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SUMMARY

Breakthrough initiatives have started the Starshot initiative to stimulate the design of a
lightsail to reach Alpha Centauri within 20 years. This technology is based on generating
an optical force on a reflective lightweight thin-film material by projecting a high power
Earth-based laser on it. A photonic crystal design is necessary to obtain high reflectivity
and comply with the mass constrain. In literature, thin-film designs have been shown
to achieve high reflectivity. However, non of the designs are suitable for a lightsail be-
cause they do not sufficiently consider operational conditions (e.g. manufacturability,
flight stability and maximum heating). For a practical design, multiple objectives must
be combined to comply with all the operational requirements.

Literature has shown that traditional TO can be a valuable tool for designing nanopho-
tonic devices. TO allows optimizing a large design space, which can result in highly op-
timized and non-trivial structures. However, there are still a few significant drawbacks
that can be improved. A significant disadvantage of the TO methods is that the opti-
mizer can get stuck in local optima because TO methods are not global optimizers. Many
optimizations with different initialization need to be considered to mitigate this, mak-
ing it a time-consuming process. Another disadvantage of TO algorithms is that they
are computationally heavy and susceptible to optimization parameters, making it time-
consuming to derive optimized structures. ML-based TO has proven to solve some of
these problems and generate better and more general designs in less time. However,
implementing these ML-based TO is a non-trivial process.

In this work, a convolutional neural network (CNN) based TO methodology is ex-
tended to optimize a 2D photonic crystal used to design a lightsail. The CNN-TO perfor-
mance is compared to a more conventional method of moving asymptotes (MMA) based
TO by optimizing a photonic crystal unit-cell for the 2016 Starshot Initiative parameters.
The CNN-TO requires 10%-40% fewer iterations than MMA-TO to reach better perfor-
mance under different operational conditions. The generated design turned out to be
easy to fabricate, allowing them to be produced with optical lithography. Additionally, a
study regarding the design challenges of the lightsail has been performed, showing the
sensitivity of the resulting design to varying objectives and materials. Therefore, under-
lining the necessity of considering multiple operating conditions (e.g. laser alignment
and cooling) within the design process.
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INTRODUCTION

At the moment, the man-made object furthest from the earth is the Voyager 1 (NASA,
n.d.). Although this spacecraft has seen our solar system and beyond, it only travelled
0.5% of the distance to the nearest solar system after 47 years of service. New space-
craft are required to explore these unknown worlds. Breakthrough Initiatives started the
Starshot Initiative in 2016 to stimulate the development of lightsails (Breakthrough Ini-
tiatives, n.d.). This spacecraft aims to reach Alpha Centauri (i.e. the nearest star to earth)
within 20 years by reaching speeds up to 20% of the speed of light. This technology
is based on generating an optical force on a reflective lightweight thin-film material by
projecting a high power earth-based laser on it.

Traditional metallic reflectors cannot be used because of their high optical absorp-
tion. Semiconductors can meet the operating requirements as they have a high refractive
index and low optical absorption. To meet the mass and reflectivity requirements using
semiconductors, an approximately 100 atomic layers thick sail with a photonic design is
necessary (Atwater et al., 2018).

The most promising design is the 2D photonic crystal (PhC), as it had been shown
to provide high reflectivity at the critical area density (Norte et al., 2016). Although 2D
PhC’s have proven to be effective reflectors even with simple designs, most designs are
not optimized for a lightsail. The current designs are not suitable for a lightsail because
they do not sufficiently consider operational conditions (e.g. manufacturability, flight
stability and maximum heating). For a practical designs multiple objectives need to be
combined to comply with all the operational requirements.

Traditionally, optimizing photonic structures is a highly iterative process executed by
experienced people (Liu et al., 2018). The optimization process is involved as nanopho-
tonic devices are high dimensional, non-unique and can only be analyzed using compu-
tationally heavy algorithms. Recently, inverse design methods like topology optimiza-
tion (TO) have become more prevalent in many fields. Not only traditional TO but also
new machine learning-based TO have been proven successful (Hoyer et al., 2019). The
machine learning-based TO can optimize faster, generate more general designs and op-
timize closer to a global optimum. Furthermore, these different inverse design methods
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have proven to be effective tools for the design of the nanophotonic structure (Molesky et
al., 2018) because they can consider many design variables and can result in non-trivial
designs.

In this work the novel machine learning (ML) based TO proposed in Hoyer et al.,
2019 is applied to lightsail design by changing the physics analysis and modifying the
neural network. This free-form TO does not require any training data and has proven
successful for structural engineering. The work of Jin et al., 2020 acts as a baseline for
this investigation, as they implemented a conventional TO approach to design a 2D PhC
unit-cell for a lightsail following the Starshot parameters. The physics analysis from this
method is implemented in the machine learning TO and the results are compared.

This work starts with a literature review discussing the design challenges of a light-
sail and reviewing existing solutions from which design considerations, material choice,
production techniques, and concept designs are explored. In addition, this literature
review also elaborates on the computational design techniques for designing a light-
sail. Instead of solely focusing on traditional topology optimization strategies, novel ma-
chine learning-based topology optimization algorithms are also presented. Chapter 3
will discuss the new work performed in the thesis. First, a novel ML-based TO method
is benchmarked against a traditional TO. Moreover, new designs are generated with the
ML-based TO by considering additional operational conditions and different materials.
This chapter is followed by discussing the obtained results and recommendations for fu-
ture work. The last part of the thesis is the supporting information of the work presented
in chapter 3.



LITERATURE REVIEW

ABSTRACT

This literature review elaborates on the design of a lightsail. The idea for this review orig-
inated from the Starshot initiative, which was started by Breakthrough Initiatives to in-
tensify the research on lightsail propelled satellites that can reach Alpha Centauri within
20 years. This work starts discussing the design challenges regarding a lightsail and re-
viewing existing solutions from which design considerations, material choice, produc-
tion techniques, and concept designs are explored. In addition, this literature review
also elaborates on the computational design techniques for designing a lightsail. In-
stead of solely focusing on traditional topology optimization strategies, novel machine
learning-based topology optimization algorithms are also presented. This work iden-
tified the following knowledge gaps. In literature, thin-film designs have been shown
to achieve high reflectivity. However, non of the designs are suitable for a lightsail be-
cause they do not consider operational conditions (e.g. manufacturability, flight stabil-
ity and maximum heating). So far, only single objective studies have been performed,
but for a practical design, multiple objectives need to be combined to comply with all
the operational requirements. A photonic crystal design of the sail is necessary to ob-
tain high reflectivity and comply with the mass constrain. Inverse design has proven
to be an effective design methodology for nanophotonic structures. Notably, a novel
free-form machine learning-based topology optimization technique that does not re-
quire any training data has proven successful for structural engineering. However, no
equivalent topology optimization method has been implemented in photonics yet. For
the thesis, the machinelearning based topology optimization approach as proposed by
Hoyer et al., 2019 is applied to the lightsail design. It is expected that this method can
result in a fast optimization algorithm and in designs close to the global optimum com-
pared to a traditional topology optimization.
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Lightsail
A=10m?
v=0.2c

Laser

A=1-1.5um
/=10 GW m™2

Proxima Centauri
d=4.2light years
t=20 years

Figure 2.1: Illustration of the lightsail as envisioned in the Starshot initiative, with the standard Starshot pa-
rameters (Atwater et al., 2018).

2.1. STARSHOT INITIATIVE

Human fascination with space exploration has been expressed in different ways. De-
signing machines to explore the planets in our solar system, and even beyond our solar
system is critically important to this endeavor. However, the design challenges involved
are so stringent that innovative solutions are required. One of these innovative ideas is
the use of a lightsail for deep space travel, which is based on propelling an ultra-light
satellite by focusing a high power earth-based laser on a thin sail-like material attached
to the satellite. This laser could push the satellite to 20% of the speed of light. Decades
ago, this idea seemed far-fetched, but recent technological advances in multiple fields
(e.g. materials science, nano production and laser technology) opened the possibility
for this idea. Breakthrough initiatives started the Starshot initiative to stimulate the re-
search for the topics that remain unsolved (Breakthrough Initiatives, n.d.). This initia-
tive aims to design a lightsail propelled satellite that can reach Alpha Centauri within
20 years and send pictures of Alpha Centauri’s orbiting planet, Proxima b, back to earth.
Breakthrough initiatives have identified four main challenges concerning the lightsail,
the laser, the payload and the integration of the lightsail and the payload to achieve this.
This report will focus on the design of the lightsail. An illustration of the lightsail can be
seen in Figure 2.1.

For contextualization, the spacecraft that has travelled the furthest among human-
built machines so far (NASA, n.d.) was launched in 1977 and is still collecting data after
travelling more than 22 billion kilometres. After travelling for over 44 years, this space-
craft (Voyager 1) has only covered 0.5% of the distance to Alpha Centauri. Reaching
Alpha Centauri with current technology seems unfeasible. Recent initiatives involving
concepts similar to the lightsail are starting to show the potential of this idea. An impor-
tant example is spacecraft IKAROS, which has an approximate 200 m? solar sail consist-
ing of a thin polymer layer with a reflective metal coating. This spacecraft accomplished
a successful mission in 2010 (Jaxa, n.d.). It should be noted that the design restrictions
for solar sails are less strict than for lightsails because solar light has less power than
the proposed laser used for a lightsail, allowing materials like polymers and metals (i.e.
materials with high optical absorption coefficient). Section 2.2.4, elaborates on possible
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choices for sail materials. However, for the lightsail concept proposed in the Starshot
initiative a few standard parameters are set. These parameters can change in a later de-
velopment stage, but they provide a good guideline for the design requirements. First,
the mass constraint for both the sail and the satellite chip is 1 g. Secondly, the sail should
be around 10 m? and should be propelled with a 10-100 GW earth-based laser. At last,
the laser should use wavelengths in the near-infrared spectrum from 1 - 1.5 um (Atwater
etal., 2018).

2.2. LIGHTSAIL DESIGN CHALLENGES

A lightsail needs to be designed and constructed. This report only focuses on the design
of the lightsail, but it is essential to understand the basic principles behind it. A lightsail
can be fabricated on earth, but it needs to be transported into orbit. Consequently, it
needs to be strong enough to survive this flight. When the sail is put in orbit, it needs to
morph into its operating shape, after which a high power stationary laser can propel it.
The light pressure generated by the laser on the sail will generate a force large enough to
accelerate it. From this point on, the lightsail should be propelled in the right direction
without going off course. Inevitably, some of the energy of the laser will generate heat
in the sail. Furthermore, the lightsail can encounter all sorts of space debris or radiation
during flight, which should not result in structural failure. Thus, it can be concluded that
the lightsail should overcome many complex challenges starting from manufacturing to
successfully reaching alpha Centauri in one piece. Strict design criteria need to be set
regarding mass, reflectivity, thermal management, flight stability and flight resilience are
required to achieve a high-performance lightsail. Some of these challenges can be solved
by proper material choice, whereas other requirements can be met using design choices.
A more detailed account of these design challenges is given in the sections below.

2.2.1. TRADE-OFF BETWEEN MASS AND REFLECTIVITY

The force that accelerates the lightsail is a function of the reflectivity and the area of the
lightsail. The easiest way to increase reflectivity is by using a material with high refrac-
tive index (n). Additionally, the mass of the whole construction should be low for the
generated force to be sufficient. This can be done by finding a material with low mass
density. When following the Starshot parameters (i.e. a lightsail with an area of 10m?
and a mass of 1 g), the critical area density is p. = 1x10™* kg/m?, which results in a
sail of approximately 100 atomic layers thick (Breakthrough Initiatives, n.d.).Therefore,
a trade-off between reflectivity and mass is required. A proper objective function (figure
of merit) that translates this trade-off has been proposed in the literature as the acceler-
ation distance of the sail (Atwater et al., 2018). The acceleration distance is the distance
required to accelerate the sail from start to end velocity. As the sail accelerates, the per-
ceived wavelength of the laser on the sail will Dopler red-shift (i.e. become larger). This
is an important factor to consider because this means that the sail should be highly re-
flective over a large bandwidth. The acceleration distance is presented in Equation (2.1).

h(p)
= (01 +ps 2.1
(.Ol )f R[/l(ﬁ)] 2.1
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Where D is the acceleration distance, I is the intensity of the propulsion laser, p; and
ps are the area densities of the lightsail and the satellite respectively, A is the wavelength
of the propulsion laser, R is the reflection as a function of A. k() = /(1 - B)*\/1 - 2
in which beta is the velocity fraction with respect to the speed of light § = v/c. Due to
the Dopler red-shift of the laser, the wavelength of the laser can be written as a function
of the relative speed, 1(8) = 1o+/(1 + B)/(1 — B). When following the standard Starshot
parameters, the bandwidth at which the sail should operate is from 1.2 um to 1.44 um.

Despite the acceleration distance being an important figure of merit, it does not con-
sider acceleration forces. A fast acceleration could result in structural failure of the sail.
At a later stage, this should be considered as well.

2.2.2. FLIGHT STABILITY

Complete control of the lightsail trajectory is required in order for the lightsail to reach
its final destination. In literature, multiple solutions are proposed to ensure this control,
as presented in Figure 2.2. One way of increasing the lightsails stability is by chang-
ing the shape of the sail. The lightsail is often depicted as a square flat surface but in
Schamiloglu et al., 2001 a conically shaped sail is proposed, which ensures a carbon ra-
diation (i.e. microwaves) to keep following the trajectory of the laser (Figure 2.2(1)). A
more novel solution to this problem is proposed by Salary and Mosallaei, 2020 and Ilic
and Atwater, 2019. Both articles describe the design of a nanophotonic meta grating that
enables a stable fight. This metagrating is designed in such a way that there is a restor-
ing force generated by the sail when submitted to small perturbations (Figure 2.2(2)).
Notably, not only the sail itself can be changed to increase flight stability, but also the
laser can be changed for this purpose. Myilswamy et al., 2020 proposed an alternative
approach in which the non-uniform response of a 2D photonic crystal (PhC) is tuned
to obtain an equal reflection over the sail, thus establishing that no distorting forces can
occur. A hybrid of these ideas is proposed by Manchester and Loeb, 2017. In this paper, a
curved sail design is proposed with a laser having a non-uniform intensity distribution.
The sail can be trapped and controlled by using both a spherical lightsail, as well as a
non-uniform laser intensity, characterised by a high to low intensity from the outside to
the inside of the laser beam, (Figure 2.2(3)). It should be noted that these studies are all
theoretical and non of them take the production or operating conditions into account.
For example, these studies assume the sails to be flat, which will not be the case in oper-
ating conditions unless the sail is tensioned. The sail will be bent by the force generated
by the laser and could eventually break due to the bending. In conclusion, the feasibility
of these designs needs to be studied before considering these novel shapes.

