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Abstract Binary codes have often been deployed to facilitate large-scale retrieval
tasks, but not that often for image compression. In this paper, we propose a unified
framework, BGAN+, that restricts the input noise variable of generative adversarial
networks (GAN) to be binary and conditioned on the features of each input image,
and simultaneously learns two binary representations per image: one for image re-
trieval and the other serving as image compression. Compared to related methods
that attempt to learn a single binary code serving both purposes, we demonstrate that
choosing for two codes leads to more effective representations due to less conces-
sions needed when balancing the requirements. The added value of using a unified
framework compared to two separate frameworks lies in the synergy in data represen-
tation that is beneficial for both learning processes. When devising this framework,
we also address another challenge in learning binary codes, namely that of learning
supervision. While the most striking successes in image retrieval using binary codes
have mostly involved discriminative models requiring labels, the proposed BGAN+
framework learns the binary codes in an unsupervised fashion, yet more effectively
than the state-of-the-art supervised approaches. The proposed BGAN+ framework is
evaluated on three benchmark datasets for image retrieval and two datasets on image
compression. The experimental results show that BGAN+ outperforms the existing
retrieval methods with significant margins and achieves promising performance for
image compression, especially for low bit rates.
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1 Introduction

Image retrieval and compression have both been extensively studied, however mostly
as two disjointed research topics due to their distinct key techniques and applications.
Image retrieval makes use of the representation of visual content to identify relevant
images, and image compression searches for ways to achieve efficient image repre-
sentation to lower the cost of storage and transmission. In this paper we investigate
the possibility to address both challenges using a unified framework. This possibility
offers itself in the form of binary codes, or hashes.

In the context of image retrieval, binary codes have been deployed for approxi-
mate nearest-neighbor (ANN) search, which has proven itself as a tractable alterna-
tive for the nearest-neighbor search (NN) on large image collections. ANN search
is more practical and can achieve orders of magnitude in speed-up compared to ex-
act NN search [26/[72]. Recently, learning-based hashing methods [721251381/62./58]]
have become the mainstream for scalable image retrieval due to their compact binary
representation and efficient Hamming distance calculation. Such approaches embed
data points to compact binary codes by hash functions, which can be generally ex-
pressed as:

b =h(x) € {0,1}* €]

where x € RP*! h(.) are the hash functions, and b is a binary vector with code length
L.

According to whether labels are leveraged when learning a hashing function, we
roughly divide the hashing methods into two categories, supervised and unsuper-
vised. An unsupervised method is aimed at preserving similarity properties of the
original data points in the binary codes. Typical techniques preserving the similar-
ity include pairwise similarity [74,46], and multi-wise similarity [S1l[71] or implicit
preservation, which means that we do not need to calculate the explicit similarity
between the inputs and the compact codes [23127]. Unsupervised hashing methods
show many practical problems, such as how to construct the pairwise data points and
how to measure and model different aspects of similarity in training data. Aiming at
resolving the problems of unsupervised methods, supervised hashing methods [38,
14./63]] have been well studied in recent years. While they usually significantly out-
perform unsupervised methods, the information that can be used for supervision is
also typically scarce.

More recently, deep learning has been introduced in the development of hash-
ing algorithms [76/40l11,20./68], leading to a new generation of deep hashing al-
gorithms. Due to powerful feature representation, remarkable image retrieval perfor-
mance has been reported using the hashes obtained in this way. However, a number
of open issues have still remained open. The most successful deep hashing methods
are usually supervised and require labels. The labels are, however, scarce and subjec-
tive. Unsupervised approaches, on the other hand, cannot take full advantages of the
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current deep learning models, and thus yield unsatisfactory performance [40]. An-
other issue is a non-smooth sign function used to generate the binary codes, which,
despite several ideas being proposed to tackle it [36./6./11], still makes the standard
back-propagation infeasible.

The research field of image compression has already developed over many decades.
The key challenge here is to find a pair of well-matched encoder and decoder. The
encoder is used to transform the original large discrete data into low dimensional
codes with minimal entropy [S7], while the decoder acts as a translator which de-
codes the compressed codes into new data that should be identical as the original.
In fact, the compression system is heavily associated with the probabilistic structure
of the original data so the solution is similar to modeling a probabilistic source. In
practice, since the compression codes always have finite entropy, we can not avoid
the constructed errors. In this context, lossy compression problem has been studied
for many years and generally, we must trade off two costs: the loss from the quanti-
zation (distortion) and the entropy of the discretized representation (rate). To be spe-
cific, low compression rate results in high entropy loss and high distortion directly
leads to low-quality constructed data. However, joint learning of rate and distortion
is difficult. [12]] has demonstrated that it is intractable to optimize vector quantization
without others constraints. [75] utilized linear projection to transform the original
data into a continuous-valued image representation, and then independently quan-
tized its elements and finally encoded the discrete representation in a lossless fashion.
The widespread compression technique, JPEG [67] deploys cosine transform on each
pixel block, while another popular technique, JPEG 2000 [53]], applies a multi-scale
orthogonal wavelet decomposition of the original data. Recently, several attempts
have been made to deploy deep learning for compression [3], [56], [64], [65].

While the insights gained by the compression methods based on deep learning
can be deployed to develop a compression method based on binary codes, no such
method has been proposed yet. We believe developing such a method would be use-
ful, in view of a high effectiveness of binary codes for retrieval. While, ideally, one
could try to find a binary code that is usable for both tasks, our preliminary study
has shown that optimizing a hash-function learning from both perspectives requires
the learning algorithms to make too many concessions towards one of the objectives,
making either retrieval or compression less effective than the common state-of-the-
art. However, we hypothesize that we can come far in unifying the two binary-code
learning processes. In this way, we can produce two different codes that are indi-
vidually optimized for their different purposes, but in a way that the two learning
procedures optimally benefit from each other in terms of learning efficiency and ef-
fectiveness.

In view of the analysis above, we propose in this paper a binary generative adver-
sarial network (BGAN+) to convert images to binary codes for both image retrieval
and compression in a multi-task learning fashion [§]]. To the best of our knowledge,
this is the first attempt to generate binary codes for compression. In addition, we take
the challenge of learning these codes in an unsupervised way in order not to need to
rely on typically scarce training data. Finally, we also propose several solutions to
address the gradient vanishing problem caused by sign function in the hash-learning
process. We validate the binary codes generated by our proposed BGAN+ framework
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using extensive experiments addressing image retrieval and compression. The results
show that our BGAN+ outperforms the existing retrieval methods with significant
margins and achieves competitive performance for image compression, especially
for low bit rates.

The remainder of this paper is organized as follows. We first review the related
work in Sec.[2] Then, we provide the details of our proposed model in Sec. [3] followed
by the experimental results in Sec.[5] Sec.[6]concludes the paper.

