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ARTICLE

Characterizing steroid hormone receptor chromatin
binding landscapes in male and female breast
cancer
Tesa M. Severson1, Yongsoo Kim1,2, Stacey E.P. Joosten2, Karianne Schuurman2, Petra van der Groep3,

Cathy B. Moelans3, Natalie D. ter Hoeve3, Quirine F. Manson3, John W. Martens 4,5,6,

Carolien H.M. van Deurzen4,5, Ellis Barbe4,7, Ingrid Hedenfalk8, Peter Bult9, Vincent T.H.B.M. Smit4,10,

Sabine C. Linn3,11,12, Paul J. van Diest3, Lodewyk Wessels1,6,13 & Wilbert Zwart2

Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most

MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-

hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα),
androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this

understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk

of steroid hormone receptor action and interplay in human tumors, here in the context of

MBC, in relation to the female disease and patient outcome. Here we report the character-

ization of human breast tumors of both genders for cistromic make-up of hormonal regulation

in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR,
FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data

with transcriptomics to reveal gender-selective and genomic location-specific hormone

receptor actions, which associate with survival in MBC patients.
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Breast cancer in men is rare and largely understudied. Male
breast cancer (MBC) accounts for around 1% of all 1.67
million breast cancers diagnosed each year, worldwide1. As

compared to the female counterpart, MBC is a distinct disease
regarding clinicopathological features (e.g., age of onset and fre-
quency of hormone receptor positivity2) and molecular features
(e.g., frequency of BRCA2 mutation3 and gene expression
subtypes4).

The majority of male (and female) breast cancers are hor-
monally driven5, where ERα genomic action dictates transcrip-
tional programs that drive tumor cell proliferation6. Analogous to
the female counterpart, male breast cancers are treated with
endocrine therapies (such as tamoxifen) to block ERα transcrip-
tional activity, yet relapse after hormonal treatment has also been
noted2,7. Even though the genomic action of ERα in MBC
remains completely elusive, multiple reports have studied ERα
genomics in the female disease. ERα-DNA binding profiles in
tumors are dynamically affected by endocrine therapeutics8 and
can differentiate female patients on outcome9,10. Cell line studies
revealed ERα-DNA binding and ERα-driven transcriptional
activation and cell proliferation to depend on its pioneer factors,
including FOXA111 and GATA312.

Apart from ERα, other steroid hormone receptors are expres-
sed in breast cancer as well, including androgen receptor (AR)13,
progesterone receptor (PR)14, and glucocorticoid receptor (GR)14.
AR expression is frequently observed in most male (and female)
breast cancers13–16, although its role in breast cancer is poorly
understood17. AR activation in breast cancer cells facilitates
downstream gene expression that drives tumorigenesis in a
similar manner to ERα16. This tumorigenic action of AR is most
extensively studied in prostate cancer18,19, where differential AR-
DNA binding profiles can classify prostate cancer patients on
outcome20–22.

AR and PR are favorable prognostic markers in female breast
cancer (FBC)23,24. In addition, PR has recently been shown to
modulate ERα-DNA binding, directly reprogramming ERα-dri-
ven transcriptional programs25. GR expression has been asso-
ciated with FOXA1 and GATA3 expression in ERα-positive FBC,
and is associated with a favorable outcome in this patient
population26. Its functional role in breast cancer in relation to
other steroid hormone receptors is poorly characterized. Cumu-
latively, these data illuminate the likely interplay between differ-
ent steroid hormone receptors in breast cancer. Although ERα
cistromics has previously been studied in female breast
tumors9,10, and its interplay with transcription factors has been
reported in cell lines10,11,15,27–31, all these transcription factors
have never been profiled together in a single study in human
breast tumors.

We have characterized DNA binding of six different hormone-
related transcription factors in an understudied field of human
pathophysiology: male breast cancer. Through multidimensional
genomic data integration on the level of transcription factor
binding, copy number cistrome profiling (using off-target
sequencing reads from ChIP-seq data)32, transcriptomics and
the enhancer enriched histone mark H3K4me1, we present a first
comprehensive overview of male breast cancer, which we com-
pared with the female counterpart. This comprehensive overview
reveals gender-selective and genomic location-specific hormone
receptor action, which associate with survival in MBC.

Results
Steroid hormone receptor profiling in male breast cancer. We
aimed to generate a compendium of (epi)genomic, transcriptomic
and clinical data for 49 ERα–positive MBC samples to better
characterize the molecular makeup of this disease. To determine

