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Chapter 1

Introduction

1.1 Lens Antennas

Dielectric lenses are widely used quasi-optical components in imaging and antenna systems.
They have been used for decades in applications such as radioastronomy, radar and satellite
communications. Lens antennas provide high gain radiation characteristics and can support beam
scanning capability by lateral displacement of the feed in the focal plane of the lens. Moreover,
multiple beams can be generated simultaneously with a lens antenna system by placing multiple
feeds in the focal plane. Each feed is then associated with a beam direction to form a so-called
imaging array.

One disadvantage of the use of lenses in the microwave frequency range is the large weight
and volume associated with the dielectric material composing the lens. However, the recent
shift to higher operational frequencies (millimeter wave and terahertz bands) for radar and
communication applications has resulted in a significant reduction of the antenna size and, in
turn, in a renewed interest in lens antennas.

More specifically, recent advances in millimeter-wave (mmWave) technology for high-speed wire-
less communication and high-resolution radars have increased the popularity of dielectric lenses
for multi-beam high-gain antennas [1]. Wireless communications in the near future will heavily
rely on the possibility to transmit and receive multiple data streams through directive beams
connecting the base station with different users. High-gain antennas operating in the mmWave
frequency range will focus the radiation in smaller angular regions with the aim of improving
the energy and spectral efficiency while reducing interference levels. Lens antennas are suitable
low-cost candidates for multi-beam base stations serving multiple distributed users simultane-
ously. Similarly in automotive radar applications, directive lens antennas can be used to increase
the range and angular resolution of car radar sensors, especially for long-range scenarios, with a
moderate angular field of view.

1.1.1 Flat Lenses

A lens is a device that modifies the shape of the wavefront of an electromagnetic wave. For
instance, a focusing lens can be used to convert a spherical wavefront generated by a point
source into a planar wavefront, as shown in Fig. 1.1. To do so, the lens has to provide a phase
shift that is larger in the center and smaller towards the lens edges, to compensate for the

1
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Flat lens

Point source

Planar

Spherical

Variable phase shift

Large Small

delay delay

wavefront

wavefront

Figure 1.1: Focusing lens operating principle. A spherical wavefront is converted into a planar wavefront
by a varying phase shift.

different path lengths of the rays emanating from the point source and impinging at different
locations on the lens.

Flat lenses are a specific category of lenses, characterized by planar interfaces. The geometry in
Fig. 1.1 refers to a flat lens. For such lenses, the phase shift is achieved by altering the material
properties as a function of position. Typically, the refractive index of the material composing the
lens is the highest in the center of the lens, where a large phase shift is required, and it gradually
reduces towards the edges of the lens, where lower phase shifts are needed.

1.1.2 Phase Variation versus Lens Diameter and Focal Ratio

The key parameter for lens design is the maximum phase variation needed across the aperture,
i.e. the phase difference between the center and the edge of the lens. For a lens characterized
by focal length F and diameter D, the maximum phase variation depends the wavelength λ and
the ratio of F to D, the F/D ratio. If the distance between the source and a point x on the
lens is indicated as L(x), the phase variation is given as kL(x) − kF , where k = 2π/λ is the
wavenumber.

For a given F/D ratio, the phase variation increases as the lens diameter D increases. In Fig.
1.2(a) the phase variation across a lens with F/D = 0.5 for different diameters is shown. A
typical quadratic variation is observed for the phase profile across the lens. Similarly, for a given
lens diameter, decreasing the focal length F also increases the phase variation. This is shown in
Fig. 1.2(b) for a lens with D = 10λ.

1.1.3 Trade-off: Bandwidth vs Thickness

Conventional homogeneous dielectric lenses have excellent properties but are typically bulky
and electrically thick. Flat lenses are low profile and can be fabricated more easily compared
to curved lenses, making them desirable at mmWave frequencies. Planar multi-beam thin lens
antennas can be realized as Fresnel lenses [2], transmitarrays [3], or metasurfaces [4]. Examples
of such lenses are shown in Fig. 1.3(a) and Fig. 1.3(b).

Despite the very low profile, one of the limitations of these thin-lens solutions is the narrow
frequency bandwidth due to the phase wrapping along the aperture, which results in sudden
discontinuous jumps in the phase distribution. If the phase shift of the lens reaches a certain
high value (ϕ), it can be reduced by an integer multiple of 360◦, which corresponds to a local
reduction of the lens thickness.
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Figure 1.2: Phase variation for (a) different lens diameters D with F/D = 0.5 and (b) different F/D
values, with diameter D = 10λ.

Fig. 1.4(a) shows an example of the phase shift through a lens that exceeds 360◦. A lens providing
this continuous phase variation is referred to as true-time-delay (TTD) and does not present
bandwidth limitations. On the contrary, if the phase is wrapped in the range from 0 to 360◦,
as shown in Fig. 1.4(b), the bandwidth is limited. The point at which the phase discontinuity
should occur is well defined only at a certain design frequency f0, while it introduces phase errors
at other frequencies.

Considering small deviations from f0, and a maximum accepted phase error of 90◦, for a lens
with K zones, the bandwidth can be estimated as [5]

BW ≈ 25

K − 1
% . (1.1)

For high gain lens antennas, a large diameter lens is required. This means there is a large phase
variation which requires many zones K, which in turn limits bandwidth. As such, the bandwidth
for lenses that use phase wrapping is inversely proportional to the directivity.

To overcome the bandwidth limitations, one can employ true-time-delay (TTD) lenses that
provide wideband behavior, at the cost of increased thickness. One example of a TTD flat lens
is the graded index (GRIN) lens, consisting of a dielectric cylinder with a radially changing
refractive index [6]. In Fig. 1.3(c), a schematic side view of a GRIN lens is displayed. Since
GRIN lenses have a varying refractive index, the reflection losses vary across the lens.

Hence, when designing flat lenses, a key trade-off to be considered is between bandwidth and
thickness. However, one possibility to reduce the thickness of wideband TTD lenses is to use
high-permittivity materials [7]. To reduce the reflection losses that would be caused by the
high permittivity, matching layers must be employed to improve the transmission at the air-lens



4 CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.3: Different types of flat lenses: (a) Fresnel zone lens, (b) Metalens, (c) Graded index (GRIN)
lens.
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Figure 1.4: Phase shift in degrees provided by flat lens as a function of position (a) without phase
wrapping (true-time-delay) and (b) with phase wrapping.

interface [8]. In this work, artificial dielectric layers are investigated as the means to achieving
high refractive indexes.

1.2 Artificial Dielectric Layers

A convenient way to realize high permittivity materials with refractive indexes that can be much
larger than commercially available dielectrics is through the use of artificial dielectric layers
[9]. Such artificial dielectrics can be realized as a cascade of periodic arrays composed of sub-
wavelength patches, increasing the effective permittivity, thus providing an increased phase shift
for waves propagating within the artificial medium. Very large effective permittivities can be
achieved by stacking multiple of these layers. TTD lens designs based on periodic structures
with sub-wavelength elements were presented in [10].

Recent advances in the analysis of artificial dielectric layers have resulted in closed-form expres-
sions representing each layer’s capacitance for general, non-periodic layer stacks [11]–[15]. These
expressions include higher-order Floquet wave interaction between layers and thus they are ac-
curate even for very small electrical inter-layer distances. The availability of analytical models
allows estimating a unit cell’s phase shift and scattering parameters with negligible computational
resources.
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A schematic cross-section of a lens based on artificial dielectric layers is depicted in Fig. 1.5.
The patches are drawn as black lines and the density of the metal becomes larger in the center
of the lens to implement the desired variation of effective refractive index.

Figure 1.5: Cross-section of a flat lens based on artificial dielectric layers. The black lines represent
the metal patches in the dielectric host medium.

1.3 Objective of the Thesis

The goal of this thesis is to provide guidelines for the design of wideband flat lenses based on
artificial dielectrics. Tradeoffs between achievable directivity and bandwidth are presented and
linked to the technological constraints and manufacturing complexity. Moreover, a computa-
tionally efficient approach for the analysis of the lens is proposed based on a combination of the
equivalent transmission line models of artificial dielectrics, geometrical optics (GO) / physical
optics (PO) analysis of the feed primary pattern and the lens, and a ray tracing method through
an equivalent anisotropic lens. Based on the tradeoff analysis and the modeling techniques, the
design of a flat artificial dielectric lens with a certain desired bandwidth, directivity, and F/D
can be efficiently performed. Example designs with various properties are also presented.

1.4 Outline

In Chapter 2 the theory of impedance transformers is used to define matching layers based on
artificial dielectric layers (ADLs). The procedure to retrieve the effective refractive index for a
given ADL stratification is reported, as well as the synthesis of the multi-section transformers
in ADL technology. Moreover, closed-form expressions of the refractive index as a function of
the angle of propagation inside the material are derived for both transverse magnetic (TM) and
transverse electric (TE) plane waves.

Chapter 3 reports a tradeoff analysis between lens performance and manufacturing complexity.
The study links the maximum phase variation required for a given lens design to the design pa-
rameters of the artificial dielectric, taking into account technology constraints, the total number
of metal and dielectric layers, and overall thickness. A methodology for designing flat lenses
based on ADLs is also presented. This starts with a design based on homogeneous dielectrics
to realize the required phase shifts and low reflection and then replacing the homogeneous di-
electrics with ADLs using the synthesis procedure described in Chapter 2. An example of a lens
design is reported with F/D equal to 1.

In Chapter 4, the modeling method for the analysis of a flat lens based in ADLs is presented.
This consists of a combined geometrical optics (GO) / physical optics (PO) approach, where each
GO ray is studied as a plane wave problem to evaluate the reflection/transmission through each
unit cell of the lens. Comparisons with full-wave simulations performed with CST are shown to
validate the analysis method.

Chapter 5 presents a more complex procedure, taking into account the bending of rays within the
lens. In fact, the GO/PO analysis in Chapter 4 assumes local periodicity of the unit cell for an
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incident plane wave. This approximation becomes less accurate for large incidence angles, which
occur in the periphery of the lens for small F/D or for a large off-focus displacement of the feed.
For this reason, a ray tracing code for materials with a non-homogeneous isotropic refractive
index was implemented and then generalized to anisotropic ADL-based effective materials. With
this tool, improved accuracy can be achieved for the analysis of the lens, by accounting for the
propagation of plane waves through multiple unit cells. Also, the directivity of the lens can be
improved when accounting for this effect, especially for small F/D.

Lastly, Chapter 6 concludes with a review of the most significant results presented in this thesis
and an outlook on possible future developments.



Chapter 2

Multisection Impedance
Transformers from Artificial
Dielectric Layers

When an electromagnetic wave impinges on an interface between two dielectrics with different
refractive indexes, such as the interface of a flat lens, reflections usually occur. Matching layers
can be used to reduce this reflection and to design a lens with low reflection losses over a large
bandwidth. An arbitrary stratification of dielectric slabs, under plane-wave incidence, can be
modeled using an equivalent transmission line model. In such a model, each layer of dielectric is
represented by a transmission line section. The equivalent transmission line model can be used
to translate impedance transformers from transmission line theory into a stack of dielectrics.

2.1 Impedance Transformers

Consider an infinite-length transmission line with characteristic impedance Z0 connected to a
load ZL. For a voltage wave incident on the load, the voltage reflection coefficient Γ is defined
as

Γ =
Z0 − ZL

Z0 + ZL
. (2.1)

The reflection coefficient is 0 only if Z0 = ZL. For any other case, reflection occurs. For real
load impedances, the simplest impedance transformer is the single-section quarter-wave trans-
former, shown in Fig. 2.1(a). A quarter wavelength transmission line section with characteristic
impedance Z1 =

√
Z0ZL is added between the infinite transmission line and the load. It ensures

a perfect matching between the load and the transmission line at the design frequency. The
bandwidth is inversely proportional to the transformation ratio max(ZL, Z0)/min(ZL, Z0). In
general, more transformer sections can be used to achieve matching over a wider bandwidth for
a given transformation ratio.

2.1.1 Theory of Small Reflections

In a cascade of transmission lines, multiple reflections occur, making it difficult to express the
overall reflection coefficient at a junction of two transmission lines. In [16] the theory of small

7
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Figure 2.1: (a) Transmission line circuit of quarter wave transformer. (b) Transmission line with
reflection coefficients used to derive the theory of small reflections.

reflections is introduced, which will be briefly summarized below.

The analysis considers a transmission line section of length θ = βl, connected to a load on one
end, and to an infinite-length transmission line on the other end, as shown in Fig. 2.1(b). To
find the overall reflection coefficient Γ for a wave arriving from the infinite transmission line, one
considers all the (partial) reflections at Γ1, Γ2, and Γ3. This results in a geometric series which
can be expressed as

Γ =
Γ1 + Γ3e

−2jθ

1 + Γ1Γ3e−2jθ
. (2.2)

If Γ1 and Γ3 are small compared to 1, the overall reflection coefficient can be approximated as

Γ ≈ Γ1 + Γ3e
−2jθ, (2.3)

offering a first-order approximation of the overall reflection coefficient.

This first-order approximation can also be applied to an arbitrary number of transformer sections.
A first-order approximation of the overall reflection coefficient Γ for an N -section transformer
can be written as

Γ(θ) = Γ0 + Γ1e
−2jθ + Γ2e

−4jθ + · · ·+ ΓNe
−2jNθ. (2.4)

If one imposes the reflection coefficients to be symmetric, i.e. Γ0 = ΓN , Γ1 = ΓN−1 etc., this
yields

Γ(θ) = e−jNθ
[
Γ0(e

jNθ + e−jNθ) + Γ1(e
j(N−2)θ + e−j(N−2)θ) + · · ·

]
, (2.5)

which can be written as a cosine series

Γ(θ) =


2e−jNθ

(N−1)/2∑
n=0

Γn cos((N − 2n)θ) N odd

2e−jNθ

N/2−1∑
n=0

Γn cos((N − 2n)θ) +
1

2
ΓN/2

 N even

(2.6)

From this expression, it follows that by adequately choosing the reflection coefficients at each
junction Γn, a variety of matching responses can be designed. Several examples of such trans-
formers are shown in Fig. 2.2(a). Generally, the bandwidth increases as more transformer
sections are added.
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Figure 2.2: (a) Frequency responses of different impedance transformers, to match a transformation
ration of ZL/Z0 = 2. (b) Chebyshev polynomials Tn(x) for n = 1, 2, 3, 4.

