are
able to diagonalize the Hamiltonian. The catch is that direct diagonalization of the Hamiltonian is only feasible
for very small chains. More efficient methods that make use of the sparsity of the Hamiltonian allow us to stretch
this for slightly longer chains, however the need for algorithms such as MPS eventually becomes unavoidable,
see [21].

Even so, provided that we are able to diagonalize the Hamiltonian, we can easily calculate the thermal
density matrix and the time evolution of the thermal density matrix defined in equation (26), which is repeated
here for convenience

ρ̂β(t) = Û(t)ρ̂β(0)Û†(t).

Where Û(t) = e−iĤt can also be calculated using the found diagonalization of Ĥ. Lastly, the expectation value
of an operator Ô is calculated form the density matrix ρ̂ by

⟨Ô⟩ = Tr(ρ̂ Ô).
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4.3 State Purification

It is our aim to describe density matrices using MPS, however MPS in its standard form works for state vectors.
It is possible to extend the notion of matrix product states to operators[4, 22] and work with these directly or to
describe finite temperature states probabilistically with a specific selection of pure quantum states[23], however
one of the most effective ways is to describe a density operator of a mixed state as a single pure state, which
can be done by a process called purification[11]. In simple terms, purification means that instead of describing
a mixed state in the system Hilbert space with a density matrix, we describe it as a pure state defined on a
different, larger Hilbert space. For illustration, consider a system S with Hilbert space HS that is entangled
with an environment E with Hilbert space HE . We then define the universe U as the system and environment
together: HU = HS ⊗HE . A mixed state ρ̂S existing solely in S can be obtained from a suitably constructed
a pure state |ψU ⟩ ∈ HU , where |ψU ⟩ is chosen in such a way that ρ̂S = TrE(|ψU ⟩ ⟨ψU |).

Figure 8: Visual representation of a system, environment and universe. Observe that if the system is in a mixed
state with the environment, the universe is still in a pure state.

It seems that we require a complete description of the environment to implement this. However purification
can also be done by making use of an ancillary system A. This is a fictitious system that represents the thermal
bath, the sole purpose of which is enable us to find a pure state which is is compatible with our given mixed state
in S, done by introducing new degrees of freedom. To purify the system S we can take the ancillary system A
to be an exact copy of S. Suppose we have an orthonormal basis for S which we denote as {|iS⟩}. We take the
same basis for the ancillary system: {|iA⟩}. If we now have a state in S that is described by ρ̂S =

∑
i pi |iS⟩ ⟨iS |

we define the purified state

|ψ⟩ =
∑
i

√
pi |iS⟩ |iA⟩ . (29)

To obtain our original density matrix ρS we construct the density matrix of the purified state and take the trace
over the ancillary degrees of freedom.

As is shown in equation (25), finding the system’s density matrix at a finite temperature can be done by
evolving the infinite-temperature maximally mixed state ρ̂0 through imaginary time by applying the operator

Û(β) ≡ e
−βĤ

2 . However, we can also apply this operator to the purification |ψ⟩ from equation (29). Assume we
have a purification |ψ0⟩ of ρ̂0 then we can find the purified state |ψβ⟩ at a finite temperature:

|ψβ⟩ = e
−βĤ

2 |ψ0⟩ . (30)

This procedure leaves the question what the Hamiltonian of the combined physical-auxiliary system should be.
Since our ancillary system A is purely theoretical we may choose any site-local unitary operator to act on A[24],
since the physical system depends on the trace over A and is therefore not affected by the ancillary Hamiltonian,
as long as it is unitary[25]. An obvious first choice would be to use the unit operator:

Ĥ = ĤS ⊗ Î. (31)

However, for dynamical models (where the system is evolved through real time at a finite temperature) this
choice leads to rapid entanglement growth, limiting the timescale of the simulation[25]. A solution to this is
presented in[24], where the Hamiltonian is chosen to be
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Ĥ = ĤS ⊗ Î− Î⊗ ĤS , (32)

thus as the system evolves forward in time the ancilla’s evolve backward. More complicated methods exist
involving operators that actively disentangle the system, see for example [26].