the chromatin binding landscape of ERα in relation to steroid
hormone receptors AR, PR, and GR and its pioneer factors
FOXA1 and GATA3, we performed ChIP-seq analyses in clinical
specimens from patients who did not receive any therapy prior to
surgery. These results were integrated with gene expression data
and compared with female breast cancer and cell line ChIP-seq
data (Fig. 1a, Supplementary Fig. 1). Samples were selected ran-
domly for ChIP-seq of different factors. In this pioneering work,
each transcription factor was profiled in MBC for the first time
(30 ERα ChIP-seq datastreams and ≥7 samples/factor for other
factors with the exception of GATA3 and PR, with 3 and
4 samples, respectively). To position these results into epigenetic
context, H3K4me1 was included as active enhancer marker33. We
generated RNA-seq data for the series, used to classify samples on
subtypes related to outcome; M1 (poor) and M2 (good)4 (Sup-
plementary Fig. 1). Finally, we used copy number data (detected
using off-target sequencing reads)32 and RNA-seq data to per-
form integrative clustering (IntClust) classification, which was
previously associated with FBC prognostication (Supplementary
Fig. 1)34. As expected, IntClust classifications and intrinsic sub-
types (based on immunohistochemistry) were enriched for ERα-
positive classifications (29/30 and 28/28, respectively). Clinical
data, such as number of positive lymph nodes at diagnosis and
survival status were included for male (Supplementary Fig. 1 and
Supplementary Table 1) and female patients (Supplementary
Table 2). Missing clinical data are indicated in Supplementary
Table 1. We identified bound regions (peaks) for each factor: ERα
(biological replicate in Supplementary Fig. 2), FOXA1, AR, GR,
PR, and GATA3 (ChIP-seq validated by ChIP-QPCR in Sup-
plementary Fig. 3) using validated antibodies (Supplementary
Fig. 4A, B), shown at two well-known ERα bound regions in FBC:
loci RARA and GREB1 (Fig. 1b). In this principal examination of
SHRs, FOXA1 and GATA3 in a tumor series, we observed these
two ERα-regions were bound by all other factors. This is remi-
niscent of FBC transcription factors, such as GATA3, FOXA1,
RARα, which have been found to be bound in the same regions35.
These findings were confirmed on a genome-wide scale, where all
ERα sites were considered bound in ≥50% of tumors in which we
find co-binding by all other factors tested (Fig. 1c). In accordance
with reports in cell lines11,25,29,36, all factors studied mainly bind
intronic and distal intergenic regions (Fig. 1d). DNA motif ana-
lysis revealed self-preference for all factors (Fig. 1e, Supplemen-
tary Fig. 5) except for GATA3 as was reported previously12.

Interplay of ERα with other SHRs and pioneer factors. We
have shown ERα binding sites have considerable overlap with
other factors studied. Next, overlap of ERα with the other steroid
hormone receptors (Fig. 2a, left) or pioneer factors FOXA1 and
GATA3 (Fig. 2a, right) was studied. All sites shared for individual
factors: ERα (15 out of 30 samples), AR (5 out of 10 samples),
FOXA1 (3 out of 7 samples), PR (2 out of 4 samples), GR (3 out
of 7 samples) and GATA3 (1 out of 3 samples). AR and GR have
virtually no unique binding regions, while selective sites for ERα
and PR are identified. When examining ERα, FOXA1 and
GATA3, we identified selective sites in each. Strikingly, 71% of
FOXA1 sites were FOXA1-selective while ER and GATA3-
selective sites were 42% and 33%, respectively. Next, we counted
the reads in the union of sites for all factors (Fig. 2a) and com-
puted the correlation score for each sample (Pearson correlation
coefficient), which was represented in a correlation matrix
(Fig. 2b). Contrary to what is described for ERα/FOXA1 behavior
in FBC cell lines11, we observed FOXA1 profiles do not correlate
with other profiles, while all SHRs and GATA3 cluster together.
Most notably, a strong similarity in genomic profiles of ERα with
GR and AR was found. Practically all AR sites were co-occupied
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with ERα (Fig. 2c), which was also seen in female breast tumor
and MCF7 cells (Supplementary Fig. 6A, B).

MBC is ERα-driven37,38. Therefore, a one-to-one comparison
of binding sites of ERα with each factor was performed (Fig. 2c, d
and Supplementary Fig. 7), where only samples were analyzed in
which both ERα and the other factor were profiled (peak selection
as stated above and in figure legends). A significant proportion of
ERα binding sites overlap with AR and GR sites as seen in cell
line data39,40 which we confirmed in MBC (Fig. 2c, d).
Interestingly, although PR modulates ERα binding in FBC25,
many PR sites in MBC were devoid of ERα (46%). These findings
were confirmed in DNA binding correlation matrices (Fig. 2e).
ERα and AR show clustering within patient rather than between
factors (Fig. 2e), indicating a stronger correlation between factors
within the same tumor as compared to the same factor between
tumors.

A dominant dogma of ERα biology purports ERα binding is
dependent on its pioneering factor FOXA1, with 95% of binding
found at enhancer regions11,29,30,41,42. In line with literature11, we
find ~50% overlap between ERα and FOXA1 in cell lines, where
sites enriched for FOXA1 or ERα (Fig. 3a, b and Supplementary
Fig. 8) were largely found in intronic and distal intergenic regions
(Fig. 3c). These findings are in stark contrast to observations in
both male and female breast cancers, in which ERα sites devoid of
FOXA1 were strongly promoter-enriched (Fig. 3a–c), suggesting
the model systems currently used do not adequately capture the
genomic distributions of ERα found in clinical samples. In
contrast to FOXA1-enriched sites, sites selectively occupied by
ERα were weaker for active enhancer mark H3K4me133

(Supplementary Fig. 9A, B). Interestingly, GATA3 was found at
both the FOXA1-enriched and ERα-enriched sites (Supplemen-
tary Fig. 9A). Motifs at ERα selective sites are related to ESR1 and
devoid of forkhead motifs (Supplementary Fig. 10), which is in
contrast to the total of ERα sites (Supplementary Fig. 5).

