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Abstract

Soil properties are spatially variable due to the natural deposition process. Because
of this inherent spatial variability, a slope can actually fail along any potential slip
surface. A single value of Factor of safety cannot account for this variation domi-
nated the slope stability problem. Probabilistic analysis considering the spatial vari-
ability is a reasonable method to quantify the risk of the slope stability problem.
Thus, in order to better simulate this variation, the theory of random field has been
widely used in the slope stability problem. However, statistical outcomes derived
from the probabilistic analysis will be influenced by how the random fields are gen-
erated and how the random field values are assigned to each potential slip surface.
In order to investigate the extent of this influence, this study proposed a new proba-
bilistic slope stability analysis method and compared it with the other two methods
in terms of accuracy and efficiency.

In this report, three different probabilistic slope stability analysis methods are
presented. These methods combined the traditional limit equilibrium method of
slices with random fields, which can account for the inherent spatial variability of
soil properties. An exponential decaying function is used to describe the correlation
structure of this spatial variation. This correlation structure is further expressed by
the form of covariance matrix. Since the covariance matrix is a symmetric positive
definite matrix, Cholesky decomposition is used to decompose it into the product
of two triangular matrices. Because the triangular matrix is more computationally
efficient, the two-dimensional random field is generated by multiplying a normal
random number vector with the lower triangular matrix derived from Cholesky de-
composition.

The main feature of the new proposed probabilistic LEM method in this study
is the adoption of linear interpolation in the procedure of random field generation.
For convenience’ sake, it will be named as ’Random Field - Monte Carlo Simulation
method (RF-MCS method)’. Two other MCS methods are also implemented in this
study. Since the random field values are directly assigned onto each potential slip
circle, they will be named as ’direct Monte Carlo Simulation method (direct MCS
method)’. The difference between these two direct MCS methods lies in the nor-
mal random number generation for different variables when generate the random
fields. Then, Monte Carlo simulation is used to determine the statistical outcomes
according to the generated random fields from these different methods.

In this study, two types of slopes were analysed using three MCS methods:
undrained slope with only cohesion and c-φ slope. The search algorithm ensures
that the critical slip circle is selected during the analysis. The system probability
of failure considering all potential slip circles is compared with the correspond-
ing probability of failure with respect to the "fixed" critical deterministic slip circle.
The differences in the results calculated by the three MCS methods were investi-
gated. The main reason for the difference in the probability of failure Pf from three
MCS methods was found out to be the methodology used by the proposed RF-MCS
method and direct MCS method to calculate the system probability of failure. This
difference implies that how the random fields are generated and how the random
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field values are assigned to each potential slip surface can significantly influence the
statistical outcomes.

For all three methods, the influences of slope inclination, autocorrelation dis-
tance, coefficient variation of strength parameters and cross correlation between
strength parameters on the system probability of failure have been investigated by
a wide range of parametric studies. In different test scenarios, the results of the RF-
MCS method and the direct MCS method shows the same growth trend while large
difference still exist. The results indicate sensitivity analysis has nothing to do with
using different methods and a combination of three methods is more efficient for
future parameter studies.

Key words: slope stability, probabilistic analysis, limit equilibrium method, ran-
dom fields, spatial variability, Cholesky decomposition, Monte Carlo simulation,
system probability of failure
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Chapter 1

Introduction

1.1 General

As one of the most important issues in the geotechnical engineering, slope stability
problem have been widely studied. In the past few decades, various methods have
been developed to better analyze this problem. Generally, it can be divided into
two different approaches, deterministic and probabilistic analysis. The Limit equi-
librium method (LEM) is usually used in the analysis of slope stability problem in
the deterministic approach. LEM assumes the sliding surface is circular. It divides
the sliding soil mass into multiple vertical slices, and then calculates the factor of
safety, FS, which is the ratio of the resisting shear strength to the driving mass load.
The circle giving the minimum factor of safety FSmin is regarded as the critical deter-
ministic slip surface. Various LEM methods (invented by Bishop, Fellenius, Taylor,
Spencer, Janbu, etc.) differ under different assumptions used to render the problem
determinate. None of these approximate methods are exact and the result factor of
safety FS should be handled with care.

However, it has been widely accepted that a single value of factor of safety FS is
somewhat conservative and cannot account for the uncertainties dominated in the
geotechnical engineering problems. Therefore, probabilistic slope stability analysis
is a better approach which can take account of the uncertainties of soil properties. It
calculates the probability of failure Pf , which is considered to be a more reasonable
method to quantify the risk of the slope stability problem. In the field of probabilistic
analysis, two different approaches, finite-element method (FEM) and LEM, are usu-
ally adopted to investigate the slope stability problem. For each approach, several
methods have been developed in recent decades. They differ in different assump-
tions and the ability to deal with complex problems. Generally, it can be divided
into four categories: Level I methods (semi-probabilistic design), Level II methods
(approximation: first-order second-moment method (FOSM), first-order reliability
method (FORM) ), Level III methods (numerical integration or Monte-Carlo sim-
ulation method (MCS)), Level IV methods (risk-based) (Jonkman et al., 2015). In
probabilistic analysis approach, the governing parameters of the soil properties are
modeled as random variables which are defined by certain kinds of probability dis-
tribution. This study mainly focuses on investigating the slope stability problem in
a probabilistic approach.

1.2 Problem definition

How to locate the most critical slip surface that gives the minimum factor of safety
FSmin is one of the essential issues in the slope stability problem.

Because of the inherent spatial variability of the soil properties that result from
the natural deposition process, the slope can actually fail along any potential slip
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surface. Thus, the slope stability problem can be treated as a system failure that
consist of a multitude of failure mechanisms. The overall probability of failure of
the slope will depend on the probability of failure concerning each individual failure
mechanisms (Chowdhury and Xu, 1995).

There is correlation between each potential slip surface because the slope was
analyzed by the same probabilistic analysis method and the same input information
for different variables (same mean value, standard deviation and same type of dis-
tribution, etc). However, it is difficult to determine the accurate system probability
of failure of a slope. Therefore, the probability of failure from the most critical slip
surface is considered as a reasonable estimate of the system probability of failure of
a slope.

One approach that has been taken by some authors is to perform the determinis-
tic analysis first and locate the critical slip surface. And then carry out probabilistic
LEM analysis using the same surface to calculate the probability of failure. How-
ever, (Hassan and Wolff, 1999) proved that the critical slip surfaces selected by the
deterministic LEM and probabilistic LEM analysis are not always consistent. Similar
findings are also reported by (Cho, 2009): the probability of failure calculated using
the deterministic critical slip surface are close to the system probability of failure
only when the correlation between the limit state function of slip surfaces are very
high.

Due to the inherent spatial variability of soil properties, the strength of soil even
change within a homogeneous soil layer. However, the mean and standard devia-
tion of the point to point variable cannot accurately characterise this variation. Thus,
the theory of random field has been taken into the slope stability problem in order
to better model this variation. And it has been commonly used in many recent in-
vestigations: ((El-Ramly et al., 2002); (Griffiths and Fenton, 2004); (Low et al., 2007);
(Cho, 2007); (Griffiths, Huang, et al., 2009); (Cho, 2009); (Ji et al., 2012); (D.-Q. Li
et al., 2014); (Javankhoshdel and Bathurst, 2014); (Javankhoshdel, Luo, et al., 2017)).
Figure 1.1 shows the probabilistic slope analysis methods considering spatial varia-
tion.

FIGURE 1.1: Probabilistic slope analysis methods considering spatial
variation (Modified from (Ji et al., 2012))

(El-Ramly et al., 2002) modeled the inherent soil variability as 1D random fields
along the predetermined slip surface. Results from the probabilistic slope analysis
showed the probability of failure will be significantly overestimated if the effect of
this variation was neglected.
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(Griffiths and Fenton, 2004) chosen to use the random finite-element method
(RFEM) to perform the probabilistic analysis. Unlike probabilistic LEM analysis,
the shape of the critical failure surface is not a perfect circle and the location is not
determined beforehand as well. The most critical failure mechanism is searched
by the method of strength reduction, which is considered to be more realistic com-
pared with probabilistic LEM method. However, the major drawback of the RFEM
is the excessive computational efforts. Because the factor of safety calculated by the
strength reduction method is to continuously increase the shear strength to render a
limit equilibrium of the slope.

(Low et al., 2007) developed an intuitive spreadsheet model taking account of
the spatial variability. The Hasofer–Lind reliability index was calculated by FORM.
However, this method cannot work under some extreme conditions and the spatial
variability is only modeled along the vertical direction.

(Cho, 2007) performed the probabilistic analysis by adopting the "midpoint met-
hod" to discretize the 2D random field combined with MCS. Distribution of the fac-
tor of safety has been generated after many times simulations. Results showed that
the standard deviation of the factor of safety has been strongly influenced by the
spatial variation rather than the mean value of the factor of safety. It also has been
found that the skewness of the probability density function of the factor of safety
has been affected by varying the horizontal scale of fluctuation.

(Griffiths, Huang, et al., 2009) investigated the influence of slope inclination and
correlation coefficient between soil strength parameters using RFEM. Some useful
plots are generated by a wide range of parametric studies provided investigators a
criterion to decide whether ignoring spatial variation is appropriate for certain soil
parameters.

(Cho, 2009) showed the existence of various failure mechanisms of a slope in the
process of probabilistic analysis by combining random fields with LEM. Two types
of MCS have been performed in the study. One is to calculate the system probability
of failure using the search algorithm. The other one only analyze the critical slip
surface located by the deterministic analysis and use the probability of failure of this
specific surface as the system probability of failure. Results have shown that the
difference between these 2 MCS approach are large when there is low correlation
between the limit state function of each potential slip surface. Correlation coefficient
between different soil parameters also investigated in this study. The probability of
failure has a negative relationship with the correlation coefficient between c and φ.

(Ji et al., 2012) introduced the concept of interpolated autocorrelation without the
limitation of the LEM framework. Results agreed well with the widely used vertical
slice discretization of the 2D random field. The finding, the vertical spatial variation
has a much more stronger influence on the probability of failure than the horizontal
spatial variation, was also verified by this study.

(D.-Q. Li et al., 2014) considered the spatial variability in c and φ that increased
linearly with depth. (Javankhoshdel and Bathurst, 2014) adopted simple soil condi-
tions to perform a set of probabilistic LEM analysis. Lots of design charts have been
generated which can serve as a upper-bound estimate of the factor of safety and
the probability of failure. (Javankhoshdel, Luo, et al., 2017) performed probabilis-
tic analysis to compared the results of random limit equilibrium methods (RLEM)
under 1D and 2D conditions with the 2D RFEM.

(Cao et al., 2017) carried out direct MCS using the Excel sheet. The results have
been compared with those from other commonly used probabilistic analysis meth-
ods. For example, FOSM, FORM and commercial software Slope/W, etc. It has been
found different analysis methods result in quite different results.
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Previous studies have demonstrated the importance of the spatial variability of
soil properties. This study aims at combining the limit equilibrium method of slices
(LEM) with the random fields which characterize the spatial variability and analyze
the slope stability problem in a probabilistic approach.

1.3 Research questions

A new probabilistic LEM method is proposed in this study. Linear interpolation is
adopted in the procedure of random field generation. For convenience’ sake, it will
be named as ’Random Field - Monte Carlo Simulation method (RF-MCS method)’.
Two other MCS methods are also implemented in this study. Since the random field
values are directly applied on each potential slip circle, they will be named as ’di-
rect Monte Carlo Simulation method (direct MCS method)’. The difference between
these two direct MCS methods lies in the random number generation for different
variables during the process of Cholesky decomposition.