2 Related Work

In this section, we briefly review the related work, and then specifically the work
on hashing for image retrieval, image generation and image compression. Regard-
ing image retrieval using binary codes, supervised methods generally use informa-
tion to learn hashing codes in three different formats: point-wise, pair-wise and rank
orders. Representative point-wise hashing methods include CCA-ITQ [16], super-
vised discrete hashing (SDH) [59] and deep hashing [41]]. Pair-wise hashing can best
be illustrated by the methods, such as SPLH [69]], which utilizes sequential projec-
tion learning strategy to generate efficient hashing codes, and KSH [44], which uses
kernel function to learn hashing function and which outperforms other supervised
methods, the fast supervised hashing [38] and two-step hashing (TSH) [39]]. At the
same time, many other methods based on deep learning have been developed, like
the convolutional neural network hashing [[77]], in which it is proposed to automat-
ically learn convolutional image representation instead of the previous work using
hand draft features as input. Furthermore, DPSH [36] directly combines two inde-
pendent tasks, learning image representation and hashing function, into a deep end-
to-end network. The representative rank-label methods include column generation
hashing [37], ranking-based supervised hashing [70], discretely semantic rank or-
ders (DSeRH) [43]] and ranking preserving hashing [[79]. In our work, we use pair-
wise similarity as the hashing-learning strategy, but unlike previous work, we do not
use the ground truth labels to construct pair-wise labels. Instead, we adopt two ways,
via hand-crafted feature and deep feature, to create the similarity matrix. In this sense,
our proposed method can be treated as the unsupervised method.

Regarding the research on image generation, generative adversarial networks (GAN)
[L7] has played a critical role recently. GAN usually consists of two networks, a gen-
erator and a discriminator network, which are involved in a min-max optimization
game. There, the discriminator acting as an adversary to the generator is used to
judge whether the generated image from the generator is real or fake, that is, whether
it matches the criteria imposed by the input image or not. This is why the goal of the
generator is to generate images that resemble the input image in the best possible way
so it can "fool’ the discriminator. Theoretically, when the discriminator cannot distin-
guish the source of the image (original or from the generator), we can consider the
overall GAN optimization as converged. Recently, a vast number of image generation
methods based on GAN have been explored [33], [34].

Lossy image compression has been widely used for data storage and transmis-
sion. JPEG [67]] and JPEG 2000 [53]] are two commonly used methods of lossy com-
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pression for digital images. The degree of compression can be adjusted, allowing a
selectable tradeoff between storage size and image quality. JPEG typically achieves
10:1 compression with little perceptible loss in image quality. After that, more sophis-
ticated compression methods have been proposed, e.g., WebP [[18], JPEG 420, Better
Portable Graphics (BPG) [4]. Recently, with the wide application of deep learning,
there are numerous novel compression methods based on CNN or Recurrent Neural
Network (RNN) [6643513]. In [66], Toderici et al. proposed a deep RNN network,
which can provide variable compression rates during deployment, and introduced a
new hybrid of GRU and ResNet. In [35]], Li et al. explored a content-aware compres-
sion method based on the convolutional network, which can generate an importance
map of the image content and optimize the compression quality. It can also retain
as much detail as possible and in the low bit rate their method outperforms JPEG
and JPEG 2000. [2] proposed multi-stage progressive encoders, whose structure re-
sembles a bottleneck, like VAE [30]. [3]] proposed an image compression framework,
consisting of a nonlinear encoding transformation, a uniform quantizer, and a non-
linear decoding transformation, which only contains three convolutional layers. With
the great performance achieved in [16], the residual block has been proved to be a re-
markably efficient way in the aspect of reducing information loss due to deep layers
network [2]. Firstly, the residual block allows the deeper layers to know how to utilize
information which could not be generated by the previous stage. Secondly, these con-
nections reduce the distance of the path that information travels, which brings better
joint optimization. In [1]], Agustsson et al. proposed to learn compressible represen-
tations using deep architectures, which can be trained end-to-end. In [64] Theis et al.
utilized the derivative of a smooth approximation to replace the derivative in the back-
ward pass of back-propagation and optimized the autoencoder network. Outstanding
performance was reported.

3 Proposed Framework

Given N images, I = {I,-}fi | without labels, our goal is to learn their compact binary
codes B and B¢ such that: (a) the original image can be reconstructed from B¢, (b)
similar images can be retrieved using B, and (c) both B and B can be computed
directly without relaxation.

We illustrate our proposed BGAN+ framework by the scheme in Fig. [} The
framework consists of two components: 1) a binary generative adversarial compres-
sion network (BGANc), and 2) a binary generative adversarial retrieval network
(BGANT). Both parts learn their binary codes in an unsupervised fashion. In the
BGANC part, B¢ is learned through the interplay between a generator and a dis-
criminator. Specifically, the generator takes an image as input and represents it by
a binary code. Then, this code is decoded to reconstruct the image, which enters the
verification process in the discriminator to be compared with the original image. The
BGANTr part learns binary code B by also taking into account the visual neighbor-
hood structure of the image in order to make sure that the proper notion of image
similarity propagates into the similarity of the learned binary codes for retrieval. The
two learning processes are coupled by the output of the shared encoder. In this way,
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Fig. 1 An overview of our proposed BGAN+ framework for simultaneously learning binary codes for
image retrieval and compression. Our framework contains two major networks, i.e., image compression
network and image retrieval network. For the image compression network (BGANCc), there are four key
components: (1) a shared encoder, for learning low-level image representations, (2) a constant neuron layer,
for learning the binary codes for image compression, (3) a decoder, to reconstruct the original images, and
(4) a discriminator, to distinguish between real and reconstructed images. For the image retrieval network
(BGANT), there are three key components: (1) a shared encoder, (2) encoder2, for learning high-level
image representations, and (3) a hashing layer, for learning the binary codes for image retrieval. As a
pre-processing step, we construct the neighborhood structure of the training images.

the criteria used to learn binary code in one part of the framework help in learning the
binary code in the other part. Although we learn two separate codes for two different
purpose, we hypothesize that this synergetic effect is beneficial for both learning pro-
cesses and justifies their integration into a single framework, as opposed to creating
two binary codes using separate frameworks. In addition, through shared modules,
both codes are learned in a more efficient manner than if they are learned indepen-
dently. Related to the latter, for the learning of the parameters, we train the entire
framework at once by a joint training strategy. In the remainder of this section, we
provide detailed information about the our proposed BGAN+ framework.

3.1 Binary Generative Adversarial Compression Network (BGANCc)

The binary codes B¢ learned from I = {Ii}fy: 1 by BGANC have the task to represent
an image such that it can be reconstructed as well as possible back to its original state.
We model this goal by the following expression:

ﬁ(l)zrr}inl\lff(l)ll 2

where f denotes the transformation function from the original image I; into the recon-
structed image IX. The transformation function consists of the elements of the shared
encoder, the proposed constant neuron and the decoder. We explain these components
in more detail in subsections 3.1.1, 3.1.2 and 3.1.3, respectively. Then, in subsection
3.1.4. we come back with an elaborate version of the above expression, taking into
account the realizations of the three components.
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Fig. 2 Configuration of the decoder. Bf € R16*16%C is the input code, where C controls the bit-rate, and
ILR € RW>H>3 is the output image. The input image I; is firstly compressed to Bf{. The decoder reconstructs
an image IlR from B using several Deconv and Conv layers, and ensures that the final output image If has
the same size as the original image I;. Skip connection works as the shortcut in residual network.