MBC subtypes differ in hormone receptor action. Having
characterized MBC with respect to SHRs, GATA3 and FOXA1
DNA binding, we next performed gene expression analyses in
these samples (n = 46). In order to assess underlying ERα binding
patterns between published MBC intrinsic subtypes M1 and M24,
we first confirmed M1/M2 subtype clustering using our RNA-seq
data set using only subtype genes (Fig. 4a). Supporting our
hypothesis that ERα function may deviate between M1 and
M2 subtypes, we found 1395 differential ERα DNA binding sites
(Fig. 4b). Analogous analyses were not performed for other fac-
tors than ERα, since ChIP-seq datastreams were not sufficiently
powered to represent both the M1 and M2 subtypes (Supple-
mentary Fig. 1). With available datastreams, we confirmed the
occupancy of FOXA1, AR, GR, PR, and GATA3 at these differ-
ential ER α DNA binding sites (Fig. 4c). M1- and M2-specific

sites were comparable in genomic location and motif usage
(Fig. 4d, e and Supplementary Fig. 11). Genes with proximal
binding sites (<20 kb or within the gene body) were subsequently
examined for molecular and biological associations using path-
way analysis (IPA, Qiagen). Both ERα ChIP-seq associated M1/
M2 genes and gene expression-based M1/M2 genes strongly
associated with ERα pathway indicators as expected, though some
additional regulators are specifically found in the previously
reported expression-based classification, such as ERBB2 and
KRAS (Fig. 4f). Interestingly, among canonical pathways, AR
signaling was the only hormonal signaling pathway more asso-
ciated with the ERα binding based genes compared to the gene
expression-based genes (Fig. 4g), in line with the strong overlap of
AR/ERα binding in these tumors (Figs. 2, 4c).

Comparing genomics of ERα and FOXA1 between genders. As
ERα is the key driver and therapeutic target in both genders, we
compared ERα chromatin binding in female (17 from Ross-Innes
et al.10, 9 from Jansen et al.9 and 10 generated in-house) and male
(30 generated in-house) breast tumors (Fig. 5a), along with its
pioneer factor FOXA1 (n = 7 for both genders) (Fig. 5b). Inter-
estingly, no clear differences in ERα and FOXA1 binding was
found between genders, on the level of peak overlap ratio
(Fig. 5a–d) or relative read counts in peaks (Fig. 5e, f). For ERα
and FOXA1 sites found in ≥50% of male tumors, signal was
observed in female samples at comparable intensity (Fig. 5e, f,
Supplementary Fig. 12A, B, Supplementary Fig. 13), and vice
versa. Furthermore, motif enrichment at ERα and FOXA1 sites
was highly comparable between genders (Fig. 5g, h). While clear
clustering was observed for ERα between (male and female)
tumors and cell lines (Fig. 5a), no separation on gender was
observed for any of the factors studied in an integrative analysis
(Supplementary Fig. 14), as well as separately for all factors stu-
died (Fig. 5a, b, Supplementary Fig. 15). ERα sites that classify
FBC on outcome10 were used to predict male outcome (k-nearest
neighbor classifier; Methods section), and a weak but similar
trend of ERα signal strength was observed in these sites (Fig. 5i).
However, overall survival (OS) was not significantly different
between the two groups of male patients (Supplementary Fig. 16).
These results suggest that although the vast majority of ERα and
FOXA1 sites are conserved between breast cancers from both
genders, ERα sites indicative for outcome in FBC may not be
applicable in the male disease.

Genomic profiles of ERα and FOXA1 stratify MBC patients on
outcome. Since prognostic ERα sites in female tumors do not
seem to be indicative for male patient outcome in our MBC series,
we analyzed binding sites of ERα and pioneer factor FOXA1 in
MBC for outcome prediction. Analogous analyses for ERα/
GATA3 were not performed due to insufficient power due to