In [17], the derivations of several multi-section impedance transformers are given, such as expo-
nentially tapered transformers, the binomial transformer, and the Chebyshev transformer. The
derivation for the Chebyshev transformer, however, is only given for up to N = 4 sections. In the
next section, a closed form expression for the reflection coefficients of the Chebyshev transformer
of arbitrary order N is derived.

2.1.2 Chebyshev Transformer of Arbitrary Order N

The Chebyshev transformer is based on the Chebyshev polynomials, and maximizes the band-
width of the transformer, at the cost of a ripple in the passband. The nth-order Chebyshev
polynomial is a polynomial of degree n, denoted by Tn(x). The first two Chebyshev polynomials
are

T0(x) = 1 (2.7)

T1(x) = x (2.8)

For all higher order Chebyshev polynomials, one can apply iteratively

Tn(x) = 2xTn−1(x)− Tn−2(x). (2.9)

In Fig. 2.2(b), the first four Chebyshev polynomials are plotted. The Chebyshev polynomials
have some useful properties. For x ∈ [−1, 1], the polynomials oscillate between −1 and 1, which
is used to create an equal-ripple passband. To do so, x = −1 and x = 1 are mapped to the
start and end of the passband respectively by substituting x = cos θ sec θm, where sec θm is a
parameter depending on the transformation ratio ZL/Z0 and the pass band ripple Γm and can
be approximated as

sec θm ≈ cosh

[
1

N
cosh−1

(∣∣∣∣ ln(ZL/Z0)

2Γm

∣∣∣∣)] . (2.10)

To synthesize an N -section Chebyshev transformer, with an equal-ripple passband, the overall
reflection coefficient is made proportional to the Chebyshev polynomial:

Γ(θ) = Ae−jNθTN (sec θm cos θ). (2.11)
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The constant A can be found by imposing the boundary condition (letting θ = 0, corresponding
to zero frequency) as

A =
ZL − Z0

ZL + Z0

Γm∣∣∣∣ZL − Z0

ZL + Z0

∣∣∣∣ . (2.12)

To find the values of the impedances Zn in the multi-section transformer one can equate Eq.
(2.6) to Eq. (2.11):

N odd 2e−jNθ

(N−1)/2∑
n=0

Γn cos((N − 2n)θ) = Ae−jNθTN (sec θm cos θ) (2.13)

N even 2e−jNθ

N/2−1∑
n=0

Γn cos((N − 2n)θ) +
1

2
ΓN/2

 = Ae−jNθTN (sec θm cos θ) (2.14)

It can be shown (full derivation in Appendix A) that for an arbitrary number of sections N, each
Γn can be expressed in closed form as

Γn =



A
N

4

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
U(n′ + p ∈ [n,N − n]) N odd

A
N

4

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
U(n′ + p ∈ [n,N − n]) N even, n < N/2

A
N

2

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
U(n′ + p ∈ [n,N − n]) N even, n = N/2

(2.15)
where

U(n′ + p ∈ [n,N − n]) =

{
1 for n′ + p = n or n′ + p = N − n
0 otherwise

(2.16)

and

a(n′, p,N) = (−1)n
′ (N − n′ − 1)!

n′!p!(N − 2n′ − p)!
(2.17)

Note that for N even, n > N/2, Γn can be found by applying symmetry, since we imposed this
condition.

Finally, from Γn, the impedance of the sections can be found as

Zn+1 ≈ e(ln(Zn)+2Γn) (2.18)

referring to Fig. A.1 in Appendix A.

2.2 Artificial Dielectric Layers Analysis

To create materials with specific properties, which can for example be used to realize impedance
transformers or high permittivity materials, artificial dielectric layers can be used.

Artificial dielectrics are materials in which the dielectric permittivity does not arise from the
polarization effect at the atomic or molecular level, but is artificially constructed by including
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Figure 2.3: (a) Schematic of ADL and (b) the corresponding equivalent transmission lines for TE- and
TM-mode. Source: [15]

metal structures. The artificial dielectric used in this work uses a periodic arrangement of small
flat metal patches, visualized in Fig. 2.3a. These artificial dielectric layers (ADLs) can be
analyzed using closed-form expressions which were first presented in [11], [12]. The analysis was
later extended to include shifts between the layers in [13], and then further generalized to allow
stacks of non-identical patches in [15].

The analysis is valid for an infinitely repeating unit cell in the x- and y-direction. A schematic
drawing of an ADL is given in Fig. 2.3(a). This unit cell consists of a stack of metal and
dielectric layers, and is repeated with period p. Each metal layer has a certain gap width w,
shift s relative to the adjacent metal layers, and distance d to the adjacent metal layers. In Fig.
2.4, the geometry of the unit cell is detailed. Each dielectric layer has a certain thickness h and
permittivity εr.

The dielectric layers between the metal layers are modeled as transmission line sections. The
metal layers are modeled as shunt impedances, where the impedance of each metal layer is given
by:

Zn,TM =
−j
Bn

(2.19)

Zn,TE =
−j

Bn

(
1− k2

ρ

2k2
layer

) (2.20)

Where k2ρ = k2x+ k2y and klayer is the wavenumber of the dielectric around the metal layer, which
can be approximated as the average wavenumber of the dielectric above and below. In Equation
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Figure 2.4: Geometry of layer n of the ADL, and the adjacent layers above and below.

2.19 and 2.20, the susceptance Bn is defined as [15]:

Bn = jpεf
∑
m̸=0

{Sm (wn) [fm (dn,n+1) + fm (dn−1,n)] +

Sm (wn+1) gm (sn,n+1, dn,n+1) + Sm (wn−1) gm (sn−1,n, dn−1,n)}
(2.21)

where ε is the permittivity around the layer, found from klayer. f is the frequency under consid-
eration, and m are the considered indexes of the Floquet modes. For the top and bottom layers,
the limit is taken for dn±1 → ∞. The functions Sm(w), fm(d) and gm(s, d) are given by:

Sm(w) =

∣∣∣sinc(πmw
p

)∣∣∣2
|m|

(2.22)

fm(d) = − cot

(
−2jπ|m|d

p

)
(2.23)

gm(s, d) = ej2πms/p csc

(
−2jπ|m|d

p

)
. (2.24)

The equivalent transmission lines for this structure under an incident TE- or TM-polarized plane
wave are shown in Fig. 2.3(b). The characteristic impedance of the transmission line sections
for the transverse electric (TE)- and transverse magnetic (TM)-mode are given by

Z0,TE =
k0
√
εr,d

kz,d
(2.25)

Z0,TM =
kz,d

k0
√
εr,d

. (2.26)

At frequency f , the free-space wave number can be expressed as

k0 =
2πf

c0
(2.27)
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where c0 is the speed of light in the vacuum. Given a certain angle of incidence in the medium
with permittivity εr,s surrounding the stratification, one can find kρ as

kρ =
√
εr,sk0 sin θ . (2.28)

Since kρ remains constant as the wave propagates through different dielectric slabs with horizontal
interfaces as a consequence of Snell’s law, kz must change in different media, to satisfy the

condition k =
√
k2z + k2ρ. Using this, kz,d in a dielectric layer with refractive index

√
εr,d can be

expressed as a function of the angle outside the stratification as

kz,d = −j
√
−(k20εr,d − k2ρ) = k0

√
εr,d |cosθ| , (2.29)

which is the propagation constant of the equivalent transmission line section. The length of the
transmission line is defined by the vertical spacing of the metal layers d.

2.2.1 Evaluation of ADL in Arbitrary Stratification

With an expression for the capacitance of each metal layer, the scattering parameters for an
arbitrary stack-up can be evaluated. This is done by finding the ABCD matrix of each element
of the transmission line and computing the matrix product of all ABCD matrices.

Dielectric Slab

The ABCD matrix of a lossless transmission line section, which represents a dielectric layer, is
given by [

cos(kz,dd) jZ0,T i sin(kz,dd)
1

Z0,Ti
j sin(kz,dd) cos(kz,dd)

]
(2.30)

where Z0,T i refers to the transmission line’s characteristic impedance for either TE- or TM-mode.

The ABCD matrix of a shunt impedance Z is given by[
1 0
1

Zn,Ti
1

]
. (2.31)

Total ABCD matrix

With each ABCD matrix known, the total ABCD matrix is computed as the matrix product of
the individual ABCD matrices:

ABCDtotal,T i =

N∏
i=1

ABCDi,T i (2.32)

From the ABCD matrix, one can find the S-parameters for arbitrary source and load impedances
ZS and ZL with the equations described in [18].

The S11 of a two-port between a source impedance ZS and load impedance ZL is given by

S11 =
AZL +B − CZ∗

SZL −DZ∗
S

AZL +B + CZSZL +DZS
. (2.33)

The S12 of such a two-port is given by

S12 =
2(AD −BC)

√
ℜ(ZS)ℜ(ZL)

AZL +B + CZSZL +DZS
(2.34)
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Figure 2.5: Artificial dielectric layers (ADL) in host medium εr (left) and the homogenized version
(right). Source: [19]

2.3 Effective Refractive Index

The artificial dielectric layers form a material that behaves as if the permittivity and permeabil-
ity are different from the host dielectric. Homogenization techniques can be used to find this
effective permittivity and permittivity, and the refractive index. In Fig. 2.5, the main idea of
homogenization is visualized: a complex structure is simplified to a dielectric with an effective
refractive index, such that the response to electromagnetic waves is similar to the original struc-
ture. Different methods can be used to find the effective refractive index given a certain ADL
geometry. The method described in [20] uses S-parameters from normal and oblique incidence
to find, with knowledge of the thickness of the structure, the complete effective tensors for both
the permittivity and permeability. If one is interested only in finding the refractive index for
a certain angle, one can equate the ABCD matrix of a stratification to the ABCD matrix of a
homogeneous transmission line. This method is described in [21] and will be outlined here.

2.3.1 Extraction of Effective Refractive Index

The method works by equating the ABCD matrix of a shunt impedance connected between two
equal-length transmission line sections, to the ABCD matrix of a single transmission line section.
Note that a similar analysis could be applied to an arbitrary stratification.

Computing the matrix product of two transmission line sections of length d/2, with the shunt
impedance ZADL in between, and equating A of the resulting ABCD matrix with A from Eq.
(2.30), one can write

kz,eff,T i =
1

d
cos−1

(
cos(kzd) + j

ZTi

2ZADL,Ti
sin(kzd)

)
, (2.35)

where the metal layer impedance ZADL,Ti, is given by

ZADL,TE = − j

Bs

(
1− sin2 θ

2

) (2.36)

ZADL,TM = − j

Bs
(2.37)

Now, one can find the effective refractive index as

n2Ti =
k2z,eff,T i + k2ρ

k20
. (2.38)
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Figure 2.6: (a) Effective refractive index in ADL as a function of angle θ inside the material, for TE-
and TM-mode. (b) TM-mode plane wave incident on ADL with angle θ.

2.3.2 Closed Form Expression for Angle Dependence of Refractive In-
dex

While the method above allows extracting the effective refractive index given a specific ADL
geometry, having a general relationship between the broadside refractive index in an ADL and
the refractive index at an angle, without specifying the geometry of the ADL would be helpful.
This information is for example useful for a simple generalization of ray tracing methods in
inhomogeneous media to account for the anisotropy, as will be shown in Chapter 5.

The effective refractive index in an ADL as a function of angle θ inside the ADL is plotted in
Fig. 2.6(a). The variation between n2(θ = 0◦) and n2Ti(θ = 90◦) can be approximated with a
cos2 θ shape for practical ADL designs, as follows:

n2Ti(θ) ≈ (n2(θ = 0◦)− n2Ti(θ = 90◦)) cos2 θ + n2Ti(θ = 90◦). (2.39)

Therefore, to fully characterize the ADL in terms of its effective refractive index, given the
broadside (θ = 0◦) effective refractive index, only the refractive index for θ = 90◦ for both TE-
and TM-mode is required.

TM-Mode

For the TM-mode, the behavior for a broadside wave is identical to the TE-mode, because in
both cases the field is parallel to the metal patches. For a wave incident at θ = 90◦, the E-field
in the TM-wave is perpendicular to the metal patches, as can be seen in Fig. 2.6(b). There
is no interaction with the patches in this case, and the effective refractive index is equal to the
refractive index of the host material.

This can also be observed from the equations. For TM mode, ZTi in Eq. (2.35) is given by
ZTi = ZTM = ζkz/k. It follows that if θ = 90◦, kz is 0, and thus kz,eff,TM = 0. Then, the
refractive index is given by

n2TM (θ = 90◦) =
k2ρ
k20

= n2host. (2.40)
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TE-mode

For TE-mode, the broadside case is equivalent to TM mode. However, when θ = 90◦ the E-field
is still parallel with the plane where the metal patches lie, although the direction of propagation
has changed. To arrive at an expression for the effective refractive index for θ = 90◦, given a
broadside effective refractive index n(θ = 0◦), the first step is to write Bs in terms of n(θ = 0◦).
Substitute Eq. (2.36) in Eq. (2.35) and use ZTE = ζk/kz, yields

cos(kz,eff,TEd) = cos(kzd) +
j

2

ζk

kz

− j

Bs

(
1− sin2 θ

2

)


−1

sin(kzd). (2.41)

If θ = 0◦, kz = k, and one can write

kz,eff,TE(θ = 0◦) =
1

d
cos−1

(
cos(kd)− ζBs

2
sin(kd)

)
(2.42)

Then, using kρ = 0 in Eq. (2.38), the refractive index can be related to kz,eff,TE as

nTE(θ = 0◦) =
1

k0d
cos−1

(
cos(kd)− ζBs

2
sin(kd)

)
. (2.43)

Solving for Bs yields

Bs =
2

ζ

cos(kd)− cos(k0dnTE(θ = 0))

sin(kd)
(2.44)

Now take θ = 90◦, from which follows that kz = 0. Consider

lim
kz→0

sin(kzd)

kzd
= 1. (2.45)

Using this, Eq. (2.41) can be rewritten to

cos(kz,eff,TEd) = 1− ζkdBs

4
(2.46)

Isolating kz,eff,TE , and applying Eq. (2.38), the effective refractive index for θ = 90◦ can be
written as

n2TE(θ = 90◦) = n2host +

(
1

k0d
cos−1

(
1− ζkdBs

4

))2

. (2.47)

where Bs should be substituted with Eq. (2.44). Note that the only parameters of the ADL
required in this equation are the vertical spacing between metal layers d and the refractive index
of the host medium.