For example, the strength parameter, cohesion c and friction angle φ. For the
first direct MCS method, two n-entry vectors of standard normal random numbers
for c and φ are generated separately by standard normal sampling with µ = 0, σ =
1. For the other direct MCS method, a 2 ∗ n-entry vector of standard normal ran-
dom numbers is generated first. Then, c samples the former n-entries and φ samples
the latter n-entries. Therefore, the first direct MCS method will be named as Di-
rect and Separate-Monte Carlo Simulation method (DS-MCS method); the other one
will be named as Direct and Combined-Monte Carlo Simulation method (DC-MCS
method).

The main objective of this study is to compare 3 different MCS methods capable
of accounting inherent spatial variability of soil properties in probabilistic LEM
analysis and evaluate the results from these methods.

Based on the above, the research questions of this study are formulated as fol-
lows:

• How to assign random field values onto each potential slip circle in three dif-
ferent MCS methods?

• How does the proposed RF-MCS method compare with two direct MCS meth-
ods in terms of accuracy and efficiency?

• How is the robustness of three different MCS methods in different situations?

In order to answer these questions, a Python program is modified from the code
given by Bram van den Eijnden.

1.4 Research outline

The first research question involves the development of the proposed RF-MCS meth-
od. After development and verification of the method, the RF-MCS method is com-
pared with direct MCS method. The comparison criterion is the computational time
and the probability of failure Pf calculated. The third question deals with parametric
studies under a range of different conditions to test the robustness of these 3 different
MCS methods.

Thus, the structure of this study can be formulated as:
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In Chapter 2, the relevant literatures about deterministic and probabilistic LEM
are summarized. The literature study starts with the basic concepts of Fellenius,
Bishop, Spencer and Taylor’s analytical method. After which, different sources of
uncertainties in the slope stability problems are discussed. The Focus is on how
to quantify these uncertainties and how to incorporate them into the probabilistic
model. General concept of random field and the common used probabilistic analysis
methods are elaborated in this chapter. Then, the definition of ’system probability of
failure’ for different methods is clarified.

The main features of the RF-MCS method are examined in chapter 3. Emphasis is
put on the method used for the generation of the random field mesh, the appropriate
value for each slice base passing the mesh and the correlation between different slip
surface. The investigation on those aspects is based partially on literature review
and simulations with the extended Python code. Example analysis is performed
using this RF-MCS method and the result is verified using the commercial software
D-Geo stability and the work previously did by others.

Chapter 4 involves a comparison between the RF-MCS method with two other
direct MCS methods. These three different MCS methods are compared based on
benchmark case studies. The comparison is in terms of the yielded results, e.g. the
probability of failure Pf calculated and required computational time. Then, What
causes the difference in the results from 3 methods has been investigated.

Chapter 5 describes the parametric studies under different conditions to test the
robustness of these 3 different MCS methods.

A summary of the work, conclusions on the main findings of the project and
recommendations for future research are included in chapter 6.
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Chapter 2

Literature review

This chapter introduces the concept of literature that is relevant with this study. It
starts with the basic principles in the deterministic analysis. This involves the con-
cept of limit equilibrium methods (LEM) and different LEM approaches. Further-
more, different sources of uncertainty in the slope stability problems are discussed.
Emphasis are put on how to quantify these uncertainties and how to incorporate
them into a probabilistic model. The use of random fields in combination with LEM
is discussed next. Then, the concept of the commonly used Monte Carlo simulation
(MCS) methods is elaborated. Finally, the definition of system probability of fail-
ure is introduced as well as how three different MCS methods estimate the system
probability of failure Pf .

2.1 Method of slices

Most deterministic LEM methods assume a circular slip surface, and then the divide
soil above into several vertical slices with a simplifying assumption about the effect
of the interslice forces. Different LEM have been developed based on different as-
sumptions to make sure the problem is determinate. Three commonly used methods
are introduced here in this study: Fellenius, Bishop and Spencer. Figure 2.1 indicate
a typical “slice” method.

FIGURE 2.1: Visualization of the slope geometry and different forces
acting on a slice in LEM
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where b, h the width and height of the slice,
R the radius of the circular sliding surface,
x horizontal distance between the center of slice and the

center of rotation of the sliding soil mass,
α the angle between the base of the slice and the horizontal

direction,
W the self-weight of the slice,
P, S the normal and shear force acting at the base of the slice over

a distance of l,
EL, ER horizontal forces acting at the left and right side of the slice,
XL, XR vertical forces acting at the left and right side of the slice.

By assuming the shear force to be a factor F smaller than the maximum possible
shear force and combined with the Mohr-Coulomb failure criteria, the shear force
acting at the base of the slice can be expressed as:

S =
1
F
{c′ + (σn − u)tanφ′} (2.1)

where c’ cohesion,
σn total normal stress,
u pore pressure,
φ′ internal friction angle.

The total normal stress is σn, where

σn =
P
l

(2.2)

Thus, according to equation (2.1), the shear force mobilized is:

S =
1
F
{c′ + (

P
l
− u)tanφ′} (2.3)

2.1.1 Fellenius method

The Fellenius method is the oldest and is considered as the simplest among these
methods since the factor of safety was calculated by a linear derivation. It is gen-
erally assumed that the horizontal forces between each slices can be neglected since
they are parallel to the base of the slice (Fellenius, 1936). The remaining forces acting
on a slice are the self-weight of the slice W, the normal and shear force acting at the
base of the slice P, S. Thus, both horizontal and vertical equilibrium are not satisfied
due to this assumption.

The normal force acting at the base of each slice can be determined by summation
of all the vertical and horizontal forces.

∑ Fv = 0 W − P cos α− S sin α = 0 (2.4)

∑ Fh = 0 S cos α− P sin α = 0 (2.5)

Substituting (2.5) into (2.4) derives the equation of the normal force:

P = W cos α (2.6)
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Then the factor of safety can be determined by summing the moments about the
center of rotation of the sliding mass.

∑ Mo = 0 ∑ Wx−∑ SR = 0 (2.7)

Substituting (2.3) and (2.6) into (2.7), the equation of factor of safety gives:

F =
∑((P− ul) tan φ′)R + c′l

∑ Wx
(2.8)

The equation can also be expressed as following if the pore pressure is assumed
equal to zero.

F =
∑(W cos α tan φ′ + c′l)R

∑ Wx
(2.9)

2.1.2 Bishop method

The simplified Bishop method assumed there are no interslice forces and the resul-
tant forces are horizontal (Bishop, 1955). The horizontal forces are not involved in
the computation and only the vertical equilibrium of each slice is satisfied in this
method.

∑ Fh = 0 S cos α− P sin α− (EL − ER) = 0 (2.10)

The normal force acting at the base of each slice can be determined by summation
of forces in the vertical direction (2.4) and combining the shear force equation (2.3).

P = [W − (c′l − ul tan φ′) sin α

F
]/mα (2.11)

where mα = cos α + tan φ′ sin α
F

Then the factor of safety can be determined by the summation of the moments
about the center of rotation of the sliding mass.

F =
∑((P− ul) tan φ′ + c′l)R

∑ Wx
(2.12)

Substituting (2.3) into (2.12) and neglecting the pore pressure, the equation can
then be written as following:

F =
∑((W − c′ l sin α+c′ l

F )/mα tan φ′)R
∑ Wx

(2.13)

2.1.3 Spencer method

The Spencer method makes assumptions that the interslice shear forces has a con-
stant relationship with the normal forces (Spencer, 1967). Thus, vertical, horizontal
and driving moment equilibrium are all satisfied on each slice.

tan θ =
XL

EL
=

XR

ER
(2.14)

where θ is the angle between the horizontal direction and the resultant interslice
force.
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∑ Fv = 0 W − S sin α− P cos α + (XL − XR) = 0 (2.15)

The normal force can be derived by summing the forces in the vertical (2.15) and
horizontal (2.10)direction.

P = [W + (EL − ER) tan α− (c′l − ul tan φ′) sin α

F
]/mα (2.16)

Unlike Fellenius and Bishop method, spencer method gives two equations of the
factor of safety: the first one is derived by the summation of moments about the
center of rotation (2.7), and the result is same as the simplified Bishop methods.

Fm =
∑((P− ul) tan φ′ + c′l)R

∑ Wx
(2.17)

The other is derived by the summation of forces in the direction parallel to the
interslice forces and the second factor of safety equation gives:

Ff =
∑((P− ul) tan φ′ + c′l) cos α

∑ P sin α
(2.18)

Figure 2.2 shows the relationship between Fm and Ff with varying θ. The inter-
section of the two curves gives the value of the factor of safety (F1) that satisfies both
the force and moment equilibrium.

FIGURE 2.2: Variation of two different factor of safety Fm and Ff with
θ (Spencer, 1967)

It can observed from the graph that the basis of the accuracy of simplified Bishop
method depends on the insensitivity of Fm to variation in θ when this angle is not
greater than θ1.
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2.1.4 Taylor’s analytical method

(Taylor, 1937) proposed an established solution to deal with the undrained homoge-
neous slope stability problem after analyzing a series of slopes of different geome-
tries with various combination of soil parameters. The soil strength parameters can
be represented by undrained cohesion value cu, internal friction angle φ and unit
weight of soil γ, and the slope angle by β∗ and slope height by H. The whole com-
binations of these parameters shown in the Figure 2.3.

FIGURE 2.3: Stability charts-Taylor’s curve (Bromhead, 1992)

The stability of the slope can then be defined by the equation:

Ns =
cu

FγH
(2.19)

where Ns the stability number (a dimensionless parameter).

Therefore, using the set of soil and slope geometry parameters, the correspond-
ing factor of safety can be directly read from the graph:

F =
cu

NsγH
(2.20)

2.2 Uncertainty

Like other geotechnical problems, slope stability problem also dominated by uncer-
tainty. For example, soil properties vary spatially due to the depositional process
and loading history, the statistical uncertainty result from incomplete site investiga-
tion data, the bias in the transformation model and correlation structure adpoted,
etc. Without rational consideration of the uncertainties, a single factor of safety FS
value cannot provide a comprehensive understanding of risk and isn’t qualified as
a safety indicator. Thus, probabilistic analysis is considered as a better approach
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which can account for the quantified uncertainties in the calculation process (El-
Ramly et al., 2002).

2.2.1 Sources of uncertainty

Many kinds of uncertainties can lead to the overall geotechnical variability. (Phoon
and Kulhawy, 1999) distinguished three primary geotechnical sources of uncertainty,
as shown in Figure 2.4, the inherent soil variability, measurement error, and trans-
formation uncertainty.

FIGURE 2.4: Uncertainties in geotechnical problems (Kulhawy, 1993)

• The inherent soil variability: results mainly from the natural deposition pro-
cesses that created and constantly change the in-situ soil mass.

• Measurement error: introduced primarily by testing equipment, testing oper-
ator, and the influence of random testing.

• Transformation uncertainty: introduced when the lab or field measurement
data are transformed into input information for the geotechnical design. Un-
certainty results from empirical data fitting or idealizations and simplifications
in the theory.

The above mentioned three sources contribute disproportionally to the general
uncertainty for the input parameters of the geotechnical design. They are influenced
by the different site conditions, the level of testing control and accuracy of the corre-
lation model. Due to the scope of investigation, this study only take account of the
inherent soil variability out of these three sources.

