
CFD-DEM Coupling for
Systems of Fluid and

Non-Spherical Particles
by

Davide Fantin
to obtain the degree of Master of Science in

Applied Mathematics

at the Delft University of Technology,

to be defended publicly on Friday November 9, 2018 at 13:30.

Student number: 4746880
Project duration: November 1, 2017 – October 31, 2018
Thesis committee: Prof. dr. ir. C. Vuik, TU Delft, supervisor

Prof. dr. ir. A. W. Heemink, TU Delft
Dr. ir. F. Bos, Dynaflow Research Group

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This Thesis describes and presents the MSc project performed in the framework of MSc Computer Simulation
for Science and Engineering at TU Delft and TU Berlin.

The research was carried out at Dynaflow Research Group. I would like to thank Dr. ir. Frank Bos for the
opportunity to work side by side with experienced engineers, researchers and developers. His interest in the
project and his ideas for new directions and implementations were trilling challenges that kept the fire of the
project burning. I would like to thank all the people that worked around me for their professionalism and
their constant willingness to sharing ideas and feedback on the research. Sometimes, interesting talks and
discussions on technical topics prevented us to go back home at reasonable time.

I would like to thank Prof. dr. ir Kees Vuik (TU Delft) for the constant supervision and careful reading of all
my intermediate reports. His help was fundamental, especially in the critical phases of the project. I always
found support in our discussions and I am thankful for his positive attitude when commenting satisfactory
results as well as aspects to improve.

Not only am I grateful to Prof. Kees Vuik for his supervision, but also for his constant work with Prof. Rein-
hard Nabben (TU Berlin) in the organization of the Double Degree MSc programme in Computer Simulation
for Science and Engineering. Thanks to their vision and their efforts, I had the opportunity to attend courses,
lessons and seminars from two European high-level universities, obtaining two degrees (MSc Applied Math-
ematics at TU Delft and MSc Scientific Computing at TU Berlin) in one effectively structured program. Living
abroad enlarging the personal horizons, exploring cultures, embracing the German and the Dutch lifestyles,
meeting people from diverse contexts are the most astonishing experiences that I have lived so far. This was
possible only because of their constant work in the organization of the course of study in a flexible but effec-
tive way.

My deepest gratitude goes to my family. I can honestly say that my achievements could not be obtained
without their full support, in the happiest but especially in the darkest moments. I will never thank them
enough for their help and also for their attempts to understand my needs to study and work a little bit farther
from home than they expected. I am thankful for the freedom that they always gave me, their unconditional
support and trust.

Finally, I would like to sincerely thank my friends: regardless of the distance, with long talks or just a few
words, they supported me while dealing with the difficulties of life, supporting me in the tough moments and
sharing with me the shining ones.

I like to consider this Thesis as a material realization of a process that started years ago, when I put my first
foot in a school building. I would never expect to live all these extraordinary experiences and to have the
opportunity to embrace all these exciting challenges. Hence, my last thank goes to the would-never-expect
things in life and the astral conjunctions that align apparently random points in marvellous paths.

Davide Fantin
Delft, November 2018

iii

Contents

Introduction 1

I Theoretical Foundation 3
1 Incompressible Fluid Dynamics 5

1.1 Derivation of Incompressible Navier-Stokes equations . 5
1.2 OpenFOAM . 6

2 Particle/Particle interactions 9
2.1 Discrete Element Method . 10
2.2 HADES . 14
2.3 LIGGGHTS . 16
2.4 HADES vs LIGGGHTS . 17

3 Coupling 19
3.1 Modeling of Fluid/Particle Forces . 19

3.1.1 Drag forces. 19
3.1.2 Lift forces . 21
3.1.3 Total interaction . 21

3.2 General issues of Coupling . 21
3.2.1 Time step choice . 22
3.2.2 Contact Detection Algorithm . 23

3.3 Resolved CFD-DEM. 24
3.4 Unresolved CFD-DEM . 26
3.5 Resolved/Unresolved Coupling . 29
3.6 Current implementations . 30

ResearchQuestions 33

II Developments 35
4 NumericalMethods for Symplectic Hamiltonian Systems 37

4.1 Numerical Methods . 37
4.1.1 Classical Numerical Methods . 37
4.1.2 Runge-Kutta Methods . 39
4.1.3 Partitioned Runge Kutta methods . 40

4.2 Symplecticity of Hamiltonian Systems . 41
4.2.1 Hamiltonian Systems . 41
4.2.2 Simplecticity . 42

4.3 Symplectic Numerical Methods . 43
4.4 Convergence of Methods . 43
4.5 Final Remarks. 49

5 OpenFOAM-HADES Files Coupling 51
5.1 Description of CFDEM framework . 51
5.2 New contributions . 55
5.3 Compiling. 56
5.4 Development of CFDEM structure . 57
5.5 Improvements in HADES . 58
5.6 Infrastructures implemented . 60
5.7 Run a test: example . 62

v

vi Contents

6 Improvements onOpenFOAM-HADES Coupling 67
6.1 HADES not restarted . 67

6.1.1 Structure of HADES: Jem and Jive . 69
6.1.2 Jive Modules and Models. 69
6.1.3 Implementation . 70

6.2 CFD Force from second CFD time step . 71
6.3 CFD Force frozen inside a CFD loop . 72
6.4 Not fixed DEM time step . 73
6.5 Allow CFD parallelization . 73

7 Non sphericity 75
7.1 Description of Possible Approaches . 75

7.1.1 Ellipsoids or Superellipsoids . 75
7.1.2 Multisphere . 77
7.1.3 Comparison between the methods and their applicability to DEM. 77
7.1.4 Current implementations . 79

7.2 Development of Multisphere . 80
7.2.1 Algorithm for Multisphere Approximation . 80
7.2.2 Clusters of particles in HADES . 87

III Tests and Applications 91
8 Test of Implementations 93

8.1 Discharging of Cubes . 93
8.2 Flow around a square cylinder . 98

9 Applications 109
9.1 Domino in Water . 109
9.2 Falling Rocks on the Sea Bed . 114

Conclusions and Future Directions 121
Bibliography 125

Introduction

Mathematical models and their simulations are becoming more and more fundamental in both industrial
and academical environments. Thanks to the increasing computational capabilities, it is nowadays possible
to simulate industrial and physical processes, exploring their evolution in time without performing them in
real-life.

The field of numerical simulations has an extremely wide set of possible applications. Engineering problems
can be faced with the help of computer simulations, which can provide fast and reliable results in complex
situations. Design products optimizing specific physical properties, exploring scenarios, predicting vulnera-
bilities are just a few of the cases in which a numerical approach can be efficient and low-cost. Applications
of simulations have been developed in a huge variety of fields, both in fundamental academic research and in
industrial applications, e.g. petrochemical, marine, pharmaceutical and aeronautical industries. The main
feature that numerical simulations provide is optimal and low-cost development of products and services.
To this purpose, simulations of fluid/fluid, fluid/solid particles systems are essential tools and require deep
research to obtain realistic results.

Using a "mathematical" perspective, it is possible to claim that at a first order approximation the entire world
is based on fluids/particles interactions.
This is the reason why one of the most challenging fields is the study of fluid/particles systems, which has ap-
plications in uncountable different contexts. Due to the extreme importance of simulations of fluid-particle
systems, in the last decades academical and industrial researches focused more and more on the attempt to
develop efficient numerical approaches to be used in all kinds of applications. Numerical methods and their
implementations are continuously improved and the literature on mathematical modeling and numerical
simulations has become extensive. Even if progress has grown exponentially over the years, a lot of work is
still to be done, both in the modeling and in the simulation.

In fluid-particle systems, the fluid behavior is described by fluid dynamics, more precisely by Navier-Stokes
equations and in this work it is simulated through methods of Computational Fluid Dynamics (CFD), whereas
the dynamics of discrete solids or particles is described using Newton‚s law on each particle and, in this work,
simulated using Discrete Element Method (DEM).

The aim of this work is to improve coupling capabilities between an open source CFD toolbox (OpenFOAM)
and DEM. The current implementation in OpenFOAM already includes a rudimentary interaction between
the modeled particles themselves and between the particles and flow, but it has significant limitations on
the size and shape of the modeled particles. In fact, particles are only approximated as spheres, but the
most problematic aspect of the implementation is the ratio between particles and the fluid grid. An efficient
framework developed recently is CFDEM, which couples OpenFOAM and LIGGGHTS, a particle solver. We
will use this architecture to couple OpenFOAM and HADES, a particle solver developed by Dynaflow Research
Group. Afterwards, we will extend the capabilities of the software implementing a multisphere approach to
handle non-spherical particles and so generalize the method to situation closer to reality.

We divided the project report in three parts: Theoretical Knowledge, Implementation and Applications.

In part I, we give an introduction to the field of fluid-particle simulation. A literature study has been car-
ried out to develop the necessary basis to understand the state-of-the-art approaches adopted to simulate
fluid/particle systems. The literature study was performed in the first three months of the project duration.

Firstly, in Chapter 1 the equations of incompressible fluid dynamics are presented and derived. A brief intro-
duction to the open source software OpenFOAM is given. Then, in Chapter 2 the Discrete Element Method
for modeling particle/particle interactions is described and two software packages for DEM simulation are
presented: HADES and LIGGGHTS, respectively. In Chapter 3 the state-of-the-art techniques for the cou-
pling between CFD and DEM are described in detail. Finally, in the last Chapter of the part, some research
questions are stated. The successive part of the Thesis will deal with the proposal of solutions to these ques-
tions.

1

2 Contents

The main part of this Thesis report is part II, where we describe new implementations and improvements of
the current software features. In particular, in Chapter 5 we describe in detail the CFDEM framework and
we substitute the particle solver (from LIGGGHTS to HADES) describing the infrastructure developed for the
purpose. Afterwards, in Chapter 6 we describe some improvements of the coupling code, managing to not
restart the particle solver at each iteration and allowing CFD parallel computations. In Chapter 7 we give an
overview of the possible strategies to generalize the code for non-spherical objects, we select the multisphere
approach and we implement in HADES, extending the particle solver features. Two tests to verify the new
software capabilities are performed and discussed in Chapter 8.

Finally, in part III, we propose in Section 8 two tests to validate the newly developed features and in Sec-
tion 9 two possible applications of the new features and we discuss their accuracy in solving academic and
industrial sample cases.

The last Chapter is dedicated to a summary of the results of the project and to state possible directions for
future researches and developments.

I
Theoretical Foundation

3

1
Incompressible Fluid Dynamics

In this chapter fluid flows are considered. We briefly introduce the equations that arise from incompressible
fluid dynamics. The Navier-Stokes equations are derived under the hypothesis of incompressibility. Then,
OpenFOAM, an open source software package for fluid simulations, is introduced.

1.1. Derivation of Incompressible Navier-Stokes equations

Derivation of Navier Stokes equations appears in every monograph dedicated to fluid and flows, therefore in
this report only main ideas are presented. We follow the derivation of the equation in [28]

The first step in the derivation of Navier Stokes equations is to apply the principle of mass conservation to a
control volume V (t) that contains a specific collection of fluid particles. Let ρ(x, t) be the density of the fluid
at point x at time t , then conservation of mass applied on control volume V (t) reads:

d

d t

∫
V (t)

ρ(x, t)dV = 0. (1.1)

Let u(x, t) be the velocity field, A(t) the surface of the control volume and n the outward normal to the surface.
Then applying Reynolds transport theorem we get:∫

V (t)

∂

∂t
ρ(x, t)dV +

∫
A(t)

ρ(x, t)u(x, t) ·nd A = 0. (1.2)

Applying divergence theorem to the surface integral we get:∫
V (t)

{
∂

∂t
ρ(x, t)+∇· (ρ(x, t)u(x, t))

}
dV = 0. (1.3)

Equation (1.3) has to be valid for all possible control volumes, in particular for vanishing control volumes.
Therefore, the integrand in the left hand side has to be zero. We derived the differential form of the mass
conservation, or the continuity equation.

∂

∂t
ρ(x, t)+∇· (ρ(x, t)u(x, t)) = 0. (1.4)

Usually, the continuity equation (1.4) is written as:

∂ρ

∂t
+∇· (ρu) = 0. (1.5)

Adding the hypothesis of incompressible flows, equation (1.5) becomes:

∇·u = 0. (1.6)

5

6 1. Incompressible Fluid Dynamics

We will follow the same procedure applying the principle of momentum conservation to the control volume
V (t). The conservation of momentum deals with forces applied to the control volume. We will divide the
forces in two contributes: body forces, that act without physical contact with the element and surface forces,
that act through direct contact with the surface of the element. To this purpose, let f(x, t) be the body force
per unit mass on the fluid inside V (t) and let t(n,x, t) be the surface force per unit area on the surface A(t),
usually called stress vector.

d

d t

∫
V (t)

ρ(x, t)u(x, t)dV =
∫

V (t)
ρ(x, t)f(x, t)dV +

∫
A(t)

t(n,x, t)d A (1.7)

We use the assumption on curvature of Cauchy, i.e. t(n,x, t) = T(x, t)n, where T(x, t) is usually called stress
tensor. This corresponds to the hypothesis that the stress vector is a linear function of the stress tensor and
the normal derivative to the surface. Applying the Reynolds Transport Theorem and the divergence theorem
on the surface integral we get:∫

V (t)

{
∂

∂t
ρ(x, t)u(x, t)+∇· (ρ(x, t)u(x, t))−ρ(x, t)f(x, t)−∇· (T(x, t))

}
dV = 0. (1.8)

As the case of mass conservation, equation (1.8) has to hold for vanishing control volumes, therefore the
integrand on the left hand size has to be zero.

∂

∂t
ρ(x, t)u(x, t)+∇· (ρ(x, t)u(x, t))−ρ(x, t)f(x, t)−∇· (T(x, t)) = 0. (1.9)

Using the continuity equation (1.4) and the shorter notation we can simplify the equation (1.9) and we obtain
the Cauchy equation of motion:

ρ

(
∂u

∂t
+u ·∇u

)
=∇·T+ f. (1.10)

Equation (1.10) is able to describe the conservation of momentum at differential level for both fluids and
solids. In order to describe fluids we have to consider a constitutive equation for the stress tensor T. We
consider newtonian fluids, in which the stress tensor T is a linear function of the rate of strain tensor E =
1
2 (∇u +∇u)T and we add the incompressibility assumption. Hence, we get the following equation for the
stress tensor T:

T =−pI+2µE, (1.11)

where p is the pressure and µ is the viscosity of the fluid. Substituting the constitutive relation on the Cauchy
equation of motion (1.10) gives:

ρ

(
∂u

∂t
+u ·∇u

)
=−∇p +µ∆u+ f. (1.12)

Considering the continuity equation (1.6) and the Cauchy equation for incompressible newtonian fluids
(1.12) we finally get the Navier Stokes equations:

 ∇·u = 0

ρ

(
∂u

∂t
+u ·∇u

)
=−∇p +µ∆u+ f.

(1.13)

1.2. OpenFOAM
The Navier Stokes equations derived in the previous section are a system of non-linear partial differential
equations, which manage to describe the behavior of general 3D flows, laminar or turbulent. They are ex-
tremely efficient in modeling all kind of flows but, due to non-linearities, an analytic solution is not available
for the general case. Therefore, up to now, only numerical solutions are available. Numerical solutions are
determined by discretization of the equations and on development of algorithms to get an approximation of
the solution of the original (continuous) problem.

Several commercial software packages are able to simulate efficiently the behavior of fluids in several dif-
ferent situations. In this report we will consider an open source software, OpenFOAM and we will refer to
its user’s guide [14]. OpenFOAM ("Open source Field Operation And Manipulation") is a C++ toolbox for the

1.2. OpenFOAM 7

development of customized numerical solvers for the solution of continuum mechanics problems. It also
provides pre- and post-processing utilities.
Basically, OpenFOAM is a library, which can be used to build the so called applications. Applications can be
solvers or utilities. Solvers perform the calculation to solve a specific problem. Utilities prepare the mesh,
set-up the simulation case and process the results.

OpenFOAM uses Finite Volume Method (FVM) for the discretization and the solution of partial differential
equations. The idea is that the domain is divided in control volumes. On each control volume, partial dif-
ferential equations are discretized and solved. A dissertation of the FVM is beyond the scope of this work.
Details of the implementation of the method and of the various techniques developed over the years can be
found in monographs like [45] or [13].

OpenFOAM solvers have been developed for a broad set of problems. Some areas in which standard solvers
available for fluid mechanics are: potential flows, incompressible/compressible flows with DNS, RANS and
LES capabilities, multiphase flows and particle-tracking solvers. Other fields in which OpenFOAM has been
used are: combustion, conjugate heat transfer, molecular dynamics, electromagnetism and solid dynamics.

Main built-in solvers

Several solvers have been developed for different applications. Here we list the most relevant to the purpose
of this project:

Incompressible Flows:

• icoFoam Transient solver for incompressible, laminar flow of Newtonian fluids.

• simpleFoam Steady-state solver for incompressible, turbulent flow, using the SIMPLE algorithm.

• pisoFoam Transient solver for incompressible, turbulent flow, using the PISO algorithm.

• pimpleFoam Large time-step transient solver for incompressible, turbulent flow, using the PIMPLE
(merged PISO-SIMPLE) algorithm.

• pimpleDyMFoam Transient solver for incompressible, turbulent flow of Newtonian fluids on a moving
mesh, with possibility of local refinements.

Multiphase flows:

• interFoam Solver for 2 incompressible, isothermal immiscible fluids using a VOF (volume of fluid)
phase-fraction based interface capturing approach.

• multiphaseInterFoam Solver for n incompressible fluids which captures the interfaces and includes
surface-tension and contact-angle effects for each phase.

Particle-tracking flows

• DPMFoam Transient solver for the coupled transport of a single kinematic particle cloud including the
effect of the volume fraction of particles on the continuous phase.
A more complete discussion of this solver is provided in section 3.6

• MPPICFoam Transient solver for the coupled transport of a single kinematic particle cloud including the
effect of the volume fraction of particles on the continuous phase. Multi-Phase Particle In Cell (MPPIC)
modeling is used to represent collisions without resolving particle-particle interactions. Collisions are
in fact represented by models which evaluate mean values calculated on the Eulerian mesh. A severe
limitation of the solver is that the size of particles must be small compared to the Eulerian grid for
accurate interpolation. This coupling will be defined as unresolved coupling in the following chapter.
The solver provides reliable results in dense particle flows (more than 5% by volume), but since it does
not resolve particle-particle interactions it is not useful for the aim of this work.

How to use the built-in solvers
Each simulation takes place in a specific directory, created by the user. In this directory there have to be three
subdirectories:

8 1. Incompressible Fluid Dynamics

• system
It contains files to control the generation of the mesh and the integration method used to solve the
specific problem.

• constant
It contains the specification of constant of the problem and it store the mesh, once it has been gener-
ated following the instructions contained in the system directory

• 0
It contains one file per variable of the problem. Each file contains initial and boundary conditions for
the specific variable.

All the files required by the simulation are text files with an appropriate syntax. Usually, two commands
are necessary to perform a simulation: blockMesh generates the mesh and then a solver is used to actually
perform the calculation, i.e. if we want to use icoFoam solver, it is enough to use the command icoFoam.
Other commands may be required in specific cases.

Once the simulation has been performed, other directories will be created in the directory of the project:
OpenFOAM will store the evolution of the solution in time with an user-defined time step, usually larger than
the actual time step used in the calculations. Each directory will contain one file per variable, and in that file
the numerical values for that variable are stored. Usually the visualization of the results is done via ParaView,
an open source multiple-platform application for interactive, scientific visualization.

2
Particle/Particle interactions

In this Chapter, the interaction between particles in pure granular flows is considered.

Two different approaches are possible to describe particle/particle interaction: Lagrangian tracking or Eule-
rian modeling approaches.

• Lagrangian approach: individual particles (or parcels of) are tracked through the field and properties
of each particle are evaluated.
examples: Discrete Element Method (DEM), Discrete Parcle Method (DPM)

• Eulerian approach: sets of algebraic conservation equations are solved simultaneously for each node
in the field.
examples: Two Flow Model (TFM)

In this work, we focus on the description of Discrete Element Method. Firstly, we introduce the method. Then,
two open source software packages, HADES and LIGGGHTS, that apply DEM are introduced and presented.

General overview of DEM

DEM is based on the assumption that the material in consideration is made of separate, discrete particles.
Granular matter, bulk material, solutions, liquids, powder and rocks are the most common example of appli-
cation of DEM.
The first steps of development of a DEM for a particles system are the generation of a model, the orientation
in space of all the particles and assignment of an initial velocity to them. The forces applied on each particle
are computed from the initial data and depend on the model used to describe contact between particles and
on the physical laws relevant on the specific problem. Possible important contributions can be given by:

• Macroscopic: Friction, Contact plasticity, Attractive potentials (cohesions, adhesion), Gravity

• Microscopic: Electrostatic attraction (Coulomb), intra-molecular forces (Van der Waals)

Every force taken into consideration for a specific problem is summed to have the total force exerted on every
particle.

Once the total force acting on each particle is computed, it is possible to perform an integration in time to
evaluate the new positions and the velocities of the particles, using suitable integration method, as the Verlet
algorithm or symplectic integrators. We will analyze numerical methods suitable to this purpose in Chapter
4.

The simulation consists in applying this steps until a suitable final time is reached. Not all the possible forces
taken into account have the same computational cost. A peculiar case is given by long-range forces, which
require to evaluate the interaction between each pair of particles. In this case, the computational cost of the
method increases quadratically with the number of particles considered. Ad-hoc methods are developed to

9

10 2. Particle/Particle interactions

reduce the computational effort, for example combining particles that are far from the particle in considera-
tion and considering them as a single pseudo-particle.

The main disadvantage of DEM is that the maximum number of particles is strongly limited to computational
resources: real-life situations are often characterized by a huge demand in computational power. To reduce
computational time, cluster of GPUs can be used.

Despite this problems, DEM is a powerful resource to simulate a wide variety of granular flows and rock me-
chanics problems and it can be the unique way to study micro dynamics of systems in which measurements
are nearly impossible due to the small scale.

2.1. Discrete Element Method

The Discrete Element Method (DEM) is a Lagrangian method used for calculating the dynamics of large gran-
ular systems. In this presentation we use results presented in [11] and [18]. The particle flow is resolved at
the particle level. In fact, as described above, DEM calculates the trajectory of each particle considering the
influences by other particles, walls or other problem-specific forces. The motion of a particle consists of a
rotational and a translational component, therefore the equations that describe the method are the Newton’s
laws for translations and rotations:

mi
dui

d t
= Fi ,

Ii
dωi

d t
= Ti ,

(2.1)

where mi is the mass of the particle i , Fi is the force applied to the particle and ui is the velocity, which is
unknown; Ii is the inertia tensor, Ti is the torque applied to the particle and ωi is the angular velocity, which
is also an unknown. The force Fi has to be modeled in order to describe the particle/particle interactions.
Usually, as described in [18], Fi takes into account:

• a gravitational component mi g

• particle-particle collisions
∑

Np Fi ,p

• particle-wall interactions
∑

Nw Fi ,w

• cohesive interactions
∑

Np Fi ,c

where Np is the number of the particles in the system and Nw is the number of the walls. We have to mention
that other problem-specific forces can be considered, like electromagnetic or chemical contributions. Using
the aforementioned forces, the force Fi on the particle is given by:

Fi = mi g +∑
Np

Fi ,p +∑
Nw

Fi ,w +∑
Np

Fi ,c (2.2)

In this case, Netwton’s laws (2.1) take the form:

mi
dui

d t
= mi g +∑

Np

Fi ,p +∑
Nw

Fi ,w +∑
Np

Fi ,c

Ii
dωi

d t
= Ti

(2.3)

After having derived the equation (2.3) it is straightforward to notice that the next step is to model the forces
Fi ,p , Fi ,w , i.e. the contributions of the interaction between particle i and all other particle and the walls,
respectively, and and Fi ,c , i.e. the contribution of the cohesive forces.

For the sake of simplicity, in the development of DEM each particle is assumed to be a sphere. This will
impose a limitation on the accuracy of the method, but non-spherical particle can be approximated by several
spheres glued together. The assumption is a necessary simplification, since it allows to develop easily contact
and cohesive models and to consider the arising torque Ti as generated exclusively by tangential component
of the force Fi .

2.1. Discrete Element Method 11

Particle-particle interactions

For the purpose of modeling the interactions that arise form particle-particle collisions, two different ap-
proaches can be used: hard sphere model and soft sphere model.

• Hard sphere approach
The particles are impenetrable and the contacts are instantaneous and perfectly rigid. Only binary
contacts are considered and long-distance particle forces are neglected. This approach is mainly useful
in dilute systems, where the number of binary collisions prevail.

• Soft sphere approach
When solids exert forces on each other, they are subjected to deformation. In this model, deformation
is replaced with an overlap between the two particles taken in consideration and the arising force will
depend on this overlap. The results are more accurate than the hard sphere model, but the computa-
tional effort is much bigger.

The Discrete Element Method is based on the soft sphere model.

The main assumption is that particles which are in direct contact with the particle in consideration influence
its motion. A collision between elastic particles generates repulsive forces, which will be directly proportional
to the deformation, described by the overlap. Since we are considering deformations, we have to notice that
deformation of a body implies energy loss, which depends on deformation speed.

A very intuitive mechanical analogy to this process is given by the spring-damper system. In Figure 2.1 a
visualization of such a system is provided. In a spring-damper system, the motion of a body with mass m is
described by

mẍ +ηẋ +kx = 0, (2.4)

where η is the damping coefficient of the dash-pot, k is the stiffness of the spring and x is the distance form
the equilibrium position.

Using this linear ODE (2.4) not all details of the physical process are described, but we will adopt this model
since it allows to capture fundamental properties of the system, for example the loss of kinetic energy. In fact,
in the dash-pot model, loss of kinetic energy is modeled, which is in accordance to the hypothesis of energy
loss due to deformation during the collision between particles. The solution of the linear ODE is parameter-
dependent, and can be over-damped, critically damped or under-damped. Usually the collision of particle
gives rise to under-damped solutions.

Figure 2.1: Analogy particle collisions and spring-damper system. The image has been taken from [11], page 125, for its simplicity.

The analogy between the two phenomena lies in the following processes. Due to external forces, one particle
A is pushed towards another B. In the spring-damper system this corresponds to a force that moves the equi-
librium position of x. When the point leaves the equilibrium, the spring compresses and a repulsive force
is created. This repulsive force corresponds to the reaction force caused by B acting on the particle A. Due
to this reaction force, particle A starts to return to its original position after having reached the maximum
displacement. Due to energy loss, the velocity of returning will be lower than the velocity before collision.

The aim is to develop a model for the force Fi ,p , which describes the force applied to particle i due to particle-
particle interactions. For the sake of simplicity, we write Fi .
The force Fi will be the sum of all the collisions with the j particles that are in contact with particle i . There-
fore we can write

Fi =
∑

j
Fi j . (2.5)

12 2. Particle/Particle interactions

We define δ as the overlap that is developed when two particles collide. We consider a collision between
particle i and particle j . The overlap δwill have both normal and tangential component δn ,δt . The same ap-
plies to the force Fi j : we decompose it in normal component Fni j and in tangential component Ft i j . Hence,
equation (2.2) becomes:

Fi =
∑

j

(
Fni j +Ft i j

)
. (2.6)

Different equations model these two contributes.
Now we use the analogy between particle collisions and spring-damped systems to build a model for normal
and tangential component of the force applied to the particles. We will deal with the stiffness parameter k,
the damping coefficient η and the friction coefficient f .

Figure 2.2: Spring-damper system applied to contact between particles. The image is taken from [2].

Firstly, we model the normal component of the force, i.e. Fni j .
The normal component is given by the sum of the forces due to the spring and the dash-pot. Using the
Hertzian contact theory, the force is given by:

Fni j = (−knδ
3/2
n −ηn j (vi −v j) ·n)n (2.7)

where kn is the stiffness coefficient in the normal direction, ηn j is the damping coefficient in the normal
direction, vi is the velocity of particle i and n is the unit vector with direction the line that connects the
centers of particles i and j . The power 3/2 of the displacement may seem strange, but the results are in good
accordance with the experimental cases.

Now we model the tangential component of the force, Ft i j .
For the tangential component we have to distinguish two cases, depending on the ability of the sphere to
slide or not. We use a Coulomb-type friction law on the first case, whereas we develop an ad-hoc model for
the second. Hence the force is given by:

Ft i j =
{
− f |Fni j |t |Ft i j | ≥ f |Fni j |
−ktδt −ηt j Vct else

(2.8)

where kt is the stiffness coefficient in the tangential direction, ηt j is the damping coefficient in the tangential
direction and f is the friction coefficient which is measured empirically, t is the unit vector in the direction of
Vct , which is the slip velocity and is modeled as:

Vct = (vi −v j)− ((vi −v j) ·n)+aiωi ×n+a jω j ×n

where ai and a j are the radii of the particles i and j .

We will now focus on the modeling for the stiffness coefficients kn and kt and the damping coefficients ηn

and ηt .

We use Hertzian contact theory for the normal stiffness coefficient kn . If we know Young’s modulus E and
Poisson ratios σ for the particles i and j we have:

kn = 4

3

(
1−σ2

i

Ei
+

1−σ2
j

E j

)−1 (
ai +a j

ai a j

)−1/2

. (2.9)

We use Mindlin’s theory for the tangential stiffness coefficient kt . Knowing the shear modulus H of the two
particles i and j we have:

kt = 8

(
1−σ2

i

Hi
+

1−σ2
j

H j

)−1 (
ai +a j

ai a j

)−1/2

δ1/2
n . (2.10)

2.1. Discrete Element Method 13

In literature, Hertzian-Mindlin theory is sometimes substituted with Hooke Laws for the modeling of the
elastic coefficient kn and kt . The usage of Hertzian or Hooke theory has become standard and it is commonly
accepted.

Instead, for the damping coefficients a variety of models has been proposed and it is not rare to see the
damping coefficient used as tuning parameters validate a particle solver. One of the first models developed,
proposed by Cundall and Strack, used the critical parameter of the spring damper analogy as the damping co-
efficient of the contact force, since the bouncing motion after collision should be damped as soon as possible.
In this outlook, the normal and tangential coefficients are modeled as:

ηn = 2
√

mkn , (2.11)

ηt = 2
√

mkt . (2.12)

Other models consider the parameter as dependent to the derivative of the displacement, leading to a partial-
non linear or a full non linear force model. An overview of the models can be found in [26] and [8]. Never-
theless, the same authors claim that often, in current implementations, the damping coefficient appear to
depend to some user-input parameters, which are tuned to obtain simulations close to the expectation from
a physical point of view.

In the software that we will take under consideration, i.e. HADES, which is introduced in Section 2.2, the
model implemented is:

ηn = NormCoeff
m1m2

m1 +m2
δ1/2

n , (2.13)

ηt = TangCoeff
m1m2

m1 +m2
δ1/2

n , (2.14)

where NormCoeff and TangCoeff are input parameters and m1,m2 are the masses of the respective particles.

In conclusion, a lot is to be done in the modeling of damping coefficients to achieve reliable simulations of
complex real-life situations and extensive further research will be necessary in future to compare simulation
results and experimental data.

Cohesive Interactions

Granular materials have the ability to resist external tensile stress. This property is caused by microscopic
attraction forces between particles, called cohesive interactions, which may have physical and chemical ori-
gins. For this part, we follow the dissertations [11] and [39].

The cohesive interaction have the effect to resist to separation, shear or rolling of two particles, restricting the
relative particle displacements. Not all the granular materials manifest appreciable effects of the cohesive
interactions: it is possible to classify the materials in weakly cohesive and strongly cohesive, depending on the
influence of the cohesive forces in the macroscopic behavior. Several physical phenomena can be responsible
for the arise of cohesive forces. We will give three examples: electrostatic and Van der Waals forces as bulk
forces and capillary bridge as contact force.

We first introduce the electrostatic case. Electrostatic forces occur if at the particle surface the electrical
charges of opposite signs are not balanced. The radial force that arise is this case, between particles i and j
is:

Fi j =
qi q j

4πε0εr l 2 , (2.15)

where qi and q j are the electrical charges of particles i and j , ε0 and εr are the vacuum permittivity and
relative permittivity of the medium, respectively and l is the distance between the particle centers. This force
is attractive if qi and q j have opposite signs, otherwise it is repulsive.

The Van der Waals forces are inter-particle forces that cause adhesion between particles between each other
and the walls. They are particularly strong when smooth surfaces are brought to contact. The Van der Waals
force between two spherical particles is described by:

Fi j = A

12l 2

Di D j

Di +D j
, (2.16)

14 2. Particle/Particle interactions

where Di and D j are the diameters of particles i and j respectively, A is a constant (Hamaker Constant) and
l is the separation distance at the particles start to interact.

Cohesive forces can arise even when two particles are in contact, developing adhesion. An example is given
by capillary bridges. The capillary force is given by:

Fi j =−2πR∗
i jγcosθ, (2.17)

where γ is the liquid surface tension and θ the contact angle and R∗
i j is the average of the radii of particles i

and j .

Total Interaction

Once we have modeled each component of the forces acting on the particle i , we can go back to (2.3) and
rewrite it in a simpler way. We do not consider all the particles, but only those that are in contact with particle
i . Hence we do not sum over Np but over j . Moreover, we sum all the different contributions in the normal
direction in F tot

ni j and in the tangential direction in F tot
t i j . Therefore we obtain:

mi
dui

d t
= mi g +∑

j

(
F tot

ni j +F tot
t i j

)

Ii
dωi

d t
=∑

j

(
an×F tot

t i j

) (2.18)

since the torque Ti is generated exclusively by the tangential component of the forces, as explained in the
previous paragraph.

2.2. HADES

HAbanera’s Discrete Element Simulator, named HADES, is a discrete element software package, developed
by Habanera, that simulates granular flow or mixture problems.
As described in the previous section, using DEM the behavior of the entire material/mixture is simulated by
considering contribution of each constituent in the mixture individually. In fact, performing a simulation of
the complex interactions between the grains mutually and the influence of the environment on the individual
grains, the behavior of the whole mixture can be evaluated.