State Purification and Matrix Product States

Suppose we have a spin chain with L sites that can each be in d possible states, where each site has a local
orthonormal basis {|ni⟩}. Then a general pure state can be written as in equation (11):

|ψ⟩ =
∑

n1n2...nL

A[1]
n1
A[2]

n2
...A[L]

nL
|n1n2...nL⟩ .

Matrix product states were designed for pure states. Thus if the chain is in a mixed state it must first be
purified. We do this by creating an exact copy of the chain in ancillary space and linking each site of the
physical chain to its corresponding site of the ancillary chain. To obtain a description for the system at a finite
temperature we start with the maximally mixed state at infinite temperature and evolve through imaginary
time to the desired temperature as described in the previous section. Thus we must find a description of our
purified system at β = 0.

At infinite temperature we found the system density matrix to be ρ̂0 = 1
dL Î = ( 1

d Î2×2)⊗L. This density
matrix can be factorized, and therefore the system can be purified by locally purifying each physical site in
the chain [14]. If we denote |ψi0⟩ as the purification of ρ̂0 at site i, then we can write the wavefunction of the
purified chain as a product state |ψ0⟩ = |ψ10⟩ ... |ψL0⟩.

Let us now consider a single site i, where the physical state is denoted by |ni⟩ and the ancillary state by
|n′i⟩. The physical and ancillary site together form a pure state |ψi0⟩ which is derived from the density matrix
by using that ρ̂i0 = TrA(|ψi0⟩ ⟨ψi0|):

1

d
Î =

∑
ni

1

d
|ni⟩ ⟨ni| = TrA[(

∑
ni,n′

i

1√
d
|ni⟩ |n′i⟩ δni,n′

i
)(

∑
ni,n′

i

1√
d
⟨ni| ⟨n′i| δni,n′

i
)],

thus

|ψi0⟩ =
∑
ni,n′

i

1√
d
|ni⟩ |n′i⟩ δni,n′

i
. (33)

Since we work with spin- 12 particles this is equivalent to the following linear combination of triplet states:

|ψi0⟩ =
1√
2
|↑↑⟩ +

1√
2
|↓↓⟩ ,

which is a Bell state. The initial state |ψ0⟩ =
⊗L

i=1 |ψi0⟩ of our purified spin- 12 chain can be written in MPS

form exactly with matrices of size (1 × 1). Specifically: Γ
[i]
1 = Γ

[i]
4 =

[
1√
2

]
, Γ

[i]
2 = Γ

[i]
3 =

[
0
]

and Λ[i] =
[
1
]
∀i.

(Imaginary) time evolution will cause the size of the matrices to increase and eventually the need for truncation
will arise. The truncation parameter χ is then a crucial parameter, as it must be balanced to maintain both
accuracy and model efficiency.

15



5 Simulation Results

In the previous chapters the theory of studying spin chains at finite temperature has been discussed. Using
the results from the theory a model has been made using python that is capable of simulating such systems.
The python model is an extension build upon the already existing model created by A. Meló, P. Vree and J.
Bouwmeester [5, 15, 16]. The simulation is characterized by a small number of parameters: the chain length
L, the truncation parameter χ, the magnetic field strength h, the temperature T and the Hamiltonian of
the auxiliary system. The focus of this section is studying the effect of these parameters on various physical
quantities and discussing our findings. The simulations are performed for small chains and are compared to the
analytical solution.

5.1 Imaginary Time Evolution

We will begin by examining what happens to the system as it evolves through imaginary time. That is to say,
as it evolves from the infinite temperature mixed state to the desired finite temperature state. In figure 9 the
expected energy of the system is shown as a function of the temperature, as well as the error of the simulation.