2.2.2 Modeling inherent soil variability

Because of the natural deposition process, all soil properties vary horizontally and
vertically. As shown in Figure 2.5. The inherent soil variability can be described by:

ξ(z) = t(z) + w(z) (2.21)

where z the depth,
ξ the in situ soil property,
t(z) the trend function,
w(z) the fluctuating factor.
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FIGURE 2.5: The inherent soil variability (Phoon and Kulhawy, 1999)

The trend function t(z) is often estimated by regression analysis and a common
method to quantify the inherent soil variability is to model the fluctuating factor
w(z) as a stationary random field (E. Vanmarcke, 1983).

A soil parameter can be classified as a random variable anywhere within a soil
layer, unless it is measured at that specific location. And according to the experi-
mental data of soil properties, the distribution of in-situ soil properties shows re-
semblance with a number of theoretical distribution functions. In order to transform
these data into design use, certain kinds of probability distribution (usually normal
or lognormal distribution) are usually adopted to simulate these random variables.
And a random variable is correlated with one next to it. Therefore, a random field
is actually a collection of random variables at all possible locations within the soil
layer.

A random field is called homogeneous (or stationary) under the condition that
mean and variance of w keep constant anywhere within the domain of the random
field. The correlation between w at two different depths is governed by the relative
distance within the random field, rather than their absolute distance.

2.2.3 Theory of random fields

As an important part of probabilistic slope stability analysis, random fields theory
has been widely adopted to model the spatial variability of different soil properties.
That is, the fluctuating factor, w, can be characterised by the correlation structures
using the random fields theory.

The term correlation structure is used for all functions describing the spatial vari-
ability of a field. The correlation structure contains information about the scale and
shape of the correlation between spatially distributed points within a field and is
a function of relative point distance or domain size (Van den Eijnden and Hicks,
2011). Variance function Γ(∆z) and correlation function ρ(∆z) are different corre-
lation structures and contain the same information. These different functions are
derived and discussed in this section.

Variance function
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Local averaging theory is considered to be a more rational mean to evaluate the
slope failure (E. Vanmarcke, 1983). Because:

1. In reality, it is impossible to measure the point to point variation with a soil
layer.

2. The average strength over the length of the slip surface is more informative
than the point to point strength variation.

3. A slope is more likely to fail with the existence of insufficient average strength
over the length of the slip surface than the presence of some weak points within
the layer.

The averaged spatial variability of soil properties is likely to be reduced in the
process of averaging. Because the fluctuating factor w of the soil properties got re-
moved with the increasing averaging distance ∆z, as shown in Figure 2.6. This way,
during the process of spatial averaging, the variance of the soil properties is de-
creased.

Dimensionless variance (reduction) function (Erik H Vanmarcke, 1977) Γ(∆z) is
the ratio between the moving average variance and the original point to point vari-
ance. It can measure how much the point to point variance got reduced compared
with the moving average variance.

Γ(∆z) =
σ2

∆z
σ2 (2.22)

where σ2
∆z the averaging variance over the length ∆z ,

σ2 the original point to point variance.

Figure 2.6 indicates a 1D stationary random field. Where E[X] is the mean value
and σ2 is the variance of variable X. The red line indicates the local averages over
interval ∆z.

FIGURE 2.6: A visualization of a 1D random field

Correlation function
The correlation function is adopted to defined the correlation between two points

at a relative distance ∆z within a field. The relationship between the correlation
function and the variance function can be expressed as (Erik H Vanmarcke, 1977):
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Γ(∆z) =
1

∆z2

∫ ∆z

0

∫ ∆z

0
ρ(za − zb)dzadzb (2.23)

If an exponential decaying correlation function is considered (Figure 2.7), the
variance function Γ(∆z) can be defined by the ratio of the area under the correlation
function (AC) over the averaging distance ∆z to the area under AB over the same
averaging distance.

FIGURE 2.7: Exponential decaying correlation function (Sivakumar
Babu et al., 2006)

The area under the curve AC over the averaging distance ∆z can be calculated
by the integral:

A =
∫ ∆z

0
ρ(x)dx =

∫ ∆z

0
exp(− x

θ
)dx (2.24)

If −x/θ = t, then dx = −θdt. For x = 0, t = 0. And for x = ∆z, t = −∆z/θ.
Thus,

A = −θ
∫ −∆z/θ

0
exp tdt = θ[1− exp(−∆z

θ
)] (2.25)

Therefore, the variance function can be expressed as:

Γ(∆z) =

{
1 ∆z

θ = 0,
θ

∆z [1− exp(−∆z
θ )] ∆z

θ > 0
(2.26)

The Markov autocorrelation coefficient function ρ(∆z) (2.27) is adopted to char-
acterize soil variability in this study (Figure 2.8):

ρ(∆z) = exp(−|∆z|
θ

) (2.27)

Where θ is the scale of fluctuation.

Thus, the corresponding variance function can be expressed as: (2.28):

Γ(∆z) =
θ2

2∆z2 [
2|∆z|

θ
+ exp(−2|∆z|

θ
)− 1] (2.28)

For this commonly used correlation function, the variance function Γ(∆z) can be
estimated as following (E. Vanmarcke, 1983):
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FIGURE 2.8: Exponential decaying correlation function with varying
value of θ

Γ(∆z) =

{
1 ∆z ≤ θ,
θ

∆z ∆z ≥ θ
(2.29)

This indicates no variance reduction when the moving average interval ∆z equal
to θ, Γ(∆z) = 1. And Γ(∆z) becomes inversely proportional to ∆z when it larger
than the scale of the fluctuation θ.

Another way to express the correlation function in terms of the the scale of fluc-
tuation is

θ = lim
∆z→∞

Γ(∆z)∆z (2.30)

The scale of fluctuation is a measure of variability of soil property over a relative
distance. A large value of the scale of fluctuation indicates that the soil property is
correlated over a large distance, the soil property vary slowly and the field is more
smooth. Conversely, when the scale of fluctuation θ is small, the soil property values
change rapidly over small distances, the field tend to be erratic and rough. Figure
2.9 shows exemplary random fields with two different scale of fluctuation θ.

FIGURE 2.9: 2D random fields of X with different scale of fluctuation;
low (left) and high (right)
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2.2.4 Discretization of random fields

Random fields consist of a list of random variables defined over a continuous do-
main. However, the numerical solution requires the translation of the continuous
parameter fields into discretized form.

Several random field discretization methods have been developed in the past
few decadeds. For example, the spatial averaging method, the midpoint method,
the shape function method and the covariance matrix decomposition method, etc.
Detailed review of these different methods can be found in (C.-C. Li and Der Ki-
ureghian, 1993), (Sudret and Der Kiureghian, 2000).

Considering the number of random field elements and random variables, dif-
ferent methods are more suitable to either FEM or LEM approach. Because of the
adoption of LEM approach in this study, only the midpoint method and covariance
matrix decomposition method are elaborated here.

The midpoint method The most simplest one among these method is the mid-
point method. Each element within the field domain is represented by the value at
the centroid of the element domain, as shown in Figure 2.10.

FIGURE 2.10: Random field mesh (C.-C. Li and Der Kiureghian, 1993)

where Xc the midpoint value,
Xi the node value,
Ωe the element domain,
Ω the random field domain.

(Cho, 2007) has found a way to apply this method to probabilistic LEM approach
which can describe the inherent spatial variability of the soil properties. Each slice
here represents an element domain over a distance ∆x, the value at each slice base
represents the midpoint value.

This way, the random values within the entire random field domain can be suc-
cessfully assigned onto each slice. Figure 2.11 shows the midpoint method with
same arc length ∆x of each slice.

Covariance matrix decomposition
The matrix decomposition method always starts with forming the autocovari-

ance matrix C.
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FIGURE 2.11: Schematic viualisation of the midpoint method in the
slope stability analysis

The variance of a random variable X is the expectation of the squared deviation
from the mean of X. The variance equals to the square of the standard deviation σ2.
It is also represents the second moment of a distribution s2, and the covariance of a
random variable with itself var(X). It can be expressed by the Eq.2.31:

var(X) = σ2
X = E[(X− E[X])2] = cov(X) = E[(X− E[X])(X− E[X])T] (2.31)

It also called autocovariance matrix C or cross-covariance matrix for a set of data
X itself. The autocovariance matrix C is related to autocorrelation matrix R by:

C = cov[X, X] = E[(X− E[X])(X− E[X])T]

= E[(X− µX)(X− µX)
T] = Rσ(X)σ(XT)

(2.32)

Where R = E[XXT], µX = E[X]; R is defined by means of the exponential decaying
Markov autocorrelation coefficient function ρ(∆z) (2.27) in this study, and it can be
expressed as follows:

R =


1 E[(X1−µ1)(X2−µ2)]

σ(X1)σ(X2)
. . . E[(X1−µ1)(Xn−µn)]

σ(X1)σ(Xn)
E[(X2−µ2)(X1−µ1)]

σ(X2)σ(X1)
1 . . . E[(X2−µ2)(Xn−µn)]

σ(X2)σ(Xn)
...

...
. . .

...
E[(Xn−µn)(X1−µ1)]

σ(Xn)σ(X1)
E[(Xn−µn)(X2−µ2)]

σ(Xn)σ(X2)
. . . 1



=


1 ρ12 . . . ρ1n

ρ21 1 . . . ρ2n
...

...
. . .

...
ρn1 ρn2 . . . 1


(2.33)

In the probabilistic LEM analysis, the random field domain transformed into n
slices after the random field discretization Z.

This way, the covariance between any two slices of Z can be represented by a
n× n autocovariance matrix C:

C = E[ZZT] (2.34)
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One of common used covariance matrix decomposition method, Cholesky de-
composition can decompose a positive definite covariance matrix into a product of
a lower triangular matrix and the transpose of itself.

Z = Aξξξ (2.35)

Where A is the n× n lower triangular matrix with n positive diagonal elements, ξξξ is
a vector with n random numbers sampled by means of standard normal sampling.

Substituting Eq.(2.35) into Eq.(2.34) can derive the expression below:

E[ZZT] = E[Aξξξ(Aξξξ)T] = E[AξξξξξξTAT] = AAT = C (2.36)

2.3 Probabilistic analysis methods

In the past few decades, people found ways to apply some commonly used prob-
abilistic analysis methods into slope stability problem. For example, the first order
second moment method (FOSM), first order reliability method (FORM), Monte Carlo
Simulation (MCS), etc. In order to better understand the implementation of different
methods, it first starts with the basic concept of the performance function (limit state
function) and the derivation of probability of failure in the slope stability problem.

The performance function g(X) is used to define the limit state (g(X) = 0) for a
variable X. It separates the failure domain where the slope failed (g(X) ≤ 0) and the
safety domain where the factor of safety of the slope meet the safety requirement(
g(X) ≥ 0). Usually, for a single potential slip surface, the performance function can
be defined as:

g(X) = FS− 1.0 (2.37)

This way, the probability of failure of the slope that consist of all the potential
slip surfaces can be defined by the joint probability density function integrated over
the entire failure domain:

Pf = P[g(X ≤ 0)] =
∫

g(X≤0)
fX(X)dX (2.38)

Where fX(X) the joint probability density function.

However, it is almost impossible to directly integrate the joint probability density
over the failure domain because the limit state function always involves several soil
strength parameters in the slope stability problems. And usually it’s not just a linear
function. Therefore, different probabilistic analysis methods have been developed
to approximate this integral.