2.4 ADL Synthesis

Bringing together the transformer design, ADL analysis, and ADL homogenization, one can syn-
thesize a unit cell in ADL technology with the scattering properties of an arbitrary transformer.
The goal of this section is to describe how, given a transformer design, i.e. the number of sections
N , the impedance Zi of each section, and the length li of each section, a unit cell with the same
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Figure 2.7: (a) Interface between two dielectrics. (b) Interface between two dielectrics with 3-section
Chebyshev matching transformer. (c) Interface between two dielectrics with 3-section Chebyshev match-
ing transformer, implemented using ADLs.

scattering properties can be designed. For the quarter wave transformer, binomial transformer,
and Chebyshev transformer, the section length should be λ/4 taking into account the effective
permittivity of that section. Thus, each section has a length of λ0/(4

√
εr).

The impedance of each section is related to an effective permittivity. The relation is given by

εr =

(
Z0

Z

)2

, (2.48)

with Z0 = 120π. Each section starts with an initial number of metal layers. The effective
permittivity of the section is evaluated. If the effective permittivity is higher than required, the
gap width w is increased, or the horizontal shift s between the layers is reduced. Conversely, if
the effective permittivity is lower than required, either the gap width should be reduced, or the
shift should be increased. Considering manufacturing constraints, there will be minimum and
maximum gap widths. If with the initial number of metal layers, no feasible design can be found,
the number of metal layers should be altered.

After each section is synthesized independently, the reflection coefficient as a function of frequency
for the complete stack is evaluated, and compared to the frequency of the transformer one tries
to synthesize.

To improve the design, one could formulate the design of the unit cell as an optimization problem
minimizing a specific cost function, with the design of each independently synthesized section as
a starting point. For example, the absolute difference between the desired and achieved response
over a certain frequency range could be used as a cost function to find values for the gap widths
and inter-layer shifts:

Cost =

N−1∑
n=0

|Γdesired(f [n])− Γ(f [n])| . (2.49)
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Figure 2.8: Reflection coefficient from an ideal 3-Chebyshev transformer, the same transformer imple-
mented in ADL technology (Initial design), and the optimized version of this design (Optimized).

Alternatively, one could minimize the difference between the phase of the transmission coefficient
and the required phase shift. Of course, there are limits to applying such an optimization
technique, as the finite number of artificial dielectric layers does not always yield a perfect
correspondence with the ideal transformer response. In general, increasing the number of metal
layers, thus having more degrees of freedom in the design, reduces the difference with the desired
response. This however comes at the cost of a more complex manufacturing process.

Example Transformer Design

Consider a 3-section Chebyshev transformer, to improve the matching at the interface between
a dielectric slab with permittivity εr = 20 and a dielectric slab with permittivity εr = 1, as
depicted in Fig. 2.7(a).

In a 3-section Chebyshev with a pass-band ripple of Γm = 0.05, the relative permittivities of the
sections are 1.65, 4.49, and 12.17. Each section’s length is λ/4. Implementing these matching
layers as homogeneous dielectric layers results in the structure in Fig. 2.7(b).

From this stratification, ADL sections can be synthesized. Using a period of p = 0.1λ0, and
minimum gap width wmin = 0.0017λ0, results in a design with 7 metal layers. In Fig. 2.8,
the magnitude of the S11 of this stratification is plotted as a solid line. Depending on the
requirements of the design, this could be acceptable. If a response more similar to the ideal
response is desirable, the design can be improved using an optimization procedure. Applying
an optimization with the cost function described in Eq. (2.49) to the initial design yields the
optimized design. The response is more similar to the Chebyshev response. To further improve
the design, one could do another design with more layers.

A cross-section drawing of the final design of the interface, with matching layers implemented as
ADLs, is shown in Fig. 2.7(c).



Chapter 3

Tradeoff Analysis and Lens Unit
Cell Design

3.1 Phase Variation

As explained in Chapter 1, a flat lens generates a collimated beam by converting a spherical
wavefront into a planar wavefront. The lens has to provide a phase shift that is larger in the
center and smaller towards the lens edges, to compensate for the different path lengths of the
rays emanating from the point source and impinging at different locations on the lens. The
key parameter for the design of TTD lenses is the maximum phase variation needed across the
aperture, i.e. the phase difference between the center and the edge of the lens. The maximum
phase variation depends on the lens diameter in terms of the wavelength and on the focal distance
to lens diameter (F/D) ratio. In particular, for a given electrical size of the lens, the maximum
phase variation increases for smaller F/D, because the smaller radius of curvature of the spherical
wavefront causes larger differences in the path length of the impinging rays. Similarly, for a fixed
F/D, the phase range increases as a function of the lens diameter. For designing a lens, one could
generate a map of maximum phase variation for different values of lens diameter D and focal
ratio F/D, as shown in Fig. 3.1(a). These values can then be related to the design parameters
of the artificial dielectric unit cell.

3.2 Thickness of Ideal Artificial Dielectric Unit Cell

To achieve a specific required phase range, a schematic unit cell, like the one in Fig. 3.1(b), can
be considered. This unit cell is assumed to be made of three sections: a central one referred to as
the core, where the highest achievable effective permittivity εr,max is used to maximize the phase
shift at the center of the lens, and two matching layer sections, responsible for the low-reflection
transition to free space, over a desired bandwidth.

The highest achievable permittivity εr,max depends on the maximum frequency of operation, the
minimum height of dielectric slabs (i.e. minimum inter-layer distance), and the minimum gap
and track width of the manufacturing technology. The matching section design depends on the
value of εr,max and on the desired operational bandwidth.

19



20 CHAPTER 3. TRADEOFF ANALYSIS AND LENS UNIT CELL DESIGN

0.5 1 1.5 2

5

10

15

F/D

D
ia
m
et
er

[λ
]

200

400

600

800

1,000

P
h
a
se

v
a
ri
a
ti
o
n
[d
eg

.]

(a)

h

n

z

nmax1

Core

Matching
layer(s)

Matching
layer(s)

hML

(b)

Figure 3.1: (a) Map of maximum phase variation in degrees for different values of lens diameter D and
focal ratio F/D. (b) Schematic of unit cell. Core with refractive index nmax, and matching layers with
gradually reducing refractive index.

The schematic unit cell allows estimating the total phase shift that can be obtained with an ideal
unit cell for a given εr,max and a certain total height h. For the sake of simplicity, we assume that
the matching layers are realized as an exponentially tapered impedance transformer between free
space and the core material [17]. For example, for the lower matching layer, we can write:

Z(z) = ZFSe
az for 0 ≤ z ≤ hML (3.1)

where ZFS is the free-space impedance and a is

a =
1

hML
ln

(
Zcore

ZFS

)
. (3.2)

Writing Eq. (3.1) in terms of refractive index, we have

Z(z) =
ZFS

n(z)
= ZFSe

az ⇒ n(z) = e−az (3.3)

so that the phase shift of the matching layer with height hML can be found in closed form:

ϕ = k0

∫ hML

0

n(z)dz = k0

∫ hML

0

e−azdz =
k0(1− e−ahML)

a
. (3.4)

The same phase shift can be assumed for the top matching layer. We assume that the amplitude
of the reflection coefficient for an exponential taper can be approximated as [17]

|Γ| = 1

2
ln

(
Zcore

ZFS

)
sinc(k0hML). (3.5)

The height hML can be chosen such that the total reflection coefficient of the unit cell is better
than a desired value over a target bandwidth. For example, we can choose Γ ≤ −13 dB over a
relative band ≥ 40% (from 0.66f to f , where f is the maximum frequency of operation), which
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Figure 3.2: Maximum phase variation as a function of the maximum effective permittivity and total
lens thickness, for a flat lens with a 40% bandwidth.

corresponds to a total reflection Γ ≤ −10 dB for the two matching layers. These conditions
define the matching section height hML, and in turn the height of the core section can be defined
as hcore = h − 2hML. The map of maximum phase variation as a function of εr,max and h is
shown in Fig. 3.2. For example, if a certain lens design requires 800◦ of phase range, one can
use a material with relative permittivity of 30 for the core and obtain a lens thickness of 1.25λ.
Alternatively, if the maximum permittivity that can be achieved is 10, a lens of 1.65λ height
would be required to achieve the same phase shift. It can be seen that, with the considered high
values of core permittivity, several multiples of 360◦ can be achieved even with moderate lens
thicknesses between one and two wavelengths.

3.3 Technology Constraints

The value of εr,max is dependent on the manufacturing technology. The first step in the design
is to determine the maximum effective permittivity, given the manufacturing technology. The
permittivity is proportional to the spatial density of the metal patches. The constraints taken
into account are the following:

• Minimum gap width between patches.

• Dielectric material for the lens.

• Minimum distance between patch layers, i.e. the minimum thickness of a dielectric slab.

• The period of the artificial dielectric layer has to be small compared to the wavelength at
the maximum frequency. This condition is essential for keeping low current intensity on
the patches and, in turn, low Ohmic losses. Moreover, the assumption of small patches is
needed for the validity of the analytical descriptions of the ADL. The analytical expressions
are typically valid for ADL periods lower than a quarter wavelength.

From these constraints, a hypothetical unit cell is designed with the minimum gap width between
the patches, minimum vertical spacing d, maximal lateral shifts s between the metal layers, a
small period p and using the selected dielectric as the host material. From this unit cell, the
maximum effective refractive index is determined. The dimensions of this unit cell are used for
the core of the unit cell in the center of the lens, to achieve the maximum possible phase shift.
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Figure 3.3: Overview of the lens divided into unit cells. In the center, the maximum phase shift is
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3.4 Unit Cell Design

The lens is first designed assuming unit cells of homogeneous dielectrics. Later, these will be
implemented as ADLs. Knowledge of the ADL period and possible constraints in thicknesses
of the available dielectric layers are required. Both should be considered when determining the
heights of the core and matching layers.

The first step of the lens design is the division of the lens into a number of unit cells, as depicted
in Fig. 3.3. The period of these unit cells is the same as the period of the ADL. The unit cell in
the center provides the maximum phase shift, and the outermost unit cell provides the minimum
phase shift ϕo, considering the angle of incidence θi on this unit cell. Given the maximum phase
variation ϕm for certain F/D, the center unit cell should provide a phase shift of

ϕc = ϕm + ϕo . (3.6)

The center position of each unit cell is used to compute the phase shift required in that particular
cell, considering the angle of incidence of a plane wave originating in a point source in the focal
point of the lens. Assuming that the focal point is in the origin of the coordinate system, the
radial distance of a unit cell centered at (x, y) to the center of the lens is defined as ρ =

√
x2 + y2,

and the angle of incidence on a unit cell is

θi = tan−1
( ρ
F

)
. (3.7)

The maximum incidence angle for the unit cell at the edge of the lens can be found as

θmax = tan−1

(
D − p

2F

)
. (3.8)

Assuming the outermost unit cell is made of a single homogeneous dielectric with refractive index
no, phase shift through that unit cell is

ϕo = −k0 cos (θmax)hno . (3.9)
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Figure 3.4: Drawing of (a) non-fixed layer heights of the core and matching layers, and (b) fixed layer
heights to ensure the (metal) layers of the lens are aligned. (c) Conceptual synthesis of ADL from unit
cell: higher metallic insertion density yields higher effective refractive index.

The target phase shift ϕt required for a unit cell at a distance ρ from the origin can be written
in general as

ϕt = −k0

√(
D − p

2

)2

+ F 2 −
√
(ρ2 + F 2)

+ ϕo . (3.10)

Given a bandwidth requirement, one can design the matching layers of the center unit cell. The
thickness of the core should be chosen to provide the proper phase shift. The center unit cell
can be used as a starting point to design all other unit cells within the lens.

To find the permittivity of the core and matching layer(s) of any cell, the permittivity of the core
can be varied from 1 to εr,max while changing the matching layer(s) accordingly. Computing the
phase of S12 generates a map of the achievable phase shifts considering the angle of incidence on
a given unit cell. The permittivity of the core and the matching layers for which the phase of the
S12 is equal to ϕt are used in that particular unit cell. When considering different unit cells with
different dielectric materials, both the height of the core and the height of the matching layers
change, for optimal matching conditions. However, this would result in a complex structure that
is difficult to manufacture because of the non-aligned interfaces between dielectrics, as shown in
Fig. 3.4(a). For this reason, it is convenient to keep the same height of the matching layers for all
unit cells so that the lens can be fabricated with a single multi-layer printed circuit board (PCB).
Fig. 3.4(b) illustrates the fixed layer height. This constraint worsens the matching compared
to the ideal transformer because the matching layers are no longer a quarter of the effective
wavelength. However, small degradation of the reflection coefficient can still be acceptable.

The above procedure yields a height for the core and each matching layer. Furthermore, for each
unit cell, an equivalent target permittivity is defined for the core and the matching layers(s).
The problem of designing a flat lens has now essentially been reduced to a set of ADL synthesis
problems, equivalent to the synthesis procedure described in Chapter 2.4. The dielectric sections
are translated into a unit cell composed of ADLs, as shown in Fig. 3.4(c). The phase of the
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Figure 3.5: Reflections of a dielectric slab (εr = 19.2) with 0, 1 and 2 Chebyshev matching sections on
above and below the slab.

unit cell’s S12 is designed to be equal to ϕt while also considering the bandwidth requirements
in terms of |S11|.

In the next section, this theory will be applied to the design of an 11λ diameter flat lens with an
operating bandwidth of an octave.