In HADES the dynamics of the individual particles is evaluated by integrating Newton’s second law of motion.
With the technique adopted in the previous section, it is possible to model the total net forces and torques
acting on a particle. This is obtained summing the individual forces Fi j and torques Ti j that act on body
i over the number of actuators j , where as actuators we define the processes responsible for the arise of a
force. Knowing the particle state (its position and its velocity) at a particular time, it is possible to obtain the
state of particles at a later time integrating the above equations in time. To this purpose various numerical
integration schemes can be used. Currently, HADES only supports explicit schemes.

Actuators and Models

Very different processes can be at the origin of forces and each one of them requires careful modeling. As
stated before, we call each of these processes an actuator. The result of an active actuator on a particle is a
force. For example, gravity, drag and contact are actuators that may contribute to the total net force that acts
on a particle. In DEM, the force Fi j that acts on a particle i due to an actuator j is independent from the
force Fi k that acts on the same body but from a different actuator k. Therefore each actuator can evaluate its
influence on a group of particles, independently from any other actuators that may be active. For example,
the evaluation of the gravity force can be performed independent from the evaluation of the drag force and
contact force.

In HADES these actuators are encapsulated in so called Models. Each Model calculates its contribution to the
total force that acts on each particle. The Models available for the evaluations of forces are collision models,

2.2. HADES 15

that calculate the inter-particle contact forces, drag force models that calculate the force on a body that moves
through a medium and the gravity model that calculates the gravitational forces that act on a body.

Other implemented Models control the number of particles that are active during a simulation. To this pur-
pose, a sink model and various generator model are available. The sink model deletes from the simulation
the particles that enter a user-defined geometrical region, instead other generator models are able to gen-
erate particles of a user-defined shape and size, at user-defined locations at user-defined times during the
simulation.

These Models can be added via the input file. The user specifies, in an ASCII input file, which models are
active during the simulation and what values should be used for the relevant model parameters. For example,
if gravity plays no role in the experiment that is being simulated, the user simply does not add this Model.
This modular design gives HADES a very strong flexibility and since most of the features are encapsulated in
independent Models, it also allows HADES to be extended in a simple way.

Physical objects, such as containers, hoppers, borders and particles, may have arbitrary shapes, but the eval-
uation of the mutual interactions between arbitrarily shaped objects is in general too computationally expen-
sive. Hence, optimized algorithms are provided for simple shapes, like spheres and planes.

Property files

In order to run an HADES simulations, user-defined input needs to be considered. The user gives directives
through the property files. The property file is a text file containing a set of name-value pairs, called properties,
that describe the runtime parameters and the models to be used. The general syntax of a property is:

name = value;

The value of a property can also be a property set, so that it is possible to create a tree-like structure of prop-
erties. An example of same parts of a property file is given by the following script:

integrator = // define integration scheme and configure integrator
{

type = "Verlet";
...

};

generator = // define generator type and configure this generator
{

type = "ellipsoidGenerator";
...

generation =
{

nrOfBatches = 1;
bodiesPerBatch = 8000;
fireTime = 0.0;

};
};

Using this kind of syntax for the appropriate properties, the user is able to generate particles with particular
shapes, choose which actuators to apply, define the time integration method and all the parameters required
for the simulation.

We now list the built-in models, already available in the current version of HADES.

Built-in Models

Models to add bodies to a simulation:

• ellipseGenerator generates bodies of elliptical shape

• ellipsoidGenerator generates bodies of ellipsoidal shape

• fromFileGenerator generates bodies of which the shape description is obtained from file

Model that remove bodies from a simulation:

• sink removes bodies from the simulation

16 2. Particle/Particle interactions

Models that apply contact forces and gravity to particles:

• HertzContact Hertz Mindlin contact between particles of spherical shape

• HertzContactPlaneSphere Hertz Mindlin contact between particles of spherical shape and infinite
planes

• gravity calculates the gravitational force on bodies

• segmentContact contact model between particles of arbitrary shape

Other modulus provide a first (one-way) coupling between particles and fluid. for example the calculation of
drag force on particles, but we will discuss them later in the section dedicated to the coupling.

Up to now, HADES Hertzian Contact Models for contact forces, but cohesive force are missing.

We now give two examples of the usage of HADES software. In Figure 2.3 the fall of particles in a 2D box is
simulated. After the flow is stopped, a circular motion is imposed on a particle and the behavior of all the
other particles of the system is explored. In Figure 2.4 the collision of 3D particles is explored. The particle in
the right is provided with a velocity in left direction. All the collisions are accurately caught and in the final
time of the simulation all the particles have a non-zero velocity in the left direction. Due to the lack of other
collisions, the particle in the left moves away from the system.

Figure 2.3: HADES: 2D Particles fall and successive perturbation

Figure 2.4: HADES: 3D Collisions

2.3. LIGGGHTS

LIGGGHTS (LAMMPS Improved for General Granular and Granular Heat Transfer simulations) is an open
source DEM Particle Simulation Software. LAMMPS is a classical molecular dynamics simulator. It is widely
used in the field of Molecular Dynamics. To perform DEM calculations, LAMMPS offers a GRANULAR pack-
age to perform these kind of simulations. LIGGGHTS aims to improve those capabilities with the goal to apply
it to industrial applications. A very detailed documentation is provided in [10].

LIGGGHTS applies the Discrete Element Method described in the previous sections for simulations of inter-
actions of particles between each other and with walls of containers. The equation of motion is numerically
integrated, updating the state of each particle every time step. LIGGGHTS is a software written in C++ and it
supports parallel computing via MPI. Mainly, it is open-source, but some features are provided only through
a commercial license.

2.4. HADES vs LIGGGHTS 17

The user has to provide the set up of the simulation through an input text file, which contains geometrical
and material properties, as well as the other parameters necessary for the simulation. It is possible to set the
geometry of the problem directly on the input file or importing an user-defined mesh via a STL file. Then, the
user runs an executable using the text file as input.

Input File

In the input file, the user has to set up the domain of the simulation, to choose the models to use (contact,
cohesion, ...) and to fix all the parameters necessary for the simulation. The structure is usually given by:

• Definition of the shape of the particle and the boundaries of the domain

• Definition of the minimum distance for detecting the neighbors of the particles

• Setting of the physical parameters required by the model used

• Fixing the walls of the simulation or importing STL geometries

• Fixing the region of insertion of the particles

• Choosing output settings and run up to a certain final time

In LIGGGHTS it is possible to apply also cohesive models. A simulation of the drop of particles with and
without cohesive forces has been performed and in Figure 2.5a and 2.5b final results are given. As expected,
the case with cohesive forces results in the creation of a clump, whereas without cohesive forces a more
ordered structure is obtained.

(a) LIGGGHTS: Drop with cohesion. (b) LIGGGHTS: Drop without cohesion.

2.4. HADES vs LIGGGHTS
In order to have a complete overview of the software capabilities, it may be interesting to highlight the dif-
ferences between the features implemented in HADES and in LIGGGHTS. Generally, LIGGGHTS is more
complete than HADES, allowing simulations in more complex scenarios, but HADES possess a vary peculiar
implementation of the Verlet algorithm, which is extremely interesting for the performances of the simula-
tion. In LIGGGHTS, some contact models are available and it can handle complex geometries from STL files,
whereas in HADES only the Hertzian contact model can be used and contacts can be detected only between
spheres and between a sphere and an infinite plane. Hence, the capabilities of HADES are very limited from
a geometrical point of view and for the models available.

Moreover, LIGGGHTS has support for parallel computations, allowing to achieve fast results in extremely
complex scenarios, whereas the current implementation of HADES supports only serial computations, caus-
ing a severe limitation on the simulation of complex industrial situations.

Nevertheless, the key feature of HADES is to allow an integration in time with a non-fixed (a priori) DEM time
step. In fact, the implementation uses a complex algorithm to tune the time step according to the values
of the forces that act at each time step. If, during an integration step, a particle is subjected to a too-large
displacement, the algorithm reduces the time step and tries again to fulfill the requirement. This feature is
extremely important since it allows to decrease drastically the computation time. The user can intervene
on the integrator using a safety factor (0,1) that multiplies the time step selected by the algorithm. This im-
plementation is innovative and it is the reason why we will work on the coupling between OpenFOAM and
HADES.

3
Coupling

Physical simulations often deal with interactions between solid particles and fluids, whereas up to now we
considered these two phenomena as independent. In this Section, some methods for the interaction between
fluids and particles are described and analyzed. This process is called Coupling, and we will focus on the
coupling between CFD for fluid simulations and DEM for particle interactions.

The first classification of the coupling procedure regards the reciprocal influences between fluid and particles
and particle on themselves. In fact, we distinguish 3 different cases:

• 1-way coupling
Fluid exerts influence on particle motion but not vice versa. Neglect particles interactions

• 2-way coupling
Fluid exerts influence on particle motion and vice versa. Neglect particles interactions

• 4-way coupling
Fluid exerts influence on particle motion and vice versa. Resolve particles interactions

Depending to the specific problem, the most efficient coupling can be implemented. The aim of this project
is to study the 4-way coupling, therefore we will focus on this case.

In this Chapter, we firstly describe the modeling of fluid/particle interactions, describing the different con-
tributions to the phase coupling. Then we discuss some general issues on the coupling procedure, i.e. the
time step choice and the contact detection algorithm. Finally, we describe two different approaches that
have been developed for the CFD-DEM interactions: Resolved and Unresolved couplings. Resolved coupling
is useful when the size of the particle is bigger than the computational grid used for fluid simulation, whereas
unresolved coupling deals with the case of particles which are smaller than the computational grid. We will
describe in depth the details of this two distinct methods, for which we follow the references [18] and [25].
Some open source implementations of the coupling procedure are then listed and briefly described.

3.1. Modeling of Fluid/Particle Forces

The fluid dynamics force on a particle can be modeled as the superposition of different contributes. In this
section we briefly describe the different components. It is important to notice that not every component will
be relevant in every problem: the formulation of fluid/particle interactions is often problem-specific. In this
section, we follow [11] for the description of the different contributions.

Mainly, the influence of fluid on particle motion can be described as the sum of two contributions: drag forces
and lift forces.

3.1.1. Drag forces

The drag forces that arise on the particle due to the fluid are:

19

20 3. Coupling

• Undistrubed flow

• Steady state drag

• Virtual (or added) mass

• Basset term

Undisturbed Flow

This component describes the contribution of the pressure and the shear stress fields in the undisturbed
flow, i.e. in the flow without considering the presence of the particle. This term contributes significantly in
liquid-particles flows, but it is negligible in gas-particle flows. The model is described by:

Fud =Vd

(
− ∂p

∂xi
+ ∂τi k

∂xk

)
, (3.1)

where Vd is the volume of the particle.

Steady state drag

This terms models the drag force that acts on the particle in a velocity field where there is no acceleration of
relative velocity between the particle and the conveying fluid. Different models are available in the literature,
to describe a variety of situations. We give, as an example, the steady state drag force based on the drag
coefficient CD :

Fss = 1

2
ρc ACD |u − v |(u − v), (3.2)

where ρc is the density of the fluid carrier, A is the project area of the particle in the direction of relative
velocity of fluid and particle and CD is the drag coefficient. The drag coefficient CD is strongly influenced by
the Reynolds number Re. The dependence of CD from Re has been extensively studied and there are several
models available for different ranges of Re.

Virtual (or apparent) mass effect

The virtual mass effect appears when a body in a fluid is subjected to an acceleration. The fluid is accelerated,
and the work necessary to obtain this acceleration is done by the body. Therefore, the global effect is called
apparent mass force, since it is equivalent to adding a mass to the sphere.
The virtual mass force can be modeled as:

Fvm = 1

2
ρcVd

(
Du

Dt
− d v

d t

)
, (3.3)

being Vd the volume of the particle.
Virtual mass effect appears only in unsteady flows.

Basset Term

This term describes the delay in the development of boundary layers due to the fact that relative velocity
changes with time. It describes the viscous effects of an acceleration and it is known in literature also as
history term, since its value depends on acceleration history up to the present time. This contribution is
modeled as:

FB ass = 3

2
D2pπρcµc

[∫ t

0

d
d t ′ (ui − vi)
p

t − t ′
d t ′+ (ui − vi)0p

t

]
. (3.4)

We see that also the initial value of the relative velocity influences the final force FB ass .
Basset term appears only in unsteady flows.

3.2. General issues of Coupling 21

3.1.2. Lift forces

The lift forces that arise are:

• Magnus lift

• Saffman lift

Saffman Lift

The Saffman lift arises from the pressure distribution on a particle in a velocity gradient. Let us consider a
sphere immersed in a shear flow, with higher velocity at the top of the particle and lower at the bottom. The
higher velocity on at the top causes a low pressure, whereas the lower velocity at the bottom gives rise to a
high pressure. This differential of pressure develops a lift force.
Let us define the shear Reynolds number ReG , i.e the Reynolds number based on the velocity difference be-
tween the top and the bottom of the particle:

ReG = D2

νc

du

d y
, (3.5)

where νc is the kinematic viscosity of the fluid carrier and D is the diameter of the particle. If both the relative
Reynolds number based on velocity different of fluid and particle Rer and the shear Reynolds number are
small (¿ 1) and Rer ¿

p
ReG , then the Saffman lift force can be modeled as:

FSa f f = 1.61µc D|ui − vi |
√

ReG . (3.6)

Magnus Lift

The Magnus force is the lift generated by the rotation of a particle, due to the presence of a pressure differen-
tial between both sides of the particle, caused by the velocity differential due to rotation. The rotation may
be caused by other phenomena than velocity gradient.
Generally, the direction of the force is the normal to the plane formed by the rotation vector and the relative
velocity vector. If they are orthogonal to each other, the Magnus lift force can be modeled as:

FM ag = 1

2
ρc ACLR |v −u|(v −u), (3.7)

where A is the project area of the particle and CLR is the lift coefficient due to rotation. The modeling of the
coefficient CLR has been explored extensively and a variety of equations are available in literature.

3.1.3. Total interaction

Exploiting the same procedure adopted by Discrete Element Method in the modeling of particle/particle in-
teractions, the total force is obtained summing all the contributions relevant for the specific problem. The
total force exerted by the fluid on the particle is therefore:

F f p = Fud +Fss +Fvm +FB ass +FSa f f +FM ag . (3.8)

Applying third Newton’s law we obtain that the force exerted by the particle on the fluid is equal in magnitude
and opposite in direction to the total force that the fluid exerts on the particle that we just modeled.

3.2. General issues of Coupling
The coupling between CFD and DEM presents two intrinsic difficulties: an accurate choice for the time step
of the simulation and an efficient approach for contact detections.

In fact, for the choice of time steps, we have to consider that it is necessary to catch collision dynamics
and satisfy maximum particle overlap constraint (since particles deformation are not modeled directly, but
through their overlap).

22 3. Coupling

As far as contact detection is concerned, it is straightforward to notice that a detection of contacts at every
time step for every particle is extremely expensive from a computational point of view and, of course, not
optimal. The problem is how to detect which particles collide every time step in a computationally efficient
way. Various approaches have been proposed and we will discuss the Neighbor List method developed by
Verlet in 1967 and the link-cell method proposed by Plimpton in 1995.

3.2.1. Time step choice

It is really important to choose carefully the time steps for the phases of CFD and DEM. Usually, the time step
for DEM is smaller than the one for CFD: in most cases the DEM-time step has to be at least an order smaller.
In order to compare the two time scales, three important parameters are evaluated:

• CFL number for CFD,

• Rayleigh time for DEM,

• Particle relaxation time for CFD-DEM.

C F D

We consider only the presence of a fluid phase. For the numerical integration of the Navier-Stokes equations,
the most important parameter to consider is the C F L number (Courant-Friedrichs-Lewy). In an n dimen-
sional case, C F L is defined as:

C F L =∆t
n∑

i=1

ui

∆xi
, (3.9)

where ∆t is the time step and ∆x is the space step in the computational grid.
Since the CFL number is a measure of how many cells an infinitesimal volume of fluid passes in one time
step, this has to be smaller than one in order to preserve the stability of the numerical scheme. Therefore, we
get a constraint on the CFL which translates in a constraint on the time step ∆t :

C F L =∆t
n∑

i=1

ui

∆xi
< 1 ⇒ ∆t < 1/

n∑
i=1

ui

∆xi
. (3.10)

DE M

Considering only the interactions between particles, we are in the field of granular flows.
In high density particle regions, the motion of particles is affected not only by forces and torques arising
from collisions with particles in the immediate neighbor, but also by disturbances propagating from more
distant particles. The propagation of these disturbances is modeled via Rayleigh waves, i.e. surface waves
that travel (with both longitudinal and transverse components) near the surface of solids. To ensure realistic
force transmission rates and to prevent numerical instabilities, an upper bound for the simulation time step
is therefore necessary.

The idea proposed in [34] and [1] is that time step for detecting collision between a particle and its neighbor-
hood should be less than the time it takes for the Rayleigh wave to transverse the minimum size particle in
the assembly. The Rayleigh time step proposed is therefore:

TR =πr

√
ρ/G

0.1631ν+0.8766
, (3.11)

where r and ρ are the radius and the density of the particle, G is the particle shear modulus and ν is Poisson’s
ratio. We see that the time-step is material dependent through G . Hence, if we want to model the motion of
particles of different materials, we necessarily have to consider the minimum of the different Rayleigh time
steps.
Therefore, to prevent numerical instabilities and nonphysical results, ∆tDE M < TR . Often, a fraction of TR is
used for the integration time-step.

3.2. General issues of Coupling 23

CFD-DEM: Particle Relaxation Time

Exploring the interaction between fluid phase and solid particles, the concept of particle relaxation time τ is
introduced as a measure of the resistance of a particle to adapt to flow motion: the larger τ, the stronger the
resistance. The definition of the particle relaxation time is not unique: depending on the specific problem,
different models can be used.
In [11] particle relaxation time τ is modeled, in the Stokes regime (Re ¿ 1), as:

τ= ρp d 2

18µ
, (3.12)

whereas in [18] another model is used:

τ= ρp d 2

18µ
(1+0.15Re0.687)−1, (3.13)

In order to achieve stability of the numerical method, the DEM time step width has to be lower than particle
relaxation time:

∆t < τ ⇒ ∆t < ρp d 2

18µ
(1+0.15Re0.687)−1. (3.14)

As we see, we have three constraints for two parameters (∆t for CFD and DEM). As a rule of thumb DEM-∆t
usually at least one order smaller than CFD-∆t , but mainly the approach is problem-dependent and literature
material does not provide satisfactory results.

3.2.2. Contact Detection Algorithm

In order to model accurately the dynamics of contacts, it is important to verify if two particles are colliding,
at each time step of the simulation. As stated in the introductory paragraph, it is absolutely not efficient to
check at every time step if each particle is colliding with every other particle in the system. This operation
would cost n2 checks, being n the number of particles. Since the check should be done at every time step of
the simulation, the process would become too computationally expensive.

We now discuss an approach to overcome to this limitation: the Neighbor List method, proposed by Verlet.
The main idea is the periodic construction of a list of potential contacts, in order to exclude a priori evalua-
tions of contacts between particles too distant. Every time step, the algorithm checks the list for each particle
and evaluates if that particle is colliding with the particles in its neighbor list. Of course, the list is built with
a period larger than a simulation time step: we define N as the number of time steps after which the list is
updated. In the hypothesis of spherical particles, we include a pair of particles (i and j) if it holds:

‖xi −x j ‖ ≤ ri + r j + s, (3.15)

where ri and r j are the radii of particles i and j respectively and s is the Verlet parameter, that can be chosen
between some bounds. If we assume a constant time steps ∆t and a maximum particle velocity vmax , the
number of time steps after which we update the list can be modeled as:

N = s

2vmax∆t
. (3.16)

Alternatively, another method to build the neighbor list is called link-cell method and it is based on a binning
approach on a grid decomposition. In this case, the parameter to choose is the length scale of the binning.

Comparison between the two approaches is explored in [31], but results are often problem dependent, since
lots of parameters require careful tuning. The general trend is that in case of a relatively small number of
particles is relatively small, the Verlet detection algorithm is faster than linked-cell algorithm, and the linked-
cell algorithm seems more efficient when the number of particles is large.

24 3. Coupling

3.3. Resolved CFD-DEM

In the resolved coupling we deal with particles which cover multiple cells of the CFD computational grid.
The core idea of this method is to add a force term to the Navier-Stokes equations, in order to take under
consideration the presence of the solid particles.

Since the particles are larger than the CFD computational grid, it is not possible to consider the presence
of the particle in only one CFD cell (e.g. the cell where the centroid of the particle lies): this would lead to
nonphysical results, in which the fluid would flow even in cells occupied entirely by the solid particle. To
overcome this problem, ad hoc methods were developed in order to be able to resolve the fluid in an accu-
rate way. These methods are known in literature as Immersed Boundary Methods (IB) and Fictious Domain
Methods (FD).

Fictious domain methods are general techniques developed for solving differential equations on complex
domains. The problem is translated into a simpler domain, solved and then the solution is corrected to satisfy
the original problem. Instead, an Immersed Boundary Method is a specific approach for CFD to simulate
fluid-structure interactions. Basically, Immersed Boundary Method belongs to Fictious Domain approaches.
We will give two applications of these approaches to Resolved coupling, a fictious domain method presented
in [18] and the PISO Immersed Boundary scheme developed in [6].

A Fictious domain Method

In this application of the Fictious domain approach the aim is to perform a correction of the velocity field
of the fluid. This can be proved to be equivalent to adding a force term to the Navier-Stokes equations. The
approach that we will describe provides satisfactory results for moderate Reynolds number. We consider
only one velocity field and one pressure field in the domain and they are shared by the fluid and the solid.
The domain taken into account is provided in Figure 3.1.

Firstly, only the fluid is considered and in the whole domain the velocity field is calculated from the following
equations:

ρ

(
∂u

∂t
+u ·∇u

)
=−∇p +µ∆u+ f inΩ f

∇·u = 0 inΩ f

u = uΓ on Γ
u(x, t = 0) = u0(x) inΩ f

u = ui on Γs

σ · n̂ = tΓ on Γs .

(3.17)

The first two equations are the standard Navier-Stokes equations for incompressible fluids. The third and
the fourth ones are the boundary conditions on the entire domain and the initial conditions, respectively.
The last two equations concern the actual coupling between the fluid and the solid phases: they provide the
continuity of velocity field and the normal component of the stress tensor.

Once the data from DEM have been evaluated through a numerical integration, the method consists in the
following four phases:

Figure 3.1: Domain for Resolved Coupling. The image is taken from [18], page 11

3.3. Resolved CFD-DEM 25

1. Evaluation of an interim velocity field û and its associated pressure field
The interim velocity is obtained solving the Navier-Stokes equation in the whole domain, usually using
a finite volume method with the PISO (Pressure-Implicit with Splitting of Operators) algorithm.

2. Creation of a new velocity field ũ
The interim velocity is corrected in the particle areas imposing the velocity obtained from the DEM
calculations.
This step is equivalent to adding a force term f to the Navier-Stokes equation, where f satisfies:

f = ρ ∂

∂t
(ũ− û). (3.18)

3. Correction of the new velocity field into the final one u
Unfortunalety, the new velocity field does not satisfy the divergence-free constraint of the Navier-Stokes
equation, which comes from mass conservation under the hypothesis of incompressibility. Therefore,
the application of a correction operator is necessary.
We define a corrected field u

u = ũ−∇φ, (3.19)

where φ is an unknown scalar field and u is forced to satisfy the divergence-free constraint.
Hence, applying the divergence operator to (3.19) we get a Poisson equation for φ:

∆φ=∇· ũ. (3.20)

4. Correction of the pressure field
After having solved (3.20), the pressure obtained from the first step can be corrected in the final one.

Hence, the global outline of the Fictious Domain Resolved method is:

Algorithm 1 Outline of Fictious Domain Resolved CFD-DEM coupling

1: procedure RESOLVED

2: while (not done) do
3: DEM solver: evaluation of positions and velocities of particles
4: Data from DEM solver are passed to CFD solver
5: Evaluation of interim velocity field
6: Particle tracking: locate cells occupied by each particle
7: Correction of velocity in the cells occupied by particles
8: Evaluation of fluid forces acting on particles
9: Data from CFD solver are passed to DEM solver for the next time step

10: Divergence-free correction of velocity field
11: Evaluation of other equations (i.e. concentrations, ...)

Immersed Boundary Method

The fictious domain approach presented in the last paragraph gives accurate results at moderate Reynolds
numbers. According to [17], at low Reynolds numbers the results are not satisfactory anymore, so in 2015
another approach was proposed. This method is known as PISO Immersed Boundary and it was presented
in [6]. It is a slightly more complicated method, since it is based not only on the correction of velocity and
pressure fields, but also of the force term. The results are valid also in the case of low Reynolds numbers.

The idea of the PISO-IB scheme is to add an immersed boundary method to the standard PISO scheme. This
is pursued using the PISO loops to impose the velocity of the immersed rigid body while maintaining mass
conservation. In every iteration a continuous forcing term is updated and added to Navier-Stokes equation
to take into account the immersed body and its motion. The method can be implemented and applied in
parallel and it can be used with unstructured polyhedral meshes.

The flow of the algorithm is very similar the the approach developed using the Fictious domain Method. The
main improvement is a correction of the forcing term which is performed at the end of every the PISO loop.
The main structure of the algorithm is:

26 3. Coupling

1. Detection of immersed body through cell and vertex flagging
A solid fraction βi is generated for every cell i

2. Evaluation of forcing term, based on previous data

3. Evaluation of interim velocity from a momentum predictor

4. Start of PISO loop

• Correction of velocity

• Solution of pressure correction equation

• New correction of velocity

• Correction of pressure

• Correction of forcing term
This is the main feature of the method. Forcing term is corrected using the difference between
current velocity and the the velocity prescribed within the immersed body.

f new
i = f ol d

i + αβ

∆t
(ui ,i b −ui ,cur r ent), (3.21)

where βi is the solid fraction evaluated in step 1. and α ∈]0,0.9] is a relaxation parameter

General issues of Resolved Coupling

Resolved methods belong to the class of Direct Numerical Simulations (DNS), therefore, in order to have very
precise results, a high resolution of the fluid mesh in the area of the particles is required. This constraint leads
to enormous computational costs, even for small problems. Some remedies can be applied to overcome this
limitation.

The first improvement is given by dynamic local mesh refinement. This process consists in a mesh refinement
around the particles. When a particle moves on, the cells are coarsened again. Especially for dilute particle
systems this has a large effect. This feature is already provided by OpenFOAM itself.

Another improvement can be parallelization, but in this case, particular attention is to be given in the com-
munication between processors. A void fraction distribution model has been developed to take care of this
issue.

3.4. Unresolved CFD-DEM
Unresolved CFD-DEM coupling deals with particles with sizes smaller than the CFD computational grid.
Since different numbers of particles (of different sizes) can occupy one CFD grid cell, it is useful to introduce
a new variable α, which represents the volume fraction occupied by the fluid in a cell. Therefore, we use the
so-called locally averaged Navier-Stokes equations for the unknown u, velocity of the fluid phase:

ρ

(
∂(αu)

∂t
+∇· (αuu)

)
=−α∇p +µ∆u+Rp f

∂α

∂t
+∇· (αu) = 0.

(3.22)

where Rp f is the force exchange term, i.e. it takes into account the interaction between the fluid and particle
phases. It is evaluated as:

Rp f = Kp f (u−up), (3.23)

where up is the velocity of the particle (taken from DEM data) and Kp f is a coefficient. The three major
contributions on the interaction between fluid and particles are the gradient of pressure, viscous and drag
force. Since the pressure gradient and the viscous term are already taken under consideration in the stress
tensor, we model the coefficient Kp f using only the contribution of drag forces. Being V the volume of the
cell, we define fd ,i as the drag force acting on the fluid due to particle i and we get:

Kp f =
∑

i fd ,i

V
. (3.24)

3.4. Unresolved CFD-DEM 27

Other forces may be relevant depending on the specific problem and they can be simply added in the expres-
sion of Kp f . For example, Magnus force for the rotation of particles, virtual mass force for particle accelera-
tion, Saffman force for gradient of fluid velocity leading to shear. The modular feature of the coupling allows
to consider these contributions, properly modeled, directly in the exchange term Rp f through Kp f .

As stated before, usually drag forces are the most relevant contributions and various techniques can be ap-
plied in the modeling of Kp f . One possibility has been presented in section 5.1, but other models have been
developed. In fact, we now consider a combination of Wen and Yu model (for α> 0.8) and Ergun model (for
α ≤ 0.8), which we present in the following paragraph, but it is important to notice that the choice of the
model is not unique, since several models are available. We define d as the diameter of the particle under
consideration, the Reynolds number base on relative velocity Rep and the drag coefficient Cd as:

Rep = |u−up |ρd

µ
, (3.25)

Cd = 24

αRep
[1+0.15(αRep)0.687]. (3.26)

Hence, Kp f is modeled as:

Kp f =

Cd

3

4

α(1−α)|u−up |
d

α−2.65 α> 0.8

150
(1−α)2µ

αd 2ρ
+1.75

(1−α)|u−up |
d

α≤ 0.8
(3.27)

The DEM equations are exactly those presented in the section concerning the DEM approach and they have
to be solved before the CFD phase, in order to add to the locally averaged Navier Stokes equations the proper
terms for the specific problem.

The outline of the complete algorithm is given by the following pseudo-code:

Algorithm 2 Outline of Unresolved CFD-DEM coupling

1: procedure RESOLVED(a,b)
2: while (not done) do
3: DEM solver: evaluation of positions and velocities of particles)
4: Data from DEM solver are passed to CFD solver
5: Particle tracking: for each particle determine the cell in which it lies
6: Determine particle volume fraction and mean particle velocity for each CFD cell
7: Evaluation of fluid forces from particle volume fraction, for each particle
8: Evaluation of exchange terms, for each cell
9: Evaluation of fluid velocity (considering particle volume fraction and exchange terms), for each cell

10: Data from CFD solver are passed to DEM solver for the next time step
11: Evaluation of other equations (i.e. concentrations, ...)

Coarse Averaging procedures

One of the most challenging steps in this approach is the interpolation of a Lagrangian property, the particles
volumes fraction, from the DEM side to an Eulerian property, the volume fraction field, which is defined on
the fixed Eulerian grid of the CFD simulation. The same process has to be performed also for particle velocity
and fluid-particle interaction force.

Hence we have to consider methods to interpolate the following physical quantities:

1. Solid volume fraction α,

2. Solid phase velocity up ,

3. Fluid–particle interaction force Rp f .

28 3. Coupling

In the literature, this process is often called "coarse graining" or "averaging". We therefore require an inter-
polation and different approaches have been proposed. A sum up of the different methods is provided in [42]
and [41]
The features that an ideal coarse graining procedure should have are:

1. Conserve relevant physical quantities

2. Handle particles both in the interior cells and the cells near boundaries without producing artifacts

3. Achieve relatively mesh-independent results

4. Be convenient for implementation in parallel

5. Produce smooth coarse grained fields even with the presence of a few large particles in relatively small
cells

Some approaches developed for this purpose are Particle centroid method (PCM), Divided particle volume
method (DPVM), Statistical Kernel method and the Diffusion-based coarse graining. For the sake of simplicity
we will describe these methods for the scalar quantity α (solid particle fraction), but the approches can be
generalized for the vector fields up or Rp f , component-wisely.

• Particle Centroid Method (PCM).
It consists in summing over all particle volumes in each cell where the particle centroid lies, to obtain
cell-based solid volume fraction. This method is easy to implement in CFD solvers, but it can lead to
large errors when cell size to particle diameter ratios are small. Unphysical results can be obtained (for
example, particle volume fraction greater than 1). In particular, we emphasize that the volume fraction
is characterized by steep gradients, since the entire volume of a particle is added to the cell where the
centroid lies, even if the centroid is near the border of the cell and therefore the actual volume would
occupy different cells.

• Divided Particle Volume Method (DPVM),
The volume of a particle is divided among all cells that it overlaps with, according to the portion of
the volume within each cell. Hence, the solid volume fraction in any cell never exceeds 1 and large
gradients in the obtained field are prevented. DPVM works for arbitrary meshes, as long as the particle
diameter is smaller than CFD cell size. Also with this method, it is likely to obtain a steep gradient in
the volume fraction field.

• Two grid formulation
The idea is to use two independent meshes for the averaging and for the CFD simulation. The aver-
aging mesh is chosen based on particle diameters to ensure that the cell sizes are larger than particle
diameters. The CFD mesh is chosen according to flow resolution requirements.

• Statistical Kernel method
The volume of each particle is distributed to the entire domain according to a weight function called
kernel function h(x). The solid volume fraction at location x consists of the superposition of the dis-
tributed volumes from all particles

• Diffusion-based coarse graining
Firstly, an initial value α0(x) is obtained using PCM. Then, a transient diffusion equation (in this case,
the heat equation) forα(x, t) is solved with initial conditionα0(x) and no-flux boundary conditions (i.e.
homogeneous Neumann conditions), to ensure mass conservation. The following Cauchy problem is
to solve:

∂αs

∂τ
−∆αs = 0

αs (x,0) =α0
s (x) ← from PCM

(3.28)

The result, is a field α(x, t) and it is the solid volume fraction field to be used in the CFD-DEM formula-
tion. A critical parameter is the final time T for the solution of the diffusive equation, which has to be a
physical parameter characterizing the length scale of the coarse graining. Diffusion equation is solved
on the same mesh as the CFD mesh.

3.5. Resolved/Unresolved Coupling 29

Figure 3.2: Coarse graining methods. The image, from [42], clarifies the differences in the coarse-graining methods described in the
previous paragraph.

In Figure 3.2, a representation of the main features of the standard techniques for the coarse graining proce-
dure is given. A detailed comparison between these graining procedure is available in the papers cited.

It may be important to highlight a connection between the diffusion-based method and the Statistical Kernel
Method, if we base the latter on a Gaussian distribution. We remind that the diffusion-based method consists
in considering the outcome of the Parcel Centroid method as initial condition, which is characterized by the
presence of steep gradients in the field. The diffusion-based procedure is able to stabilize the result, since the
diffusion equation essentially redistributes particle volumes within the field conserving automatically total
solid volume in the domain through the diffusion.

In order to solve the diffusion equation numerically exploiting the already-built CFD mesh, we need to esti-
mate a suitable time step τ. To this purpose we build an the equivalence between the diffusion-based coarse
graining and a Statistical Kernel method based on the Gaussian distribution, exploiting the fact that the gen-
eral solution of the heat equation (3.28) taken under consideration, is the convolution of a Gaussian distribu-
tion. It is possible to prove that the diffusion-based procedure is equivalent to a Gaussian Kernel method if
the bandwidth of the Gaussian distribution b satisfies:

b =p
4τ, (3.29)

where τ is the time step of the diffusion procedure. Imposing a value for the Gaussian bandwidth b, (typically
in the literature b = 6d , being d the diameter of the particle), we obtain a value for the diffusion time step τ.
Solving numerically the diffusive equation (3.28) for just 1 to 3 time steps τ, we obtain satisfactory results for
the particle volume fraction field αs (x).

