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 A B S T R A C T

Data-driven estimation of system norms is essential for analyzing, verifying, and designing control systems. 
Existing data-based methods often do not capture the inter-grid and transient behavior of the system, leading 
to inaccurate and unreliable system norm estimations. This paper presents a unified approach for accurate 
and reliable estimation of the 2 and ∞ norm with a limited amount of data. The key step is to exploit 
local parametric models that explicitly incorporate the inter-grid and transient dynamics. The system norm is 
estimated through the computation of local system norms of the local parametric models within their the local 
frequency interval. Simulation and experimental results illustrate the effectiveness of the proposed method.
1. Introduction

Accurate and precise estimation of system norms is essential in 
many control and system analysis applications (Gawronski, 2004; Sko-
gestad & Postlethwaite, 2005; Zhou & Doyle, 1998). The ∞ and 2
norms, in particular, are crucial in various applications. For instance, 
the accurate and precise estimation of the ∞ norm is key for robust 
control design to ensure robustness and performance. Underestimation 
can lead to instability, while overestimation results in overly conserva-
tive robust control design (Vinnicombe, 2001). Conversely, the accurate 
and precise 2-norm estimation is critical for model reduction (An-
toulas, 2005; Gawronski, 2004). In addition, specific applications may 
require focusing on a particular frequency range. This can be attributed 
to limitations in the model of the system and operating conditions, or 
specific design objectives and considerations. Therefore, the aim of this 
paper is to develop a method for accurate and robust estimation of the 
global and finite-frequency 2 and ∞ norm.

Traditionally, data-driven approaches have been used to estimate 
system norms in practice. Based on an experimentally determined 
frequency response function estimate the ∞ and 2 norms are es-
timated in Anderson, Emami-Naeni, and Vincent (1991) and Van de 
Wal, van Baars, Sperling, and Bosgra (2002). However, only frequencies 
in the Discrete Fourier Transform (DFT) grid are considered due to 
the finite measurement time. As a result, these frequency response-
based approaches do not include the inter-grid behavior, which leads 
to unreliable norm estimates, especially for lightly-damped system 
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behavior. Additionally, the transient system behavior is not included 
in these frequency response function-based methods, which leads to an 
additional bias in the system norm estimate. The inter-grid behavior 
is estimated in Vries and Van Hof (1994) based on a deterministic 
worst-case approach. However, these approaches often result in signif-
icant overestimation of the ∞ norm (Friedman & Khargonekar, 1995; 
Vinnicombe, 2001).

Data-driven iterative methods for ∞ norm estimation, as proposed 
in Müller and Rojas (2019), Oomen, van der Maas, Rojas, and Hjal-
marsson (2014), Oomen and Rojas (2023) and Wahlberg, Syberg, and 
Hjalmarsson (2010), mitigate this problem by taking the inter-grid 
behavior into account through dedicated experiments. However, these 
methods rely on a series of experiments that inflate significantly for 
multivariable systems. Alternatively, Gaussian process-based methods 
can be employed to estimate system norms, see, e.g., Persson, Koch, 
and Allgöwer (2020) for 2 norm estimation and Devonport, Seiler, 
and Arcak (2023) for ∞-norm estimation. However, such probabilistic 
methods are not considered in this paper, and a deterministic approach 
is pursued.

Alternatively, system norms can be determined with techniques 
based on the availability of parametric system descriptions. In An-
toulas (2005, Section 5) and Gawronski (2004, Section 6), parametric 
methods are considered for calculating the 2 norm. Similarly, ∞-
norm estimation methods based on parametric system descriptions has 
been proposed in Boyd, Balakrishnan, and Kabamba (1989), Bruinsma 
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and Steinbuch (1990), Ljung (2009) and Robel (1989). Methods for 
computing finite-frequency system norms are described in, e.g., Iwasaki 
and Hara (2005), Petersson and Löfberg (2014) and Vuillemin, Poussot-
Vassal, and Alazard (2012). However, a parametric system description 
is often not available in full detail in many applications. A paramet-
ric system description could be obtained through system identifica-
tion which however can lead to a high level of user intervention, 
e.g., the selection of an appropriate model structure, model order, 
and algorithm, especially for multivariable systems. Model validation 
techniques have been developed to estimate the ∞ norm in Poolla, 
Khargonekar, Tikku, Krause, and Nagpal (1994) and Smith and Doyle 
(1992). However, these techniques often result in underestimates of the 
∞ norm.

The aim of this paper is to combine the advantages of data-driven 
and full-parametric methods by exploiting local parametric model-
ing techniques to estimate system norms. By exploiting local smooth-
ness, these local parametric methods can be used to estimate the 
transient, at-grid, and inter-grid behavior which reduces experiment 
time and improves the estimation quality without the complexities 
of full-parametric identification. These methods are successfully ap-
plied in several applications, see, e.g., Evers, de Jager, and Oomen 
(2018), Pintelon, Schoukens, Vandersteen, and Barbé (2010a, 2010b), 
Tacx, Habraken, Witvoet, Heertjes, and Oomen (2024) and Voorhoeve, 
van der Maas, and Oomen (2018). However, these approaches do not 
consider the inter-grid system behavior and solely focus on improving 
the estimate for the at-grid system behavior. Alternatively, Gaussian 
Processes can further enhance the estimation quality for frequency re-
sponse estimates, as demonstrated in Hallemans, Pintelon, Joukovsky, 
Peumans, and Lataire (2022), and can be used to estimate the inter-grid 
system behavior. However, this approach requires significant compu-
tational effort, particularly for multivariable systems. Therefore, this 
paper adopts local parametric models. The key idea in this paper is 
to evaluate the local parametric description to estimate the inter-grid 
behavior. The potential of these local models for estimating the ∞
was investigated previously in Geerardyn and Oomen (2017) but this 
method was limited to SISO systems and relied on a pragmatic selection 
of the frequency grid to estimate the local peak norms. This may lead 
to underestimation of system norms, in particular for ∞ norms, in 
case of lightly-damped resonances. An additional advantage of local 
parametric methods is that these can be used to provide variance 
estimates of the obtained frequency response results (Pintelon et al., 
2010b). However, this paper is focused only on the nominal value.

Despite the substantial progress in the literature, current methods 
for estimating system norms may lead to inaccurate estimates, require 
a significant amount of measurement time, or demand a high level of 
user intervention. This paper proposes an approach to accurately and 
reliably estimate the finite-frequency and global 2 and ∞ norm with 
a limited amount of data. The proposed approach includes estimating 
the finite-frequency 2 and ∞ norms. The main contributions of this 
paper are:

C1 an approach that exploits local parametric modeling techniques 
for estimating the global and finite-frequency

C1.1 2 norm.
C1.2 ∞ norm.

C2 the application of the proposed method in

C2.1 a simulation case study.
C2.2 an experimental case study.