2.3.1 Monte Carlo simulation

Monte Carlo simulation (MCS) method is commonly used in probabilistic LEM anal-
ysis to investigate the slope stability problem. Because the advantage of conceptual
simplicity and unrestricted by the complexity of the performance function.

In MCS method, a huge number of sets of random variables are generated first
according to the type of their own probability distribution. For each generated set,
limit equilibrium method (simplified Biship method) is employed, the performance
function is evaluated, statistical analysis is performed to calculate the probability of
failure Pf or reliability index β.
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For each iteration, the performance function is evaluated to determine whether
it exceeded the limit state function or not. The probability of failure Pf can be calcu-
lated after this evaluation process is repeated many times:

Pf =
1

Nt

Nt

∑
n=1

g(X ≤ 0) =
1

Nt

Nt

∑
n=1

(FSmin < 1) (2.39)

Where Nt the total number of the iterations during MCS process.

And the reliability index β can then be calculated by the inverse of the cumulative
distribution function of the probability of failure Pf :

β = −Φ−1[Pf ] (2.40)

The advantage of the MCS method is not limited to its simple concept. There
are various statistical analyses can be performed after the simulation process. For
example, the probability density function and cumulative distribution function of
the factor of safety, the mean and standard deviation of the factor of safety, etc. Thus,
MCS method provides us a more comprehensive understanding of the safety of the
slope.

However, the most obvious drawback is that it requires a large amount of com-
putational efforts to reach an acceptable accuracy.

2.4 System probability of failure

(Chowdhury and Xu, 1995) demonstrated the importance of considering the slope
stability problem in terms of a system of many potential slip surfaces. The assump-
tion of such a system is a series system. The probability of failure of such a sys-
tem will be larger than that for any individual slip surface. Therefore, the system
probability of failure will depend on each individual modes of failure as well as the
correlations between the different failure modes. However, it is difficult to calculate
accurately the correlation coefficients between each individual failure modes when
the performance function is inexplicit and non-linear.

To simplify the problem, one may consider the slope as a series system (failure
occurs if any potential slip circle of the system fails) or a parallel system (the system
does not fail unless all potential slip circles fail) or a combination of both. However,
the assumption of a series system leads to significantly high failure probability, the
assumption of a parallel system leads to extremely low failure probability(Ang and
Tang, 1984).

Thus, the slope stability problem in this study is considered as a series system
that comprises all potential slip circles with correlations between different potential
slip circles.

For RF-MCS method, the system probability of failure is estimated by generating
certain amount of potential slip circles first and then performing MCS to calculate
the minimum factor of safety FSmin among them for each realisation of random field.
The Pf can be estimated by dividing the number of failure realisations by the total
number of realisations.

For direct MCS method, the critical failure circle is located and the highest value
of probability of failure corresponding to that circle is determined simultaneously
in one realisation of analysis. This value of probability of failure is regarded as the
system probability of failure.
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2.5 Summary

This chapter summarises the relevant literature used in this study:

1. The basic concept of limit equilibrium methods (LEM) are introduced first, in-
cluding three commonly used LEM (Fellenius, Bishop and Spencer) and Tay-
lor’s analytical method. The derivation of the factor of safety of each method
are illustrated.

2. Three general types of uncertainty in the geotechnical problems are illustrated
next. The most important one, the inherent soil variability, and how to model
this uncertainty by the theory of random field are introduced next. Relevant
techniques used by this study to discretize the random field are presented,
namely, the midpoint method and Chokesky decomposition.

3. The definition of system probability of failure is elaborated. Details involved
how three different MCS methods estimate the system probability of failure Pf
in this study.
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Chapter 3

Probabilistic LEM development
and verification

This chapter introduces the development and verification of the proposed Random
Field - Monte Carlo Simulation method (RF-MCS method). It starts with a basic
deterministic analysis model. Then, the relevant concepts used in the probabilistic
analysis model, random field generation, the estimation of the midpoint value for
each slice base and the correlation between different slip surface, are elaborated.
The deterministic and probabilistic model are verified against the results given by
(Cho, 2009) and (Jiang et al., 2015).

3.1 Deterministic model

For a slope stability problem, deterministic analysis calculates the factor of safety
FS by assuming all the soil mass are homogeneous within the slope geometry do-
main. In this section, the limit equilibrium methods (LEM) introduced in the previ-
ous chapter are employed to calculate the factor of safety. The calculation process of
deterministic analysis is implemented in a Python program. The most critical slip
surface is selected by the program. The corresponding factor of safety is the mini-
mum factor of safety FSmin. The accuracy of the model is verified by the commercial
software D-Geo stability (version 18.1) and the results given by (Cho, 2009).

3.1.1 Benchmark deterministic analysis 1: a undrained clay slope (φ = 0)

An example undrained slope is analyzed here using simplified Bishop method un-
der the assumption that there is no external force acting on the slope. The input soil
parameters and slope geometry are exactly same with (Cho, 2009). The slope height
is 5m and the slope angle β∗ is 26.56◦, as shown in Figure 3.1. The pore pressure is
neglected in this study and it keep the same for all the rest analysis. The slope is
characterized by homogeneous soil property. The input soil parameters are given in
Table 3.1.

Parameter Value Unit
Cohesion (c) 23 kPa
Internal friction angle (φ) 0 ◦

Unit weight (γ) 20 kN/m3

TABLE 3.1: Input soil parameters for deterministic analysis 1
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(a:cross-section from Python program)

(b:cross-section from D-Geo stability)

(c:cross-section from (Cho, 2009))

FIGURE 3.1: Example slope geometry 1 (FSmin=1.356)

Figure 3.1 (a), (b) show the critical slip surface selected by the Python program
and D-Geo stability, respectively. The failure mechanism and the geometry of the
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circle is identical to the one given by (Cho, 2009).
The minimum factor of safety FSmin calculated by the Python program is 1.356,

which is the same as the result calculated by D-Geo stability and the result given by
(Cho, 2009).

3.1.2 Benchmark deterministic analysis 2: a c-φ slope

This second deterministic analysis deals with the problem for a c-φ slope. The slope
geometry and input soil parameters are still keep the same with (Cho, 2009). The
slope height is 10m and the slope angle β∗ is 45◦, as shown in Figure 3.2. The input
soil parameters are given in Table 3.2.

Parameter Value Unit
Cohesion (c) 10 kPa
Internal friction angle (φ) 30 ◦

Unit weight (γ) 20 kN/m3

TABLE 3.2: Input soil parameters for deterministic analysis 2

Figure 3.2 (a) shows the critical slip surface selected by the Python program. The
failure mechanism and the circle geometry is identical to the one given by (Cho,
2009).

D-Geo stability cannot deal with the slip circle that just cross the toe of the slope,
as shown in Figure 3.2 (b). However, this can be achieved by defining the radius of
the circle in the Python program so that the circle cut from the toe of the slope.

The minimum factor of safety FSmin calculated by the Python program is 1.204,
which is the same as the result given by (Cho, 2009).

Therefore, the accuracy of the deterministic Python model can be verified from
these 2 deterministic benchmark analysis.

3.2 Probabilistic model

Probabilistic slope stability analysis has been widely adopted in recent study since
its ability to take into account of the inherent spatial variability of uncertain soil
properties which can be defined by the random field. The general concept of the
random field is already elaborated in chapter 2. Therefore, this section focuses more
on how to apply these concept into probabilistic analysis.

3.2.1 Correlation structure of 2D random field

The lognormal stationary random field H(~χ) can be generated by applying a trans-
formation Ψ(.). A lognormal random field is adopted here because the lognormal
random variable is a nonnegative variable, which can well characterize the physical
meaning of certain soil parameters (i.e. c and φ).

H(~χ) = Ψ(Z(~χ)) = exp(µlnX + σlnXZ(~χ)), ~χ ∈ Ω (3.1)

Where the spatial correlation is taking into considertaion in the standard normal
field Z(~χ). µln, σln are the mean and standard deviation of the lognormal field,
respectively.

µlnX = lnµX − 0.5σ2
lnX (3.2)
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(a:cross-section from Python program)

(b:cross-section from D-Geo stability)

(c:cross-section from (Cho, 2009))

FIGURE 3.2: Example slope geometry 2 (FSmin=1.204)
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σlnX =
√

ln(1 + COV2
X) (3.3)

COVX =
σX

µX
(3.4)

The inherent spatial variability of uncertain soil properties in the horizontal and
vertical directions can be modeled by a 2D lognormal stationary random field H(x, y)
with a mean µH and standard deviation σH, where x, y is the horizontal and vertical
coordinate on a bounded domain Ω, 0 ≤ x, y ≤ Lx,y; Lx and Ly are the lengths of Ω
in the horizontal and vertical directions, respectively.

The autocorrelation coefficient function in the in the 2D domain can then be ex-
pressed as:

ρ(x,y) = exp
(
− ∆x

θh
− ∆y

θv

)
(3.5)

Where, θh and θv are the horizontal and vertical autocorrelation distance, respec-
tively. ∆x and ∆y represent the absolute distance on the horizontal and vertical
direction, respectively.

3.2.2 Correlation between different random variables

Despite the spatial correlation of one variable with adjacent locations, correlation
exist between different variables X. For example, the cohesion c and the internal
friction angle φ. To define the correlation between these two random variables, two
separate standard normal random fields Zc

i and Zφ
i are generated both of which are

characterized by a normal distribution. Another correlation matrix Rcφ is created to
correlate these two random variables.

Rcφ =

[
ρcc ρcφ

ρφc ρφφ

]
(3.6)

Then the second standard normal random field Zφ
i can be correlated with Zc

i by
Cholesky decomposition of the correlation matrix Rcφ.[

Zc
i

Zφ
i

]
corr.

= Chol.(Rcφ)

[
Zc

i
Zφ

i

]
uncorr.

(3.7)

The magnitude of correlation between these two standard normal random fields
Zc

i and Zφ
i depends on the correlation of each random variable at the same location

ρcφ. Figure 3.3 shows the correlation between two random fields with ρcφ = 0.3 and
0.9, respectively. The magnitude of correlation increases with the increasing value
of ρcφ. The right graph below shows the standard normal random field Zφ

i closely
follows the trend of Zc

i with higher value of ρcφ.
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FIGURE 3.3: Two different random fields with different magnitude of
correlation; Low correlation (left) and high correlation (right); Dash

lines indicate the mean value of the trend

3.2.3 Random field generation for RF-MCS method

For RF-MCS method, in order to create a random field of a certain soil parameter,
a rectangular mesh-grid is generated for later to map the random values onto it
(Figure 3.4).

FIGURE 3.4: Generation of the rectangular mesh-grid

A random field can be generated as a list of random values, which can be mapped
onto the rectangular mesh-grid. The value of a random variable at one point in the
field are correlated with the value within a distance from the point. The mapping
procedure of soil parameter, the cohesion c and the internal friction angle φ, is shown
in Figure 3.5.

The random values of the correlated lognormal variable are assigned to the 2D
mesh-grid from the top left corner to the bottom right corner following the arrows
shown in Figure 3.4. This way, a random field with point values on the rectangular
grid points are generated.
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FIGURE 3.5: Schematic visualization of the mapping process

3.2.4 Estimation of the midpoint value at each slice base

The random values should be assigned onto the slip surface after generation of the
random field. Figure 3.6 shows a typical slope stability problem with an assumed
slip center and slip surface. The colored grid points represent the 2D random field
with mapped value, the red plus markers at each slice base represent the midpoint.