3.5 Example Flat Lens Design

This section details the design of a flat lens based on ADLs, using PCB technology. The target
performance is summarized as follows:

• The operating frequency band is from 70−140 GHz, over which a |S11| < 10dB is required
for each unit cell.

• The diameter of the lens is 11.6λ0, where λ0 is the free-space wavelength at the maximum
frequency, 140 GHz. This corresponds to a maximum directivity of 31dB.

• Focal number F/D =1.

The above requirements result in a maximum phase variation of 477◦ as can be derived from the
map presented in Fig. 3.1(a).

The next step is to determine the maximum refractive index that can be achieved in a certain
technology. The dielectric material for the lens is chosen as Rogers RO 4350B [22]. The chosen
Rogers RO4350B PCB has the following properties and constraints:

• Minimum gap width between patches in PCB is 80 µm.

• Dielectric εr = 3.66 and tan δ = 0.0037.

• Minimum distance between patch layers is 101 µm.

Besides the material-related constraints, the period of the ADL is chosen as 0.19λ0, to ensure
the low-loss property of the ADL and the validity of the analytical expressions. The maximum



3.5. EXAMPLE FLAT LENS DESIGN 25

−1 −0.5 0 0.5 1
0

5

10

15

20

x [D/2]

ε r

Core

Inner matching

Outer matching

(a)

50 100 150
−40

−30

−20

−10

0

Frequency [GHz]

S
-p
a
ra
m
et
er
s
[d
B
]

|S11|
|S12|

(b)

O
u
te
r

m
a
tc
h
in
g

In
n
er

m
a
tc
h
in
g

C
o
re

O
u
te
r

m
a
tc
h
in
g

In
n
er

m
a
tc
h
in
g

p

εr = 2.3

εr = 2.3

εr = 3.66

(c)

Figure 3.6: (a) Relative permittivity for the core, which is the densest, and the inner and outer
matching layers. (b) Reflection coefficient S11 and transmission coefficient S12 of the center unit cell,
implemented as ADL. (c) Schematic of the center unit cell. The core and inner layer are implemented
using ADLs, the outer matching layer as a homogeneous dielectric.

achievable permittivity using these materials and constraints, is εr,max = 19.2.

One can design the matching layer(s) with the maximum permittivity of the known core. A
multi-section Chebyshev transformer was used in this particular design. One can investigate
the reflection coefficient over the required frequency band to determine the number of sections
required. The Chebyshev transformer is designed at the center frequency of operation, fc = 105
GHz. In Fig. 3.5, the |S11| for a dielectric slab with εr = 19.2 and thickness of λ0/2, with 0, 1
and 2 Chebyshev matching sections above and below the slab is plotted. Most power is reflected
over the complete frequency band if no matching layers are used. As expected, periodic narrow
transmission notches are observed, corresponding to resonances occurring when the core height
is an integer multiple of half the effective wavelength. With one matching layer, the reflection
coefficient is mostly lower than −10dB, but not over the entire target band 70-140 GHz. Adding
a second matching layer yields a bandwidth < −10dB over the full band. More matching layers
could be added to increase the bandwidth further or decrease the reflections in the pass band.
This illustrates the trade-off between lens thickness and bandwidth.

With a 2-section Chebyshev transformer, a core thickness of 0.41 mm is sufficient to achieve the
required total phase variation of 477◦ in the center of the lens. The total unit cell thickness is
1.8 mm, or 0.85λ0.

The thickness of the core, hcore, and of the matching layers h1 and h2 are fixed. For each cell,
a curve similar to the one in Fig. 3.8(b) is created, considering the angle of incidence on that
particular unit cell. This yields a permittivity for the core and the matching layers for each unit
cell. In Fig. 3.6(a), the distributions of needed permittivities along the lens aperture are plotted.
The core has the highest permittivity, and the matching layers have a lower permittivity. At
some positions, the permittivity is lower than the permittivity of the host material. It is assumed
those sections can be realized for now. Notes on the practical implementation can be found in
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Chapter 6.

Now, the permittivities of each unit cell are known, and the remaining part is the ADL synthesis.
The outer matching layer with low permittivity can be realized just with the dielectric and does
not require metal insertions. Considering the constraints defined before, one can synthesize the
unit cell that will be placed in the center of the lens. The realized unit cell has a reflection
coefficient < 10dB over the entire bandwidth of operation, as can be seen in Fig. 3.6(b). The
unit cell has 6 metal layers and is shown in Fig. 3.6(c). One thing to note is that if the F/D ratio

εhost
1 3.52 31.5 2.5

Figure 3.7: Cross-section of the flat lens with all unit cells designed.

was smaller, or D was larger, the required phase variation would be higher, but the matching
layers could be realized in the same way. Considering the same constraints, this would result in
a higher number of metal layers in the core to realize the required phase shift.

The unit cell at the center is used as a starting point to derive all other unit cells. Essentially al-
tering the geometrical parameters of ADLs in the core to change the phase shift, and in matching
layers to improve matching. A cross-section of the final lens design is shown in Fig. 3.7.

The reflection coefficient for all the unit cells under oblique incidence is shown in Fig. 3.8(a).
It can be noted that some of the unit cells exhibit reflections slightly above −10dB. Although a
better optimization could have been performed, the total losses due to reflection were estimated
to be lower than 0.5 dB, and thus were considered acceptable for this example design.
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Figure 3.8: (a) Reflection coefficient over frequency for each of the unit cells in the lens design. The
color indicates the radial position on the lens. (b) Phase shift achieved by a unit cell including matching
layers for different core permittivities.



Chapter 4

Modeling of the Lens

This chapter presents a combined geometrical optics (GO) / physical optics (PO) approach for
the evaluation of the lens’ radiation patterns and efficiency. Each GO ray is studied as a plane
wave problem to evaluate the lens’s reflection/transmission through each unit cell. This method
allows for quickly assessing the performance in terms of directivity of a flat lens based on artificial
dielectric layers.

4.1 System Overview

The total system is composed of the following components:

• A feed, placed at a distance F from the lens. The feed can be displaced laterally from the
focal point of the lens by distance df from the point O aligned with the lens axis. The line
connecting the feed with the center of the lens forms an angle α with respect to the z-axis,
while the line connecting with a generic point on the lens (with radial distance ρ for the
center) forms an angle θ with respect to the z-axis.

• The lens with diameter D. In turn, the lens is defined by the geometry and stratification
of each unit cell, characterized by a transmission coefficient that relates the incident and
transmitted field, depending on the angle of incidence theta and the polarization of the
incident field (TE or TM).

A schematic drawing of the system is given in Fig. 4.1. In the figure, the ϕ = 0 cut is drawn.
If there is no lateral feed displacement, the system is circularly symmetric, although the pattern
of the feed is not necessarily symmetric. If there is a lateral feed displacement, this symmetry
disappears.

4.2 Feed

To decouple the problem of designing a frequency-stable feed from the lens design, a Gaussian
feed with −10dB edge taper was used to assess the lens performance. The design of a frequency-
stable feed is out of the scope of this thesis. In Chapter 6.2 some feasible feed options are
presented.

27
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Figure 4.1: System overview.

4.2.1 Current Distribution

The feed current distribution is assumed to be planar in the x-y plane, and only an electric
current along x̂. The Gaussian current distribution is given by

j(ρ) = e−ρ2/w2
0 x̂ (4.1)

where ρ is defined as
√
x2 + y2, and w0 is a constant to scale the distribution. w0 is chosen such

that the far-field has a -10dB edge taper at the lens edge, and is frequency dependent. Since the
field amplitude does not decay with the angle the same way in the E- and H-plane, the source
current is stretched by substituting y = y′ = ya, where a is a constant chosen to match the
-10dB angles in both planes.

Because the current defined here will also be exported to a full-wave solver (CST), it is chosen
to be sampled on a finite rectangular grid. Therefore, the Gaussian will be truncated. The same
truncation is used in this analysis.

4.2.2 Beam Scanning

To achieve beam scanning with the lens, the feed is displaced laterally in the focal plane. This
causes the illumination of the lens to change, resulting in degraded spillover- and taper-efficiency,

Without repointing

Taper
amplitude
and phaseSpillover

(a)

With repointing

(b)

Figure 4.2: Scanning by lateral displacement in the focal plane, (a) without repointing and (b) with
repointing.
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as shown in Fig. 4.2(a). To partly compensate for this change in illumination, a linear phase
shift is applied over the current distribution of the lens, resulting in a re-pointing of the beam
of the feed to the center of the lens, as shown in Fig. 4.2(b).

Considering a displacement df of the feed along the x-axis, the angle α with the z-axis is defined
as

α = tan−1(df/F ) . (4.2)

The linear phase distribution over the feed aperture required to re-point the main lobe to the
center of the lens, at angle α, is

ϕα(x) = k0 sin(α)(x+ df ) . (4.3)

The importance of this re-pointing becomes clear when one considers the scan loss curves of an
example design with F/D = 1 in Fig. 4.3. The difference between both curves can be attributed
mainly to the spillover and taper losses present when no re-pointing is used.

4.2.3 Far-field from Current

To find the far-field from the current distribution of the feed, the procedure described in Appendix
B was used. The observation points are defined by the centers (xl, yl) of each unit cell on the
lens bottom surface. The coordinates are transformed from Cartesian to spherical using

r =
√
(xl − df )2 + y2l + F 2 (4.4)

θ = cos−1

(
F

r

)
(4.5)

ϕ = tan−1

(
yl

xl − df

)
(4.6)

Note that when computing ϕ, the four-quadrant inverse tangent should be used, which is available
in MATLAB as atan2().
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Figure 4.3: Scan loss for a lens with and without re-pointing of the feed main beam to the center of
the lens.
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4.3 Physical Optics Currents After Lens

As described in Section 2.2, artificial dielectric layers can be modeled as an equivalent transmis-
sion line with a plane wave impinging. This allows finding the S-parameters as a function of
incident angle θ, frequency f , and polarization.

Note that the analytical expressions for the artificial dielectric layers are valid under the as-
sumption of local periodicity, i.e., an infinitely repeating unit cell in both x- and y-direction. In
Chapter 5 the implications of this assumption are investigated.

To find the transmitted E-field after the lens Et, the θ̂- and ϕ̂-components of the incident E-field
before the lens Ei are multiplied by the S12 of the unit cell for respectively TM- and TE- mode.

Et = Ei,θS12,TM θ̂ +Ei,ϕS12,TEϕ̂ . (4.7)

With the E-field after the lens known, the equivalent Physical Optics surface currents after the
lens are defined as

js = n̂×H|s (4.8)

ms = E|s × n̂ (4.9)

on the top surface after the lens. Using Schelkunoff’s formulation of the equivalence theorem
and the image theorem, and using n̂ = ẑ, the magnetic currents cancel, and the total equivalent
electric current can be written as

js = 2ẑ ×H|s = 2n̂×
(
k̂ × E

ζ

)∣∣∣∣
s

. (4.10)

From the equivalent current distribution after the lens, again, the procedure described in Ap-
pendix B is used to find the far-field radiation. However, now the observation points are chosen
on a hemisphere, i.e. r = Const., θf ∈ [0◦, 90◦] and ϕf ∈ [0◦, 360◦].

4.4 Efficiencies

To find the gain of the lens, losses should be considered. This analysis considers the reflection
efficiency, taper efficiency, spillover efficiency, and Ohmic efficiency.

4.4.1 Spillover Efficiency

The spillover efficiency is a measure of how much power radiated by the feed is intercepted by
the lens. It is defined by

ηspillover =

∫ 2π

0

∫ θ0
0

|Efeed|2 sin θdθdϕ∫ 2π

0

∫ π
2

0
|Efeed|2 sin θdθdϕ

, (4.11)

where θ0 is the angle, looking from the feed center, until which the lens extends. In Fig. 4.2(a)
the spillover efficiency is illustrated. The shaded part is the power not intercepted by the lens.
Note that for scanning, θ0 is a function of ϕ.
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4.4.2 Reflection Efficiency

The reflection efficiency measures the fraction of power accepted by the lens relative to the power
with which the lens is illuminated. For an arbitrary lens illumination, the reflection efficiency
is a weighted sum of the incident power divided by the total incident power. The time average
Poynting vector Sav for a plane wave is given by

Sav =
|E|2

2ζ
k̂ . (4.12)

The vector k̂ is a unit vector in the direction of propagation of the plane wave. Splitting the
Poynting vector in the TE- and TM -components yields

STE =
|Eϕ|2

2ζ
k̂ (4.13)

STM =
|Eθ|2

2ζ
k̂ . (4.14)

Multiplying the incident Poynting vector by the S-parameter S12 for TE- and TM -mode and
taking the dot product with the normal yields the transmitted power PT .

Pt =

∫∫
S

(|STE(x, y)||S12,TE(x, y)|2 + |STM (x, y)||S12,TM (x, y)|2) cos θ(x, y)dxdy . (4.15)

The total incident power is given by an integral over the surface at the bottom of the lens:

Pi =

∫∫
Sav(x, y) cos θ(x, y)dxdy . (4.16)

Finally, the reflection efficiency can be written as

ηreflection =

∫∫
(|STE(x, y)||S12,TE(x, y)|2 + |STM (x, y)||S12,TM (x, y)|2) cos θ(x, y)dxdy∫∫

Sav(x, y) cos θ(x, y)dxdy
. (4.17)

4.4.3 Ohmic Efficiency

Losses occur in the lens both in the dielectrics and on the metals. To estimate this efficiency, a
full-wave simulation of the structure is performed in CST Microwave Studio [23], to extract the
power radiated by the feed Pfeedand the losses in the dielectrics, Ploss, dielectric, and on the metals
Ploss, metal.

ηOhmic =
Ploss, dielectric + Ploss, metal

Pfeedηspilloverηreflection
. (4.18)

The term in the denominator consists of three parts: the power radiated by the feed, the spillover
efficiency, measuring how much power from the feed is actually intercepted, and the reflection
efficiency. The product of those measures yields the total power accepted by the lens.