(a) Expected energy of the chain during MPS simulation. (b) Error of the MPS simulation, ∆β = 0.00125.

Figure 9: Expected energy of the chain compared to system temperature and the error compared to the exact
solution at each time step.
L = 7, χ = 24, h = 3.

We immediately see from 9b that the error of the MPS simulation compared to the exact solution tends to
0 as the temperature decreases. Relatively the error is even higher at high temperatures as the energy is closer
to 0 but also decreases along with the temperature. At T = 0.5, the lowest temperature reached during the
simulation, the relative error is of order 10−6.

From figure 9a we observe that for higher temperatures the energy of the system rapidly increases and tends
towards zero for infinite temperatures. Because of the Hamiltonian chosen (equation (6)) the energy of the
system is closely related to the spin of the system. In figure 10 the average of ⟨Ŝz⟩ (the magnetization) over the
entire chain is shown over the same timescale.
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(a) ⟨Ŝz⟩ of the chain during MPS simulation. (b) Error of the MPS simulation, ∆β = 0.00125.

Figure 10: ⟨Sz⟩ averaged over the entire chain compared to the system temperature and the error compared to
the exact solution at each time step.

L = 7, χ = 24, h = 3

We see that, apart from a scaling difference figures 9 and 10 are nearly identical. Meanwhile ⟨Ŝx⟩ and ⟨Ŝy⟩
remain at 0, with deviations of order of magnitude 10−15 for these simulations.

From these facts we can conclude that the energy of the system for different temperatures is governed almost
entirely by ⟨Ŝz⟩. However the magnetization of the chain is governed by the strength of the magnetic field h.
In figure 11 the effect of the magnetic field on the spins is shown for different temperatures.

(a) ⟨Ŝz⟩ of the chain during MPS simulation. (b) Error of the MPS simulation.

Figure 11: ⟨Sz⟩ averaged over the entire chain as a function of the magnetic field at varying temperatures and
the error compared to the exact simulation.

L = 6, χ = 24

We observe that at higher temperatures a stronger magnetic field is required in order to magnetize the chain.
Thus the simulation result is in line with what we would physically expect.

In figure 11 the lowest temperature reached is T = 0.5 Kelvin. If we lower the temperature even further we
obtain an interesting result, see figure 12a. When the temperature is sufficiently low the discrete nature of the
spectrum is revealed. We see 3 distinct steps of equal height in the average expected Ŝz value of the chain. It
can be verified this is related to chain size by performing the exact same simulation for a chain of L = 10, see
figure 12b, which makes the spectrum more dense. We are easily able to discern 4 discrete levels. However, the
last step is twice as long as the others and upon very close inspection it can be seen that the ’step’ is not entirely
straight either. In fact, it are two distinct steps, however the plateau in between is so small that they can hardly
be distinguished. The distinction between the fourth and fifth step can be revealed by lowering the temperature
even further, see figure 12c. For a chain of L = 6 we see 3 distinct steps, for L = 10 we see 5, so we may safely
assume the chain length is the cause of this behaviour. We also observe that the plateau between steps becomes
smaller for higher h. In other words: the magnetization of the chain increases more rapidly the stronger the
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magnetic field becomes, until the chain is fully magnetized and the magnetization remains constant. In figure
12d this can be seen more clearly. Here the length of the chain is such that the discrete levels can no longer be
distinguished at this temperature.

(a) L = 6 (b) L = 10

(c) L = 10 (d) L = 20

Figure 12: At low temperatures the discreteness of the spin chain is revealed.
χ = 12

Interestingly, simulating a spin chain without the use of an ancillary system yields comparable results. In
this case we also cannot start the simulation with a maximally mixed state. Instead we generate a random
state with s = 1

2 and apply imaginary time evolution to it with the same time steps as used for the previously
obtained results in figures 11 and 12, the results are displayed in figure 13. Due to the the randomized initial
state of the system the outcome of the simulations is inconsistent, thus three separate simulations are shown.