Mesh convergence results and in-depth comparison of the performance of these approaches are explored
in [42]. The diffusion method proposed by the authors manages to achieve very good results in both mesh-
convergence and simplicity of implementation. Hence, an implementation of the coupling between CFD and
DEM should be based on the diffusion coarse graining approach.

3.5. Resolved/Unresolved Coupling

Adopting one of the two techniques presented in the previous sections is not enough to simulate every physi-
cal process. It is of course possible to have situations in which both large and small solid particles are present
and important. Therefore, one of the current research areas is to develop methods and algorithms in which
both the cases are considered and solved. A first attempt to develop a strategy for the solution of the problem
has been published in [24], in which an algorithm has been developed for an implementation on ANSYS/Flu-
ent platforms.

30 3. Coupling

The coupling developed is a combination of the resolved and unresolved approaches. The particle-fluid in-
teraction are considered at different scales: cell level for fluid phase and particle level for particulate phase.

The idea is, at each CFD time step, to evaluate firstly the fluid forces acting on small particles using a DEM
solver to take into account all the inter-particle forces, the influence of walls and the influence of large objects,
using data from the previous CFD time step. These evaluations are done until the time of CFD simulation is
reached.
After we have reached the synchronization between CFD time and small-particles DEM time, we can move
forward on the algorithm and start the evaluation of large-particles dynamics. The calculation of cell volume
fraction and momentum source terms is performed through the evaluations of the influences of fluid flow,
small particles and walls on the large particles.
This process is performed until the final time of simulation is reached.

In Figure 3.3 we report a numerical result obtained in [24], to give an idea of the capability of the approach.
Particle distribution in a fluidized bed with an immersed free-moving tube at different times is plotted

Figure 3.3: Fluidized bed with an immersed free-moving tube The image is taken from [24]. Particle distribution is plotted and particles
are colored by velocity magnitude.

3.6. Current implementations

Some libraries are available to simulate the (resolved or unresolved) coupling between fluid and particle sim-
ulation.

• DPMFoam is a library provided by the standard distribution of OpenFOAM. It does not implement the
Discrete Element Method, but DPM (Discrete Parcel Method). The idea is to aggregate clouds of parti-
cles and treat them as one big computational particle. This method has strong limitations: the dynamic
properties (size, velocity, restitution coefficient, density, ...) for each particle in the parcel have to be the
same and the dynamic is solved only at cloud level, not at particle level.

• sediFoam is a library developed by Sun and Xiao (2015), for CFD-DEM unresolved coupling in Open-
FOAM. The implementation has been described in [43]. The main focus of this library is the simulation
of sediment transport and fluidized beds. The most peculiar feature provided in this coupling is the
diffusion-based coarse graining approach to perform the evaluation of particle volume fraction, as de-
scribed in the previous section. The method seems stable for particles sizes at most two times the CFD
cell size. The library couples OpenFOAM 2.4.0 with LAMMPS 1-Fed-2014.

• CFDEM is a set of libraries which probably provide the most complete implementation of the coupling.
The software is provided by DCS Computing in open source and commerical version. It has been de-
veloped both for resolved and unresolved coupling. The solver which has been tested in the outlook of
this work is cfddemsolverIB. In the resolved approach the Fictious Domain Method described in sec-
tion 3.3 has been implemented. In the unresolved approach a standar technique has been considered.
It couples OpenFOAM-5.x and LIGGGHTS-3.8.0

• coupledPimpleFoam is a library developed by Dynaflow Research Group as an expansion of the stan-
dard PimpleFoam library provided by OpenFOAM. It features a simple adding term to the Navier Stokes

3.6. Current implementations 31

equation to take into account forces arising from the presence of particles in the flow. This method can
be considered as unresolved. Some severe limitations of this library are:

1. DEM update is performed in every CFD step: this causes constraints on the CFD time step, since
DEM time step usually has to be very small

2. Particle fraction fieldα is not evaluated. Various drag models are based on this quantity, therefore
they cannot be considered

3. The coarse graining procedure is intrinsically PCM, therefore huge gradients can be present in the
forcing term in the momentum equation.

Research Questions

The previous Chapters had the purpose to study and describe the models and methods available for fluid/-
particle simulations. The field of numerical simulations of fluid/particle system is relatively new and there-
fore improvements are developed continuously, mostly in the latest years. New methods are proposed and
implemented every months, making this topic particularly thriving and inspiring. In particular, during the
literature study, some interesting research questions rose that we now list and discuss:

1. How to improve the numerical integration algorithm used in the particle solver?
The most common integration algorithm implemented is the Stormer-Verlet scheme. From the point
of view of Numerical Analysis, it would be interesting to study the reasons for its widespread usage
as numerical integrator and to propose alternative algorithms that could improve performance and
accuracy of the simulations.

2. How to use the not-fixed ∆TDE M of HADES in the coupling?
In the implementation of CFDEM, the particle solver is LIGGGHTS, which is characterized by the con-
straint of a a priori fixed ∆TDE M . HADES, instead, allows non-fixed time steps and this could lead to
severe improvements in the execution time of the simulations.

3. How to handle non-spherical particles?
As stated in the appropriate Chapter, DEM is a powerful method to model interactions between spher-
ical particles. Real-life simulations involve more complex geometries and scenarios, hence a general-
ization of the method to handle non-spherical particles would improve dramatically the accuracy of
the results.

In the next Part of the Thesis, we will focus on these research questions, going further with theoretical study
of the problems as well as developing new features to improve the current implementations available. In
particular, we will focus on the first research question with a theoretical study on numerical algorithms in
Chapter 4. The second one will be dealt with in Chapters 5 and 6 describing in detail the coding that was
necessary to the substitution of LIGGGHTS with HADES in the CFDEM framework. Finally, the third question
will be studied in Chapter 7, both from a theoretical point of view and the implementation side.

33

II
Developments

35

4
Numerical Methods for Symplectic

Hamiltonian Systems

In this Chapter, we study how to solve numerically the equations of motion that arise from particle dynam-
ics. Firstly, we introduce some simple numerical approaches, then we introduce the Störmer-Verlet Method,
which is the approach that is extensively adopted in the implementations available. We collocate it in the
framework of the partitioned Runge Kutta Methods and we discuss its most important property, the simplec-
ticity, if it is applied to Hamiltonian systems. To this purpose, a brief introduction to Hamiltonian system is
provided. Then we focus on the property of simplecticity. Finally, convergence behavior of the Störmer-Verlet
method is tested and compared to simple numerical methods and Runge Kutta approaches. Implementation
of the numerical schemes is performed in MATLAB.

As reference literature for these topics, we followed mostly [20] and [19], which provide an extensive discus-
sion on the various features of numerical methods for ODEs and [22] for details on Geometric Numerical
Integration. As complementary framework, we used [38] for general aspects of Numerical Analysis, [21] for a
precise overview of the Störmer-Verlet Method and [12] for Symplectic Integrators.

4.1. Numerical Methods

4.1.1. Classical Numerical Methods

We now give a brief discussion on the numerical methods that were developed for the solution of differential
equations. We introduce the Euler Methods (Explicit and Implicit), the partitioned Euler and the Störmer-
Verlet scheme.

Euler Methods

Let us consider the following system of differential equations:

ẏ = f (t , y)

y(0) = y0, (4.1)

where y ∈Rd . We denote with yi the solution y(t) at time i . Then the Euler methods read as following:

Explicit Euler Method

Implicit Euler Method

yn+1 = yn +h f (yn) .

yn+1 = yn +h f (yn+1) .

It is straightforward to notice that in the explicit Euler method, the evaluation of the function f is performed
at time n, i.e. the function is known at that time. Whereas in the Implicit Euler method, the function is
evaluated at time n + 1, i.e. the value is not known. This translates in the necessity to solve a (non-)linear

37

38 4. Numerical Methods for Symplectic Hamiltonian Systems

system at each time step. nevertheless, the higher computational demand is compensated by better stability
properties of the algorithm.

Partitioned Euler Method

We now consider the following partitioned system of differential equations:

u̇ = f (u, v) (4.2)

v̇ = g (u, v). (4.3)

In this case, a combination of the Euler methods is possible: we treat one variable in an implicit way and the
other in a explicit way. This leads to the following partitioned Euler Method, named also Symplectic Euler
Method for its property of symplecticity, which will be analyzed in detail in the next Section.

un+1 = un +h f (un+1, vn) (4.4)

vn+1 = vn +hg (un+1, vn). (4.5)

Störmer-Verlet Scheme

Finally, we consider the second order ordinary differential equation:

q̈ = f (q), (4.6)

which arises very frequently in the modeling of physical system, e.g. Newton’s Law. With a change of variables,
a system of first order differential equations is easily obtained.

q̇ = p (4.7)

ṗ = f (q). (4.8)

A very important numerical scheme was developed to solve this systems and it is known is literature with dif-
ferent names, depending on the application field: in molecular dynamics is called Verlet Method, in numer-
ical methods for PDEs leap-frog Method, in astronomy Störmer Method. We will refer to it as Störmer-Verlet
Method.

Different formulations are available for the actual computations. The two steps formulation consists in the
approximation of the second derivative with a central scheme. Geometrically speaking, this formulation
interpolates the solution in a parabola which has the correct value of the second derivative at the mid point
of the interval.

Two steps formulation:
qn+1 −2qn +qn−1 = h2 f (qn). (4.9)

It is possible to build a more robust and stable one step formulation with the partial update of the value of
one variable and the successive evaluation of the other variable considering the just-evaluated value.

One step formulation:

(I)

pn+1/2 = pn + h

2
f (qn)

qn+1 = qn +hpn+1/2 (4.10)

pn+1 = pn+1/2 + h

2
f (qn+1).

(II)

qn = qn−1/2 + h

2
pn−1/2

pn+1/2 = pn−1/2 +h f (qn) (4.11)

qn+1/2 = qn + h

2
pn+1/2.

4.1. Numerical Methods 39

In both cases, combining the last step of the scheme with the first of the successive one, we obtain the scheme:

pn+1/2 = pn−1/2 +h f (qn)

qn+1 = qn +hpn+1/2, (4.12)

which is stable, effective and computes the values of the solution in the time grid and the values of its first
derivative in the mid-points of the grid.

4.1.2. Runge-Kutta Methods

Runge-Kutta methods are a family of numerical schemes developed for the solution of non-autonomous sys-
tems of first-order differential equations. They belong to the one step methods set, i.e. the solution at time
tn+1 will depend only on time tn and not on previous ones. The idea is to subdivide the interval in [tn , tn+1]
in s subintervals, where s is the number of stages.

We consider the following first-order differential equation:

ẏ = f (t , y)

y(0) = y0, (4.13)

A general Runge Kutta method is given by:

yn+1 = yn +hF (tn , yn ,h; f), (4.14)

where h is the time step, F is the incrementing function and Ki are the coefficients of the stages:

F (tn , yn ,h; f) =
s∑

i=1
bi Ki (4.15)

Ki = f (tn + ci h, yn +h
s∑

j=1
ai j K j). (4.16)

Since the set of coefficients ai j , bi and ci uniquely determines the Runge Kutta Methods, their values are
usually shown using the Butcher tableaus.

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

We remark that, from literature, coefficient are required to satisfy the relation:

ci =
s∑

j=1
ai j ∀i = 1, ..., s (4.17)

Depending on the values of the coefficients, Runge Kutta methods can be:

• explicit if ai j = 0 for j ≥ i , i = 1, ..., s

• semi-implicit if ai j = 0 for j > i , i = 1, ..., s (in literature, also diagonally implicit, DIRK)

• implicit otherwise

Explicit methods have the strong advantage to compute the coefficients K only exploiting the previously-
evaluated coefficients. Implicit methods require to solve a non linear system of dimension s for every coeffi-
cient (s times), whereas the semi-implicit methods require to solve 1 non linear equation for every coefficient
(s times).

It is straightforward to obtain that the Explicit and Implicit Euler belong to the class of Runge Kutta Methods
with the following Butcher tableaus:

40 4. Numerical Methods for Symplectic Hamiltonian Systems

Explicit Euler

0 0

1

Implicit Euler

1 1

1

Consistency, stability and convergence properties of Runge Kutta methods have been studied in detail in the
XX century and in Section 4.4 we state a brief summary of the results.

Unfortunately, symplectic Euler Methods and the Störmer-Verlet Method do not belong to the class of Runge
Kutta methods. In the next Section, we consider an extension of the Runge Kutta methods, i.e. the partitioned
Runge Kutta Methods.

4.1.3. Partitioned Runge Kutta methods

We consider the following partitioned system of first-order differential equations:

ẏ = f (t , y, z)

ż = g (t , y, z). (4.18)

We decide to apply different Runge Kutta schemes to the two equations: the triplet (ai ,bi ,ci) describes the
first method, the triplet (âi , b̂i , ĉi) the second one. A general partitioned Runge Kutta method is given by:

yn+1 = yn +hF (tn , yn , zn ,h; f) (4.19)

zn+1 = zn +hG(tn , yn , zn ,h; g), (4.20)

where h is the time step, whereas the incrementing functions F and G and the coefficients Ki and Li are given
by:

F (tn , yn , zn ,h; f) =
s∑

i=1
bi Ki (4.21)

G(tn , yn , zn ,h; g) =
s∑

i=1
b̂i Li (4.22)

Ki = f (tn + ci h, yn +h
s∑

j=1
ai j K j , zn +h

s∑
j=1

ˆai j L j) (4.23)

Li = g (tn + ĉi h, yn +h
s∑

j=1
ai j K j , zn +h

s∑
j=1

ˆai j L j). (4.24)

Using the following Butcher tableaus we can obtain the symplectic Euler method and the Störmer-Verlet
scheme that we introduced in Section 4.1.1.

The Symplectic Euler scheme is obtained by combining the Implicit Euler and the Explicit Euler:

1 1

1

0 0

1

The Störmer-Verlet scheme is obtained by using the following Butcher tableaus, which correspond to the
implicit trapezoidal rule and a particular case of LobattoIIIB (which belongs to the class of adaptive Runge
Kutta methods):

0 0 0

1 1/2 1/2

1/2 1/2

1/2 1/2 0

1/2 1/2 0

1/2 1/2

The Störmer Verlet Method was adopted extensively in science and engineering due to a very important prop-
erty, the simplecticity. Simplecticity is a property of mappings that deals with area preservation in R2 and
projected area preservation in R2d if d > 1 and it has a strong link to Hamiltonian systems. In fact, it can be
proved that a system is (locally) Hamiltonian if and only if its flow is symplectic for all points in an appropriate
neighborhood. The proof of this theorem can be found in [22], Chapter VI.2.

4.2. Symplecticity of Hamiltonian Systems 41

Störmer Verlet Method allows the connection between the Simplectic Integrators for Hamiltonian systems
that arise from models in several disciplines and the (Partitioned) Runge Kutta Methods, therefore its role has
been relevant and it became a milestone in the numerical methods panorama.

In the following Sections, we firstly introduce the notion of Hamiltonian systems and then we discuss the
property of simplecticity.

4.2. Symplecticity of Hamiltonian Systems

As stated in the previous section, symplecticity is deeply connected to Hamiltonian Systems. Therefore, an
introduction to Hamiltonian Systems is required.

4.2.1. Hamiltonian Systems

The equations of motion were originally proposed by Newton with the purpose to describe the movement
of free mass points. Generalizations of those equations were developed by Lagrange: the dynamic of rigid
bodies and bodies connected by springs could be studied and analyzed. Some years later, Hamilton proposed
a simplification of the Lagrange approach, introducing important symmetries in the formulation.

We now give an introduction to the Lagrangian and Hamiltonian Canonical forms.

The Lagrangian formulation requires generalized coordinates q = (q1, ..., qd), where d is the degree of freedom
of the system. Two important quantities need to be described:

• Kinetic energy T = T (q, q̇)

• Potential energy U =U (q)

With these two quantities, we define the Lagrangian L as:

L = T −U (4.25)

which satisfies the following differential equation, named Lagrange equation:

d

d t

(
∂L

∂q̇

)
= ∂L

∂q
. (4.26)

This approach provides a powerful framework to the modeling and solving of equations that arise from mo-
tions of bodies, but improvements were achieved by Hamilton, in 1834. In his work, he introduced two new
quantities:

• Conjugate momenta p = ∂L

∂q̇
(q, q̇)

• Hamiltonian H = H(p, q) = pT q̇ −L(q, q̇)

With these new mathematical entities, it can be proved that the Lagrange equations (4.26) are equivalent to
the following system, called Hamiltonian Canonical equations:

ṗ =−∂H

∂q
(p, q)

q̇ = ∂H

∂p
(p, q). (4.27)

Hamiltonian Systems have two fundamental properties:

• the Hamiltonian H = H(p, q) is a first integral of the system, i.e. it is invariant

• (projected) oriented areas are preserved (simplecticity)

42 4. Numerical Methods for Symplectic Hamiltonian Systems

4.2.2. Simplecticity

Simplecticity is a property that can be held by mappings. We firstly consider linear mappings and then we
move to nonlinear ones. Finally, we will connect the concept of simplecticity to the family of Hamiltonian
Systems, stating a fundamental Theorem of Geometric Numerical Integration.

To introduce simplecticity, we consider mappings that act on 2D parallelograms that lie in R2d and that are
spanned by the following two vectors:

ξ=
[
ξp

ξq

]
η=

[
ηp

ηq

]
,

where ξp ,ξq ,ηp ,ηq ∈Rd . The parallelogram lies in the (p, q) space, i.e. it is a linear combination of the vectors
ξ and η.

If d = 1, we consider the oriented area of P , which is given by

ω(ξ,η) := det

[
ξp ηp

ξq ηq

]
= ξpηq −ξqηp

Whereas if d > 1, we consider the sum of the projected oriented areas into the plane (p, q):

ω(ξ,η) :=
d∑

i=1
det

[
ξ

p
i η

p
i

ξ
q
i η

q
i

]
=

d∑
i=1

(ξp
i η

q
i −ξ

q
i η

p
i).

Defining the matrix J ∈R2d (let I be the identity matrix ∈Rd):

J =
[

0 I
−I 0

]
,

we can write the mapping ω(ξ,η) as:
ω(ξ,η) = ξT Jη. (4.28)

We are now ready to define symplecticity for a linear mapping.

Let A be a linear mapping A :R2d →R2d . The mapping is called symplectic if

AT J A = J or ω(Aξ, Aη) =ω(ξ,η) ∀ξ,η ∈R2d . (4.29)

With this definition, it is straightforward to notice that symplecticity corresponds to the conservation of areas
in R2(d = 1), whereas it corresponds to the conservation of the projections of the oriented areas in higher
dimensions into the (p, q) plane.

Symplecticity can be generalized to non-linear mappings. The idea is that each differentiable mapping can
be approximated locally by linear mappings trough the Jacobian matrices.

Let O be an open set contained in R2d . Let g be a differential mapping g : O → R2d . The mapping is called
symplectic if the Jacobian matrix g ′(p, q) is everywhere symplectic, i.e. :

g ′(p, q)T J g ′(p, q) = J or ω(g ′(p, q)ξ, g ′(p, q)η) =ω(ξ,η) ∀ξ,η ∈R2d . (4.30)

This basic concepts have been extensively studied and despite their development is beyond the scope of
this project, we give an important result which allows to understand why numerical algorithms which can
preserve symplecticity of the problem have been researched and developed.

To this purpose, we need an elementary definition: the flow of a system. The flow of a system is a mapping
that associates the value of the solution y(t) to the solution with initial condition y(0) = y0, i.e.

ϕt (y0) = y(t) if y(0) = y0. (4.31)

Then, we are ready to state the theorem that links the concept of symplecticity to the concept of Hamiltonian
systems:

Let O be an open set included in R2d . Let f : O →R2d ∈C 1. Then ẏ = f (y) is locally Hamiltonian if and only if
the flow of the system ϕt is symplectic ∀y ∈O and for sufficiently small t .

4.3. Symplectic Numerical Methods 43

This result is extremely important since it gives equivalence conditions for symplecticity of mappings and
Hamiltonian systems. The next step is to develop numerical methods that can maintain the symplecticity
of the problem, in order to obtain accurate results simulating the systems in their essence, preserving (pro-
jected) areas during the evolution in time.

4.3. Symplectic Numerical Methods

In [22], a basic and immediate definition of symplectic numerical methods is provided: a numerical method
is called symplectic if the one-step map from yn to yn+1 is symplectic, for all sufficiently small step sizes, when
applied to a smooth Hamiltonian system.

We now give a list of conditions on the symplecticity of numerical methods according to the definition that
we just stated:

• Partitioned Euler Method is symplectic

• Störmer-Verlet method is symplectic

• Runge-Kutta Methods: if the coefficients of the method satisfy:

bi ai j +b j a j i = bi b j ∀i , j = 1, ..., s, (4.32)

then the method is symplectic.

• Partitioned Runge-Kutta Methods: if the coefficients of the method satisfy:

bi âi j + b̂ j a j i = bi b̂ j ∀i , j = 1, ..., s (4.33)

bi = b̂i ∀i = 1, ..., s, (4.34)

then the method is symplectic.

4.4. Convergence of Methods

In this Section we implement and test the numerical schemes presented in this Chapter. We choose two very
simple problems to analyze the convergence behavior of the schemes. We test two different situations: a
first order-differential equation and a partitioned system of differential equations. All the numerical schemes
have been implemented in MATLAB.

The first step is to give an accurate definition of consistency, convergence and order of a numerical method.

A numerical method is said to be consistent if the exact solution of the problem satisfies the numerical method
for the time step approaching to 0. We now write this definition in mathematical form. For the sake of sim-
plicity, we consider a uniform grid, i.e. we consider τ= tn+1− tn as constant integration time step. Let y(tn+1)
be the exact solution evaluated in tn+1 and y∗

n+1 be the numerical solution that corresponds to tn+1, which is
evaluated from the exact solution at time tn . Then consistency (of order 1) is equivalent to the condition:

||y(tn+1)− y∗
n+1||

τ
≤Cτ. (4.35)

In particular, denoting with F (tn , yn ,τ; f) the incrementing function, consistency reads:

||y(tn+1)− y(tn)−τF (tn , yn ,τ; f)||
τ

≤Cτ. (4.36)

and C is a constant independent of the time step τ.
In particular, the method is said to be consistent of order p if

||y(tn)− y∗
n ||

τ
≤Cτp . (4.37)

44 4. Numerical Methods for Symplectic Hamiltonian Systems

Another fundamental concept is the convergence of numerical methods. A numerical method is said to be
convergent if the distance between the exact solution and the numerical solution tends to 0 for the the time
step approaching to 0. Mathematically, this is equivalent to:

||y(tn)− yn || ≤Cτ, (4.38)

where, again, the constant C is independent of the time step τ.
In particular, the method is said to be convergent of order p if

||y(tn)− yn || ≤Cτp ∀n. (4.39)

Afterwards, we introduce the concept of stability of numerical methods: a numerical method is defined stable
if small perturbations in the solution correspond to small perturbations in the data. An important result in
Numerical Analysis states that if a numerical method is consistent, then it is convergent if and only if it is
stable (a version of this Theorem is know as Lax Equivalence). For some numerical methods, stability can be
proved assuming Lipschitz continuity, but this condition is too strict to be useful in general situations. If the
Theorem is satisfied, the orders of convergence and consistency are maintained. In this case, we just refer to
the method as a method of order p and we write O (τp), considering the asymptotical behavior τ→ 0.

It is straightforward to notice that, the higher the order of a numerical method, the better the accuracy of the
simulation for the time step τ→ 0.

Convergence analysis of numerical methods plays a fundamental role in Numerical Analysis and it is usually
performed through Taylor expansions applied to the numerical schemes. A detailed discussion of the con-
vergence behavior of numerical methods would require an extensive effort and goes beyond the scope of this
project, therefore we simply list results available in literature for the schemes that we considered.

For the general first order differential equation systems:

• Explicit Euler is of order 1, O (τ)

• Implicit Euler is of order 1, O (τ)

• Implicit Trapezoidal is of order 2, O (τ2)

• A general Runge Kutta Method is of order 1, O (τ)
if

∑
i bi = 1

• A general Runge Kutta Method is of order 2, O (τ2)
if

∑
i bi = 1,

∑
i bi ci = 1/2

• A general Runge Kutta Method is of order 3, O (τ3)
if

∑
i bi = 1,

∑
i bi ci = 1/2,

∑
i bi c2

i = 1/3,
∑

i bi ai j c2
j = 1/6

• The Method Runge Kutta RK4, which will be introduced in the next paragraph, is of order 4, O (τ4) .

For partitioned systems:

• Partitioned Euler is of order 1 O (τ)

• Störmer-Verlet is of order 2 O (τ2)

• A general partioned Runge Kutta Method is of order 2, O (τ2)
if

∑
i , j bi âi j = 1/2,

∑
i , j b̂i ai j = 1/2

• A general partioned Runge Kutta Method is of order 3, O (τ3)
if

∑
i , j bi âi j = 1/2,

∑
i , j b̂i ai j = 1/2, ci = ĉi ,

∑
i , j bi âi j c j = 1/6,

∑
i , j b̂i ai j c j = 1/6

Further conditions and proofs for the results are available in [20] and [19].

These theoretical results are extremely important to test the implementation of numerical schemes. In fact,
in the next paragraph we will verify the implementations of the methods through simple test problem for
which an analytical solution is available, such that the evaluation of the numerical error is possible.

4.4. Convergence of Methods 45

General Systems

Firstly, we focus on the first-order differential equation. We consider the general Initial Value Cauchy problem
(IVP): {

ẏ = f (t , y)
y(0) = a.

(4.40)

In particular, we choose the following setting:{
ẏ = cos(t)+ y t ∈ 〈0,1〉
y(0) = 0.

(4.41)

The exact solution reads:

y(t) = e t

2
+ sin(t)−cos(t)

2
. (4.42)

We compare the convergence behavior of the following methods:

• Explicit Euler

• Implicit trapezoidal (DIRK)

• RK4 (explicit)

The Implicit trapezoidal and RK4 are characterized by the following Butcher tables:

0 0 0

1 1/2 1/2

1/2 1/2

0 0 0 0 0

1/3 1/3 0 0 0

2/3 −1/3 1 0 0

1 1 −1 1 0

1/8 3/8 3/8 1/8

Firstly, we visualize in Figure 4.1 the exact and the numerical solutions obtained by applying the Explicit
Euler scheme and the RK4 scheme. We adopt a coarse time step τ= 0.1 and we observe that the two methods
achieve different level of accuracy on the numerical solution. In particular, RK4 approximate the solution
better than the Explicit Euler method. It is interesting to verify the convergence behavior of the methods to
validate the implementation.

In order to study the convergence behavior of the numerical schemes, we adopt the Richardson Method, i.e.
we start with a coarse time step τ and we sequentially divide it by 2. If the method is of order one, the error
will be halved between the two simulations. If, instead, the method is of order 2, the error will be divided by
4. In general, if we divide the time step τ by n, the error will be divided by nα, where α is the order of the
method. Using this approach, we can study the order of convergence visualizing the behavior of the error
and comparing it with τ to the power of n. For the system (4.41), using the Infinity norm for the measure
of the error, we obtain Figure 4.2. Comparing the slopes, it is straightforward to notice that, as expected
from the theoretical results, RK4 gives the best convergence behavior with order 4. The Implicit Trapezoidal
method has order 2, whereas Explicit Euler has order 1. This is in accordance with the theory, therefore
the implementation is validated. Another way to apply the Richardson Method to test the convergence is to
evaluate the so called Experimental Order of Convergence, or EOC , between two consecutive errors obtained
from consecutive τ. The EOC is evaluated as:

EOC j =
log(er r j)− log(er r j+1)

log(τ j)− log(τ j+1)
. (4.43)

The experimental order of convergence are listed, with the different τ used in the simulation. Note that since
every evaluation of the order uses two different values of the error from two different τ, the vectors have one
entry less than the vector of τ.

Tau eoc_ExE eoc_ImT eoc_RK4
––––- –––- ––– –––

0.1 0.94575 2.0026 3.9616
0.05 0.97187 2.0007 3.9808

0.025 0.98567 2.0004 3.9904
0.0125 0.99277 2.0007 3.9952

0.00625 0.99637 1.9968 3.9968
0.003125 0.99818 1.9826 4.0322

0.0015625

46 4. Numerical Methods for Symplectic Hamiltonian Systems

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y(
t)

ExactSol
NumericSol

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y(
t)

ExactSol
NumericSol

Figure 4.1: Comparison between Explicit Euler and RK4 τ = 0.1. The red straight line represents the exact solution, the dotted blue
line the numerical solution. Accuracy is compared between the Explicit Euler Method and RK4. With a coarse τ = 0.1, RK4 manages to
approximate the solution better than Explicit Euler.

10-3 10-2 10-1

tau

10-15

10-10

10-5

100

er
r(

ta
u)

tau
tau2
tau4
EulExp
TraImp
RK4

Figure 4.2: Convergence of Numerical Methods. The straight lines represent the behaviour of the time step to the power of n. In
particular, blue n = 1, red n = 2, yellow n = 4. The dotted lines give the behaviors of the errors between the exact and the numerical
solution for the different schemes. The theoretical orders are confirmed.

4.4. Convergence of Methods 47

Partitioned Systems

Finally, we study the convergence of numerical schemes on a second-order differential equation, through
the transformation of the equation in a partitioned system of equations. We consider the general IVP for a
second-order differential equation:

ÿ = f (t , y)
ẏ(0) = a
y(0) = b.

(4.44)

If f (t , y) does not directly depend on ẏ , we can transform the equation in a partitioned system of equations
with the change of variables ẏ = z. Hence, we get the following partitioned system:

ż = f (t , y)
ẏ = z
z(0) = a
y(0) = b.

(4.45)

In particular, we choose the setting f (t , y) = cos(t)+ y and we get:
ż = cos(t)+ y t ∈ 〈0,1〉
ẏ = z
z(0) = 0
y(0) = 0.

(4.46)

With this choice, the exact solution reads:

y(t) = e t +e−t

4
− cos(t)

2
,

z(t) = e t −e−t

4
+ sin(t)

2
.

(4.47)

For this partitioned system, we compare the convergence behavior of the following methods:

• Partitioned Euler

• Partitioned Euler à la partitioned Runge Kutta

• Störmer-Verlet

• Störmer-Verlet à la partitioned Runge Kutta

We adopt the same techniques that we applied for the general systems in the previous paragraph. Initially, we
compare the results with a coarse τ = 0.1 for the standard Partitioned Euler Method and the Störmer-Verlet
method in 4.3. It is straightforward to notice that the Störmer-Verlet method gives better accuracy than the
Partitioned Euler Method. We finally study the convergence behavior: the outcome of the Richardson method
is given in Figure 4.4 and in the following table.

Tau eoc_PART eoc_PART_RK eoc_VER eoc_VER_RK
––––- –––– –––––- –––– –––––

0.1 1.0374 1.0374 1.9922 1.9993
0.05 1.0202 1.0202 1.9981 1.9998

0.025 1.0105 1.0105 1.9995 2.0000
0.0125 1.0053 1.0053 1.9999 2.0000

0.00625 1.0027 1.0027 2.0000 2.0000
0.003125 1.0014 1.0014 2.0000 2.0000

0.0015625

Partitioned Euler Method is, as expected, of order 1, whereas Störmer-Verlet method is of order 2. In partic-
ular, the implementations of the standard and the Partitioned Euler Method and the à la partitioned Runge
Kutta coincide, whereas the Verlet Method gives slightly different results between the two different imple-
mentations, but the convergence behavior is confirmed.

48 4. Numerical Methods for Symplectic Hamiltonian Systems

0 0.2 0.4 0.6 0.8 1
t

0

0.1

0.2

0.3

0.4

0.5

0.6

y(
t)

ExactSol
NumericSol

0 0.2 0.4 0.6 0.8 1
t

0

0.1

0.2

0.3

0.4

0.5

0.6

y(
t)

ExactSol
NumericSol

Figure 4.3: Comparison between Partitioned Euler and Störmer Verlet τ = 0.1. The red straight line represents the exact solution, the
dotted blue line the numerical solution. Accuracy is compared between the Partitioned Euler Method and Störmer Verlet. With a coarse
τ= 0.1, Störmer Verlet manages to approximate the solution better than Partitioned Euler.

10-3 10-2 10-1

tau

10-12

10-10

10-8

10-6

10-4

10-2

100

er
r(

ta
u)

tau
tau2
tau4
Verlet
VerletRK
Part
PartRK

Figure 4.4: Convergence of Numerical Methods for partitioned systems. The straight lines represent the behaviour of the time step to
the power of n. In particular, blue n = 1, red n = 2, yellow n = 4. The dotted lines give the behaviors of the errors between the exact and
the numerical solution for the different schemes. The theoretical orders are confirmed.

4.5. Final Remarks 49

4.5. Final Remarks
In this Chapter we analyzed some numerical approaches developed to solve general first order equations
and partitioned systems, in particular Hamiltonian Systems. The emphasis was given to the Störmer-Verlet
method and to its relevance into the set of numerical methods. In fact, a key feature of this scheme is to
provide the connection between symplectic integrators, which are able to evolve in time preserving the ge-
ometrical structure of the problem, in particular the oriented projected areas, and Runge-Kutta methods,
more precisely the partitioned Runge Kutta methods. The Störmer-Verlet method is characterized by order
2 of convergence, but more deep studies on partitioned symplectic Runge Kutta will give the opportunity to
rise the order of convergence preserving the geometrical structure of the problem. The extensive usage of
the Störmer-Verlet method in academic and industrial solver can therefore be explained by its capabilities of
combining different properties, but it has to be considered as a starting point for more advanced and accurate
numerical schemes.

5
OpenFOAM-HADES Files Coupling

The first stage of the MSc Project is to implement a coupling between OpenFOAM and HADES. To this pur-
pose we decided to use the framework provided by CFDEM, a software package developed by DCS Com-
puting, which allows fluid-particle simulations through the coupling between OpenFOAM and LIGGGHTS.
The key idea is to use the structure provided by CFDEM and substitute the DEM solver, i.e. LIGGGHTS with
HADES. A preliminary study of the CFDEM implementation is therefore necessary: we will investigate the
data structures and the functions implemented in CFDEM. Before going in depth on the details of the imple-
mentation, It may be useful to describe very briefly the strategy adopted.