4.4.4 Taper Efficiency

The taper efficiency measures how constant the phase and amplitude of the field after the lens
are. The taper efficiency can be computed by comparing the achieved directivity to the maximum
directivity from an aperture with constant amplitude and phase of the same size. A different
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definition of the taper efficiency split into amplitude taper loss (ATL) and phase error loss (PEL)
is given in [24]. The directivity from an aperture with constant amplitude and phase is

Dirmax =
4πA

λ2
(4.19)

where A is the area of the aperture.

The ATL is defined as

ATL =

(∫∫
|E|ds

)2

A

∫∫
|E|2ds

. (4.20)

Since the phase after the aperture should not be constant when scanning, this must be considered
when defining the phase error. In general, one can write

PEL(θ, ϕ) =
(1 + cos θ)2

4

∣∣∣∣∫∫ Eejk·r
′
ds

∣∣∣∣2(∫∫
|E|ds

)2 . (4.21)

For broadside, the PEL reduces to

PEL =

∣∣∣∣∫∫ Eds

∣∣∣∣2(∫∫
|E|ds

)2 . (4.22)

With the ATL and PEL, the taper efficiency is defined as

ηtaper = ATL · PEL . (4.23)

4.5 Comparison with Full-Wave Simulations

To validate the analysis method, full-wave simulations were done using CST Mircrowave Studio
[23]. In these simulations, the same −10dB edge-tapered feed was used. The “Near-field scan
data exchange format” [25] was used to import the feed current distribution.

Furthermore, since the patches of the ADL can have shifts, a metal patch is not generally placed
in the center of a unit cell. This can cause problems when two adjacent unit cells do not have the
same gap width; since the metal patches vary in size from one to the other unit cell, very small
and difficult to mesh features appear at the edges of the metal layers, resulting in simulations
that are computationally too heavy. Therefore, the jump from one to the next unit cell was made
to vary linearly, reducing the number of mesh cells significantly in the simulations and improving
convergence. In Fig. 4.4, a schematic drawing of this conversion is given.
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Figure 4.4: Schematic of conversion from square patches to taper for full-wave simulations.

4.5.1 Example: F/D = 1 Design

The example design from Chapter 3.5 was analyzed using the GO/PO method described in this
chapter. In Fig. 4.5 the far-field patterns of the flat lens illuminated by a -10dB edge-tapered
Gaussian beam at 140 GHz are shown. The estimate of the maximum directivity, as well as the
shape of the main beam, computed using the GO/PO method is very close to the results from
the CST simulation. As the lateral displacement of the feed is increased, and thus the scan angle
of the main beam, some small differences between CST and the GO/PO method start to emerge.
However, the GO/PO method can still be used as an excellent estimate for the directivity.
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Figure 4.5: Directivity at 140 GHz of the flat lens design described in Chapter 3.5, for different lateral
displacements of the feed.

To estimate the gain and total efficiency, the different efficiencies were computed for this partic-
ular design. An overview of the efficiencies as a function of frequency is presented in Fig. 4.6(a).
The total efficiency over an octave bandwidth is higher than -2dB or 63%. As the frequency
increases, one can observe that the Ohmic losses increase, as the electrical size of the metal
patches grows. Furthermore, the reflection losses dip at 120 GHz. This was expected, as at this
frequency the reflection coefficients of some individual unit cells (as reported in Chapter 3.5),
exceeded the targeted −10dB level.
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The maximum achievable directivity for this design was 31dB at 140 GHz. In Fig. 4.6(b),
the achieved gain for broadside is plotted, along with the maximum achievable directivity for a
circular aperture the size of the lens. The achieved gain at 140 GHz is 29.3dB.

As can be seen in Fig. 4.5, the maximum directivity is reduced as the scan angle increases. The
scan loss for this lens at 140 GHz is plotted in Fig. 4.7(a). When scanning up to 25◦, the scan
loss is lower than −2dB.
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Figure 4.6: (a) Total efficiency and the contributions of each of the considered efficiencies: Ohmic,
reflection, spillover, and taper efficiency. (b) Gain of the lens design (solid) and maximum directivity
from an aperture (dashed).
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Figure 4.7: (a) Scan loss at 140 GHz. Until 25 degrees, the scan loss is limited to -2 dB. (b) A ray
propagating through multiple unit cells.
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4.6 Reduced F/D

When the F/D ratio is reduced, the maximum incident angle on the lens increases. If one applies
the GO/PO analysis on a lens with a similar unit cell period and lens thickness in terms of the
wavelength but reduced F/D, the shortcomings of this analysis become apparent. Consider the
far-field pattern of a flat lens with F/D = 0.25 computed using the GO/PO method, compared
to the full-wave simulations presented in Fig. 4.8. The main-beam shape is different; therefore,
the estimate of maximum directivity for broadside is also more than 1 dB different.
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Figure 4.8: Far-field pattern from flat lens with F/D = 0.25, from CST [23] (dashed) and using the
GO/PO method without raytracing (solid).

A reason for this mismatch between the simulation methods could be that in the GO/PO method,
the unit cell on which a plane wave impinges is assumed to be locally periodic. This assumption
is correct if a ray impinging on a unit cell remains within the same unit cell. However, if a ray
traverses multiple unit cells, as shown in Fig. 4.7(b), this assumption is no longer valid, causing
an error in the estimated field after the lens and thus the far-field pattern. The phenomenon
in which rays traverse multiple unit cells depends of course on the period of the unit cells and
thickness of the lens, but in general, as the feed is displaced more, or the F/D ratio is reduced,
the number of rays that traverse multiple unit cells increases, as the incident angle on the unit
cells increases.

In the next chapter, a method to model this phenomenon is proposed and applied to both the
analysis and design of flat lenses.
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Chapter 5

Ray Propagation in
Non-Homogeneous Media

The analysis and design presented in the previous chapters assumed an incident ray is transmitted
through a locally periodic unit cell. In reality, the properties of the lens vary spatially, and a
ray arriving at the lens with an oblique angle can propagate through multiple unit cells that
are different from each other. This effect can happen when the F/D ratio is small, causing the
incident angle to be large in the periphery of the lens. When the feed is displaced significantly
off-axis, the maximum incident angle on unit cells also increases.

The goal of this chapter is to provide the tools required to analyze rays propagating in non-
homogeneous structures and use this to improve the lens design and analysis.

5.1 Ray Propagation in Non-Homogeneous Media

In non-homogeneous media, in which the index of refraction varies as a function of space, ray
paths are not generally straight. For a special case in which the index of refraction is constant,
i.e. in homogeneous media, ray paths are straight. For that case, the plane-wave solutions of the
Maxwell equations in a homogeneous medium are:

E(r) = E0e
−jk0n(k̂·r)

H(r) = H0e
−jk0n(k̂·r) .

(5.1)

where n =
√
µrεr is the refractive index, k0 is the vacuum wavenumber, k̂ is the unit vector

along the propagation direction and r is the position vector. If instead of defining the phase as
a distance along the direction of propagation multiplied by the index of refraction, one defines
a function S(r), called the “optical path”, and substitutes this for n(k̂ · r), one can infer that a
more general wave propagating far away (many wavelengths) from the sources can be represented
by

E(r) = E0e
−jk0S(r)

H(r) = H0e
−jk0S(r).

(5.2)

37
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If one substitutes these functions as trial solutions in the Maxwell equations, one can find the
Eikonal equation. In Appendix C the full derivation is given. The Eikonal equation governs
ray-propagation in non-homogeneous media and can be written as:

(∇S)2 = n2. (5.3)

By manipulating the Eikonal equation following the algebraic steps also shown in Appendix C,
one can arrive at two differential equations:

n
dr(s)

ds
= ∇S (5.4)

and

d

ds

(
n
dr(s)

ds

)
= ∇n . (5.5)

One can derive an ordinary differential equations (ODE) system to solve these equations. Writing
Eq. (5.4) in terms of its different components explicitly

n
dx

ds
x̂+ n

dy

ds
ŷ + n

dz

ds
ẑ =

∂S

∂x
x̂+

∂S

∂y
ŷ +

∂S

∂z
ẑ (5.6)

and defining px = ∂S
∂x , py = ∂S

∂y and pz = ∂S
∂z , yields 3 scalar equations.

n
dx

ds
= px (5.7a)

n
dy

ds
= py (5.7b)

n
dz

ds
= pz (5.7c)

Similar for Eq. (5.5), one can write explicitly

d

ds

(
n
dx

ds

)
x̂+

d

ds

(
n
dy

ds

)
ŷ +

d

ds

(
n
dz

ds

)
ẑ =

(
∂n

∂x
x̂+

∂n

∂y
ŷ +

∂n

∂z
ẑ

)
. (5.8)

Using Eq. (C.26), 3 scalar equations can be written:

dpx
ds

=
∂n

∂x
(5.9a)

dpy
ds

=
∂n

∂y
(5.9b)

dpz
ds

=
∂n

∂z
(5.9c)

The combination of Eq. (C.26) and Eq. (C.28) yields the full ODE system. To solve it, a
numerical solver can be used to solve the initial value problem, where the initial values are given
by

x = x0 (5.10a)

y = y0 (5.10b)

z = z0 (5.10c)

px = n(x0, y0, z0) sin θ cosϕ (5.10d)

py = n(x0, y0, z0) sin θ sinϕ (5.10e)

pz = n(x0, y0, z0) cosϕ (5.10f)



5.2. TESTING IMPLEMENTATION OF EIKONAL EQUATION 39

x

z

1

1.2

1.4

1.6

1.8

2

R
ef

ra
ct

iv
e

in
d
ex

n
2

(a)

x

z

(b)

-D/2 D/2
-F

0

h

(c)

Figure 5.1: Ray paths in a (a) Maxwell fish-eye lens (n2
0 = 2), (b) Luneburg lens and (c) the GRIN

lens described in [27].

Numerical solvers, such as the ode45 solver from MATLAB can be used to solve such problems.

The Eikonal equation is valid if the refractive index in the medium is slowly varying. Using the
Eikonal equation and Snell’s law at planar interfaces, ray propagation through complex structures
with non-homogeneous materials and flat interfaces can be analyzed.

5.2 Testing Implementation of Eikonal Equation

To confirm the correctness of the implementation of the Eikonal equation and the ODE system,
ray propagation in different lenses with known propagation characteristics is investigated.

Luneburg Lens and Maxwell Fish-Eye Lens: A famous example of a lens with a non-
constant refractive index is the Maxwell fish-eye lens [26]. The Maxwell fish-eye lens is a spherical
lens with a radius R. It focuses rays originating at a point on the sphere to the opposite side of
the sphere. The refractive index n as a function of the distance from the center is

n =
n0

1 +
( r
R

)2 , (5.11)

where n0 is the maximum refractive index. A 2D cut of such a lens with a source placed at the
bottom is given in Fig 5.1(a).

Another example is the Luneburg lens. It focuses incident parallel rays onto a point on the
opposite side of the lens. The refractive index n as a function of the distance from the center is

n =

√
2−

( r
R

)2

. (5.12)

In Fig. 5.1(b), the ray paths inside the Luneburg lens are plotted.

Graded Index (GRIN) Lens Example: Another example of a GRIN lens on which ray
tracing was applied, is presented in [27]. The lens presented is a flat lens with a refractive index
n as a function of ρ, varying as

n = nmax + (nmax − nmin)

(
ρ

ρmax

)
(5.13)
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In the example, nmax = 1.44, nmin = 1, h = 14.7 mm, D = 36 mm, F = D/2. The ray paths are
plotted in the example lens in Fig. 5.1(c). The ray paths are the same as given in the paper.

5.3 GRIN Lens Design Equation

For a lens that converts a spherical wavefront into a planar wavefront, [28] presents a closed-form
expression for the variation of n with position. It is assumed that in the center of the lens the
refractive index is maximal, n = nmax. The goal is to have the same phase delay or optical path
length from the focal point to the transmit point of the lens for each ray:

F + nmaxT = OP1 +

∫ P2

P1

nds. (5.14)

where F is the focal length, T is the thickness of the lens, O is the focal point, P1 is the point on

the lens interface and
∫ P2

P1
nds is the optical path length (OPL): the refractive index integrated

over the ray path. Note that to find the phase shift of a ray with wave number k along a ray path
is OPL·k, similar to the homogeneous case where the phase shift is the product of the physical
length, index of refraction, and k.

Under certain assumptions, the integral for the optical path length can be closed, and the optical
path length can be written in closed form as shown in [28], which yields∫ P2

P1

nds =
T (3n21 − 2 sin2 θ)

3
√
n21 − sin2 θ

. (5.15)

Combining this result with (5.14), one can write

F + nmaxT =
F

cos θ
+
T (3n2 − 2 sin2 θ)

3
√
n2 − sin2 θ

. (5.16)

5.3.1 Refractive Index Profile

The first step to a practical design is determining the thickness T given the maximum refractive
index nmax, or equivalently find nmax given T . To do so, θ is replaced with θmax and n is replaced
with nmin in (5.16):

F + nmaxT =
F

cos θmax
+
T (3n2min − 2 sin2 θmax)

3
√
n2min − sin2 θmax

. (5.17)

In the equation above is nmin the minimum refractive index in the lens and θmax the incident
angle at the edge of the lens and given by

θmax = tan−1

(
D

2F

)
. (5.18)

In (5.17), T is the only unknown. This equation can be solved to find T .

Now, one can substitute T in (5.16) and solve the resulting equation to find the refractive index
as a function of incident angle, which can be mapped to a position directly.
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Figure 5.2: GRIN Lens with F/D = 0.5, designed using the method described in [28]. (a) Broadside
rays. Most rays are parallel. (b) Rays when scanning. Since the lens was designed for broadside, not all
transmitted rays are parallel.

5.3.2 Example GRIN Lens Design

Applying this design equation with F/D = 0.5, n2max = 6, n2min = 1 gives a GRIN lens design
with thickness T = 0.1375D. In Fig. 5.2(a), the design, together with rays from a point source in
the focal point is shown. The transmitted rays are parallel. Fig. 5.2(b) shows the same lens, but
with the feed displaced. It can be noted that the transmitted rays are not all parallel, because
the lens was designed for an on-axis feed.