2.2.3. HEATING

The energy absorption of the lightsail becomes a significant concern when accelerating
the lightsail with a high-intensity laser of 10 GW. This energy absorption will result in
heating of the sail, and thermal stresses or temperatures that reach the maximum op-
erating temperature can cause material failure. A material with low optical absorption
(a) is needed to prevent this. There are two ways the lightsail can lose its heat, both
by black body radiation and by conducting the heat to the main structure holding the
sail (Atwater et al., 2018). The black body radiation will be the largest source of energy
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Figure 2.2: Proposed solutions to create flight stability in a lightsail. (1) A conical shaped sail proposed in
Schamiloglu et al., 2001. In (2) the working principle of a lightsail with a meta-grating is shown. With a small
perturbation, a restoring force is created (Salary and Mosallaei, 2020). (3) shows the non uniform intensity
distribution proposed in Manchester and Loeb, 2017 to 'trap’ a spherical lightsail.

loss. Therefore, a material with high emissivity (¢) in the infrared spectrum is needed
to increase the black body radiation. Although the obvious solution would be finding a
material with low @ and high €, other solutions are also proposed in the literature. In
Ilic et al., 2018 a hybrid approach is used. A Si layer is used on the incident side of the
sail because of its low optical absorption. At the rear side, a SiO2 layer is used because
of its high emissivity. By tuning the thickness of the layers, the desired equilibrium tem-
perature is obtained. Another way to influence the heating of the sail is by the photonic
design. In Salary and Mosallaei, 2020 a study regarding a sail with PhC pillars on top of
it is performed. It is shown that the diameter of the pillars influences the equilibrium
temperature of the sail. The factors mentioned above are all regarding the sail design.
One last cause of thermal failure of the sail could be the production process of the sail
itself. Residual material left from the production process with a much higher optical
absorption coefficient can create hot spots and result in failure (Norte and Groblacher,
2021). New production techniques, which will be discussed in section 2.3, need to be
developed to prevent this.

2.2.4. MATERIAL

The previous sections identified four key design considerations for lightsails, allocated to
4 material properties: density, refractive index, optical absorption and emissivity. This
shows that the material selection for the lightsail is a crucial component in the design
process. The optical absorption controls the heating caused by the energy of the laser
that is propelling the sail. Low optical absorption is required to reduce material heating.
Therefore, metals with high reflectivity cannot be used. Metals have too much absorp-
tion from free carriers (Atwater et al., 2018). An aluminium coating could be used on the
sail in the IKAROS project because it used sunlight as a radiation form with much lower
power than the required land-based laser needed for the lightsail. Contrary to metals,
semiconductors have a high refractive index and low absorption. This is possible be-
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cause they have refractive indices just below the band edge energy transition (Atwater
et al.,, 2018). The disadvantage of these types of semiconductors is the relatively high
mass density compared to metals. Only a thin film of around 100 atomic layers thick
can be used to comply with the mass constraint (Atwater et al., 2018). As a compari-
son, the IKAROS sail is 7.5 um thick. Nanophotonic structures on the sail are required to
achieve high reflectivity for these thin layers. There are many nanophotonic structures
ranging from 1D PhC consisting of stacked materials with different material properties
to 3D PhC’s consisting of intricate sub-wavelength sized design features. However, only
2D PhC (i.e. planar structures with periodic designs) can comply with the density con-
straint. Possible PhC designs for lightsail use will be discussed in section 2.4. For the
refractive index and emissivity, there is less of a trade-off to be made. These must be as
high as possible.

A lot of suitable materials are proposed in the literature. A list of the promising ma-
terials is presented in Table (2.1). As described in section 2.2.3, a multi-material sail
using SiO, in combination with Si is proposed in Ilic et al., 2018. Following Atwater et
al.,, 2018 the two candidate materials are MoS, and crystalline silicon (c-Si) due to their
high refractive index and low mass density and absorption coefficient. A material which
is not often mentioned in literature is Si3Ni,, but Moura et al., 2018, and Wentzel-Long
and Landis, 2020 propose this material due to its low absorption, high ultimate tensile
strength and high internal stress, which would result in a relatively flat sail. In addi-
tion, Hoang and Loeb, 2017 considered a material that is not a semi-conductor, graphite
, that due to strength can potentially address factors like space debris collisions, solar
winds and structural integrity. In Table 2.1 the material properties mentioned above are
overviewed.

Table 2.1: Material properties of potential lightsail material. n is the refractive index, p is the density, a is the
absorption coefficient

Material nl[-] plg/cm®l alecm™]

SizNi, 20 32 107°° X. Chenetal., 2017, Abedrabbo, 1998
SiO, 1.4 2.3 1076 Ilic et al., 2018, Salary and Mosallaei, 2020
Diamond 3.1 3.5 0.02 Atwater et al., 2018

c—Si 3.8 2.5 0.02 Atwater et al., 2018

a—Si 3.5 2.5 1 Atwater et al., 2018

MoS, 4.5 4.8 3 Atwater et al., 2018

Note that other factors like availability, producibility and scaling need to be consid-
ered in the material choice as well. These factors are highly dependent on the upcom-
ing technological developments. Firstly, the material should be suitable for producing a
large scale PhC given the size of lightsails. Si3Ni, is the only material that has been used
to fabricate at the centimetre scale and has a reflectivity greater than 90% at the critical
density (Moura et al., 2018; Norte etal., 2016). Secondly, almost all the PhC'’s are designed
as flat sheets with high reflectivity for a normal incoming light beam. These designs will
lose performance when the sail is not flat during operation. SizNi, is a material that will
not wrinkle during operation due to the internal stresses generated in the production. At
last, the benefit of having an amorphous material like Si;Ni, should not be overlooked.
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An amorphous material does not tend to break over given crystal directions when sub-
jected to stresses during operation, making it less prone to fail. For now, SizNi, seems to
be the material with the highest potential because the material has one of the best ma-
terial properties as shown in Table 2.1 and performs the best under realistic conditions,
as discussed above.

2.3. PRODUCTION METHODS

One topic not often addressed in the literature is the potential production method for the
lightsail and its constraints on the design. As stated before, the lightsail would need to
be in the range of 100 atomic layers thick. The feature size on the lightsail, when consid-
ering a 2D PhC pattern, can vary from 600 nm for a square lattice with holes, to features
smaller than 100 nm for topology optimized structures. With these scales in mind, only
nanofabrication methods would be sufficient for the production. The production can
be divided into two parts: the production of the substrate material and the fabrication of
the photonic pattern. Following the Starshot parameters, the lightsail should be around
10 m?2. For nanofabrication, thin plates of dielectric material called wafers are used. The
largest wafers produced today are 450 mm in diameter (F450c, n.d.), which is equivalent
to 0.16 m?. One way to use them is by making a lightsail consisting of multiple panels,
although this would lead to added weight to the system due to the extra structural ele-
ments needed for the panel mounting. For the lightsail to become feasible, larger wafers
may be required to make a mass efficient structure. The fabrication of nano-sized pat-
terns can be done in many ways. The most readily available technology used for this is
lithography and etching. The basic principles behind this fabrication method work as
follows. First, a substrate material is covered with a photoresist. A photoresist is a fluid
that solidifies when exposed to a specific type of radiation (e.g.: uv-light, laser-light and
electrons). After which, the radiation source illuminates the substrate with the required
pattern, followed by rinsing the substrate that results in a pattern of hardened photore-
sist on it. The photoresists form a protective layer for the etching step, which creates the
desired pattern. After etching, the photoresist is removed, resulting in a substrate with
the required pattern (Z. Zhang et al., 2018). A schematic of this process is presented in
Figure 2.3. The limiting factor for this production method is the lithography step. The
source of radiation affects the minimal feature size and the speed of the process. Lithog-
raphy methods can be divided into two categories, one using direct writing and the other
using a mask. When using the direct writing technique, the process is similar to that of a
laser printer. A focused beam illuminates one pixel of the design and creates the desired
pattern by scanning the surface. The time it takes for the photoresist to harden depends
on the beam’s energy and the type of photoresist used. The minimal feature size depends
on the spot size, which can be created for a specific beam type. This process can be ac-
celerated by using a mask. A mask is a glass plate on which a thin metal layer with the
desired pattern is made. This way, a substrate covered with a photoresist needs to be
illuminated only once to create the whole design patterned. The disadvantage of these
masks is that they are expensive, which makes them only suitable for mass production
(Franssila, 2010). When producing large areas of nanopatterning for the lightsail, both
the resolution and the speed of the production method need to be considered. The res-
olution is the smallest feature size which can be made with high fidelity. The throughput
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Figure 2.3: Schematic representation of a regular photolithography and etching process (Z. Zhang et al., 2018)

Table 2.2: The Resolution, speeds and relative costs of commonly used lithography methods in industry. Elec-
tron beam lithography (EBL), focused ion beam lithography (FIBL) and laser lithography are presented with a
mask-less (ML) variant (Hasan and Luo, 2018).

lithography method resolution [nm] Throughput Costs literature

ArF laser (optical) >200 >250 wafers/hr medium  Bolk, 2020

(ML) ArF laser >500 >80 wafers/hr  low Z.Zhangetal., 2018
(ML) EBL & FIBL <5 40 wafers/hr high Hasan and Luo, 2018
Extreme ultraviolet <10 >150 wafers/hr  veryhigh Hasan and Luo, 2018

is used as a comparison metric for speed. This metric is the number of wafers that can be
exposed per hour. In Table 2.2 an overview is presented of different lithography methods
with their respective minimal feature size and speed. In addition, any radiation source
can be combined with a mask. With the use of a mask, around 10'° pixels per second
can be created, which is much faster than direct writing of all the pixels.

As stated in section 2.2.3 the production method can influence the performance of
the lightsail. Traditional wet-etching methods tend to leave residual dried liquid on the
substrate after the etching step. These dried etchants have different properties and can
cause heating or reflectivity loss (Norte and Groblacher, 2021). A more recent approach
is the dry-etching method. This technique is based on using chemical vapours or plasma
for etching the material. This procedure results in a clean substrate and is therefore an
attractive alternative for the wet-etching method.

Currently, the lightsail design is not advanced enough to make a proper decision on
the best production technique. It should be noted that the following statements are
made with the consideration that nano-sized features are required in the design of a
lightsail. For a large sail, it could be beneficial to make one mask and scan the whole sail
using this mask. This approach would reduce the production time and making the sail
less prone to machining errors. Furthermore, this approach would drastically reduce the
price for large areas compared to direct writing. However, the use of a mask would not
be beneficial at the prototyping stage, in which a lot of different testing samples need to
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be produced rapidly. For this purpose, direct writing by laser beam lithography would
be ideal due to the process simplicity, cost, and speed. The disadvantage of this method
is the large minimum feature size, but this can be considered when designing the PhC.
On the other hand, electron beam lithography would be suitable when a small feature
size is required. The biggest drawback of this technology is the requirement of a vacuum
chamber, which could be problematic when scaling to meter-sized wafers. Furthermore,
the price for producing a large area with nano-sized features is high with this method.
At this moment, Additional conclusions cannot be made, and more research needs to be
done on the final production methods concerning the sail’s sizing and structural design.

2.4. DESIGN SOLUTIONS PROPOSED IN LITERATURE

As stated in section 2.2.4, the lightsail consists of a nanometer-thin film with a nanopat-
tern to provide sufficient reflectivity and low mass. In literature, it is shown that pho-
tonic crystals can create thin and large bandwidth reflective materials. Although these
publications are not all based on designing a lightsail, they provide an overview of the
PhC’s high reflectivity capabilities. In different designs, there is often a trade-off between
thickness and bandwidth. An overview of the different designs discussed below is pre-
sented in Figure 2.4. An average of 98% reflectivity over a 200 nm bandwidth is achieved
by Moitra et al., 2014, by making 500 nm large Si pillars on a 2 ym SiO, substrate (Figure
2.4(1)). For alightsail, the material should be as thin as possible to reduce mass. In Norte
et al,, 2016 and Bernard et al., 2016 it is shown that a thin (<60 nm) layer of SizNi, with
a 2D photonic crystal pattern on it can provide 99% reflectivity at a desired wavelength.
In both studies, sub-wavelength sized holes in a square lattice pattern and a SizNi, sub-
strate are used (Figure 2.4(3)). The downside of these results is that the bandwidth is
limited. Additionally, a computational study presented in Harper et al., 2020 designed
a PhC structure made of 502 nm Si pillars on a SiO, substrate, which has a reflectivity
of 99% over a bandwidth 450 nm, centred around a target wavelength of 1550 nm. No-
tably, this study is purely computational, and some physical parameters like substrate
thickness are not provided. Therefore, experimental tests need to be done to check the
validity of these results. Previously, literature has shown the potential of using PhC'’s for
high reflectivity applications. So far, several papers have already described design solu-
tions specifically for a lightsail. However, the design feasibility is often overlooked. Some
high reflectivity PhC'’s are manufacturable and straightforward but are not optimized for
a lightsail. Others have optimized designs but consist of complicated and non-feasible
structures. A good example of an unfeasible design is presented in Jin et al., 2020, in this
study, a unit cell for a lightsail is explicitly optimized for the Starshot parameters (Fig-
ure 2.4(2)). These optimized structures consist of thin nanobeams and floating (i.e. not
connected material) 2D PhC’s. Scaling these nanobeam unit cells to a full-scale light-
sail increases the probability that they will collapse or stick to each other considerably.
Although more investigation needs to be done on enforcing producibility in this paper,
it shows the great potential of using topology optimization for complex nanophotonic
design. However, some articles like Moura et al., 2018 propose manufacturable designs.
This design 2D PhC consisting of subwavelength holes following a square lattice is simi-
lar to the design in Norte et al., 2016. However, this design is not optimized for a lightsail
because it has a high reflectivity at one specific wavelength instead of over the desired
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Figure 2.4: Performance of different photonic crystal designs. (1) shows the reflectivity(1a) of the design(1b)
presented in Moitra et al., 2014. (2) represents the optimisation performed in Jin et al., 2020. (2a) shows the
optimal values found the acceleration distance (D) for optimizations with different thicknesses. Two optimized
results are presented in (2b) from which their reflectivity is plotted in (2c). The Transmission of different sized
holes (3a) for a square lattices (3b) is presented in (3) (Bernard et al., 2016).

propulsion spectrum. Strikingly, barely any attention was given to the structural design
of the lightsail in literature. Better design methods need to be developed which can en-
force the strict design requirements for the sail. At last, it should be noted that the least
researched topic for the lightsail is the shape and functionality of the structural support
of the sail. Certainly, the extra mass that it would bring will largely impact the correct
figure of merit needed for an optimal design.

SEARCHING FOR THE OPTIMUM DESIGN

For now, the design of the lightsail is far from being optimized for its final application.
Therefore, it is unknown what is the optimum design for a lightsail. In the previous sec-
tions, different operational conditions were discussed. The acceleration distance is an
easy to implement objective, but this is not the only important consideration. The sail
should be optimized to deal with the sail’s heating, and the sail should not break due to
the acceleration forces. At last, the sail should be manufacturable. Optimizing manu-
facturability could result in a sail with larger PhC features, although this is not beneficial
for the other design constraints. Besides the acceleration distance, manufacturability
will be the report’s focus because a manufacturable design would allow testing and val-
idation in the lab. The proposed design constraints are challenging to implement and
require a suitable design methodology.

2.5. CHALLENGES IN THE DESIGN PROCESS

Traditionally, the design processes for nanophotonic devices are highly iterative. Desired
characteristics are obtained by changing the parameters of a design with a known phys-
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ical effect. This methodology led to a large number of standardised devices with known
behaviour. These devices are suitable for standard controlled applications but fall short
for more complicated applications, for which nonlinear or multi-frequency behaviour
need to be considered (Jin et al., 2020). Notably, new designs are only proposed by sci-
entists with years of experience in the field. The following three problem characteristics
make the design of a nanophotonic device time consuming and non-intuitive. First of
all, nanophotonic devices are high dimensional. Therefore many design variables can
have a significant impact on the performance. Secondly, the nanophotonic devices per-
formance analysis cannot be performed analytically, requiring computationally heavy
algorithms instead. Lastly, the design problem is non-unique, which means that multi-
ple designs can have the same performance (Z. Liu et al., 2018). At the start of the design
process, a design parameter sweep is often used to get an overview of the design param-
eter sensitivities with respect to the performance. The drawback of this method is that it
is often a manual optimization approach which is inefficient for large design spaces. For
intricate designs computational optimization techniques are required (Campbell et al.,
2019).