(a) (b) (c)

Figure 13: Simulations of a spin chain without the use of purification.
L = 6, χ = 20

By far the most consistent is the case T = 0.5, where the chain magnetization goes down in three steps
at roughly the same magnetic field strength each time. The other two exhibit less reproducible behaviour.
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The magnetization also decreases step-wise but the drops are of varying height and occur at varying locations.
Moreover, sometimes the system is more magnetized at higher temperatures than at lower temperatures with
the same magnetic field strength. For example in 13a the order is flipped right before h = 2.5. The differences
with simulations using purification (figure 11) can clearly be seen.

5.2 Real Time Evolution

When evolving the exact solution through real time the expected values for the energy, total spin and spin in
all 3 three directions remain constant. With this knowledge in mind, let us examine the time evolution of the
MPS.

We start again by considering the total energy and the spin ⟨Ŝz⟩ of the MPS simulation in figure 14. All
simulations in this section are obtained with a time step of 0.01 seconds.

(a) Expected energy of the chain over time (b) Average ⟨Ŝz⟩ of the chain over time

Figure 14: Time evolution of a chain of length 7. The blue, orange and green lines are simulations where the
system Hamiltonian is given by equation (31) (the ancilla’s Hamiltonian is the identity), the red line (*) is a
simulation where the system Hamiltonian is that of equation (32) (the ancilla’s evolve backwards in time).

L = 7, h = 3, T = 2

In these figures the effect of evolving the auxiliary system backwards through time is clearly shown. The
blue, orange and green lines are from a simulation using a Hamiltonian as in equation (31) and the red line with
a Hamiltonian as in (32). The normalization of the state over time also follows this pattern, see figure B.2.

We observe that simulations with larger χ values (in the case of ĤA = Î) stay constant for longer and
decrease more gradually, at the expense of longer computation time. In other words they appear to converge
to a constant value. This is as expected since the exact solution remains constant over time. In [24] it is
mentioned that evolving the ancillary system backwards through time counteracts the growth in entanglement,
see equation (32). Highly entangled states require more numerical resources to be accurately described by an
MPS (since they are volume law states). Thus we obtain more stable results by increasing χ or by limiting the
entanglement growth.

However the effect of using reverse time evolution for the ancilla’s can be more clearly seen if we study the
time evolution of ⟨Ŝz⟩ for each site in the chain independently, see figure 15. If the ancilla’s do not evolve with
time (figures 15a and 15b) we see the influence of a higher truncation parameter χ very clearly: in the case
χ = 12 oscillations start becoming rather chaotic very swiftly, but for χ = 24 this is less obvious. In the case
where the ancilla’s evolve through reverse time (figures 15c and 15d) there is little difference between χ = 12
and χ = 24, indicating that χ = 12 is a sufficiently large truncation parameter for this chain and timescale. In
fact, in figure B.1 we see that even χ = 6 provides comparable results up to time step 500. Note that in all
simulations during the first few time steps (up to about step 100) the results are the same. After this point
the model the results of the first two simulations begin to deviate due to the more rapid entanglement growth
between sites over time. A simulation over a longer time span can be found in the appendix: see figure B.3.

It is important to keep in mind that according to the analytical solution ⟨Ŝz⟩ should remain constant over
time. There is little difference between figures 15c and 15d thus the oscillations are a result the Suzuki-Trotter
or Crank-Nicolson approximations, which is dependent on the size of the time step. In figure B.4 we observe
that a lower time step indeed decreases the amplitude of the oscillations.
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(a) χ = 12, Ĥ = ĤP ⊗ Î (b) χ = 24, Ĥ = ĤP ⊗ Î