In Chapter 3 we discussed some constraints on the DEM and CFD time steps. Due to the different constraints,
usually DEM time step is about 1-2 orders of magnitude smaller than CFD time step. The ideal case would be
to adopt the minimum between the two and select it as global time step, but this would be extremely expen-
sive from a computational point of view. Therefore, a strategy was developed to overcome this limitation and
the result is a trade-off between efficiency and accuracy.

The idea is to couple the CFD and DEM phases every CFD time steps, but the CFDEM framework allows also
the coupling as a multiple of ∆TC F D . If the DEM time step is not fixed a priori but can vary over time (i.e.
in HADES), it is required to save the data at least every CFD time step. But, in order to have an overview of
the CFDEM implementation with LIGGGHTS as particle solver, we will initially consider the case of a fixed
DEM time step. Hence, if ∆TDE M is fixed and since it is smaller than ∆TC F D , we select the CFD time step to
be a multiple of the DEM time step, i.e. ∆TC F D = k∆TDE M , where k is the coupling interval property. We will
exchange information and perform the CFD evaluation every CFD time step, after k evaluation of DEM. This
will introduce a time delay in the exchange of information: the particles will be subjected to a force which will
be frozen during the entire DEM loop. We lose accuracy of the results, but we gain an extreme speed up of the
simulation. In Figure 5.1 we provide a scheme which may be useful to visualize the strategy and to clarify the
ideas behind the implementation.

In Section 5.1 we will describe the current CFDEM implementation. Then, in section 5.2 a list of the functions
and files developed during the project is provided. Sections 5.4, 5.5, 5.6 describe in detail the several ideas
and procedures adopted during the development.

5.1. Description of CFDEM framework

CFDEM is a C++ object-oriented library that was developed to perform fluid and particle simulations using
OpenFOAM as CFD solver. The first numerical results in literature obtained via CFDEM are available in [16].
In this section, we describe the basic structure of CFDEM framework. More detailed information can be
found in [9].

CFDEM basically substitutes and improves the Kinematic Cloud models implemented in OpenFOAM. To this
purpose, the structure of CFDEM reflects the structure adopted in OpenFOAM. The functions implemented
can be used to build applications, which can be solvers or utilities. Solvers perform the calculation to solve

51

52 5. OpenFOAM-HADES Files Coupling

Solver

Coupling Time ?

Exchange Data

DEM step

CFD step
NO

YES

YES

NO
Final Time ?

Post Processing

Figure 5.1: Strategy for CFD and DEM coupling. The orange boxes indicate blocks in which the computations are performed. In blue
the phase of exchanging information is highlighted. The aim of this section is to study the implementation of this phase and to adapt it
for the usage of HADES

a specific problem. Utilities prepare the mesh, set-up the simulation case and process the results. We now
discuss briefly the applications available and the structure of the source code, which is organized in models
and submodels.

Solvers and utilities

The solvers available in CFDEM are mainly:

• cfdemSolverPiso, for unresolved coupling.

• cfdemSolverIB, for resolved coupling.

Basically, they both are an implementation of the PISO algorithm, but in cfdemSolverIB an immersed
boundary method is implemented in order to resolve the fluid at the particle level. The code is very similar
to the implementation of PISO solver in OpenFOAM. The main difference is that inside the CFD loop, some
functions of the CFDEM library are invoked. The main contribution is given by particleCloud.evolve(),
which invokes the DEM solver and takes care of the exchange of data between CFD and DEM packages. In
this case, particleCloud is an instance of the class cfdemCloud which will be described later.

Utilities present in CFDEM are mainly tools for post-processing of data.

Models and submodels

The source code of the library is organized in models and submodels.

The models implemented are the classes cfdemCloud and cfdemCloudIB, for unresolved and resolved cou-
pling, respectively. They contain all the relevant data structures, implement the methods for the particle
interactions (e.g. cfdemCloud::evolve) and they organize the different actions that are performed during a
simulation by the submodels.

Various submodels are available and they perform precise tasks that are invoked during a simulation. Some
examples of submodels are: dataExchangeModel, IOModel, ForceModel, voidFractionModel and so on.

File structure

The file structure needed to run a simulation reflects the structure already described for the usage of Open-
FOAM. All the files are organized in the following hierarchical structure.

5.1. Description of CFDEM framework 53

< case >
|– CFD

|– 0
|– constant
‘– system

‘– DEM
‘– post

Usually, in <case> a bash file, Allrun.sh, takes care of the execution of the commands needed by the simu-
lation and the postprocessing. It may be useful to look at the file provided in the tutorials and adapt it to the
specific case.

The CFD directory has the same contents of a usual OpenFOAM case. Note that in constant a file named
couplingProperties provides the specifications of all the properties needed by CFDEM for the coupling. In
the OpenFOAM terminology, this file provides a dictionary in which all the subModels are set for the current
simulation: properties and settings are read by the constructors of the classes of the submodels and instances
of these classes are created.

The DEM directory contains the input file of the DEM solver and the outcome of the simulation is available in
the post directory depending on the settings provided by the input file to the DEM solver.

Outline of CFDEM simulations

We now briefly describe what is the general outline of a simulation using CFDEM framework and we select
some important parts of the code that we will consider on the development of the new coupling.

The simulation outline reflects a typical OpenFOAM simulation. The user sets the computational mesh in
the appropriate file and utilities are used to create the mesh. Usually the utility blockMesh is used, while
decomposePar can be useful to set parallel computations. Then, the user runs a solver, which is one of the
solvers of the CFDEM framework presented in a previous paragraph.

For the sake of simplicity, we consider the solver cfdemSolverPiso for the unresolved coupling. The re-
solved coupling works in a very similar way with the appropriate adaptations. Inside the solver, an in-
stance of the class cfdemCloud (which we refer to as model) is created: the instance is named particleCloud.
Inside a CFD loop, some functions of the CFDEM library are invoked. One of the most important is the
call of particleCloud.evolve(). This calls the function cfdemCloud::evolve of the cfdemCloud class.
This function is the responsible for the coupling and for the exchange of data between the DEM solver and
CFD solver. Three important member functions are: cfdemCloud::evolve, cfdemCloud::getDEMdata,
cfdemCloud::giveDEMdata.

When the instance of the class cfdemCloud is constructed, instances of classes of the various submodels are
created. In particular, an instance of the class dataExchangeModel is created and named dataEchangeM.
The class dataExchangeModel has three member functions which are relevant for the scope of this project:

• dataExchangeModel::couple runs the DEM simulation calling the DEM solver,

• dataExchangeModel::getData has the aim of transfer DEM data to CFD solver,

• dataExchangeModel::giveData transfers data from the CFD solver to the DEM solver.

In cfdemCloud::evolve, firstly the DEM solver is run via dataExchangeM.couple(), then data is get from
the DEM solver through its member function getDEMdata(). This call invokes the function of the appropri-
ate submodel: dataExchangeM.getData(). The same is done for giving data to the DEM solver for the next
iteration. The procedure is described also by the scheme presented in Figure 5.2.

Then, after this process, the simulation goes back to the CFD level and the PISO algorithm is implemented in a
very similar way to the standard OpenFOAM solver, except some minor changes to take into consideration the
presence of the particles as an external force to the fluid, using the appropriate choice between the resolved
and the unresolved approaches, according to the relative sizes between the particles and the CFD cells.

54 5. OpenFOAM-HADES Files Coupling

evolve

dataExhangeM.couple()

getDEMdata()

giveDEMdata()

couple

...

cfdemCloud::

getDEMdata

dataExchangeM.getData()

giveDEMdata

dataExchangeM.giveData()

dataExchangeModel::

getData

...

giveData

...

Figure 5.2: Code structure for coupling and data Exchange.

The dataExchangeModel submodel

The submodel that is responsible for the exchange of data between CFDEM and the DEM solver (LIGGGHTS)
is therefore dataExchangeModel, a virtual class which is the base for the following methods:

• TwoWayMPI
It implements the influences of the particles on the fluid and vice versa. It exploits MPI as communica-
tions between softwares. It is efficient and faster than the other methods.

• TwoWayFiles
It implements the influences of the particles on the fluid and vice versa too, but the communication is
achieved through (text) files.

• OneWayVTK
It implements the influence of particle motion on the fluid dynamics. The communication is per-
formed by VTK files.

In order to have control on the debug phase, the choice is to implement firstly the coupling between Open-
FOAM and HADES via files, adapting the submodels TwoWayFiles and OneWayVTK to the data structures
of HADES. An implementation exploiting MPI for communications between OpenFOAM and HADES and
between processors in a parallel version of HADES would be ideal and efficient, but its development is be-
yond the scope of the current project. The result of this process will be the creation of a new data exchange
model: TwoWayHADES. In order to create a new dataExchangeModel, a preliminary and detailed study on
the existing procedure has to be pursued.

We now list all the data that are exchanged in both directions, i.e. form CFD to DEM solver and vice-versa.
It is important to notice that different data are transmitted in the case of resolved or unresolved coupling: in
the resolved case of resolved we require more data.

Data DEM → CFD through cfdemCloud::getDEMdata (or cfdemCloudIB::getDEMdata)

Unresolved
• Explicit Force

∗ radius
∗ x (position)
∗ v (velocity)

• Implicit Force
∗ ... +
∗ dragAcc (drag acceleration)

Resolved
• Explicit Force

∗ radius
∗ x (position)
∗ v (velocity)
∗ omega (angular velocity)

• Implicit Force
∗ ... +
∗ dragAcc (drag acceleration)

5.2. New contributions 55

Data CFD → DEM through cfdemCloud::giveDEMdata (or cfdemCloudIB::giveDEMdata)

Unresolved
• Explicit Force

∗ dragforce
(actually this is total force)

• Implicit Force
∗ Ksl

(Ksl coefficient of forcing term)
∗ uf (fluid velocity)

Resolved
• Explicit Force

∗ dragforce
(actually this is total force)

∗ hdtorque
• Implicit Force

∗ hdtorque
∗ Ksl

(Ksl coefficient of forcing term)
∗ uf (fluid velocity)

As stated before, the exchange of data is achieved through files or MPI as communicators.

In OneWayVTK, OpenFOAM simply reads the outcome of DEM solver at a fixed interval. The files are usually
stored in <case>/DEM/post, but the user can set another location through an appropriate statement in the
file <case>/DEM/post/couplingProperties. LIGGGHTS is told to save the output in VTK files, which are
read by the member function of OneWayVTK::getDEMdata.

In TwoWayFiles, OpenFOAM reads or writes a file for every physical property stated in the tables above. The
files are located in <case>/CFD/couplingFiles.

In TwoWayMPI, MPI is used as communicator between OpenFOAM and LIGGGHTS. The data are exchanged
through appropriate functions implemented natively in LIGGGHTS. The source code can be found in the
directorty <LIGGGHTS>/LIGGGHTS-PUBLIC/src, whereas for more details on the implementation, refer to
[10].

5.2. New contributions

In this section, a simple list of the functions implemented or modified is provided.

In HADES:

• New Force module: CFDForceModel.cpp, CFDForceModel.h (From Gravity Module)

• Creation of HADES.cpp, HADES.h, HADES_call.cpp, HADES_call.h (from main.cpp, to simplify usage
as library).

• Modification of VerletIntegrator.cpp and VerletIntegrator.cpp

In CFDEM:

• New Data Exchange Model: twoWayHADES.cpp and twoWayHADES.h

Interface:

• count_particle_each_group.h

• search_output.h

• unite_output.h

• unzip.h

• update_runtime_HADES_input.h

Compilation:

• Updated: files and options files in cfdemParticle/Make

56 5. OpenFOAM-HADES Files Coupling

Procedure for Coupling

The outline of the procedure is described in Section 5.1. To use HADES as the DEM solver, a new dataEx-
changeModel (TwoWayHADES) has been developed. We will now give a brief description of the running of a
simulation using HADES as DEM solver.

After the set up of a case, a solver is run. The solver will call the evolution of the particle cloud. The evolving
function will: get data arising from DEM (twoWayHADES::getData), perform the evolution of particle motion
in time (twoWayHADES::couple) and give back data to DEM solver in order to set the correct forces for the
next iteration (twoWayHADES::getData).
Some post processing steps are required to extract the relevant data from HADES output, since the output files
are created for group of particles. The post porcessing of data involves the extraction of relevant information
from each output file and the creation of a file for every physical property (radius, position, velocity, angular
velocity) in which all the particles are considered.

5.3. Compiling

In order to couple OpenFOAM for fluid dynamics and HADES for particle motion, the first step is to compile
the two software into a single one. To this purpose, we start the development linking the two softwares with a
minimum influence on each other.

We decide to use HADES as a library: OpenFOAM will use HADES classes and functions. HADES is based on
jem and jive, two opensource softwares developed by Dynaflow Research Group. The softwares have a precise
hierarchy, jem is the low-level platform, it is a generic C++ programming toolkit, a mix between the standard
C++ library and the standard Java packages. Jive is developed upon jem and it is specifically aimed at running
numerical simulations, often involving large data sets. With jive it is possible to develop applications and
HADES is an example. We will give more details on these toolkits in Chapter 6.

OpenFOAM and HADES present some conflicts and overlaps in the name of header files and classes. To this
purpose a careful usage of the namespace has been adopted (mostly on general classes as Vector, Matrix,
Property, String, ...)

The compilation of the two softwares is done through a simple call of an HADES simulation thanks to the
function main_hades in the file HADES_call.cpp. We give as input to this function two strings (the first is
arbitrary, the second is the path of the input file that we want to run, which is chosen between the tutorial
provided during the installation) and the HADES simulation simply starts.

We decided to use the OpenFOAM framework for the compilation. OpenFOAM reads compilation instruc-
tions from three different sources: general outlines for the compilation (compiler, flags for optimization lev-
els, for shared objects, ...) are provided by <OpenFOAM-directory>/wmake/rules, whereas specific com-
mands for compilation of top-level application or source code is provided by <top-level>/Make/{files,
options}. We do not modify the general directives, but we need to add some lines in the compilation of the
library cfdemParticle, which contains the model and submodels source code.

We firstly need to place and compile HADES as a library. To this scope, inside the directory cfdemParticle,
we place a directory Hades-coupling. Here we compile jem, jive and HADES in a sequential way. Once
HADES has been compiled, we modify the files in cfdemParticle/Make/{files, options}.

In cfdemParticle/Make/files we just add the path of the .C file of the new dataExchangeModel (twoWay-
HADES):

$(dataExchangeModels)/twoWayHADES/twoWayHADES.C

In cfdemParticle/Make/options instead it is necessary to add some lines in the sections

• EXE_INC: the path of the header files is added.

• LIB_LIBS: the path of the libraries and the names of the jem, jive, HADES libraries that we use are
added.

With these modifications, the compilation of HADES as a library, which can be used inside OpenFOAM
through the CFDEM framework, is achieved.

5.4. Development of CFDEM structure 57

5.4. Development of CFDEM structure
As we explained in Section 5.1, the development of a new dataExchangeModel is necessary to pursue the
coupling of HADES with OpenFOAM. We will name this model twoWayHADES and we will adapt the functions
of the existing subModels to the case.

The subModel twoWayHADES consists mainly on the implementation of four functions.

1. Constructor of the class
The user-defined properties set in the file<case>/CFD/constant/couplingProperties are read from
the dictionary and stored in appropriate variables.
The properties are:

• DEMts : DEM time step

• couplingInterval : how many DEM steps every CFD loop
Since, in the current implementation, the CFD and DEM time steps are kept constant, this can be
evaluated as ∆TC F D

∆TDE M

• inputFilename : name of the HADES input file

2. twoWayHADES::couple
This function is responsible for the call of the DEM solver and some pre- and post-processing proce-
dures.
In order to obtain the simplest coupling procedure, the idea adopted was to restart HADES every CFD
loop, updating the simulation time interval every time. This is of course not efficient from a computa-
tional point of view and in a later stage of the project will be modified to increase speed and efficiency
of the fluid-particle simulation. The first approach was therefore to start the DEM solver at every time
step, updating the input file, perform the particle simulation and then shutdown the DEM solver.

To this purpose, some modifications were necessary.

First of all, the particle injection is performed at time 0, with an ad hoc input file. In the following steps,
the particles are read and imported in HADES. Two different input files are therefore necessary:

• <case>.pro for time 0

• <case>.pro_restart for all the other cases.

As we said, the input file needs to be modified at every CFD time steps in order to consider the ap-
propriate time interval for the simulation. This is done through update_runtime_HADES_input.h. In
section 5.6 the procedure is briefly described. Through this function, the following data are updated
every CFD loop in the input file:

• DEM_ts

• time_start_DEM

• time_end_DEM

This is far from being efficient, but it gives a strong control in the implementation phase. Then, the
function calls the DEM solver, from the function main_HADES in HADES_call.cpp.

Since HADES saves output files in group of particles, some post-processing procedures are necessary
after every CFD loop. These capabilities will be described in section 5.6.

3. twoWayHADES::getData
The data arising from the DEM solver are saved in OpenFOAM. The function reads the relevant physical
properties from an appropriate file, one for each property.
The files are <case>/DEM/exchangefiles/{radius,displacement,velocity}. In each file, the in-
formation of the number of particles is stored in the first line. The typical content of one of these files
(e.g. velocity) is:

nParticle 3 START
1.57038e-05 0.00840644 -0.00156704 0
1.00184e-05 0.00698293 -0.00156425 1
4.59195e-05 0.01111530 -0.00150084 2

58 5. OpenFOAM-HADES Files Coupling

4. twoWayHADES::giveData
The data arising from the CFD solver are saved to a file, which will be read by the DEM solver during
the next CFD loop. In Section 5.5 we will implement a model in HADES that will be able to read this
information. The data consist on a numerically-evaluated force that act on the particles. They are
saved in <case>/DEM/exchangefiles/dragforce and the structure of the file is kept similar to the
files from the getData function. An example may be:

nParticle 3 START
2.50132e-11 4.23590e-08 2.97172e-10
3.08609e-11 4.41215e-08 2.88256e-10
3.00241e-10 3.83231e-08 5.71221e-10

5.5. Improvements in HADES

In order to perform fluid-particles simulation through HADES, some changes on the software were required.
We will now describe the main changes and explain why they were necessary.

Usage as library

First of all, HADES is required to be used as a library and not as an executable anymore. This requirement led
to a minor modification of the source code. The file main.cpp was divided in four files to exploit the usage as
classes and member functions. The declaration and the definition of the mainModule, the class that contains
all the structures required an HADES simulation are now provided in HADES.h and HADES.cpp. A calling
function used to run HADES inside a CFD loop is instead provided in HADES_call.h and HADES_call.cpp.
The four files contain nothing more than the original code but this structure allows a more user-friendly usage
of HADES as a library.

Set initial time

A very important feature that had to be implemented in the outlook of the fluid-particle coupling was the pos-
sibility to decide the start time of a particle simulation. In fact, since HADES was originally developed for par-
ticle simulations, every simulation just started at time 0. To this purpose the integrator VerletIntegrator
needed to be modified to accept an initial time field from the input file.

We will now describe the main idea behind the procedure adopted.

Firstly, we consider the class constructor: VerletIntegrator::VerletIntegrator. The integrator reads
the property from the input file.

Properties myProps = props.getProps (myName_);

Then the value in the input file is saved int the variable initTime_ (of type double).

myProps.find (initTime_, TIME_INIT);

Then, in the initialization phase, the global variables Globdat::TIME and Globdat::OLD_TIME are set with
the value of the variable initTime_.

globdat.set (Globdat::TIME, initTime_);
globdat.set (Globdat::OLD_TIME, initTime_);

This is unfortunately not enough.
We now consider the member function VerletIntegrator::integrate. The adding of those lines was not
sufficient, since inside the integrator, during the first iteration, another global time variable (of the namespace
HadesNames) is created and set to 0. This implies that also the previously modified variable is set again to 0.

Therefore, we set the new variable and the previous one again with the value from initTime_.

if (timeStep == 0)
{
globdat.set (HadesNames::NEXT_TIME, initTime_);
globdat.set (Globdat::TIME, initTime_);
globdat.get (t0, Globdat::TIME);

5.5. Improvements in HADES 59

}

This double modification is necessary because the implementation of the algorithm presents an unusual
structure. In fact, the first iteration of the integrator has the role of an initialization of the numerical integra-
tion. The actual step forward in time is performed from the second iteration. This is the reason why we need
to modify again the global data.

Now, with these modifications, we are able to perform a simulation deciding the starting time. The final time
can be instead decided through a variable in the input file. The controlModule can read the information
through the property runWhile.

A new Force Model

In order to obtain the coupling between the fluid and the particle dynamics, it is essential to have, in HADES,
a tool that receive the information of the forces that arise by the influence of the fluid on the particles. This
tool is not implemented in the standard HADES, so it is necessary to develop a strategy to take those forces
in consideration. The CFDEM framework evaluates numerically some forces that the user can decide to con-
sider in the simulation. We will exploit these evaluations, but we need a tool in HADES that is able to read this
information.

To this purpose, it is necessary to develop a new force model in HADES that can be activated in case of 4-
way (full) coupling. The strategy used was to take inspiration from an already implemented force model.
The easiest force to read and understand is of course gravity, which is implemented as a Model through
GravityModel.cpp and GravityModel.h. We therefore used these source code files as a basis for the CFD-
arising force. We decided to name this new module as CFDForceModel. The structure of the model is kept
equal to the gravity one: classes and member function are the same. The key change in the implementa-
tion is performed in CFDForceModel.h in the member function GravityModel::evalForces_. Instead of
evaluating the gravity force acting on each particle multiplying the constant acceleration g by the mass of
the specific particle, we read the numerical values directly from the output file of the CFD solver, evaluated
during the previous CFD iteration.

The total force is saved by OpenFOAM in<case>/DEM/exchangefiles/dragforce, using the CFDEM frame-
work. Note that the name dragforce is not perfectly accurate, since the values can consider also lift forces,
but it is kept for historical reasons.

Therefore, in CFDForceModel::evalForces_ we firstly open the file in which the CFD-arising force was
saved:

std::string filename = "../DEM/exchangefiles/dragforce";
const char * filename_char=filename.c_str();
std::ifstream* inputPtr;

inputPtr = new std::ifstream(filename_char);
std::string just_read = " ";
while(just_read.compare("START") != 0)
{
*inputPtr » just_read; //read until we read "START"

}
double double_just_read;

Finally, we insert in the force vector the values from the dragforce file. This is done simply reading the infor-
mation in a for cycle. The order of the particles in the file is preserved by the order in which the information
on radius, position and velocity is saved. We will go more in depth on this procedure in section 5.6

for (dim = 0; dim < N; dim++)
{
*inputPtr » double_just_read;
fb [foffset + dim] += double_just_read;

}

Thanks to this new force model, the particles motion can be influenced by the presence of the fluid. The im-
plementation allows a little lag between the CFD and DEM evaluations: the particles will feel the CFD-arising
force evaluated at the previous CFD time step.
This lag is necessary to avoid the rise of computational cost: as explained previously, DEM time-step is re-
quired to be very small, usually 1-2 orders of magnitude lower than the CFD time-step and the common

60 5. OpenFOAM-HADES Files Coupling

strategy is to perform the DEM step forward in time freezing the CFD loop for k DEM iterations. The value of
k can be set in <case>/DEM/couplingProperties.

5.6. Infrastructures implemented

In order to use the CFDEM framework with HADES, some intermediate transformations from the raw outputs
needed to be performed. These intermediate steps were: how to set the correct time in HADES, how to read
GZip-formatted output data, how to evaluate on the run the number of particles and how to build on the run
the problem-dependent data structure.

How to set DEM initial time, final time and time-step

Thanks to the improvements on HADES described in section 5.5 it is now possible to start an HADES simula-
tion for an arbitrary time interval.

This interval changes, of course, at every CFD time step. The procedure adopted to transfer this information
from OpenFOAM to HADES, without using any MPI procedure, was to update the HADES input file, at every
CFD step.
In the input file, before the specification of HadesModule, some variables can be fixed. For an arbitrary sim-
ulation we decided to require the following three variables:

1. DEM_ts, which sets the DEM time-steps, if the property fixedTimeStep in the integrator is set to true.

2. time_start_DEM, which sets the initial time for DEM simulation. It has to be set to the value of the
previous CFD time. The value is read by the integrator in initialTime.

3. time_end_DEM, which sets the final time for DEM simulation. We need this to be the current CFD time.
The value is read by the controlModule through the property runWhile.

We decided to update these variable at every CFD step, at the start of the DEM phase.
To this purpose, we developed the function:

void update_runtime_HADES_input (const char* filename, std::string property, double new_value)

It is implemented in update_runtime_HADES_input.h. It takes as arguments the path of the input file, the
string containing the property to change and the new value to fix. The property DEM_ts is updated only at the
first CFD loop and kept constant in all the next, whereas the other two are changed at every CFD time step.

Unzip

HADES stores the output of the simulation in GZip files. Whereas OpenFOAM, with the CFDEM framework,
requires ASCII files to read data. To this purpose, a function

unzip (const char* argv)

was included in the software. The implementation is an adaptation of a function presented in a tutorial of
the Jem software package. Since HADES is built on Jem, we easily adapted this feature in HADES.

Run-time information

In order to exchange data between HADES and OpenFOAM, some data structures needed to be modified to
have a correct data transmission.

HADES saves output data by groups, which can be clusters of particles or even single particles. We decided to
implement some functions to extract the relevant data (radius, position and velocity) from multiple output
files. In HADES, we save the data through this procedure:

1. In hadesModule, in saveStructure we set:

nrOfSaves = 1;
saveTime = "$(time_end_DEM)";

5.6. Infrastructures implemented 61

In this way, we save data only when the DEM simulation has reached the final time.

2. In the generator, in each group of particles that we want to save we set:

outputFile = "<path-input>";

The path will be ../DEM/<nameOfInputFile>, since we call HADES from the CFD directory.

The number of groups and the number of particles in each group are only known at runtime, therefore we im-
plemented some functions to read this information. Firstly, in search_output.hwe implemented a function
that reads how output files are created by the case that HADES is running. This is done counting how many
times the word outputFile appears in the HADES input file. Then, in count_particle_each_group.h,
a function that counts how many particles there are in each group has been developed. This is achieved
counting how many lines in one field (e.g. velocity, or time) exist.

This are data relevant to the creation of a united output file, in which data from all groups (and therefore
output files) are gathered. One file per physical property is generated, i.e. one for radius, one for position and
one for velocity. These files are saved in <case>/DEM/exchangefiles. These are the final data that will be
given as input to OpenFOAM to take into consideration the influence of the particles on the fluid dynamics.

Handling of Input files

For the sake of simplicity, all particles are injected at time 0 with an ad hoc input file, i.e. HADES-input.pro.
From all the following time steps, another input file is used an it is named HADES-input.pro_restart. This
file does not create particles, but it reads the positions and velocities from the output files generated by the
previous time steps, whereas material properties are kept in both files. The main difference in the files is that
in HADES-input.pro_restart, in case of full coupling, we need to add the force model CFDForce, in order
to be able to read the information that arise from CFD simulation into the DEM solver. A check in the function
dataExchangeModel::couple decides which input file to consider: only at first CFD time step it will select
HADES-input.pro, otherwise HADES-input.pro_restart.

New Fundamental Input parametrs in HADES

In order to perform a simulation with the new implementation of HADES, some new variables are required
in the input file. We give here an incomplete input file, where we kept the important properties developed for
the CFD-DEM coupling. Note that the numerical values of DEM_ts, time_start_DEM, time_end_DEM need
to be set only in pure HADES cases, since if we use CFDEM with the new implementation, this data will be set
in every CFD iteration.

// General data, definitions etc..
DEM_ts = 0.000010;
time_start_DEM = 0.00000;
time_end_DEM = 0.000010;

// Specification of Models in HadesModule
hadesModule =
{
saveStructure =
{

nrOfSaves = 1;
saveTime = "$(time_end_DEM)";

};
integrator = "Verlet"
{
fixedTimeStep = true;
initialTime = "$(time_start_DEM)"; // Start DEM simulation at correct time
timeStep = "$(DEM_ts)";
charLength = 1.0e-01;
groupNames = [<GroupsParticles to integrate>];

};
model =
{
type = "Multi";
models = [<Usual Models>,

"CFDForce" // In <HADES-input.pro_restart>:
]; // Activate in case of full coupling

<ParticleModel> = <appropriate generator>
{

62 5. OpenFOAM-HADES Files Coupling

<standard Properties>
outputFile = "../DEM/files/<nameOfFIle>.gz";
inputFile = "../DEM/files/<nameOfFIle>.gz"; // In <HADES-input.pro_restart>:

} // Read pos and vel of particles
}

}
controlModule =
{
runWhile = "(t <= $(time_end_DEM))"; // End DEM simulation at CFD timestep
<standard Properties>

};

5.7. Run a test: example

In this section we run a sample case for exploring the new coupling features between OpenFOAM and HADES.
Some particles collide between each other in a rectangular box, with fluid inside. Interactions with the walls
are not relevant in this case, due to the small simulation time.
We will compare results for different levels of coupling between the particle motion and the fluid dynamics:

• No coupling

• 1-way coupling + particles collisions (fluid on particles but not vice versa)

• 2-way coupling + particles collisions (or 4-way coupling)

We consider 6 spherical particles, of the same size, i.e. with radius of 0.0005 m. We divide the particles in 2
groups: rightGrains (5) and leftGrains (1). The difference between the groups lies in a different resolution of
the approximation of the spherical shape. In fact, HADES always considers contacts between polyhedrons
and the user can specify, in the input script, the quality of the approximation of spheres (or ellipsoids) into
polyhedrons. In Figure 5.3 we give a representation of the initial configuration of the system of particles. The
representation is obtained from the view module in HADES.

Figure 5.3: Initial Configuration of the particle system.

The particles of the group rightGrains are at rest, while we assign to the particle of the group leftGrains an
initial velocity. This particle will cause the collisions. The initial configuration of positions and velocities of
the particles are shown in Table 5.1, whereas the material properties are shown in Table 5.2.

Position [m] Velocity [ms−1] Radius [m]
x y z x y z

RightGrains

0.005 0.005 0.050 0 0 0 0.0005
0.005 0.005 0.048 0 0 0 0.0005
0.005 0.005 0.046 0 0 0 0.0005
0.005 0.005 0.044 0 0 0 0.0005
0.005 0.005 0.042 0 0 0 0.0005

LeftGrains 0.005 0.005 0.055 0 0 -0.1 0.0005

Table 5.1: Initial position, initial velocities and radius of particles.

As far as the fluid is concerned, we consider a fluid at rest in a rectangular box. The domain has a square
section (in x and y direction), with the edges of 0.01 m, whereas the extension in z direction is of 0.1 m.
In Figure 5.4 we show the fluid domain and the orientation with respect to the axes. The initial values of
the velocity and pressure are set to 0 in the entire domain. In Table 5.3 we set the physical properties that
characterize the fluid dynamics. A visualization of the domain of computation is given in Figure 5.4. In Figure

5.7. Run a test: example 63

Property Value

Young Modulus E = 1 ·102 kgm−1 s−2

Poisson Ratio λ= 0.3
Friction Coeff µ f r = 0.7
Rolling Friction Coeff µr ol l = 4 ·10−2

Normal damping Coeff ηn = 4 ·102 m−1 s−1

Tangential damping Coeff ηt = 1 ·102 m−1 s−1

Table 5.2: Material Properties of particles.

5.5 we provide the representation of the entire system (fluid and particles) at the start of the simulation time
(t = 0).

Figure 5.4: Initial Configuration of the fluid.

Property Value

Density ρ = 10kgm−3

Dynamic Viscosity µ= 10−4 kgs−1 m−1

Kinematic Viscosity ν= 10−5m3 s−1

Table 5.3: Material Properties of fluid.

Figure 5.5: Initial Configuration of the system: fluid and particles.

We decide to simulate the dynamics in the interval [0,0.2]s. To this purpose we impose the time steps and the

64 5. OpenFOAM-HADES Files Coupling

CFD-DEM coupling interval. The parameters are shown in Table 5.4

Property Value

CFD time step 0.001 s
DEM time step 0.00001 s
Coupling Interval 100

Table 5.4: Numerical parameters: time steps and coupling interval.

Due to the relative dimensions of the particles and the fluid cell, we adopt an unresolved coupling. This is due
to the fact that the resolved coupling is effective only when particles are much bigger than the computational
grid, i.e. at least 8 CFD cells in a particle diameter.

We now list the forces that we consider in each level of coupling and provide some expectations on the out-
come of the experiments.

It is important to notice that with the implementation provided it is not possible to have no coupling: the
presence of the particles always influences the fluid dynamics, since in the CFD solver (cfdemSolverPiso)
there is the call of the function

bool hasEvolved = particleCloud.evolve(voidfraction,Us,U);

Therefore, in order to not consider the particle motion influence into fluid dynamics, the "trick" is to avoid
the solution of the fluid in time. This is possible through appropriate switches in the couplingProperties
file. Thus, we can analyze the particle motion, which can be independent or influenced only by the initial
condition of the fluid.

We remind that the exchange term that is inserted in the averaged Navier-Stokes equations is proportional to
the relative velocity of the fluid and the particles.

Rp f = Kp f (u f −< up >) = Kp f u f −Kp f < up >, (5.1)

where, in the last step, for numerical reasons, the expression is divided into implicit and an explicit term,
using the cell-based averaged particle velocity < up >. The exchange coefficient Kp f is modeled as:

Kp f =− |∑i Fp f |
Vcel l |(u f −< up >)| . (5.2)

Therefore, the information will be updated at each CFD step, even if we do not solve the flow: the velocity of
the particles changes and the exchange term in the averaged Navier-Stokes equation will be updated conse-
quentially. Hence, not solving the flow is equivalent to couple the particle motions at each time step with the
initial condition of the fluid.

We now describe the different levels of coupling that we explored, and in Figure 5.6 a visualization of the
results is provided.

• No coupling:
We do not impose fluid forces on the particle motion. We just consider collisions between particles,
therefore we expect the motion of the particle to be entirely planar. We do not solve the fluid: it will
continue to stay at rest over time.