3.1.1 Shared Encoder

VGG network [60] utilizing an architecture with 3 x 3 convolution filters is able to
achieve good performance for large scale image classification with 19 weight layers.
In this paper, we build our shared encoder with the first five convolution layers of
VGG, with the details illustrated in Tab. Following the architecture of [34,54],
we avoid two max-pooling operations throughout the shared encoder to allow our
network to learn its own spatial downsampling. Specifically, we set the stride of the
first four convolutional layers as 2, and thus each convolutional layer has the size (i.e.,
width and height) of the input feature map. The stride of the last convolutional layer
is set as 1, which can be considered as a fully convolutional layer. Given an image I;
with the size of W x H (i.e., W as width and H as height), we can obtain C feature
map with the size of % X ]H—6 x 3 through our shared encoder, where C denotes the
number of feature map channels.

3.1.2 Constant Neuron

To compress an image into a hash code and then reconstruct the image from the
generated hash code, the issue related to binary constraints becomes relevant. The
problem of binary constraints has been addressed by relaxing the constraints from
{0,1} [74] or by adopting alternating optimization strategies [16.[15]. However, they
either cause a large optimality gap between non-relaxed and relaxed objectives or
substantially weaken the model flexibility, respectively. As a result, in [9], Dai et
al. proposed to define a function h to re-parameterize Bernoulli distribution over the
binary variables to avoid directly working with binary variables. h is referred to as

stochastic neuron: 5
_J1 ifzz
h(Z)_{o ifz<é& ®)

where & ~ 1 (0,1). Inspired by the stochastic neuron, in this paper, we propose a
constant neuron, which is defined as:

_J1 ifz>05
h(Z)_{o if 2<0.5 @

Since h is not smooth, it is still difficult to apply stochastic gradient descent to cal-
culate the gradient of the parameters. To solve this problem, we firstly define W,, b,
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as the parameters of our shared encoder. As a result, the intermediate compressed
hash codes can be formulated as:

BY — h(E, (L W,,b,,5)) 5)

where O is the active function of the convolutional layers and E, is our encoding
function. Then, we set the active function of the last convolution layer of shared
encoder as sigmoid and the other four layers are set as ReLu. Finally, we define our
constant neuron as:

h(L: ) — sign(E (L W. ,ge,a) —0.5)+1 ©

Unfortunately, the sign function is non-smooth and gradient of sign is zero. Fol-
lowing [19]], we use distributional derivative to estimate the stochastic gradient by:

Voh(I,®) = V/(I,O)E, (I, ®,5) o (1 — E,(x; @, 8))IT (7)

where e denotes a point-wise product, and where @ = {W,,b,} and V,(I;0) is the
gradient from our objective function. More specifically, we utilize chain rules to cal-
culate it. To conduct optimization, we leverage standard stochastic gradient descent
algorithm to optimize B¢ by following [48129].

3.1.3 Decoder

The decoder of BGANC takes the output of the constant neuron as input to reconstruct
the original image. Therefore, the input for the decoder is B{ and the output is an im-
age IX. Transferring such low dimensional features B¢ to a high dimensional feature is
a challenging task. In previous work, most auto-encoding systems [33L30] use a fully
connected layer as the first layer of a decoder for transforming a low dimensional
feature into a high dimensional feature by a non-linear projection, but this substan-
tially reduces the model flexibility: the input size must be fixed. However, cropping
or wrapping an image into a fixed size can lead to a loss of image information [21]].
More importantly, in reality, we need to provide an efficient approach to compress
images with an arbitrary size. Previous work [16l1341[2] demonstrated that residual
blocks have a significant effect on reducing the information loss as the network deep-
ening. Inspired by this observation, we design our decoder network by integrating
deconvolutional layers [52], residual blocks with fully convolutional layers, for effi-
ciently reconstructing images from binary codes. Specifically, the decoder consists of
four deconvolutional layers (i.e., setting as 3 x 3 x 512, 3 x 3 x 256, 3 x 3 x 128 and
3 x 3 x 64) and three residual blocks, each with two convolutional layers, followed
by a convolutional layer (3 x 3 x 64 and two fully convolutional layers (1 x 1 x 64,
and 1 x 1 x 3). The structure of our proposed decoder is shown in Fig.



Unified Binary Generative Adversarial Network for Image Retrieval and Compression 9

3.1.4 BGANCc Optimization Objective

Based on the realizations of the three BGANc components as explained above, we
can now define the expression Eq.(2) more concretely. What we minimize in Eq.(2) is
actually the loss of reconstructing the input image. The definition of the correspond-
ing loss function as the optimization objective is critical for the performance of our
generator network. In this subsection, we define two loss functions that contribute to
the optimization objective of the BGANc network.

Content Loss The first component is the content loss, which directly measures the
deviation of the reconstructed image from the original. While both /; loss and /; loss
are applied for image generation task and previous work [34] has proven that /| loss
performs better than /, loss, thus we define our content loss function as below:

N
tp, =min}" [T~ De(B{: Q)| ®)
i=1

where D, denotes the decoding operation, 2 denotes the parameters of decoder and
B¢ is seen as the compressed hashing codes generated by our encoder. Furthermore,
we can rewrite Eq. [8]as the following pixel-wise /; loss:

N W H

oY — min L R
gDe(I’Q)—HSHWH;I;“;HLWJ Ii,p,qH ©)

Obviously, Eq.[9)is continuous and can be directly optimized by the stochastic gradi-
ent descent algorithm.

Adversarial Loss In order to make the optimization of BGANc more robust, we also
look from another perspective at the quality of the reconstructed image. Following
the approach by Goodfellow et al. [[17], we define a “Discriminator” network D in
such a way that it is optimized using criteria that are conflicting to those of G. G
is the “Generator” network (i.e., the decoder D, shown in Fig. [T). In this way, D
can act as adversary to G in the overall min-max optimization process. The goal of
this optimization is to improve G such to be able to generate the images as well as
possible. The process being adversarial to image generation is the process of trying to
distinguish between the original and reconstructed images. If G manages to generate
the images so well to “fool” D, then it “wins” the min-max game and the overall GAN
optimization has converged. In view of this, given a model of the image classifier D
assessing the original (I) and reconstructed I image, we can formally define the
min-max game resulting in the optimal system parameters as follows:

(4(;; ,2,0) = minmaxlog(D(I;)) +log(1 — D(I})) (10)

where @, Q are, respectively, the parameters of the encoder and decoder network,
and O is the vector of the parameters of the discriminator.

Here we follow the architecture design summarized by Radford et al. [55)]. We
use ReLU activation and avoid max-pooling throughout the network. It contains 4
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Table 1 The architecture for feature extraction

Layer Size of Filter  Filters Others

convl_] 3x3 64 Stride=1,padding=1,relu
convl_2 3x3 64 Stride=2,padding=1,relu
conv2_1 3x3 128 Stride=1,padding=1,relu
conv2_2 3x3 128 Stride=2,padding=1,relu
conv3_1 3x3 256 Stride=1,padding=1,relu
conv3_2 3x3 256 Stride=1,padding=1,relu
conv3.3 3x3 256 Stride=1,padding=1,relu
Max pooling 2x2 2

conv4_1 3x3 512 Stride=1,padding=1,relu
conv4_2 3x3 512 Stride=1,padding=1,relu
conv4_3 3x3 512 Stride=1,padding=1,relu
Max pooling 2x2 2

conv5_1 3x3 512 Stride=1,padding=1,relu
conv5_2 3x3 512 Stride=1,padding=1,relu
conv5_3 3x3 512 Stride=1,padding=1,relu
Max pooling 2x2 2

FCo6 None 4096 relu

FC7 None 4096 relu

convolutional layers with an increasing number of 5 x 5 filter kernels (32, 128, 256,
and 512). Strided convolutions are used to reduce the image resolution and each time
the number of features is doubled. The resulting 512 feature maps are followed by a
dense layer with the size of 1024 and a final sigmoid activation function to obtain a
probability for sample classification.