(c) χ = 12, Ĥ = ĤP ⊗ Î− Î⊗ ĤP (d) χ = 24, Ĥ = ĤP ⊗ Î− Î⊗ ĤP

Figure 15: Time evolution of ⟨Ŝz⟩ of each site in the chain for the two different Hamiltonians.
L = 7, h = 3, T = 2

Influence of the system parameters

Upon closer inspection of the lower two figures we see that there are pairs of sites that have identical oscillations
in opposite directions. These pairs are sites 1 and 7, 2 and 6, and 3 and 5. Site 4, which is exactly in the middle,
remains (almost) constant (and thus closest to the exact simulation). These plots are slightly cluttered, thus
the same results are shown for only the middle three sites of the chain in figure 17a.

Furthermore, we observe that the expected value for Ŝz is slightly lower for the sites at the edge than for
the sites in the middle. A logical explanation is the fact that the sites at the ends of the chain are coupled to
only one other site instead of two, thus the magnetic field has a comparatively greater influence on these sites
compared to sites not at the boundaries.

To highlight the influence of the temperature on the simulation results we execute the same simulation as
in 15a, but for T = 0.5. At lower temperatures the system is less entangled with the environment and thus the
ancilla’s (and their time evolution) have less influence. We observe that in this case the system can be simulated
adequately without the backward time propagation of the ancillas, see figure 16.

Another observation we make here is that the expected values for Ŝz are shifted compared to figure 15. It
can now be clearly seen that spins located towards the ends of the chain are more magnetized than those closer
to the chain center.

Up to now we have studied the effects of different Hamiltonians, truncation parameters and temperatures
on the simulation. Let us now see what happens if we increase the length of the chain (with Hamiltonian

Ĥ = ĤP ⊗ Î − Î ⊗ ĤP ). The results are shown in figure 17. We observe that the middle site fluctuates more
strongly. Running the simulation with a higher χ smoothens these fluctuations as shown in figure B.5. Thus
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Figure 16: Time evolution of ⟨Ŝz⟩ for each site in the chain with Hamiltonian Ĥ = ĤP ⊗ Î.
L = 7, χ = 12, T = 0.5

even when using reverse time propagation for the auxiliary system the system size is a limiting factor, requiring
more computational resources for accurate results.

(a) L = 7 (b) L = 13

Figure 17: Expected values of ⟨Ŝz⟩ of the middle three sites in the chain for two different chain lengths.
χ = 24, h = 3, T = 2

A detail we should pay attention to are the results for the system at high temperatures. Since β = 1
T a high

temperature means a very low β and therefore the imaginary time evolution is only over a very short time span.
Simulating a chain with L = 7 for T = 20 yields almost the exact same results as for T = 20000, apart from a
shift of the time average and a scaling of the amplitudes, see figure B.6.

We have also noticed in chains of odd length that the ⟨Ŝz⟩ of the sites ‘oscillate’ pairwise in opposite
directions. For even chains similar behaviour occurs. In this case the ⟨Ŝz⟩ of the pairs (again constituted of
spins at equal distance from the center of the chain) are exactly the same, see figure 18.

On a last note the time evolution of ⟨Ŝx⟩ and ⟨Ŝy⟩ must be mentioned. Over time both remain constant
around 0 within numerical accuracy, however, with some exponential increase for longer times, as can be seen
in the log-scale plots of figure B.7. It is not surprising that these remain around 0 due to the fact that the
system is isotropic for rotations around the z-axis.
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Figure 18: Expected values of ⟨Ŝz⟩ for a chain of even length.
χ = 24, h = 3, T = 1
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6 Summary and Conclusions

The aim of this work was to simulate spin chains at finite temperatures. We formulated our spin chain using
matrix product states and were therefore able to efficiently approximate our state and make use of the powerful
TEBD algorithm. We then combined this with the concept of purification in order to describe (incoherent)
thermal states as pure states, defined using an auxiliary system. The combination of MPS, purification and
TEBD allowed us to simulate spin chains at finite temperatures.