FIGURE 3.6: Cross-section through a soil mass with an assumed slip
center and slip circle for RF-MCS

Linear interpolation is adopted in the RF-MCS method to estimate the value at
the midpoint of each slice base.

At each midpoint, the values of soil parameter, the cohesion c and the internal
friction angle φ, are interpolated by the function RegularGridInterpolator in the
Python program. Then, the factor of safety FS of this single slip surface can be
calculated after the interpolation procedure.
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Once derived the factor of safety of the single assumed slip circle, same strategy
can be extrapolated to a combination of different slip circles, represented by n hor-
izontal coordinates xci, n vertical coordinates yci of the center of slip circles and n
different radii Ri of the slip circles, as shown in Figure 3.7. The value n for slip circle
radius and center coordinates can be different. Therefore, n3 potential slip circles
can be produced in each realisation. The slip circle which gives the lowest factor of
safety FSmin,i can be selected as the most critical slip surface.

Here, a realisation means one possible analysis that consist of all n3 potential
slip circles. A single realisation could be regarded as a failure realisation N f ,i, if the
lowest factor of safety FSmin,i < 1. So, the system probability of failure Pf of a slope
can be estimated as:

Pf =
N f

Nt
=

1
Nt

Nt

∑
n=1

(FSmin < 1) (3.8)

Where Nt is the total number of realisations and it equals to the number of random
fields generated. N f is the number of failure realisations.

FIGURE 3.7: Schematic visualization of the RF-MCS method

The main features of the proposed RF-MCS method is:

1. The random field only generate once in each realisation which is more realistic
compared with two other direct MCS (each potential slip circle was assigned
different random fields).

2. The correlation between different slip surfaces is taken into consideration since
the mesh-grid values of the random field are correlated and two different soil
properties, the cohesion c and the internal friction angle φ, are also correlated
with each other.

3. The searched critical failure circle can be visualized against the distribution of
random field.
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3.2.5 Random field generation for direct MCS method

For direct MCS method, the random field is generated and directly assigned onto the
midpoint of slice base. Figure 3.8 shows a cross section of a slope with an assumed
slip center and slip surface. The correlation structure used in the random field gen-
eration process is defined by the coordinate of the midpoint of each slice. And it is
modeled by the autocorrelation coefficient function given in equation 3.10.

FIGURE 3.8: Cross-section through a soil mass with an assumed slip
center and slip circle for direct MCS

For this assumed slip surface, Nt random fields are generated. Then, Monte carlo
simulation is performed to calculate Nt Factor of safety FS corresponding to these
Nt random fields. The probability of failure of this single circle can be calculated as:

Pf =
1

Nt

Nt

∑
n=1

(FS < 1) (3.9)

This single circle then can be extrapolated to a combination of different slip cir-
cles, represented by n horizontal coordinates xci, n vertical coordinates yci of the
center of slip circles and n different radii Ri of the slip circles (as did in RF-MCS
method).

At the end, the system probability of failure of the slope can be derived by select-
ing the highest single probability of failure among the n3 potential slip circles.

3.3 Implementation procedure of 3 different methods

The methodology of the 3 methods are elaborated in this section. Figure 3.11 shows
flowcharts for the implementation of the RF-MCS method, DS-MCS method and
DC-MCS method schematically.

The implementation procedure of DS-MCS method and DC-MCS method will
be explained first. In general, it involves four steps and the details of each step are
given as follows:
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1. Determine the input parameters such as the mean and standard deviation of
the soil strength parameters, cross-correlation coefficient between c and φ, au-
tocorrelation function used to define the correlation structure, etc) and slope
geometry of the soil properties.

2. Generate Np potential slip circles according to the prescribed domain and the
radius. Np equals to n3 which represents n horizontal coordinates of slip circle,
n vertical coordinates of slip circle, and n radii of slip circle.

3. For each potential slip circle, Nt random fields are generated by normal sam-
pling. A limit equilibrium analysis (simplified Bishop method) is performed
and combined with MCS to calculate factor of safety FS, probability of failure
Pf for each potential slip circle.

4. Select the circle which gives the highest value of Pf or lowest value of β. The
Pf and β are regarded as system probability of failure and system reliability
index, respectively. The circle is the most critical failure circle.

The main difference of DS-MCS method and DC-MCS method lies in step 3, the
generation random field. Detailed concept of Cholesky decomposition is already
explained in chapter 2.2.4.

In DS-MCS method, the standard normal random numbers vector with n-entry
ξξξ is sampled by means of standard normal sampling with µ = 0, σ = 1 separately
for strength parameter cohesion c and friction angle φ, as shown in Figure 3.9.

In DC-MCS method, the standard normal random numbers ξξξ is sampled once
by means of standard normal sampling with µ = 0, σ = 1 but generate a 2 ∗ n-entry
vector. Parameter c samples the former n-entries and parameter φ samples the latter
n-entries, as shown in Figure 3.10.

FIGURE 3.9: Random number sampling in DS-MCS method

FIGURE 3.10: Random number sampling in DC-MCS method

The implementation procedure of RF-MCS method involves six steps:
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FIGURE 3.11: Flowchart of implementation of the Monte Carlo
method; RF-MCS method (left), direct MCS method (right)
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1. Determine the input parameters such as the mean and standard deviation of
the soil strength parameters, cross-correlation coefficient between c and φ, au-
tocorrelation function used to define the correlation structure, etc) and slope
geometry of the soil properties.

2. Generate a random field by Cholesky decomposition.

3. Generate Np potential slip circles according to the prescribed domain and the
radius. Np equals to n3 which represents n horizontal coordinates of slip circle,
n vertical coordinates of slip circle, and n radii of slip circle.

4. For each potential slip circle, perform linear interpolation to map the random
field value onto the midpoint of slice base. Perform a limit-equilibrium analy-
sis (simplified Bishop method) to calculate factor of safety FS.

5. Select the circle which gives the lowest value of factor of safety FSmin.

6. Calculate the probability of failure Pf and reliability index β after repeat Nt
times. The Pf and β are regarded as system probability of failure and system
reliability index, respectively.

3.4 Benchmark analysis 1: a undrained clay slope (φ = 0)

This section uses the proposed RF-MCS method to analyze a undrained clay slope.
A benchmark probabilistic analysis is performed here aims to verify the probabilistic
model against the work did by (Cho, 2009) which demonstrate the advantages of the
probabilistic analysis of slope stability problem.

3.4.1 Initial input information

The geometry of this undrained slope is keep the same as the one used in the first
deterministic analysis (Figure 3.1). The slope height is H = 5 m and the slope an-
gle is 26.56◦. The unit weight of the soil is γ = 20 kN/m3. The domain of potential
slip circle is defined as: (x ∈ [-10,0]; y ∈ [5,15]) and the domain of random field is
defined as: (x ∈ [-20,10]; y ∈ [-5,5]) (Figure 3.12). The number of circle is 10*10*10.
The number of slice division is 30. The strength parameter cohesion c is lognormally
distributed. According to (El-Ramly et al., 2002), the reasonable horizontal autocor-
relation distance fluctuate between 10 ∼ 40m, and 1 ∼ 3 m in the vertical direction.
Thus, θh = 20m, θv = 2m are adopted in this study. All the other input soil and
domain parameters are given in Table 3.3.

The autocorrelation function in this benchmark analysis is given below and it
keeps the same for all the following analysis in this report:

ρ(x,y) = exp
(
− ∆x

θx
− ∆y

θy

)
(3.10)
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Parameter Value Unit
Slope angle (β∗) 26.56 (◦)

Cohesion (c)(COV=0.3) 23 (kPa)
Density of random field mesh 60*60 (-)

Horizontal autocorrelation distance (θh) 20 (m)
Vertical autocorrelation distance (θv) 2 (m)

TABLE 3.3: Initial parameters for benchmark analysis 1

FIGURE 3.12: Indication of some input information

3.4.2 Pre-analysis

This section aims to identify the influence of the slice division and the number of po-
tential slip circles used in the inital input information for the analysis. A sensitivity
analysis is performed to investigate this influence. All the other parameters are keep
constant as indicated in the previous section, the only variable here is the number of
slice and and the number of potential slip circles, respectively. 50, 000 random fields
have been generated for each analysis.

Number of slice division Pf µFSmin σFSmin COVFSmin

30 0.0385 1.3396 0.2116 0.1579
40 0.0374 1.3400 0.2112 0.1576
50 0.0372 1.3418 0.2116 0.1577

TABLE 3.4: Results from sensitivity analysis of slice division

Number of slip circle Pf µFSmin σFSmin COVFSmin

83 0.0375 1.3433 0.2127 0.1584
103 0.0385 1.3396 0.2116 0.1579
123 0.0394 1.3361 0.2107 0.1577

TABLE 3.5: Results from sensitivity analysis of number of slip circle
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Table 3.4 summarises the results from the sensitivity analysis of slice division.
The largest difference of the derived probability of failure is 3.5%. Table 3.5 sum-
marises the results from the sensitivity analysis of number of slip circle. The largest
difference of the derived probability of failure is 5%.

Because the computational time suffers from the increasing number of slice and
the number of slip circle. Under the condition that the adequate accuracy can be
guaranteed, the slice division is set to be 30 and the number of slip circle is chosen
as 103 for the following analysis.

3.4.3 Analysis and results

Figure 3.13 shows four realizations of random field obtained by the RF-MCS meth-
od. The darker area represent a smaller soil parameter value while the lighter area
represent a larger soil parameter value. Various failure mechanisms can be observed.
Some failure surfaces go deep or even touch the base of the slope. Some are rela-
tively shallow and go across the toe. Another phenomenon is that the failure surface
always pass through the weaker area in the slope. The inherent spatial variability
caused various failure mechanisms can not be demonstrated by the deterministic
analysis.

FIGURE 3.13: Typical realizations of random fields ( θh=20 m,θv=2 m)

Table 3.6 summaries the simulation results from this benchmark probabilistic
analysis and results reported by (Cho, 2009) and (Jiang et al., 2015). Here, simulation
result indicates the minimum number of realisations that could yield a converged
result. The last column k in the table indicate the relative difference of probability of
failure Pf from different studies. It is derived by the Pf from 2 other studies divided
by the Pf from this study.

The relative difference of probability of failure Pf is almost twice smaller than
the result given by (Cho, 2009) and (Jiang et al., 2015). The difference might result
from the different method adopted to generate the random field (Karhunen-Loève
Expansion were adopted by (Cho, 2009) and (Jiang et al., 2015)).
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Method Pf Source k
RF-MCS + Cholesky decomposition (50,000) 3.85× 10−2 This study -

MCS + KL expansion (100,000) 7.6× 10−2 (Cho, 2009) 1.97
MCS + LHS (1,000) 8.3× 10−2 (Jiang et al., 2015) 2.16

TABLE 3.6: Influence of autocorrelation distance on the statistical re-
sponse 1

In order to further verify the RF-MCS method in this study, the critical failure
surface selected by the deterministic analysis was reanalysed by this RF-MCS prob-
abilistic analysis approach.

Figure 3.14 indicates the convergence of the simulation. The blue dash line in
the figure indicate the result from the fixed slip circle selected by the determinis-
tic analysis previously in section 3.1.1. Even though the same slope was analyzed
using the same proposed RF-MCS method, the system probability of failure of the
slope is 0.0385 which is significantly greater than the one calculated from the fixed
deterministic critical surface (0.0148).

FIGURE 3.14: Probability of failure derived from 2 approaches

Figure 3.15 shows the probability density function and the cumulative distribu-
tions of the factor of safety derived from the two approaches.