We can formulate the objective function of compression network as the weighted
sum of the pixel-wise /| loss and the adversarial loss as:

gcié[)e#»)tgf\ (11)

where A is the weighted factor to balance the impact of pixel-wise loss and adversarial
loss.

3.2 Binary Generative Adversarial Retrieval Network (BGANTr)

The task of our retrieval network BGANT is to generate a hash code B; from an image
I;. The structure of BGANTr consists of two parts: shared encoder, the encoder2 and
the hashing layer (see Fig. [I).

3.2.1 Encoder2

Specifically, our BGANr is based on the VGG network and the specific configura-
tion is defined in Tab. Theoretically, we can directly use B¢ to retrieve images.
However, it is unlikely to acquire excellent results due to the reason that compression
network only encodes low-level information without high-level semantic informa-
tion. To conduct an efficient search, hash code B must encode both low-level and
high-level semantic information. As a result, we design our BGANT by sharing the
encoder of G to extract better low-level information.
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Algorithm 1 Construction of neighborhood structure

N
=1

Input: Images X = {x;}
expansion;
Output: Neighborhood matrix S = {s;;};
: First ranking: Use cosine similarity to generate the index of K1-NN of each image Ly, Ly, ...,Ly;
: Neighborhood expansion:
. for j=1,...,N do
Initialize num < 0;
for j=1,...N do
num; < the size of L; N Lj;
end for
Sort num by descending order and keep the top K2 {L;};
9:  Setnew L'; < union of the top K2 {L;};
10: end for
11: for j=1,...,.N do
12: Construct S with new L'; based on Eq.
13: end for
14: return S;

the number of neighbors K1, the number of neighbors K2 for the neighbors

A ol e

3.2.2 Construction of Neighborhood Structure

Moreover, for the training of the system, we first conduct the neighborhood structure
of images and then train the network. Neighborhood structure is beneficial to exploit-
ing the manifold structure of the training data, and can improve the performance of
image retrieval [[72]]. Next, we introduce our approach to construct a similarity matrix
by an unsupervised method.

In our unsupervised approach, we propose to exploit the neighborhood struc-
ture of the images in feature space as information source steering the process of
hash learning. Specifically, we propose a method based on the K-Nearest Neighbor
(KNN) concept to create a neighborhood matrix of S. We use two types of features
to construct S: non-deep features and deep features. For non-deep features, we use
the hand-crafted features provided with the dataset. For deep features, we extract
2,048-dimensional features from the pool5-layer based on [22]]. This results in the set
X = {Xi}f.\’: , where x; is the feature vector of image I;.

For the representation of the neighboring structure, our task is to construct a ma-
trix S = {sij}ﬁ.\_” j—1» Whose elements indicate the similarity (s;; = 1) or dissimilarity
(s;j=—1) of any two images i and j in terms of their features x; and x;.

We compare images using cosine similarity of the feature vectors. For each image,
we select K1 images with the highest cosine similarity as its neighbors. Then we can
construct an initial similarity matrix Sy:

1, if x; is KI1-NN of x;
(Sl)ij :{ ¢ l (12)

—1, otherwise

The precision curve (evaluated using the labels) in Fig. [3|indicates the quality of
the constructed neighborhood for different values of K1. Due to rapidly decreasing
precision with increasing K1, creating a large-enough neighborhood by simply in-
creasing K1 is not the best option. In order to find a better approach, we borrow ideas
from the domain of graph modeling. In an undirected graph, if a node v is connected
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Fig. 3 Precision of constructed labels on cifar-10 dataset with different K, and different methods (deep
features are used).

to a node u and if u is connected to a node w, we can infer that v is also connected
to w. Inspired by this, if we treat every training image as a node in an undirected
graph, we can expand the neighborhood of an image i by exploring the neighbors of
its neighbors. Specifically, if x; connects to X; and X; connects to X, we can infer that
x; has the potential to be also connected to Xx.

In view of the above, we use the initial similarity matrix S; to expand the neigh-
borhood structure. Specifically, based on S;, we calculate the similarity of two images
by comparing the corresponding columns in S; using the expression W

i J

Then we again construct a ranked list of K2 neighbors, based on which we generate
the second similarity matrix S; as:

_ J 1, if x; is K2-NN of x;
(82);; = { —1, otherwise a3)

Finally, we construct the neighborhood structure by combining the direct and
indirect similarities from the two matrices together. This results in the final similarity
matrix S:
5= 1, if (81);; = 1 orx; is a KI-NN of x/’s K2-NN 14
—1, otherwise

The whole algorithm is shown in Alg. [I We note here that we could have also
omitted this preprocessing step and construct the neighborhood structure directly dur-
ing the learning of our neural network. We found, however, that the construction of
neighborhood structure is time-consuming, and that updating of this structure based
on the updating of image features in each epoch does not have a significant impact
on the performance. Therefore, we chose to obtain this neighborhood structure as
described above and fix it for the rest of the process.
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Table 2 mAP on CIFAR-10 using different optimization methods.

mAP
Methods 24-bit  32-bit  48-bit
two-step solution 0.344 0362 0.373

sign(z) =limg_, . tanh (Bz)  0.387  0.398  0.413
sign(z)=limg_, .app(Bz) 0363 0371 0.389

3.2.3 Neighborhood Structure Loss

The last section describes how to construct the similarity matrix and in this section
we will present our objective function to preserve pair-wise similarity into hashing
codes. Like [[72], we define our neighbor loss as below:

‘ 1/1 2

Sl'jCS

where A denotes the parameters of the retrieval network and S is constructed by
Algorithmmand s;j € S. Unfortunately, in Equation@]b,- is discrete, whose gradient
is zero for all nonzero inputs and leads to disable the back propagation to train the
deep network. A wide range of works have proposed many novel methods to solve
this problem. [40L[78]] proposed to use an approximate solution to relax the binary
codes, however, which certainly a large quantization error. Therefore, relaxation the
binary code is not efficient way to solve the discrete hashing problem.

In order to address this problem of optimizing binary codes with non-smooth sign
activation, we acquire the inspiration from recent works [6,59]]. These studies mainly
focus on how to convert the difficult optimization problems into several easily opti-
mized subproblems by changing the smoothness of the original function. Especially,
we can gradually reduce the degree of the smoothness of function, which results in a
sequence of subproblem optimizations converging to the original optimization prob-
lem. Following this idea, if we figure out the similar or approximate smooth function
with sign(.), and then gradually make the smooth function non-smooth during the
training process, and finally, the results will converge to the desired target.