The method proposed in this paper estimates the system norms 
by calculating finite-frequency norms of the local parametric models 
within their respective frequency intervals. For ∞ norm estimation, 
an algorithm is introduced to compute the finite-frequency   norm of 
∞

2 
these models. Traditional methods calculate peak values over infinite-
frequency intervals using weighting filters to highlight specific regimes, 
but these weighting filters complicate the process and only approx-
imate the problem. By employing the generalized KYP lemma, the 
computation is reformulated into a finite-dimensional Linear Matrix 
Inequality (LMI)-based feasibility test, enabling accurate and efficient 
computation of the finite-frequency ∞ norms (Iwasaki & Hara, 2005; 
Iwasaki, Meinsma, Fu, et al., 2000; Pipeleers & Vandenberghe, 2011). 
Alternatively, the ∞ norm can be estimated analytically for single-
input–single-output systems. This can potentially be extended to mul-
tivariable systems through symbolic toolbox packages. For 2 norm 
estimation, local finite-frequency 2 norms are computed for each 
model in its frequency interval. Parametric methods could be employed 
to compute the local finite-frequency 2 norm of the local parametric 
models, see, e.g., Gawronski (2004) and Van Loan (1978). However, 
these methods either require stable local models or local models with 
real-valued coefficients. Since these models are often parameterized 
with complex-valued coefficients, these requirements restrict the mod-
eling flexibility which is not desirable. For this reason, the integral 
is computed numerically using a cumulative trapezoidal integration 
scheme. This method is known to yield accurate estimates when a 
sufficiently dense grid is used. It is important to emphasize that the 
considered grid operates along the domain of the local parametric 
models and is therefore substantially denser than the sparsely spaced 
DFT grid, without requiring additional data or experiments. As a result, 
it enables significantly more accurate estimates compared to traditional 
system norm estimation methods based on spectral analysis, as seen in, 
e.g., Anderson et al. (1991) and Van de Wal et al. (2002).

The novelty in this paper lies in the derivation and application of 
a method for estimating 2 and ∞ norms of multivariable systems 
which has not been previously published in its full generality. This 
paper extends to the previous result in Tacx and Oomen (2021) by 
providing, a method for estimating 2 norms, an extended and revised 
derivation of the system norm estimation method, and the application 
in an extensive experimental and simulation case study.

The outline of this paper is as follows. In Section 2, the system 
norms and the problem considered in this paper are introduced. In 
Section 3, the local modeling techniques that are used for estimating 
the system norms are introduced. In Section 4, the method for estimat-
ing the 2 norm is proposed. In Section 5, the method for estimating 
the ∞ norm is proposed. In Section 6, the proposed techniques are 
demonstrated in a simulation case study. In Section 7, the proposed 
techniques are applied in an experimental case study. In Section 8, the 
conclusions of this paper are formulated.

The following notation is used throughout. For a matrix 𝐴, the 
maximum singular value is given by 𝜎̄(𝐴). The transpose and complex 
conjugate transpose of a matrix 𝐴 is denoted by 𝐴⊤ and 𝐴∗ respectively. 
The trace of a matrix 𝐴 is defined as tr(𝐴).

2. Problem formulation

2.1. System norms

In this paper, a frequency domain-based approach is pursued to 
determine the system norms of a multivariable linear time-invariant 
system 𝐺𝑜 ∈ C𝑛𝑦×𝑛𝑢 , where 𝑛𝑦 denotes the number of outputs and 𝑛𝑢 the 
number of inputs, as indicated in Fig.  1. Throughout, the generalized 
frequency variable is denoted by 𝜉 which becomes when formulated in 
continuous time 𝜉 = 𝑗𝜔 with 𝜔 ∈ R, and in the discrete time 𝜉 = 𝑒𝑗𝜔𝑇𝑠
with 𝜔 ∈

[

0, 𝜋
𝑇𝑠

]

, where 𝑇𝑠 denotes the sampling time, the latter is used 
throughout. Consider the frequency domain interpretations of the 2
and   norm. 
∞
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Fig. 1. Linear time invariant system in an open-loop setting with input 𝑢, measurement 
noise 𝑣, and undisturbed output 𝑦𝑜 and the output 𝑦.

Definition 1.  Given a multivariable linear time-invariant system 𝐺𝑜. 
The ∞ norm is defined as 
𝛾 = ‖𝐺𝑜‖∞ = sup

𝜔∈𝛺
𝜎̄
(

𝐺𝑜(𝜉)
)

(1)

where 𝛺 denotes the frequency range which is formulated in discrete 
time as 𝛺 =

[

0, 𝜋
𝑇𝑠

]

.

Definition 2.  Given a multivariable linear time-invariant system 𝐺𝑜. 
The 2 norm is defined as 

𝜇 = ‖𝐺𝑜‖2 =

√

1
2𝜋 ∫𝛺

tr
(

𝐺∗
𝑜 (𝜉)𝐺𝑜(𝜉)

)

𝑑𝜔 (2)

where 𝛺 denotes the frequency range which is formulated in discrete 
time as 𝛺 =

[

0, 𝜋
𝑇𝑠

]

.

A key issue arises from the fact that no explicit access to the 
parametric system description is provided. As a consequence, only 
experimental input–output data is available. 

Remark 1.  Some applications require to focus on a specific finite-
frequency range. Consider the finite-frequency counterparts of the 2
and ∞ norm. Throughout this paper, unless stated otherwise, the 
global system norms in Definitions  1 and 2 are considered. However, it 
is important to note that the proposed methods can be readily used to 
estimate the finite-frequency norms by replacing the infinite frequency 
range 𝛺 in (1) and (2) with a specific finite-frequency range 𝛺ff. This 
choice is made to enhance the readability of the results by avoiding 
introducing additional notation for the finite-frequency case.

2.2. Spectral analysis

Consider the discrete signal 𝑢(𝑛), 𝑛 = 0, 1,… , 𝑁 − 1. The Discrete 
Fourier Transform (DFT) of 𝑢(𝑛) is defined as

𝑈 (𝑘) = 1
√

𝑁

𝑁−1
∑

𝑛=0
𝑢(𝑛) exp

(−𝑖2𝜋𝑘𝑛
𝑁

)

where 𝑘 ∈ {1,… , 𝑁} denotes the 𝑘th DFT bin.
In Fig.  1, the linear time-invariant system 𝐺𝑜 is depicted, where 

𝑢(𝑛) represents the input, 𝑦𝑜(𝑛) the noiseless output, 𝑦(𝑛) represents the 
output, and 𝑣(𝑛) corresponds to the noise at the output. The noise 𝑣(𝑛) is 
colored and characterized by 𝑉 (𝑘) = 𝐻(𝜉𝑘)𝐸(𝑘), where 𝐻(𝜉𝑘) serves as 
the noise model and 𝑒(𝑛) is a zero-mean Gaussian white noise signal. 
The response to the discrete input 𝑢(𝑛) is given by (Pintelon et al., 
2010b; Tacx et al., 2024) 
𝑌 (𝑘) = 𝐺𝑜(𝜉𝑘)𝑈 (𝑘) + 𝑉 (𝑘) + 𝑇 (𝜉𝑘), (3)

where 𝑌 (𝑘) denotes the output response and 𝑇 (𝜉𝑘) denotes the transient 
component of the response. Here, 𝜉𝑘 is the frequency variable associ-
ated with DFT-bin 𝑘, which translates to 𝜉𝑘 = 𝑗𝜔𝑘 in the Laplace domain 
and 𝜉𝑘 = 𝑒𝑗𝜔𝑘𝑇𝑠  in the 𝑍-domain.