FIGURE 3.15: Probability density function (left) and cumulative dis-
tribution of the factor of safety (right)

Large difference can be found from the results derived by two different approaches.
This is because the correlation between different failure surfaces are quite low and
the accuracy of the probability of failure approximated by the fixed critical surface
can only be guaranteed when the correlation between different surfaces is very high



38 Chapter 3. Probabilistic LEM development and verification

(Cornell, 1967). This phenomenon is the same as the work done by (Cho, 2009) which
can verify the RF-MCS method from another angle.

3.5 Benchmark analysis 2: a c-φ slope

A c-φ slope is analyzed in this section by RF-MCS method so that the model can be
further verified.

3.5.1 Initial input information

The geometry of this c-φ slope is keep the same as the one used in the second deter-
ministic analysis (Figure 3.2). The slope height is H = 10 m and the slope angle is
45◦. The unit weight of the soil is γ = 20 kN/m3. The domain of potential slip circle
is defined as: (x ∈ [-1,9]; y ∈ [10,20]) and the domain of random field is defined as: (x
∈ [-20,10]; y ∈ [-5,10]). The number of circle is 10*10*10. The soil strength parameter
cohesion c and friction angle φ are lognormally distributed. The correlation coeffi-
cient ρcφ is chosen as -0.5. A negative correlation coefficient indicates that negative
relationship exist between the cohesion and friction angle. That is, increasing the
cohesion value will decrease the value of friction angle and vice versa.

All the other input soil and domain parameters are given in Table 3.7.

Parameter Value Unit
Slope angle (β∗) 45 (◦)

Cohesion (c)(COV=0.3) 10 (kPa)
Friction angle (φ)(COV=0.2) 30 (◦)

Density of random field mesh 60*60 (-)
Horizontal autocorrelation distance (θh) 20 (m)

Vertical autocorrelation distance (θv) 2 (m)

TABLE 3.7: Initial parameters for benchmark analysis 2

3.5.2 Pre-analysis

As did in the previous section, a sensitivity analysis was performed first to test the
influence of the slice division and the number of slip circle. 50, 000 random fields
have been generated for each analysis.

Number of slice division Pf µFSmin σFSmin COVFSmin

30 0.0055 1.2269 0.0967 0.0788
40 0.0054 1.2261 0.0965 0.0787
50 0.0051 1.2272 0.0973 0.0793

TABLE 3.8: Results from sensitivity analysis of slice division

Number of slip circle Pf µFSmin σFSmin COVFSmin

83 0.0055 1.2275 0.0974 0.0793
103 0.0055 1.2269 0.0967 0.0788
123 0.0059 1.2262 0.0972 0.0792

TABLE 3.9: Results from sensitivity analysis of number of slip circle
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Table 3.8 summarises the results from the sensitivity analysis of slice division.
Table 3.9 summarises the results from the sensitivity analysis of number of slip circle.
In both cases, the largest difference of the derived probability of failure is 7%, which
is still within the acceptable level (±10%). Therefore, the slice division is set to be 30
and the number of slip circle is chosen as 103 for the following analysis for the c-φ
slope.

3.5.3 Analysis and results

Figure 3.16 shows three realizations of random field obtained by the RF-MCS method.
Notice that negative relationship exist between the cohesion and the friction angle.
(The darker area displayed in the cohesion diagram correspond with the lighter area
shown in the friction angle diagram). And the failure surfaces always go across the
toe of the slope.

Table 3.10 summaries the simulation results from this benchmark probabilistic
analysis and the results reported by (Cho, 2009) and (Jiang et al., 2015). The last
column k in the table indicate the relative difference of probability of failure Pf from
different studies. It is derived by the Pf from 2 other studies divided by the Pf from
this study.

The slight difference of probability of failure Pf might result from the different
method adopted to generate the random field (Karhunen-Loève Expansion were
adopted by (Cho, 2009) and (Jiang et al., 2015)).

Method Pf Source k
RF-MCS + Cholesky decomposition (50,000) 5.5× 10−3 This study -

MCS + KL expansion (100,000) 3.9× 10−3 (Cho, 2009) 0.71
MCS + LHS (10,000) 4.4× 10−3 (Jiang et al., 2015) 0.80

TABLE 3.10: Influence of autocorrelation distance on the statistical
response 2

Figure 3.17 indicates the convergence of the simulation. The blue dash line in
the figure indicate the result from the fixed slip circle selected by the deterministic
analysis previously in section 3.1.2. The proposed RF-MCS method calculated sim-
ilar results for the system probability of failure (0.0055) and the Pf from the fixed
deterministic critical surface (0.0042) (Figure 3.17).

FIGURE 3.17: Probability of failure derived from 2 approaches

Figure 3.18 shows the probability density function and the cumulative distribu-
tions of the factor of safety derived from the two approaches.
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(a)

(b)

(c)

FIGURE 3.16: Typical realizations of random fields (ρ=-0.5, θh=20
m,θv=2 m)
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Because the correlation between different failure surfaces are quite high (almost
all the slip surfaces go across the toe and stay above the base of the slope, as shown
in Figure 3.16), the results from the fixed deterministic critical surface are very close
to the system analysis results by RF-MCS method.

FIGURE 3.18: Probability density function (left) and cumulative dis-
tribution of the factor of safety (right)

Table 3.11 summarised the study of the effect of varying the cross correlation
coefficient between c and φ.

ρcφ Deterministic µFSmin σFSmin COVFSmin

-0.7 1.204 1.2284 0.0790 0.0643
-0.5 1.204 1.2269 0.0967 0.0788
-0.25 1.204 1.2265 0.1159 0.0945

0 1.204 1.2217 0.1330 0.1089
0.25 1.204 1.2229 0.1462 0.1196
0.5 1.204 1.2169 0.1577 0.1296

TABLE 3.11: Influence of correlation coefficient on the statistical re-
sponse

Figure 3.19 shows the probability density functions and the cumulative distribu-
tions of the factor of safety.

The narrower trend of the probability density function can be observed when
cross correlation coefficient values decreased. This trend is also the same as the
finding reported by (Cho, 2009) which can also verify the RF-MCS method from
another point of view.

FIGURE 3.19: Distribution of Fmin for correlation coefficient; PDF
(left) and CDF (right)
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3.6 Discussion

As one of the main features of this new proposed RF-MCS method, the combina-
tion of LEM and random fields allows us to visualise various failure mechanisms
against the distribution of random fields. Various failure mechanisms caused by the
inherent spatial variability of soil properties can not be manifested by the determin-
istic analysis. Instead of analyzing the fixed deterministic critical failure circle, the
program can locate the probabilistic critical failure circle by the search algorithm.
The degree of variation of different failure mechanisms depends on the correlation
between different potential slip surfaces. When the correlation is low, different fail-
ure mechanisms will change greatly (as indicated in the slope with only cohesion).
When the correlation is high, different failure mechanisms behave similarly to each
other (as indicated in the c-φ slope).

3.7 Summary

This chapter verified the Python program of this proposed RF-MCS method. The
verification of the deterministic model is performed by the commercial software D-
Geo stability and the results given by (Cho, 2009). The verification is based on the
critical failure surface located and the corresponding factor of safety derived.

• For the slope with only cohesion, the geometry of the critical slip surface se-
lected by 3 programs and the corresponding factor of safety are the same.

• For the c-φ slope, D-Geo stability cannot locate the critical slip surface due to
the circle just cross the toe and go deep to the base of the slope. But the results
from the Python program are consistent with that given by (Cho, 2009).

Therefore, the accuracy of the deterministic model can be guaranteed.
The verification of the probabilistic model is mainly based on the results given

by (Cho, 2009) and (Jiang et al., 2015) who performed the investigation using similar
methods. The verification is based on the calculated system probability of failure of
the slope.

• Difference of results exist for both the slope with only cohesion and the c-φ
slope. The difference might result from different methods used to generate the
random field. This study used Cholesky decomposition with standard nor-
mal sampling method. But the study did by two other authors adopted KL
expansion with Latin hypercube sampling method.

• However, some other findings from this probabilistic model are consistent
with that from (Cho, 2009). That is, the probability of failure from a single slip
surface can represent the system probability of failure of a slope only under the
condition that the correlation between them are high enough. Similar results
also have been found from the parametric study of the correlation coefficient
for c-φ.

Thus, these findings can verify the probabilistic model.
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Chapter 4

Comparison of 3 different Monte
Carlo methods

The proposed RF-MCS method will be compared with Direct and Separate-Monte
Carlo Simulation method (DS-MCS method) and Direct and Combined-Monte Carlo
Simulation method (DC-MCS method) after the verification in the last chapter. The
demonstration of the difference of these 3 methods will be elaborated theoretically
and numerically.

4.1 Comparison based on a undrained clay slope (φ = 0)

This section uses the proposed RF-MCS method and direct MCS method to analyze
a undrained clay slope. Results are compared after the simulation process. The
criterion of comparison of 3 MCS methods are the calculated probability of failure
Pf and computational time needed for each method.

4.1.1 Initial input information

The slope and all the other input soil and domain parameters are keep constant as
the benchmark analysis have done previously in section 3.4.1. Figure 4.1 gives the
example analysis result from 3 MCS methods (Only one figure is shown for DS-MCS
method and DC-MCS method since the visualisation of DS-MCS method and DC-
MCS method is almost the same).

FIGURE 4.1: Schematic visualisation of the calculation from 3 MCS
methods; RF-MCS method (left) and direct MCS method (right)

4.1.2 Analysis and results

Figure 4.2 shows the convergence of the simulation from 3 MCS methods. Table
4.1 summarised the results from 3 MCS methods. The last column k in the table
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indicate the relative difference of probability of failure Pf from different methods.
It is calculated by the Pf from RF-MCS method divided by the Pf from DS-MCS
method and DC-MCS method.

50,000 random fields have been generated for each MCS methods. Results have
shown the overall probability of failure calculated by the RF-MCS method is more
than twice as large as the Pf calculated by DS-MCS method and DC-MCS method.
The RF-MCS method requires much longer computational time than direct MCS
method. The computer used for the calculation is MacBook Air (2017) with 1.8 GHz
dual-Core i5 CPU and 8GB of RAM.

FIGURE 4.2: Convergence of probability of failure from 3 different
methods

Method Pf (-) Computational time t(s) k(-)
RF-MCS (50,000) 3.85× 10−2 0.95*50,000 -
DS-MCS (50,000) 1.68× 10−2 282 2.36
DC-MCS (50,000) 1.63× 10−2 135 2.44

TABLE 4.1: Results of 3 different methods

The effect of varying the number of slice division was investigated then and the
results are shown in Figure 4.3. Table 4.2 summarised the results from 3 MCS meth-
ods. The column k1, k2 in the table are calculated by the Pf from RF-MCS method
divided by the Pf from DS-MCS method and DC-MCS method, respectively. It can
be observed the overall probability of failure calculated from 3 MCS methods are
not largely influenced by the number of slice division. Therefore, the number of
slice division is chosen to be 30 for all the following analysis in this section.
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FIGURE 4.3: Influence of slice division on probability of failure from
3 different methods

Slice division RF-MCS DS-MCS DC-MCS k1(-) k2(-)
30 0.0385 0.0168 0.0163 2.29 2.36
40 0.0374 0.017 0.0161 2.20 2.32
50 0.0372 0.0165 0.0159 2.25 2.34

TABLE 4.2: Influence of slice division on the results of 3 different
methods

For RF-MCS method, the random values at the midpoint of each slice base are
derived by linear interpolation. Because the extreme values at both tails of the distri-
bution are removed during the interpolation procedure due to the averaging effect.
This could be one of the reasons that causes the difference of the overall probability
of failure.