In the nanophotonics field, the method of inverse design has gotten more interest in
the last years. Inverse design allows the input to be the desired performance parameter
(e.g., transmission or reflectance spectrum) and obtain an optimal design for this metric.
A large design space can be considered using this method. Thus photonic devices can
be designed close to their performance limit, reducing the experimental design effort
drastically (Molesky et al., 2018). Optimization algorithms are an essential part of the
photonic inverse design algorithm. Whether an algorithm is suitable for a specific prob-
lem is dependent on the number of input parameters, the number of objectives and the
function cost evaluation. Several computational expensive analysis methods are often
used to evaluate the photonic designs, such as Finite Element Method (FEM) (Nikishkov,
2004), Finite-Difference Time-Domain (FDTD) (Archambeault et al., 2012.) and rigorous
coupled-wave analysis (RCWA) (V. Liu and Fan, 2012).

The FDTD is an easy to implement numerical method that solves the Maxwell equa-
tions directly. This method is volume-based and thus requires a uniform mesh. The
problems are solved in the time domain, allowing it to compute time-dependent prob-
lems (e.g. transient behaviour). The FEM is a numerical method that can approximate
partial differential equations (PDE). The PDE is approximated by combining the solution
of all the nodes for the discretised design space. Complex functions can be approximated
with high precision by using many elements.This method is mainly used for steady-state
problems. This method can describe complex geometries as the mesh shape is flexi-
ble and can be non-uniform. The RCWA is a computationally efficient semi-analytical
method to solve scattering problems for 2D periodic structures invariant in height. The
structures can consist out of multiple layers with varying thicknesses. FEM and FDTD
can be used in more general cases than the RCWA, and they can both be extended to
solve 2D and 3D problems.

2.6. TOPOLOGY OPTIMIZATION

Topology optimization (TO) is an optimization approach that is suitable for inverse de-
sign. This optimization technique allows for innovative non-trivial designs because it
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Figure 2.5: Examples for TO approaches used in structural design. (a)size optimization, (b) shape optimization,
(c) free-form optimization, (Gebisa and Lemu, 2017)

redistributes material in a user-defined design space to achieve the desired behaviour
(W. Li et al., 2019). In general, the approaches used in TO are size optimization, shape
optimization and free-form optimization, as presented in Figure 2.5. In size optimiza-
tion, the cross-section of members from a predefined structure are changed. For shape
optimization the parameters of predefined shapes are optimized and in the case of free-
form optimization the material distribution is optimized in a discredited design space
(Gebisa and Lemu, 2017). In the nanophotonics field, shape and free-form optimization
are mainly used. The advantage of shape TO is the relatively low computational costs
compared to free-form TO because of the limited design variables. On the other hand,
the advantage of free-form TO is the possibility of highly optimized and non-trivial de-
signs since there are fewer constraints to the design space. In literature, both gradient-
based (GTO) and non-gradient (NGTO) optimizers have been proposed to be used in
TO. Only the objective function evaluations are used to find the optimal solution in the
NGTO algorithms, whereas GTO uses the gradients of the design variables with respect
to the objective function in the optimization process. Using these gradients often results
in reaching an optimum with less objective function evaluations. Therefore, this makes
the GTO computationally more efficient because the performance analysis (i.e., function
evaluation) of the design is the most expensive part of TO (W. Li et al., 2019). However,
the benefit of NGTO is that it is easier to implement because no gradients need to be
calculated. A subset of the GTO algorithms proposed in the literature is solid isotropic
material penalization (SIMP), level set (LS) and bi-directional evolutionary structural op-
timization (BESO). The most used NGTO is a genetic algorithm (GA) (W. Li et al., 2019).
Finding a global optimum cannot be guaranteed when using GTO or NGTO due to the
characteristics of the design problem being non-linear and non-convex. In order to cre-
ate a feasible TO algorithm for nanophotonic problems only GTO’s are suitable. At the
moment, the proposed NGTO’s are not sufficiently computationally efficient. Adjoint
based models are proposed to ensure a computationally efficient way to calculate the
design sensitivities (Jensen and Sigmund, 2011). These models are able to efficiently cal-
culate the derivative of the functional value with respect to the model parameters (Giles
and Pierce, 2000).

It should be noted that there are many controllable parameters in TO. When cre-
ating the problem, the design volume, the external influences, the discretization and
material parameters can be controlled. The filters applied for post-processing, the func-
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Figure 2.6: Problems regarding TO algorithms (Sigmund and Petersson, 1998). (a) The design problem,
(b)example of the checkerboard problem, (c) solution of a course mesh optimization, (d) solution of a fine
mesh optimization, (e) example of a non-unique optimization result.

tional analysis method (e.g. FEM), and the optimizer parameters can be changed to set
up the optimization. Changing these parameters can have a significant impact on the
outcome of the optimization. Many optimizations need to be performed with different
optimization settings to find the best optimum. Besides this, checkerboard problems,
mesh dependencies and the tendency to get stuck in local minima, which are presented
in Figure 2.6, are three common problems that can be identified for TO algorithms (Sig-
mund and Petersson, 1998). Firstly, the checkerboard problem can be identified by a TO
solution having material and voids close to each other in a checkerboard fashion (Fig-
ure 2.6(b)), which is in practise a non-feasible solution. Secondly, when changing the
mesh size of the optimization the TO can result in a different structure, which results in
a mesh dependent solution (Figure 2.6(c, d)). Notably, TO tend to create "spider web"
like structures, consisting of thin connections, which are non-practical designs. At last,
TO optimizations tend to get stuck at local optima because of the flatness of the objective
function and the solutions are often non-unique ((Figure 2.6(e)) (i.e. different solutions
with the same output). These problems can be mitigated by adding post-processing to
the solutions (e.g. filters, patches) or changing the optimizer. These mitigation methods
will not be discussed. It should be noted that TO is highly sensitive to its optimization
parameters (Deaton and Grandhi, 2014).

2.6.1. PROPOSED APPLICATIONS OF TO IN LITERATURE

TO is already used for the design of a wide range of nanophotonic devices such as meta-
gratings, waveguides and photonic crystals (Molesky et al., 2018, Jensen and Sigmund,
2011). A selection of these applications will be discussed below and are presented in Fig-
ure 2.7. One way TO is used for nanophotonic devices is for the optimization of the
bandgap of materials. For example, a PhC can be designed to pass or block specific
wavelengths. Larger band gaps often lead to broader available bandwidths of signals
and applications. A free-form level set (van Dijk et al., 2013) TO algorithm is used by Kao
et al., 2005 to maximize the bandgap of 2D photonic crystals. The level set TO is chosen
as the solution is preferred to be piecewise-constant (e.g. creating a binary material-
vacuum design). Using this method, they show the design of the largest bandgap for 2D
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Figure 2.7: Examples from literature which use free-form TO. (1) shows the optimized structure(1a) of a 2D
PhC from GaAs in air, with the objective to maximize the band gap between two desired bands(1b) (Kao et al.,
2005). A similar approach is used in (2) for which the band gap is optimized for a 3D PhC (Men et al., 2014). A
non-linear waveguide is presented in (3), the optimized structure (3a) results in direction change of the light
for different frequencies(3b) (T. Hughes et al., 2018). An optimized metagrating (4a) which is able to change
the angle of incoming light of different frequencies (4b) (Sell, Yang, Doshay, and Fan, 2017).

PhC at that time. However, they acknowledged that the designs are probably still local
optima (Figure 2.7(1)). Men et al., 2014 proposed a free-form level set TO method that
includes production limitations and considers 3D designs instead of 2D. Furthermore,
new crystal symmetry constraints are implemented, which allow the consideration of
more symmetry groups. In this paper, it is concluded that it is hard to improve existing
designs significantly and that it is impossible to state if a global minimum is reached
(Figure 2.7(2)).

For the design of waveguides, TO has proven to be effective as well. Waveguides are
nanophotonic devices that can alter the direction of a light beam. A new non-linear ad-
joint model is proposed by T. Hughes et al., 2018 for the design of nanophotonic devices.
They were able to design a new compact optical switch with Kerr non-linearity (Figure
2.7(3)). In this work, a general formulation to solve other non-linear 2D optical problems
is presented. One year later, in T. W. Hughes et al., 2019, a new gradient-based inverse
design TO is proposed, which uses the forward-mode differentiation (FMD) method for
Maxwell’s equations. It is shown that the FMD could be an alternative for adjoint-based
models for problems with more outputs than inputs because the FMD has to run sep-
arate simulations for the inputs and the adjoint model for the outputs. As a result, the
FMD has improved memory and speed scaling for these types of problems. In the last
years, the development in the inverse design TO methods is progressing fast. Ananopho-
tonic design platform was proposed in Su et al., 2020 to facilitate the use of these new de-
velopments. The framework allows using small building blocks to create optimizations.
Furthermore, much documentation is provided to help apply the proper optimization
parameter. The platform’s main goal was to allow designers to design devices and test
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for different objectives quickly.

The design problem of a light sail is similar to that of a metagrating. The goal of a
metagrating can range from bending and reflecting the light to changing the light’s polar-
isation. In general, metagratings are 2D shapes with a fixed height for which the incident
light is normal to this surface or with an angle with respect to the normal of the plane. In
Sell, Yang, Doshay, and Fan, 2017 and Sell, Yang, Doshay, Yang, et al., 2017 the potential
of free-form TO for high efficient metasurfaces is shown (Figure 2.7(4)). RCWA is used
as it allows for fast and accurate analysis of periodic structures. Their method optimizes
wavelength-scale devices, resulting in complex designs and behaviour. Remarkably, the
achieved performance exceeds that of current devices. In literature, free-form TO is also
used for the of design broadband reflectors. A 2D PhC consisting out of different layers
is optimized lightsail in W. Li et al., 2019. The gradient-based method of moving asymp-
totes (MMA) (Svanberg, 1987) is used for the TO method to cope with a large number of
design variables. Furthermore, a free-form and adjoint-based TO approach are applied
together with the RCWA. Notably, the performance of their designs is 50% better com-
pared to other designs at the time. Notably, the publications presented above only state
that their methods perform better than previous methods but do not explicitly explain
why this is the case.

2.7. MACHINE-LEARNING ENHANCED TOPOLOGY OPTIMIZATION

An upcoming approach for the design of photonic devices involves the use of Neural Net-
works (NN), holding the promise of solving the drawbacks of traditional TO (Campbell
etal.,, 2019). A NN is part of a larger group of computational algorithms called machine
learning. Machine learning (ML) is an evolving field that tries to emulate human intelli-
gence in computational algorithms.

2.7.1. MACHINE-LEARNING PRINCIPLES AND ARCHITECTURES

ML algorithms can be distinguished into three groups based on their learning method-
ology (El Naqa and Murphy, 2015). Learning can be defined as the process of estimat-
ing dependencies from data. The following groups can be distinguished: supervised
learning, unsupervised learning and reinforcement learning. In supervised learning, the
input data and corresponding outputs (i.e. label) are provided to an optimization algo-
rithm that tunes the ML-algorithm variables to estimate outputs for unknown inputs. In
unsupervised learning, known input data is provided without any corresponding label.
This can be used to recognize similar patterns within data, called clustering. At last, re-
inforcement learning takes another approach. With this approach, no training data is
required. Instead, the algorithm learns to operate in an environment by receiving feed-
back. For example, an agent is playing a game without knowing the rules of the game.
The goal for the agent is to maximize the score for this game. The agent trains itself to
play the game by repeating the game several times, getting feedback on his performance
and changing its internal parameters accordingly.

Each of the learning methods described above can be implemented on a given ML
architecture. A ML architecture is a certain implementation of a NN and will be dis-
cussed in the following section. Three main machine learning architectures are used for
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Figure 2.8: (a) Basic architecture of a perceptron. The three input’s are multiplied by weights and added to-
gether. This weighted sum is fed through a activation function (step function) which has a binary output when
a threshold is reached. (b) NN with 3 hidden layer (Martins et al., 2012).

the design of nanophotonic devices: fully connected neural networks (FCNN), convo-
lutions neural networks (CNN) and generative adversarial networks (GAN). In addition,
some papers propose more traditional machine learning algorithms like support vector
regression (SVR) and decision trees, but these will not be discussed in this paper. The
three main ML approaches named above are based on artificial neurons, which are in-
spired by biological neurons. An artificial neuron is a function that has one or multiple
inputs and has one output with respect to these inputs. Together, these neurons can be
combined to the smallest NN called a perceptron, presented in Figure 2.8 (Géron, 2019).
As an analogy, one can see the perceptron as a weather prediction model, which has as
input: humidity, pressure and temperature, and as output a one if it is going to rain and
zero when the sun shines. This perceptron has learned at which inputs it will rain by
feeding it available data from years before and changing its weights to get the required
output. After this training procedure, it will predict the weather according to new inputs
(e.g. unknown situation). Furthermore, these NN can be made more complex by adding
more inputs, adding layers and adding a bias to these layers, which is presented in Figure
2.8. One can change the NN by changing the number of inputs, outputs, layers and the
type of activation function. Eventually, during the learning process the weights and the
biases are changed to reach the desired output. Finally, when all neurons are connected
in a NN they form a fully connected neural network (FCNN).

NN'’s, as described above, can find complex relations between the input and output
data. A significant disadvantage of these networks is that as the problem’s complexity
increases (e.g. image and voice recognition), the number of connections between the
different layers will increase drastically. For example, analysing a picture with a regular
FCNN, where the pixels of the picture are the inputs to the system, would inevitably lead
to alarge number of neurons and connections. On the contrary, a framework proven ef-
fective for these tasks is the convolutional neural network (CNN). A CNN takes another
approach by pre-processing the image before it is fed in a regular FCNN, to reduce the
number of connections. The essential building block of the CNN is the convolutional
layer which applies a filter on the picture to extract high-level features from an image.
The output of a convolutional layer is a new, filtered image with new features. Different
image conversions (e.g. image sizing, called pooling layers) can be applied as well. How-
ever, these conversions will not be discussed. Notably, the main advantage of a CNN
is the ability to extract high-level information from complex input data (Géron, 2019).
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Figure 2.10: Conventional architecture of a GAN (Y.-Y. Chen, 2018), consisting of a generator which creates new
images from random noise and a discriminator which tries to identify the new images as fake or real.

The schematic of a standard architecture of a CNN is presented in Figure 2.9. Lastly,
the often proposed approach in the literature is a generative adversarial network (GAN).
This network is mainly used to generate new images or structures. A GAN uses a gener-
ative and an adversarial model that works in competition. The adversarial model, also
called discriminator, is trained to recognize the difference between new data created by
the generative model and actual training data. The schematic of a conventional GAN
is shown in Figure 2.10. This model can be compared to a team of counterfeiters (i.e.
generator) trying to generate fake banknotes and the police (i.e. discriminator) trying
to recognize the fake banknotes. In the end, the competition between the counterfeit-
ers and the police leads to indistinguishable banknotes (Goodfellow et al., 2014). The
generator and discriminator of the GAN are often made out of a CNN.