The traditional approach to estimate the system norm of 𝐺𝑜(𝜉𝑘) is 
based on spectral analysis. This method relies on the finite number of 
DFT lines that are available in a frequency response estimate. To obtain 
the frequency response function estimate, 𝑛  independent experiments 
𝑢

3 
are conducted. The resulting spectra are stacked in the matrices 𝑈𝑀 (𝑘)
and 𝑌𝑀 (𝑘). Additionally, averaging and an appropriate window func-
tion can be used to improve the quality of the estimate. By multiplying 
the resulting averaged cross-spectra with the inverse of the averaged 
auto-spectra, the frequency response function is estimated 

𝐺̂SA(𝜉𝑘) =
[

𝑌𝑀 (𝑘)𝑈𝑀 (𝑘)
] [

𝑈𝑀 (𝑘)𝑈𝑀 (𝑘)
]−1

. (4)

The 2 and ∞ norms defined in (2) and (1) are approximated as 

𝜇̃FRF =

√

√

√

√
1
2𝜋

𝑁−1
∑

𝑘=1
tr
(

𝐺̂∗
SA(𝜉𝑘)𝐺̂SA(𝜉𝑘)

)

(

𝜉𝑘+1 − 𝜉𝑘
)

(5)

and 
𝛾̃FRF = max

𝑘∈{1,…,𝑁−1}
𝜎̄
(

𝐺̂SA(𝜉𝑘)
)

. (6)

This means that direct inspection of the FRF data only gives access to 
𝜇̃FRF and 𝛾̃FRF which do not necessarily coincide with the true system 
norms 𝛾 and 𝜇 for two reasons.

1. The transients, in addition to the noise contribution 𝑉 (𝑘), lead 
to an estimation error in the frequency response estimate, i.e.,
𝐺𝑜(𝜉𝑘) − 𝐺̂SA(𝜉𝑘) = 𝑇 (𝜉𝑘)𝑈−1(𝑘) + 𝑉 (𝑘)𝑈−1(𝑘).

This means that the system norm estimations are biased due 
to the presence of the transient contribution in the frequency 
response estimate (4). This estimation bias can be substantial for 
systems with large time constants, such as thermal systems, see, 
e.g., Evers et al. (2018).

2. Due to limited experimentation time, the system response is only 
estimated at a finite discrete frequency grid. Hence, the finite 
frequency resolution may not be sufficiently dense to capture the 
dynamics of the system, especially for lightly-damped systems 
with resonant behavior.

The use of spectral analysis-based system norm estimation methods in 
(5) and (6) are often used in practical applications, see, e.g., Anderson 
et al. (1991) and Van de Wal et al. (2002). The combination of the 
unmodeled transient behavior and the unmodeled inter-grid system 
behavior could potentially lead to a system norm estimation bias. The 
main contribution of this paper is to estimate the transient and inter-
grid behavior without the need for a global parametric model. Instead, 
the 2 and ∞ norms are obtained using local parametric modeling 
techniques that are valid over a finite-frequency interval.

3. Local modeling for 𝟐-norm and ∞-norm estimation

Accurate estimation of the transient and the inter-grid behavior 
is crucial to obtain an accurate and reliable estimate of the 2 and 
∞ norm. This section aims to exploit local modeling techniques to 
estimate the transient and the inter-grid behavior.

3.1. Transient elimination

The main mechanism of local modeling approaches is to exploit the 
local smoothness of a system by introducing a local parametric model 
of the system and the transient (McKelvey & Guérin, 2012; Pintelon 
et al., 2010a; Tacx et al., 2024; Voorhoeve et al., 2018). These models 
are estimated by introducing a window around the 𝑘th DFT bin, i.e.,
𝑟 ∈

[

−𝑁𝑊 ,… , 𝑁𝑊
]

∈ Z,

where the window size 𝑁𝑊  determines the size of the DFT window 
on which the local parametric models are estimated. This parameter 
is selected by the control engineer. The local model at bin 𝑘 can be 
expressed as 
𝑌 (𝑘 + 𝑟) = 𝐺̃𝑘(𝑟)𝑈 (𝑘 + 𝑟) + 𝑇̃𝑘(𝑟), (7)

where 𝐺̃𝑘(𝑟) and 𝑇̃𝑘(𝑟) denote the 𝑘th local model and transient models, 
respectively.
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3.2. Parametrization & algorithm

The local models 𝐺̃𝑘(𝑟) are described by the left matrix fraction 
description (LMFD)
𝐺̃𝑘(𝑟) = 𝐷−1

𝑘 (𝑟, 𝜃)𝑁𝑘(𝑟, 𝜃), (8)
𝑇̃𝑘(𝑟) = 𝐷−1

𝑘 (𝑟, 𝜃)𝑀𝑘(𝑟, 𝜃).

Here, 𝐷𝑘(𝑟), 𝑁𝑘(𝑟), and 𝑀𝑘(𝑟) are polynomial matrices with respective 
orders 𝑁𝐷, 𝑁𝑁 , and 𝑁𝑀 , as outlined in Voorhoeve et al. (2018). A 
large number of LMFD parametrizations exist in the literature, see, 
e.g., Voorhoeve et al. (2018) for an extensive overview and compar-
ison of these parametrizations for local parametric methods, i.e., local 
rational method (LRM). In this paper the full polynomial parametriza-
tion is employed because it enables to describe and estimate accurate 
local parametric models for a relatively large range of systems while 
using a limited number of parameters, supporting a small 𝑁𝑊  which 
supports the mitigation of estimation bias and a sufficient degree of 
averaging (Voorhoeve et al., 2018). In addition, selecting low model 
orders also avoids pole-zero cancellations leading to potentially sharp 
resonances. Moreover, setting 𝑁𝐷 = 0 adapts the method to the local 
polynomial method.

The multivariable local models are estimated through the linear 
least-squares optimization for all 𝑘

𝜃̂(𝑘) = argmin
𝜃

𝑁𝑊
∑

𝑟=−𝑁𝑊

‖

‖

‖

𝐷𝑘(𝑟, 𝜃)𝑌 (𝑘 + 𝑟)

− 𝑁𝑘(𝑟, 𝜃)𝑈 (𝑘 + 𝑟) −𝑀𝑘(𝑟, 𝜃)
‖

‖

‖

2

2
.

(9)

This optimization, which resembles the Levy method, is computation-
ally efficient and typically sufficiently accurate in practice (Levy, 1959; 
Voorhoeve et al., 2018). However, the specific structure may lead to an 
estimation bias. This bias can be mitigated by employing an iterative 
version of (9) which introduces a significant additional computational 
cost that typically leads to only a limited improvement in the quality 
of the estimation (Voorhoeve et al., 2018).

The techniques presented in this paper are based on an open-
loop configuration as described in (3). Nevertheless, the modeling 
framework defined by (7) can be extended to accommodate closed-loop 
systems, as demonstrated in, e.g., Pintelon and Schoukens (2012).