Fig. 1 Study schematic and steroid hormone receptor binding in male breast cancer. a A graphic visualization of the study design. The male silhouette was
from Wikipedia (https://en.wikipedia.org/wiki/File:Male_Bathroom_Symbol.png). The female silhouette was from Wikipedia (https://commons.
wikimedia.org/wiki/File:Toilet_women.svg), from a collection commissioned by the United States Department of Transportation, designed by AIGA http://
www.aiga.org/content.cfm/symbolsigns, and converted into SVG by Wikipedia-user Lateiner. The image is used under a CC-BY 2.5 license. b Genome
browser snapshot, depicting two known ERα bound regions with read counts for 2 random samples chosen for each factor. Genomic coordinates and read
counts are indicated above. c Heatmaps depicting peak intensity in primary tumors for 30 ERα (blue), 7 FOXA1 (light green), 10 AR (red), 7 GR (black), 4
PR (purple), and 3 GATA3 (dark green) binding events (±5 kb from the peak center (triangle)). 5079 ERα sites were determined using the consensus ERα
binding sites identified in at least 50% of patients (15 out of 30 samples). d Pie charts depicting genomic distributions for the consensus binding sites of
each of the factors: AR (shared in 5 out of 10 samples), FOXA1 (3 out of 7 samples), PR (2 out of 4 samples), GR (3 out of 7 samples), and GATA3 (1 out of
3 samples). e Negative Z-score of the top 5 sequence motifs for binding sites of each factor depicted as a barplot. Colored (non-gray) bar represents the
target factor’s sequence motif

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02856-2

4 NATURE COMMUNICATIONS |  (2018) 9:482 |DOI: 10.1038/s41467-018-02856-2 |www.nature.com/naturecommunications

https://en.wikipedia.org/wiki/File:Male_Bathroom_Symbol.png
https://commons.wikimedia.org/wiki/File:Toilet_women.svg
https://commons.wikimedia.org/wiki/File:Toilet_women.svg
http://www.aiga.org/content.cfm/symbolsigns
http://www.aiga.org/content.cfm/symbolsigns
www.nature.com/naturecommunications


ChIP-seq peak overlaps

27 17,316

28

22

2140
1351

1100

11,722

ChIP-seq peak correlation matrix

599488

1070

17

51696

966

450

0

2476
21

Pair-wise peak overlap

1997

1449

PR
FOXA1

GATA3

GATA3

GATA3

PR

PR

GR

AR

ERα
ERα

ERα

ERα

ERα

ERα

ERα

AR

AR

GR

GR

23,553 5613 11,510 9857 20,288 19,335

11,557

1.0
0.8

Correlation

0.6
0.4
0.2
0.0

610

28
92

200410,44910,62541488243

Pair-wise ChIP-seq

E
R

α 
se

le
ct

iv
e

S
ha

re
d

S
ha

re
d

S
ha

re
d

S
ha

re
d

S
ha

re
d

A
R

se
le

ct
iv

e

G
R

se
le

ct
iv

e P
R

 s
el

ec
tiv

e

G
A

T
A

3
se

le
ct

iv
e

E
R

α 
se

le
ct

iv
e

E
R

α 
se

le
ct

iv
e

E
R

α
se

le
ct

iv
e

E
R

α 
se

le
ct

iv
e

F
O

X
A

1
se

le
ct

iv
e

ERα

ERα ERα

ERα ERα

ERα

AR GR
FOXA1

FOXA1

FOXA1

PR
GATA3

–5
 kb

+5
 kb

–5
 kb

+5
 kb

–5
 kb

+5
 kb

–5
 kb

+5
 kb

–5
 kb

+5
 kb

Pair-wise correlation matrices

Correlation Correlation–0.2 1

Correlation 0.2 1

0 1 Correlation 0 1

Correlation 0 1

Patients
factors

ERα / ARERα / FOXA1 ERα / GR ERα / PR ERα / GATA3

a b

c

d

e

Fig. 2 Multifactorial ChIP-seq data integration. a Venn diagram depicting the overlap of ERα with steroid hormone receptors (left) and overlap of ERα with
FOXA1 and GATA3 (right). b Unsupervised clustering correlation matrix of bound regions among all factors. Top bar indicates the factors: ERα (blue), AR
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assessed, taking the same threshold. d Heatmaps indicating the binding peak intensity for each combination in (c). In each panel, ERα (left) and factor (e.g.,
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between them (middle). e Correlation heatmap for ChIP-seq data sets between ERα and the other factors. Colors in top bar indicate patient (top) and
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small (n = 3) sample size. Based on lymph node status, indicative
for overall survival (Supplementary Fig. 17), 365 ERα and 470
FOXA1 sites differed (Fig. 6a). Differential ERα and FOXA1 sites
between patient subgroups were coupled to proximal genes
(<20 kb or within the gene body). Unsupervised hierarchical
clustering revealed clusters dominated by either of M1 or
M2 subtypes, both in our cohort (Fig. 6b) and a validation set4

(Fig. 6c; n = 66 patients). We performed logistic regression with
elastic net regularization43 to construct a supervised binary
classification model by which predictive gene signatures could be
identified, which was trained in our cohort and tested in the
validation cohort. Both ERα- and FOXA1-based classifiers cap-
tured predictive features, which were outperformed by the union
of both classifier gene lists (Fig. 6d, e). A bootstrapping analysis
confirmed that comparable performance is rarely achieved with
random gene sets (p = 0.013, one-tailed test with bootstrapped

performance distribution; Methods section; Supplementary
Fig. 18). Dividing patients into two groups of equal size based on
the signature (high-risk and row-risk group of LN-status) sig-
nificantly classified patients on distant metastasis free survival
(DMFS; p = 0.048, log-rank test; Fig. 6f; Methods section), which
was marginally significant in a multivariate Cox analysis includ-
ing LN-status (p = 0.066, Cox proportional hazards test). The gene
expression signature is a linear combination of gene expression
levels, in which 14 contributing genes classify MBC on outcome
(Fig. 6g). Cumulatively, we show that global ERα and FOXA1
chromatin binding selectivity reveals gender-specific prognostic
features that successfully classify MBC patients on survival.