Therefore, to demonstrate the value change during the interpolation procedure,
the critical deterministic failure circle was reanalysed here. The basic geometry and
all the other input soil and domain parameters are keep constant. The mesh density
of the random field is 60× 60.

Figure 4.4 shows the distribution of the cohesion value before and after the in-
terpolation procedure. The result was derived after only 1 realisation. The sampling
range of the distribution became narrower after the interpolation procedure (C.-C.
Li and Der Kiureghian, 1993).

FIGURE 4.4: Distribution of Cohesion before and after interpolation;
PDF (left) and CDF (right)
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Then, this same critical deterministic failure circle was reanalysed by varying the
density of mesh points. Figure 4.5 shows the distribution of the cohesion values
from RF-MCS method for different density of the mesh points after the interpolation
procedure. The distributions are compared with that from DS-MCS method and
DC-MCS method. The result was derived after only 1 realisation. It can be observed
that:

• The distributions of the cohesion values from RF-MCS method didn’t follow
the "perfect" lognormal distribution after the interpolation procedure.

• The distributions of the cohesion values from DS-MCS method and DC-MCS
method are wider than that from RF-MCS method.

• The sampling range of the distribution from the RF-MCS method increased
with the increasing density of the mesh points.

FIGURE 4.5: Distribution of Cohesion comparison; PDF (left) and
CDF (right)

The effect of varying the density of mesh points was investigated at last. The
results are shown in Figure 4.6. Table 4.3 summarised the statistical results. It can be
observed the overall probability of failure calculated by RF-MCS method has posi-
tive relationship with the density of the mesh points.

Mesh density of RF-MCS Pf (-) µFSmin σFSmin COVFSmin

5 ∗ 5 2.89× 10−2 1.3732 0.2214 0.1612
10 ∗ 10 3.24× 10−2 1.3566 0.2144 0.1580
30 ∗ 30 3.60× 10−2 1.3424 0.2105 0.1568
60 ∗ 60 3.85× 10−2 1.3396 0.2116 0.1579

TABLE 4.3: Influence of mesh density on the statistical response
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FIGURE 4.6: Distribution of Fmin for mesh density; PDF (left) and CDF
(right)

After demonstration of the influence of the mesh density of RF-MCS method,
another finding about the system probability of failure from direct MCS method can
be drawn.

For direct MCS method, the critical failure circle selected by probabilistic ap-
proach and deterministic approach is almost same (Table 4.4). This is different from
RF-MCS method (the critical failure circle varies in each realisation when the corre-
lation among different potential slip circle is low).

And the system probability of failure calculated by the search algorithm in prob-
abilistic approach is also close to the probability of failure calculated from the fixed
deterministic critical failure circle by probabilistic approach (Table 4.5). Figure 4.7
shows the convergence of the probability of failure by DS-MCS method and DC-
MCS method from 2 different approaches.

Critical failure circle x coordinate (m) y coordinate (m) radius (m)
Deterministic -5.556 9.444 14.444

Probabilistic (DS-MCS) -4.444 9.444 13.999
Probabilistic (DC-MCS) -5.556 9.444 14.444

TABLE 4.4: Critical failure circle selected by direct MCS

FIGURE 4.7: Probability of failure derived from 2 approaches; DS-
MCS (left) and DC-MCS (right)
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Approach RF-MCS DS-MCS DC-MCS
Search (50,000) 3.85× 10−2 1.68× 10−2 1.63× 10−2

Fixed (50,000) 1.48× 10−2 1.68× 10−2 1.66× 10−2

TABLE 4.5: Probability of failure from different approach

It can be noticed that the system probability of failure calculated by the search
algorithm from DC-MCS method (0.0163) is even smaller than the probability of
failure calculated by the single fixed deterministic critical failure cirlce (0.0166). This
finding is different from the result by RF-MCS method (the system probability of
failure is larger than the probability of failure from the fixed deterministic critical
failure circle). It can demonstrate that different definition of the system probability
of failure can yield different results.

4.2 Comparison based on a c-φ slope

A c-φ slope was analysed in this section using the proposed RF-MCS method, DS-
MCS method and DC-MCS method. Results are compared after the simulation pro-
cess. The criterion of comparison of 3 MCS methods are the calculated probability
of failure Pf and computational time needed for each method.

4.2.1 Initial input information

The slope and all the other input soil and domain parameters are keep constant as
the benchmark analysis have done previously in section 3.5.1. Figure 4.8 shows the
example analysis result from 3 MCS methods (Only one figure is shown for DS-MCS
method and DC-MCS method since the visualisation of DS-MCS method and DC-
MCS method is almost the same).

FIGURE 4.8: Schematic visualisation of the calculation from 3 MCS
methods; RF-MCS method (left) and direct MCS method (right)

4.2.2 Analysis and results

Figure 4.9 shows the convergence of the simulation from 3 MCS methods. Table
4.6 summarised the results from 3 MCS methods. The last column k in the table
indicate the relative difference of probability of failure Pf from different methods.
It is calculated by the Pf from RF-MCS method divided by the Pf from DS-MCS
method and DC-MCS method.

50,000 random fields have been generated for each MCS methods. Results have
shown the overall probability of failure calculated by the RF-MCS method is more
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than twice larger than the Pf calculated by DS-MCS method and DC-MCS method.
The computational time needed for RF-MCS method is way more longer than DS-
MCS method and DC-MCS method.

FIGURE 4.9: Convergence of probability of failure from 3 different
methods (ρ = -0.5)

Method Pf (-) Computational time t(s) k(-)
RF-MCS (50,000) 5.5× 10−3 0.95*50000 -
DS-MCS (50,000) 2.3× 10−3 420 2.39
DC-MCS (50,000) 2.0× 10−3 414 2.75

TABLE 4.6: Results of 3 different methods

The effect of varying the number of slice division was investigated and the re-
sults are shown in Figure 4.10. Table 4.7 summarised the results from 3 MCS meth-
ods. The column k1, k2 in the table are calculated by the Pf from RF-MCS method
divided by the Pf from DS-MCS method and DC-MCS method, respectively. It can
be observed the overall probability of failure calculated from 3 MCS methods are not
largely influenced by the number of slice division.

Slice division RF-MCS DS-MCS DC-MCS k1(-) k2(-)
30 0.0055 0.0023 0.0020 2.35 2.75
40 0.0054 0.0021 0.0020 2.57 2.70
50 0.0051 0.0022 0.0022 2.32 2.32

TABLE 4.7: Influence of slice division on the results of 3 different
methods
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FIGURE 4.10: Influence of slice division on probability of failure from
3 different methods

In order to further investigate what causes the difference of the overall probabil-
ity of failure, a fixed slip surface is reanalysed by 3 MCS methods. The assumed slip
circle here is the critical failure circle selected by the deterministic analysis in Section
3.1.2.

FIGURE 4.11: Slip circle geometry (left) and corresponding conver-
gence of probability of failure (right)

Method Pf (-) µFSmin σFSmin COVFSmin k(-)
RF-MCS (50,000) 4.2× 10−3 1.2359 0.0988 0.0799 -
DS-MCS (50,000) 2.1× 10−3 1.2358 0.0913 0.0739 2.0
DC-MCS (50,000) 2.0× 10−3 1.2354 0.0914 0.0740 2.1

TABLE 4.8: Results of 3 different methods from fixed failure circle

Results have shown that the probability of failure Pf calculated by RF-MCS method
for this single circle is larger than that derived by DS-MCS method and DC-MCS
method. This trend is consistent with the that from the overall probability of failure.

The effect of varying the density of mesh points was investigated at last and the
results are shown in Figure 4.12. Table 4.9 summarised the statistical results. It can be
observed the overall probability of failure calculated by RF-MCS method increased
with the increasing density of the mesh points. However, the resultant difference is
smaller compared with that from the slope with only cohesion.
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Mesh density of RF-MCS Pf (-) µFSmin σFSmin COVFSmin

5 ∗ 5 4.86× 10−3 1.2317 0.0994 0.0807
10 ∗ 10 4.86× 10−3 1.2292 0.0979 0.0796
30 ∗ 30 5.05× 10−3 1.2273 0.0972 0.0792
60 ∗ 60 5.23× 10−3 1.2271 0.0969 0.0790

TABLE 4.9: Influence of mesh density on the statistical response

FIGURE 4.12: Distribution of Fmin for mesh density; PDF (left) and
CDF (right)

For direct MCS method, the critical failure circle selected by probabilistic ap-
proach and deterministic approach is almost same (Table 4.10). This is same as RF-
MCS method when the correlation between potential slip circles are high. And the
difference between the system probability of failure calculated by the search algo-
rithm in probabilistic approach and the probability of failure calculated from the
fixed deterministic critical failure circle by probabilistic approach is very small (Ta-
ble 4.11). Figure 4.13 shows the convergence of the probability of failure by DS-MCS
method and DC-MCS method from 2 different approaches.

Critical failure circle x coordinate (m) y coordinate (m) radius (m)
Deterministic 3.444 16.667 17.019

Probabilistic (DS-MCS) 2.333 15.556 15.730
Probabilistic (DC-MCS) 2.333 14.444 14.632

TABLE 4.10: Critical failure circle selected by direct MCS method

FIGURE 4.13: Probability of failure derived from 2 approaches; DS-
MCS method (left) and DC-MCS method (right)
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Approach RF-MCS DS-MCS DC-MCS
Search (50,000) 5.5× 10−3 2.3× 10−3 2.0× 10−3

Fixed (50,000) 4.2× 10−3 2.1× 10−3 2.0× 10−3

TABLE 4.11: Probability of failure from different approach

However, the system probability of failure calculated by direct MCS method is
still smaller than that from RF-MCS method. Combined with the findings from the
previous case for the slope with only cohision, it can draw the general conclusion:

The main cause of the difference in the probability of failure Pf from 3 MCS
methods is the fundamental definition of the system probability of failure of a slope
or the methodology used by the proposed RF-MCS method and direct MCS method
to calculate the system probability of failure.

4.3 Discussion

The influence of the level of mesh density was tested when investigated what causes
the difference of the results from RF-MCS method and direct MCS method. Four
level of mesh density was considered. Pf from RF-MCS method increased with finer
meshes which is opposite to RFEM (probability of failure decreased with smaller
random field mesh sizes). This increasing trend decreased by increasing the mesh
density. For the slope with only cohesion, this trend decreased from 11% to 6.5%.
For the c-φ slope, this trend decreased from 3.7% to 3.4%. This means that the cal-
culated probability of failure will reach convergence by increasing the mesh density.
However, the current setting of the laptop used cannot satisfy further finer meshes.

4.4 Summary

This chapter compared the accuracy and efficiency of RF-MCS method with direct
MCS method. The comparison is mainly based on the probability of failure and the
computational time. 2 different types of slope was analysed: a undrained clay slope
with only cohesion and a c-φ slope. Different results have been found from 3 MCS
methods. Parametric studies have been carried out to find out where the difference
came from. Some findings can be drawn after the analysis:

1. Difference in the probability of failure from RF-MCS method and direct MCS
method results from how the random values assigned onto each potential slip
circle. There is a slight difference in the result between DS-MCS method and
DC-MCS method which can be neglected.