2.7.2. TRADE-OFF BETWEEN DIFFERENT ML APPROACHES

Having discussed the three most used ML architectures, we can now focus on their char-
acteristics and benefits. NN’s can be used for different goals. One goal is to change the
use of computational resources. When a NN is appropriately trained, it can produce an
output with significantly less computational effort than other non NN based methods
(Campbell et al., 2019). Supervised learning methods can be used to train a NN. How-
ever, this requires a computationally expensive process that needs many training data.
This training is done before the actual use of the NN, this way the computational effort
is switched from an online process to an offline process which can be done beforehand.
An offline process refers to training the algorithm before it can be used for its intended
purpose, and the online process is the work the finalised algorithm performs to com-
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plete its objective. Another benefit of using NN's is the ability of the algorithm to learn
relations at different abstraction levels, which can lead to better performance or a more
generalized solution (Campbell et al., 2019). This benefit is mainly exploited in the pro-
posed CNN based or unsupervised algorithms. However, a disadvantage of NN is that
often these algorithms do not obey physical principles. The designs generated by the
NN are not governed by equations that find their basis in nature. Therefore, it is often
difficult to enforce these equations in the process.

The different NN architectures discussed above are applicable in different contexts.
A FCNN can be suitable for approximating complex physical problems because it can
find the global optimum easier than traditional TO as a result of the smoothed design
space (Peurifoy et al., 2018). However, the disadvantage of the FCNN is that the amount
of variables increases fast for more complicated problems. Therefore, FCNN is mainly
helpful for shape optimization with fixed parameters. On the contrary, the CNN has
proven successful for problems that require the recovery of high-level details. By chang-
ing the convolutional layers, one can control the amount of detail taken into the model.
Notably, a CNN is overly complex for small problems that can be converted to param-
eter optimization. Alternatively, a GAN can be used by training a CNN to generate new
realistic data, often images. With in a GAN two CNN'’s are embedded (i.e the generator
and the discriminator). The benefit of this method is that it does not optimize its pa-
rameters directly from the training data set but changes it according to the outcome of
the discriminator. This results in learning the underlying logic of the training set rather
than copying it. This way; it is possible for the GAN to recreate new and unseen data.
Nevertheless, the disadvantage of the GAN is that it is difficult to get a robust code, and
it is hard to control or guide the images created by the GAN (Pinetz et al., 2019). Inter-
estingly, a way to control the created images of a GAN is by implementing labels to the
training data in a conditional Generative adversarial network (cGAN) (Mirza and Osin-
dero, 2014). A cGAN makes it possible to provide the generative network with inputs for
what it should generate. For example, in face reconstruction one could give the choice
of male or female. These inputs form the conditions which the cGAN takes into account
for creating the output. To conclude, choosing the right ML architecture depends on the
problem characteristics and the required outcome.

Notably, an essential factor that is mainly overlooked in literature is the architectural
search. How a study obtained a NN architecture and why it is a good architecture are
often not answered. New studies often use NN that are proven to work in other publica-
tions (Szegedy et al., 2017). These NN are often suitable for general use but not tailored to
the new application in which it is used. This often results in using a NN that is unneces-
sarily large, which can result in over-fitting (Sarle, 1996) and unnecessary computational
cost (Szegedy et al., 2017). Additionally, the hyperparameters (e.g. filter and regulariza-
tion parameters) used within the different layers of the NN can have a significant impact
on the results (Y. Zhang and Wallace, 2016). A lot of experience and time is required to
find the correct hyperparameters. Checkerboarding like artefacts can be the results of
these hyperparameters (Odena et al., 2016). Thus, although NN’s have shown outstand-
ing performance on many occasions, obtaining the right architecture for a problem can
be non-trivial and is often not discussed literature.
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Figure 2.11: Examples using supervised learning in literature. (1) FCNN used to design the thickness of the
layers with in a nano particle to obtain the scattering cross section at different wavelengths (Peurifoy et al.,
2018). The schematic coding and decoding NN used for the parametric TO of nano pillars can be seen in (2)
(Harper et al., 2020). (3) 3d chiral structures optimized for refelectivity by multiple connected NN (Ma et al.,
2018).

2.7.3. PROPOSED SOLUTIONS IN LITERATURE

In literature, two approaches are used for integrating ML in TO. In one approach, the
ML algorithm aids the existing TO by reducing the number of function evaluations or
increasing the performance of the designed devices. In the second approach, the ML
algorithm fully replaces the TO algorithm.

SUPERVISED LEARNING

Most of the ML algorithms used for inverse design are based on supervised learning (i.e.
using labeled training data). Examples of supervised learning approaches for the in-
verse design of nanophotonic devices are discussed below and presented in Figure 2.11.
For the inverse design of 1D nanoparticles, Peurifoy et al., 2018 proposes a FCNN that
optimizes a particles geometry for the desired spectrum by changing the thickness of
three different dielectric layers (Figure 2.11(1)). A similar approach is used in Malkiel
et al., 2018, they propose a bi-directional NN consisting of two linked NN’s. One NN
predicts the geometry based on the desired spectrum, and the other predicts the spec-
trum based on a geometry. In the end, the NN is used for shape optimization of 2D
nanoparticles. Harper et al., 2020 proposes a NN for the inverse design of a nanopho-
tonic metasurface. A FCNN is used to optimize an all-dielectric meta-surface consist-
ing of open cylinders. The number of design variables is reduced by applying a shape
optimization in which only the parameters defining the geometry of the cylinders are
optimized (Figure 2.11(2)). Interestingly, Ma et al., 2018 proposes a NN consisting of
two bi-directional sub-NN'’s, which can predict a spectrum from a design and predict a
structure from the desired spectrum. The NN performs a shape optimization for 3D chi-
ral nanostructures. The whole NN consists of different decoding and encoding CNN’s
and conventional FCNN’s (Figure 2.11(3)).
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Figure 2.12: Examples using unsupervised learning for the inverse design of photonic devices in literature. The
schematic of the approach used in Jiang et al., 2019 can be seen in (1a). (1b) The optimized structure generated
in the GAN is further optimized with conventional TO. (2) Shows the prescribed spectrum (2a) which is fed into
the GAN proposed in Z. Liu et al., 2018, and the obtained spectrum (2b) by the GAN. (3) The optimized structure
after each Subset simulation presented in M. Li et al., 2021. The 2D PhC is optimized to maximize the band
gap between two given bands.

UNSUPERVISED LEARNING

This section elaborates on examples from literature using unsupervised ML. Notably,
these examples use data with outlabels to train the network. The examples use figures of
the nanophotonic devices as input data to train the network. In Jiang et al., 2019 a cGAN
is used for the design of efficient metasurfaces (Figure 2.12(1)). The inputs for this net-
work are, besides a vector with random numbers that provides diversity to the solution
space, the operating wavelength and the deflection angle of the light. This makes the
network a cGAN. This cGAN can generate new high-resolution and high-performance
designs. The network is trained with designs created by a TO algorithm. The designs
created by the trained cGAN are used as a new input for the TO algorithm to establish a
final optimized structure. This way, the cGAN works as an addition to the design process
by creating new and better performing designs than the original input. These designs are
then further optimized to retrieve the full design potential. Also, in Z. Liu et al., 2018 a
GAN is used for inverse design of metasurfaces (Figure 2.12(2)). The GAN can generate a
structure that follows a prescribed spectrum with high fidelity. This approach allows for
the generation of new metasurfaces without the user needing to have much experience
in the field. The method proposed in M. Li et al., 2021 is based on a GAN as well. In this
method, a subset simulation-based TO is proposed in which GAN-guided TO is used.
The goal of the optimization is to maximize the bandgap of a 2D PhC. The efficiency and
effectiveness are shown for 2D periodic structures with the use of this method (Figure
2.12(3)).
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REINFORCEMENT LEARNING
Reinforcement learning-based approaches have not been proposed as much as the other
two learning methods. Hoyer et al., 2019 proposes a reinforcement learning approach '
that uses a decoding CNN for free-form structural topology optimization. The main idea
is to use the "deep image prior" of a CNN, meaning they can perform tasks in image
processing even before being trained, for structural optimization. The In Lempitsky et
al., 2018 they show that untrained NN can capture high-level image statistics, which can
be used for tasks like denoising in image processing. These deep image priors could be
helpful in problems including spatial correlation, multi-scale features or translation in-
variance. Deep image priors are used in Hoyer et al., 2019 to re-parameterize structural
optimization from a grid through a NN. The proposed NN is a decoding CNN for which
the input vector is used as a trainable variable. The paper shows that optimization using
the NN was faster and resulted in better optimized structures compared to traditional TO
algorithms (e.g., method of moving asymptotes and optimality criteria). Another benefit
of the approach is that it resulted in more general structures than traditional approaches,
which generate spiderweb-like structures. A similar approach is used by Jiang and Fan,
2019 for the inverse design of a 2D metagrating. The algorithm used in this paper was
able to find global optima. Furthermore, the performance of the generated devices is
comparable with traditional adjoint-based TO algorithms. The main difference between
Hoyer et al. (2019) and Jiang et al. (2019) is the goal of the learning procedure. In Jiang
and Fan, 2019 reinforcement learning is used to optimize the NN to produce optimal
structure based on targets that are set as inputs (e.g. wavelength and deflection angle).
So, it is used to train the NN, which then can be used separately. In contrast, each opti-
mization can be seen as a new optimization as proposed by Hoyer et al., 2019, in which
reinforcement learning is only used to re-parameterize the optimization.

2.7.4. POTENTIAL IMPROVEMENTS USING ML-BASED TO

The ML-based TO is getting more attention because it can potentially solve the short-
comings traditional TO algorithms have. As stated in section 2.6, TO algorithms tend to
get stuck in local minima. On the contrary, ML-based TO can potentially reach a global
optimum in two ways. First, the ML-based TO can learn from past optimizations us-
ing supervised learning. Secondly, the optimization can reparameterize during the op-
timization when using a reinforcement learning approach as described by Hoyer et al.,
2019. Another improvement ML-based TO can bring is the potential improvement of
the post-processing of the optimized structures. The solutions from traditional TO can
result in "spiderweb" structures due to mesh dependencies, which can be reduced by
post-processing (e.g. filtering). However, in Hoyer et al., 2019 it is shown that their CNN
results in more straightforward and general solutions. After having discussed many TO
approaches, section 2.8 will discuss how to choose a suitable algorithm for the lightsail
problem.

1The approaches used in Hoyer et al., 2019 can strictly speaking not be categorised as a reinforcement learning-
based approach. However, they are categorised as reinforcement learning because they do not require train-
ing data like supervised and unsupervised learning.
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Figure 2.13: Examples of reinforcement learning used for TO in literature. (1) The schematic representation of
the working principle used in Hoyer et al., 2019 fro which a decoding CNN is used for TO. In (2) the NN used in
Jiang and Fan, 2019 to train a conditional model is presented.

2.8. CHOOSING A DESIGN ALGORITHM FOR A LIGHTSAIL

In the previous sections, different approaches for the design of photonic devices were
discussed. In this section, the most suitable approach will be explained for the design
of the 2D PhC used in a lightsail. First of all, it is important to take the problem charac-
teristics into account when choosing the suitable optimization algorithm of a problem
(Campbell et al., 2019). As stated in section 2.2.4, the lightsail design relies on a PhC de-
sign to achieve its performance. Therefore, large design spaces need to be considered
to be able to create new and high-performance designs. Notably, most of the inverse
design methods discussed above are suitable for this operation. Therefore, the question
is, which method will perform the best for designing a lightsail. The first step is to find
the suitable algorithm by using the flowchart proposed in Campbell et al., 2019. This
flowchart contributes to find the best-suited optimization algorithm for nano-optical
problems, Figure 2.14. Several characteristics need to be evaluated to use the flowchart
for the PhC problem, like the discreteness of the input space, initial solution, time to
perform a function evaluation and availability of training data. Ultimately, this results in
two options: a deep neural network (i.e. when training data is available) and a surrogate
model (i.e. when training data is unavailable). Deep learning algorithms that do not re-
quire training data, such as reinforcement learning based algorithms, are not included
in the flowchart. However, recent literature has proposed these methods. Therefore, it
can be concluded that the flowchart is not entirely up-to-date. This emphasizes that,
although this flow chart provides a good direction for a suitable algorithm, other factors
need to be considered when making a final decision between traditional TO-algorithms
and ML-base TO. As shown in literature, there are traditional TO algorithms suitable for
the inverse design of PhC. They are easy to implement and these algorithms are mature.
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Figure 2.14: Flowchart proposed in Campbell et al., 2019 to find the suitable optimization method for
nanophotonic devices.

However, traditional algorithms tend to get stuck in local optima, especially for pho-
tonic problems with highly fluctuating solution space. In addition, they are susceptible
to optimization hyperparameters and they are computationally expensive because mul-
tiple runs with different initialization are required. On the contrary, the newly proposed
ML-based algorithms have the potential to generalize (i.e. generate better or simpler
structures) and have the ability to learn high-level information about photonic prob-
lems. However, there are also concerns regarding the use of ML algorithms in the field of
TO. The novelty of the field creates uncertainty in the implementation and can generate
unexpected results. Furthermore, most ML algorithms require large amounts of data to
train. The last concern is that many ML algorithms do not use physical principles be-
cause this is often not enforced in the network. In section 2.9 the final trade off for a
suitable the TO method for the lightsail problem is made.

2.9. SUMMARY AND CONCLUSION

Breakthrough initiatives have started the Starshot initiative to stimulate the design of a
lightsail to reach Alpha Centauri within 20 years. A lightsails will be propelled by a high-
intensity laser which is directed on the 10 m? sail. A highly reflective and nanometer-thin
sail is required to achieve sufficient acceleration. A photonic crystal design is necessary
to obtain high reflectivity and comply with the mass constrain. In literature, thin-film de-
signs have been shown to achieve high reflectivity. However, non of the designs are suit-
able for a lightsail because they do not sufficiently consider operational conditions (e.g.
manufacturability, flight stability and maximum heating). For a practical design, multi-
ple objectives need to be combined to comply with all the operational requirements.
Literature has shown that traditional TO can be a valuable tool for designing nanopho-

tonic devices. TO allows optimizing a large design space, which can result in highly op-
timized and non-trivial structures. However, there are still a few significant drawbacks
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that can be improved. A significant disadvantage of the TO methods is that the optimizer
can get stuck in local optima because TO methods are not global optimizers. Many op-
timizations with different initialization need to be considered to mitigate this, making it
a time-consuming process. It is possible to use global optimization methods, although
these algorithms often need to relax on physical accuracy (Campbell et al., 2019). An-
other disadvantage of TO algorithms is that they are computationally heavy and suscep-
tible to optimization parameters, making it time-consuming to derive optimized struc-
tures. ML-based TO has proven to solve some of these problems and generate better
and more general designs in less time. However, implementing these ML-based TO is a
non-trivial process.