Discussion
This work has characterized the DNA binding landscape of ERα
in male breast cancer, along with its pioneer factors FOXA1,
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Fig. 3 ERα- and FOXA1-enriched binding sites across biological systems. a Heatmaps indicating the binding peak intensity in sites, differentially enriched
between ERα (blue) and FOXA1 (green). Left, middle and right columns indicate male tumor, female tumor and female cell line data, respectively. The male
silhouette was from Wikipedia (https://en.wikipedia.org/wiki/File:Male_Bathroom_Symbol.png). The female silhouette was from Wikipedia (https://
commons.wikimedia.org/wiki/File:Toilet_women.svg), from a collection commissioned by the United States Department of Transportation, designed by
AIGA http://www.aiga.org/content.cfm/symbolsigns, and converted into SVG by Wikipedia-user Lateiner. The image is used under a CC-BY 2.5 license. b
Genome browser snapshot depicting sites differentially bound by ERα or FOXA1 across biological systems. Genomic coordinates and read count are
indicated. c Pie charts indicating genomic distribution of ERα- (left) and FOXA1-enriched (right) sites across biological systems
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GATA3, and enhancer-enriched histone modification H3K4me1.
In addition, we present the first set of DNA binding data in breast
tumor specimens for other members of the steroid hormone
receptor family: AR, GR, and PR. Our findings have indicated
that the majority of ERα binding sites in both male and female

breast tumors are FOXA1-independent and are found at active
promoter regions, indicating a novel and unexpected mode of
ERα function. These results are in stark contrast to cell line-based
studies that illustrated the majority of ERα sites shared with
FOXA1, mainly found at enhancers11. Our findings highlight the
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necessity to address transcription factor functioning in the phy-
siological context of human tissue, rather than limiting analyses
to cell line models.

Our data reveal that genomic functions of ERα and AR in male
breast tumors are largely overlapping, which strongly co-localized
with GR and PR at the same regions. Even though many sites for
GATA3, FOXA1, and PR were not shared with ERα, both AR and
GR show virtually no unique binding sites with respect to ERα
binding. AR has been shown to compensate for ERα in ERα-/AR+
female breast cancers40,44, however the biological interaction
between ERα and AR is relatively unknown in both FBC and
MBC45. The observed genomic overlap of steroid hormone
receptor binding profiles is likely due to the close sequence
homology of DNA binding domains between all steroid hormone
receptors, which warrants potential competition between them in
DNA binding. Alternatively, genomic overlap of SHR binding
profiles may be the consequence of ‘tethering’, in which factors
associate to the DNA indirectly through complex formation with
DNA-bound factors35, as was recently described for ERα and
PR25. Such genomic convergence of steroid hormone receptor
action in tumors may provide a novel starting point for phar-
maceutical intervention strategies, yielding direct biological
rationale for the use of small molecule therapeutics to target AR
(e.g., clinicaltrials.gov NCT01990209), GR or PR in hormone
receptor-positive breast cancer. As MBC is a rare cancer with
limited numbers of available tumors for genomic studies, ChIP-
seq analyses for some factors including PR and GATA3 were
performed on relatively low number of tumors. To focus our
analyses on the most-robust peaks and thus minimizing potential
impact of patient heterogeneity, for all SHRs we only considered
peaks that were found in around 50% of patient samples. This
could be considered a rather conservative approach compared to
other tissue-derived ChIP-seq papers, where the union of all
peaks46 or peaks identified in at least 2 out of 21 tumors10 were
used as consensus for analyses. Nonetheless, results for PR and
GATA3 still warrant validation in larger cohorts.

Although, we found the vast majority of ERα sites to be shared
between male and female breast cancers, ERα sites that are
associated with patient outcome appeared gender-selective. In
line with these results, genomic selectivity of combinatorial
steroid hormone receptor action is associated with the gender-
specific intrinsic MBC subtypes M1 and M2. While these data
suggest ERα function may be driving these subtypes, causality can
only be illustrated when cell line models, organoids or patient-
derived xenografts are available for mechanistic studies. As the
most clinically relevant observation, we have identified distinct
genomic signatures of ERα action, which selectively and exclu-
sively classifies MBC patients on outcome. With differential
binding of ERα and FOXA1 as a guide, we developed a gene
expression signature that is significantly associated with DMFS in
MBC patients. The union of genes under differential control of
ERα and FOXA1 jointly classify patients on outcome, and it
remains to be determined which transcription factor is facilitated
by FOXA1 at these sites. The MLL3 histone methyltransferase

may represent one candidate to be tested in future studies based
on the published FOXA1 and MLL3 interaction in FBC cells47.
The 14 genes classifier we identified may be of added value as
male breast cancer-specific prognostic classifier, but further
validation of these results would be needed. Furthermore, small
molecule inhibitors are available for a number of the 14 genes
represented in the classifier, such as CAMKK2 (STO-609)48,
CAPN949, BACE250, and TNFSF11 (aka RANKL)51, and future
studies could further elucidate whether these inhibitors may be
applicable in the treatment of male breast cancer.