3.3. Local models for norm estimation

The key idea is to employ local parametric models to estimate the 
inter-grid behavior. An important step is to employ the real variable 
𝑟 on the continuous and real finite-frequency interval 𝑟 ∈ 𝜆 which 
enables to evaluate the local models on and in-between the DFT grid. 
The domain 𝜆 is a continuous segment of the real axis
𝐺̃𝑘(𝑟), 𝑟 ∈ 𝜆, (10)

𝜆 =
{

𝑟 ∈ R
|

|

|

|

− 𝑟𝛥 ≤ 𝑟 ≤ 𝑟𝛥, 𝑟𝛥 ≥ 0.5
}

.

where 𝐺̃𝑘(𝑟) denotes the 𝑘th local parametric model that depends on 
the real variable 𝑟 which is part of the validity range 𝜆. The parameter 
𝑟𝛥 is a parameter that is determined by the control engineer which 
determines the validity range 𝜆 of the local parametric models. If the 
validity range is 𝑟𝛥 > 0.5, the local parametric models overlap each 
other. For 𝑟𝛥 = 0.5, the local parametric models form a piece-wise 
function. To improve the readability of this paper, a validity range 𝑟𝛥 =
0.5 is used throughout this paper. Nevertheless, the results proposed 
in this paper can be extended to accommodate the situation where 
𝑟𝛥 > 0.5.

A complicating aspect arises from the fact that the local parametric 
models operate along the 𝜆 domain which is a finite segment of the 
DFT axis, i.e., real axis, while the integration in the  -norm definition 
2

4 
Fig. 2. Diagram indicating the Möbius transformations that connect the real (DFT) axis 
which is used by local parametric models, Laplace and 𝑍-domain.

takes place along the frequency variable 𝜔. The frequency variable 𝜔
is related to the 𝜆 domain through

𝑘 + 𝑟 = 𝑓𝜔↦𝑘+𝑟 (𝜔) (11)

𝑓𝜔↦𝑘+𝑟 (𝜔) =
𝑁𝑇𝑠
𝜋

𝜔.

The function 𝑓𝜔↦𝑘+𝑟 (𝜔) in (11) provides a frequency domain interpre-
tation of the continuous description of the local parametric models. The 
transformations of the frequency variable 𝜔 to Laplace domain and 𝑍-
domain can be considered as Möbius transformations, as indicated in 
Fig.  2.

The key idea of this paper is to incorporate the inter-grid behavior of 
local parametric models within their respective frequency intervals to 
enhance the estimation of the ∞ and 2 norms. This objective funda-
mentally differs from existing approaches in the literature (McKelvey 
& Guérin, 2012; Pintelon et al., 2010a; Tacx et al., 2024; Voorhoeve 
et al., 2018), where local models are used solely to estimate the at-grid 
frequencies, and hence mainly aiming to improve the quality of the 
frequency response function estimate.

4. 𝟐-norm estimation

The main idea in this paper is to exploit the local parametric models 
introduced in Section 3 to estimate system norms. In this section, these 
local parametric models are used to estimate the finite-frequency 2
norm, which constitutes Contribution C1.1. The approach focuses on 
estimating the global norm by computing the local finite-frequency 
norms of the individual local parametric models, i.e.,

‖𝐺𝑜‖
2
2 =

𝑁−1
∑

𝑘=0
𝜇2
loc,𝑘

where 𝜇loc,𝑘 denotes the local finite-frequency norm of the 𝑘th local 
parametric model.

The local finite-frequency norm of the 𝑘th local parametric model 
is defined as

𝜇loc,𝑘 = ∫

𝑟𝛥

−𝑟𝛥
tr
(

𝐺̃𝑘(𝑟)𝐺̃∗
𝑘(𝑟)

)

𝑓 ′
𝜔↦𝑟𝑑𝑟

= ∫

𝑟𝛥

−𝑟𝛥
tr
(

𝐺̃𝑘(𝑟)𝐺̃∗
𝑘(𝑟)

) 𝑁𝑇𝑠
𝜋

𝑑𝑟

The term 𝑓 ′
𝜔↦𝑟 refers to the derivative of 𝑓𝜔↦𝑟 with respect to the 

frequency variable 𝜔. This term follows from the reverse chain rule, 
i.e., the conversion from the 𝜆 domain to the frequency variable 𝜔. An-
alytic solutions to this integral only exist in specific cases, e.g., for 𝑁𝐷 =
0, the polynomial parametrization. Dedicated finite-frequency 2-norm 
techniques such as, e.g., Petersson and Löfberg (2014) and Vuillemin 
et al. (2012), require stable local parametric models or real-valued 
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coefficients, which limits the generality of the results. For this reason, 
the integral is computed numerically using a cumulative trapezoidal 
integration scheme. This method is known to yield accurate estimates 
when a sufficiently dense grid is used along the real axis segment 𝜆. It is 
important to emphasize that the considered grid operates along this real 
axis segment 𝜆 and is therefore substantially denser than the sparsely 
spaced DFT grid, without requiring additional data or experiments. As 
a result, it enables significantly more accurate estimates compared to 
traditional system norm estimation methods based on spectral analysis, 
as seen in, e.g., Anderson et al. (1991) and Van de Wal et al. (2002).

5. ∞-norm estimation

The global ∞ norms are estimated by computing the finite-
frequency ∞ norm of each local parametric model within its re-
spective frequency interval. This section develops a method for accu-
rately estimating these finite-frequency ∞ norms, which constitutes 
Contribution C1.2.

5.1. ∞ norm estimation: Approach

Estimating the ∞ norm involves two main steps. First, the finite-
frequency ∞ norms of the individual local parametric models are 
computed as 
𝛾𝑘 = sup

𝑟∈𝜆
𝜎̄
(

𝐺̃𝑘(𝑟)
)

, (12)

where 𝐺̃𝑘 denotes the 𝑘th local model.
Using these local estimates, the global ∞ norm is determined 

by taking the maximum finite-frequency ∞ norm across all local 
parametric models
‖𝐺𝑜‖

2
∞ = 𝛾̃ = max

𝑘
𝛾𝑘.

Thus, accurately computing the finite-frequency ∞ norm for each 
local model is crucial for obtaining an accurate estimate of the global 
∞ norm. In the following section, an algorithm is introduced that 
leverages the local parametric description to compute the local norm 
accurately.

5.2. Finite-frequency ∞-norm algorithm

This section introduces a method for determining the finite-
frequency ∞ norm of the local parametric models. The following the-
orem presents an important result in the development of the algorithm 
by converting the estimation problem to a finite-dimensional LMI by 
employing the generalized KYP lemma, see, e.g., Iwasaki and Hara 
(2005). One approach to estimate the peak value in (12) is to check 
the frequencies 𝑟 ∈ 𝜆 in a finite frequency grid. However, due to 
resonances, such a pragmatic approach may lead to underestimation 
of the finite-frequency ∞ norm. To this end, an approach is devel-
oped that leads to a new algorithm that enables the computation of 
the finite-frequency ∞ norm of local parametric models based on a 
finite-dimensional LMI. 

Theorem 1.  Let 𝐺̃𝑘 be a local model of the form (8) with validity range 
𝜆 according to (10). Suppose that 𝐺̃𝑘 has the following form 

𝐺̃𝑘(𝑟) = 𝐶 (𝑟𝐼 − 𝐴)−1 𝐵 +𝐷 (13)

where 𝐴 ∈ C𝑛𝑥×𝑛𝑥 , 𝐵 ∈ C𝑛𝑥×𝑛𝑢 , 𝐶 ∈ C𝑛𝑦×𝑛𝑥  and 𝐷 ∈ C𝑛𝑦×𝑛𝑢 . Then, the 
following statements are equivalent.