For the thesis, the ML-based TO approach as proposed by Hoyer et al., 2019 is ap-
plied to alightsail. This approach has outperformed traditional TO algorithms for struc-
tural engineering and does not require any training. However, no equivalent topology
optimization method has been implemented in photonics yet. It is expected that this
method can result in a fast optimization algorithm and designs close to the global opti-
mum compared to traditional topology optimization. Furthermore, the algorithms bias
towards simple structures can result in producible PhC’s. It is thought that the potential
gains from this new method can drastically improve the design of the lightsail.
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A NEURAL NETWORK BASED
APPROACH FOR LIGHTSAIL DESIGN

This chapter is written as a scientific paper. First, the paper discusses implementing a
novel ML-based TO method for lightsail design. The ML-based TO is then benchmarked
against a more traditional TO. Lastly, new designs are generated with the implemented
novel ML-based TO by considering additional operational conditions.
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Lightsail design with neural optimization of topology

Lucas Norder
(Dated: February 10, 2022)

Conventional Topology Optimization (TO) enables the inverse design of nanophotonic structures
by specifying the objective and constraints without a predefined topological concept. Yet, extreme
scenarios such as the design of a lightsail pose challenges that require new solutions. Here, a convo-
lutional neural network (CNN) based TO methodology is extended to optimize a two-dimensional
photonic crystal used to design a lightsail that aims to reach the nearest star (Alpha Centauri)
within 20 years by achieving 20% of the speed of light. The CNN-TO performance is compared
to a more conventional method of moving asymptotes (MMA) based TO by optimizing a photonic
crystal unit-cell for the 2016 Starshot Initiative parameters. The CNN-TO requires up to 40% fewer
iterations than MMA-TO to reach better performance under different operational conditions. The
generated design turned out to be easy to fabricate, allowing them to be produced with optical
lithography. Additionally, a study regarding the design challenges of the lightsail has been per-
formed, which resulted in an optimization considering the functionallity of the sail. Additionally,
the study showed the sensitivity of the resulting design to varying objectives and materials. There-
fore, underlining the necessity of considering multiple operating conditions (e.g. laser alignment and
cooling) within the design process.

I. INTRODUCTION Traditional metallic reflectors cannot be used due to
their high optical absorption. Semiconductors have the
potential to meet the operating requirements as they
have a high refractive index and low optical absorp-
tion. To meet the mass and reflectivity requirements
a thickness estimation of 100 atomic layers for the sail
is deemed necessary [3]. Such stringent requirements
have motivated research on one- and two-dimensional
photonic crystals (PhC) as broadband reflectors [3]. A
PhC is a structure with sub-wavelength sized features
that interact with light. One-dimensional periodic PhCs
are stacked materials with different dielectric constants,
while two-dimensional PhCs are planar structures with
periodic designs (e.g. holes or pillars). Given the ad-
ditional design freedom, two-dimensional PhCs are ex-
pected to provide higher reflectivity for a critical area
density (4, 5] .

At the moment, the man-made object furthest from
earth is the Voyager 1 [1]. Although this spacecraft has
seen our solar system and beyond, it only travelled 0.5%
of the distance to the nearest solar system after 47 years
of service. New spacecrafts are required to explore these
unknown worlds. Breakthrough Initiatives started the
Starshot Initiative in 2016 to stimulate the development
of lightsails [2]. This spacecraft aims to reach Alpha Cen-
tauri (i.e. the nearest star to earth) within 20 years by
reaching speeds up to 20% of the speed of light.

This technology, presented in Fig. 1, is based on gener-
ating an optical force on a reflective lightweight thin-film
material by projecting a high power Earth-based laser
on it. As proposed in the Starshot initiative, the light-
sail should be approximately 10 m? and the laser power

10-100 GW/m? to generate enough radiation pressure. Although two-dimensional PhC’s have proven to be ef-
Furthermore, extreme low-mass requirements have been  fective reflectors even with simple designs [6, 7], the few
proposed, limiting the weight of the sail and the satel- ~ contributions targeting lightsail design have not consid-
lite chip connected to it to approximately 1 g. The laser ~ ered operational and manufacturability conditions suffi-
is also required to operate on wavelengths in the near-  ciently [3, 8, 9]. Moreover, the traditional optimization of
infrared spectrum from 1 - 1.5 um. photonic structures is highly iterative and leverages do-

main knowledge from experienced researchers [10]. How-
ever, this trial-and-error process is unlikely to be success-
ful in finding high-performance designs because there are
d = 4 light years A =10 m? | = 10-100 GW/m? too many possibilities to be explored within the high di-

t =20 years m=1g A=1.2pm-1.5 ym mensional design space.
» v=02c

Inverse design methods like topology optimization

{ 2 (TO) have shown promising results for the design of pho-

: tonic devices like meta-devises and photonic crystals [11-

/, ‘ 14]. More traditional TO-algorithms based on level-set,

SIMP and even genetic optimization algorithms are used

for these applications [11, 12] although it is unlikely that

they reached a global optimum. Although Photonics op-

FIG. 1. High power earth-based laser propelling lightweight  timization is usually non-linear, non-convex and high di-

sail to 20% of the light speed, to reach Alpha Centauri in 20 yengional, inverse design methods have resulted in non-
years [2]. trivial high-performance designs [13, 14].




Recently, however, TO has been enhanced by machine
learning via the reparameterization trick proposed by
Hoyer et al. [15]. This strategy is different from the
majority of machine learning contributions that improve
design methods because those involve training with pre-
vious designs or involving Variational Autoencoders and
Generative Adversarial Neural Networks [16-18] that re-
quire large training databases and that have difficulties
with out-of-distribution predictions. In contrast, the
reparameterization trick introduces a neural network be-
fore the physics solver (e.g. finite element analyses) and
uses common machine learning optimizers to find the
weights and biases of the neural network that minimize
the objective function calculated by the physics solver.
Albeit counter-intuitive, this strategy was shown to out-
perform conventional TO algorithms that optimize the
objective function directly acting on the inputs of the
physics solver.

An important design target for lightsails is the mini-
mization of the acceleration distance (D), i.e. the dis-
tance required to reach the final velocity of the light-
sail. This quantity of interest enforces a trade-off between
weight and reflectivity [19]. The acceleration distance is
presented in Eq. (1).

_ B h(B)
D= 5(1)1 + ps)/o RG] dg (1)

In this equation, D is the acceleration distance, I is the
intensity of the propulsion laser, p; and ps are the area
densities of the lightsail and the satellite respectively, A is
the wavelength of the propulsion laser, R is the reflection
as a function of A, and h(B) = 8/(1—B)%y/1 — 2, where
3 is the velocity fraction with respect to the speed of light
B = v/c. Due to the Doppler red-shift of the laser, the
wavelength of the laser can be written as a function of
the relative speed, A(3) = Ao/(1+ B)/(1 —B). When
following standard Starshot parameters, the bandwidth
at which the sail should operate is from 1.2 pm to 1.44
pm. pp and R are the geometry dependent parameters.

This work aims at minimizing D by adapting the neu-
ral optimization of topology strategy proposed by Hoyer
et al. [15] to the lightsail design problem. This requires
a different physics analysis method and a different neural
network architecture than what was proposed originally
for structural optimization problems. The work of Jin
et al. [20] acts as a baseline for this investigation, as
they implemented a conventional TO approach to design
a two-dimensional PhC unit-cell for a lightsail following
the Starshot parameters. The physics analysis from this
method is implemented in the machine learning TO and
the results are compared.

FIG. 2. Schematic of lightsail optimization [20]. The lightsail
can be optimized for stacked layers of different material of
thickness ¢t. The unit cell with the periodicity of A is opti-
mized. The discretized voxels of material have the dielectric
constant ey (r) assigned to them.

II. TOPOLOGY OPTIMIZATION IN
LIGHTSAIL DESIGN

Recently, Jin et al. [20] designed two-dimensional
PhC’s for lightsails using free-form TO. The authors
claimed to have up to 50% better performance than previ-
ous designs by using the conventional Method of Moving
Asymptotes (MMA-TO). Therefore, the two-dimensional
design space is discretized into a grid of IV x N pixels and
the material properties of these pixels can be continu-
ously varied between vacuum and the required material.
These N x N density input parameters are then opti-
mized using a sinh intermediate density penalization [21].
Furthermore, the unit cell’s period A (i.e. the lattice vec-
tor) is used as an optimization parameter, while the layer
thickness ¢ is seen as an independent simulation param-
eter. A schematic overview of the optimization and the
parameters is presented in Fig. 2. The optimization has
a variable mesh size as the period A is an optimization
variable and can be determined by dividing the period
by the grid size N.

As mentioned, the gradient-based optimizer Method of
Moving Asymptotes (MMA) is used to manage the many
design variables [22]. The optimization algorithm uses
adjoint variables to calculate the gradients of the figure
of merit (FOM) with respect to the design variables. The
gradients are then used to change the design variables
for the following iteration. These adjoint variables are
obtained from the physics simulator, which is extended
with the automated differentiation software Autograd
[23]. For the physics simulation, rigorous coupled-wave
analysis (RCWA) is used because this semi-analytical
method is computationally efficient in solving scattering
problems for periodic structures with layers that are in-
variant in the direction normal to the periodicity [24].
The RCWA solves the time-harmonic Maxwell’s equa-
tions, presented in Eq. (2), in Fourier domain. In Eq.
(2), E and H are the electric and magnetic field respec-
tively, po is the magnetic permeability, € is the relative



permittivity of vacuum, € is the relative permittivity of
the medium where the electromagnetic wave with fre-
quency w is passing through [25].

V x E = —iwpoH, V X H = iwepeE (2)

In the RCWA, the electric field for each layer is ob-
tained by solving their eigenvalue problem. The different
layers are then combined in a scattering matrix which can
be used to calculate the reflection, transmission and de-
flection by satisfying field continuity [25, 26]. The reflec-
tivity is then used to calculate the acceleration distance
D as the FOM.

The proposed MMA-TO does not behave well when
optimizing structures made from a high refractive index
material. These materials result in many narrowband
resonance peaks when used in the optimization of a PhC.
A relaxation factor (Q) that adds a non-physical absorp-
tion loss to the material is introduced to cope with this
[20]. The non-physical absorption broadens the high res-
onance response and is analogous to damping in a me-
chanical system. This facilitates convergence of the simu-
lation when using a small @ (e.g. @ =~ 50) but if @ — oo
it becomes a true scattering problem. Additional details
are presented in Appendix A.1.

In this work, a new machine learning enhanced TO
approach proposed by Hoyer et al. [15] is explored in
an attempt to reach better solutions and alleviate some
of the numerical issues encountered in conventional TO.
Hoyer et al. noted that CNNs contain ”deep image pri-
ors” [27], i.e. they can perform tasks in image processing
even before being trained. The authors showed that this
strategy outperforms conventional TO algorithms for a
wide range of mechanical structural optimization prob-
lems by generating simpler structures that have lower
compliance within fewer iterations. In principle these
performance gains should be observed for the lightsail
optimization problem too, despite the physics solver be-
ing based on RCWA simulations (photonics) instead of
structural finite element analyses (solid mechanics).

The working principle of the algorithm is presented in
Fig. 3. The algorithm consists of 4 parts: the CNN, the
post-processing, functional analysis and figure of merit
(FOM) [28]. The optimization consists of a forward and
a backward step. In the forward step, a randomized vec-
tor B is put into the CNN, which outputs an image of
the optimized structure. This image is then filtered, af-
ter which the performance parameters obtained in the
functional analysis can be used to determine the FOM.
In the backward step, the gradients with respect to the
FOM are calculated for all the trainable variables of the
CNN and the elements of 3 so that the L-BFGS [29] opti-
mizer can be used to update them at each new iteration.
This procedure is repeated until the FOM reaches a pre-
set relative tolerance or a maximum number of iterations
is reached.

The original CNN-TO is modified to perform the same
optimization task as the MMA-TO by changing the
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Forward Pass Input
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"
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FIG. 3. (a) The ML based TO proposed by Hoyer consists of
a input vector 3, CNN, post processing step, function analysis
and the calculation of the FOM. Automatic differentiation is
used to calculate the gradients with respect to the FOM for
the tunable variables.(b) The modified NN. One element is
added to the first dense layer, which is split into a separate
branch holding one dense layer consisting of one node.

physics analysis from a finite element method (FEM) to
RCWA and modifying the CNN to add the period of the
PhC (A) as an optimization parameter. Appendix B.1
elaborates on the modifications of the original CNN.

The modified CNN starts with 8 as the input to the
first dense layer. From this point, the CNN is split into
two branches. The first branch, which generates the de-
sign, is a generative CNN based on a U-net architecture
[27]. This branch is split into 32 image channels on which
the following operations are repeated five times: tanh ac-
tivation function, 2D upsampling, global normalization,
and a 2D convolutional layer. The 2D upsampling is
only performed two of the five times. The second branch,
which outputs A, is split into one neuron, followed by an
activation function.

A modified hyperbolic tangent is chosen as the acti-
vation function because bounds can be set on the extra
optimization variable and the initial solution of this vari-
able can be influenced, as detailed in Appendix B.2.

For both TO algorithms, the objective is to minimize
acceleration distance D for a crystalline silicon (c-Si)
lightsail following the 2016 Starshot parameters. The
optimization formulation is presented in Eq. (3) where
x;; is the density field and A is the unit cell’s period, both
of which need to be found such that D is minimized. The
density of c-Si is considered to be 2329 kg/m® and its re-
fractive index is 11 [3]. The intensity I of the laser beam
is 10 GW/m? with a wavelength A of 1.2 um. The laser
is assumed to be a linear polarised plane wave, and the
sail area is 10 m?. The initial solution of the material
distribution 2;; is set to be random, and the initial solu-
tion of the period A is set to be the laser wavelength \.
The maximum period is set to be three times the laser
wavelength. The design space is divided into a 100 x
100 pixel grid. As the base line for this work the recre-
ated optimization from Jin et al. [20] is used. Additional
information regarding the baseline optimization is pre-
sented in Appendix A.4.



min D(R(x;;,A))
xij,A
subject to  V x E = —iwpoH, V x H = iwepeE | (3)

0 <y <1V(,j),
0.1um < A < 3.6um.

III. COMPARISON OF THE TO ALGORITHMS

At first, a mesh convergence study was performed to
determine the required grid size. Interestingly, this in-
vestigation revealed that the CNN-TO methodology has
less mesh dependency than MMA-TO. As discussed in
the Appendix A.3, the subsequent results are obtained
for a grid of 100 x 100 pixel.

The MMA-TO solutions obtained by Jin et al. (2019)
have been replicated by optimizing PhC’s with fixed
thicknesses from 10 nm to 500 nm. Ten different ran-
domization seeds have been used for both the MMA-TO
and the CNN-TO in order to ensure that the results are
not particular for a given (random) initial conditions.
The stopping criterion for the optimization was set to a
relative tolerance of 1076 for the FOM. Furthermore, the
structure is optimized with @ = 50 followed by @ — oo
(i.e. a true scattering problem), for a maximum num-
ber of iterations of 1000 and 100 respectively. For both
methods, the original hyperparameters were used.

The mean number of iterations from these optimiza-
tions are presented in FIG. 4. What stands out from
this figure is that the CNN-TO uses up to 40% fewer
iterations compared to the MMA-TO. FIG. 5a provides
an overview of the obtained D from the different opti-
mizations. The figure shows that the CNN-TO and the
MMA-TO obtain the same results for the best solution
and similar results for the mean obtained D. Representa-
tive best designs are presented in FIG. 5b,c. Notably, the
best designs for ¢ < 30 nm and ¢ > 50 nm are sheets and
strings respectively. A selection of the resulting designs
and their equivalent loss history is presented in appendix
C.1.