Motivated by this, we define a function app(.) to approximate sign(.):

+1, ifz>1
app(z) =< z, if 1>z>-1 (16)
—1, ifz<—1

Obviously, there is a relationship between sign(.) and app(.) function:
sign(z) = lim app(Bz) (17)
B—reo

In Fig. |4} we illustrate how app(.) function approximates the original sign(.). In
addition, we also introduce an alternative ranh(.):

sign(z) = lim tanh(Bz) (18)

B—r+oo
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h h A
1 | 2
y=sgn(x) y=sgn(x
y=app(3x) y=tanh(3x
y=app(x) y=tanh(x)
1 2y 1 2 ;
(a) tanh(.) (b) app(.)

Fig. 4 Illustrative process of how app(.) and tanh(.) approximate sign(.)

Algorithm 2 Leaning parameters

Input: Images X = {x;}¥,
1: Initialize {®, 2,0} randomly and A with the pre-trained model in [60].
2: for j=1,...,t do
3:  Sample x; uniformly from {x;}
4 Compute the stochastic gradient V/{¢ in
5 Update decoder parameters as
6: Qi1 =Q;—1Valc
7:  Compute the stochastic gradient Vgh(x; P) in
8

N
i=1"

Update encoder parameters as

9: ¢’i+1 = 45,‘ — T[V(I)h(x; CD)
10: Compute the stochastic gradient V, in
11: Update discriminator parameters as
12: ®i+| :@,-f‘c,-V@é'A(x;@)
13: Compute the stochastic gradient V,, in
14: Update encoder2 parameters as
15: A1 =Ai = 5Valy(x;A)
16: end for

Therefore, as for Equation [T3] we can optimize Z instead of directly modeling the
neighbors structure loss on the binary codes B. Then Equation[T3]can be reformulated
as:

1. 1 2
ﬁN(x;A,CD):Er/{ng Z (LZiTZj—S,']) —|—O£HZ—B||2 (19)
’ Si/‘CS

where « is the hyper-parameter to balance the terms.

4 Learning

Using the loss functions in Eq[9] Eq[I0]and Eq[T9] we train our network.
The forward propagation is as follows. First, we use a deep convolutional network
as the encoder to extract the features and then use the constant neuron layer to embed
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the real-valued features into binary codes:

Bi = h(E,(I;; P)) (20)
where I; is an input image, @ is the parameter of the encoder, E, is the encoder
operation and / is the constant neuron layer. Then, B is the input for a generator
(decoder) D, to reconstruct an image |

If =D, (B{: Q) 1)

where 2 stands for the parameters of the generator (decoder) D,. Finally, a discrim-
inator D assigns the probability

p=D(1};0) 22)

that I is an actual training sample and probability 1 — p that I¥ is generated by our
model I,® = D, (B{; Q). © stands for the parameters of the discriminator G.

Similarly, for the retrieval network, given an image I;, we can obtain its binary
codes by:

B; = sign (Eny (En(Ii; @): A)) (23)

where E,; is encoder2, and A represents its parameters.

As shown in Fig. [I] the compression network and retrieval network shared the
top 5 convolutional layers, which allow us to train the entire network through a joint
training strategy. In our network, we have parameters of {®,Q2,0,A} to learn. All
parameters can be learned by back-propagation (BP). In particular, we randomly ini-
tialize {P,Q,0} and use the pre-trained model [60] on ImageNet to initialize A.
During each iteration, we sample a mini-batch of the images from the training data
and use forward propagation to obtain the value of {{¢, ¢y}, and then apply BP rules
to update the associated parameters. The updated formulation is bellow:

Qip1 +— Qi —1Valc

¢i+1 — D, — T[V@h(x; ¢)

@Hl — @,’ — T,'V@e,q (x;@)

{Air1, i1} {An, Piv1 } — VA 0N (A, @)

(24)

when V denotes the gradient and 7; is the learning rate. The learning steps are shown
in Alg.[2]

For the retrieval hashing codes, we set the 8 = 1 at the beginning. For each stage,
after the retrieval network converges, we enlarge 3 for the next stage and use the
parameters converging in the last stage to initialize the current stage parameters. By
involving app(Bz) with B & o, the retrieval network obtains the same results as us-
ing sign(z), which can learn exact binary hash codes as we desire. In the experiment,
when we increase 3 to 10, the network can converge to the expected degree. In addi-
tion, we set A = 0.1.
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5 Experiments

We evaluate our BGAN+ on the task of large-scale image retrieval and image com-
pression. Firstly, we compare BGAN+ with the state of the art methods both in image
retrieval and compression. Secondly, we conduct an ablation study to evaluate the
effect of each major component.

5.1 Datasets and Settings

To evaluate our method, we conduct our experiments on six public datasets: The
Oxford 17 Category Flower [49]], Stanford Dogs-120 [28]], CIFAR-10 [31], Flickr-
25K [47], NUS-WIDE [7], and Kodak [13]]. Specifically, the first five datasets are
used for retrieval, and NUS-WIDE and Kodak are used for image compression.

The Oxford 17 Category Flower dataset [49] contains 17 categories and each
class consists of 80 images, resulting in a total of 1,360 images of flowers.

Stanford Dogs-120 [28] dataset consists of 20,580 images in 120 mutually cate-
gories. Each class contains about 150 images of dogs.

CIFAR-10 dataset consists of 60,000 labeled tiny colored image (32 x 32). It is
a single labeled dataset. Each image has a unique class label belonging to one of the
10 classes.

Flickr-25K contains 25,000 images from Flickr-25K, where each image is la-
beled with one of the 38 concepts. We resize images of this subset into 256 x 256.

NUS-WIDE is a Web image dataset containing 269,648 images downloaded from
Flickr. Tagging ground-truth for 81 semantic concepts is provided for evaluation. We
follow the settings in [80] and use the subset of 195,834 images from the 21 most
frequent concepts, where each concept consists of at least 5,000 images.

Kodak contains 25 uncompressed color images of size 768 x 512. They are used
as a standard test suite for compression testing.

In terms of retrieval, we split the Oxford Flower-17 into the training (40 images
per class), validation (20 images per class), and test (20 images per class) sets. The
Stanford Dogs-120 is divided into two parts: the train set (100 images per class) and
test set (totally 8580 images for all categories). In NUS-WIDE and CIFAR-10, we
randomly select 100 images per class as the test query set and 1,000 images per class
as the training set. In Flickr, we randomly select 1,000 images as the test query set
and 4,000 images for training.

In terms of compression, we randomly select 21,000 images (1,000 per class)
to train our compression network. After the training, we apply the trained model to
evaluate the performance on two testing datasets: 1) randomly select 10,000 from
NUS-WIDE dataset as the first testing dataset and 2) the Kodak dataset.

5.1.1 Evaluation Metric

For retrieval Task, the hamming ranking is used as the search protocol to evaluate our
proposed approaches, and two indicators are reported. 1) Mean Average Precision
(mAP): For a single query, Average Precision (AP) is the average of the precision
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Table 3 mAP results for fine-grained image retrieval using different number of bits on Oxford Flower-17
and Stanford Dogs-120. Note that our method is unsupervised while FashH is a supervised method.