• 1-way coupling:
We impose two fluid forces on the particle motion: Di Felice Drag and Archimede Lift. The forces are
described in the paragraph below. Again, we consider the influence of the presence of the fluid on
particle motion, therefore we do not activate the solution of the flow.

• Full coupling: We impose two fluid forces on the particle motion: Di Felice Drag and Archimede Lift.
In this case, we solve the flow in time, in order to have the full coupling: forces on particles due to fluid,
forces on fluid due to particle presence and particles collisions and interactions between each other.

5.7. Run a test: example 65

Di Felice Drag

The drag force model is presented in detail in [48]. For the sake of completeness, we give here the model. Let
ui −vi be the relative velocity between the fluid and the particles i , εi the void fraction field in cell in which
particle i lies and di the diameter of particle i . The the Di Felice drag model reads:

Fd = 0.125Cd0,iρ f πd 2
i ε

2
i |ui −vi |(ui −vi)ε−χi , (5.3)

where:
Particle Reynolds Number Rei = ρ f diεi |ui −vi |/µ f ,
Drag Coefficient Cd0,i = (0.63+4.8/Re0.5

i)2,
Empirical Exponent χ = 3.7−0.65exp[−(1.5− log10 Rei)2/2].

(5.4)

Some error has been introduced considering the relative velocities: we see that equation (5.2) considers an
averaged relative velocity, whereas equation (5.3). Details of this correction can be found in [17].

Archimede Lift

The Archimede Principle states that a particle immersed on a fluid received from the fluid a lift. In this case,
the immersed volume is equal to the total volume of each particle. Let ρ f be the density of the fluid and V
the volume of a particle, the lift is then modeled as:

Fl = ρ f gV. (5.5)

Note that this definition of the buoyancy force does not take into account the gravity force that act on the
particle. In order to have a correct physical behaviour, the gravity force needs to be added to the particle.
Let ρp be the density of the particle then for a fully submerged object, with gravity acting in the direction of
negative reference axis, the total force due to buoyancy and gravity is given by:

F = Fg +Fl ⇒ F =−ρp gV +ρ f gV. (5.6)

Comments on numerical results

In Figure 5.6 we provide a visualization of the numerical results: we plot 3D particles, whereas the CFD data
is visualized in a slice of the domain that corresponds to the plane of the initial configuration of the particles.

For the cases of no coupling and one way coupling, in the slice we plot the void fraction field, since the
velocity of the fluid is constant due to the fact that we are not solving the flow. Comparing the two cases, it is
important to notice how the particle motion is planar in the case of no coupling, whereas it spans the third
dimension in the case of one way coupling. Moreover, if we consider the projection of the particles on the
z plane, we see that the particles in the case of one way coupling are slowed down: the collisions happen at
later times. This is the tangible effect of the drag force. We remind that in the case of one way coupling, we
are coupling the particle motion with the initial condition of the fluid, since the flow is not solved.

In the case of full coupling, we plot the velocity of the fluid in the slice of the domain. This is to highlight that
the equation of fluid are now solved and that the fluid dynamics takes under consideration the presence of
the particles. Comparing the full coupling with the one way coupling, we notice that the motion of particles is
dramatically influenced by the fluid dynamics. The general motion of the system is slowed down and particles
now are allowed to move also below the slice, since the property of the fluid are updated at each CFD time
step and the forces the drag force depend on the relative velocity between the fluid and the particle.

66 5. OpenFOAM-HADES Files Coupling

Figure 5.6: Results for different levels of coupling.

6
Improvements on OpenFOAM-HADES

Coupling

In Chapter 5 we provided a complete description of a first rudimentary coupling between OpenFOAM and
HADES for fluid-particle simulations. The approach was to adopt the simplest strategies in order to have a
complete simulation working and we tested the implementation on a case for unresolved coupling.

We now focus on some limitations of the current implementation with the aim to improve the performance
of the solver. We now provide a list and a brief description of the limitations.

The main drawbacks of the current implementation are:

• HADES is initialized every CFD time step. It performs the necessary calculations and then it is shut
down. At the next CFD time step this loop is restarted.

• Two different input files are required, one for the first CFD step and another one for all the others.

• The CFD force is read at every DEM step inside every CFD loop, even if it is frozen. Since the file reading
is really time-consuming, we should read this value just once per CFD step.

• The most important feature of HADES (not fixed DEM time step) is not exploited, since the DEM time
step is decided a priori.

In this Chapter, we focus on these problems, we propose solutions and describe the new features of the im-
plementation.

In Section 6.1 we focus on a coupling of HADES at a lower level in OpenFOAM. To this purpose, a description
of the structure of HADES is necessary. We remind that HADES is based on Jem and Jive, two C++ softwares
for numerical analysis. Hence, a discussion on Jem and Jive is given, especially on the structure of Modules
and Models of applications built in Jive. In Section 6.2 we avoid the requirement of writing two different
input files for the particle simulation. We add the CFD arising force on the run from the second CFD loop. In
Section 6.3 we focus on the improvement of performances freezing the CFD arising force for the entire CFD
loop, avoiding the reading of the force each DEM step. This will significantly speed up the simulation since
it will allow for 1 evaluation from file instead of k, where k is the coupling interval property, as described in
Chapter 5. Finally, in Section 6.4 we will allow a not-fixed time step for HADES, coupling CFD-DEM at fixed
time and not every k DEM steps and in Section 6.5 we allow parallel CFD computations running HADES in a
serial way.

6.1. HADES not restarted

In this Section we develop an implementation of the coupling of OpenFOAM and HADES which allows to
initialize HADES and its data structure just once and not every CFD step inside the CFD loop.

67

68 6. Improvements on OpenFOAM-HADES Coupling

Firstly, we provide some experiments where we prove why this step is necessary to have a speed up of the
numerical simulation. For the moment, we will therefore focus only on pure DEM cases: we want to test how
much the initialization phase can influence the performance of HADES. Hence, in the following, HADES is
used per se and without the CFDEM framework. We consider a sample case and we perform the calculation
up to different simulation times. Keeping the time step fixed, this is equivalent to perform the simulation for
different numbers of DEM steps. We consider 100 (spherical) particles moving with a non-zero initial velocity
and 1 particle moving in their direction to cause collisions. The∆TDE M is set to 10−5. A file is saved at the end,
saving the shape data of every particle and all the relevant properties (i.e. position, velocity, angular velocity,
...). In Figure 6.1 the execution time is plotted against the number of DEM steps evaluated.

It is straightforward to notice that the execution time is almost constant up to 100 DEM steps and then it
increases drastically with respect to the number of steps. This proves that the initialization phase is extremely
time consuming with respect to the actual time that HADES uses to perform a DEM step. We would expect, in
fact, that the execution time would be always directly proportional to the simulation time (measured by the
number of DEM time steps). Dividing the execution time of the case with maximum simulation time by the
number of DEM steps, we have an estimation of the time required to perform a single time step: 2.43 ·10−5.
Unfortunately, the time required with a small number of steps appears to be much higher than (# DEM step
· average time). A more detailed investigation is then required. We now want to investigate how much time
is spent by HADES in the different phases of the execution. To this purpose, we fix the number of DEM time
step and we evaluate for for each phase the time required by HADES to be completed. We compare the cases
with and without saving the final file for the phases of initialization and running. In Figure 6.2 we plot the
outcome of the experiment.

From the visualization of the results in Figure 6.2 we notice that, as expected, with this configuration of par-
ticles, the actual time required to perform one step forward in time is small compared to the other phases.
The most time consuming phase appears to be the saving of the final files. This requires about 85.68 % of the
total execution time. The initialization phase has large impact in the execution time: its contribution is about
13.07 % of the total. From these results, it appears obvious that improvements can be achieved operating on
this two parts of the HADES implementation.

We decide to intervene on the initialization phase, in order to keep more control on debugging during the
development of the project. However, a more direct communication will be essential for real-life industrial
contexts. In the rest of this section we will firstly describe the structure of HADES and then we will describe a
new implementation which allows to use HADES without restarting it every CFD loop.

100 102 104 106 108

Nr DEM STEPS

10-2

10-1

100

101

102

103

tim
e

Execution Time Without Visualization

CPU Time
Real Time

Figure 6.1: Calculation time vs number DEM steps. The calculation time is shown in dependence of the DEM steps performed. The
expected direct proportional dependence between the number of steps performed is not respected for very small numbers of DEM
steps. This highlights that the start-up time is significant in a pure HADES simulation. The data are obtained using 100 particles falling
and 1 particle hitting this cluster, with no external forces applied and with ∆TDE M = 0.00001. An output file is saved at the end of the
simulation.

6.1. HADES not restarted 69

0 2 4 6 8 10 12 14
Operations

0

0.01

0.02

0.03

0.04

0.05

0.06

tim
e(

s)

Execution Time Different Phases

run
runFile

Figure 6.2: Execution time of different phases in 10 DEM steps. The visualization of the execution time of different phase is shown.
The influence of saving a final output file in the execution time is explored. Operation 1 indicates the starting of the initialization phase,
operation 2-11 deal with the DEM evaluation, operation 12 regards the saving/no-saving of the file, operation 13 is the shutdown phase.
The same setting of previous plot is used, but we perform only 10 DEM steps. Two main contributions are evident: the first step (between
operation 1-2) measures the time necessary for the initialization phase) and the step between 11-12 measures the saving time of the
output file

6.1.1. Structure of HADES: Jem and Jive

HADES is a high level application which performs particle dynamics simulations. It is based on two C++
toolkits, named Jem and Jive, developed by Dynaflow Research Group. In the manuals of the two softwares it
is reported that:

• Jem is a low-level generic programming C++ toolkit. It provides a portable interface to system-level
services and serves as the foundation for Jive.

• Jive is specifically aimed at running numerical simulations, often involving large data sets.

The hierarchical structure of the toolkits allows a well-defined distinction between the levels of programming
and a broad set of utilities are available to be used to built a user-specific application.

In Jem, classes are available to handle multi-dimensional arrays, manage memory, share data, perform I/O
operations.
In Jive, classes are available to store and handle (unstructured) meshes/grids, assemble and solve (large)
systems of equations, handling constraints and boundary conditions.

In the implementation of HADES, classes of both toolkits are extensively used and, in particular, the structure
of Modules and Models provided by Jive is adopted. This structure allows to organize the implementation in
a logical structure, exploiting the object-orienting features of C++.

6.1.2. Jive Modules and Models

As stated before, the aim of Jive is to provide an extremely flexible toolkit for developing numerical simula-
tions. To this purpose, it uses a precise structure of Modules and Models, to provide an efficient decoupling
between equations and algorithms to solve them.

It may be useful to develop algorithms which can solve different equations and to solve the same equations
with different algorithms. This is the main idea behind the distinctions between Module (algorithms) and
Models (equations). For example, in HADES, the different contact forces that can arise from a physical prob-
lem are implemented as Models, which can be activated by the user in the input file. Instead, integrators
(Verlet) are implemented as Modules, since they can be used to solve different equations arising from the
Models.

70 6. Improvements on OpenFOAM-HADES Coupling

With this distinction in mind, Modules are generalized to take care of general operations, as setting the
graphical visualization of the simulation (viewModule), printing information during run time (infoModule)
or deciding until when running the simulation (controlModule). In HADES, all these Modules are gathered
together in a ChainModule, called HadesModule. For the purpose of a more efficient implementation of
HADES, we need to go a little more in depth in the concept of Modules.

Every application is built as a chain of modules and each module is an instance of the class Module, which is
coded in the app package of Jive. The class Module has three member functions: init, run, shutdown, which
are named after the different phases of simulation which they take care of.
The init function is called just once, at the start of a program. It is responsible of setting the properties and
the configurations that the user sets in the input file.
The run function is called multiple times inside a program. Usually it is called in a loop, until some conditions
are satisfied.
Finally, the shutdown function is called at the end if the program, hence just once.

The three functions receive as input parameters three instances of the class Properties: globdat, which con-
tains the global database of the program, props, which contains the runtime parameters and conf that ex-
tends the properties in props using default values for the properties that are not set.

For example, after having declared a module MOD, as instance of the class Module, and conf, props, globdat
as instances of class Properties, the module MOD can be initialized, run and shut-downed through:

MOD -> init (conf, props, globdat);
MOD -> run (conf, props, globdat);
MOD -> shutdown (conf, props, globdat);

What will actually be done by the module is of course implemented in the definition of the particular member
functions of the specific module. The main idea of the implementation of the modules was presented. Now
we have the ingredients to understand the skeleton of HADES implementation.

In Jive, Application::exec, a member function of the class Application of the app package, provides
the possibility of handling the various phases automatically. HADES uses this method to be set and run: in
HADES_call.cpp a simple call to this function, using as input the HADESModule is enough to take care of the
execution of all the different phases of all the Modules implemented. This is extremely user-friendly and easy
to read, but it does not provide enough freedom on the usage of HADES.

In fact, as stated in the previous section, there is the need to initialize HADES once, perform some evalua-
tions and then give the control back to the CFD loop, waiting for the new data and the new CFD time step
to proceed with the calculations. This ambitious target is obtained subdividing the implementation of the
Application::exec function in different member functions at the CFD level. In the next paragraphs we will
explain how we achieved this result.

6.1.3. Implementation

As stated previously, the run of HADES in the current implementation is obtained by calling the function in
HADES_call.h, which contains the call to the member function Application::exec. This functions takes
care on all the phases of a HADES run: initialization, run, shutdown. Hence, we have to subdivide the content
of the function Application::exec directly in the dataExchangeModel class. We will therefore have more
freedom in the control of an HADES simulation, paying some effort in a stronger implementation.

We now describe the member function Application::exec. Firstly, some variables are declared, e.g. an
instance of the Module class, instances of the Properties class, like the global database, properties and con-
figuration. The global database is initialized and then there is the call of a very important member function
of the Application class: Application::runLoop. Here we find the control of the different phases of the
modules, and in the specific case, the mainModule of HADES will be controlled.

We give here the most important part of the function Application::runLoop, for the sake of completeness:

Module::Status stat;

phase = "configuration";
mod.configure (props, globdat);
mod.getConfig (conf, globdat);

6.2. CFD Force from second CFD time step 71

phase = "initialization";
stat = mod.init (conf, props, globdat);
phase = "runtime";
...
while (stat == Module::OK && ! Utils_::hangup)
{

stat = mod.run (globdat);
}
...
phase = "shutdown";
mod.shutdown (globdat);

As we see, the different phases of an HADES simulation are controlled through these lines. We therefore
want to distribute them directly in the implementation of the dataExchangeModel at CFDEM level. We have
to divide the phases in two different parts and implement them in two different member functions of the
twoWayHADES class, which is a realization of the dataExchangeModel virtual class.

• Constructor of the twoWayHADES class
We implement here the initialization of HADES. Hence, at the end of the constructor we add all the
code that originally was in the function Application::exec, until the call to the member function
that controls the loop of the simulation: Application::runLoop. Then, we add also some parts of the
code that we gave in the previous example: we add the configuration and initialization phase, but we
do not include the call to the run function of the Module mod. In this way, during the construction of
the instance of the dataExchangeModel class, we initialize HADES. This is performed just once and
therefore we achieve the result to avoid the restart of HADES at every CFD step.

• twoWayHADES::couple. In this function we substitute the call of the function main_HADES with the
while that we gave in the example. We have to slightly modify the implementation since we do not
want to run HADES until the final time of simulation, but just until the next CFD loop. At the CFD level,
this information is contained in the variable time_end_DEM and it is, of course, updated every CFD
step. Therefore after every performance of the run function of the main module of HADES, we read the
new HADES time and we continue to perform the simulation until this time is equal to time_end_DEM.
We check this condition adding a control in the while statement. When the condition is no longer
satisfied, we give the control back at the CFD level and we continue the procedure until we start the
new CFD step.
Up to now, the shutdown phase is not performed.

With these modifications we achieved the important result to initialize HADES just once during the runtime
of the fluid-particle simulation.

In the new implementation, every property is initialized just once. Therefore, we just need one input file.
This allows us to solve the problem of having two different input files, one for the first time step and one
for all the others. The drawback of this improvement is that, in the case of full coupling, during the first
time step, HADES is considering the CFD arising force, but this information has not been evaluated yet: the
CFD force arises from the second CFD step. Hence, we have to slightly modify the implementation of the
CFDForceModel in HADES in such a way that it reads the information only from the second CFD step. This is
achieved in the next section.

6.2. CFD Force from second CFD time step

In the new implementation of the coupling, just one input file is required. Therefore, in the case of full cou-
pling, the user will create an instance of the CFDForce in the input file. This information will be read also
during the first time step, but at this moment the CFD arising force at the previous time step is of course not
known and it cannot be read. Therefore, it is necessary to modify the implementation in order to set this force
to 0 during the first CFD step.

The idea is that the CFDForceModel::evalForces_ responsible for the creation of the force arising from
CFD (reading it from the exchange file) is aware of the actual time of the simulation. Then, if the time is less
than the first coupling time, the force is set to 0, otherwise it is read form the exchange file.

This is pursed firstly adding the globdat as input to the member function:

void CFDForceModel::evalForces_(const Dim<N> d, const Properties& globdat)

72 6. Improvements on OpenFOAM-HADES Coupling

Then we need to set a variable which sets the first coupling time. In the case of fixed time step, this will be
(DEMTimeStep · couplingInterval). We just set it to 0.001 for an example.

CFDforce = "CFDforce"
{

groupNames = ["leftGrains", "rightGrain"];
firstCoupleTime = 0.001;

};

Finally, every DEM time step, during the evaluation of the force, we check whether we are in the first CFD
iteration. If we are in the first iteration, we set the force to 0, otherwise we read it from file:

if (time_HADES_ <= firstCoupleTime_)
{

...
fb [foffset + dim] += 0.0;

}
else
{

...
fb [foffset + dim] += double_just_read;

}

In this way we solved the problem of the first reading of the CFD-arising force, when the data is not yet
available.

6.3. CFD Force frozen inside a CFD loop

The current implementation reads the CFD force every DEM step, even if the force is actually frozen for the
entire CFD step, i.e. we read the information from the exchange file k times, where k is the coupling interval
(∆tC F D = k∆tDE M). The next step to speed up the run time of the simulation will be to read the force just
once in every CFD step and keeping it frozen for k DEM steps.

This is pursued through adding appropriate checks to the procedure described in the previous paragraph.
Inside one coupling loop, it is important to distinguish due different moments: the reading (and saving in
a vector) of the updated force at the first DEM step and the application of this force in all the successive
iterations. To this purpose, since the information available inside the member function is limited, we adopt
the usage of flags to identify the proper moment to set and reset the default values of these flags.

In particular, we have to organize the procedure in 3 different cases:

• Start Case: We set the flags to read the force from the fluid, store it in a vector and read it by the force
evaluation

• Mid Case: We set the flags to read the force vector by the force evaluation

• End Case: We reset the default value of flags, in order to be ready to perform the cycle again in the next
coupling loop.

Firstly, we created one attribute of the CFDForce class that could be modified by the member function de-
veloped for the force evaluation. This variable (prev_iter_) stores the number of CFD-DEM coupling steps
performed up to that moment (at the start of the simulation it is initialized to 0) and it is updated at the END
phase of each coupling loop. The Boolean variable last_ is set to true at the END phase to describe the fact
that we reached the end of a loop, therefore the next iteration would require the reading of the updated force.

Then, we evaluate the current iteration number: iter = time_HADES_ / firstCoupleTime_. Reading the
value of the last_ variable and comparing prev_iter_ with iter we can identify the correct phase:

if (last_ == true)
{
START CASE: set proper flags...

}
if (floor(iter) == prev_iter_)
{
MID CASE: set proper flags...

}
else
{
END CASE: update prev_iter_, set proper flags, ...

}

6.4. Not fixed DEM time step 73

6.4. Not fixed DEM time step

As stated previously, the best feature provided by HADES is the possibility to integrate the particle motion
equations with a not fixed time step. This is possible due to constraints on maximal displacements possible
during an integration step. Allowing the implementation of the coupling to exploit this feature is fundamental
and it can improve dramatically the performance of the solver. Thanks to the improvements described in this
Section, the modifications necessary to achieve this scope are very limited.

In particular, to allow a not-fixed ∆TDE M it is necessary to set the following parameters:

1. In CFD side: (<case>/CFD/constant/couplingProperties)

couplingInterval 1

2. In DEM input file (<case>/DEM/<input.pro>).

time_end = ...;
CFD_ts = ...;

hadesModule =
{

saveStructure =
{

nrOfSaves = "floor($(time_end)/$(CFD_ts)) + 1";
saveTime = "$(CFD_ts)";

};
integrator = "Verlet"
{

fixedTimeStep = false;
...

};
};

We remind that since the coupling is pursued via files, the crucial phase in the coupling is the sav-
ing of files at the appropriate time. The information from the fluid to the particles is saved correctly
through CFDEM, whereas the saving of information from the particle to the fluid needs to be tuned,
since HADES has no clue that we need to save files every ∆TC F D . This is the reason why it is neces-
sary to set the parameters in dependence of the final time steps and the CFD time steps chosen in the
simulation.

In order to have an appropriate tuning between the two softwares, a further check was introduced in the
CFDEM submodel that allows the exchange of information, to avoid situations in which a different handling
of digits between OpenFOAM and HADES could introduce further lags in the exchange of data. In fact, to
strengthen the synchronicity between the particle evaluations and fluid calculations, the following checks
were introduced to the code described in Section 6.1:

while ((stat_ == Module::OK)
&& (abs(time_HADES - time_end_DEM) != 0)
&& (time_HADES < time_end_DEM))

{
Info « "–- Start HADES Integration –-" « endl;
stat_ = HADES_private->run (globdat);
Info « "–- End HADES Integration –-" « endl;

}

6.5. Allow CFD parallelization

Fluid-particle simulation of real-life situations often require extensive computational resources. In order to
achieve faster results, parallelization of the code is extremely important. OpenFOAM provides native support
to parallel computations, but as stated before, HADES is characterized by a serial implementation. The paral-
lelization of HADES will be necessary to obtain fast results in industrial applications, especially in cases with
a large number of particles involved, but it is not compatible with the framework of the current MSc project.

Hence, the strategy adopted was to allow parallel CFD computations while keeping the particle simulation
serial. In particular, OpenFOAM adopts a master-slave strategy for the parallelization and we decided to
keep this framework running HADES only in the master processor. Therefore, in the master processor we
will have CFD evaluations of the appropriate portion of the domain and the DEM calculations, whereas in

74 6. Improvements on OpenFOAM-HADES Coupling

all the slave processors only CFD evaluations take place. Since we are using files to communicate between
OpenFOAM and HADES, the critical phases are the reading and writing of files. To this purpose, we used MPI
(Message Passing Interface) to handle the communications between processors. In particular, we used basic
MPI commands to send, receive and set barriers to achieve an appropriate communication, avoiding errors
in the handling of files: in the phase of reading and writing, the processors open and close files one at a time,
in order to maintain the correct data structure and order. Details on the code implemented are not relevant
to this Thesis report, since they are easily readable from source code.

7
Non sphericity

The Discrete Element Method (DEM) is a powerful tool to achieve accurate results in particle simulations.
The numerical results are particularly advanced in the case of spherical particles: various and precise models
are available in order to detect and simulate contacts and several arising forces that depend on the physics
of the problem. Hence, the hypothesis of sphericity is often applied, since a relevant number of drag and lift
models are available. Unfortunately, the constraint to consider only spherical cases causes a severe limita-
tion on applications, at the academic level and especially in industrial environments. Shale oil extraction,
red-cell dynamics in blood, pills sedimentation are just some examples on the non-sphericity of particles in
petroleum, bio-medical and pharmaceutical engineering. Due to the arising of computational power in the
recent years, huge efforts have been done to improve the accuracy of simulations and to propose reliable
models and numerical methods.

In this Chapter we briefly describe two different approaches that can be adopted to rise the accuracy of par-
ticle simulation:

• Quadric and Superquadric representation of particles

• Multisphere approximation

Both of the methods have advantages and drawbacks. In Section 7.1 we will describe the idea behind both
the approaches and discuss the current available implementations, especially in the softwares that we are
using for the fluid-particle simulations, i.e. OpenFOAM and HADES. After an elaborate discussion, we choose
to implement the multisphere approach in HADES. This will be reported in Section 7.2. We implement an
algorithm to approximate an arbitrarily shaped object from an STL file to a set a spheres, which will be uses
as input in HADES. In this Chapter we will therefore focus on the implementation of a method to integrate
the motion of sets of particles as rigid bodies: we will work, therefore, at HADES level.

7.1. Description of Possible Approaches

In this section we discuss the two main approaches that are adopted in academic and industrial research to
simulate non-spherical particles: the quadric (or superquadric) approach and the multisphere technique.
Extensive studies have been carried out in the recent years on both methods. In particular, useful reviews on
available methods to consider non-spherical particle in the DEM procedure can be found in [32] and [47].

7.1.1. Ellipsoids or Superellipsoids

Generalizations of spheres in quadrics and superquadrics have seen an increasing interest in the develop-
ment of computer graphics and visualization techniques. Afterwards, researchers started to use the new tools
for engineering purposes, analyzing the mechanical properties of these objects. Two main contributions to a
structured discussion of these topics are provided by [33] for quadrics and by [5] for superquadrics.

75

76 7. Non sphericity

A straightforward generalization of spheres can be obtained considering particles with a quadric surface.
Since we have to consider finite-sized particles with closed surfaces, the unique case that is relevant to the
purpose of particle simulations is given by ellipsoids. In particular, the implicit equation that describes an
ellipsoid with the center at the origin of the Cartesian system and the ellipsoid axes that coincide with the
coordinate axes is given by:

x2

a2 + y2

b2 + z2

c2 = 1, (7.1)

where a,b,c are real numbers that are named principal semi-axes. Of course, in the case of a = b = c we
obtain a sphere. It is possible to parametrize the surface of ellipsoid using the following relation:

x = a cos(θ)cos(ϕ),

y = b cos(θ)sin(ϕ),

z = c sin(θ),

with −π/2 ≤ θ ≤ π/2 and −π≤ϕ≤ π/2. We use this parametrization for visualization purposes: in Figure 7.1
we give an example of ellipsoids with different parameters. With ellipsoids a generalization of spheres has
been obtained, but this is still not sufficient to describe the huge variety of complex shapes that are relevant
in real life situations.

A step forward can be obtained with a further generalization of quadrics, i.e. superquadrics. Superquadrics
can be obtained substituting the squaring operations with arbitrary powers. Again, we are not interested in
all the varieties that are included in the superquadrics set, but we limit our study to the finite-size object with
closed surface, i.e. superellipsoids. In [5] a comprehensive presentation of the complex set of superquadrics
is provided.

The implicit equation that describes a superellipsoid with the center at the origin of the Cartesian system and
the ellipsoid axes that coincide with the coordinate axes is given by:(∣∣∣ x

a

∣∣∣n2 +
∣∣∣ y

b

∣∣∣n2
)n1/n2 +

∣∣∣ z

c

∣∣∣n2 = 1. (7.2)

Again, a,b,c are real numbers that are named principal semi-axes, whereas we introduced two blockiness
parameters, n1 and n2. Note that if we choose n1 = n2 = 2 we obtain an ellipsoid, and if we add the condition
a = b = c, we obtain again a sphere. It is possible to parametrize the surface of a superellipsoid using the
following relations:

x = a sgn(cosθ)|cosθ|2/t sgn(cosϕ)|cosϕ|2/r ,

y = b sgn(cosθ)|cosθ|2/t sgn(sinϕ)|sinϕ|2/r ,

z = c sgn(sinθ)|sinθ|2/t ,

with −π/2 ≤ θ ≤π/2 and −π≤ϕ≤π/2.

Using the framework of superellipsoids it is possible to obtain various approximations of regular shapes:
round-edges approximation of cubes, cylinders, boxes and ellipsoids can be easily built. In Figure 7.2 we
give some examples of the possible usage of superellipsoids for approximating regular shaped objects, vary-
ing the input parameters (a,b,c,n1,n2). In [36] a detailed implementation of superellipsoids for pure DEM
simulation in LIGGGHTS is given.

Figure 7.1: Ellipsoids with varying parameters. The first one is the ellipsoid generated with a = b = c = 1, which is actually a sphere.
The central object is obtained with a = b = 1,c = 3 and it is known in literature as prolate spheroid (a = b 6= c). The third one is a general
ellipsoid (a 6= b 6= c), in the specific case a = 1,b = 2,c = 3.

7.1. Description of Possible Approaches 77

Figure 7.2: Superellipsoids with varying parameters. In the three figures at the top, a = b = c = 1, whereas in the three figure at the
bottom, a = b = 1,c = 2. We see that we obtain sphere or ellipsoids if n1 = n2 = 2. If n1 À 2,n2 = 2 we obtain a rounded-edge cylinder. If
n1 À 2,n2 À 2, we obtain a rounded-edge cube or box.

7.1.2. Multisphere

An alternative approach is to approximate an arbitrarily shaped object with a cluster of simple geometrical
objects. Since spherical objects are easy to model as far as interactions, contact forces and contact detection
are concerned, mostly clusters of spheres are used. The method is therefore named multisphere approach.

One of the key ideas of the approximation is that spheres are allowed to overlap to obtain complex shapes.
For a complete description of an arbitrarily shaped object approximation, just a few data are required: only
the positions of the centers of each sphere and their radii are required to fully describe an object. In order
to use this approach, a pre-processing tool has to be developed: an algorithm that reads a random object as
input (for example, via an STL file) and builds a cluster of spherical particles is in fact necessary.

7.1.3. Comparison between the methods and their applicability to DEM

Both superquadric and multisphere methods have been subjects of extensive studies. We now highlight the
most important features of the different approaches.

Shape Approximation

Firstly, we need to consider the shape approximation of objects in the two methods. Superellipsoids allow
excellent approximations of regular and symmetrical objects, but they provide inaccurate results if the objects
are asymmetric, i.e. rocks.

Multispheres, instead, manage to approximate irregular shaped objects quite easily. The quality of approxi-
mation will depend on the algorithm used to build the cluster. Usually, approximation algorithms are partic-
ularly efficient on convex objects, but concave objects are poorly approximated also with superellipsoids.

Modeling of particle-particle interactions

We now consider the usage of the two approaches in DEM. As far as contact detection is concerned, algo-
rithms have been developed for both methods. Contact detection for superellipsoids require solutions of

78 7. Non sphericity

nonlinear systems and therefore it is computationally expensive. Usually, iterative methods are used, e.g.
Newton’s method. Moreover, convergence properties decrease with the increasing of blockiness parameters
n1 and n2. On the other hand, the multisphere approach has the huge advantage that the same algorithm
for contact detection for spherical spheres can be used. A summation of the forces that act on each parti-
cle of the cluster is performed and the torque arising from the translation of the forces to the center of mass
of each cluster has to be evaluated. The main downside of the multisphere approach is that multiple con-
tacts can occur, as reported in [27]. In this paper, a sphere is approximated with a multisphere cluster and
performances of the method are analyzed. A contact between the big sphere and a wall is obtained form a
physical experiment with different impact angles and the results are compared with numerical simulations
of a sphere and a cluster of smaller spheres. The most important outcome of the experiment is that due to the
freedom in the geometrical approximation of the object, results of the numerical simulation may differ from
the experimental ones. In fact, depending on the geometrical distribution of spheres in the cluster, multiple
contacts can occur in the cluster, while just one contact happens in the real experiment and in the numeri-
cal experiment with the standard spherical approach. The multiple contacts will cause an excessive stiffness
in the impacts. Of course, in reality we will not have the possibility to compare the numerical results of the
multisphere approximation with the arbitrary shaped object, since this would be too expensive form a com-
putational point of view. The authors, therefore, propose a calibration of the physical parameters to take into
account the possibility of the arise of multiple contacts.

Modeling of fluid-particle interaction

Finally, we need to consider the performances of the two approaches in the modeling of force arising from
the influence of the fluid.

In order to achieve the coupling between the fluid and the particles, it is essential to locate the particles inside
the CFD mesh. The two approaches handle this phase very differently. Using a superellipsoid approach, the
location of a particle is very expensive from a computational point of view. The orientation of a particle is rel-
evant and since we are not using spheres, a complete symmetricity is lost. In particular, the data required are:
centers of the superellipsoid, the semiaxis and the orientation and ad-hoc algorithms have to be developed
to build a correct voidfraction field. On the other hand, a multisphere approach just requires the center and
the radius of each sphere and the structure available in CFDEM to locate pure spheres is ready to be used to
locate each spheres of a cluster. This difference is valid both in resolved and unresolved couplings.

Instead, if we are using an unresolved approach, we have a further disctinction between the two approaches,
since we require models for the drag and lift (forces or coefficients) to evaluate the forces of the fluids that
act on each particle. This is not required in resolved couplings since we evaluate the integrated quantieties
directly on the CFD mesh. As far as ellipsoids and superellipsoids are concerned, unfortunately a comprehen-
sive study that covers all the shapes and the cases is lacking in literature. Lots of progresses have been done in
the last decades, but results have been obtained for specific shapes and specific ranges of non-dimensional
numbers, mainly of Reynolds number. In [46] models for the drag coefficient of regular shaped particles
are proposed and in [47] a review of the currently available models for non-spherical drag coefficients are
presented. In the second paper it is stated that sometimes superellipsoids are considered for contacts, but
spherical drag and lift forces are used to describe the fluid forces. This is an example of how much work still
needs to be done both on theoretical and on experimental sides for handling non-spherical particles. Using
the multisphere model, instead, it is possible to use the models developed for single spherical particles for
the drag and lift arising from the fluid influence and then sum up all the contributions due to each sphere in
a cluster. Even if the accuracy may decrease in cases where the overlap between two neighbor spheres is con-
sistent, this approach seems to be the best trade-off between accuracy and computational cost at the current
computational power.

In Table 7.1 we sum up the different features of the two approaches.

Comments

In [40] a comparative study between the two methods has been carried out on shear tests and discharging of
a flat bottom silo.

7.1. Description of Possible Approaches 79

Superellipsoids Multisphere

Shape Approximation regular, symmetrical objects arbitrary objects

DEM interactions

ad-hoc detection algorithm spherical detection algorithm
ad-hoc model of contacts spherical model of contacts
hugh compt. cost (1 object) low comp. cost (1 sphere)
cost constant per object cost grows with # spheres

tuning parameters required
results depend on # spheres
move clusters as rigid bodies

CFD-DEM Unresolved
drag-lift not well modeled drag-lift on each sphere
exp. location in CFD mesh cheap location in CFD mesh

CFD-DEM Resolved exp. location in CFD mesh cheap location in CFD mesh

Table 7.1: Comparison between Superellipsoids and Multispheres approaches.