Interestingly, the MMA-TO and CNN-TO execute one
iteration in approximately 16 sec. This is unexpected as
the CNN-TO has more than 300 x 10% optimization vari-
ables and the MMA-TO approximately 10 x 10%. There-
fore, it is expected that the method with more optimiza-
tion variables would take more time per iteration, as it re-
quires more arithmetic operations. FIG. 6 shows the rel-
ative and absolute time spent on the gradient, FOM and
other calculations by both TO algorithms. The graph
shows that the MMA-TO spends relative and absolute
more time computing the gradients than the CNN-TO.
Since the libraries Tensorflow [30] for the CNN-TO and
nlopt [31] for the MMA-TO both use Autograd to calcu-
late the gradients, it is likely that the implementation of
the nlopt libary is less efficient and resulting in long op-
timization times. This results in a distorted comparison
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FIG. 4. The mean iterations used for the MMA-TO and the
CNN-TO for 10 different randomization seeds, ¢ is the stan-
dard deviation.
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FIG. 5. (a) Best and mean designs for MMA-TO and CNN-
TO for 10 different randomization seeds, (b) representative
sheet designs for ¢ > 50 nm, (c) representative string design
for ¢ < 30 nm. For each design yellow indicates material and
blue vacuum, o is the standard deviation.

as the iteration time is dependent on the method and its
implementation.

IV. PRACTICAL DESIGN CONSIDERATIONS

A significant problem with the designs presented in
FIG. 5 is that they are not practical to fabricate. Sub-
micron meter thin tethers spanning ¢m or m wide gaps
will inevitably fail. In the previous section, the lightsail
was optimized for a linear polarised plane wave normally
incident on the sail, resulting in the string design. These
strings in the PhC are observed to align with the polari-
sation direction when axially rotated. Therefore, chang-
ing the operating conditions by finding a more suitable
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FIG. 6. Code profiling done for one seed, optimizing a PhC
with t is 107 nm using the MMA-TO and the CNN-TO. The
absolute (a) and relative (b) time the needed of the gradients,
FOM and other computations.

FOM is expected to lead to a different design that does
not have these strings.

In practice, aligning the laser with the lightsail in space
would be a severe challenge. There is a high probability
that the sail is rotated around its normal (¢), tilted with
respect to the incoming laser (6) or even constantly rotat-
ing (FIG. 7a). Appendix D.1 shows that the string design
presented in Fig. 5b will lose its performance when ro-
tated by ¢ as the sail is optimized for only one orientation
of the laser. Therefore, the lightsail requires optimization
for multiple polarization angles.

This alignment issue can be incorporated in the FOM
by taking the mean D for multiple angles of ¢. For the
first optimization, ¢ is chosen to be 0° and 90°, because
any other polarisation angle is a projection of these ori-
entations. Additionally, besides the material distribution
and A, the thickness (t) of the PhC is added as an op-
timization variable to generalize the TO further. The
bounds for t were set to 0.01 pm - 1 pwm and initialized at
0.1 wm. The new optimization formulation is presented
in Appendix D.1. The optimization was performed with
the MMA-TO and the CNN-TO for ten different ran-
domization seeds using the optimization parameters de-
scribed above. FIG. 7 shows that the best result from
this optimization is a two-dimensional PhC consisting of
square holes, which is a similar result to the one reported
in the supporting documentation of Jin et al. (2020)[20].
The acceleration distance D for this PhC, optimized for
two orthogonal polarisation angles and illuminated by a
single plane wave for varying ¢, as well as the reflectivity
of the PhC for ¢ = 0° can be seen in Fig. 7c and 7d,
respectively. This shows that the D varies less than 1%
for the different polarisation directions, indicating that
optimizing for two orthogonal polarisation directions can
reduce the lightsail performance’s dependency with the
incident laser’s polarisation direction. Both TO methods
result in the same best design. However, TABLE I shows

D=3.0 Gm, t=0.1 um
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FIG. 7. Best optimized PhC from 10 different randomiza-
tion seeds for ¢ = 0° and ¢ = 90° considering thickness
t, material density and A as optimization parameters. The
resulting designs have D=3.0 Gm, A=1.06 pm and t=0.10
pum. (a) definition of axis, (b) best design using the MMA-
TO and CNN-TO where yellow indicates is material and blue
vacuum, (c) reflectivity of the PhC for ¢ = 0° and for dif-
ferent wavelengths, where the green area shows the operating
bandwidth of the sail, (d) the acceleration distance D for the
design shown in (b) illuminated by a single polarized plane
wave for varying angle (¢).

TABLE I. Results from the TO of a PhC for two orthogonal

polarization direction. D is the best result, D is the mean
result obtained and 4t is the mean number of optimization
iterations.

*

Method | D [10°m] D[10°m] i)
MMA-TO 3.0 4.4+1.6 1328760
CNN-TO 3.0 3.84+1.3 10474645

that the CNN-TO uses fewer iterations, resulting in a
lower mean D. Remarkably, the difference between the
CNN-TO and the MMA-TO is more pronounced than
what was obtained in FIG. 4 and 5.

In addition, this optimization was also performed con-
sidering different grid sizes. As discussed previously,
the CNN-TO is less mesh dependent than MMA-TO for
problems solved with a fine mesh. The results shown in
FIG. 8 reinforce this finding, as the best and the mean
acceleration distance D for five different randomization
seeds clearly show that for high-dimensional problems
the MMA-TO solution requires long optimization times
and reaches a significantly worst D (a rough estimate is
to avoid > 10* — 10° parameters for MMA-TO in this
context) [31, 32]. The two optimizations performed by
the MMA-TO for a grid with N = 200 and N = 300 did
not converge to a single design. It is likely that the large
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FIG. 8. Obtained best and mean acceleration distance D
for optimization performed with CNN-TO and MMA-TO for
varying design grid size (N x N), o is the standard deviation.

number of variables in combination with the high dimen-
sionality of the PhC problem resulted in a stagnating
optimization.

Notwithstanding the above stated, it should be noted
that both TO methods have been considered with their
original hyperparameters. Therefore, the conclusion that
MMA-TO performs worse than CNN-TO only remains
valid if the dependency of the hyperparameters of both
algorithms is investigated, as they can have a major im-
pact on for specific tasks.

In essence, both TO methods have their strengths and
weaknesses. MMA-TO is a well-known method that is
properly documented and can be easily implemented.
The CNN-TO seems to provide a performance improve-
ment but it is less trivial to implement and to use because
there are many hyperparameters. For example, this in-
vestigation did not consider significant changes in the
neural network architecture. Small changes of the ar-
chitecture or the optimization parameters could lead to
significant impact in performance (although the results
obtained for the proposed architecture showed to be ro-
bust). An example for this is provided in appendix B.3.
Additionally, it is not transparent how changes in the
optimization parameters will affect the outcome, making
modifying the TO a trial and error process. Neverthe-
less, the CNN-TO has generated good designs even for
large design spaces, without changing any of the original
CNN'’s hyperparameters. Therefore, for the final opti-
mization investigations of this work only the CNN-TO
is used, as it shows faster convergence for more complex
problems.

Additional to using the mean acceleration distance for
two orthogonal polarisation directions, multiple angles
of ¢ were considered (e.g. ¢ as 0°, 45° and 90°). Fur-
thermore, the misalignment of the lightsail is considered
by taking the mean acceleration distance from 6 as 0°,
5° and 10° and considering ¢ = 0° and ¢ = 90°. How-
ever, the best designs obtained using this extended FOM
resulted in the same designs as shown in Fig. 7b. This
approach is described in more detail in appendix D.1.

V. HEATING OF THE SAIL

Another practical issue to overcome in the design of
lightsails is the fact that they heat as a consequence of
the laser incidence [3, 8, 33]. Eq. 4 shows the expres-
sion to calculate the maximum temperature (T,q4.) of
the sail during acceleration [33]. In this equation Pjgser
is the power of the laser, agq; the assumed normalized
sail absorption, and A, the area of the sail, ¢; = 2mhc?,
¢o = hefky, kpy is the Boltzmann constant, h is Planck’s
constant, c is the speed of light, €444 is the emissivity of
the sail.
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To prevent the sail from melting, a material with low
optical absorption (o) and high emissivity (¢) in the mid-
infrared spectrum (2.5um — 20pum) is required (8]. The
Agair is the design-dependent parameter inversely related
to the Thpqq, so the heating problem can be incorporated
within the TO by maximizing As,;; while also minimiz-
ing D. Therefore, these two objectives create a trade-off
between the area and the thickness of the PhC to reduce
the mass of the sail. The Agq,; is introduced in the TO
as an area constraint, which is satisfied by using a con-
strained sigmoid transformation as presented in Eq. 5
[15].

such that: A(z) = Ao

In this equation x is the constraint density field, Z is
the unconstrained density field, Ag is the constraint area
fraction and b(&, Ap) is solved through a binary search
on the area constraint.

The optimization was performed considering a param-
eter sweep for Ay from 40%-60%. The best PhC’s and
corresponding mean acceleration distance D are shown
in FIG. 9a, where ¢ = 0° and ¢ = 90° and Ay = 45%.
This design is a two-dimensional PhC following a Cairo
pentagonal lattice [34]. Notably, no designs following this
type of lattices have been reported up to now in the light-
sails literature. The correct T}, for the sail cannot be
determined as there is a lack of precision measurements
for € and « for representative operating conditions for
¢-Si [33, 35, 36]. This design and its resulting properties
are discussed in more detail in appendix D.2.

Optimization with other materials

The previous optimizations were performed for a c-Si
PhC, following the baseline study of Jin et al. (2019).
However, there are other materials that can be good
candidates for this problem, such as MoS,; and SiN
(3,9, 20, 37]. Among these materials, SiN has one of the



highest potentials for the lightsail application because
it has the lowest optical absorption, has been success-
fully adopted for manufacturing different photonic de-
vices, has low density and will not wrinkle due to the
internal stresses generated in the production [5, 38, 39].
Given these favourable properties, the optimization for
two polarisation directions is also performed for this ma-
terial. For reference, SiN has higher density than c-Si
(3100 kg/m?®) and lower dielectric constant (4) [5, 38].

FIG. 9 shows that the best design using SiN follows
the same shape as with ¢-Si. Furthermore, the Area con-
straint did also result in a different design. However,
the design optimized with the area constraint has the
lowest acceleration distance. This shows that the result-
ing designs are dependent on the initial solution and the
constraints. The best design without and with the area
constraint has an area percentage of 36% and 60% respec-
tively, and their T},4, with respect to the laser power is
presented in FIG. 9c. This graph shows that there can
be a 9%-14% reduction in T4, when applying the area
constraint. Incorporating the area constraint in the TO
will result in a higher D. However, depending on the val-
ues for a and ¢, it can be a factor for staying under the
maximum operating temperature. The melting temper-
ature of SiN is indicated with a red line as the maximum
sail temperature in FIG. 9c. In practice, this is not cor-
rect as the material will lose its mechanical properties at
lower temperatures.

In summary, applying the area constraint showed that
introducing multiple operating conditions can drastically
change the lightsail design and that it can be used to gen-
erate thicker features. Additionally, the designs showed
that the optimization was more sensitive to initial solu-
tions when optimizing for SiN than c¢-Si. The optimizer
might get stuck in a local optimum due to the lower
dielectric constant for SiN, leading to lower reflectivity
variation for different designs. This highlights that the
material used in the optimization affects the optimiza-
tion process for this problem. The optimization for the
SiN lightsail is discussed in more detail in appendix D.3.

The most striking result that emerges from the designs
shown in FIG. 9 is their feature size. The idea of the
Starshot initiative is to increase the chance of reaching
Alpha Centauri by sending a fleet of lightsails into space.
Therefore, having a production method to pattern m?
sized sails with high throughput and low cost is crucial
to the mission’s success. At the moment, the cheapest
and fastest nanofabrication method is optical lithogra-
phy. Defining the minimum feature size (MFS) for opti-
cal lithography is hard because it depends on many pa-
rameters, and different production techniques can be ap-
plied to achieve a specific shape. It is reported that stan-
dard optical lithography has a MFS around 500 nm [40].
Knowingly, this method could be easily applied when the
design features are around 1 pm, the designs presented
in FIG. 9 have dimensions that allow fabrication by op-

tical lithography. However, this does not consider the
actual shape of the design, having large and dull features
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FIG. 9. Optimization with area constraint. For each design,
yellow indicates material and blue vacuum. Best design with-
out (a) and with area constraint(b) for ¢-Si with Ao is 45%.
(¢) Tmaz for € is 0.03 [36], constant « of 107° and Ay is 60%
for SiN. (d) best design for SiN with no area constraint, (e)
best design with area constraint for SiN with Ag is 60%.

in the design would reduce the stress concentrations in
the structure, thus making it more resilient to the accel-
eration forces. Including production constraints within
the optimization is essential for further development of
the lightsail.

VI. CONCLUSION

In this work a CNN-TO and MMA-TO is applied to
the lightsail problem, following the 2016 Starshot pa-
rameters. The CNN-TO uses up to 40% fewer itera-
tions than the MMA-TO. Although the CNN-TO is non-
trivial to implement, it is shown that for large and high-
dimensional design problems this method results in high-
performance and non intuitive lightsail designs, without
needing to change the CNN architecture and its hyperpa-
rameters for different problems. However, the MMA-TO
might be marginally better suited than the CNN-TO for
smaller design spaces (< 10? design variables).

Optimizing the lightsail for multiple polarisation an-
gles includes the misalignment of the sail with the laser
in the objective and results in easy to produce two-
dimensional PhC. Furthermore, the study has shown that
the material of the lightsail can have a major impact on
the optimization and the final design of the lightsail. Ad-
ditionally, it is shown that considering operational con-
ditions can significantly change the final design of the
lightsail, and implementing additional constraints (e.g.
production and mechanical constraints) can be essential
for practical designs.
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DISCUSSION &
RECOMMENDATIONS

In this work, the conventional MMA-TO method is compared with a novel CNN-TO al-
gorithm for the design of a lightsail considering practical manufacturing and operation
constraints. The results show that the MMA-TO is marginally better for smaller design
problems, but CNN-TO performs better overall, especially for high-dimensional prob-
lems (fine grid discretizations). Despite MMA-TO being well-documented and simple to
implement, and although its performance can improve when performing a hyperparam-
eter search, the novel CNN-TO outperforms MMA-TO for different problems without
changing the neural network architecture or its hyperparameters. However, the com-
plexity and number of hyperparameters might reveal a limitation for future applications
of the CNN-TO method in different contexts. This has not been investigated in this work.

We conjecture that the CNN-TO method owes its success to the choice of neural net-
work architecture, which in this work was based on the CNN presented in Lempitsky et
al., 2018. This architecture was first proposed in the context of topology optimization
by Hoyer et al., 2019. In this thesis this methodology was adapted to the optimization
of PhC’s for the lightsail problem. A similar hyperparameter search as proposed for the
MMA-TO can be implemented by HyperOpt (Bergstra et al., 2015) to make the CNN more
specific to the problem. However, not having to modify the original CNN to get good re-
sults indicates the generality of the framework.

By changing the application from structural engineering to lightsail design, addi-
tional continuous optimization parameters needed to be added to the CNN-TO. This
work chooses to implement the variable in the CNN with a separate branch that only
uses one neuron. However, there are multiple ways these variables could be imple-
mented. For example, it could be favourable to interlink the extra variable with addi-
tional layers of the CNN or remove it from the CNN and optimize them with a separate
optimizer.

Furthermore, this work also assessed the influence of the initialization on the re-
sults obtained by both methods. For MMA-TO, the initial solution can be easily imple-
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mented as a direct input in the optimizer. For CNN-TO, the initial design and the ini-
tialization of the CNN parameters are inter-dependent. Initialising the CNN to output
a sheet or vacuum initial design can be done in multiple ways and can have a major ef-
fect on the method’s performance. Additionally, initializing the CNN to output a specific
shape would be unpractical as the relationship between all the CNN variables and the
output is non-transparent. A convergence study has shown that the dependency on the
initial solution is higher for the CNN-TO compared to the MMA-TO. Nevertheless, for
both methods, multiple optimizations for different seeds need to be performed to get to
a good solution. Perhaps additional investigations on the impact of initialization on the
optimization process might be relevant for future work.