Oxford Flower-17 Stanford Dogs-120

Bits 12 24 32 48 12 24 32 48

SH [74] 0.589 0.589 0.588 0.587 0.008 0.008 0.008 0.008
ITQ-CCA [16] 0.585 0.587 0.587 0.586 0.008 0.008 0.008 0.008
SDH [59] 0.108 0.140 0.117 0.145 0.009 0.018 0.090 0.037
KSH [44] 0243 0501 0253 0355 0.014 0.123 0.136 0.193
FastH [32] 0.402 0524 0528 0536 0.044 0223  0.364 0.393
DQN [5] 0476 0.537 0562 0573 0.009 0.013 0.035 0.053
DSH [42] 0.566 0.614 0.637 0.680 0.012 0.012 0.012 0.012
BGAN+ 0.706 0.712 0.735 0.738 0.163 0.192 0215 0.235

value obtained for the set of top-k results, and this value is then averaged over all the
queries. 2) Precision: We further use the precision-recall curve and precision@K to
evaluate the precision of retrieved images.

For compression task, we use MS-SSIM [73] to test the quality of the image. The
higher MS-SSIM means better quality.

5.1.2 Compared Methods

For retrieval Task, we compare our BGAN+ with other state-of-the-art hashing algo-
rithms. Specifically, we compare with four non-deep hashing methods (iterative quan-
tization (ITQ) hashing [[L6], spectral hashing (SH) [24]], Locality Sensitive Hashing
(LSH) [10]] , Spherical Hashing [24]]), and two unsupervised deep hashing methods
(DeepBit [40] and Deep Hashing (DH) [41]]). To make a fair comparison, we also
apply the non-deep hashing methods on deep features extracted by the VGG network
(VGG-fc7 [60]).

For non-deep hashing algorithms, we use the features provided with the dataset.
By constructing the neighborhood structure using the labels, our method can be easily
modified as a supervised hashing method, named as (BGAN+_s). Therefore, we also
compare with some supervised hashing methods, e.g., iterative quantization hashing
(ITQ-CCA) [16], KSH [45]], minimal loss hashing (MLH) [50], CNNH [76] and Deep
Hashing Network (DHN) [[81]]. For compression task, we compare with four widely
used image compression approaches: JPEG [67], JPEG 2000 [S3]], Theis et al. [64]
and JPEG 420.

5.1.3 Implementation Details

When constructing the neighborhood structure, we use two different types of features:
non-deep features provided with the dataset, and 2,048-dimensional deep features
extracted using ResNet. We denote them as BGAN+_non and BGAN+ respectively.
The average number of the neighbors for each image is 400, 1021, 1168 for the three
datasets: CIFAR-10, NUS-WIDE, and Flickr-25K. By default, we set A = 0.1 and the
learning rate as 0.001.
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Table 4 mAP for different unsupervised hashing methods using a different number of bits on two image
datasets. The first four methods are non-deep hashing methods, and the second the four methods are based
on deep networks.

Cifar-10 NUS-WIDE

Bits 12 24 32 48 12 24 32 48

ITQ [16] 0.162 0.169 0.172 0.175 0452 0468 0472 0477
SH [74] 0.131  0.135 0.133 0.130 0433 0426 0426 0423
LSH [10] 0.121  0.126  0.120 0.120 0.403 0421 0426 0441
Spherical [24]) 0.138 0.141 0.146  0.150 0413 0413 0424 0431
ITQ+VGG 0.196 0.246 0289 0301 0435 0435 0548 0435
SH+VGG 0.174 0205 0.220 0232 0433 0426 0426 0423
LSH+VGG 0.101  0.128 0.132  0.169 0401 0.442 0480 0471
Spherical+VGG  0.212  0.247 0.256 0.281 0.549 0.614 0.653 0.678
DeepBit [40] 0.185 0218 0.248 0263 0.383 0401 0403 0412
DH [41]] 0.160 0.164 0.166 0.168 0422 0.448 0.480 0.493
BGAN.non [61] 0361 0369 0375 0395 0518 0.541 0545  0.568
BGAN [61] 0.401 0.512 0531 0558 0.675 0.690 0.714 0.728
BGAN+_non 0375 0387 0398 0413 0.544 0552 0561 0.579
BGAN+ 0.531 0.543 0.564 0.586 0.682 0.719 0.723  0.736

Table 5 mAP for different unsupervised hashing methods using a different number of bits on Flickr. The
first four methods are non-deep hashing methods, and the second four methods are based on deep networks.

Flickr

Bits 12 24 32 48

ITQ [16] 0.544 0.555 0.560 0.570
SH [74] 0.531 0533 0531 0.529
LSH [10] 0499 0513  0.521  0.548
Spherical [24]) 0.569 0.559 0.583 0.572
ITQ+VGG 0.553 0.548 0.545 0.560
SH+VGG 0.550 0.544 0.541 0.545
LSH+VGG 0.543 0.549 0.555 0.551
Spherical+VGG  0.552  0.547 0.546  0.545
DeepBit [40] 0.501 0.505 0.511 0513
DH [41] 0.553 0.548 0.543 0.556
BGANnon [61] 0.591 0.601 0.607 0.626
BGAN [61] 0.683 0.702 0.703 0.703
BGAN+_non 0599 0.612 0.618 0.636
BGAN+ 0.715  0.719 0.723  0.736

5.2 Results on Image Retrieval
5.2.1 The Effect of Binary Optimization

As discussed above, both BGAN and BGAN+ can learn binary hash codes directly
while previous hashing methods first learn continuous representations and then gen-
erate hash codes using a sign function (denoted as two-step solution). The previous
study on BGAN has verified our argument that the two-step solution is sub-optimal,
and binary optimization can achieve better performance. In this section, we further
study the effect of binary codes optimization on the performance of hash codes to
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verify the robustness of our binary optimization approach. The performance results
of BGAN+ on the CIFAR-10 are shown in Tab. 2} As shown in Tab. [2| our binary op-
timization can improve the performance of the learned binary codes. Specifically, the
first app solution (Eq. outperforms two-step solution by 1.9%, 0.9%, and 1.6%
for 24, 32, and 48-bit hash codes, while the second solution tanh (Eq. improves
it by 4.3%, 3.6%, and 4.0%. This verifies our argument on BGAN+ that two-step so-
lution is sub-optimal, and binary optimization can achieve better performance. These
experimental results show the robustness of our proposed binary optimization ap-
proach.

5.2.2 Comparison with State-of-the-art methods for Fine-grained Image Retrieval

In this section, we compare our BGAN+with state-of-the-art methods for fine-grained
image retrieval on two datasets. The mAP results are shown in Tab. 3]

It shows that our method (BGAN+) significantly outperforms the other unsuper-
vised hashing methods (SH and ITQ+CCA) in both datasets. In Oxford 17 Category
Flower dataset, BGAN+ outperforms the best counterpart (SH) by 11.7%, 12.3%,
14.7% and 15.2% for 12, 24, 32 and 48 bits, respectively. On the other hand, both SH
and ITQ+CCA have unsatisfactory performance in Stanford Dogs-120 dataset. Their
mAP is 0.008 for different bits, which is almost random. This indicates that hashing
methods for general image retrieval may not work well on the task of fine-grained
image retrieval. Compared with several supervised hashing methods, e.g., SDH [59],
KSH [44]], FastH [32]], DON [3]], DON [5]], our BGAN+, as an unsupervised method,
achieves even better performance in Oxford 17 Category Flower dataset. BGAN+
outperforms the best counter-part (DSH) by 14.0%, 9.8%, 9.8% and 5.8% for 12,
24, 32 and 48 bits, respectively. However, in the Stanford Dogs-120 dataset, FastH
has better performance in general, and it is better than BGAN+ by 3.1%, 14.9% and
15.8% for 24, 32 and 48 bits. Nevertheless, FastH is a supervised hashing method
while our BGAN+ is unsupervised.