In conclusion, with the current computational power, it has to be clear that accurate quantitative results
for arbitrarily shaped objects are far from being achievable. Superellipsoidal particles and the multisphere
approach are two methods that have been developed and used in academic and industries to fulfill the trade-
off between accuracy and computational costs. There is not a unique, better method between the two ap-
proaches and the choice is, therefore, problem dependent. We can state that, neglecting the differences be-
tween symmetric and asymmetric objects, superellipsoidal particle are mainly the best methods for packing
problems, whereas if evaluation of drag and lift is relevant for the problem, the multisphere approach can
give more accurate results, since there is a lack in literature for models of fluid-arising forces in a general
situation.

7.1.4. Current implementations

Both multisphere and superellipsoidal approaches are used in academic and industrial softwares to perform
fluid-particle simulations of non spherical particles, but the set of implementations is far from being homo-
geneous.

As far as pure DEM computations are concerned, the two main softwares that we analyzed provide the fol-
lowing features:

• LIGGGHTS handles both superquadric and multisphere capabilities, but no algorithm to approximate
an object with spheres is provided.

• HADES handles ellipsoidal particles and arbitrarily shaped object (via XML input files).

The two softwares cover a broad set of features, but the problem lies in their interface with the CFD solver.
The key feature in HADES is the possibility of not fixing a DEM time step, since the algorithm automatically
choose the best time step, not allowing too high displacements from one step to the next one. Exploiting this
feature is the main point of the MSc project.

As stated before, the most important problem lies at the CFD level, i.e. in the location of the particles inside
the CFD mesh. This problem is severe in the case of resolved coupling, where the shape of the body is ex-
tremely important for the evaluation of drag and lift on the object. The limitation becomes less restrictive in
the case of unresolved coupling: since the particles are treated as points, the detection is not expensive, and
the evaluation of the arising forces usually is performed applying to non spherical objects the same drag and
lift models of spherical particles. To this purpose, details can be found in [47].

Therefore, the problems arise mainly for resolved coupling, where immersed boundary methods are applied
to solve the fluid at particle level. Ideally, a complex object would be detected considering all the mesh points
of its surface with Immersed boundary methods, but this process is definitely too expensive for the compu-
tational power that nowadays is available.

80 7. Non sphericity

The actual implementations compatible with OpenFOAM are:

• Immersed Boundary Method provided by foam-extend4.0.
It uses STL files to detect bodies inside the CFD mesh. Even if this provides reliable results, it is not
useful to the scope of the project: at every coupling step the detection of a complex object has to be
performed and the motion of an STL file has to be achieved. A simulation with a huge number of
complex, non spherical particles is computationally not feasible.

• CFDEM implementation of Immersed Boundary Method.
It provides an efficient framework for spherical particles: the information needed by the algorithm ex-
ploits the spherical shapes and therefore requires a really small amount of data: just centers of spheres
and their radii are required.

In the current, open-source, implementation of CFDEM coupling with LIGGGHTS, only spherical particles
simulation are possible.

7.2. Development of Multisphere

A resolved coupling simulation where every particle is described by an STL file which is read, translated and
rotated at every coupling step is not feasible with the current computational power. Therefore, strategies have
to be developed to achieve a trade-off between accuracy and computational resources.

The implementation of the superquadrics and multisphere approaches requires developments at different
levels:

• Superquadric approach requires to develop a new technique to detect superquadric particles in the
CFD mesh at CFDEM level.

• Multisphere approach requires to develop an algorithm to approximate complex objects with clusters
of particles and to implement the motion of clusters of spheres as rigid bodies at HADES level.

Considering the state-of-the-art of the current implementations, the interests of industrial applications and
the academic purposes, we decided to develop a multisphere procedure in HADES and exploit the spherical
implementation of CFDEM to process the detection of spherical particles to achieve the coupling.

We now describe firstly an algorithm for the approximation of arbitrarily shaped objects with clusters of
spheres and, finally, the implementation of a procedure in HADES to integrate the motion of the clusters
treating them as rigid bodies.

7.2.1. Algorithm for Multisphere Approximation

In order to perform simulations of non spherical particles using the multisphere approach, it is essential to
develop an algorithm to approximate an arbitrary shaped object with a cluster of spheres. To this purpose, we
implement the algorithm presented in [3], where the authors proposed a general algorithm to approximate a
generic object (convex or non-convex). Since visualization of intermediate results is important and helps the
development of the algorithm, we decide to use octave as development platform.

The algorithm consists in the following phases:

1. Receive an arbitrary shaped object as input (as STL binary file)

2. Include the object in a Cartesian grid.
The center points of the spheres will be some of the points of this grid

3. Evaluate the grid points that are inside and outside the object.
Delete from the grid the outer points

4. For each point, evaluate the distances to all the triangles of the surface of the object file and store the
minimum

5. Find the point with the maximum of the stored distances
The point will be the center of the sphere, the distance the radius

7.2. Development of Multisphere 81

6. Delete from the grid all the points that are at a fixed percentage of the radius far away from the center
point of the new sphere.
Repeat from 4. until the number of spheres added is reached.

7. Correction of volume (otherwise volume of cluster is always less of the volume of the object)

The first two steps are trivial and do not require a detailed discussion. Various open-source algorithms are
available to read STL files in a wide amount of environments. Once the file is read, matrices are build to
store vertices, faces and normals of each triangle of the surface of the object. Once the vertices are known,
it is straightforward to build a Cartesian grid that includes the objects, just using some gap with respect to
the minimum and maximum coordinates of the objects in the three directions. In Figure 7.3 we visualize the
output of the first two steps of the algorithm.

We now discuss the third step. In order to classify the grid points in inside/outside points, the ray-shooting
technique has been selected, an approach developed in 1968 by a IBM researcher. The idea is to select a
reference point which lies outside the object and then send a ray from this reference point to each grid point.
The ray is parametrized and through the solution of a 3×3 linear system it is possible, through a condition on
the parameters, to evaluate if the ray intersects the surface of the object.

Let p be a point of the Cartesian grid, then we define a ray r as the parametrized line that starts from p with
direction d:

r = p+ td. (7.3)

The direction d is evaluated as the direction from the point p to the reference point that lies outside the
Cartesian grid, whereas t is a parameter with the constraint t ≥ 0.
Let now a,b,c be the vertices of a triangle, then in order to evaluate the intersection between the ray and the
triangle, the following linear system needs to be solved:

p+ td = a+β(b−a)+γ(c−a), (7.4)

where the 3 unknowns are the parameter t and the barycentric coordinates of the intersection β and γ. In
matrix form the system to solve is written as:−d1 b1 −a1 c1 −a1

−d2 b2 −a2 c2 −a2

−d3 b3 −a3 c3 −a3

 t
β

γ

=
p1 −a1

p2 −a2

p3 −a3

 . (7.5)

An intersection occurs if 0 ≤β≤ 1, 0 ≤ γ≤ 1−β and t ≥ 0.

Figure 7.3: Step 1. and 2. Grid generation Figure 7.4: Step 3. Ray Shooting

82 7. Non sphericity

In the case of multiple intersections, the nearest intersection with respect to the object surface is considered.
Afterwards, the inner product between the normal of the surface and the ray direction is evaluated. If the
inner product is negative, the point lies outside the object and it is removed form the grid. In Figure 7.4 we
visualize the ray-shooting technique.

Once only the grid points inside the objects are kept, it is necessary to evaluate the distance between each
point and each triangle of the surface. This is step 4. of the procedure. To this purpose, two possibilities
exist: either all the points inside the triangle are at the same distance to the grid point, either the nearest
point is a vertex or lies in the edge of the triangle. To distinguish these cases the grid point is projected onto
the triangle surface. If the projection lies inside the triangle, the distance is evaluated simply as distance
between the grid point and its projection, whereas if the projection lies outside, the distance is evaluated as
the minimum distance between the point and each vertex or each edge, appropriately parametrized. This
condition is checked again solving a 3×3 linear system. For each point, the minimum distance with respect
to all the triangles of the surface is stored. We are now ready to insert the first sphere.

In step 5. we select the center of the sphere to insert and its radius simply finding the grid point with maxi-
mum distance from all the triangles. We evaluated all the minimum distances in the previous step so this is
fast to evaluate. The maximum of the minimum distances is selected as the radius of the sphere.

Afterwards, in step 6. we remove from the grid some points that are contained in the new sphere. If no
overlap between spheres is allowed, then all the points inside the new sphere are deleted. Since we would like
to obtain overlaps, we select a percentage as input to the algorithm. The grid points with distances less than
(percentage × radius) are deleted, the others are kept. In Figure 7.5 we visualize the creation of a sphere and
the successive removal of grid points.

We repeat the procedure from step 4. until the number of spheres given as input is reached.

In step 7. we perform a volume correction of the cluster. In fact, with the algorithm described, the cluster will
always approximate the object keeping all the spheres inside the original arbitrarily shaped objects. This im-
plies that the volume of the cluster will always be less than the volume of the original object. To this purpose,
we will multiply each radius of the cluster by a scale factor and, since we do not allow a shape deformation, we
will translate the center of each sphere by a linear combination of itself and the center of mass of the object.
Hence we need to calculate two quantities: the scale factor, as third-root of the volume of the object divided
by the volume of the cluster, and the center of mass of the object.

Unfortunately, we cannot use any analytical formulas for the evaluation of the volumes, because the object
is arbitrarily shaped and in the cluster overlaps between multiple spheres are allowed. Therefore, we adopt a
Monte Carlo method to perform the volume evaluation. An implementation of the Monte Carlo method can
be found in [37], and this was used as inspiration to the implementation inside the algorithm.

Figure 7.5: Step 6. Deletion of points Figure 7.6: Step 6. Partial cluster

7.2. Development of Multisphere 83

Monte Carlo methods are a set of computational methods developed to solve complex problems exploiting
the generation of random or pseudo-random numbers to obtain numerical results. Applications of Monte
Carlo methods can be found in various different contexts where numerical simulations are performed: fluid
dynamics, financial engineering and signal processing are just some examples of the usage of these methods.
The structure of Monte Carlo methods is given by the generation of random points with a fixed probability
distribution in a computational domain, the execution of an algorithm with these random points and, finally,
the evaluation of a global quantity. In our case, we apply a Monte Carlo method to perform the numerical
integration of volumes and of the quantities necessary to evaluate the center of mass.

We define as domain the original grid that was built in step 2. of the algorithm and we sample N random
points with a uniform distribution inside this domain. Due to the fact that the grid is Cartesian, this is done
without particular effort. In order to evaluate the volume of the STL object, we perform step 3. for every point
of the grid and we count how many points lie inside the object. The number of inside points divided by the
number of total points and multiplied by the volume of the Cartesian grid that we built is an approximation
of the volume of the object.

Formally speaking, the volume of the object is described by:

Vob j =
∫
R3

fob j (p)dx, (7.6)

where fob j (p) is an indicator function, i.e. it takes value 1 if p lies inside the domain, in this case the object or
0 otherwise:

fob j (p) =
{

1 p ∈ Obj

0 p ∉ Obj
(7.7)

Since we are using a uniform sampling, defining M as the number of points that lie inside the object and Vbox

the volume of the Cartesian grid generated in step 2., we obtain the approximation:

Vob j ≈
M

N
Vbox . (7.8)

The evaluation of the volume of the cluster is performed with the same method, but since overlaps are al-
lowed, one should be careful to evaluate each grid point in the intersections just once.

In order to evaluate the center of mass of the object, we apply the constant density hypothesis of the object,
therefore we need to find the centroid C of the object. Each components of the centroid is obtained as:

Cx =
∫
R3 xd xd yd z∫
R3 d xd yd z

Cy =
∫
R3 yd xd yd z∫
R3 d xd yd z

Cz =
∫
R3 zd xd yd z∫
R3 d xd yd z

. (7.9)

For the evaluation of the integrals we apply the same procedure that we adopt for the volume evaluation.

Figure 7.7: Step 6. MonteCarlo Integration Figure 7.8: Step 7. Final cluster

84 7. Non sphericity

We just discussed how a Monte Carlo method can be applied to evaluate volumes and centers of mass of arbi-
trarily shaped objects. This approach allows to have numerical results in complex situations, where analytical
approaches fail due to irregular shapes. The numerical error produced by the Monte Carlo approaches de-
creases with 1/

p
N , where N is the number of random points. Note that due to randomness of points, the error

may be subjected to oscillations, but, due to the central limit theorem, the general behavior will decrease with
the aforementioned ratio.

Computational cost

We briefly analyze the computational cost of this method for the approximation of complex objects with a
cluster of spheres. The most expensive parts of the algorithm are the detections of inner points of complex
objects, which are required in step 3. for the subdivision of grid points in inner and outer points and in step 7.
to evaluate the volume of the object. The algorithm is the same, but the difference is that we are considering
grid points in step 3. and uniformly distributed random points in step 7.

Let us consider step 3. Let n be the number of grid points (3
p

n are grid points per edge of the Cartesian Grid)
and T be the number of triangles of the surface of the STL object.
Then, the solution of n ·T linear systems of 3×3 is performed to find intersections in the ray shooting tech-
nique (O (33)). Afterwards, for every intersection (bounded by n) the evaluation of a minimum is performed
(33 = 27 flops), followed by the evaluation of a norm of a 3 component vector. This last operation is negligible
if n,T À 1. The same holds of step 7. where be consider m uniformly distributed random points.

Therefore, the approximated computational costs are:

• step 3 : n ·T ·27 flops +O (n)

• step 7 : m ·T ·27 flops +O (m)

It is straightforward to notice that the cost is increasing in the number of triangles and the number of grid
points (or random points). Unfortunately, the number of grid points n has to be quite large to have accurate
results and also the number of random points m required by the Monte Carlo method needs to be consider-
able, due to the convergence behavior 1/

p
m.

If the surface of the object is characterized by an extremely fine mesh, it may be necessary to coarsen its sur-
face before applying the algorithm, in order to avoid excessive calculations in the approximation phase. An
example is given in Figure 7.11 where an STL file of a rock downloaded from a NASA dataset is considered.
In order to avoid excessive calculations, an approximation of the rock has been performed through an Open-
FOAM utility surfaceCoarsen and it is visible in orange. Afterwards, the algorithm has been applied to the
approximated rock and the resulting cluster is plotted in blue.

Error of Approximation

After having obtained a cluster of spheres that approximates an arbitrarily shaped object, it is interesting to
evaluate the errors that arise from the approximation and to analyze their dependencies with respect to the
relevant parameters. In this case, the input parameters are the number of the spheres of the cluster and the
overlap allowed. In particular, overlaps are always allowed, but the parameter involved is the percentage that
is used in Step 6. In fact, grid points are removed at the distance of percentage · radius. Therefore, in the case
of percentage = 1, the center point of new spheres will lie outside the sphere, but the sphere are still allowed
to overlap.

In literature, a unique procedure to compare approximation of objects by cluster of spheres is not available.
We decide to use two distinct approaches: a simple relative error on the volumes and the offset volume, which
is proposed in [3].

The first measure of error is given by:

er rvol =
|Vob j −Vcluster |

Vob j
. (7.10)

Instead, the offset error is evaluated considering all the points that are wrongly included or excluded by the
approximation. In fact, in the approximations, there exist some portions of the object which are not included

7.2. Development of Multisphere 85

in the cluster and some portions of the cluster which are not included in the object. We evaluate these two
contribution via a Monte Carlo procedure and we define their sum as the offset volume Vo f f . Hence, we have
a second definition of an error:

er ro f f =
Vo f f

Vob j
. (7.11)

In Figure 7.9 we analyze the behavior of the two different definitions adopted as errors, varying the two main
parameters. In the left, we use the er rvol definition (7.10), whereas in the right we use the er ro f f definition
(7.11).

0 20 40 60 80 100
Spheres

0

0.02

0.04

0.06

er
rV

ol

Ov 0.8
Ov 0.9
Ov 0.95
Ov 1

0 20 40 60 80 100
Spheres

0.15

0.2

0.25

0.3

0.35

er
rO

ff

Ov 0.8
Ov 0.9
Ov 0.95
Ov 1

Figure 7.9: Error of Approximation of a Box with a cluster of spheres as function of number of spheres. The errors are shown varying
the number of the spheres and the percentage chosen in Step 6. In order to delete from the Cartesian grid candidates for the centers of
next spheres in the cluster. In the x axis, we use the number of the spheres, in the y axis we plot the value of the errors. In the left, er rvol
is analyzed, in the right er ro f f .

It is straightforward to notice that using the definition of er rvol , strong oscillations appear and increasing
the number of spheres in the cluster does not imply a decrease in the error. Nevertheless, it is important to
state that the relative error, as far as volumes are concerned, is quite small. All the cases show an error in the
interval of 1% - 6%, which leads to quite accurate results. Even if the errors are small, this definition of error
does not allow a study of the convergence of results. A possible explanation of the presence of oscillations
may be the attempt to approximate a symmetric object with a cluster that is not subjected to symmetric
constraints. Different percentages of deletion of grid points lead, in fact, a structure that are not symmetric
and this can be a cause of the rise of the error.
Instead, measuring errors with the offset definition leads to results in which correlation between the number
of spheres and the behavior of the error is clear. The range of errors with this definition is between 12%
and 35%, but the reader should not compare these high values with previous ones because the definitions
measure different aspects. It is evident that increasing the number of spheres decreases the error. Some
oscillations in the trend are easily noticeable and, again, symmetry reasons seem to be an explanations of
these phenomena.

In both cases, Monte Carlo methods had to be implemented to evaluate the volumes, therefore statistical
oscillation may play a role in the behavior of the error. To have a small influence of errors, a quite high
number of trial points in the domain has been considered (10000). Remind that the convergence behavior of
Monte Carlo methods is 1/

p
N . Attempts to achieve a precise correlation between the number of spheres and

the error have been made, but only a generic relation could be obtained. Further studies could be dedicated
to this topic, in order to reach a deeper level on the prediction of errors in the approximation.

To conclude, it is important to state that, between the two approaches, the offset procedure proposed in
[3] performs better in the analysis of the error behavior, if compared with a simple relative volume error
evaluation. However, the reader has to keep in mind that, if a huge number of particles is considered in a
DEM simulation, the approximation of each particle with a big number of sphere will be subjected to a strong

86 7. Non sphericity

limitation by the computational power available. Therefore, a trade-off between accuracy and computational
cost will be always required.

Figure 7.10: Approximation of a box with 9 spheres

Figure 7.11: Approximation of a NASA rock with 5 spheres

7.2. Development of Multisphere 87

7.2.2. Clusters of particles in HADES

In order to use a multisphere approach to handle fluid-particle simulations of non spherical particles it is
necessary to implement in HADES the feature of rigid bodies motions: clusters of particles will move as rigid
bodies. The idea is to sum all the forces that act on each particle of the cluster and integrate the motion
according to this force.

To this purpose, two main features had to be developed: creation of clusters of spherical particles and a
function that sums the forces and translates them with the creation of a torque. The structure of Modu-
lus and Models of Jive creates a powerful environment, where these features can be developed exploiting
the implementation of similar components of the softwares. In fact, in HADES a Model that creates ellip-
soidal particles is given in EllipsoidGenerator.cpp and we will use it as basis to implement a generator
for clusters of spherical particles, which we will develop in ClusterGenerator.cpp. Finally, considering
GravityModel.cpp as a basis, we will develop a Model to translate all the forces that act on each particle of
a cluster on the center of mass of the object and integrate its motion. This new model will be developed in
ClusterModel.cpp.

The main idea is to split the detection of the contacts and the integration of the motion: contact detection
will be performed by the spheres of the cluster, whereas the integration will be performed on a ghost particle
placed in the center of mass of the object and with the inertial properties of the object. Afterwards, the real
spherical particles will be translated and rotated accordingly to the outcome of the integration.

Generate Clusters : ClusterGenerator

The first step of the implementation of a multisphere method is to generate clusters of particles in the particle
solver. To this purpose, we decide to extend the capabilities of the ellipsoid generator developed in HADES.
The generator reads from the input file the specific details of the particles and it creates nodes, elements and
bodies at the software level. For generating an ellipsoid, the generator takes the following info from the input
file.

leftGrains = "ellipsoidGenerator"
{

maxElemSize = 20.0e-03;
maxElemCurv = 40.0;
density = 2200.0;

groupName = "leftGrains";
outputFile = "../DEM/files/leftGrains.gz";

generation =
{
nrOfBatches = 1;
bodiesPerBatch = 2;
fireTime = "0 + j * 0.00001";

};
shapeParams =
{
sRange = [6.0e-01 , 6.0e-01];
sdFunc = "s";

};
displacement =
{
xFunc = 0.0;
yFunc = 0.0;
zFunc = "0.4 + i%2*1e-01";
wFunc = 0.0;
axis = [0.0, 0.0, 1.0];

};
velocity =
{
xFunc = 0.0;
yFunc = 0.0;
zFunc = "0.00 - i%2*1.5e-01";
wFunc = 0.0;
axis = [0.0, 0.0, 1.0];

};
};

We decided to extend the generator and to generalize it for clusters of particles. The information on how
many batches of bodies are inserted, how many bodies per batch are considered and the insertion time are
not modified by the new structure. The same holds for the name of the group in which the particles will lie

88 7. Non sphericity

and the initial conditions for position, velocity and angular position and angular velocity. The key point is
that all these details will set the center of mass of the cluster.

With the purpose to create clusters of spheres, we added new features that can be read from the input file.
The user can insert numeric values of 4 vectors (centerx, centery, centerz, radii). The first three vectors will
contain the coordinates of each particle of the cluster with respect to its center of mass. The radii vector
will, of course, contain the numerical values of the radii of the various sphere that form the cluster. The
number of numerical values of these vectors has to coincide. In the input file, the user has to set also inertial
informations. Two possibilities arise: to use the inertia of the object or the inertia of the multisphere cluster.
In the case of arbitrarily shaped objects, both the evaluation will require a numerical integration pursued via
Monte Carlo methods. The advise is to use the inertial information of the object. In this way, we are using
the cluster approximation to detect contacts and the inertia of the object to integrate the motion. Note that,
thanks to the volume correction adopted in the approximation algorithm, the mass will be conserved in the
approximation. Hence, the translation motion will be independent to the choice of the inertia procedure.
However, rotational motion will be strongly influenced by this choice. In HADES, the inertia information is
given by a 4-component vector:

inertia = [volume Ix/m Iy/m Iz/m];

where Ix , Iy and Iz are the component of the inertia tensor with respect to its principal inertia axis.

The new generator will create all the spheres of each cluster and it will assign them to the group specified in
groupName. Each sphere will have the position defined by the position of the center of mass of the cluster
which it belongs plus its relative position with respect to the center of mass. The velocity information will be
the same of the center of mass and the inertia is evaluated as the inertia of a sphere.

Simultaneously, for each cluster, a ghost particle is created and assigned to the group specified in ghostName.
These ghost particles are placed in the center of mass of each cluster and they are given the inertia of the
object from the input file.

We now list the new information required by the Cluster Generator in the case of the creation of a cluster that
approximates a cylinder.

ghostName = "mask";
centerX = [-2.0e-02, -1.0e-02, 0.0, 1.0e-02, 2.0e-02];
centerY = [0.0, 0.0 , 0.0, 0.0, 0.0];
centerZ = [0.0, 0.0 , 0.0, 0.0, 0.0];
radii = [0.01, 0.01, 0.01, 0.01, 0.01];
ghostInertia = ["3.14*1.0e-05" , // volume

"0.5*0.01*0.01" , // Ix/m
"1/12*(3*0.01*0.01+0.1*0.1)", // Iy/m
"1/12*(3*0.01*0.01+0.1*0.1)"]; // Iz/m

The outcome of the generation described by the code is provided in Figure 7.12(a). In Figure 7.12(b) we give
the visualization of the approximation of a cube.

(a) Cylinder
(b) Cube

Figure 7.12: Approximation in HADES via clusters of spheres

Improve performance of HertzContactModel

The simplest idea would be to evaluate all forces acting on all the particles in the domain independently
from their belonging to the same cluster or not, but using this approach leads to a waste of computational

7.2. Development of Multisphere 89

resources. Hence, we slightly changed the implementation of the contact model to neglect all the contacts
between particles that belong to the same cluster. In particular, we added two input fields to the model:
ghostNames that receive as input the names of the groups made by ghost particles and clusterNames, which
contains the name of the groups made by the respective clusters. Due to limited time in the implementation
phase, some checks in the code are hard-coded for the case of just one type of clusters per simulation. This
constraint should be eliminated without too much effort to provide a general framework for multisphere
simulations. Despite the presence of this limitation, we managed to increase extensively the performance of
the simulation, obtaining faster results with less evaluations, avoiding potential risks of numerical errors in
useless calculations.

Integrate Clusters : ClusterModel

After the generation of the clusters and the ghost particles, a new Model is necessary for the evaluation of
forces from the spheres in the clusters to the ghost particles and the transmission of the motion from the
ghost particles to the spheres. This is pursued implementing two functions in the class ClusterModel.

The member function ClusterModel::evalForces_ takes care of the translation of the forces from the
spheres to the ghost particles. Let us consider a ghost particle inside the ghostGroup. The forces and the
torques arising from contacts and acting on each spherical particle of the cluster are simply summed, but we
have to be careful to the arise of torques when we translate each force from the spherical particle to the ghost
particle, which is located in the center of mass. Let r and F be the lever arm vector and a force, respectively,
then the torque T is given by:

T = r×F, (7.12)

which can be written in matrix form as:Tx

Ty

Tz

= det

 î ĵ k̂
rx ry rz

Fx Fy Fz

=
ry Fz − rz Fy

rz Fx − rx Fz

rx Fy − ry Fx

 .

Adding this arising torque to the summation leads to the desired results. In this way we obtained the correct
forces acting on the ghost particles placed in the center of mass of each cluster. Now we eliminate every force
acting on the spherical particles and we integrate the motion.

We highlight that the mapping between the different particles is pursued automatically thanks to the genera-
tion of the particles in the same generator and the successive division in different groups. For every batch of
(possible multiple) bodies, spheres are generated first and the ghost particles afterwards and from the indexes
of the particles it is possible to create a map between the two groups.

After the integration, the ghost particles are subjected to translational and rotational displacements. The
necessary step is to move the cluster according to the outcome of the integration. In HADES, some general
operations are organized in Actions, which can be performed by different Models. Models may or may not
have their own implementation of these Actions to obtain ad hoc behaviors. An Action can be called by
a Module and all the active Models that have that Action implemented will perform some operations. We
exploit this framework using VerletIntegrator as module and ClusterModel as Model. To this purpose,
after the integration, in the VerletIntagrator we call the Actions UPDATE_VELOC_CLUSTER and MOVE_CLUSTER.
We implement these Actions only in the ClusterModel, therefore these Actions will be performed exclusively
by this Model. In particular in ClusterModel::takeAction we implemented:

• UPDATE_VELOC_CLUSTER: we simply give to all the particles in a cluster the same velocity of the ghost
particle, which is updated after the integration.

• MOVE_CLUSTER: we move the particles of each cluster accordingly to the outcome of the integration of
the ghost particle. This is pursed in two steps: firstly, the particles are rotated with respect to the center
of mass of the cluster which they belong and, secondly, they are translated.

Before continuing to describe the implementation of rigid body motions of the clusters in HADES, we give a
brief introduction to the concept of quaternions, important mathematical tools which are used in HADES to
perform efficient 3D rotations. Quaternions are mathematical entities proposed by sir W.R. Hamilton as an

90 7. Non sphericity

extension of complex numbers. Formally, a quaternion can be expressed as:

q = a +bi + c j +dk. (7.13)

where a, b, c and d are real numbers and i , j , k are called quaternion units and they are the generalization
of the imaginary unit i . The main properties of quaternions are that multiplication is non commutative and
that i 2 = j 2 = k2 = i j k. Mathematical details on their properties can be found in the original paper [23].
Properties in term of modern mathematics can be found in [29].

Quaternions provide a useful tool for many applications, from theoretical physics to mechanics, from com-
puter graphics to robotics. The reason for their success is that they allow a robust representation of 3D ro-
tations, avoiding the main problem that arise using Euler angles, i.e. gimbal lock. In fact, the usage of Euler
angles provokes a rotation matrix with singularities, which translates, in practical applications, in the loss of
a degree of freedom in the rotation of the system.
Particularly useful are the unit quaternions, i.e.

∥∥q
∥∥= 1, which allow the straightforward computation of a 3D

rotation matrix.

R =

 1−2(q2
j +q2

k) 2(qi q j −qk qr) 2(qi qk +q j qr)

2(qi q j +qk qr) 1−2(q2
i +q2

k) 2(q j qk −qi qr)
2(qi qk −q j qr) 2(q j qk +qi qr) 1−2(q2

i +q2
j)

 . (7.14)

The rotational matrix can be used to rotate a 3-component vector v through v̂ = Rv. This feature is exploited
extensively in HADES to obtain efficient rotations of particles as results of their motions.

Let us now go back to the HADES level to describe the rotational displacement of clusters of particles. To this
purpose, initially each particle is given:

• position relatively to its center of mass (from input file)

• angular inclination of the ghost particle after the motion

Afterwards, the rotational matrix (7.14) is calculated considering the quaternions that describe the angular
inclination of the ghost particle. The position of each particle with respect to the center of mass of the cluster
which it belong is evaluated performing the matrix-vector multiplication v̂ = Rv. The result is the new po-
sition of the sphere with respect to the center of mass of the cluster. The rotational displacement has been
concluded. As far as the translational displacement is concerned, it is just necessary to sum the outcome of
the rotation of each sphere to the position of the ghost particle.

With these operations we achieved the motion of clusters of spheres as rigid bodies in HADES. In the following
Chapter we test the implementation of the multisphere approach with two numerical experiments: pure
DEM and coupling of CFD and DEM for cubes, approximated with clusters of spheres adopting the approach
that we described in this Chapter.

III
Tests and Applications

91

8
Test of Implementations

In the previous Chapters new features have been developed to achieve improvements on the available re-
sources for fluid-particles simulations: the multisphere approach has been developed and implemented in
HADES to handle non spherical particles, whereas the coupling between OpenFOAM and HADES has been
obtained adapting an existent framework (CFDEM). The step forward on the project is to perform some test
cases, comparing the numerical results achieved by the new software tools with experiment with the same
(or similar) setting available in literature.

Several cases are available in literature to compare the accuracy and the performance of the multisphere im-
plementation. As far as the interactions between clusters of spheres are concerned, studies have been carried
out on the measurements of filling and discharging of particles in boxes or hoppers: falling particles give the
opportunity to test collision and packing properties. As far as fluid-particle interactions are concerned, flow
around objects has been studied and accurate and reproducible results are available for simple cases.

We propose two test cases, one focused on the multisphere approach to approximate the discharge of a box
filled with cubes and one focused on the fluid-particle interaction, in particular on the differences that arise
on the flow if a square cylinder or its approximation with a cluster of spherical cylinders is considered.

8.1. Discharging of Cubes

In this Section we test the implementation of the multisphere approach in HADES comparing the results of
the simulation with numerical results available in the literature. In particular, we decide to reproduce the
numerical experiment that was performed in [15], where the authors provide results of validation of their
simulation with experimental results. The filling and the successive discharge of a hopper is studied.

In order to have comparable results, the setting of the experiments have to be equal, or at least very similar.
We now describe the geometry of the discharger and give the physical properties of the setting chosen by the
authors of the paper. The hopper is rectangular-shaped and its dimensions are given in Table 8.1. In Figure 8.1
the hopper used in the simulation is showed. Particles are inserted at the top of the hopper, through an empty
face. In the Figure, the bottom in the phase of discharge is given. The bottom is initially closed in the phase of
filling, as it can be seen in Figure 8.2(a), whereas during the phase of discharging an orifice is considered (see
Figure 8.2(c)). The size of orifice is again given in Table 8.1. Due to a lack in the implementation of contacts
between spheres and finite planes, it is necessary to approximate the finite planes with beds of spheres. The
planes involved are shown in 8.2(b) and 8.2(d), for the closed and open box, respectively. We will discuss the
effects of this approximation in the following paragraphs.

The aim of this test is to compare the discharging time, the discharge flow and the related quantities to the
results presented in the paper. The particles analyzed are spheres and cubes. We will approximate the cubes
with clusters of spheres in HADES. Physical properties of particles, as well as dimensions for spheres and
cubes are given in Table 8.2. In particular, we are considering particles with the same value for the edge of
the cube and the diameter of the spheres. Note that this means that the volume (and therefore the mass)

93

94 8. Test of Implementations

of spheres and cubes are not the same. The particles are made of acrylic, whose physical and mechanical
properties can be found in appropriate online databases, such as http://www.matweb.com 1.

In order to avoid dependence of the results from the initial configuration, we insert the particles in the hop-
per at the same height, but with a random orientation and we perturb the x and z component of the initial
position with a sampling from a uniform variable.

Property Value

Hopper Height 500 mm
Hopper Width 200 mm
Hopper Thickness 30 mm

Orifice Width 60, 80, 116 mm
Orifice Thickness 30 mm

Table 8.1: Geometric properties of hopper.

Figure 8.1: Geometry of Hopper.

(a) Ideal (b) Actual

(c) Ideal (d) Actual

Figure 8.2: Bottom Domain Details. Approximations with bed of particles are necessary due to a lack in the implementation between
particles and finite planes.

A priori observations

Before running the simulations and analyzing the results, it is necessary to highlight some aspects that can
influence the accuracy of the results and lead to discrepancies between the results of the current and the ones
presented in literature.