5.4 Matching Layers

In the design equation presented in the previous section, the reflection of power incident on
the lens was not considered. However, especially when the GRIN lens is designed with a large
maximum refractive index to reduce its thickness, the incident field from the source can undergo
strong reflection at the lens-air interfaces. To reduce this reflection, matching layers can be
employed at the lens interfaces [8]. The procedure to close the integral of the optical path length
cannot be used in the presence of matching layers, for which the refractive index also varies
along z. Nevertheless, since the Eikonal equation is valid for arbitrary continuous refractive
index distributions, the numerical procedure described in Section 5.1 can still be used when
matching layers are included to compute the ray path.

5.4.1 Exponential Transformer

As an example implementation of a wideband matching layer, we consider an exponential trans-
former above and below the GRIN lens design from Section 5.3.2, now referred to as the core.
The impedance of the transformer of length L is given by

Z(z) = Z0e
az, (5.19)

where a = 1
L ln Zl

Z0
. Since the lens dimensions and the refractive index profile changed, so will the

ray paths. In Fig. 5.3(a) the ray paths are shown. L is chosen half of the core thickness. The
transmitted rays are not parallel, and all rays are bent inward. The lens is over-compensating.
A simple way to readjust the focusing property of the lens would be to reduce the thickness of
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Figure 5.3: GRIN Lens with F/D = 0.5, designed using the method described in [28] with exponential
matching layers. (a) Result after adding the matching layers. (b) Result after reducing the thickness of
the lens core.

the core, but leave the matching layers unchanged. By reducing the core thickness to 55% of its
original thickness, the transmitted rays are almost straightened, as can be seen in Fig. 5.3(b).

5.4.2 Arbitrary Transformers

For an arbitrary (discrete) transformer, there is no guarantee the rays can be straightened by
changing the thickness of the lens and/or the thickness of the matching layer(s). Changing
the refractive index profile in either the core or in one or multiple matching layer(s) might
be necessary. This could be done for example with a correction of the refractive index profile
described as a polynomial expansion with unknown coefficients that can be estimated with an
optimization procedure.

5.5 Effective Refractive Index in ADL

The generalization of the ray propagation method in general media that are both inhomogeneous
and anisotropic is much more complicated and requires cumbersome techniques like in [29], [30].
However, for the specific case of ADLs, the effective refractive index is a known function of the
angle inside the structure. With the closed-form expressions of the refractive index inside the
ADL as a function of angle, such as the one derived in Section 2.3.2, the refractive index inside
the lens can be modelled as n(r, θ), as in Eq. (2.39), Eq. (2.40) and Eq. (2.47).

Using this, arbitrary refractive index profiles can now be modified for use in the ODE system,
taking into account the anisotropic effects of an ADL.

In Fig. 5.4, ray propagation in a GRIN lens with and without considering the anisotropic
properties of ADLs is plotted. The transmit angle from Snell’s law is altered at the first interface
since the refractive index is altered. Throughout the lens, the propagation path is also different.
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Figure 5.4: Ray propagation in GRIN lens with (dashed line) and without (solid line) anisotropic
effects of ADLs, assuming TM polarization.

5.6 Ray Tracing in Lenses Designed Assuming Local Peri-
odicity

In the design procedure outlined in Section 3.5, the phase shift through a unit cell was computed
assuming the unit cell was locally periodic.

Under this assumption, each unit cell is designed to obtain a constant output phase distribution
after the lens. However, if some rays propagate through multiple unit cells, the design assuming
local periodicity gives some error in the phase distribution after the lens.

In Fig. 5.5, three examples of lenses designed with the method from Section 3.5, i.e. assuming
local periodicity and discrete matching layers are shown. In Fig. 5.5(a), a lens with F/D = 1
is considered. The transmitted rays are almost parallel. As F/D decreases, for example to
F/D = 0.5 in Fig. 5.5(b), the rays at the edges of the lens start diverging outward. If F/D is
decreased to 0.25 in Fig. 5.5(c), this effect is even more pronounced. For the three cases, the
transmit angles, the angle between the transmitted ray and the normal of the lens, are plotted
in Fig. 5.6. In a perfect design, all transmitted rays are parallel to the normal of the lens.

Considering this, the design procedure outlined in Section 3.5 can give good designs, as long as
the rays do not propagate through multiple unit cells. However, if the ray tracing shows skewed
transmitted rays, this should be addressed to obtain a better design.

5.7 Designing a Small F/D Lens

To design a lens with a small F/D, for example, 0.25, the ray propagation through multiple
unit cells should be considered to design the phase shift accurately. Besides the phase shift, the
reflections must be considered for a practical lens design. Unfortunately, Eq. (5.16) cannot be
used to design a lens with matching layers, since closing the integral of the optical path length
requires a constant refractive index in the z (vertical) direction. The design procedure described
in Section 3.5 does consider the reflections, and for a design with F/D = 0.25, this can be used
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Figure 5.5: Ray propagation through flat lens based on artificial dielectric layers. (a) F/D = 1, the
rays do not cross multiple unit cells. (b) F/D = 0.5, the transmitted rays are not all parallel. (c)
F/D = 0.25, most transmitted rays are not parallel.
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Figure 5.6: Transmit angles for rays propagated through three lenses, F/D = 1, F/D = 0.5 and
F/D = 0.25, designed assuming local periodicity. As the F/D decreases, the transmit angles become
larger.

as a starting point for the lens design considering the propagation through multiple unit cells.

The parameters for the design are summarised in Table 5.1.

Taking the refractive index profile as a starting point, and considering n2host = 3.66, the ray paths
in the lens are plotted in Fig. 5.7(a). To improve this design, one can plot the transmit angles,
and notice that the transmit angle is proportional to the derivative of the refractive index. A
first-order approximation to the transmit angle is a linear variation, as can be seen in Fig. 5.7(b).
The linear variation implies a quadratic compensation should be applied to the refractive index
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Figure 5.7: (a) Ray paths in the flat lens before (solid lines) and after (dashed lines) corrections. (b)
Angle between transmitted ray and lens normal, before (solid line) and after (dashed lines) corrections.

as a function of position:

nnew = nold + ax2 + b (5.20)

where a and b are constants that can be estimated using an optimization technique.

Applying this correction to the inner matching layer and the core yields a new curve for the
refractive index as a function of position for each layer, the improved design. As can be seen in
Fig. 5.7(a), the ray paths are more parallel, which is also confirmed in Fig. 5.7(b). From this
point, the ADL can be synthesized. The new refractive indexes sampled at each unit cell center
are used as the target to which the phase should be matched. This can now be done for arbitrary
plane-wave incidence, for example from broadside.

To actually see if the design yielded with this ray tracing method improves with respect to the
design assuming local periodicity, simulations of both the initial design and the improved design
were done using CST [23]. Since the −10dB edge-tapered Gaussian feed has an amplitude taper
towards the edges of the lens, and most effects happen in the lens edges, a short dipole is used
as feed to achieve a more constant illumination, to better highlight the effect of the improved
lens design.

The resulting far-field at the maximum operating frequency in the E-plane is plotted in Fig.
5.8(a). The main beam of the initial design is significantly wider, causing the directivity to be
around 1 dB lower for the initial design compared to the improved design at the highest frequency.

Table 5.1: Properties of flat lens design with F/D = 0.25.

Operating band 75− 110GHz
ADL Period 0.52 mm 0.191λ0
Diameter 15.08 mm 5.529λ0
Focal Length 3.77 mm 1.382λ0
F/D 0.25
θin,max 63.4◦

Phase variation 585◦

# unit cells 29
Thickness 1.93 mm 0.71λ0
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This translates to a taper efficiency of 0.51 increasing to 0.6. The reason for this relatively low
taper efficiency in both the initial and improved design is the 1/r decay in amplitude, which for
an F/D = 0.25 design causes the rays impinging on the edges of the lens to have a significantly
lower amplitude compared to the center, even when a short dipole feed is used. The directivity
as a function of frequency is plotted in Fig. 5.8(b). Over the complete operating band, an
improvement in the directivity can be observed.

5.8 Improved Analysis of Flat Lenses

With knowledge of the ray paths through the lens, one can combine this knowledge with the
analytical ADL models, to model the propagation through multiple unit cells. The main idea is
to find the unit cells a ray traverses, and at every change to the next unit cell, the geometry and
stratification of that new unit cell are used. This can be done by finding the ABCD matrix of
a vertical subsection of the unit cell, corresponding to the z-range in which the ray propagated
through the unit cell. Fig. 5.9 shows a schematic overview of this method.

The total ABCD matrix can be found as a product of the ABCD matrices for each subsection.

Since in the equivalent transmission line models the bending of the rays cannot be modeled,
when computing the S-parameters, the S12 of the transmission line model only accounts for the
phase shift along z. To also account for the phase shift in the ρ direction and adjusted S12,adj,
which takes this into account, is defined as

S12,adj = S12e
−jk0 sin(θi)|ρt−ρi| (5.21)

where θi is the incident angle on the unit cell, ρt is the radial distance to the center of the lens
from the point where the ray exits the lens Pt, obtained from the ray tracing. ρi is the radial
distance to the center of the lens at the point where the ray first hits the lens Pi.

Another aspect that must be considered is the spreading of energy. The intensity law of geometric
optics [31, p. 115 ] defines how the intensity of each ray is adjusted and is given by

I1dS1 = I2dS2 , (5.22)
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Figure 5.8: (a) Far-field pattern of design without raytracing (initial) and with raytracing (improved).
(b) Directivity of design without raytracing (initial) and with raytracing (improved) over frequency.
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Figure 5.9: Raytracing and finding an equivalent unit cell.

essentially stating that the product of the cross-section dS of a tube, defined by a number of
rays, and the intensity of the rays remains constant. If the rays spread, dS2 > dS1, the intensity
of the rays reduces. An illustration of the intensity law of geometric optics is given in Fig. 5.10.
Applied to the flat lens, the normal to the surface of the lens is included and can be written as
[27]

I1dS1 cos θi = I2dS2 cos θt . (5.23)

dS1

dS2

Figure 5.10: Illustration of spreading in the intensity law of geometric optics.

One of the limitations is that in the transmission line model, only homogeneous dielectrics are
modeled with horizontal interfaces. By Snell’s law, the bending of the rays cannot be modeled,
since kρ must remain constant, and thus the plane wave has the same angle before and after the
lens. The extra information, the horizontal movement of the ray and thus transmit point, and
the altered ADL geometry are however included in the model with the proposed hybrid method.

Applying the above-mentioned modifications to the analysis of a lens with a small F/D, the
results become more similar to the full-wave simulations. In Fig. 5.12, the far-field patterns
are plotted of a lens with F/D = 0.5, the same lens for which the patterns were computed
without the ray-tracing in Fig. 5.11 (copy of Fig. 4.8). Although the proposed solution is still an
approximation compared to the full-wave simulation, a better comparison with CST is obtained.
The difference in maximum directivity is less than 0.5 dB.
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Figure 5.11: Far-field pattern from flat lens with F/D = 0.25, computed using CST [23] (dashed) and
using the GO/PO analysis without raytracing (solid).
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Figure 5.12: Far-field patters of flat lens with F/D = 0.25, computed using CST [23] (dashed) and
using the GO/PO analysis with raytracing (solid).



Chapter 6

Conclusions and Future Work

6.1 Conclusions

A study on flat lenses based on artificial dielectric layers was presented with the aim of assessing
the achievable performance in terms of bandwidth and directivity. First, the optical parameters
of the flat lens were related to the maximum phase variation needed across the lens. This range
of phase shifts can then be realized with an artificial dielectric unit cell, from which height can
be minimized by increasing the effective permittivity of the artificial dielectric. Matching layers
were added to realize unit cells with intrinsic low reflection.

A design methodology was presented, showing the feasibility of a lens design combining the
low-profile properties of generally narrowband metalenses and Fresnel lenses with the wideband
properties of bulky GRIN lenses.

In the lens design example from Section 3.5, a lens with an operating bandwidth of one octave
(70-140 GHz) was done. The 11λ diameter lens has a broadside gain of 29.3dB at 140 GHz. Over
the entire bandwidth, the total efficiency, including spillover, Ohmic losses, reflection losses, and
taper efficiency was > 63%. The total thickness of the lens was 0.85λ140GHz. The flat property of
the lens allows easy integration in antenna systems. If instead a plano-convex dielectric lens, such
as the one depicted in Fig. 6.1, had been used with the same diameter, the required thickness
would be approximately 3λ140GHz, 3.5 times thicker.

Note that this 3.5 times reduction in thickness must be viewed considering the total lens system,
including the feed. Since this particular lens has a diameter of 11λ, and F/D = 1, the total
length occupied by the system is 11.85λ compared to 14λ, a reduction of 15%. The advantages

≈ 3λ140GHz

≈ 0.85λ140GHz

Plano-convex lens

εr = 2.5

Flat lens

Figure 6.1: Thickness comparison between a plano-convex lens and the example flat lens design.
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in thickness reduction could pay off more when the feed is placed closer to the lens, or directly
attached to the lens. Besides the design, a GO/PO method was used to model the lens and assess
the performance. For F/D = 1, a design was presented and used to compare the performance
of the analytical model compared to full-wave simulations of the lens. For that particular F/D
ratio, the analytical model agrees well with the full-wave simulations in terms of main beam
shape and directivity.

For smaller F/D and larger scan angles, the effect of rays propagating through multiple unit
cells becomes visible, giving a decreased accuracy of the GO/PO model. To mitigate this, ray
propagation in non-homogeneous media was studied. Using the information gained from running
a ray-tracing program on a lens design, one can find the unit cells that each ray traverses and
construct equivalent unit cells, that combine relevant portions of different unit cells. This resulted
in a more accurate result from the GO/PO method, for small F/D and potentially also for large
scan angles.

Apart from improving the lens analysis, a ray-tracing program can be used to adjust the lens
design based on homogeneous dielectrics, and consequently improve the performance of the lens
realized in ADLs.

6.2 Future Work

(a) (b) (c) (d)

Figure 6.2: Possible lens feeds: (a) Horn antenna, (b) Near-field focused connected array (c) Connected-
array-fed hyper-hemispherical lens (d) Hemispherical lens fed with corrugated waveguide.