5.2.3 Comparison with State-of-the-art methods for General Image Retrieval

In this section, we evaluate our hashing method performance on three datasets. The
mAP results are shown in Tab. 4]and Tab.[3and Precision-Recall curves are shown in
Fig.[5] From Tab.d]and[5] we can obtain following conclusions:

First, our method (BGAN+) significantly outperforms the other deep or non-deep
hashing methods in all datasets. In CIFAR-10, the improvement of BGAN+ over
other methods is more significant, compared with NUS-WIDE and Flickr dataset.
Specifically, it outperforms the best counter-part (Spherical+ VGG) by 31.9%, 29.6%,
30.8% and 30.5% for 12, 24, 32 and 48-bit codes. One possible reason is that CIFAR-
10 contains simple images, and the constructed neighborhood structure is more accu-
rate than in the other two datasets. BGAN+ improves the state of the art method by
13.3%, 10.5%, 7.0% and 5.8% in the NUS-WIDE dataset, and 14.6%, 16.0%, 14.0%
and 16.4% in Flicker dataset.

Second, comparing with BGAN (or BGAN+), the performance of BGAN_non
(or BGAN+_non) is worse. This indicates that the similarity graph plays an important
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Fig. 5 Precision for different unsupervised hashing methods using different number of bits on CIFAR-10
dataset.

role in the learning of hashing codes, and the non-deep features are not as good as
deep features.

Third, from Tab. @ and[5} we observe that Spherical+VGG is a strong competitor
in terms of mAP. On the other hand, the performance of deep hashing methods (i.e.,
DeepBit and DH) is not superior. A possible reason is that the deep hashing methods
use only 3 fully connected layers to extract the features, which is not powerful.
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Table 6 mAP for different supervised hashing methods using different number of bits on CIFAR-10

CIFAR-10
Method 12 bits 24 bits 32 bits 48 bits

ITQ-CCA [16]  0.435 0.435 0.435 0.435
KSH [45] 0.556 0.572 0.581 0.588
MLH [50] 0.500 0.514 0.520 0.522
DNNH [32] 0.674 0.697 0.713 0.715
CNNH [76] 0.611 0.618 0.625 0.608
DHN [81] 0.708 0.735 0.748 0.758

BGAN_s 0.866 0.874 0.876 0.877
BGAN+_s 0.884 0.889 0.892 0.894

Fourth, when we run the non-deep hashing method on deep features, the perfor-
mance is usually improved compared with the hand-craft features. The performance
gap is larger in CIFAR-10 and NUS-WIDE datasets than in Flicker dataset.

Fifth, with the increase of hash code length, the performance of most hashing
method is improved accordingly. More specifically, the mAP improvements using
deep features are generally more significant than that of non-deep features in CIFAR-
10 dataset and NUS-Wide dataset. An exception is SH, which has no improvement
with the increase of code length.

Sixth, compared with BGAN (or BGAN_non), BGAN+ (or BGAN+_non) achieves
better performance. In particular, the increase of BGAN+ of 12-bit on the CIFAR-10
dataset is 13.0%. In addition, BGAN+ improves BGAN by 3.2%, 1.7%, 2% and 3.3%
of 12, 24, 32 and 48-bit on the Flick dataset.

From Fig. [5] we have the following observations. In terms of the precision-recall
curve, the results indicate that BGAN and BGAN+ significantly outperform existing
approaches. In general, BGAN+ performs better than BGAN, especially when the
hash code is 16-bit. In addition, the bottom row of Fig. E] shows the precision curves
when we set a different number of retrieved samples (times of 10,000 ) and then train
the model with 16, 32 and 64-bit, separately. When code length is 16-bit, BGAN+
achieves better performance. When code length is set as 32 or 64-bit and the number
of retrieved samples is 5,000, BGAN and BGAN+ obtain the same value of precision.
In addition, when the number of retrieved samples gradually increases from 5,000,
the gap between BGAN and BGAN+ increases gradually.

We also compared with supervised hashing methods, and present the mAP results
on CIFAR-10 dataset in Tab. [f] It is observed that our BGAN+ reaches the highest
mAP scores across hashing code length ranging from 12-bit to 48-bit. Compared with
the best deep supervised hashing method DHN, BGAN+ has an increase of 17.6%,
15.0%, 14.4% and 13.6% over 12, 24, 32 and 48-bit. In generally, BGAN+ increases
the BGAN by around 2.0% and the improvement is contributed by our compression
network. This indicates that the performance improvement of BGAN is not only due
to the constructed neighborhood structure, but also the other components. However,
our method is mainly designed for unsupervised learning of hashing codes, and it has
a large room to be improved for the task of supervised hashing.
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Fig. 6 Reconstructed images on CIFAR-10 using binary codes.

Table 7 MS-SSIM on NUS-WIDE at different bit-rate.

MS-SSIM
Methods 0.15 bit/px  0.25 bit/px 0.5 bit/px
JPEG 0.875 0.894 0.922
JPEG 2000 [53] 0.925 0.937 0.945
BGAN 0.927 0.939 0.948

Table 8 MS-SSIM on Kodak at different bit-rate.

MS-SSIM
Methods 0.15 bit/px  0.25 bit/px 0.5 bit/px
JPEG 0.802 0.844 0.945
JPEG 2000 [53] 0.903 0.922 0.951
Theis et al. 0.901 0.920 0.948
JPEG 420 0.824 0.891 0.950
BGAN 0.906 0.924 0.949

5.3 Results on Image Compression

JPEG is an image compression standard approach, while JPEG 200 is an improve-
ment on JPEG. They are both widely used for image compression. To evaluate the
performance of our compression network, we use NUS-WIDE dataset to train our
compression model and then evaluate it on two datasets: NUS-WIDE and Kodak
dataset.

The experimental results obtained from the NUS-WIDE dataset are shown in Tab.
which demonstrates that our BGAN+ obtains the best performance in terms of MS-
SSIM. Compared with JPEG, BGAN+ has an increase of 5.2%, 4.5% and 2.6% for
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Fig. 7 Samples from NUS-WIDE dataset for visualization (0.15 bit/px)
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Fig. 8 Samples from Kodak dataset for visualization. Ground truth, JPEG, JPEG 2000 and Ours BGAN+
are from left to right (0.15 bit/pix).

0.15, 0.25 and 0.5 bit/px. Specifically, the improvement gap becomes narrow with the
increase of bit-rate. The lower the bit-rate is, the harder the compression operation is.
Furthermore, our BGAN+ performs slightly better than JPEG2000.