1. The finite-frequency ∞ norm of 𝐺̃𝑘(𝜉) on the domain 𝜆 is bounded 
by 𝛾𝑘
sup 𝜎̄

(

𝐺̃𝑘(𝜉)
)

< 𝛾𝑘. (14)

𝑟∈𝜆

5 
2. There exist a 𝑃 ,𝑄 ∈ H𝑛 such that

𝑄 ≻ 0

𝐹 (𝛾𝑘) =
[

𝐴 𝐵
𝐼 0

]∗

(𝛷⊗ 𝑃 + 𝛹 ⊗𝑄)
[

𝐴 𝐵
𝐼 0

]

+
[

𝐶 𝐷
0 𝐼

]∗ [𝐼 0
0 −𝛾𝑘2𝐼

] [

𝐶 𝐷
0 𝐼

]

≺ 0
(15)

with 

𝛷 =
[

0 𝑗
−𝑗 0

]

, 𝛹 =
[

−1 0
0 𝑟2𝛥

]

. (16)

The proof is presented in Appendix.
Essentially, Theorem  1 enables to reformulate the finite-frequency 

∞-norm bound on the domain 𝜆 into a finite-dimensional LMI in 
(15) through the generalized KYP lemma. For details regarding the 
generalized KYP lemma, see, e.g., Iwasaki and Hara (2005), Iwasaki 
et al. (2000). The rational local parametric models that are considered 
in this paper can be trivially rewritten into the state-space format in 
(13) in Theorem  1. This includes the local polynomial case, i.e., 𝑁𝐷 = 0.

The key idea in this paper is to exploit the result presented in 
Theorem  1 by considering the finite-dimensional feasibility test in 
matrices 𝑃  and 𝑄 for a fixed finite-frequency ∞ norm bound 𝛾̃𝑘. The 
local bound 𝛾𝑘 in (12) is then computed iteratively through a bisection 
algorithm applied to this bound as demonstrated in the following 
algorithm.

Algorithm 1 (Finite-Frequency ∞-norm Algorithm). Let 𝐺̃𝑘(𝑟) be the 
local parametric model with validity range 𝜆, and let 𝐹 (𝛾𝑘) be the feasi-
bility condition as defined in (15). The finite-frequency ∞ norm bound 
𝛾𝑘 is computed iteratively using the following bisection algorithm.

1. Initialization: Determine an initial interval [𝛾𝑙,1, 𝛾𝑢,1], where 𝛾𝑙,1
denotes the lower bound and 𝛾𝑢,1 denotes the upper bound, such 
that:

• 𝐹 (𝛾𝑙,1) is infeasible (i.e., does not satisfy (15)).
• 𝐹 (𝛾𝑢,1) is feasible (i.e., satisfies (15)).

Set the iteration counter 𝑖 = 1.
2. Iteration: Until the termination, perform the following steps:

• Compute the midpoint 𝛾𝑚,𝑖 = 𝛾𝑙,𝑖+𝛾𝑢,𝑖
2 .

• Check the feasibility of 𝐹 (𝛾𝑚,𝑖):

– If 𝐹 (𝛾𝑚,𝑖) is feasible, update 𝛾𝑢,𝑖+1 = 𝛾𝑚,𝑖.
– Otherwise, update 𝛾𝑙,𝑖+1 = 𝛾𝑚,𝑖.

• Increment 𝑖 = 𝑖 + 1.

3. Termination: The algorithm converges when |𝛾𝑢,𝑖− 𝛾𝑙,𝑖| is below 
a predefined tolerance 𝜖, at which point the final estimate is 
given by 

𝛾𝑘 =
𝛾𝑙,𝑖 + 𝛾𝑢,𝑖

2
. (17)

In this paper, the initial interval in Algorithm Algorithm  1 is de-
termined based on the estimate of the local parametric models, with 
specific considerations outlined in the simulation and experimental case 
studies. If the initial interval is found to be either entirely feasible or 
infeasible, it can be appropriately adjusted. The key idea in this paper 
is to employ Algorithm Algorithm  1 for the accurate computation of 
the finite-frequency ∞ norm of each local parametric model at the 
respective DFT bin 𝑘, thereby enabling accurate and reliable estimation 
of the global ∞ norm.
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6. Simulation case study

In this section, the methods for estimating the ∞ and 2 norms 
are applied in a simulation case study which constitutes Contribution 
C2.1.

6.1. Simulation description

The case study considers a mechanical model based on the modal 
form, i.e.,

𝐺(𝑠) =
𝑁
∑

𝑖=1
𝜙𝑖

1
𝑠2 + 2𝜁𝑖𝜔𝑖𝑠 + 𝜔2

𝑖

𝜙⊤
𝑖

where, 𝜙𝑖, 𝜁𝑖, 𝜔𝑖, and 𝑁 denote the 𝑖th mode shape vector, damping 
constant, eigenfrequency, and the number of modes respectively. In 
this case study, a two-input–two-output system is considered with 
two mechanical modes, i.e. 𝑁 = 2. In Fig.  3, an element-wise Bode 
magnitude plot of the considered system is depicted. The continuous 
time system is simulated in a discrete form based on the zero-order 
hold function and a sampling frequency of 2048 Hz. Experiments are 
conducted in an open-loop setting as indicated in Fig.  1. Both inputs 
are simultaneously excited by two independent white Gaussian noise 
signals with a unit variance. The output disturbance is white Gaussian 
noise with a variance selected such that the signal-to-noise ratio (SNR) 
at both outputs is 10.

Traditionally, the spectral analysis method is used to estimate the 
frequency response function and system norms in practice. The spectral 
analysis method cannot estimate a multivariable frequency response 
function from a single experiment unless constraints are imposed on the 
spectral content of the input signal. In sharp contrast, local parametric 
modeling techniques only require a single experiment, independent 
of the number of inputs through smoothness assumptions, see, i.e., 
Pintelon and Schoukens (2012). For the spectral analysis method, 
therefore, 𝑛𝑢 independent experiments are required and the results are 
averaged by subdividing the input and output signals into segments 𝑁𝑛𝑆
[

𝑥(𝑛)⟨𝑗⟩
]𝑖

= 𝑥
(

(𝑖 − 1)𝑛𝑆 + 𝑛
)

where 𝑥(𝑛)⟨𝑗⟩ is equal to the input 𝑢(𝑛)⟨𝑗⟩ and 𝑦(𝑛)⟨𝑗⟩ of the 𝑗th ex-
periment respectively with 𝑖 ∈ {1,… , 𝑛𝑆}, 𝑗 ∈ {1,… , 𝑛𝑢} and 𝑛 ∈
{0,… , 𝑁

𝑛𝑆−1
}. The frequency domain counterparts are obtained by 

means of the DFT and are denoted [𝑈 (𝑘)⟨𝑗⟩
]𝑖 and [𝑌 (𝑘)⟨𝑗⟩]𝑖. To reduce 

leakage, the segments could be windowed using an appropriate win-
dowing function, e.g., Hann window (Pintelon & Schoukens, 2012). 
The frequency resolution is 2𝜋𝑛𝑆𝑛𝑢𝑁𝑇𝑠

. To compute the frequency response 
function, the input and output vectors are rearranged to a matrix

𝑈𝑀 (𝑘) = 1
𝑛𝑆

𝑛𝑆
∑

𝑖=1

[

[

𝑈 (𝑘)⟨1⟩
]𝑖
…

[

𝑈 (𝑘)⟨𝑛𝑢⟩
]𝑖
]

,

𝑌𝑀 (𝑘) = 1
𝑛𝑆

𝑛𝑆
∑

𝑖=1

[

[

𝑌 (𝑘)⟨1⟩
]𝑖
…

[

𝑌 (𝑘)⟨𝑛𝑢⟩
]𝑖
]

.