The final designs produced by the CNN-TO method show that the objective and con-
straints have a significant impact on the design. Multiple objectives or constraints ob-
tained from practical considerations need to be implemented to obtain producible de-
signs that can be tested, allowing for model verification. Only then unforeseen problems
might arise. For future work, implementing production constraints (e.g. minimum fea-
ture size and minimum radius) within the TO might be relevant. Having designs with
~ 1um feature sizes will push the cost down and increase the production speed as stan-
dard optical lithography can be used. The optimization performed for SiN indicates that
optimizing for different materials can significantly change the final design. The different
material properties will result in a different trade-off for the Figure of Merit. Additionally,
it can also change the convexity of the optimization problem. The designs generated
for SiN also showed an increased dependency on the constraints, where the area con-
strained resulted in a design with a lower loss compared to the unconstrained optimiza-
tion. For future work, the effects of material properties on the optimization problem can
be investigated to make the optimizer problem-specific.



ACKNOWLEDGEMENTS

Firstly, I want to thank Dr. M.A. Bessa and Dr. R.A. Norte for their guidance throughout
the whole project. Dr. M.A. Bessa and Dr. R.A. Norte introduced me to the fields of
computational research and photonics, respectively. They helped me approach the work
critically and systematically, contributing to my development as a researcher. The many
discussions we had encouraged me to critically think about the project from different
perspectives and were crucial to getting the work to a higher level. Furthermore, I want
to thank the Bessa and Norte research group members for the exciting discussions and
introduction to new techniques.

Next, I want to thank Dr.Ir. M. Langelaar as the final member of the thesis committee,
for the time and effort put in assessing the thesis.

At last, I want to thank my friends and family that supported me throughout the
project.

45






SETTING UP THE PHC TO

A.1. RELAXATION FACTOR

This appendix elaborates on the working principle of the relaxation factor introduced
in Jin et al., 2020, to help the convergence of the optimization. The TO algorithm pro-
posed in Jin et al., 2020 is a TO algorithm based on the method of moving asymptotes
(MMA) principle. The MMA optimizer is not well behaved when optimizing structures
made from a high refractive index material. These materials result in many narrowband
resonance peaks when used to optimize a PhC. A relaxation factor (Q), which adds an
imaginary absorption loss to the material, is introduced to cope with this. The imagi-
nary absorption broadens the high resonance response. This facilitates the convergence
of the simulation when using a small Q (e.g. Q = 50), but if Q — oo it becomes an actual
scattering problem. Figure A.1 illustrates this effect on the calculated reflectivity spec-
trum for a PhC that is not fully optimized, as this is representative of what the optimizer
encounters in the first iterations.

PhC after 15 iterations Q=50 Q-

00 120 125 130 135 140 145 120 125 130 135 140 145
Alpm] Aum]

(b) (c)

Figure A.1: Reflectivity of a PhC calculated over the operating bandwidth with relaxation factors (Q) of 50 (b)
and infinity(c) for a non-optimized PhC (a). A is the wavelength of the incident light.

It should be noted that when calculating the spectrum with Q — oo that it obtains
sharp features and the reflectivity values are higher than when calculated with a lower
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Q. Thus, the reflectivity spectrum obtained with a Q value of 50 is a smoothened version
of the one calculated with large Q, resulting in a converged optimization. This relax-
ation factor is used when discovering solutions via TO by first optimizing with a low Q
to ensure convergence, followed by a second optimization where Q — oo in the hope of
reaching closer to a true optimum.

A.2. STOPPING CRITERION

A commonly used stopping criterion is the relative tolerance (RelTol), as presented in
Equation (A.1). The relative tolerance for the function evaluation (acceleration distance
D) is taken as the stopping criteria, following Hoyer et al., 2019 and implemented in the
method of Jin et al., 2020.

(fn () = fur1(x)
max(| fn(X)], | fns1 (X)), 1)

RelTol =

(A.1)

For most optimizations the relative tolerance is set to 10~® and the maximum amount
of iterations is set to 1000 and 100 for Q = 50 and Q — oo respectively. This can vary for
more complex optimizations, but in that case the values are explicitly mentioned in the
appropriate location.

A.3. CONVERGENCE STUDY

A convergence study was performed to choose the required grid size for the physics
solver (RCWA). However, TO is often mesh dependent, which means that a different
mesh can result in a different solution. A study was performed for one seed and one
problem (i.e. £ =107 nm). The stopping criterion for the optimization is mentioned in
Section A.2. The pixel grid was N x N where N varies from 40 to 400. The optimization
has a variable mesh size as the period A is an optimization variable and can be deter-
mined by dividing the period by the grid size N. The resulting designs and the number
of iterations are presented in Figure A.3 and Table A.1 respectively.

CNN-TO, seed=0, Varrying mesh size MMA-TO, seed=0, Varrying mesh size
D=1.87, N=40 D=1.88, N=60 D=1.88, N=100 D=2.5, N=40 D=2.02, N=60 D=2.02, N=100
o 1 o ml 0 ml o o ml 0 ml

20 0 50 20 0 50

0 0 0 o 50 0 0 0

=3

50

D=1.88, N=200 D=1.9, N=300 D=1.88, N=400 D=2.02, N=200 D=2.49, N=300 D=3.69, N=400
o 1 o Tl 0 Tl o 1 o Tl 0

1

/

100 150 200 100 200

i

0 100

0 150

=

0 100 0

=

200

(a) Designs from the CNN-based TO (b) Designs from the MMA-based TO

Figure A.2: The resulting designs from CNN-based TO and MMA-based TO, for t is 107 nm and N is 100 till 400.

Figure A.2a shows that the resulting designs from the CNN-TO converge to the same
design. However, the MMA-TO converges to other optima for different grid sizes. So it
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CNN-TO, Loss, seed=0, Varrying mesh size MMA-TO, Loss, seed=0, Varrying mesh size
T T
—— 40x40 pix —— 40x40 pix
10t 60x60 pix 10t 60x60 pix
= 100x100 pix = 100x100 pix
—— 200x200 pix —— 200x200 pix
—_ 300x300 pix —_ 300x300 pix
E — - E . L
5 400%400 pix 5 400x400 pix
o o
] ] L
k] 3 ! L
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v} 50 100 150 200 250 300 350 o 100 200 300 400 500
Step [-] Step [-]
(a) CNN-based TO (b) MMA-based TO

Figure A.3: The resulting designs from CNN-based TO and MMA-based TO, for tis 107 nm and N is 100 till 400.

seems that the CNN-TO is less mesh dependent than the MMA-TO for these optimiza-
tion parameters. Notably, the position of the design does not matter because it is a struc-
ture with periodic boundary conditions. The loss history for both methods is presented
in Figure A.3. It should be noted that all optimizations were terminated by reaching the
minimum relative tolerance. The number of iterations and the obtained acceleration
distance D are presented in Table A.1. The CNN-TO shows a clear trend in which the
larger problems require more iterations than the smaller problems. However, this is not
the case for the MMA-TO as not all the designs generated are clear straight line. This can
be solved by decreasing the relative tolerance for the optimizations considering a large
design space, as the difference between iterations becomes less and more iterations are
required to fully converge.

Table A.1: The acceleration distance (D) and number of iterations (it.) with varying mesh sizes for t is 107 nm
and one randomization seed.

N [pix] | MMATO CNNTO
D It | D I
(Gm] [-] | [Gm] [-]
40 249 501 | 1.87 79
60 202 235|188 93
100 202 336 | 1.88 129
200 202 270 | 1.88 142
300 249 345 | 1.90 353
400 369 202 | 1.88 315

A.4. BASELINE OPTIMIZATION

The optimization from Jin et al., 2020 is recreated to be used as a baseline. Unfortunately,
not all optimization parameters were provided, making recreating the work non-trivial.
The original optimization and replicated work is presented in Fig. A.4. These results are
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obtained by taking the best optimization from 10 different seeds.

The optima differ between 1% and 9% when compared to data provided in the pub-
lished article. These variations can result from a reading error from the original data and
different optimization parameters not disclosed in the publication. However, the varia-
tion is considered acceptable. In this work, the recreated data are used as the baseline
and the method is referred to as MMA-TO. Notably, the solution for the thickness of 30
nm diverges significantly. In the original TO, the optimization is initialized as voided
material (vaccuum), a uniform slab of material or a random distribution. In this work,
it is chosen that for simplicity the designs are only optimized from random distribution.
The original optimum can be reached when using an alternative initial solution.

Reproduced optimization ferm Jin et al., 2020

N I LA Jin et al, 2020
[l [ ] in et al ,
N 08 / 4 Reproduction
. m* (Im) (1) W / nof 4
_ Olslabll 1D grating PhC
g6 A i 0.6 A\. z T B0 A 1
2 Filling ratio y % 6o
34... \ w 04 p % a
T, = ' 40 e ,
| 4 p " r (d)
20 ts
:\\ 13\0 100 1000
(a) Thickness (nm) (b) (© tinm]

Figure A.4: (a) The original optimization performed in Jin et al., 2020 for the unit-cell of a lightsail made of
crystalline silicon, following the Starshot parameters. (b) The related designs to the best optima found in the
original optimization. (c) The best results form the replicated optimization obtained from 10 different seeds.
(d) representative best design for t = 50 nm.



IMPLEMENTING THE CNN-TO

B.1.IMPLEMENTING DESIGN VARIABLES IN THE CNN-TO

The CNN architecture proposed in Hoyer et al., 2019 is modified to accommodate the pe-
riodicity (A) of the PhC in the optimization, which is a continuous variable that should
not benefit from processing through convolutional layers. Figure B.1 presents two dif-
ferent neural network architectures that were considered.

input input
Dense layer (Nx,Ny,1) Dense layer (Nx,Ny,1)

Reshape Reshape

Dense layer (128,1)

- Dense layer (10,1) N
Upsampling 2D Upsampling 2D
5x 5x
Global normalisation Dense layer (1,1) Global normalisation Dense layer (1,1)
l 2D convolutional layer ‘ ‘ Activation function ‘ l 2D convolutional layer ‘ ‘ Activation function ‘
Output 1 l Output 2 Qutput 1 l Output 2
Image[Nx,Ny] A[1,1] Image[Nx,Ny] A[1,1]

(a) CNN architecture A. The first dens layer is fully connected (b) CNN architecture B. One element is added to the first
to a separate branch holding dens layers to implement the pe-  dense layer, which is split into a separate branch holding one
riodicity. dense layer consisting of one node.

Figure B.1: Two different implementations for the periodicity within the CNN.

In Figure B.1b the tensor obtained from the first dense layer is split in two, where
one of the parts is just a scalar — a (1,1) tensor — that is used as an input to the new
dense layer that predicts periodicity (A). The other part is a tensor that continues to
the original architecture. This solution is called Architecture B (Figure B.1b). A different
approach is shown in figure B.1a, where the output tensor from the first dense layer is
used as input to three other dense layers to obtain A (Architecture A). The benefit of
architecture B is its simplicity as it does not introduce many new variables. However,
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*
Table B.1: The acceleration distance form the best optimization (D), its variance (sz) and the average amount
of iterations (i) for 3 different seeds for CNN architecture A and B. The absolute function is the activation
function.

Architecture A Architecture B
t [nm] D [Gm] s? il-] D [Gm] s* i[]
10 20.9 0.0 24 20.9 0.0 23
20 10.5 0.0 24 10.5 0.0 23
30 8.41 0.0 22 8.40 0.0 23
50 8.03 0.0 26 2.27 0.0 247
80 2.04 0.03 406 | 1.92 0.0 220
107 2.35 0.04 424 | 1.87 0.0 180
300 32.1 0.3 501 | 0.0 1.2 407
500 2.91 162 336 | 2.81 0.0 314

using architecture A could result in better predictions because it is densely connected to
the first dense layer, which increases expressivity of the network. It should be noted that
a thorough architectural search has not been performed as this was not the main focus
of the work. Table B.1 shows the results from the optimization of a PhC to compare the
different architectures. It should be noted that doing this experiment for three seeds can
only give an indication of the performance for the methods. The table shows that for
the thicknesses 10 nm to 30 nm, both methods result in the same optimum. However,
for the other problems architecture B results in a better design and has less variance for
the best design. Furthermore, the amount of iterations used by the optimizer to find the
optimum using architecture B is less for most of the problems. Therefore, architecture B
is chosen to be used for the rest of the work.

From the experiment a more general formulation can be constructed for adding scalar
design variables to the CNN. A schematic overview is presented in figure B.2. This figure
shows that to accommodate a new variable a new branch can be generated within the
CNN.

B.2. CHOICE OF ACTIVATION FUNCTION

The choice of the activation function within the CNN can have a significant impact on
the output. Unfortunately, finding an appropriate activation function is non-trivial as
the interaction between the activation function and the CNN is hard to predict. The
activation function can be used to transform the values from the input of the neurons of
the CNN, which can be any positive or negative number, on to a final output value.

In this work, the proposed CNN from Hoyer et al., 2019 is modified to include the pe-
riod (A) of the PhC as an optimization parameter. In Jin et al., 2020 this design variable
is constrained (0 > A < 3.6um). These constraints can be reproduced by using appro-
priate activation functions within the CNN. Since A needs to be positive, this can be
achieved using activation functions such as the RELU, ELU and absolute (Abs) function
because they ensure that is greater than zero, as shown in Figure B.3. The tanh function
can be implemented to additionally include a maximum constraint. Therefore, different
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Input
P Vector B (128+v,1)
Dense layer (filt.+v,1)

Vs Va
¥
| Reshape | | Dense layer (1,1) | |Dense layer (1,1) |
| tanh activation | Activation function | | Activation function |
Upsampling 2D Output 2 J Output n
5X
Vi [1,1] Va[1,1]

Global normalisation
2D convolutional layer

Output 1 Image[Nx,Ny]

Figure B.2: Generic example for adding extra design variables to the CNN. Filt. is a predefined number of filters
in the CNN, v is the amount of extra variables and g is the activation function used as an input.

activation functions for the periodicity output were considered by performing optimiza-
tions for three different seeds and comparing the outcomes. It should be noted that
using three seeds for this comparison will only give an indication of the performance
difference. Note that the ELU and tanh functions were translated vertically to ensure the
output is greater than zero (see Figure B.3).

The best acceleration distance D and lowest variance from these optimizations are
presented in Table B.2. It can be seen that the tanh function resulted in the worst ob-
tained optima, and the ReLU and ELU and Abs functions obtained similar best designs.
From these four activation functions, the Abs resulted in the best designs with the least
variance. However, this function can not impose a maximum to the design variable.

ReLU ELU Abs(x) tanh(x)
4 4 4 4
2 2 2 2
o 0 o ]
-2 -z -2 -z
-2 2 -2 2 -2 2 -2 2
y=0 ifx=0 y=ale*-1) ifx=0 y=-x ifx=0 y=tanh(x)
y=x ifx>0 y=x ifx=0 y=x ifx=0

Figure B.3: Four different activation functions used to implement periodicity in the TO.