Co-design lens with feed: A well-matched antenna with stable patterns over the operational
bandwidth is required to illuminate the flat lens. Until now, a feed with frequency-stable patterns
was assumed to be available. The co-design of such a feed is out of the scope of this thesis.
However, several options for feeds have been considered.

The first option is to use a horn antenna, like the one in Fig. 6.2(a). At microwave frequencies,
wideband horn antenna designs exist [32], [33]. Despite not being readily available for mmWave,
one could design a horn antenna with the required properties.

Another option would be to use a near-field focused connected array [34]. In Fig. 6.2(b) a
schematic of such an antenna is displayed. It has stable patterns over a 1:2 frequency band. A
feeding network is however needed, which introduces losses to the system. Similarly, [35] describes
a hyper-hemispherical lens made of silicon fed by a connected array, as depicted in Fig. 6.2(c).
The connected array also requires a feeding network and thus introduces losses. Furthermore,
the silicon lens causes reflection losses. This lens does however provide stable patterns over a 1:3
bandwidth.
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(a) (b)

Figure 6.3: (a) Silicon lens with multi-layer anti-reflection coating. (b) Flat lens combined with a
silicon substrate.

A simpler option would be a hemispherical lens fed with a corrugated waveguide [36], like the
antenna shown in Fig. 6.2(d). The hemispherical lens is made from a low-permittivity material,
so reflection losses are low. Since no feeding network is required, the overall losses of this feed
option are low. This structure has stable patterns over a 50% bandwidth.

More complex lenses: Using this design method proposed here, any phase distribution can be
created after the lens. This would allow achieving more general types of radiation patterns, such
as squinted beams from broadside, shaped beams, or near-field focused beams. For example,
the lens designs presented in the thesis were optimized for an on-axis feed, but similarly an
optimization of the performance could be done for off-axis feed placements.

Investigate further integration: Further integration could be investigated, for example,
smaller F/D, or a lens with the feed directly attached to the lens. This could be especially
advantageous for high-frequency (terahertz) antennas, which typically resort to silicon lenses
integrated with the electronic chips, such as the lens depicted in Fig. 6.3(a). One limitation of
elliptical or hyper-hemispherical lenses is that matching layers are required on the top surface of
the lens to avoid strong reflections at the dielectric-air interface. The practical realization of the
matching layers is problematic, because a single-layer anti-reflection coating is narrowband, while
wideband anti-reflection coatings based on multiple layers of machined grooves are extremely
difficult to realize on curved surfaces. These problems could be avoided by replacing the standard
curved lenses with flat lenses based on artificial dielectrics. A schematic drawing of such a lens
is shown in Fig. 6.3(b).

Experimental validation: There are several things to consider if one is to manufacture a flat
lens based on artificial dielectric layers. In the example design, permittivities lower than the host
material must be realized.

One way to do this is by making sub-wavelength perforations in the material. In principle, any
permittivity can be created. This is however very difficult to manufacture, especially because
one does not always require holes that go through all layers or need the same diameter in all
layers. Another method to achieve these low permittivity sections would be to use a dielectric
with an actual lower permittivity for the outer matching layer and make sub-wavelength cuts in
the periphery of the lens, to achieve a lower equivalent permittivity. Both methods have been
simulated and give a comparable directivity as lenses simulated with homogeneous dielectrics.

Another way to deal with this would be to increase the permittivity at the edges of the lens to
be equal to the permittivity of the host material. This eases manufacturing, but comes at the
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cost of requiring a higher phase shift in the center of the lens and thus possibly a thicker lens.

For complex designs with a large number of metal layers, the cost of manufacturing could be
reduced by making a symmetric design of the top and bottom half of the lens, such that only
half the number of metal layers is required. To reduce the cost further, one could make a design
in which the inter-metallayer distance is constant. The different components of the lens can
be manufactured next to each other on a cheap single-layer PCB and assembled into a lens by
stacking the different components.

(a) (b)

Figure 6.4: Two different methods as a means to achieve lower equivalent permittivity values than the
dielectric: (a) perforations through (part) of the unit cells, and (b) sub-wavelength cuts in the periphery
of the lens.
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Appendix A

Chebyshev Multi-Section
Transformer: General Expression
for Arbitrary Order n

The scope of this appendix is to describe the steps to derive the characteristic impedances Zn

in a N -section Chebyshev transformer (see figure below). The procedure is described for a few
specific values of N in [17], while here a general expression is derived that is valid for arbitrary
N .

Figure A.1: Reflections on a transmission line with multiple sections. [17]

The nth-order Chebyshev polynomial is a polynomial of degree n, denoted by Tn(x). The first
two Chebyshev polynomials are

T0(x) = 1 (A.1)

T1(x) = x (A.2)

and for all higher order, one can apply iteratively

Tn(x) = 2xTn−1(x)− Tn−2(x) . (A.3)

The Chebyshev polynomial can be expressed explicitly as a sum

Tn(x) =
n

2

⌊n
2 ⌋∑

k=0

(−1)k
(n− k − 1)!

k!(n− 2k)!
(2x)n−2k for n > 0 . (A.4)
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The reflection coefficient of a multi-section transformer with N sections of length l can be written,
according to the theory of small reflections [17, p. 252] as

Γ(θ) =


2e−jNθ

(N−1)/2∑
n=0

Γn cos((N − 2n)θ) N odd

2e−jNθ

N/2−1∑
n=0

Γn cos((N − 2n)θ) +
1

2
ΓN/2

 N even

(A.5)

where θ = βl, β is the phase constant of the transmission line sections, l is the section length,
and Γn are the partial reflection coefficients:

Γn =
Zn+1 − Zn

Zn+1 + Zn
(A.6)

with ZN=1 = ZL. To synthesize a multi-section Chebyshev equal-ripple passband, we equate the
reflection coefficient to the Chebyshev polynomial:

Γ(θ) = Ae−jNθTN (sec θm cos θ) (A.7)

where sec θm is a parameter depending on the transformation ratio ZL/Z0 and the pass band
ripple Γm and can be approximated as

sec θm ≈ cosh

[
1

N
cosh−1

(∣∣∣∣ ln(ZL/Z0)

2Γm

∣∣∣∣)] . (A.8)

The constant A can be found by imposing the boundary condition (letting θ = 0, corresponding
to zero frequency) as

A =
ZL − Z0

ZL + Z0

Γm∣∣∣∣ZL − Z0

ZL + Z0

∣∣∣∣ . (A.9)

To find the values of the impedances Zn in the multi-section transformer one can write

N odd 2e−jNθ

(N−1)/2∑
n=0

Γn cos((N − 2n)θ) = Ae−jNθTN (sec θm cos θ) (A.10)

N even 2e−jNθ

N/2−1∑
n=0

Γn cos((N − 2n)θ) +
1

2
ΓN/2

 = Ae−jNθTN (sec θm cos θ) (A.11)

Case 1: N odd

2

(N−1)/2∑
n=0

Γn cos((N − 2n)θ) = ATN (sec θm cos θ) (A.12)

From the explicit expression of the polynomial

TN (sec θm cos θ) =
N

2

⌊N
2 ⌋∑

n=0

(−1)n
(N − n− 1)!

n!(N − 2n)!
(2 sec θm)N−2n cosN−2n(θ) (A.13)
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Expanding the power of a cosine as follows:

cosl θ =
1

2l

l∑
p=0

(
l

p

)
cos((2p− l)θ) (A.14)

TN (sec θm cos θ) (A.15)

=
N

2

⌊N
2 ⌋∑

n=0

(−1)n
(N − n− 1)!

n!(N − 2n)!
(2 sec θm)N−2n 1

2N−2n

N−2n∑
p=0

(
N − 2n

p

)
cos((2p−N + 2n)θ)

(A.16)

=
N

2

⌊N
2 ⌋∑

n=0

(−1)n
(N − n− 1)!

n!(N − 2n)!
(2 sec θm)N−2n 1

2N−2n

N−2n∑
p=0

(N − 2n)!

p!(N − 2n− p)!
cos((2p−N + 2n)θ)

(A.17)

=
N

2

⌊N
2 ⌋∑

n=0

(−1)n
(N − n− 1)!

n!
(sec θm)N−2n

N−2n∑
p=0

1

p!(N − 2n− p)!
cos((2p−N + 2n)θ)

(A.18)

=
N

2

⌊N
2 ⌋∑

n=0

N−2n∑
p=0

a(n, p,N)(secθm)N−2n cos((2p−N + 2n)θ) (A.19)

where

a(n, p,N) ≜ (−1)n
(N − n− 1)!

n!p!(N − 2n− p)!
(A.20)

Substituting Eq. (A.19) in Eq. (A.12) one obtains

2

(N−1)/2∑
n=0

Γn cos((N − 2n)θ) = A
N

2

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
cos((2p−N + 2n′)θ) .

(A.21)
One can note that each value of n in the left hand side (LHS) gives rise to one term in the form
of cos(lLHSθ) where lLHS is an odd integer [1, 3, ...N ]. Similarly in the right hand side (RHS) a
cos(±lRHSθ) term appears for each combination of the indexes n′ and p. The following scheme
can be observed for the indexes:

LHS
n lLHS = N − 2n
0 N
1 N − 2
... ...⌊
N

2

⌋
1

Example N = 5
n lLHS

0 5
1 3
2 1



60 APPENDIX A. CHEBYSHEV GENERAL EXPRESSION FOR ORDER N

RHS
n′ p lRHS = 2p−N + 2n′ n′ + p

0

0 −N 0
... −N + 2 ...
... ... ...
N N N

1

0 −N + 2 1
1 −N + 4 2
... ... ...

N − 2 N − 2 N − 1
... ... ... ...⌊
N

2

⌋ 0 −N + 2

⌊
N

2

⌋ ⌊
N

2

⌋
... ... ...

N − 2

⌊
N

2

⌋
N − 2

⌊
N

2

⌋
N −

⌊
N

2

⌋

Example
N = 5
n′ p |lRHS | n′ + p

0

0 5 0
1 3 1
2 1 2
3 1 3
4 3 4
5 5 5

1 0 3 1
1 1 2
2 1 3
3 3 4

2 0 1 2
1 1 3

From comparing the indexes on the LHS and RHS one can equate the coefficient of the terms
cos(lLHSθ) and cos(|lRHS |θ) as follows

Γn = A
N

4

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
U(n′ + p ∈ [n,N − n]) (A.22)

where

U(n′ + p ∈ [n,N − n]) =

{
1 for n′ + p = n or n′ + p = N − n
0 otherwise

(A.23)

and

a(n′, p,N) = (−1)n
′ (N − n′ − 1)!

n′!p!(N − 2n′ − p)!
(A.24)

Case 2: N even

2

N/2−1∑
n=0

Γn cos((N − 2n)θ) +
1

2
ΓN/2

 = ATN (sec θm cos θ) (A.25)

2

N/2−1∑
n=0

Γn cos((N − 2n)θ) +
1

2
ΓN/2

 = A
N

2

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
cos((2p−N+2n′)θ)

(A.26)
Similar to the odd case, the cos(lLHSθ) and cos(|lRHS |θ) terms appear on the LHS and RHS
according to the following pattern:

From comparing the indexes on the LHS and RHS one can equate the coefficient of the terms
cos(lLHSθ) and cos(|lRHS |θ) as follows

Γn = A
N

4

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
U(n′ + p ∈ [n,N − n]) for n <

N

2
(A.27)
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LHS
n lLHS = N − 2n
0 N
1 N − 2
... ...

N/2− 1 2
N/2 0

Example N = 6
n lLHS

0 6
1 4
2 2
3 0

RHS
n′ p lRHS = 2p−N + 2n′ n′ + p

0

0 −N 0
... −N + 2 ...
... ... ...
N N N

1

0 −N + 2 1
1 −N + 4 2
... ... ...

N − 2 N − 2 N − 1
... ... ... ...
N/2 0 0 N/2

Example
N = 6
n′ p |lRHS | n′ + p

0

0 6 0
1 4 1
2 2 2
3 0 3
4 2 4
5 4 5
6 6 6

1

0 4 1
1 2 2
2 0 3
3 2 4
4 4 5

2
0 2 2
1 0 3
2 2 4

3 0 0 3

ΓN
2
= A

N

2

⌊N
2 ⌋∑

n′=0

N−2n′∑
p=0

a(n′, p,N)(sec θm)N−2n′
U(n′ + p ∈ [n,N − n]) (A.28)

where

U(n′ + p ∈ [n,N − n]) =

{
1 for n′ + p = n or n′ + p = N − n
0 otherwise

(A.29)

and

a(n′, p,N) = (−1)n
′ (N − n′ − 1)!

n′!p!(N − 2n′ − p)!
. (A.30)

Section impedances

Finally, from Γn the impedance of the sections can be found as

Zn+1 ≈ e(ln(Zn)+2Γn). (A.31)
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Appendix B

Far-field from Planar Current
Distribution

This appendix describes how to compute the far-field radiated by a planar current in the x-y
plane at height z0.

Consider an electric current defined on a planar surface

j(x, y)δ(z − z0) . (B.1)

The e-field resulting from this current in free space is computed as the convolution of the current
with dyadic Green’s function for free space.

e(x, y, z) =

∫∫∫
V

j(x′, y′)δ(z′ − z0)g(x− x′, y − y′, z − z′)dx′dy′dz′ (B.2)

The integral in z′ is closed by evaluating in z′ = z0:

e(x, y, z) =

∫∫
S

j(x′, y′)g(x− x′, y − y′, z − z0)dx
′dy′ . (B.3)

Writing the Green’s function as the inverse Fourier transform of the spectral Green’s function G
yields

g(x− x′, y − y′, z − z0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
G(kx, ky, z − z0)e

−jkx(x−x′)e−jky(y−y′)dkxdky . (B.4)

One can substitute this back in Eq. (B.3):

e(x, y, z) =

∫∫
S

j(x′, y′)
1

4π2

∫ ∞

−∞

∫ ∞

−∞
G(kx, ky, z − z0)e

−jkx(x−x′)e−jky(y−y′)dkxdkydx
′dy′ .