The frequency response function is estimated in (4). It is clear that 
the inverse in (4) leads to a condition on the excitation design since 
the matrix 𝑈𝑀  should be regular. In practice, this means that 𝑛𝑢
independent experiments with 𝑛𝑢 different realizations of the noisy 
input signal suffice.

Note that for a constant total measurement time, the parameter 𝑛𝑆
decreases the frequency resolution but improves the transient leakage 
error and the noise rejection. Also, the measurement time scales with 
the number of inputs 𝑛𝑢. Thus, for a constant measurement time, the 
frequency resolution decreases with the number of inputs 𝑛𝑢. In sharp 
contrast, the local rational method requires only a single experiment, 
independent of the number of inputs. This is a key advantage of 
the local parametric method compared to traditional spectral analysis 
6 
methods, especially for multivariable systems. The input signal is re-
quired to be sufficiently rough in order to estimate the local parametric 
models. Extensive practical experience and results in the literature, 
e.g., Tacx et al. (2024) and Voorhoeve et al. (2018), confirm that 
this requirement is usually fulfilled by independently generated white 
Gaussian noise signals or independently generated multi-sine signals. 
For more details on the (optimal) design of the input signals see, 
e.g., Dirkx, van de Wijdeven, and Oomen (2020).

The aim is to estimate the finite-frequency ∞ and 2 norms in 
Definitions  1 and 2 by considering a finite-frequency range
𝛺ff = [10, 100] Hz.

To obtain the highest frequency resolution, the data is not averaged, 
i.e., 𝑛𝑆 = 1. Local rational models are considered instead of local 
polynomial models which leads to substantially more accurate re-
sults (Geerardyn & Oomen, 2017; Voorhoeve et al., 2018). The full 
polynomial form is selected as this parametrization is sufficiently rich 
for a limited model order. The width of the local rational models should 
be selected in view of the roughness of the data.

Typically, selecting a relatively small width 𝑁𝑊  is preferable to 
avoid bias caused by excessive smoothing of system dynamics. How-
ever, the minimum required width depends on the number of param-
eters to be estimated, which in turn depends on the model orders 
𝑁𝐷 = 4, 𝑁𝑁 = 4, 𝑁𝑀 = 4 and the number of inputs 𝑛𝑢 and outputs 
𝑛𝑦. Importantly, this relation is inherently tied to the considered model 
parametrization, e.g., full polynomial, common denominator, polyno-
mial, and is therefore not stated explicitly to preserve the generality 
of the presented results. Also, this dependency is not specific to the 
inter-grid approach proposed in this paper but applies more broadly 
to local model estimation methods in general. Additionally, avoiding 
pole-zero cancellations supports the use of these relatively low model 
orders. Extensive experimental experience further indicates that slight 
variations in these orders do not significantly affect the norm estima-
tion results. To enhance conciseness, such parameter variations are not 
included in this paper, see, e.g., Pintelon et al. (2010b), Verbeke and 
Schoukens (2019) and Voorhoeve et al. (2018) for further theoretical 
considerations regarding the selection of minimal frequency width and 
model orders.

The finite-frequency interval of the local parametric models in (10) 
is set to 𝑟𝛥 = 0.5. The initial estimate of the finite-frequency ∞
norm computation is selected based on the at-grid frequency response 
estimate. Specifically, the lower bound is selected by taking the upper 
local at-grid estimate, and the upper bound is selected to be a hundred 
times larger. In case the upper bound turns out to be invalid, it is 
adjusted accordingly.

6.2. Results

First, the results are studied for a fixed experiment length of 1024
samples, i.e., 0.5 s. The Bode magnitude plot in Fig.  3 shows that 
the traditional spectral analysis-based approach leads to unreliable 
estimates of the frequency-response function, due to the noise and tran-
sient leakage. In sharp contrast, the local rational modeling approach 
accurately matches the true system. Similarly, the singular value plot 
in Fig.  4 confirms that compared to the spectral analysis method, the 
local rational models enable accurate results with a limited amount of 
data. Note that since the total experiment length is fixed, the frequency 
resolution of the spectral analysis method is 𝑛𝑢 = 2 times smaller.

Table  1 depicts the results of the finite-frequency ∞ and 2
estimates. Clearly, the spectral analysis-based method leads to inac-
curate system norm estimates. The poor estimation quality of the 
finite-frequency ∞ norm is mainly attributed to the limited frequency 
resolution of the DFT grid. Note that the resolution is 𝑛𝑢 = 2 times 
smaller compared to the DFT grid considered by the local rational 
models. The poor estimation quality of the finite-frequency 2 norm is 
mainly caused by the limited estimation quality at higher frequencies, 
due to the transient leakage error. In sharp contrast, the method pro-
posed in this paper includes the transient and the inter-grid behavior. 
This enables accurate estimation of the finite-frequency system norms.



P. Tacx and T. Oomen Control Engineering Practice 164 (2025) 106421 
Fig. 3. Simulation case study. Element-wise Bode magnitude plot of the true system 
𝐺𝑜 ( ), spectral analysis estimate ( ) and interpolated local rational method
( ). The results are based on an experiment with a total length of 1024 samples. 
The plot reveals accurate at-grid and inter-grid properties and efficient usage of data 
since the spectral analysis estimate is considerably less accurate. In addition, the Bode 
plot illustrates that for an equal total experiment length, the grid density of the spectral 
analysis estimate is at least 𝑛𝑢 = 2 times smaller.

Fig. 4. Simulation case study. Peak singular values plot (left plot depicts the full 
frequency grid and right plot depicts a closeup) based on the frequency response func-
tion of the true system 𝐺𝑜 ( ), spectral analysis estimate ( ) and interpolated 
local rational method ( ). The finite-frequency ∞ estimate 𝛾𝐿𝑅𝑀 based on the 
local modeling techniques ( ) almost coincides with the true value 𝛾𝑜 ( ). In 
sharp contrast, the spectral analysis-based estimate 𝛾𝑆𝐴 ( ) leads to significantly 
underestimation.

6.3. Experiment length

In this section, finite-frequency system norm estimation quality 
is studied for varying experiment lengths. The quality of the finite-
frequency system norm estimate strongly depends on the experiment 
length since it affects the frequency resolution and transient leakage 
error. The simulations are repeated 50 times with different realizations 
of the input and output noise. The resulting finite-frequency ∞ and 
2 norm estimate, i.e., average and standard deviations, are shown in 
Figs.  6 and 5.