Because the Abs did not comply with all requirements, the tanh is modified (tanh*)
to be more suitable for the optimization problem. Due to the modifications, the tanh*
not only allows for the output to be greater than zero and the constraining of the output,
but it also allows to influence the initial solution by transposing it in the x-direction. The
tanh* is presented in Equation (B.1). In this equation, ¢ is the difference between the
maximum and minimum values. a is defined in such a way that the middle part of the
function is 45° with the y-axis. x is the initial solution. Figure B.4 shows an example
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*
Table B.2: The best (D) optimization and the variance (sz) from 3 different seeds for different activation func-
tions. tanh* is a modified hyperbolic tangent.

tanh ReLU ELU Abs tanhx*
tm] | DIGm] s> | D[Gm] s | D[Gm] s* | DIGm] s | D[Gm] s
10 20.9 0.0 | 209 0.0 | 209 0.0 | 20.9 0.0 | 20.9 0.0
20 10.5 0.0 | 105 0.0 | 105 0.0 | 105 0.0 | 105 0.0
30 8.41 0.0 | 841 0.0 | 841 0.0 | 8.40 0.0 | 8.4 0.0
50 2.52 0.02 | 2.27 73 | 230 20 | 2.27 0.0 | 2.27 0.06
80 2.28 0.01 | 1.92 95 | 1.92 0.3 | 1.92 0.0 | 1.92 0.3
107 | 228 0.01 | 1.87 12 | 187 12 | 1.87 0.0 | 2.01 0.2
300 | 2.85 0.06 | 2.50 211 | 250 26 | 2.28 17 | 2.28 0.01
500 | 2.75 0.01 | 2.81 204 | 2.81 0.0 | 2.82 0.0 | 2.44 0.03
tanh m

Figure B.4: Example of modified tanh (tanh*) with maximum and minimum set to 0.5 and 5 respectively and
the initial solution (xg) to 1.2.

of the implementation of tanh*. In this example, minimum and maximum are set to 0.5
and 5 respectively, and the initial solution to 1.2.

6=Max—Min (B.1a)
a=tanh™! (w —1) (B.1b)

1 2
y=56(tanh(?x+a)+l)+Min (B.1¢)

The results obtained by the transformed tanh* are also included in Table B.2. The
table shows that using Abs or tanh* results in comparable results. However, tanh* is
chosen as the activation function as it allows the most control over the design variable
by imposing the necessary constraints.

B.3. EFFECT ON OUTPUT

This section will give an example of the variability of the CNN-TO with the optimization
parameters. The optimizations presented in Figure B.5a and Figure B.5b have the sinh
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intermediate density penalization value of 1 and 3 respectively, to promote a binary de-
sign (Deaton and Grandhi, 2014). The intermediate values between zero and one are pe-
nalized more with a high penalty value. In the optimization, the other optimization pa-
rameters and the MMA-TO are identical. The figures show more than 20% difference in
the number of optimization iterations between each CNN-TO. The large penalty makes
it difficult for the TO to flip pixels properly as the penalty is impeding smooth transition.

mean it with £¢ interval for MMA-TO and CNN-TO mean it with £¢ interval for MMA-TO and CNN-TO

mm mean MMATO mm mean MMATO
mean CNN-TO mean CNN-TO

700

it. [-]

10 20 30 50 80 107 300 500
t[nm] t[nm]

(a) Mean number of iterations with penalty of 1. (b) Mean number of iterations with penalty of 3.

Figure B.5: Two different implementations for the periodicity output of the CNN






DESIGNS AND LOSS FUNCTIONS
FROM OPTIMIZATION RUNS

C.1. OPTIMIZATION OF PHC WITH FIXED THICKNESS

REPRESENTATIVE DESIGNS

The results from the experiments to compare the performance of the CNN-TO and the
MMA-TO are presented below. Figures C.1 to C.4 present the loss functions and the re-
sulting designs for 4 different seeds for the CNN-TO and MMA-TO. In the experiment 10
seeds were used. The presented graphs are representative for the other solutions gener-
ated from the other seeds. The results generated by the CNN-TO are shown in Figures
C.1 to C.2 and the results from the MMA-TO are presented in Figures C.3 to C.4.
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C. DESIGNS AND LOSS FUNCTIONS FROM OPTIMIZATION RUNS
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Figure C.1: Loss functions of optimization with fixed thickness and varying seeds. Optimization was executed
with the CNN-TO and architecture B.
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Figure C.2: Loss functions and designs of optimizations with fixed seed and varying thickness. Optimization
was executed with the CNN-TO.
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Figure C.3: Loss functions of optimization with fixed thickness and varying seeds. Optimization was executed
with the MMA-TO.
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Figure C.4: Loss functions and designs of optimizations with fixed seed and varying thickness. Optimization
was executed with the MMA-TO.







PRACTICAL CONSIDERATION FOR
THE LIGHTSAIL OBJECTIVE

D.1. ALIGNMENT WITH THE LASER

Fig. D.1 shows the resulting best design when optimizing a PhC for only one polarisa-
tion direction of the incident laser. The FOM need to be reconsidered as the design will
lose its performance when rotated around its normal (¢p). Furthermore, the string de-
sign is not practical to fabricate. These issues have been addressed by incorporating two
different alignment directions (¢ and 0) in the FOM. First, the alignment with the laser
beam’s polarization (¢) is considered because the string design result from the laser be-
ing a linear polarised plane wave. The polarisation is incorporated by taking the mean
acceleration distance D for two perpendicular polarization directions (e.g. ¢ is 0° and
90°). Additional, the thickness (t) of the PhC is added as an optimization variable to gen-
eralize the TO further. The new optimization formulation is presented in Equation (D.1).
The number of integration points used for calculating the reflectivity over the operating
bandwidth was changed from 24 to 12 to keep the computational time for the objective
the same while adding an extra polarisation direction. The optimization was performed
with both number of integration points. Although the final obtained acceleration dis-
tance is slightly lower (around 0.4 Gm) when using 12 integration points, the optimizer
resulted in the same optimal designs. This was chosen to be acceptable and in the follow-
ing optimizations, 12 integration points are used for the reflectivity calculations, except
when explicitly specified differently.

gljllx D(R(x;j,M)

subjectto  VxE=-iwyoH, VxH=iweyeE ,
O0=x;;=<1 Y(i,Jj),
0.lum=A<3.6um.

(D.1)

0.0lum=t=<1lum.
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Figure D.1: Best design resulting form TO of PhC for one polarisation direction. (a) Best design, where yellow
is the material and blue vacuum. (b) Reflectively of the PhC for different wavelengths, green area indicates the
operating bandwidth. (c) Acceleration distance of the PhC for different polarisation directions (¢).
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Figure D.2: Axis definition for the PhC.

This resulted in a two-dimensional PhC with square holes. In practice, the normal
of the plane could also be rotated by 6 with respect to the incoming laser. This was
included in the FOM by taking the mean of D for six different illumination directions.
For each orientation of ¢ three angles for 8 were applied (8 is 0°, 5°and 10°). Additionally,
a weighted average was applied for 6 being 0°, 10°, and 20° with weights of 5, 3 and 1,
respectively. However, incorporating the angle 6 did not result in new best designs. This
could result from the way the reflectively is considered in the simulation. For the FOM
the total reflected light from the PhC is calculated and the direction of the reflected light
is not considered. In the literature the direction of the reflected light is considered in the
FOM to generate a restoring force when the sail is perturbed from the ideal position (Ilic
and Atwater, 2019; Salary and Mosallaei, 2020).

D.2. COOLING INCORPORATED IN OPTIMIZATION

The area of the sail is the geometric parameter influencing the maximum temperature
Tmax of the lightsail, as it is inversely related. The cooling is included in TO by apply-
ing an area constraint. For separate optimizations the area constraint (Ay) was varied
from 40%-60%, the other optimization parameters were not changed. The best design
from this optimization is presented in Figure D.4a, which has an Aj of 45% — this is the
maximum value that still converged to a practical design. This design follows a cairo
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Figure D.3: Different designs proposed in the literature. (a) Ilic and Atwater, 2019, (b) Kudyshev et al., 2021, (c)
Jin et al., 2020, (d) Myilswamy et al., 2020, (e) Brewer et al., 2022

pentatonic lattice structure and in literature no equivalent design has been reported.
Figure D.3 provides an overview of the commonly proposed designs, consisting out of
holes that follow a pentagonal or square lattice or a meta grid consisting out of strings
with varying thickness. The maximum temperature of the sail can be calculated with
Equation (D.2) (Brewer et al., 2022). In this equation P;,s.; is the power of the laser,
@s4i; the assumed normalized sail absorption, and Agg;; the area of the sail, ¢; = 2mhc?,
¢y = helky, ky is the Boltzmann constant, h is Planck’s constant, c is the speed of light,
€5qi1 is the emissivity of the sail.

Mo esait()
Piaser Xsail = 2A5q4i1 N ﬁ% da (D.2)
0

eATmax —1

Figure D.4 shows the maximum temperature T}, . for different power outputs of the
laser. For the calculations € and « are assumed to be constant. Multiple curves for dif-
ferent € values are presented because the variation of this property for different param-
eters is not well documented in the literature. € is a function of the material thickness,
temperature and will vary for different wavelengths (Van Zwol et al., 2015; Zhang et al.,
2020). Another uncertainty is the value for a as there is a lack of precision measure-
ments for representative operating conditions Brewer et al., 2022. So, the real value for
Tmax of the c-Si can not be determined. However, depending on the values of € and «a
the graph shows that it could be the difference of staying under the maximum operating
temperature. There are two additional concerns regarding equation D.2. In this equa-
tion a and Pj,g., are assumed to be constant which is incorrect because a varies with
the wavelength of the light (Chen et al., 2017) and the absorbed power will vary with the
reflectivity of the sail. A large part of the laser light will be transmitted though the PhC
and not be absorbed because the PhC does not have a 100% reflectivity for it operation
bandwidth. In Figure. D.4c the melting temperature of c-Si is shown as the maximum
sail temperature. In practice, this is not correct as the material will lose its mechanical
properties at lower temperatures.
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D.3. OPTIMIZATION FOR SIN PHC

In order to consider an alternative material to fabricate the lightsail, additional opti-
mizations for two polarisation directions were also performed for SiN, instead of c-Si.
Notably, these optimizations were more prone to be influenced by the initial solution
than the ones for c-Si. If the initial solution used for c-Si is considered, the optimizations
for SiN led to square hole designs as shown in Figure D.5¢,d. The square hole designs
resulted in a higher average acceleration distance for ¢p = 0° and ¢ =90 °.

However, when setting the initial solution for A to twice the wavelength and ¢ to 50
nm the design resulted in a semi-circle designs presented in Figure D.5a,b. Although
there has not been an intensive study for the effect of the initial solution on the final
design, these results show that the optimization behaves differently for SiN than for c-Si
as the result of the difference in density and dielectric constant (k) (Table D.1). The lower
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Table D.1: Material properties c-Si and SiN

plkgim®l «
SiN | 3100 4 Moura et al., 2018
c-Si | 2329 11 Jinetal, 2020

x makes the difference in reflectivity between the SiN designs less than compared to c-Si.
The optimization process also has worse convergence because there is less difference in
acceleration distance between the different designs.

The designs shown in Figure D.5a,b are not symmetric, which could lead to a vary-
ing reflectivity for different polarisation angles. Figure D.6 shows the reflectivity and
the acceleration distance D of both designs for a single incident plane wave for varying
polarisation angels ¢. It can be seen that these designs have a highly fluctuating reflec-
tivity within the operating bandwidth. Additionally, the acceleration distance for these
designs is significantly less for polarisation direction other than ¢ = 0° and ¢ = 90°. Strik-
ingly, the reflectivity and the acceleration distance of the square hole designs fluctuate
less than the semi-circle designs, resulting in an overall lower acceleration distance over
the whole range from ¢ = 0° to ¢ =90° (Figure D.7). The performance of other designs
with different area constraints can be compared over the whole range of ¢. This resulted
in the new best design presented in Figure D.8, which has the lowest mean acceleration
distance for all angles of ¢. Strikingly, this design has even a lower acceleration distance
than the square hole design, optimized without any area constraint. This indicates that
the optimizer found a local optimum when no area constraint was applied.

Additionally, the highly fluctuating reflectivity spectrum presented in Figure D.6 would
require a higher number of integration points to prevent an aliasing effect. The differ-
ence between the number of integration points, as presented in Figure D.9, is much more
significant for the SiN designs than for c-Si. An additional optimization was performed
using the mean acceleration distance of ¢ is 0°, 45°, 90° and 135°. Furthermore, 24 in-
tegration points were used for the reflectivity calculation to address the concerns men-
tioned above. These additional optimization parameters resulted in the design shown in
Figure D.10, which is a two-dimension PhC having almost circular holes. A similar study
was also performed for c-Si. However, this did not result in a different design, because
the difference in acceleration distance for varying ¢ of a single plane wave was already
less than 1%. This design had the benefit of having round features and thick tethers re-
sulting in less stress concentrations.




68 D. PRACTICAL CONSIDERATION FOR THE LIGHTSAIL OBJECTIVE

D for single plane wave with varying ¢ 10 0

2 \J
08 50
3
_ 06 0 50
3 o)
g > z
a 04
5
02
20
T 0.0 T .
00 02 04 06 08 10 08 10 12 14 16 18 20
(a) #[rad] (b) Aum]
D for single plane wave with varying ¢ 10 3
2 06 0 50

04

02

D[10°m]
5 B
R[-]

00 02 04 06 08 10 08 10 12 14 16 18 2
(c) #lrad] (d) Alum]

o

Figure D.6: Best optimized SiN PhC from 5 different randomization seeds for ¢ = 0° and ¢ = 90° considering
thickness ¢, material density and A as optimization parameters. The period A is initialised as twice the laser
wavelength. (a,c) Reflectivity of the PhC for ¢ = 0° and for different wavelengths, where the green area shows
the operating bandwidth of the sail, (b,d) the acceleration distance D for the design shown in the upper right
corner (yellow is material, blue is vacuum) illuminated by a single polarized plane wave for varying angle (¢)
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Figure D.7: Best optimized SiN PhC from 5 different randomization seeds for ¢ = 0° and ¢ = 90° considering
thickness ¢, material density and A as optimization parameters. The period A is initialised as the laser wave-
length. (a,c) Reflectivity of the PhC for ¢p = 0° and for different wavelengths, where the green area shows the
operating bandwidth of the sail, (b,d) the acceleration distance D for the design shown in the upper right cor-
ner (yellow is material, blue is vacuum) illuminated by a single polarized plane wave for varying angle (¢)
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Figure D.8: Best optimized SiN PhC from 5 different randomization seeds for ¢ = 0° and ¢ = 90° considering
thickness t, material density and A as optimization parameters and an area constaint of 60%. The period A is
initialised as twice the laser wavelength. (a) Reflectivity of the PhC for ¢ = 0° and for different wavelengths,
where the green area shows the operating bandwidth of the sail, (b) the acceleration distance D for the design
shown in the upper right corner (yellow is material, blue is vacuum) illuminated by a single polarized plane
wave for varying angle (¢)
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Figure D.9: The acceleration distance D for the design shown in the upper right corner (yellow is material, blue
is vacuum) illuminated by a single polarized plane wave for varying angle (¢), using 12(a) and 24(b) integration
points.
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Figure D.10: Best optimized SiN PhC from 5 different randomization seeds for ¢ is 0°, 45°, 90° and 135° con-
sidering thickness t, material density and A as optimization parameters and a area constraint of 60%. The
period A is initialised as the laser wavelength. best design using the CNN-TO where yellow is material and
blue vacuum, (a) reflectivity of the PhC for ¢ = 0° and for different wavelengths, where the green area shows
the operating bandwidth of the sail, (b) the acceleration distance D for the design shown in the upper right
corner (yellow is material, blue is vacuum) illuminated by a single polarized plane wave for varying angle (¢)
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