With this, we present the first comprehensive genomic over-
view of shared and unique features of four steroid hormone
receptors in human cancer, with outcome prediction. By studying
MBC, gender-selective features of ERα action were identified with
potentially direct clinical implications, revealing the first biology-
driven biomarker for outcome prediction in this highly under-
studied cancer-type.

Methods
Tumor specimens. In this study, primary male and female breast tumors were
used, none of whom received neoadjuvant endocrine therapy. Male breast cancer
patients received surgery at the Netherlands Cancer Institute-Antoni van Leeu-
wenhoek (NKI-AVL; Amsterdam, the Netherlands), University Medical Center
Utrecht (UMCU; Utrecht, the Netherlands), Vrije Universiteit Medical Center
(VUMC; Amsterdam, the Netherlands), Radboud University Medical Center
(RadboudUMC; Nijmegen, the Netherlands), University Medical Center Gronin-
gen (UMCG; Groningen, The Netherlands), Leiden University Medical Center
(LUMC; Leiden, the Netherlands), and Erasmus Medical Center (ErasmusMC;
Rotterdam, the Netherlands).

Female breast cancer patients received surgery at the Netherlands Cancer
Institute-Antoni van Leeuwenhoek (NKI-AVL; Amsterdam, the Netherlands).
Tumor content and immunohistochemical analyses were assessed by pathological
examination. For clinicopathological parameters, see Supplementary Tables 1
(male tumors) and 2 (female tumors). Local medical ethical authorities at above-
mentioned centers approved of the collection protocols. All samples were from
anonymous left-over material, which would be discarded otherwise. Anonymized,
coded leftover material which is not traced back to the patient and therefore does
not interfere with care and/or prognosis, under strict requirements can be used
without written informed consent according to Dutch legislation on Secondary
Use52.

ChIP-seq and antibody validations. Tissue was processed as described pre-
viously53 with a few adaptations. In short, tissue was defrosted and crosslinked in
solution A (50 mM Hepes, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, pH = 7.4)
containing 2 mM DSG, incubated for 25 min at room temperature while rotating.
After 25 min formaldehyde was added to 1% final and incubated another 20 min at
room temperature with rotation. Samples were quenched by adding a surplus of
0.2 M glycine, pelleted by centrifugation (5′@4000 r.c.f. at 4 °C), washed with cold
PBS and mechanically disrupted in cold PBS using a pellet pestle (Sigma). The
PicoBioruptor (Diagenode) was used for sonication. For ChIP, antibodies were
used to detect ERα (sc-543, Santa Cruz), AR (sc-816, Santa Cruz), FOXA1 (sc-
6554, Santa Cruz), PR (sc-7208, Santa Cruz), GR (12041 S lot 3, Cell Signaling
Technology), GATA3 (sc-268, Santa Cruz), and H3K4me1 (ab8895, AbCam).
Immunoprecipitated DNA was prepared for Illumina multiplex-sequencing with
10 samples per lane at 65 bp single end. For steroid hormone receptor ChIPs except
GR, 5 µg of antibody and 50 µl dynabeads (Invitrogen) were used, for GR 7.5 µg of
antibody and 75 µl dynabeads were used, and for FOXA1 and H3K4me1, 4 µg of
antibody and 40 µl magnetic beads were used. ChIP-QPCR was performed to
validate ChIP-seq data for ERα, GR, AR, and FOXA1. For QPCR, relative
enrichment of the RARA enhancer (chr:1738478661-38478809) (primers: 5′-
GCTGGGTCCTCTGGCTGTTC-3′ (FWD) and 5′-