Figs.  6 and 5 indicate that large experiment lengths are required to 
obtain a reliable estimate of the finite-frequency system norms for the 
spectral analysis-based method. In contrast, the local modeling-based 
approach provides accurate and reliable estimates with a relatively 
short experiment length. For long experiment lengths, the spectral 
analysis and local modeling-based methods are similar. Similar to 
the traditional spectral analysis-based norm estimation methods, no 
explicit minimum frequency resolution can be provided to obtain ac-
curate estimations of the system norm. However, since in many prac-
tical situations, the dynamics are known upfront due to simulations, 
7 
Table 1
Finite-frequency norm estimates based for a total experiment length of 1024 samples 
based on the spectral analysis method and with the method proposed in this paper, 
i.e., a local parametric modeling-based approach. The estimated finite-frequency norms 
confirm accurate estimation with efficient usage of data of the method proposed in this 
paper.
 SA LRM True  
 ‖𝐺‖Ωff ,∞ 139.9 163.8 164.1 
 ‖𝐺‖Ωff ,2 3902 7039 7063  

Fig. 5. Simulation case study of the effect of experiment length on the estimation 
quality of the finite-frequency 2 norm. The simulation shows that spectral analysis-
based estimation ( ) leads to severe underestimation of the finite-frequency 2
norm for short experiment lengths. The proposed method ( ) is already reliable 
from experiments that contain almost 100 times less data. The shaded area represent 
the variance due to the output noise and the transient contribution.

Fig. 6. Simulation case study of the effect of experiment length on the estimation 
quality of the finite-frequency ∞ norm. The simulation shows that spectral analysis-
based estimation ( ) leads to severe underestimation of the finite-frequency ∞
norm for short experiment lengths. The proposed method ( ) is already reliable 
from experiments that contain almost 100 times less data. The shaded area represent 
the variance due to the output noise and the transient contribution.

e.g., finite-element or first-principles models, the dynamics are roughly 
known upfront based on which a minimum frequency resolution can 
be estimated. The key benefit of the method proposed in this paper 
is that substantially less data is required, i.e., 140 times less in this 
section, compared to the spectral analysis-based methods. In addition, 
resonances can be modeled with significantly more details.

7. Experimental case study

In this section, the methods for estimating the ∞ and 2 norms are 
applied in an experimental case study which constitutes Contribution 
C2.2.

7.1. Setup

The experimental overactuated beam setup is depicted in Fig.  7. The 
considered system is designed to exhibit out-of-plane flexible dynamic 
behavior. The system consists of a flexible beam with dimensions 
2 × 20 × 500 mm. The system operates in 2 DOFs, one translation, 
and one rotation. Four degrees of freedom are constrained by wire 
flexures. Due to the limited out-of-plane stiffness of the beam, the 
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Fig. 7. Experimental overactuated beam setup. Three degrees of freedom are con-
strained by four vertical wire flexures, and one degree of freedom is constrained by 
a horizontal wire flexure on the left. The setup is equipped with by three voice coil 
actuators ( ), five position sensors of which three are considered in this paper ( ).

system contains a significant number of light-damped flexible modes. 
The setup is equipped with three Akribis AVM19-5 voice-coil actua-
tors and the position is measured contactless by five Philtec D64-NQ 
fiberoptic sensors, with a resolution of 1 μm. To facilitate exposition, 
only the three collocated sensors are considered in the experimental 
case study. A Beckhoff EtherCAT module is used for data acquisition 
with a sampling frequency of 2048 Hz.

7.2. Aim

The aim of this study is to estimate the finite-frequency system 
norms with the method proposed in this paper in the finite-frequency 
range

𝛺ff = [20, 400] Hz.

To illustrate the effectiveness of the proposed approach and a paramet-
ric true system description of an experimental setup is not available, 
the results are compared to a benchmark measurement. The spectral 
analysis-based frequency response measurements are known to provide 
an accurate estimate of the frequency response for large experiment 
lengths, which is confirmed by the results in Section 6 and the results 
in Voorhoeve et al. (2018). For this reason, the results generated by 
the method proposed in this paper are validated and compared to a 
long measurement which is processed with spectral analysis. The case 
study illustrates that the method proposed in this paper provides similar 
results with significantly less data.

The minimum width of the local parametric models depends on 
the number of parameters that need to be solved. Therefore, the min-
imum width is proportional to the parameters 𝑁𝐷, 𝑁𝑁 , 𝑁𝑀 . The 
specific orders of LRM have been selected to keep 𝑁𝑊  small and 
leave a sufficient amount of flexibility for the local parametric models, 
i.e., 𝑁𝑀 = 2, 𝑁𝑀 = 2, and 𝑁𝑀 = 2. In practice, slight to moderate 
variations in the parametrization orders 𝑁𝐷, 𝑁𝑁 , 𝑁𝑀  and width 𝑁𝑊
do not lead to significant changes in the norm estimation results. To 
improve the conciseness of the results, these parameter variations are 
not included in this paper. The finite-frequency interval of the local 
parametric models in (10) is chosen to be 𝑟𝛥 = 0.5. Since the consid-
erations of the selection of the local parametric modeling parameters 
are similar to the simulation results, see Section 6.1 for an overview 
of the considerations. The initial estimate of the finite-frequency ∞
norm computation is selected based on the at-grid frequency response 
estimate. Specifically, the lower bound is selected by taking the upper 
local at-grid estimate, and the upper bound is selected to be fifty times 
larger. In case the upper bound turns out to be invalid, it is adjusted 
accordingly.

7.3. Results

The validation data for the spectral analysis estimate is defined by 
𝑛𝑢 = 3 independent random-phase multisine signals that are applied to 
all inputs simultaneously. 𝑀 = 30 different realizations of the input 
8 
Table 2
Finite-frequency norm estimates based on the validation experiment with a dense 
frequency grid and a short experiment that is processed with the method proposed in 
this paper, i.e., a local parametric modeling-based approach with a significantly shorter 
experiment and thus a course frequency resolution. The estimated finite-frequency 
norms confirm accurate estimation with efficient usage of data.
 Validation LRM  
 ‖𝐺‖Ωff ,∞ [dB] 40.54 40.78 
 ‖𝐺‖Ωff ,2 [−] 11.14 11.62 

signals are considered, where each realization contains 12 periods. 
The total experiment time is 4320 s, resulting in a total data length of 
approximately 107 samples. The frequency resolution is 0.25 Hz.

The estimation data is obtained by a single realization of the multi-
sine signal of 30 s and contains 60 periods. The frequency resolution is 
2 Hz. Similar to the traditional spectral analysis-based norm estimation 
methods, no explicit minimum frequency resolution can be provided 
to obtain accurate estimations of the system norm. However, since 
in many practical situations, the dynamics are known upfront due to 
simulations, e.g., finite-element or first-principles models, the dynamics 
are roughly known upfront, based on which a minimum frequency 
resolution can be estimated. The key benefit of the method proposed in 
this paper is that substantially less data is required, i.e., 140 times less 
in this section, compared to the validation data set.

The frequency response function estimations based on the validation 
and estimation data are shown in Figs.  8 and 9. From the element-
wise Bode magnitude plot can be concluded that the local rational 
method accurately matches the spectral analysis-based estimate over 
the domain 𝛺exp on the at-grid frequencies. In contrast, at frequencies 
in the vicinity of 100 Hz, some discrepancies between the validation and 
estimation estimate can be observed. From practical experience with 
this setup, this can be attributed to nonlinear effects in the capacitive 
sensors. Although the estimation data set is significantly smaller, the 
inter-grid estimate of the local rational models accurately matches the 
at-grid spectral analysis-based estimates, as shown in Fig.  8.