First of all, in the paper taken as reference, the authors apply a Hooke’s model for the elastic contacts, with
a fixed stiffness. Moreover, they use a damping force only in the normal direction of the contact. Instead, in
our simulation we are using a Hertzian Model, with non-constant elastic and damping contributes both in

1In particular, general purpose acrylic data can be found at http://www.matweb.com/search/DataSheet.aspx?MatGUID=
3cb08da2a0054447a3790015b7214d07

http://www.matweb.com
http://www.matweb.com/search/DataSheet.aspx?MatGUID=3cb08da2a0054447a3790015b7214d07
http://www.matweb.com/search/DataSheet.aspx?MatGUID=3cb08da2a0054447a3790015b7214d07

8.1. Discharging of Cubes 95

Property Value

Spherical Diameter 12 mm
Cube length 12 mm

Particle density ρ = 1200 kgm−3

Normal damping Coeff ηn = 3000 m−1 s−1

Tangential damping Coeff ηt = 3000 m−1 s−1

Friction Coeff µ= 0.4

Table 8.2: Particle Properties.

the normal and in the tangential direction. In HADES, the damping is modeled as proportional to the nor-
mal and tangential displacements and the multiplying factor has to be inserted by the user. Unfortunately,
as discussed in Section 2.1, as far as the damping coefficient is concerned, there is a lack of accurate models
in literature and it is usually used as tuning parameter. For an accurate tuning of this parameter experimen-
tal data would be required, at least to validate the order of magnitude of the coefficient. A valid approach
would be to validate the coefficient for spheres of comparable dimension of arbitrarily shaped objects with
the same mechanical properties, but this type of validation was not possible in the limited time framework of
this project. In the present simulation, we tune the order of magnitude of the damping coefficient avoiding
nonphysical oscillations in the simulation, but we have to keep in mind that this parameter not accurately
tuned will introduce a consistent error in our simulation.

Secondly, the current implementation of HADES allows contact evaluations between spheres (or clusters) and
infinite planes. This is enough in the case of filling of boxes, whereas if we want to study a discharging due to
the presence of an orifice, the implementation is not appropriate. To overcome this problem, we consider an
approximation of the bottom plate with a bed of spherical particles which are constrained to maintain their
position. In this way we can simulate the filling phase. Afterwards, we will fix a set of particles of the bottom
bed to move to create an opening of the same size of the orifice. This approximation allows us to simulate the
discharging phase capturing the edge effects.

Finally, we have to consider that the results shown in the paper are obtained with a numerical implementation
of DEM specific for the cubic case. The cube is an extremely stable geometrical shape and this property has
strong effects in the packing of particles. Approximating cubes with clusters of spheres we introduce strong
instabilities in the packing phase. We expect the packing to be more structured than the packing of spheres,
but expecting a very accurate results in the case of cubes is unfortunately not realistic. Packing experiments
with more unstable geometrical shapes would be more fair for the validation of the multisphere approach, e.g.
considering ellipsoids or corn-shaped particles. We selected the cube experiment to analyze the behaviour
of the approach in a very extreme case.

Spheres

We firstly consider spherical particles. The filling phase gives a stable configuration, which can be seen in
Figure 8.3: the steady state solution for the filling phase is reached after t = 1s of simulation time. Afterwards,
at time t = 2s, we open an orifice in the bottom plate and we study the flow-rate of the discharging of the
hopper. In Figure 8.4 we plot the percentage of mass discharged versus simulation time, for different sizes of
the orifice. The results of the current simulation are reported in dotted lines, whereas the results obtained in
the reference paper are shown in straight lines.

Qualitatively, we observe that the discharge is faster than the results from the ones given in [15], but they
follow a very similar evolution in time. In particular, the distance between the results is larger with the smaller
size of the orifice, whereas we get very close results when the orifice reaches its maximum value.

Possible explanations for the deviations of the results are: influence of the initial configurations, which are
for sure slightly different between the two cases, and the usage of different contact models used, as describe
in the previous paragraph. Due to the different model adopted, precise quantitative results are hard to obtain
since an accurate tuning of the parameters would require extensive experimental data. Nevertheless, we can

96 8. Test of Implementations

claim that the macroscopic behaviour is compatible between the two different models at the resolution that
we accept.

Figure 8.3: Filling of Spheres. 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Time

M
as

s
di

sc
ha

rg
ed

 (
%

)

60paper
80paper
116paper
60
80
116

Figure 8.4: Discharging of Spheres. The different colors describe
differente orifice openings, as stated in the legend. The dotted line
shows results from the paper, the straight line describes data of the
current simulation.

Cubes

We now analyze the performances of the approximations of cubes with clusters of spheres. In order to obtain
the cluster, we run the algorithm that we implemented in the Chapter on Non-Sphericity 7 using an STL file
with a cube of edge 12 mm. We obtain a cluster with the following radius and positions of centers of spheres
(with respect to its center of mass). The cluster is shown in the left part of Figure 8.8.

centerX = [0.000, 0.0032, -0.0032, -0.0032, 0.0032, 0.0032, -0.0032, -0.0032, 0.0032];
centerY = [0.000, 0.0032, -0.0032, 0.0032, -0.0032, 0.0032, -0.0032, 0.0032, -0.0032];
centerZ = [0.000, -0.0032, -0.0032, -0.0032, -0.0032, 0.0032, 0.0032, 0.0032, 0.0032];
radii = [0.0065, 0.00365, 0.00365, 0.00365, 0.00365, 0.00365, 0.00365, 0.00365, 0.00365];

We run the simulation and we reach an equilibrium at t = 1.1s. The equilibrium is shown in Figure 8.5.
We observe that the packing of the simulation is unfortunately different than the results presented in the
reference paper. In fact, in the paper the authors obtain a very structured packing of cubes, whereas in our
simulation the packing resembles the shape of a V. The height of the packing is similar, but the equilibrium
with the shape of a V is much more unstable when we consider the discharging of the box. This translates in
a more consistent discharging when the orifice is opened. In our simulations two situations occur:

• Arches formation (see Figure 8.7)

• Discharging of 70 - 90 % of particles, depending on the opening of orifice

In the paper, basically two situations occur:

• Arches formation

• Discharging of (approximately) only the particles that lie in the zone above the orifice

The authors obtain these different two behaviours and they propose as results the data averaged between
these cases (in particular 1 arch formation and 2 pure discharges). The results form the paper are shown in
Figure 8.6 with the dotted line. In the same figure we plot with a straight line the discharging ratio in one case
in which arches did not occur.

It has to be noticed that the randomness introduced in the initial position and orientation produces con-
figurations in which arches do or do not show up. Consequently, the discharged mass can vary a lot, but
the authors of the paper claim that the maximum of the discharged mass is close to the percentage of mass
above the orifice. The results of the current simulations are in agreement with the literature data up to time

8.1. Discharging of Cubes 97

Figure 8.5: Filling of Cubes.

2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Time

M
as

s
di

sc
ha

rg
ed

 (
%

)

60paper
80paper
116paper
60
80
116

Figure 8.6: Discharging of Cubes. The different colors describe dif-
ferente orifice openings, as stated in the legend. The dotted line
shows results from the paper, the straight line describes data of the
current simulation.

t = 2.3/2.4, meaning that we manage to capture reasonably well the first phase of the discharging, which
intuitively does not depend on the packed configuration. When the packed configuration starts to exert its
influence, results deviate giving a strong discharging rate in the simulation, if compared to the data from the
paper.

The deviation in the packing phase can be influenced by a variety of phenomena. Firstly, the approxima-
tion of cubes, extreme stable geometries, with spheres will introduce instabilities on the packing. Secondly,
the different models implemented in the simulation cause deviation of results. Moreover, we remind that
the damping coefficients are modeled in literature in very different ways and in the present simulation we
estimate only their order of magnitude. Additionally, one could think that the approximation of the bottom
plate with spheres could play a role, but after having performed packing test with pure planes (possible, as
stated before, only for the filling phase where there are no orifices in the surface of the box), we claim that
the approximation of the bottom plate influences strongly the dynamics but it does not influence the packing
properties: the equilibrium configuration obtained with a regular plane at the bottom presented a similar V
structure as the particle-bed case. Finally, an additional factor that could influence the packing is the con-
figuration of spheres inside the cluster. Let us consider a cube approximated with 9 spheres. If we consider
a face, there can be 3 different configurations as outputs of the algorithm approximations: 1, 4, 5 spheres
sticking out from a face, see Figure 8.8. This definitely plays an relevant role in the contact dynamics and in
the packing configuration.

Figure 8.7: Arch Formation with orifice of 60 mm.

98 8. Test of Implementations

Comments

Analyzing the outcome of the numerical simulation, we emphasized some discrepancies between the results
presented in the reference paper and our numerical simulation. Several hypothetical reasons that could ex-
plain the differences were described. It has to be highlighted that the situation that we wanted to verify was
extreme in the spectrum of the possible configurations, since the cube presents extreme properties of stability
under the presence of forces and probably this situation is the case in which the multisphere DEM approach
shows its worst performances. We have to remind that the multisphere approach can be used with an arbi-
trarily shaped object, therefore its best feature show up in the irregular cases, where no other methods can
be implemented. Due to the limited amount of time of the project we could not proceed to further investi-
gations, but a strong suggestion for future researches is to use the multisphere approach for more unstable
geometrical shapes and study the packing of ellipsoids or rounded-shape objects to pursue the validation
of the results. Literature is available for such configuration, for example [49] for the packing of ellipsoids,
whereas [44] deals with corn particles. The results for the contacts, the initial discharging and the formation
of arches seem promising to achieve the validation of the implementation.

Figure 8.8: Possible Clusters Filling dynamics will depend on how many spheres compose the outer layer of the cluster: 4, 5 or 1 respec-
tively in the figure above

8.2. Flow around a square cylinder

In this Section, we set up a numerical experiment to study the effects on the flow patterns of the approxima-
tion of cubes with a cluster of spheres. More precisely, we analyze the flow around a square cylinder, a circular
cylinder and an approximation of a square cylinder with circular ones. For all the cases we compare flow pat-
terns and the drag coefficient for a range of Reynolds numbers and we compare the results with literature,
in particular paper [7]. To this purpose, we set up the numerical experiment reproducing the setting of the
results presented in the paper. We consider a rectangular 2D domain and a cylinder inside it. Note that since
OpenFOAM allows only 3D computations, we give to the domain a thickness, but the simulation will still be
2D using appropriate boundary conditions (empty faces) on the third dimensional direction.

Domain

The domain is a 2D rectangular box, with length L and height H . A square cylinder, of edge D , is put at the
half of the channel height and at a quarter of the channel length. The blockage ratio is evaluated as B = D/H .
The setting is summed up in table 8.3. In particular, we choose some values for the dimension that satisfy
these constraints. The values that are used in the calculation are shown in table 8.4. In Figure 8.9 we show
the mesh used for the calculations. Since around the cube some instabilities may occur, we choose to refine
the mesh around it, for a distance equal to the half of its size: this will give smoother solutions and prevent
numerical instabilities. The mesh around the cube is presented in Figure 8.10.

Boundary Conditions

In order to achieve a solution to the problem, which is described by Navier-Stokes equations, we need to set
appropriate initial and boundary conditions. In particular, we consider a fluid at rest (zero initial velocity field
and zero pressure field) as initial condition. A velocity is prescribed at the left of the domain in the x direction,
therefore the fluid will flow from the left to the right. We now describe in detail the boundary conditions that
we impose.

8.2. Flow around a square cylinder 99

Property Value

Channel Length L
Channel Height H
Square Diameter D
Blockage ratio B = D/H = 1/8
Inflow Length l = L/4

Table 8.3: Geometric properties of fluid domain in the reference paper.

Property Value

Box Width L = 200 mm
Box Height H = 500 mm
Box Thickness T = 30 mm

Square Width D = 60 mm
Square Thickness T = 30 mm

Table 8.4: Geometric properties of fluid domain in the calculations.

Figure 8.9: Domain.

Figure 8.10: Domain Detail.

100 8. Test of Implementations

Wall
The top and the bottom of the domain shown in Figure 8.9 are considered as walls. In literature, this case is
named no slip boundary condition and it acts imposing the velocity of the fluid to 0 and the fix the gradient
of the pressure to 0.

Inlet
As inflow, we consider a parabolic profile for the velocity. At the two extremes (intersections with the walls)
the velocity is forced to be 0, whereas at the middle of the patch it reaches its maximum value umax . The
velocity is therefore described by the following expression:

u(x, y, z) =
u(x, y, z)

v(x, y, z)
w(x, y, z)

=

−
umax

0.042 y2 + 2umax

0.04
y

0
0

 (8.1)

The velocity profile in the case of (umax = 0.03ms−1) is shown is Figure 8.11. Again, a homogeneous Neumann
boundary condition is imposed to the pressure.

Outlet
Since, from experimental and theoretical results available in literature, we expect the formation of vortexes in
the flow, we impose an advective boundary condition at the outflow. This assures that the vortexes will flow
and reflection in the inner part of the domain is avoided. The general advective condition reads:

∂ui

∂t
+uad v

∂ui

∂x
= 0, (8.2)

and in particular we choose the advective velocity uad v to be equal to the maximum velocity umax imposed
at the inlet. As far as pressure is concerned, a homogeneous Dirichlet condition (p = 0) is chosen.

Empty

The mathematical formulation of a 2D problem does not require a boundary condition in the third dimen-
sion, but in OpenFOAM a boundary condition is required since all the simulations are 3D. Hence, an empty
boundary condition is imposed to all the patches that span the third dimension. With this boundary con-
dition, the solver does not perform any calculation in the direction of the normal of the empty faces: the
simulation becomes 2D.

Figure 8.11: Parabolic Inflow at umax = 0.03ms−1 ⇒ Re = 300.

Fluid parameters and dimensionless numbers

In Fluid Dynamics, very often flows are analyzed in dependence of dimensionless numbers, which manage
to describe the behavior and the pattern of flows in various situations. In particular, one of the most relevant
dimensionless quantities is the Reynolds number, which is defined as the ratio of inertial and viscous force

8.2. Flow around a square cylinder 101

that act on a fluid. Let ρ be the density of the fluid, µ its dynamic viscosity, U a characteristic velocity and d a
characteristic length, then the Reynolds number is defined as:

Re = ρUd

µ
= Ud

ν
, (8.3)

where ν is the kinematic viscosity and it is defined as ν = µ/ρ. We choose as reference length the size of the
square cylinder and as characteristic velocity the maximum of the parabolic profile at the inlet umax . Hence,
the Reynolds number will be evaluated as:

Re = umax D

ν
. (8.4)

In order to perform simulations with a variety of the Reynolds Number, we decide to keep the physical prop-
erties of the fluid and the dimension of the domain as constants, whereas we vary the maximum of the inlet
velocity. In Table 8.5 we give the values of the properties of the fluid that we considered in the simulation.
The density and the kinematic viscosity are very close to the properties of water. The only parameter that we
can modify to change the Reynolds number is therefore the maximum of the inlet parabolic profile. In Table
8.6 we give some reference value for the relation between the two parameters for the most important cases
that we will analyze in the numerical results.

Property Value

density ρ = 103 kgm−3

dynamic viscosity µ= 10−3 kgs−1 m−1

kinematic viscosity ν= 10−6 m2 s−1

Table 8.5: Fluid Properties.

Max Velocity [ms−1] Reynolds

0.0001 1
0.003 30
0.01 100
0.03 300

Table 8.6: Relation between umax and Reynolds Number.

The physical system under consideration is an object (square or circular cylinder) inserted in a fluid. The
application of the conservation of momentum to the system leads to the rise of forces that are exerted by
the fluid on the object. The most common strategy to evaluate these forces is to divide them in components
which are parallel or perpendicular to the relative velocity of the fluid and the solid body: we define the first
as Drag force and the second as Lift force. These forces can be caused by three different physical processes:
viscosity, a gradient of pressure and porosity of the object that is hit by the fluid. In the present application,
we neglect the porosity of the material, hence we are interested on the drag force that arise from the first two
phenomena. Their influence on flow patterns and arising forces will be strongly dependent on the Reynolds
number.

In particular, we define a dimensionless number that is proportional to the drag force, in order to simplify
the comparison between different flow settings. Let D be the drag force acting on the object, u a reference
velocity of the flow, A a reference area (an estimation of the contact area between the fluid and the solid body
in the direction that we consider) and ρ the density of the fluid. Then the (dimensionless) drag coefficient is
defined as:

Cd = 2D

ρu2 A
(8.5)

In the presence of viscosity, if we perform a dimensional analysis of the system we obtain that the drag co-
efficient depends on the Reynolds number Re. Their dependence will be studied for the square cylinder, the
circular cylinder and the approximation of square with circles. The numerical results will be compared with
experimental or numerical results available in literature.

102 8. Test of Implementations

Literature Flow around a Circular cylinder

The flow around a circular cylinder was deeply studied and analyzed in the XX century, both theoretically and
experimentally. In modern textbooks of Fluid Dynamics the case is often presented as an example of complex
flow patterns that can arise from very simple geometries. We briefly sum up the experimental data available
in three of the most common and exhaustive monographs on the subjects: [4], [28] and [35].

The flow around a circular cylinder surrounded by a viscous fluid is strongly dependent on the Reynolds
number: it causes dramatic changes in flow patterns and physical quantities. We distinguish 5 intervals of
the Reynolds number in which the behavior assumes very different connotations:

• Re < 4. This case correspond to the Stokes flow, or creeping flow. The flow is attached, the inertia effects
are very small and there is a balance of the viscous and pressure terms. This equilibrium causes the
vorticity created by the no slip condition at the wall of the cylinder to be diffused and not advected.

• 4 < Re < 40. The flow is not attached anymore and two stable vortexes, also called eddies arise at the
back of the cylinder. Nevertheless, the streamlines remain (almost) symmetrical and the flow is consid-
ered stable.

• 40 < Re < 80. The vortexes that arise behind the circular cylinder are not stable anymore: periodic
oscillations of the velocity in time appear. This results in the formation of oscillation vortexes known
as von Karman vortexes, that appear in constant positions. The eddies behind the cylinder and the von
Karman vortexes do not interact.

• 80 < Re < 3 ·105. The flow keeps the same configuration except that the eddies interact between each
other: the eddies develop closer to the surface and the von Karman vortexes start to oscillate. Increas-
ing Re yields the transition of the von Karman vortexes to turbulent wakes, but the boundary layer is
maintained laminar and stable.

• 3 ·105 < Re < 3 ·106. The boundary layer starts to be unstable.

• Re > 3 ·106. The boundary layer is completely turbulent.

For all this cases, complete data are available for the values of drag coefficient. We will plot the values for the
relevant cases below when we will compare the numerical results with literature data.

Literature Flow around a Square cylinder

For the case of a square cylinder, less data are available in literature. We will consider the data presented in
[7], the paper that we used as reference for the setting of the test case, for Reynolds numbers in the range of
[0.5 : 300] and [30] for data at Re = 500,1000.

• Re < 5. The flow is in the regime of the creeping flow, we have the same dynamics as the circular case.

• 5 < Re < 60. Eddies start to develop behind the cylinder and the flow separation starts to happen. The
flow is stable

• 60 < Re < 100. The von Karman vortexes start to appear: oscillations rise and the flow is unstable. In
this range, the eddies and the von Karman vortexes do not interact

• 100 < Re < 1000. Interaction between eddies and von Karman vortexes: the separation happens in the
leading edge of the cylinder.

• Re > 1000. No data was found.

It is straightforward to notice that the dynamics of the flow on square and circular cylinders is very similar,
except for the small delay on the square case: considering the increasing of Re, the round shape of the circle
seems to anticipate the development of the flow, if compared to the sharp shape of the square. Data for the
drag coefficient in dependence of the Reynolds number is available for the interval considered in the present
simulation, i.e. Re ∈ [1,500], and will be plotted with the numerical results, to compare the accuracy of the
simulation.

8.2. Flow around a square cylinder 103

Numerical Results and comments

We now compare the numerical result that we obtain from the simulation to the the experimental and theo-
retical results available in literature. We choose to perform the simulation at 6 different Reynolds Numbers:
Re = 1,30,100,200,300,500. We analyze the macroscopic behaviour of the fluid, highlighting the patterns of
the flow and we evaluate the drag coefficients and we plot them against the data found in literature.

In the current simulation, we compare the following 3 situations:

• Flow around a square cylinder through a holed-mesh, as stated in Figures 8.9 and 8.10.

• Flow around a circular cylinder through fluid-particle coupling: we place a sphere in the middle of the
domain. Since the simulation is 2D we will obtain a circular cylinder with the correct radius inside the
mesh.

• Flow around a cluster of spherical cylinders, inserting a clusters of spheres at the correct height in order
to have the accurate approximation of a cluster of cylinders.

In order to perform these simulations, we use different solvers in OpenFOAM.

• Holed Mesh
We use the standard pimpleFoam implemented in OpenFOAM. In this case, no interactions with parti-
cles are considered. The solver allows to have a non fixed CFD timestep ∆TC F D , using properties of the
solvers simpleFoam and pisoFoam. A constraint on a maximum Courant Number (or CFL) is imposed.

• Circular Cylinder
We use the CFDEM solver cfdemSolverIB which is based on the solver pisoFoam. The implemen-
tation of the solver does not allow to have dynamic time steps for the CFD evaluations, therefore it is
important to keep manually the CFL number less than 1. That is why we fix the ∆TC F D as constant
through the entire simulation. This imposes a strong constraint on the accuracy of the simulation. In
fact, initially we require a small time step to obtain an appropriate reaction of the fluid which at time
t = 0 is at rest. A larger time step could be decided for the following part of the simulation, with the
exception of the cases when vortexes show up. In these cases a fine time step is again necessary.

• Cluster of Circular Cylinders
The solver used is the same of the circular cylinder case, where constraints become even worse since
we are approximating more cylinders in the CFD grid and errors of shape approximation become more
relevant.

In Table 8.7 we show the time steps and the maximumu CFL number reached for each simulation and each
solver used.

Case Holed Circular Cluster Circular

Solver pimpleFoam pisoFoam CFDEM pisoFoam CFDEM

∆TC F D C F Lmax ∆TC F D C F Lmax ∆TC F D C F Lmax

Re 1 – 1 0.001 0.0001 – –
Re 30 – 1 0.001 0.009 0.001 0.0096
Re 100 – 1 0.001 0.034 0.001 0.0342
Re 200 – 1 0.001 0.073 0.001 0.0754
Re 300 – 1 0.0005 0.0552 0.0005 0.0580
Re 500 – 1 0.0005 0.092 0.0005 0.0913

Table 8.7: Time steps and CFL numbers for solvers used.

We now describe the outcome of the current simulation. Firstly, it is necessary to stress that unfortunately
the solver cfdemSolverIB is not completely reliable at low Reynolds numbers. The developers of the solver,
state in [17] that the Immersed Boundary Method implemented is not accurate when Reynolds number ap-
proaches 1, whereas its results become reliable when we consider moderate Re. To overcome this issue, a

104 8. Test of Implementations

new solver, cfdemSolverForceIB or pisoIB, has been developed in [6], but it is not yet available in the open-
source version of the software. A further implementation of this new method would be essential in cases
characterized by a low Reynolds number.

Hence, we expect some differences between the theoretical and numerical results when Re = 1 when we are
considering the circular cylinder and the cluster of cylinders with the fluid-particle framework.

Firstly, let us consider the flow patterns, analyzing streamlines of the flow at different Re in the cases of square,
circular cylinders and cluster of circular cylinders to approximate a square. We have to keep in mind that com-
paring flow patterns of different geometrical shapes and in particular with approximated ones (the circular
cylinder and the cluster are interpolated in the CFD mesh via the void fraction scalar field) is not an accurate
measure of accuracy of the solver, but at least we can observe the flow behavior and compare qualitatively
the results with expectations from theory. In Figure 8.14, 8.15 and 8.16 we plot the streamlines of the flow
for different Re. We remind that streamlines are defined as lines that are tangential, in every point, to the
velocity field. The flow patterns of square and circular cylinder agree very well with the patterns described in
the previous paragraph, with the correct macroscopic behaviors. We observe that also the approximation of
the square cylinder with the cluster of circular cylinders shows a reasonable behavior.

In order to analyze the accuracy of a solver, a measure of the drag coefficient is often chosen in literature.
Hence, we evaluate the drag coefficient, as defined in the previous paragraph.

We firstly consider the case of the square cylinder obtained by the holed mesh and we evaluate the drag
coefficient of the simulation varying Re. Data are extracted by functionObjects in OpenFOAM. In Figure
8.12(a) we plot the drag coefficient in dependence of the Reynolds number. A very good agreement with data
from literature is observed.

Secondly, we compare the behavior of the drag coefficient in the case of a circular cylinder and we compare
the result obtained with the framework that we developed with data available in literature for flows around
circular cylinders. The comparison is performed in Figure 8.12(b). First of all, we have to notice that the drag
coefficients depends on a reference area A, which has to be chosen as an relevant parameter to the prob-
lem. Since we are using the fluid-particle simulation framework, the perfectly rounded surface of the circular
cylinder is approximated by the void-fraction field in the CFD mesh. This will cause discrepancies in the ref-
erence area considered. In the Figure, we plot both the result evaluated with the rounded reference area and
the one obtained with the approximation through interpolation on the CFD grid. We observe that if we take
as reference the approximated area we have results that are closer to the data from literature. It is straightfor-
ward to notice that a large deviation from the literature data is present in Re = 1, but this is explained by the
lack of accuracy of the solver in the case of low Reynolds numbers. The accuracy increases considering mod-
erate Reynolds numbers, in particular in the cases Re = 30,100,200. In the last two cases (Re = 300,500), we
see that the drag coefficient does not decrease as expected, but stays stable. An explanation for this behavior
may be that the CFD time step is larger than the adequate one and that accuracy of the solution is therefore
not adequate. A good strategy for investigation of accuracy may be to vary the time step keeping the CFL
number comparable in all the cases under consideration. Globally, we can be satisfied by the behaviour of
the solver at moderate Reynolds number.

Finally, we analyze the case of a cluster of circular cylinders that approximate a square cylinder and we study
the behavior of the drag coefficient in Figure 8.13. Due to the lack of accuracy at low Re, we focus on the
interval 30 ≤ Re ≤ 500. We see that in this interval the drag coefficient evaluated using the approximated
reference area manages to follow the behavior of the theoretical drag coefficient for square cylinders, whereas
we overestimate the coefficient if we use the rounded reference area. The small discrepancies are caused
mainly by the approximation of the rounded shape in the CFD cells through the void-fraction scalar field. We
also observe that this approximations tend to emphasize numerical instabilities, therefore the presence of
vortexes and eddies is anticipated if compared with the perfect square cylinder case.

Since our aim is to perform simulation with arbitrarily shaped particle, we can be satisfied by the degree of
accuracy reached for a regular object. We in fact expect that the accuracy of the approximation increases
with the non regularity of the object that we consider: if an object does not have symmetrical or regular
properties, the instabilities caused by the approximation with spheres into the void-fraction field will be less
relevant, since they will be intrinsic properties of the system. We can therefore validate our implementation
in the range of Reynlods numbers considered.

8.2. Flow around a square cylinder 105

100 101 102 103

Re

100

101

102

C
d

(a) Square Cylinder

100 101 102 103

Re

10-1

100

101

102

C
d

Literature
SimApprox
SimRound

(b) Circular Cylinder

Figure 8.12: Drag Coefficient of Square and Circular Cylinder. Blue line represents results from literature, red symbols deal with numer-
ical results of the present simulation. Red cross describe drag coefficients obtained using the correct rounded-shaped reference area,
whereas red dots deal with the approximation of the shape in the CFD grid.

100 101 102 103

Re

100

101

102

C
d

TheorSquare
TheorCircle
MultiApprox
MultiRound

Figure 8.13: Drag Coefficient of Cluster of Cylinders compared to literature data. Blue and orange line represents results from literature
(square and circle, respectively), red symbols deal with numerical results of the present simulation. Red cross describe drag coefficients
obtained using the correct rounded-shaped reference area, whereas red dots deal with the approximation of the shape in the CFD grid.

106 8. Test of Implementations

Figure 8.14: Streamlines of flow around a square cylinder at different Re.

8.2. Flow around a square cylinder 107

Figure 8.15: Streamlines of flow around a circular cylinder at different Re.

108 8. Test of Implementations

Figure 8.16: Streamlines of flow around a cluster of circular cylinders at different Re.

9
Applications

In this Chapter we propose two applications of the features developed and implemented during this project.
In particular, we set up two cases that can be relevant to academic and industrial studies for validations and
further studies and developments. We focus on the resolved coupling between non-spherical particles and a
fluid.

The first case proposed is the domino fall of rectangular cylinders in water. the physical properties of the
materials are arbitrarily chosen, but the relevance of this experiment is the possibility to measure easily the
accuracy of the simulation by measuring the time necessary to the last item to fall. Finally, we propose a case
to simulate the falling of rocks in a pipe to the sea bed. This kind of experiment is often used in marine and
petroleum engineering to study the packing of rocks under the influence of the ocean current and the effects
on pipe systems.

These are just two examples in which fluid-particles interactions play a fundamental role in the dynamics of
a physical system. The variety of scenarios is extremely wide and this makes the topic of interaction between
fluids and solids thrilling and thriving.

9.1. Domino in Water

An interesting scenario in which the interaction between fluid and particle becomes relevant is given by the
simulation of a domino fall of objects immersed in water. Performing the simulation as pure particle-particle
interaction we have results of falling particles in vacuum, whereas activating the fluid-particle solver we ex-
pect a slow down of the falling due to the influence of the fluid on the particle fall. An effective way to compare
the numerical results with experiments is to measure the time in which the final object falls due to the domino
effect.

The workflow followed in the setting up of the numerical experiment has been the following:

1. Fix material properties of the object and the box

2. Approximate the object with a cluster of spheres

3. Tune the damping coefficients to avoid instabilities and unphysical bouncing effects between the box
and the objects

4. Perform pure particle simulation, taking under consideration the interactions between the objects with
themselves and the walls

5. Trigger the influence of the fluid in the particles motion (and viceversa) with resolved coupling method

6. Perform different simulations varying parameters (CFD timestep, coupling time, mesh refinements,
number of spheres per objects)

109

110 9. Applications

As a first step, we need to fix material properties for the particles and the fluid. As far as the fluid is concerned,
we consider water, therefore the physical properties are well known and they are the same as the ones used in
Chapter 8: (ρ = 1000kgm−3 , ν= 10−6m3 s−1). As solid, we consider two different materials for the objects and
the walls, in particular we choose rectangular cylinders of steel and a box of plexiglas. The physical properties
are summed up in Table 9.1.

Property Value

Particle density ρ = 8000 kgm−3

Wall density ρ = 1180 kgm−3

Young Modulus E = 3 ·109 kgm−1 s−2

Friction Coeff µ= 0.4
Normal damping Coeff ηn = 2 ·105 m−1 s−1

Tangential damping Coeff ηt = 1 ·104 m−1 s−1

Table 9.1: Solid Properties.

We decide to approximate the rectangular cylinder with 2 distinct clusters of spheres, with 20 and 40 spheres
per cluster. In the case with 20 spheres, we use a layer of 4 spheres as section and we use 5 layers to build the
box. In the case of 40 spheres, instead, we use 9 layers with the same distribution and we consider a skeleton
of 4 spheres in the vertical direction to approximate better the shape of the horizontal edge. We show the
clusters used in these cases in Figure 9.1.

(a) Coarse (20) (b) Fine (40)

Figure 9.1: Clusters of spheres to approximate a Rectangular Object.

In order to provoke the fall of the boxes, we give to the first box of the row an inclination of 12° with respect to
the y axes. We show the initial configuration of the system in Figure 9.2.

Then, we choose the damping coefficients performing the numerical experiment more times and taking the
threshold value that allows to detect collisions avoiding oscillations which do no happen in the real-life sce-
nario with the same physical parameters. The damping coefficients (tuned for the case of 20 spheres in the
cluster) are given in Table 9.1.

Afterwards, we consider the influence of the fluid in the system and we perform simulations of different sce-
narios. In particular, we consider the coarse and fine approximation of the rectangular objects and we analyze
two different situations: complete influence between fluid and solid phase, named TwoWay and influence of
the particle on the fluid dynamics and not vice-versa, named OneWay. For every case, we consider two dif-
ferent time steps for the CFD part (and therefore for the coupling time, since we exchange information every
CFD step): we use ∆TC F D = 0.001s and ∆TC F D = 0.002s. For each of these cases, we study the time necessary
for the last object of the row to fall. In Table 9.2 we report the falling times of the domino configuration in the
different scenarios. We also add the execution time (in seconds s) of the simulations.

In order to achieve accurate results in a reasonable computation time, we activate the dynamic mesh refine-
ment feature in OpenFOAM: this will cause a dynamic local mesh refinement and un-refinement influenced
by the scalar field interface, which is evaluated from the void fraction scalar field applying some thresholds. To
have comparable results, the update of the mesh is constant in every case and performed every 0.01 seconds.

9.1. Domino in Water 111

Figure 9.2: Initial Configuration. Top view and perspective view. The left object is given an initial angle of 12° w.r.t y axis to provoke the
domino falling. Here, the coarse cluster is used.

A priori Considerations

From the setting of the simulations, we expect that results obtained varying only the CFD time step are char-
acterized by very similar falling times. Due to numerical errors that may occur in the integrations, in the
saving times of the files and in the precision of writing the numerical values, we tolerate a small discrepan-
cies between the results.

Considering the different configurations in the coupling, we expect the falling times of the OneWay coupling
to be smaller than the falling times of the cases where we consider the influence of the fluid in the particle
motion. Since solid particles move in water, we expect the arise of drag and lift forces and we also consider
the presence of a buoyancy force. In particular, the forces that the fluid exerts on the particles are evalu-
ated through ShirgaonkarIB model in CFDEM and a buoyancy model in HADES, ad hoc developed for fully
immersed objects. These forces should slow the particle motion in the TwoWay cases.

Finally, the differences between the two configurations of the approximation should not play a fundamental
role, but we highlight that since the slice of the base is made of 4 spheres in the Coarse case and 5 spheres in
the Fine case, differences may arise due to the presence of a different number of contacts.

Cluster Coupling ∆TC F D [s] Falling Time [s] Exec Time [s]

Coarse
OneWay

0.001 1.68 4261.27
0.002 1.60 2310.76

TwoWay
0.001 1.72 4257.17
0.002 1.68 2376.37

Fine
OneWay

0.001 1.58 5473.66
0.002 1.54 2938.56

TwoWay
0.001 0.92 6096.13
0.002 1.30 3042.93

Table 9.2: Falling Times.

Comments

Numerical results have been obtained for the 8 cases described in the previous paragraph and in Figure 9.4
we give a snapshot of the simulation in a slice in the y direction. This helps to give an idea of the falling
objects and to highlight the influence of the particles on the fluid in all cases and the influence of the fluid
on the particle in the cases characterized by the TwoWay coupling. The falling times are reported in 9.2 and a
visualization of the data is given in 9.3. It is straightforward that the results present some discrepancies with
respect to the expected values, therefore a careful investigation needs to be carried out.