We used an XY-Hamiltonian with a magnetic field in the z-direction to test our model. The influence of
nonzero temperatures on chain magnetization due to the magnetic field was clearly demonstrated. Moreover,
we have seen the effect that reverse time evolution of the auxiliary system has on the reachable timescale during
real-time simulations, even when using modest computational resources. The results of the simulations using
MPS, have been verified at small scales by comparing them to the analytical solution of the problem, which
was calculated directly using the density matrix.

During the imaginary time evolution the MPS simulations proved to be very accurate, especially for lower
temperatures. During real time evolution the model deviated from the exact solution. Although the energy
and the total ⟨Ŝz⟩ of the chain remained constant, the local expectations for ⟨Ŝz⟩ started oscillating. This
oscillation is a consequence of both the truncation and the error due to the Suzuki-Trotter (and to a lesser
extent the Crank-Nicolson) approximation, of order O(∆t) globally. Even so, due to the origin of the error,
the model can be made more precise by simply increasing the truncation parameter χ and decreasing the (real)
time step. Naturally, this comes at the cost of a longer model running time. However, the major gain of using
matrix product states over the analytical solution is during the simulation of larger systems, in which case the
diagonalization of the Hamiltonian becomes excessively difficult to compute. Even for a chain of L = 13 the
MPS simulation with χ = 24 is faster than the direct computation (for L = 13 the Hamiltonian is a matrix of
dimensions (8192 × 8192)).

In this research we have worked under the assumption that the system remains in thermal equilibrium
during real time evolution. Thus, a possible extension for this model could be the incorporation of thermal
noise. Especially at low temperatures we found this to be important, which is to be expected since small
temperature fluctuations can be of great impact to β. Other possible subjects of further research might include
the modeling of temperature differences throughout a chain, or to attempt to replicate experimental data in a
specific situation.
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A Maximizing Overlap Between Matrix Product States

In [4] a method is presented to maximize the overlap between two states written in MPS form with different
bond dimensions. In this paper only a formula (equation (6)) is given without motivation. In this section the
derivation of this formula is given, should it be required for further research.

Our aim is to truncate our matrices Ani
while minimizing the loss of information due to this truncation.

Moreover, aside from maximizing the overlap the normalization of the state must be maintained. In [4] a set of
equations is presented without derivation that solves this exact problem∑

α′,β′

Cα,β,α′,β′

ni
Ãα′,β′

ni
= Hα,β

ni
. (A.1)

We will derive this equation and present it in a slightly more shorthand notation.
Suppose the matrices Ani

are of size (Di × Di+1) and we define the truncated matrices as Ãni
of size

(D̃i × D̃i+1) with D̃i ≤ Di ∀i. Our original state is denoted as |ψ⟩, the truncated state is |ϕ⟩

|ψ⟩ =
∑

n1n2...nL

An1An2 ...AnL
|n1n2...nL⟩ |ϕ⟩ =

∑
n1n2...nL

Ãn1Ãn2 ...ÃnL
|n1n2...nL⟩ .

We can formulate the function we want to maximize as follows:

maxϕ
|⟨ψ|ϕ⟩|2

⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩
. (A.2)

Since |ψ⟩ is fixed and normalized ⟨ψ|ψ⟩ = 1 and can be ignored. The norm ⟨ϕ|ϕ⟩ is present in the denominator
in order to ensure the normalization of |ϕ⟩. The |ϕ⟩ that solves the optimization problem in (A.2) can be found
by the standard procedure of taking the derivative with respect to each Ãni

and setting it equal to zero. This
is worked out below.