In addition, in Figs.  10 and 11, the estimation error of the in-
terpolated local rational models with respect to the dense validation 
data that is processed with spectral analysis is depicted. Also, from 
this figure, it can be concluded that the method enables excellent 
interpolation with only a fraction of the data. Near the resonances, 
the estimation error increases slightly. However, relatively, the error 
remains small over the entire frequency range.

In Table  2, the finite-frequency norm estimates ‖𝐺𝑜‖𝛺exp ,2 and 
‖𝐺𝑜‖𝛺exp ,∞ based on the validation data and estimation data are pre-
sented. Clearly, the finite-frequency norms are similar. In Fig.  12, the 
peak singular values plot is depicted. The local rational method-based 
approach accurately matches the validation data set. In particular, 
around the peak singular value, the inter-grid behavior is accurately 
estimated. The experimental case study illustrates the effectiveness of 
the proposed method in practice.

8. Conclusions

In this paper, a method is presented for accurate and reliable esti-
mation of the global and finite-frequency 2 and ∞ norm. Traditional 
methods aim to estimate system norms based on frequency response 
function estimates. As a result, these methods only consider the finite 
number of DFT lines which leads to inter-grid errors, and do not 
consider the transient system behavior. The key step in this paper is 
to employ local parametric models to take the inter-grid and transient 
system behavior into account in the system norm estimation procedure.

In Section 3, the local modeling procedure tailored to system norm 
estimation is introduced. The key idea is to estimate the global sys-
tem norms through finite-frequency norm computation of the local 
parametric models in their respective finite-frequency intervals. In 
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Fig. 8. Experimental case study. Element-wise Bode magnitude plot of the long 
validation experiment which is processed with spectral analysis ( ) and interpolated 
local rational method estimate based on the estimation data set ( ). The validity 
of the local parametric modeling-based approach is confirmed by the validation 
measurement with the dense frequency grid. The plot reveals excellent interpolation 
properties and efficient usage of data since the estimation data set is considerably 
smaller. A close-up for the frequencies in the vicinity of the peak-singular value is 
depicted in Fig.  9.

Fig. 9. Experimental case study. Closeup of the element-wise Bode magnitude plot 
in Fig.  8 of the validation experiment which is processed with spectral analysis ( ) 
and interpolated local rational method ( ). The validity of the local parametric 
modeling-based approach is confirmed by the validation measurement at the dense 
frequency grid.

Section 5, a method is developed to estimate the 𝐿∞ norm of local 
parametric models through a dedicated LMI-based algorithm which 
is based on the generalized KYP lemma. The global ∞ norm of the 
system is determined by selecting the largest local 𝐿∞ norm of the 
local parametric models. The approach to estimate the 2 norm of 
local parametric models is presented in Section 4. The local 2 norm 
of local parametric models is computed through numerical integration. 
The global 2 norm of the system is determined by combining the local 
2 norms of the corresponding local parametric models in their limited 
frequency interval. Overall, the 2 norm estimation method leads to 
accurate results for a sufficiently dense frequency grid.

A simulation case study in Section 6 shows that the method pro-
posed in this paper leads to accurate estimation of the inter-grid 
system dynamics which leads to accurate system norm estimates. In 
addition, compared to the traditional spectral analysis-based method, 
9 
Fig. 10. Experimental case study. Element-wise Bode magnitude plot of the error of the 
interpolated local parametric models based on the estimation data with respect to the 
long validation data which is processed with spectral analysis ( ). The plot confirms the 
validity and effectiveness of the proposed approach as it shows excellent interpolation 
properties. A close-up for the frequencies in the vicinity of the peak-singular value is 
depicted in Fig.  11.

Fig. 11. Experimental case study. Closeup of the element-wise Bode magnitude plot of 
the interpolation error in Fig.  10 with respect to the validation experiment, which 
is processed with spectral analysis. The figure confirms the excellent interpolation 
properties of the proposed approach, enabling accurate system norm estimates.

Fig. 12. Experimental case study. Largest singular values (left plot depicts the full 
frequency grid and right plot depicts a closeup) based on the frequency response 
function of the validation experiment that is processed with spectral analysis ( ) and 
interpolated local rational method ( ). The finite-frequency ∞-norm based on the 
validation data ( ) is similar to the estimation data ( ), which confirms the 
effectiveness of the proposed approach.

the local modeling approach leads to accurate and reliable results 
with significantly less data. An experimental case study in Section 7 
demonstrates that the method proposed in this paper can lead to a 
substantial improvement in the system norm estimation quality with 
significantly less data.

The proposed system norm estimation method is envisioned to 
be useful in various control design and analysis problems, including, 
e.g., robust control and model reduction. Current research focuses on 
taking the variance estimates which are estimated in local parametric 
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methods into account in the estimation of the system norm. In addition, 
current research is also focused on extending the comparison in Sec-
tions 6 and 7 to more methods including the method proposed in Vries 
and Van Hof (1994).
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Appendix. Proof of Theorem  1

The following lemma shows the equivalence between (14) and an 
infinite dimensional frequency domain inequality (FDI). 

Lemma 1.  Suppose that 𝐺̃𝑘(𝑟) is a local rational model which is valid on 
the domain 𝜆 defined by (10). Then, the following statements are equivalent.

1. The finite-frequency ∞ norm of 𝐺̃𝑘(𝑟) on the domain 𝜆 is bounded 
by 𝛾𝑘
sup
𝑟∈𝜆

𝜎̄
(

𝐺̃𝑘(𝑟)
)

< 𝛾𝑘. (A.1)

2. The FDI 
[

𝐺̃𝑘 (𝑟)
𝐼

]∗

𝛱
[

𝐺̃𝑘 (𝑟)
𝐼

]

≺ 0 (A.2)

holds for all 𝑟 ∈ 𝜆, where 𝛱 contains the finite-frequency ∞-norm 
bound 𝛾𝑘

𝛱 =
[

𝐼 0
0 −𝛾2𝑘𝐼

]

. (A.3)

Proof.  From the definition of the singular value definition, 𝜎̄2(𝐺̃𝑘(𝑟)) =
𝜆max(𝐺̃𝑘(𝑟)𝐺̃∗

𝑘(𝑟)) holds for all 𝑟 ∈ 𝜆. From this equality, the inequality 
in (A.1) is equivalent to 𝜆max

(

𝐺̃𝑘(𝑟)𝐺̃∗
𝑘(𝑟)

)

< 𝛾2𝑘∀𝑟 ∈ 𝜆. Reformulating 
based on the fact that 𝐺̃𝑘(𝑟)𝐺̃∗

𝑘(𝑟) is symmetric leads to (A.2) with 
(A.3) being negative definite. This completes the proof that (A.1) is 
equivalent to (A.2) with (A.3).

The generalized KYP Lemma, e.g., Iwasaki and Hara (2005, The-
orem 2) Iwasaki and Hara (2005) and Iwasaki et al. (2000), shows 
that the FDI in (A.2) and the LMI in (15) specified by the matrices in 
(16) (Iwasaki & Hara, 2005, Section IV) are equivalent which completes 
the proof of Theorem  1.
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