Fig. 4 Steroid hormone receptor binding differs between male breast cancer subtypes. a Unsupervised hierarchical clustering of RNA-seq of 46 male breast
tumors, using the M1/M2 classifier genes defined by Johansson et al.4 Standardized gene expression value is denoted as the row Z-score and plotted in
high expression (blue) and low expression (yellow) scale. Top row indicates M1 (red) or M2 (blue) classification. b Correlation plots of significantly
differentially bound regions for ERα between 24 M1 (red) and 3 M2 (blue) tumors. Pearson correlation is depicted from 0 (white) to 1 (dark green) for all
panels. c Heatmaps for all factors with known M1/M2 subtype classification, depicting raw signal intensities at differential bound ERα sites between M1 and
M2. d Genomic distribution for differentially ERα-bound sites by M1 and M2 subtypes. e Bar plots indicating top 5 sequence motifs enriched in M1 and M2
differentially ERα-bound sites. f Ingenuity Pathway Analysis of Upstream Regulators and their p-values identified in both ERα binding site associated and
Johannson et al.4 gene expression based driven M1/M2 genes. g Ingenuity Pathway Analysis of Canonical Pathways and their p-values identified in both
ERα binding site associated and Johannson et al.4 gene expression based driven M1/M2 genes
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CCGGGATAAAGCCACTCCAA-3′ (REV)) over a negative control region (pri-
mers: 5′-TGCCACACACCAGTGACTTT-3′ (FWD) and 5′-ACAGCCA-
GAAGCTCCAAAAA-3′ (REV)) was normalized over input, and plotted against
the log(count/million) measurement from the same region from the MQ20 filtered
aligned ChIP-seq file. SHR antibody specificity was validated by immunohis-
tochemistry on U2OS cells transiently transfected with any of the SHRs of interest
(Supplementary Fig. 3A). Antibody used for FOXA1 ChIP-seq also detects
FOXA254 but only FOXA1 is expressed in these tumors (Supplementary Fig. 3B).
Specificity for the antibody used for H3K4me1 ChIP-seq (ab8895)55,56 and GATA3

(sc-268) has been validated by others57,58. Publically available ChIP-seq data sets
used are listed in Supplementary Table 3.

Immunohistochemistry. Immunohistochemistry staining for ER, PR, and AR was
performed as previously described8. Immunohistochemistry of other factors was
performed on a BenchMark Ultra autostainer (GATA3 and FOXA1) or Discovery
Ultra autostainer (GR). Briefly, paraffin sections were cut at 3 µm, heated and
deparaffinized in the instrument with EZ prep solution (Ventana Medical Systems).
FOXA1 was detected using clone 2F83 (1/100,000 dilution, 16 min at RT, Seven
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Fig. 5 Strong conservation of ERα and FOXA1 binding between genders. a Correlation plot of ERα bound regions across all biological systems. Top row
indicates female tumors (salmon), male tumors (red), and female cell lines ZR751 (dark green), T47D (green), MCF7 (light green) and MCF7 xenograft
(yellow) classification. Overlap ratio is depicted from 0 (white) to 1 (red). b Boxplots depicting all overlap values for ERα bound regions in male (left) and
female (right) samples. c Correlation plot of FOXA1 bound regions across all biological systems. Top row indicates female tumors (salmon), male tumors
(red), and cell lines ZR751 (dark green), T47D (green) and MCF7 (light green) classification. Overlap ratio is depicted from 0.3 (white) to 1 (red). d
Boxplots depicting all overlap values for FOXA1 bound regions in male (left) and female (right) samples. e Average ERα read count profiles for male ERα
binding sites (50% consensus, top panel) and female ERα binding sites (50% consensus, bottom panel) in male (left) and female (right) datasets. 75%
confidence interval of read count profiles are indicated with shading. f Average FOXA1 read count profiles for male FOXA1 binding sites (50% consensus,
top panel) and female FOXA1 binding sites (50% consensus, bottom panel) in male (left) and female (right) data sets. 75% confidence interval of average
profiles are indicated with shading. g Scatter plot depicting Z-scores of significantly enriched motifs at ERα binding sites in male (y-axis) and female
(x-axis) tumors. h Scatter plot depicting Z-scores of significantly enriched motifs at FOXA1 binding sites in male (y-axis) and female (x-axis) tumors. i
Average ERα read count profiles of male (left) and female (right) tumors at the differential ERα binding sites (±5 kb from the peak center) that can
discriminate female outcome (top—good outcome enriched; bottom—poor outcome enriched). Patients are grouped based on outcome where indicated
color is used for each group. 75% confidence interval of average profiles are indicated with shading

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02856-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:482 |DOI: 10.1038/s41467-018-02856-2 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hills) followed by the UltraView Universal DAB Detection Kit (Ventana Medical
Systems). GR was detected using clone D6H2L (1/600 dilution, 1 h at 37 °C, Cell
Signaling) and visualized using Anti-Rabbit HQ (Ventana Medical systems) for
12 min at 37 °C followed by Anti-HQ HRP (Ventana Medical systems) for 12 min
at 37 °C, followed by the ChromoMap DAB detection kit (Ventana Medical Sys-
tems). GATA3 was visualized using the OptiView DAB Detection Kit (Ventana
Medical Systems). Slides were counterstained with Hematoxylin II and Bluing
Reagent (Ventana Medical Systems). In the non-clinical setting (GR, FOXA1,
GATA3), all scoring was performed on whole slides by a single pathologist (PJvD),
blinded to patient status. In the clinical setting (ER, PR, and AR, we obtained

positive/negative status from the clinical records. In accordance with clinical
guidelines in the United States59, all samples were considered positive when at least
1% of nuclei were stained.