In order to test the robustness of our compression network, we further run the
trained model on the image compression benchmark dataset Kodak and the experi-
mental results are shown in Tab.[8] From Tab.[8] we can see that our BGAN+ performs
the best, and JPEG 2000 goes the second. Compared with JPEG, BGAN+ performs
better with the increase of 10.4%, 8.0% and 0.4% for 0.15, 0.25 and 0.5 bit/px, re-
spectively. However, for the 0.5 bit/px, our method is slightly outperformed by JPEG
2000 and JPEG 420 by 0.2% and 0.1% respectively. Generally speaking, our method
is more competitive at a lower bit rate because the reconstructed image is generated
from the binary codes, which are highly compact codes.

To evaluate the ability of image reconstruction using BGAN+ and to compare
with the previous BGAN proposed in [61]], we demonstrate some qualitative results
on CIFAR-10 dataset in Fig.[6] From Fig.[6] we can see that the images reconstructed
from BGAN with 256-bit hash code are blurry compared with the ground-truth im-
ages. Compared with the images reconstructed from BGAN with 256-bit, BGAN+
can generate a higher quality of images with only 128-bit hash code. This indicates
the effectiveness of our BGAN+ for image compression. With longer hash code (i.e.,
256-bit), it can produce even better quality images, which is as good as the ground-
truth images from the human visual aspect.

In addition, more visual examples are provided in Fig. [7]and Fig.[8] All the im-
ages are randomly selected from the NUS-WIDE and Kodak dataset respectively. In
Fig.[7} each image is compressed by JPEG, JPEG 2000 and our BGAN+ and their
corresponding MS-SSIM values are provided. The higher the MS-SSIM is the better
the compression results are. All the examples indicate that our BGAN+ performs the
best. While for some examples (i.e., the third row), JPEG performs better than JPEG
2000. In terms of human visual visualization, in generally the images generated by
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Table 9 The mAP of BGAN+ on CIFAR-10 using different combinations of components (Without jointly
learning with compression net and with it).

mAP
Components 24-bit  32-bit  48-bit

STL-BGAN+ 0.511  0.533  0.567
MTL-BGAN+ 0.543  0.564  0.586

Table 10 MS-SSIM on NUS-WIDE at different bit-rate.

MS-SSIM
Methods 0.15 bit/px ~ 0.25 bit/px 0.5 bit/px
STL-BGAN 0.914 0.929 0.932
MTL-BGAN+ 0.927 0.939 0.948

the JPEG is blurring, while BGAN+ and JPEG provide images with high-resolution
images. Fig. |8 shows that our BGAN+ can reconstruct images with photo-realistic
details.

5.4 Evaluation of Individual Component

To verify the effects of individual components (i.e., retrieval network and compres-
sion network) in our framework and show each of them contributes to the perfor-
mance boost, we evaluate two variants of our approaches. Instead of using multi-task
learning (MTL), we assume tasks are independent and learn retrieval network and
compression network separately. The resulting retrieval model (¢y) is acquired based
on single task learning (STL) by utilizing ¢y loss only to train the retrieval network.
In this way, STL trains its retrieval model separately without sharing the first five
conv layers with compression network. For the retrieval task, the experiments are
conducted on the CIFAR-10 dataset and the experimental results are shown in Tab. [0}
The results by STL is worse than by MTL with a decrease of 3.2%, 3.1% and 1.9%
over 24, 32 and 48-bit, respectively.

In the second experiment conducted on the NUS-WIDE dataset, we compare
BGAN+ trained by MTL with BGAN+ trained by STL for compressing images
and the results are shown in Tab. [T0] The results show that MTL-BGAN+ outper-
forms STL-BGAN+ by 1.3%, 1.0% and 1.6% for 0.15, 0.25 and 0.5 bit/px respec-
tively. These two experiments indicate that multi-task learning framework using the
retrieval and compression network is beneficial for both image retrieval and com-
pression tasks. This is due to the reason that learning-related tasks simultaneously can
successfully exploit shared features among tasks and increase the discriminative abil-
ity of the learned models. As we can see from the experimental results, our method
is able to simultaneously generate binary codes for image retrieval and compression.

Furthermore, we also test the efficiency of the constant neuron layer and conduct
three different experiments as showing in Tab|l1|and Tab To be specific, we test
the quality of reconstructed images from real value vectors and binary codes, which
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is optimized by the two steps relaxation optimizing strategy. From Tab we can
see that our results from binary codes does not degrade much compared with the
real value compression codes. Obviously, in the condition of the same dimension,
BGANH+ just declines 0.017, 0.013 and 0.014 on four dimensions 7k, 12k and 25k,
respectively. It is worth noting that those results are based on the same compression
dimension but not the same compression rate. It is reasonable that the compression
strategy of binary codes is worse than the real value because the binary codes lose
more information compared to the real value with the same dimension. Tab[I2]shows
the results from the real value vector under the same compression rate. Here, we
should note that the dimension of compression codes depends on the size of the in-
put image, and set the input image size as 224 x 224. However, when based on the
same compression rate, our method shows a significant superiority to the real value
codes and improves the compression performance about 0.126, 0.115 and 0.092 on
the 0.15, 0.25 and 0.5 bix/px. The last experiment is to evaluate different strategies to
generate binary codes. From Tab[I2] we can see that our constant neuron has a hug
benefit to the binary learning compared to the two steps relaxation method and has
about 0.283, 0.27 and 0.254 improvement on the three compression rates. The reason
for this scenario is that two steps approximate strategy can lead to huge quantization
errors. To sum up, through the three experiments, we can gain the following conclu-
sions: 1) Compared with the reconstruction from the real value vector, BGAN+ has
the comparable performance but less storage cost. 2) The constant neuron layer can
directly optimize binary codes and avoid large quantization errors, which is the key
unit to ensure the high quality reconstructed image and low storage space.

Table 11 MS-SSIM on NUS-WIDE based on different dimensions with/without the layer of constant
neuron.

MS-SSIM
Methods 7k 12k 25k

real value  0.943  0.950 0.962
BGAN+ 0.926  0.937 0.948

Table 12 MS-SSIM on NUS-WIDE under different compression rate by different reconstruction strate-
gies.

MS-SSIM
Methods 0.15 bit/px ~ 0.25 bit/px 0.5 bit/px

real value 0.801 0.824 0.856
two steps 0.643 0.669 0.695
BGAN+ 0.927 0.939 0.948
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6 Conclusion

In this paper, we propose a unified binary generative adversarial networks (BGAN+)
to simultaneously convert images to binary codes for both image compression and
retrieval. in a multi-task fashion and an unsupervised way. By restricting the input
noise variable of generative adversarial networks (GAN) to be binary and condi-
tioned on the features of each input image, BGAN+ can simultaneously learn two
binary representations per image: one for image retrieval and one for image compres-
sion. To equip the binary representation with the ability of accurate image retrieval
and compression, we design a novel loss function. We also propose several solu-
tions to address the gradient vanishing problem caused by sign function. Extensive
experiments are conducted for image retrieval and compression. The results show
that our BGAN+ outperforms the existing retrieval methods with significant margins
and achieves competitive performance for image compression, especially for low bit-
rates. And the multi-task strategy is beneficial for both tasks. As far as we know, this
is the first work of using binary codes for image compression.
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