112 9. Applications

Firstly, we observe that for the Coarse case, results are not too far away from each other. As expected, the
objects fall slower in the full coupling with respect to the case in which we neglect the influence of the fluid
in the particle motion. This is reasonable due to the arise of the drag force that slow the fall of the objects.
We also observe that using a smaller CFD time step slightly anticipates the fall. This is possible due to several
and successive rounding errors in the communications between OpenFOAM and HADES: number of digits
of precision, constraints on saving more files and more frequently are reasonable causes of this anticipation
of the fall. Remind also that the drag forces are, of course, time dependent and when we are using a larger
CFD time step we are also coupling the phases less frequently, causing larger error in the simulation. Finally,
we emphasize that we are analyzing results with Paraview and we visualize data with an interval of 0.2 s, so
this is the precision of our measurements. Nevertheless, taking all these facts into account, the falling times
are not so far from each other and with the level of accuracy adopted in this simulation, we can be reasonably
satisfied.

Instead, severe discrepancies appear in the Fine case. Let us firstly consider the OneWay configuration, where
results are still in accordance with the ones of the Coarse case: the bigger the CFD time step, the faster the
fall. We notice that the fall is slightly faster than the Coarse case. A possible explanation of this lies in the
different geometrical configuration of the clusters in the two cases. In fact, in the Coarse case the base of
the cluster is made of 4 spheres and this leads to 4 contact points with the wall, whereas in the Fine case
5 spheres compose the base of the objects. This leads to more contact points and probably the damping
coefficient should be tuned again to obtain reliable results. In fact, the objects oscillate more and this lead
to a less stable configuration, where the fall of the object is anticipated. This can play a role also in the arise
of significant discrepancies of the Fine case with a full coupling. Contrary to the expectations, we observe
that activating a full coupling to the system we cause an anticipation of the fall. This is counter-intuitive and
we can not validate our case for this configuration. An explanation for this behavior can probably be again a
damping coefficient not tuned, in particular lower than the necessary one. Adding a sphere in the center of
the base, again, can lead to stronger oscillations which can be emphasized once we activate the full coupling
of the system: the oscillation in velocity are transmitted to the fluid, which influence at the next CFD time
step (= coupling time) the particle motion itself, with the arise of drag force, but more importantly, of lift force
that will cause even more instabilities. Moreover, due to the buoyancy force, the solid will feel less gravity
than before and this, again, can cause the need of more damping. Hence, an accurate tuning of the damping
parameter is necessary to perform accurate simulations and its evaluation is one of the critical parts of a DEM
(and CFD-DEM) model.

Even if in this case the damping coefficient seems to be the most relevant constraint to the accuracy of the
simulation, we also remind that the coupling time is a critical parameter for the CFD-DEM coupling. With a
too large coupling time, the particle motion can be unable to react to the fluid influence and simultaneously,
the fluid can be unable to react to the presence of the particles in the correct positions and with the correct
velocities. A careful study on the bounds for the coupling time will be therefore necessary in future and we
will include this in the list of future research direction in the final Chapter of this Thesis.

In conclusion, results are close to the expected ones for the Coarse Case. In the Fine case, the OneWay cou-
pling presents reasonable results, and the distance between this configuration and the correspondent one in
the Coarse case gives the intuition that the reason for the discrepancies may lie in the damping coefficient
tuning. Instead, the TwoWay configuration for the Fine case presents anomalies and we can not consider the
results for this particular situation as reliable.

0.001 0.002
CFD TimeStep

0.5

1

1.5

2

F
al

lin
g

T
im

e

CoarseOneWay
CoarseTwoWay
FineOneWay
FineTwoWay

Figure 9.3: Falling Times in different coupling configurations.

9.1. Domino in Water 113

(a) Coarse. One Way

(b) Coarse. Two Way

(c) Fine. One Way

(d) Fine. Two Way

Figure 9.4: Numerical Results at time t = 0.5 with∆TC F D = 0.001.

114 9. Applications

9.2. Falling Rocks on the Sea Bed

A typical scenario of geotechnical as well as oil and gas engineering is given by the fall of rocks, in a pipe,
to the sea bed. In this Section we present some preliminary results of this case. A complete and deep study
of the configuration was beyond the scope of the MSc project, but we chose this scenario to show the new
capabilities of the solver and to give a taste of the possible applications of the research carried out during this
project.

In order to achieve the simulations of falling rocks in water, we firstly need to set up the domain of compu-
tations both for the fluid and the particles. In particular, we consider a box of 4 m length (x direction), 3 m
width (y direction) and 4 m height (z direction). In the center of the section, from z = 2m to z = 4m, we col-
locate a pipe with rectangular section of 1m×0.5m. In Figure 9.5 we show the domain of computations as far
as the fluid is concerned. As stated in the previous Chapters, the particle solver (HADES) has the limitation
that only Hertzian contacts between particles and infinite planes can be considered. Therefore, due to the
fact that the pipe ends in the middle of the domain, we could not build the pipe with planes. To overcome
this limitation, we built the pipe with beds of spheres, with the appropriate size to maintain the width of the
pipe. The domain for the particle evaluations is shown in 9.6.

Figure 9.5: CFD Domain

Figure 9.6: DEM Domain

After the set up of the domain, we need an approximation of the rock with a cluster of particles. We decide to
use the cluster shown in 9.7 and given by the following parameters:

centerX = [-0.03, 0.00, 0.03, 0.03];
centerY = [-0.01, 0.00, 0.03, 0.03];
centerZ = [0.00, 0.00, 0.01, -0.01];
radii = [0.04, 0.04, 0.03, 0.025];

Figure 9.7: Rock Cluster

9.2. Falling Rocks on the Sea Bed 115

The rocks fall in water, so the fluid has the standar properties for water (ρ = 1000kgm−3 , ν = 10−6m3 s−1).
The parameters selected for the rocks are shown in Table 9.3. We remind that the damping coefficients are
critical parameters which would require further and research to validate the solver. In this case, we estimate
their value avoiding nonphysical oscillations in the results, but the accuracy of the simulation would require
a better tuning.

Property Value

Particle density ρ = 1180 kgm−3

Wall density (water) ρ = 1000 kgm−3

Young Modulus E = 4.5 ·109 kgm−1 s−2

Poisson Ratio λ= 0.35
Friction Coeff µ f r = 0.6
Rolling Friction Coeff µr ol l = 0.001
Normal damping Coeff ηn = 9 ·105 m−1 s−1

Tangential damping Coeff ηt = 3 ·105 m−1 s−1

Table 9.3: Solid Properties.

Figure 9.8: Rock injection One rock is inserted every 0.1s.

Now we decide how to insert the rocks in the simulation. In particular, we insert one rock every 0.1s in the top
of the domain and we assign to each rock a velocity of 2m.s−1 in the negative z direction. To avoid unrealistic
results, each rock is given a random initial orientation. In Figure 9.8 we give a snapshot of the injection.

In the system we consider the following forces:

• Gravity

• Buoyancy
Since the rocks are fully immersed and the fluid is considered incompressible, we evaluate the buoy-
ancy effect directly in the particle solver, using as input the (constant) density of the fluid.

We firstly run the simulation as pure DEM system until t = 60s. In Figure 9.9 we show the final configuration
reached at t = 60s. The computation time is approximately 3 hours. For visualization purposes, the geometry
of the domain is omitted.

We now consider the presence of the fluid in the system. Due to time constraints in the project, we consider a
One Way configuration: we analyze the influence of the particles in the fluid, but not vice-versa. In particular,
we consider the buoyancy contribution, directly on the particle solver, but not the drag component of the
force. Hence, no data arising from the fluid is read by HADES in this situation, since the density is constant
and fixed a priori in the Buoyancy model in HADES. The fluid-particle configuration is more demanding from
a computational point of view, hence we run the simulation up to 15s. Using 6 processors, the computational
time was approximately 5 days. This shows that the major contribution to the computational resources was
given by the CFD solver and the communication between the CFD and the DEM solver: the particle sim-
ulation by itself was relatively negligible in this configuration. Hence, the most expensive phases from the
computational point of view are: the location of the particles, the evaluation of the scalar fields that deal with

116 9. Applications

particles (voidfraction, interface), the dynamic mesh refinement performed every CFD step, the CFD solution
and the file communication.

In Figure 9.10 we show a slice of the CFD domain and the packing of rocks reached at t = 10s. The influence
of the presence of the rocks in water leads to a situation similar to a jet flow. In Figure 9.11 we show the
velocity field of water and the packed structure of rocks in different times, whereas Figure 9.12 deals with the
approximation of rocks inside the CFD mesh: the scalar field of void-fraction is given.

We remind that this final case had the purpose to give the reader a taste of the implementation described
in this Thesis. Hence, the accuracy of the simulation was not tested, but we showed one very interesting
situation in which fluid-particle simulation can be used to optimize work performances, to design industrial
products and to innovate current technologies in several branches of engineering.

Figure 9.9: Pure DEM Packing at t = 60s.

9.2. Falling Rocks on the Sea Bed 117

Figure 9.10: Velocity of the fluid and of the rocks at time t = 10s. In the Blue Scale, velocity of the water is given in a central slice of the
domain (plane x, z). In the rainbow scale, the velocity of the rocks is plotted. Particles are subjected to gravity and buoyancy force. The
arrows represent the local velocity of the fluid.

118 9. Applications

Figure 9.11: Velocity Field. In the Blue Scale, velocity of the water is given in a central slice of the domain (plane x, z). In the rainbow
scale, the velocity of the rocks is plotted. Particles are subjected to gravity and buoyancy force.

9.2. Falling Rocks on the Sea Bed 119

Figure 9.12: Void-fraction Field. The scalar void-fraction field used to locate the particles in the CFD mesh is given for different times.

Conclusions and Future Directions

The aim of this project was to study the state of the art of the methods developed for fluid-particles simula-
tions and possibly implement new features in open-source software available to industries. To this purpose,
we dedicated the first part of this Thesis report to a review of the techniques available in literature. This theo-
retical part contains the basics of the Discrete Element Method and the different approaches that can be used
for the coupling. In particular, we distinguished between resolved and unresolved coupling, depending on
the relative size of the particles involved and the CFD cells. We discussed these two possible configurations
and we gave some details on the possible approaches to adopt.

Afterwards, we decided to proceed in the project to answer to the research questions described in the final
Chapter on the Theoretical Background part. In particular, we analyzed the Verlet algorithm that is the com-
mon integrator implemented in particle solvers and we found out that it is an example of a second-order
symplectic partitioned Runge Kutta methods. Therefore, since it is in the intersection of the theory of sym-
plecticity and partitioned Runge Kutta methods, we state that further research for an higher-order integrator
within these classes may improve convergence behaviour of the numerical simulations. Then, in order to
have the possibility to use the innovative integration implementation of the Verlet algorithm with a non-fixed
time step in HADES, we focused on the coupling of OpenFOAM with HADES, exploiting the CFDEM frame-
work and substituting LIGGGHTS with this particle solver. Details of the code development are given in the
proper Section. A further research question dealt with the limitation of applicability of DEM to spherical
particles and this constraint is particularly severe in resolved cases. Therefore, we analyzed the possibilities
in literature to overcome to this drawback. Two alternatives were presented and discussed: superquadric
approximations and the multisphere approach. After a careful discussion about pros and cons of this tech-
niques, we chose to implement in HADES the multisphere method and we described the work-flow adopted
in detail.

In the final part of the thesis we tested the new-implemented features in benchmark problems and we dis-
cussed their accuracy and their performances. In particular, the test of filling and discharging of cubes ap-
proximated with clusters of spheres showed good initial behaviour, but discrepancies in the evolution of the
simulation in time. This can be explained with the fact that the case studied belonged to the worst case sce-
narios for the multisphere approach, since the approximation of extremely stable and regular geometrical
shapes is for sure not optimal for the validation of a multisphere solver. Tests with more rounded geometrical
shape will be necessary to validate the feature implemented in cases where the multisphere approach is a
powerful resource. Then, we tested the CFD-DEM framework studying the flow around a square cylinder and
results were satisfying with respect to the literature data available. Two applications were described in the
final Chapter: the fall of rectangular objects in water and the fall of rocks in the sea bed. A small study on
the influence of the CFD time step (and consequently of the coupling time) was carried out in the first case,
whereas due to time constraints on the project only preliminary results could be obtained for the fall of rocks.

During the development of the project and in the test phase, some further research questions arose and some
ideas on necessary improvements in the current implementation emerged but could not be carried out due
to the limited time available in the framework of an MSc Thesis project.

Theoretical and Experimental research

In particular, a lack of literature data and theoretical research was found out for these two topics:

• Tuning of damping coefficients in DEM
As stated in Chapter 2 and 9, models for the damping coefficient are quite primitive in literature and
usually the damping coefficient is tuned by the user to achieve results in accordance with physical mod-
els. Wrong damping coefficients can lead to unstable DEM simulations and the influence of the fluid
in a CFD-DEM system can emphasize these instabilities. Hence, models for the damping should be
developed both experimentally and numerically to improve stability and accuracy of the simulations.

121

122 9. Applications

• Coupling time for CFD-DEM
Due to the fact that, until some years ago, the computational resources were simply not enough to per-
form relevant simulations, not enough models are available to set upper or lower bounds on the cou-
pling times between the CFD and DEM evaluations. In the current implementation, the coupling time
needs to be a multiple of the CFD time step. This leads to the following two extremes: if the coupling
time is too small, excessive computational time is required, whereas if the coupling time is too large,
the two phases do not manage to react to each other and the simulation results are not reliable any-
more. Models that link physical behaviours to numerical quantities (CFD time steps, coupling times,
...) should be developed and researched, to avoid problem-specific approaches.

Test of the current implementation

As stated above, the multisphere approach has been implemented and tested in falling and discharge of
cubes. Unfortunately, the cube is an extremely regular and stable geometrical object and its approximation
with a cluster of spheres leads to intrinsic instabilities due to the roundness of the faces. Therefore, a further
test would be necessary:

• DEM Multisphere for rounded shapes
Data are available in literature for the packing of ellipsoids, corn-shaped particles or pharmaceutical
pills. An approximation with clusters of spheres of these shapes could lead to relevant and interesting
results, since the objects present rounded-shapes and the multisphere approach would not introduce
artificial instabilities in the shapes.

Further implementations

During the project, some ideas on possible improvements were developed, but due to limited time they could
not be implemented. We now give a list of possible improvements of the current implementation.

• pimple algorithm in CFDEM
The current PISO routine does not allow an adjustable CFD time step: it has to be fixed a priori. This is
of course not optimal since there is the possibility that a bigger ∆TC F D could be used for relevant time
intervals. The PIMPLE routine is an efficient alternative and improvement of PISO and it allows ∆TC F D

to be varied in time fulfilling some constraints. Since the pure PIMPLE algorithm is given in the source
code of OpenFOAM, it would be worthy to adapt it to the CFDEM framework. We have to remind that
bounds on ∆TC F D will have to be imposed to achieve meaningful results between the coupling of CFD
and DEM. The constraint will be important since the coupling time is equal to ∆TC F D . Hence, a too
large ∆TC F D would cause a bad coupling between the two phases.

• Possibility of simultaneous resolved-unresolved coupling
The resolved and unresolved coupling approaches are performed through the assignation of particles
to the correct cloud (cfdemCloud for unresolved andcfdemCloudIB for resolved). A simultaneous han-
dling of the two clouds is possible through a combination of the solvers available. The critical phase
will be to assign the particle to the correct cloud (small to unresolved and big to resolved). It should
not cost too much effort to handle this assignation a priori through some conditions on the name of
the output files saved by HADES. The small particles should impose point forces on the equations and
then the immersed boundary routine should be performed, as proposed in [24].

• Possibility to delete clusters in HADES
In the current implementation, due to the presence of a mapping between the ID of the particles in the
clusters and the ghost particles which are used in the integration, particles injected cannot leave the
domain and therefore they cannot be deleted during a simulation. This constraint should be solved
with a more robust mapping of particle IDs.

• Possibility to insert particles of different clusters in fluid-particle simulations
Now, only one kind of cluster of particles can be handled by HADES. Different clusters can be gener-
ated, the motion of different clusters can be performed as rigid bodies, but the contact model is said to
evaluate contacts in an efficient way (neglecting contacts between spheres of the same clusters) only
with one kind of clusters. A generalization of the procedure should be not difficult.

9.2. Falling Rocks on the Sea Bed 123

• Generalization of Hertzian Contact Models in HADES
Currently, Hertzian contact models are available only in two very simple configurations: sphere-sphere
and sphere-infinite plane. A generalization of the contact models will be necessary to consider complex
industrial scenarios, with geometries form STL files. Models for handling vertex, edge and face contacts
should be studied and implemented.

• Implementation of a new integration algorithm
Higher order algorithms may be implemented instead of the Verlet procedure. Symplectic partitioned
Runge Kutta Methods provide an alternative framework for the development of higher order integra-
tors.

In Conclusion, after a detailed literature study on the current models and methods for the coupling between
CFD and DEM for fluid-particle simulations, in this project we propose a strategy for the development of more
performing numerical integration, we allow to perform simulations with a coupling between OpenFOAM and
HADES, exploiting the feature in HADES that allows to have a not-fixed time step and, more importantly, we
allow the coupling between a fluid and non-spherical particles.

The field of numerical simulations is extremely dynamic and it is now living a golden era on innovative meth-
ods and strategies to perform efficient and reliable simulations of industrial and academic problems. In this
framework, we consider this project as a feasibility study, adopting strategies to generalizing the current im-
plementations adding new features, but we have to be aware that a lot is still to be done and deeper researches
will open the gates to scenarios that, even now, may seem unrealistic.

Bibliography

[1] M. Afkhami, A. Hassanpour, M. Fairweather, and D.O. Njobuenwu. Fully coupled les-dem of particle
interaction and agglomeration in a turbulent channel flow. Computers & Chemical Engineering, 78:24 –
38, 2015. ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2015.04.003.

[2] Falah Alobaid and Bernd Epple. Improvement, validation and application of cfd/dem model to dense
gas–solid flow in a fluidized bed. Particuology, 11(5):514 – 526, 2013. ISSN 1674-2001. doi: https:
//doi.org/10.1016/j.partic.2012.05.008. URL http://www.sciencedirect.com/science/article/
pii/S167420011200171X.

[3] Stefan Amberger, Michael Friedl, Christoph Goniva, Stefan Pirker, and Christoph Kloss. Approximation
of objects by spheres for multisphere simulations in dem. In ECCOMAS 2012 - European Congress on
Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, 09 2012.

[4] John D. Jr Anderson. Fundamentals of Aerodynamics. McGraw-Hill, Shoppenhangers Road, Maiden-
head, Berkshire, SL6 2QL, UK, fifth edition edition, 2011. ISBN 978-007-128908-5.

[5] A. H. Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applica-
tions, 1(1):11–23, 1981. ISSN 0272-1716. doi: 10.1109/MCG.1981.1673799.

[6] Bruno Blais, Manon Lassaigne, Christoph Goniva, Louis Fradette, and François Bertrand. A semi-
implicit immersed boundary method and its application to viscous mixing. Computers & Chemical Engi-
neering, 85:136 – 146, 2016. ISSN 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2015.10.019.

[7] M. Breuer, J. Bernsdorf, T. Zeiser, and F. Durst. Accurate computations of the laminar flow past
a square cylinder based on two different methods: lattice-boltzmann and finite-volume. Interna-
tional Journal of Heat and Fluid Flow, 21(2):186 – 196, 2000. ISSN 0142-727X. doi: https://doi.org/
10.1016/S0142-727X(99)00081-8. URL http://www.sciencedirect.com/science/article/pii/
S0142727X99000818.

[8] Alice Jordam Caserta, Hélio A. Navarro, and Luben Cabezas-Gómez. Damping coefficient and contact
duration relations for continuous nonlinear spring-dashpot contact model in dem. Powder Technology,
302:462 – 479, 2016. ISSN 0032-5910. doi: https://doi.org/10.1016/j.powtec.2016.07.032. URL http:
//www.sciencedirect.com/science/article/pii/S0032591016304260.

[9] DCS Computing. Cfdem®coupling documentation. https://www.cfdem.com/media/CFDEM/docu/
CFDEMcoupling_Manual.html, 2018. Accessed: 24.10.2018.

[10] DCS Computing. Liggghts(r)-public documentation, version 3.x. https://www.cfdem.com/media/
DEM/docu/Manual.html, 2018. Accessed: 24.10.2018.

[11] C.T Crowe, J.D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. Multiphase Flows with Droplets and Particles.
CRC Press, second edition edition, 2011.

[12] Kang Fang and Mengzhao Qin. Symplectic Geometric Algorithms for Hamiltonian Systems. Springer-
Verlag, Berlin, Heidelberg, 2010. ISBN 978-3-642-01777-3.

[13] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer, first edition edition,
2002. doi: 10.1007/978-3-642-56026-2.

[14] The OpenFOAM Foundation. Openfoam user guide, version 5.0. https://cfd.direct/openfoam/
user-guide-v5/, 2017. Accessed: 24.10.2018.

125

http://www.sciencedirect.com/science/article/pii/S167420011200171X
http://www.sciencedirect.com/science/article/pii/S167420011200171X
http://www.sciencedirect.com/science/article/pii/S0142727X99000818
http://www.sciencedirect.com/science/article/pii/S0142727X99000818
http://www.sciencedirect.com/science/article/pii/S0032591016304260
http://www.sciencedirect.com/science/article/pii/S0032591016304260
https://www.cfdem.com/media/CFDEM/docu/CFDEMcoupling_Manual.html
https://www.cfdem.com/media/CFDEM/docu/CFDEMcoupling_Manual.html
https://www.cfdem.com/media/DEM/docu/Manual.html
https://www.cfdem.com/media/DEM/docu/Manual.html
https://cfd.direct/openfoam/user-guide-v5/
https://cfd.direct/openfoam/user-guide-v5/

126 Bibliography

[15] Feras Y. Fraige, Paul A. Langston, and George Z. Chen. Distinct element modelling of cubic par-
ticle packing and flow. Powder Technology, 186(3):224 – 240, 2008. ISSN 0032-5910. doi: https:
//doi.org/10.1016/j.powtec.2007.12.009. URL http://www.sciencedirect.com/science/article/
pii/S0032591007006407.

[16] A. Goniva, C. Kloss, N.G. Deen, J.A.M. Kuipers, and S. Pirker. Influence of rolling friction on single spout
fluidized bed simulation. Particuology, 10(5):582–591, 2012. ISSN 1674-2001. doi: 10.1016/j.partic.2012.
05.002.

[17] C. Goniva, B. Blais, S. Radl, and C. Kloss. Open source cfd-dem modeling for particle-based processes. In
Proceedings of Eleventh International Conference on CFD in the Minerals and Process Industries, 12.2015.

[18] A. Hager. CFD-DEM on Multiple Scales - An Extensive Investigation of Particle-Fluid Interactions. PhD
thesis, Johannes Kepler Universität Linz, 2011.

[19] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II - Stiff and Differential-
Algebraic Problems. Springer-Verlag, Berlin, Heidelberg, 1996. ISBN 978-3-642-05220-0. doi: 10.1007/
978-3-642-05221-7.

[20] Ernst Hairer, Nørsett Syvert P., and Gerhard Wanner. Solving Ordinary Differential Equations I - Non-
stiff Problems. Springer-Verlag, Berlin, Heidelberg, 1993. ISBN 978-3-642-08158-3. doi: 10.1007/
978-3-540-78862-1.

[21] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration illustrated by the
störmer–verlet method. Acta Numerica, 12:399–450, 2003. doi: 10.1017/S0962492902000144.

[22] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, Berlin, Heidelberg, 2006.
ISBN 978-3-540-30663-4. doi: 10.1007/3-540-30666-8.

[23] W. R. Hamilton. On quaternions; or on a new system of imaginaries in algebra. The London, Edinburgh
and Dublin Philosophical Magazine and Journal of Science (3rd Series), xxv-xxxvi, 1844-1850.

[24] Yi. He, Andrew E. Bayly, and Ali Hassanpour. Coupling cfd-dem with dynamic meshing: A new approach
for fluid-structure interaction in particle-fluid flows. Powder Technology, 325:620 – 631, 2018. ISSN
0032-5910. doi: https://doi.org/10.1016/j.powtec.2017.11.045.

[25] C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker. Model, algorithm and validation for opensource
dem and cfd-dem. Progress in Computational Fluid Dynamics, 12(2-3):140–152, 2012. doi: https://doi.
org/10.1504/PCFD.2012.047457.

[26] H. Kruggel-Emden, E. Simsek, S. Rickelt, S. Wirtz, and V. Scherer. Review and extension of normal force
models for the discrete element method. Powder Technology, 171(3):157 – 173, 2007. ISSN 0032-5910.
doi: https://doi.org/10.1016/j.powtec.2006.10.004. URL http://www.sciencedirect.com/science/
article/pii/S0032591006004360.

[27] H. Kruggel-Emden, S. Rickelt, S. Wirtz, and V. Scherer. A study on the validity of the multi-sphere
discrete element method. Powder Technology, 188(2):153 – 165, 2008. ISSN 0032-5910. doi: https:
//doi.org/10.1016/j.powtec.2008.04.037. URL http://www.sciencedirect.com/science/article/
pii/S0032591008002143.

[28] P. K. Kundu, I. M. Cohen, and D. R. Dowling. Fluid Mechanics. Academic Press, sixth edition edition,
2015.

[29] T.Y. Lam. Hamilton’s quaternions. volume 3 of Handbook of Algebra, pages 429 – 454. North-Holland,
2003. doi: https://doi.org/10.1016/S1570-7954(03)80068-2. URL http://www.sciencedirect.com/
science/article/pii/S1570795403800682.

[30] Guoping Li and Joseph A. C. Humphrey. Numerical modelling of confined flow past a cylinder of square
cross-section at various orientations. International Journal for Numerical Methods in Fluids, 20(11):
1215–1236, 1995. doi: 10.1002/fld.1650201103. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/fld.1650201103.

http://www.sciencedirect.com/science/article/pii/S0032591007006407
http://www.sciencedirect.com/science/article/pii/S0032591007006407
http://www.sciencedirect.com/science/article/pii/S0032591006004360
http://www.sciencedirect.com/science/article/pii/S0032591006004360
http://www.sciencedirect.com/science/article/pii/S0032591008002143
http://www.sciencedirect.com/science/article/pii/S0032591008002143
http://www.sciencedirect.com/science/article/pii/S1570795403800682
http://www.sciencedirect.com/science/article/pii/S1570795403800682
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650201103
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650201103

Bibliography 127

[31] Wan-Qing Li, Tang Ying, Wan Jian, and Dong-Jin Yu. Comparison research on the neighbor list algo-
rithms: Verlet table and linked-cell. Computer Physics Communications, 181(10):1682 – 1686, 2010. ISSN
0010-4655. doi: https://doi.org/10.1016/j.cpc.2010.06.005.

[32] G. Lu, J.R. Third, and C.R. Müller. Discrete element models for non-spherical particle systems: From
theoretical developments to applications. Chemical Engineering Science, 127:425 – 465, 2015. ISSN
0009-2509. doi: https://doi.org/10.1016/j.ces.2014.11.050. URL http://www.sciencedirect.com/
science/article/pii/S0009250914007040.

[33] J. R. Miller. Analysis of quadric-surface-based solid models. IEEE Computer Graphics and Applications,
8(1):28–42, 1988. ISSN 0272-1716. doi: 10.1109/38.488.

[34] Zemin Ning and Mojtaba Ghadiri. Distinct element analysis of attrition of granular solids under shear
deformation. Chemical Engineering Science, 61(18):5991 – 6001, 2006. ISSN 0009-2509. doi: https:
//doi.org/10.1016/j.ces.2006.03.056.

[35] Ronald L. Panton. Incompressible Flow. Wiley, forth edition edition, 2013. ISBN 978-1-118-41573-3.

[36] Alexander Podlozhnyuk, Stefan Pirker, and Christoph Kloss. Efficient implementation of superquadric
particles in discrete element method within an open-source framework. Computational Particle Me-
chanics, 4(1):101–118, 2017. ISSN 2196-4386. doi: 10.1007/s40571-016-0131-6. URL https://doi.
org/10.1007/s40571-016-0131-6.

[37] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C
(2Nd Ed.): The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 1992. ISBN
0-521-43108-5.

[38] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Springer-Verlag, Berlin,
Heidelberg, 2007. ISBN 978-3-540-34658-6. doi: 10.1007/b98885.

[39] F. Radjai and F. Dubois. Discrete-element Modeling of Granular Materials. Wiley, first edition edition,
2011.

[40] Soltanbeigi, Behzad, Podlozhnyuk, Alexander, Ooi, Jin Y., Kloss, Christoph, and Papanicolopulos,
Stefanos-Aldo. Comparison of multi-sphere and superquadric particle representation for modelling
shearing and flow characteristics of granular assemblies. EPJ Web Conf., 140:06015, 2017. doi: 10.1051/
epjconf/201714006015. URL https://doi.org/10.1051/epjconf/201714006015.

[41] Rui Sun and Heng Xiao. Diffusion-based coarse graining in hybrid continuum-discrete solvers: Appli-
cations in cfd-dem. International Journal of Multiphase Flow, 72:233 – 247, 2015. ISSN 0301-9322. doi:
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.014.

[42] Rui Sun and Heng Xiao. Diffusion-based coarse graining in hybrid continuum-discrete solvers: Theo-
retical formulation and a priori tests. International Journal of Multiphase Flow, 77:142 – 157, 2015. ISSN
0301-9322. doi: https://doi.org/10.1016/j.ijmultiphaseflow.2015.08.014.

[43] Rui Sun and Heng Xiao. Sedifoam: A general-purpose, open-source cfd-dem solver for particle-laden
flow with emphasis on sediment transport. Computers & Geosciences, 89:207 – 219, 2016. ISSN 0098-
3004. doi: https://doi.org/10.1016/j.cageo.2016.01.011.

[44] Xiaomei Wang, Jianqun Yu, Fengyan Lv, Yang Wang, and Hong Fu. A multi-sphere based mod-
elling method for maize grain assemblies. Advanced Powder Technology, 28(2):584 – 595, 2017. ISSN
0921-8831. doi: https://doi.org/10.1016/j.apt.2016.10.027. URL http://www.sciencedirect.com/
science/article/pii/S092188311630348X.

[45] P. Wesseling. Principles of Computational Fluid Dynamics. Springer, first edition edition, 2001. doi:
10.1007/978-3-642-05146-3.

[46] H.N. Yow, M.J. Pitt, and A.D Salman. Drag correlations for particles of regular shape. Advanced Powder
Technology, 16(4):363 – 372, 2005. ISSN 0921-8831. doi: https://doi.org/10.1163/1568552054194221.
URL http://www.sciencedirect.com/science/article/pii/S0921883108608110.

http://www.sciencedirect.com/science/article/pii/S0009250914007040
http://www.sciencedirect.com/science/article/pii/S0009250914007040
https://doi.org/10.1007/s40571-016-0131-6
https://doi.org/10.1007/s40571-016-0131-6
https://doi.org/10.1051/epjconf/201714006015
http://www.sciencedirect.com/science/article/pii/S092188311630348X
http://www.sciencedirect.com/science/article/pii/S092188311630348X
http://www.sciencedirect.com/science/article/pii/S0921883108608110

128 Bibliography

[47] Wenqi Zhong, Aibing Yu, Xuejiao Liu, Zhenbo Tong, and Hao Zhang. Dem/cfd-dem modelling of non-
spherical particulate systems: Theoretical developments and applications. Powder Technology, 302:108
– 152, 2016. ISSN 0032-5910. doi: https://doi.org/10.1016/j.powtec.2016.07.010. URL http://www.
sciencedirect.com/science/article/pii/S0032591016304065.

[48] Z. Y. ZHOU, S. B. KUANG, K. W. CHU, and A. B. YU. Discrete particle simulation of particle–fluid flow:
model formulations and their applicability. Journal of Fluid Mechanics, 661:482–510, 2010. doi: 10.1017/
S002211201000306X.

[49] Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu. Discrete modelling of the packing of el-
lipsoidal particles. AIP Conference Proceedings, 1542(1):357–360, 2013. doi: 10.1063/1.4811941. URL
https://aip.scitation.org/doi/abs/10.1063/1.4811941.

http://www.sciencedirect.com/science/article/pii/S0032591016304065
http://www.sciencedirect.com/science/article/pii/S0032591016304065
https://aip.scitation.org/doi/abs/10.1063/1.4811941

	Introduction
	I Theoretical Foundation
	Incompressible Fluid Dynamics
	Derivation of Incompressible Navier-Stokes equations
	OpenFOAM

	Particle/Particle interactions
	Discrete Element Method
	HADES
	LIGGGHTS
	HADES vs LIGGGHTS

	Coupling
	Modeling of Fluid/Particle Forces
	Drag forces
	Lift forces
	Total interaction

	General issues of Coupling
	Time step choice
	Contact Detection Algorithm

	Resolved CFD-DEM
	Unresolved CFD-DEM
	Resolved/Unresolved Coupling
	Current implementations

	Research Questions

	II Developments
	Numerical Methods for Symplectic Hamiltonian Systems
	Numerical Methods
	Classical Numerical Methods
	Runge-Kutta Methods
	Partitioned Runge Kutta methods

	Symplecticity of Hamiltonian Systems
	Hamiltonian Systems
	Simplecticity

	Symplectic Numerical Methods
	Convergence of Methods
	Final Remarks

	OpenFOAM-HADES Files Coupling
	Description of CFDEM framework
	New contributions
	Compiling
	Development of CFDEM structure
	Improvements in HADES
	Infrastructures implemented
	Run a test: example

	Improvements on OpenFOAM-HADES Coupling
	HADES not restarted
	Structure of HADES: Jem and Jive
	Jive Modules and Models
	Implementation

	CFD Force from second CFD time step
	CFD Force frozen inside a CFD loop
	Not fixed DEM time step
	Allow CFD parallelization

	Non sphericity
	Description of Possible Approaches
	Ellipsoids or Superellipsoids
	Multisphere
	Comparison between the methods and their applicability to DEM
	Current implementations

	Development of Multisphere
	Algorithm for Multisphere Approximation
	Clusters of particles in HADES

	III Tests and Applications
	Test of Implementations
	Discharging of Cubes
	Flow around a square cylinder

	Applications
	Domino in Water
	Falling Rocks on the Sea Bed

	Conclusions and Future Directions
	Bibliography