ChIP-seq bioinformatics. Sequenced samples were aligned to the reference human
genome (Ensembl 37) using Burrows-Wheeler Aligner (BWA, v0.7.5a) with a
mapping quality >20. Peak calling was performed using MACS (v1.4)60 and
DFilter (v1.5)61, where only peaks were considered that were shared by the two
peak callers. Genome browser snapshots were generated using IGV (v2.3.67),
heatmaps were compiled using SeqMiner (v1.3.3)62 and genomic region
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enrichment analysis was performed with CEAS (v1.0.2)63. To generate consensus
peaksets for each factor we used DiffBind (v1.14)10 with a cutoff defined where a
peak must be seen in at least 50% of the samples for that factor. In the event that
there were only 2 samples sequenced for a factor, only peaks were considered found
in both samples. A list of the union of these sites was generated for Fig. 2a, b). For
two-way Venn diagrams, we used these cutoffs in each factor in the set of 4 (ERα vs
AR), 3 (ERα vs FOXA1), and 2 (ERα vs GR/PR) (Fig. 2c, d). For differential
binding analyses (Fig. 2e), DiffBind was used10 with the following parameters, FDR
of 0.1 for comparison between two different factors and p-value of 0.01 for com-
parison between different LN-status. Given a set of binding site, genomic dis-
tribution and significantly enriched motifs were obtained using CEAS63 and
SeqPos64 in Galaxy Cistrome (v1.0.0)64. All identified motifs were included in the
wordcloud figures without removing close homologues, to prevent selection bias
(Supplementary Figures 5, 10 and 11).

RNA isolation and RNA-seq. Sections (30 µm thick) were cut from the frozen
tumor tissues for RNA isolation. Total RNA was extracted using the mirVana
miRNA isolation kit (Ambion, USA) according to the manufacturer’s protocol
until the end of F1. Quality and quantity of the total RNA was assessed by the 2100
Bioanalyzer (Agilent, USA). Total RNA samples having RIN >8 were subjected to
library generation.

Strand-specific libraries were generated using the TruSeq Stranded mRNA
sample preparation kit (Illumina, USA; RS-122-2101/2) according to the
manufacturer’s instructions (Illumina, Part # 15031047 Rev. E). 3′ adenylated and
adapter ligated cDNA fragments were subject to 12 cycles of PCR. The libraries
were analyzed on a 2100 Bioanalyzer using a 7500 chip (Agilent, Santa Clara, CA),
diluted and pooled equimolarly into a multiplexed, 10 nM sequencing pools and
stored at −20 °C. Strand-specific cDNA libraries were sequenced with 100 base
paired-end reads on a HiSeq2500 using V4 chemistry (Illumina).

RNA-seq analysis. For all analyses we used the reference file Ensembl GRCh37.75.
Adapter filtered reads were subject to STAR alignment (v2.4.2)65 carried out using
default parameters. For expression analysis, HTSeq (v0.6.1p1)66 was used to count
reads for all genes in our RNA-seq samples using the htseq-count command. The
DESeq2 (v1.16.0) R package was then used to generate a gene expression matrix
from these data67. Normalization of the data was carried out using the ‘rlog’
method within the package. Only samples with at least 5 reads across each gene
were retained for further analyses (N = 46).

Prediction of male patient outcome on profiles of ERα and FOXA1. We con-
structed a k-nearest neighbor classifier based on ERα binding profile of female
patients using scikit-learn module (v0.19)68 in Python. Taking read counts of ERα
in the ERα binding sites that classify female outcome, male patient outcome is
predicted by the outcome of five closest female data in terms of Minkowski
distance.

Logistic regression with elastic net regularization. We used R package glmnet
(v2.0)43 for constructing a logistic regression model using RNA-seq data in our
cohort. Leave-one-out cross validation was performed for finding robust coeffi-
cients. Taking the independent validation cohort, linear combination of gene
expression levels using the coefficients (gene expression signature) were obtained to
rank the patients. Measuring sensitivity and specificity of LN-status prediction with
varying threshold gives a receiver-operating characteristics (ROC) curve from
which area under the curve (AUC) can be measured. A threshold dividing high-
and low-risk group was chosen as the median. We used potential target genes of
ERα and FOXA1, and union of potential targets to construct three classification
models. Note that due to the high dimensionality, no contributing gene is found
when the model is trained with whole genome data.

Bootstrapping analysis of classification model. We used the R package boot
(v1.3)69 for bootstrapping analysis. For each classification model, 1000 random
models were constructed in the same manner but with random gene sets with the
same size to obtain bootstrapped AUC distribution. Taking the bootstrapped AUC
distribution as a null hypothesis distribution, significance of the performance was
assessed by one-tailed test.

Survival analysis. We used R package Survival (v2.38)70 for survival analysis.
Given two patient groups based on data availability, the log-rank test was used for
overall survival (OS) comparison in our cohort and distant metastasis free survival
(DMFS) comparison in a validation cohort. Cox regression was used to assess
association of LN-status and gene expression signature to survival. The available
additional prognostic factors used in multivariate Cox regression were LN-status,
endocrine therapy, chemotherapy, radiotherapy and age at diagnosis.

Data availability. All ChIP-seq data generated in the study are available on GEO
repository: GSE104399 and RNA-seq data on GEO repository: GSE104730. All
public data streams used in the study are listed in Supplementary Table 3.
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