∂

∂Ã

|⟨ψ|ϕ⟩|2

⟨ϕ|ϕ⟩
=

1

⟨ϕ|ϕ⟩
∂|⟨ψ|ϕ⟩|2

∂Ã
− |⟨ψ|ϕ⟩|2

(⟨ϕ|ϕ⟩)2
∂ ⟨ϕ|ϕ⟩
∂Ã

= 0

⟨ϕ|ϕ⟩ ∂|⟨ψ|ϕ⟩|
2

∂Ã
− ⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩ ∂ ⟨ϕ|ϕ⟩

∂Ã
= 0

We can rewrite the partial derivatives as follows:

∂|⟨ψ|ϕ⟩|2

∂Ã
= 2Re[

〈
ψ

∣∣∣∣ ∂ϕ∂Ã
〉
⟨ϕ|ψ⟩ ] ∂ ⟨ϕ|ϕ⟩

∂Ã
= 2Re[

〈
ϕ

∣∣∣∣ ∂ϕ∂Ã
〉
].

If we assume that the two elements in the Re[ ] expressions are real, the Re[ ] operator may be left out.
Furthermore, after filling in these expressions the factor 2 may be divided away, resulting in

⟨ϕ|ϕ⟩ ⟨ϕ|ψ⟩
〈
ψ

∣∣∣∣ ∂ϕ∂Ã
〉
− ⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩

〈
ϕ

∣∣∣∣ ∂ϕ∂Ã
〉

= 0

or

⟨ψ|ϕ⟩
〈
ϕ

∣∣∣∣ ∂ϕ∂Ã
〉

= ⟨ϕ|ϕ⟩
〈
ψ

∣∣∣∣ ∂ϕ∂Ã
〉
.

Suppose the truncated state |ϕ⟩ is initially chosen in such a way that it is already very close to |ψ⟩, so ⟨ψ − ϕ|ϕ⟩
is very small (≈ 0). Let us make the assumption that this is the case, observe that we then have

⟨ψ|ϕ⟩
⟨ϕ|ϕ⟩

=
⟨ψ − ϕ|ϕ⟩ + ⟨ϕ|ϕ⟩

⟨ϕ|ϕ⟩
= 1 +

⟨ψ − ϕ|ϕ⟩
⟨ϕ|ϕ⟩

≈ 1.

If we now divide out ⟨ϕ|ϕ⟩ from our previous equation we are left with〈
ϕ

∣∣∣∣ ∂ϕ∂Ã
〉

=

〈
ψ

∣∣∣∣ ∂ϕ∂Ã
〉
. (A.3)

The overlap between states |ϕ⟩ and |ψ⟩ is calculated as follows[22]:
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⟨ψ|ϕ⟩ = Tr(
∑
{ni}

(A∗
n1

⊗ Ãn1
)(A∗

n2
⊗ Ãn2

) ... (A∗
nL

⊗ ÃnL
)). (A.4)

In [4] they use the complex conjugate of this expression. Doing this is invariant to the result, thus we will
continue from this point the complex conjugate of expression (A.4).

We are now going to rewrite equation (A.3) into a linear system of equations. First we define Ei ≡
∑

ni
Ãni⊗

Ã∗
ni

and Gi ≡
∑

ni
Ani

⊗ Ã∗
ni

. Then we have

(⟨ψ|ϕ⟩)∗ = Tr(G1...GL) (⟨ϕ|ϕ⟩)∗ = Tr(E1...EL).
We will evaluate the partial derivatives in equation (A.3) matrix by matrix and element by element. Recall that
the matrix Ãni

is of size (D̃i × D̃i+1). Let us take the partial derivative to the i’th matrix in spin state ni at
the β’th element of the α’th row. We obtain the equation:

Tr(E1...Ei−1 (Ãni ⊗ ∆α, β) Ei+1...EL) = Tr(G1...Gi−1 (Ani ⊗ ∆α, β) Gi+1...GL),
in which ∆α β is a matrix of zeros with a single 1 in row α and column β. We may use the fact that the trace
is cyclic (Tr(AB) = Tr(BA)) to rewrite this as

Tr((Ãni
⊗ ∆α, β) Ei+1...ELE1...Ei−1) = Tr((Ani

⊗ ∆α, β) Gi+1...GLG1...Gi−1).