(B.5)
Regrouping the terms depending on x′ and y′, we can write

e(x, y, z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
G(kx, ky, z−z0)

(∫∫
S

j(x′, y′)ejkxx
′
ejkyy

′
dx′dy′

)
e−jkxxe−jkyydkxdky

(B.6)
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We now recognize that the term between parentheses is the two-dimensional spatial Fourier
transform J of the current distribution:

e(x, y, z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
G(kx, ky, z − z0)J(kx, ky)e

−jkxxe−jkyydkxdky (B.7)

Using asymptotic evaluation of the integral in the far-field based on the stationary phase point
contribution, one can approximate the far-field as

Efar(r, θ, ϕ) ≈ jkzG̃
ej
(kx, ky, z, z0)J(kx, ky)e

jkz|z−z0| e
−jkr

2πr
, (B.8)

where the spectral Green’s function for free space G̃
ej
(kx, ky, z, z0) to relate the E-field to the

Fourier transform of an electric current J is given by

G̃
ej
(kx, ky, z, z0) =

−ζ
2kkz

 k2 − k2x −kxky −kx(±kz)
−kykx k2 − k2y −ky(±kz)

−(±kz)kx −(±kz)ky −2jδ(z − z0) + (k2 − k2z)

 . (B.9)

The sign for kz is chosen as:
z − z0 > 0 ⇒ +kz

z − z0 < 0 ⇒ −kz .
(B.10)

B.1 Fourier Transform of Truncated Gaussian Distribution

When considering a Gaussian current distribution for the lens feed, it can be convenient to find
an expression of the Fourier transform to find the primary pattern illuminating the lens, with
the procedure described in the previous section. The one-dimensional Fourier transform can be
written as ∫ A

2

−A
2

e
− x2

w2
0 ejkxxdx . (B.11)

Splitting the regions above and below zero yields∫ A
2

−A
2

e
− x2

w2
0 ejkxxdx =

∫ 0

−A
2

e
− x2

w2
0 ejkxxdx+

∫ A
2

0

e
− x2

w2
0 ejkxxdx . (B.12)

Substitute x′ = −x in the first integral:∫ 0

A
2

e
− x′2

w2
0 ejkxx

′
dx′ +

∫ A
2

0

e
− x2

w2
0 ejkxxdx =

∫ A
2

0

e
− x2

w2
0 e−jkxxdx+

∫ A
2

0

e
− x2

w2
0 ejkxxdx . (B.13)

Taking the integrals together results in∫ A
2

0

e
− x2

w2
0 (ejkxxe−jkxx)dx =

∫ A
2

0

e
− x2

w2
0 2 cos(kxx)dx (B.14)

which can be written as∫ A
2

0

e
− x2

w2
0 2 cos(kxx)dx =

w0

2

√
πe−

w2
0k2

x
4

[
erf

(
jkxw

2
0 +A

2w0

)
− erf

(
jkxw

2
0 −A

2w0

)]
. (B.15)

In this expression, the erf is the complex error function, which can be written as an infinite sum

erf(z) =
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
. (B.16)



Appendix C

Derivation of the Eikonal
Equation

This procedure is based on the formalism presented in [31].

C.1 The Eikonal Equation From the Maxwell Equations

Time-harmonic electromagnetic fields can be written in terms of the corresponding phasors as

e(r, t) = ℜ{E(r)ejωt},h(r, t) = ℜ{H(r)ejωt} . (C.1)

In the absence of sources, i.e., both the current density J and volume charge density ρ are equal
to 0, the phasors E(r) and H(r) satisfy the Maxwell equations in the phasor domain:

∇×E = −jωµH (C.2a)

∇×H = jωεE (C.2b)

∇ · εE = 0 (C.2c)

∇ · µH = 0 (C.2d)

where ω is the angular frequency. ε = ε0εr and µ = µuµr are the permittivity and permeability
of the medium, respectively, and can be written as product between vacuum (ε0, µ0) and relative
parameters (εr, µr). Although not explicitly expressed in Eqs. (C.2), in general, both the fields
and the material parameters are functions of the position vector r, E(r), H(r), ε(r), µ(r).

In case of a plane wave in a homogeneous medium, the solution of Maxwell equations is

E(r) = E0e
−jk0n(k̂·r)

H(r) = H0e
−jk0n(k̂·r)

(C.3)

where n =
√
εrµr is the refractive index, k0 is the vacuum wavenumber, and k̂ is the unit vector

along the propagation direction. For example, in free-space, n = 1 and the field becomes simply

E(r) = E0e
−jk0r

H(r) = H0e
−jk0r.

(C.4)
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Note that E0 and H0 are complex vector amplitudes that are constant with r only for plane
waves. When observing the plane wave solutions in Equation C.4, one can infer that more general
a wave propagating far away (many wavelengths) from the sources can be represented by

E(r) = E0(r)e
−jk0S(r)

H(r) = H0(r)e
−jk0S(r).

(C.5)

In Equation C.5, S(r) is a scalar function that we define as “optical path”. E0(r) and H0(r)
are vector functions. Using Equation C.5 as a trial solution to the Maxwell equations, E0(r) ,
H0(r) and S can be related. Substitute (C.5) in (C.2), which leads to the following algebraic
steps:

Eq. (C.2b) ∇×H = −jωεE
Replacing Eq. (C.5) in Eq. (C.2b) ∇× (H0e

−jk0S) = jωεE0e
−jk0S

Using the identity
∇× (ψA) = ∇ψ ×A+ ψ∇×A

(for scalar field ψ and vector field A) ∇e−jk0S ×H0 + e−jk0S∇×H0 = jωεE0e
−jk0S

∇e−jk0S = −jk0e−jk0S∇S −jk0e−jk0S∇S ×H0 + e−jk0S∇×H0 = jωεE0e
−jk0S

Dividing by e−jk0S −jk0∇S ×H0 +∇×H0 = jωεE0

Dividing by −jk0 ∇S ×H0 + εc0E0 =
1

jk0
∇×H0

where c0 = ω/k0 is the speed of light
Eq. (C.2a) ∇×E = −jωµH

Equivalent steps as for Eq. (C.2b) ∇S ×E0 − µc0H0 =
1

jk0
∇×E0

Eq. (C.2c) ∇ · εE = 0
Replacing Eq. (C.5) in Eq. (C.2c) ∇ · εE0e

−jk0S = 0
Using the identity

∇ · (ψϕA) = (ϕ∇ψ + ψ∇ϕ) ·A+ ψϕ∇ ·A
(for scalar fields ψ, ϕ and vector field A)

(
ε∇e−jk0S + e−jk0S∇ε

)
·E0 + εe−jk0S∇ ·E0 = 0

∇e−jk0S = −jk0e−jk0S∇S −εjk0e−jk0S∇S ·E0 + e−jk0S∇ε ·E0 + εe−jk0S∇ ·E0 = 0
Dividing by e−jk0S −εjk0∇S ·E0 +∇ε ·E0 + ε∇ ·E0 = 0

Dividing by −jk0ε ∇S ·E0 =
−E0 · ∇ε− ε∇ ·E0

−jk0ε
Noting that ∇ ln ε = 1

ε∇ε ∇S ·E0 =
1

jk0
(E0 · ∇ ln ε+∇ ·E0)

Eq. (C.2d) ∇ · µH = 0

Equivalent steps as for Eq. (C.2c) ∇S ·H0 =
1

jk0
(H0 · ∇ lnµ+∇ ·H0)

Summarizing the results:

∇S ×H0 + εc0E0 =
1

jk0
∇×H0 (C.6a)

∇S ×E0 − µc0H0 =
1

jk0
∇×E0 (C.6b)

∇S ·E0 =
1

jk0
(E0 · ∇ ln ε+∇ ·E0) (C.6c)

∇S ·H0 =
1

jk0
(H0 · ∇ lnµ+∇ ·H0) (C.6d)
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In the geometrical optics approximation, large k0 is considered. For k0 → ∞, the equations
simplify to

∇S ×H0 = −εc0E0 (C.7a)

∇S ×E0 = µc0H0 (C.7b)

∇S ·E0 = 0 (C.7c)

∇S ·H0 = 0 . (C.7d)

From (C.7a), one can write

E0 = − 1

εc0
∇S ×H0. (C.8)

Placing the result in (C.7b) and applying the vector triple product identity yields

1

εc0
[(∇S ·H0)∇S − (∇S)2H0] = −µc0H0. (C.9)

Using (C.7d), this is reduced to

1

εc0

[
−(∇S)2H0

]
= −µc0H0 (C.10)

Which results in
(∇S)2 = εµc20 . (C.11)

Note that εµ = ε0εrµ0µr = n2
(√
ε0µ0

)2
= n2

c20
:

(∇S)2 =
n2

c20
c20 (C.12)

which leads to
(∇S)2 = n2. (C.13)

(C.13) is called the Eikonal Equation, S is called the Eikonal, and S(r) = const. represents
geometrical wavefronts. Written explicitly in a cartesian coordinate system as(

∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2

= n2(x, y, z) . (C.14)

C.2 Light Rays

The Poynting vector for the wave expressed in (C.5) can be written as

S =
1

2
E ×H∗ =

1

2
E0e

−jk0S ×H∗
0e

jk0S =
1

2
E0 ×H∗

0. (C.15)

By using Eq. (C.7b) and assuming a losseless medium (µ is a real function)

S =
1

2

(
E0 ×

1

µc0
(∇S ×E∗

0)

)
=

1

2µc0
(E0 ×∇S ×E∗

0) (C.16)

which, using the vector triple product identity can be reduced to:

S =
1

2µc0

(
|E0|2 ∇S − (E0 · ∇S)E∗

0

)
. (C.17)
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Wavefront

Ray trajectory

Figure C.1: A ray trajectory passing through two wavefronts. Note that dr is pointing in the same
direction as s and when dr is scaled with ds, the vectors are equal.

From Eq. (C.7c)

S =
|E0|2

2µc0
∇S =

|E0|2

2ζ
∇S (C.18)

where ζ =
√
µ/ε is the medium impedance. From the Eikonal Equation Eq. (C.13), one can

also write
|∇S| = n. (C.19)

Thus, the vector s, defined as

s =
∇S
|∇S|

=
∇S
n

(C.20)

is a unit vector in the same directions as the Poynting vector.

The geometrical light rays can be defined as orthogonal trajectories to the geometrical wavefronts
S = const. If r(s) is the position vector of a point on a ray, as a function of the length of arc s
of the ray, then we have

dr(s)

ds
= s. (C.21)

In Fig. C.1 this situation is shown. If the difference between the points on a ray is made
sufficiently small, the ray path coincides with r0 − r1.

Now, using Eq. (C.20) and Eq. (C.21) one can write

n
dr(s)

ds
= ∇S . (C.22)

The optical length of a path between two points P1 and P2 can be found as∫ P2

P1

nds = S (P2)− S (P1) . (C.23)
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From Eq. (C.22), one can find the differential equations of the light rays by applying the following
algebraic steps:

Eq. (C.22) n
dr(s)

ds
= ∇S

Differentiating Eq. (C.22) with respect to s
d

ds

(
n
dr(s)

ds

)
=

d

ds
(∇s)

The derivative
d

ds
is equivalent to the

operation
dr

ds
· ∇

dr

ds
=
d(xx̂+ yŷ + zẑ)

ds
=

(
dx

ds
,
dy

ds
,
dz

ds

)
∇ =

(
d

dx
,
d

dy
,
d

dz

)
dr

ds
· ∇ =

(
dx

ds
,
dy

ds
,
dz

ds

)
·
(
d

dx
,
d

dy
,
d

dz

)
=

d

ds

d

ds
=
dr

ds
· ∇

Substituting
d

ds
=
dr

ds
· ∇ in

d

ds

(
n
dr(s)

ds

)
=

d

ds
(∇s) d

ds

(
n
dr(s)

ds

)
=
dr

ds
· ∇(∇S) = ∇S

n
· ∇(∇S) = 1

2n
∇

[
(∇S)2

]
Using Eq. (C.20)

d

ds

(
n
dr(s)

ds

)
=

1

2n
∇n2

Using the property
∇
[
(∇S)2

]
= 2∇S · ∇(∇S)

∇n2 = 2n∇n d

ds

(
n
dr(s)

ds

)
= ∇n

These steps yield the differential equation of the light rays:

d

ds

(
n
dr(s)

ds

)
= ∇n . (C.24)

C.3 Steps for Ordinary Differential Equations (ODE) Sys-
tem

One can derive an ordinary differential equations (ODE) system to solve these equations. Writing
Eq. (C.22) in terms of its different components explicitly

n
dx

ds
x̂+ n

dy

ds
ŷ + n

dz

ds
ẑ =

∂S

∂x
x̂+

∂S

∂y
ŷ +

∂S

∂z
ẑ (C.25)

and defining px = ∂S
∂x , py = ∂S

∂y and pz = ∂S
∂z , yields 3 scalar equations.

n
dx

ds
= px (C.26a)

n
dy

ds
= py (C.26b)

n
dz

ds
= pz (C.26c)
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Similar for Eq. (C.24), one can write explicitly

d

ds

(
n
dx

ds

)
x̂+

d

ds

(
n
dy

ds

)
ŷ +

d

ds

(
n
dz

ds

)
ẑ =

(
∂n

∂x
x̂+

∂n

∂y
ŷ +

∂n

∂z
ẑ

)
. (C.27)

Using Eq. (C.26), 3 scalar equations can be written:

dpx
ds

=
∂n

∂x
(C.28a)

dpy
ds

=
∂n

∂y
(C.28b)

dpz
ds

=
∂n

∂z
(C.28c)

The combination of Eq. (C.26) and Eq. (C.28) yields the full ODE system. To solve it, a
numerical solver can be used to solve the initial value problem, where the initial values are given
by

x = x0 (C.29a)

y = y0 (C.29b)

z = z0 (C.29c)

px = n(x0, y0, z0) sin θ cosϕ (C.29d)

py = n(x0, y0, z0) sin θ sinϕ (C.29e)

pz = n(x0, y0, z0) cosϕ (C.29f)

Numerical solvers, such as the ode45 solver from MATLAB can be used to solve such problems.
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