There is now only one Ãni
left in our expression. We will take this out by rewriting as a sum over each element

in Ãni which, we will later see, will allow us to treat equation (A.3) as a system of linear equations. We obtain∑
α′,β′

Tr((∆α′, β′ ⊗ ∆α, β) Ei+1...ELE1...Ei−1)Ãα′,β′

ni
= Tr((Ani

⊗ ∆α, β) Gi+1...GLG1...Gi−1),

which we rewrite in short as: ∑
α′,β′

Cα,β,α′,β′

ni
Ãα′,β′

ni
= Hα,β

ni
.

It should be noted that α, α′ ∈ {1, ..., D̃i} and β, β′ ∈ {1, ..., D̃i+1}. We have thus found equation 6 in [4]. It is
rather cumbersome, so we rewrite the 4’th order tensor C into a matrix and the matrices Ã and H into vectors
by combining the indices α′, β′ into a single index µ and the indices α, β into index ν. Then we obtain the sum

∑
µ

Cν,µ
ni
Ãµ

ni
= Hν

ni
, (A.5)

or in short

CniÃni = Hni . (A.6)

Remember that for a system of L spins of level d, there are a total of d×L linear equations of this form that
must be solved. Moreover, since C and H depend on an initial guess of Ã, the solutions of these equations are
likely not yet optimal and performing this algorithm multiple times is advised.
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B Additional Figures

(a) χ = 6 (b) χ = 12

Figure B.1: At very low χ reverse time evolution of the ancilla’s is not sufficient for accurate simulations.
L = 7, h = 3, T = 2

Figure B.2: Normalization of the state over real time evolution. The blue, orange and green lines are
simulations where the system Hamiltonian is given by equation (31), the red line (*) is a simulation where the

system Hamiltonian is that of equation (32).
L = 7, h = 3, T = 2
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(a) (b)

Figure B.3: Simulation of a chain with Ĥ = ĤP ⊗ Î− Î⊗ ĤP for 8000 time steps.
L = 7, χ = 24, h = 3, T = 2

(a) time step = 10−2 (b) time step = 10−3

Figure B.4: Influence of the size of the time step on oscillation amplitude.
L = 7, χ = 12, h = 3, T = 2

(a) χ = 24 (b) χ = 36

Figure B.5: Also for Ĥ = ĤP ⊗ Î− Î⊗ ĤP a higher truncation parameter is required to simulate longer chains.
L = 13, h = 3, T = 2

29



(a) T = 20 (b) T = 20000

Figure B.6: ⟨Ŝz⟩ of the middle three sites of the chain for high temperatures.
L = 7, χ = 24, h = 3

(a) (b)

Figure B.7: Log scale plots of ⟨Ŝx⟩ and ⟨Ŝy⟩ of the fifth site in the chain over time. Notice that this simulation
is performed over 1000 time steps instead of 2000 for readability of the graphs.

L = 7, χ = 24, h = 3, T = 2
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C Python Code

The python code used for generating the results can be found in the following repository:

https://github.com/MatthijsRepository/MPS.git

31

https://github.com/MatthijsRepository/MPS.git

	Introduction
	Quantum Mechanics and Spin Chains
	Quantum States and Many Body Systems
	Spin Chains and the XY-Hamiltonian
	Graphical Representation of Tensors

	Matrix Product States
	Schmidt Decomposition, Entropy and the Area Law
	Matrix Product States
	Application of Operators
	Time Evolution of Matrix Product States

	Quantum Systems at Finite Temperature
	Time Evolution and the Thermal Density Matrix
	Analytical Solution using the Thermal Density Matrix
	State Purification

	Simulation Results
	Imaginary Time Evolution
	Real Time Evolution

	Summary and Conclusions
	Maximizing Overlap Between Matrix Product States
	Additional Figures
	Python Code