2. The difference of the system probability of failure calculated by 3 MCS meth-
ods decreases with the decreasing mesh density of the random field in RF-MCS
method. This degree of reduction is more significant for the slope with only
cohesion than the c-φ slope.

3. RF-MCS method spends much more computational time than direct MCS met-
hod. Because, for RF-MCS method, the random field is generated first and
then the random values are assigned onto each potential slip circle by linear
interpolation. The results reach convergence after repeating multiple times.
For direct MCS method, the random fields can be generated with the same
amount as RF-MCS method. But the random values are directly assigned onto
each potential slip surface which save much the computational efforts.
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4. The random field for RF-MCS method is generated before assigning the slip
circles. It keeps constant and each potential slip circle only draw the random
values from it by linear interpolation. However, the random field for direct
MCS method is "circle dependent". The random values generated are influ-
enced by the geometry of the circle. More specifically, it depends on the co-
ordinate of midpoints of each slice of the circle. So, it differs from circle to
circle.

5. For the slope with only cohesion, 3 MCS methods calculate different results for
the system probability of failure and the probability of failure for a single slip
surface. For the system probability of failure, the result from RF-MCS method
is larger than that from direct MCS method. However, opposite result has
derived when it deals with a single slip surface.

6. For the c-φ slope, RF-MCS method calculates larger value of probability of
failure than direct MCS method both for the system probability of failure and
the Pf from a single slip surface.

7. The main cause of the difference in the probability of failure Pf from 3 MCS
methods is the fundamental definition of the system probability of failure of
a slope or the methodology used by the proposed RF-MCS method and direct
MCS method to calculate the system probability of failure.
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Chapter 5

Parametric study of 3 different
Monte Carlo methods

In order to further investigate the influence of the spatial variability of soil proper-
ties, a series of parametric studies are performed in this chapter to investigate the
application of 3 methods to different cases. The parametric studies aim to identify
cases that 3 methods derive similar numerical results or to what extent the results
behave similar trend. The test scenarios include the slope angle, autocorrelation
distance, coefficient variation of strength parameters and cross-correlation between
cohesion and friction angle.

5.1 Study based on a undrained clay slope (φ = 0)

The geometry of four slopes are shown in Figure 5.1. The height of the slope is keep
constant as 5 m. The slope angle β∗ is equal to 26.6◦, 45◦, 55◦ and 63.5◦ for the four
different slopes. Other input soil and domain parameters are given in Table 5.1.

FIGURE 5.1: Slope geometry for different slope angles β∗ from top left
to bottom right: (a) β∗= 26.6◦, (b) β∗= 45◦, (c) β∗= 55◦, (d) β∗= 63.5◦
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Parameter Value Unit
Cohesion (c)(COV=0.3) 23 (kPa)

Unit weight (γ) 20 (kN/m3)
Density of random field mesh 60*60 (-)

Horizontal autocorrelation distance (θh) 20 (m)
Vertical autocorrelation distance (θv) 2 (m)

TABLE 5.1: Initial input parameters for the undrained slope

5.1.1 Pre-analysis

Because the computational time of Random Field - Monte Carlo Simulation method
(RF-MCS method) has been largely influenced by the iteration times, this section
aims to identify the adequate number of iterations needed to make the probability
of failure reach convergence.

Figure 5.2 shows the convergence of probability of failure with the increasing
iteration times. The results are derived from the undrained slope when the slope
angle β∗= 26.6◦. All the other parameters keep constant as given in Table 5.1, only
the vertical autocorrelation distance θv varying from 1 m to 4 m.

FIGURE 5.2: Convergence of probability of failure vs. iteration times

It can be observed 4,000 iterations are sufficient to guarantee the convergence of
the probability of failure. Therefore, all the rest analysis for the undrained slope with
only cohesion will be tested 4,000 iterations.

5.1.2 Influence of slope angle

The factor of safety FS of the slope decreases with the increasing slope angle β∗.
Therefore, the slope angle is also considered as an influential factor in the proba-
bility of failure of the slope. This section uses 3 methods to analyze four different
slopes in probabilistic approach. The factor of safety FS of these four slopes from de-
terministic analysis are 1.356, 1.299, 1.260 and 1.173, respectively. Figure 5.3 shows
the results derived from 3 methods. The probability of failure are calculated by the
basic parameters given in Table 5.1.
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FIGURE 5.3: Probability of failure from 3 different methods vs. slope
angle

The results indicate that the probability of failure of the undrained slope in-
creases by increasing the slope angle. And this increasing trend keeps constant for
all 3 methods.

5.1.3 Influence of autocorrelation distance

This section tests the influence of the autocorrelation distance on the probability of
failure of the undrained slope. According to (El-Ramly et al., 2002), the reasonable
horizontal autocorrelation distance fluctuates between 10 ∼ 40m, and 1 ∼ 3 m in the
vertical direction. However, some extreme cases are also taken into consideration in
the following analysis.

Thus, the horizontal autocorrelation distance θh is chosen as 2 m, 5 m, 10 m, 20 m,
30 m, 40 m, 80 m and 200 m. And the vertical autocorrelation distance θv keeps con-
stant as 2 m when investigate the influence of the horizontal autocorrelation distance
θh.

Also, the horizontal autocorrelation distance θh keeps constant as 20 m when
investigate the vertical autocorrelation distance θv. θv is set to be 0.5 m, 1 m, 2 m, 3
m, 4 m, 20 m and 200 m in the analysis.

Figure 5.4 shows the influence of the autocorrelation distance on the probability
of failure of the undrained slope. It can be observed that the probability of failure
increased with the increasing autocorrelation distance both in horizontal and vertical
direction for all 3 methods. This increasing trend tends to be more gentle as the slope
becomes more steep. And the probability of failure is more sensitive to the vertical
autocorrelation distance θv than the horizontal autocorrelation distance θh.

Here introduce another definition, the worst-case autocorrelation distance. (Fen-
ton and Griffiths, 2003) defined the worst-case autocorrelation distance as the critical
autocorrelation distance that gives the maximum probability of failure for the slope.

When slope angle β∗= 26.6◦, the worst-case autocorrelation distance occured
when θh equals to 80 m and θv approaches infinity for RF-MCS method. For direct
MCS method, this increasing trend kept constant by increasing the autocorrelation
distance both in horizontal and vertical direction. This means that the worst-case
autocorrelation distance all approaches infinity.

When slope angle β∗= 45◦, 55◦ and 63.5◦, the increasing trend only existed within
the range of reasonable autocorrelation distance for all 3 methods. When autocor-
relation distance exceeded the reasonable range, the probability of failure will keep
constant while further increase the autocorrelation distance.
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((a) β∗= 26.6◦)

((b) β∗= 45◦)

((c) β∗= 55◦)

((d) β∗= 63.5◦)

FIGURE 5.4: Probability of failure from 3 different methods vs. auto-
correlation distance; Influence of θh (left) and θv (right)
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5.1.4 Influence of coefficient of variation of strength parameters

To test the influence of the coefficient of variation of cohesion c on the probability of
failure of the undrained slope, the COV of cohesion c is chosen as 0.2, 0.3, 0.4, 0.5
and 0.6 for four different slopes.

FIGURE 5.5: Probability of failure from 3 different methods vs. coeffi-
cient of variation; from top left to bottom right: (a) β∗= 26.6◦, (b) β∗=

45◦, (c) β∗= 55◦, (d) β∗= 63.5◦

Figure 5.5 shows the probability of failure from 3 different methods. As it can be
observed, the probability of failure increased with the increasing COV of cohesion
c for all four different slopes. The value of probability of failure corresponding to
COV equals to 0.1 is too small, so it doesn’t show in the plot.

5.2 Study based on a c-φ slope

The geometry of three c-φ slopes chosen for the analysis are shown in Figure 5.6.
The height of the slope is keep constant as 10 m. The slope angle β∗ is equal to 45◦,
55◦ and 63.5◦ for the three different slopes. Other input soil and domain parameters
are given in Table 5.1.
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(a)

(b)

(c)

FIGURE 5.6: Slope geometry for different slope angles β∗: (a) β∗= 45◦,
(b) β∗= 55◦, (c) β∗= 63.5◦

Parameter Value Unit
Cohesion (c)(COV=0.3) 10 (kPa)

Friction angle (φ)(COV=0.2) 30 (◦)
Unit weight (γ) 20 (kN/m3)

ρcφ -0.5 (-)
Density of random field mesh 60*60 (-)

Horizontal autocorrelation distance (θh) 20 (m)
Vertical autocorrelation distance (θv) 2 (m)

TABLE 5.2: Initial input parameters for the c-φ slope
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5.2.1 Pre-analysis

This section aims to identify the adequate number of iterations needed to render the
probability of failure reach convergence for the c-φ slope.

Figure 5.7 shows the convergence of probability of failure with the increasing
iteration times. The results are derived from the c-φ slope when the slope angle
β∗= 45 ◦. All the other parameters keep constant as given in Table 5.2, only vertical
autocorrelation distance θv varying from 1 m to 4 m.

FIGURE 5.7: Convergence of probability of failure vs. iteration times

It can be observed 2,000 iterations are sufficient to guarantee the convergence of
the probability of failure. Therefore, all the rest analysis for the c-φ slope will be
tested 2,000 iterations.

5.2.2 Influence of slope angle

Like undrained slope, the factor of safety of the c-φ slope also influenced by the
slope angle. The factor of safety FS of these three slopes from deterministic analysis
are 1.204, 0.993 and 0.849, respectively. Figure 5.8 shows the results derived from 3
methods. The probability of failure are calculated by the basic parameters given in
Table 5.2. k1, k2 in the figure indicate the relative difference of probability of failure
Pf from 3 different methods. It is calculated by the Pf from RF-MCS method divided
by the Pf from DS-MCS method and DC-MCS method. It equals to 1.0 when all 3
methods calculate the same probability of failure.

FIGURE 5.8: Probability of failure from 3 different methods vs. slope
angle (left); Ratio of the probability of failure from 3 different methods

vs. slope angle (right)
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It can be observed that the probability of failure increased with the increasing
slope angle. The difference of results between 3 different methods disappeared when
the slope angle β∗ larger than 62.5 ◦.

5.2.3 Influence of autocorrelation distance

Figure 5.9 shows the influence of the autocorrelation distance on the probability of
failure of the c-φ slope. Unlike the undrained slope, the results didn’t behave the
same increasing trend for different slope angles. Instead, different results can be
observed for three different slope angles.

((a) β∗= 45◦)

((b) β∗= 55◦)

((c) β∗= 63.5◦)

FIGURE 5.9: Probability of failure from 3 different methods vs. auto-
correlation distance; Influence of θh (left) and θv (right)
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When slope angle β∗= 45◦, the probability of failure kept increasing with the in-
creasing autocorrelation distance both in horizontal and vertical direction for all 3
methods. And the probability of failure is more sensitive to the vertical autocorrela-
tion distance θv than the horizontal autocorrelation distance θh.

When slope angle β∗= 55◦, the probability of failure increased with the increasing
autocorrelation distance both in horizontal and vertical direction. But this increasing
trend only existed within the range of reasonable autocorrelation distance for all 3
methods.

When slope angle β∗= 63.5◦, the probability of failure decreased by increasing
the autocorrelation distance both on horizontal and vertical direction. This indicated
that the worst-case autocorrelation distance smaller than the reasonable range of the
autocorrelation distance.

The overall trend of the probability of failure is similar with the results from the
slope considering spatial variability of undrained cohesive strength and unit weight
(Javankhoshdel, Luo, et al., 2017).

5.2.4 Influence of coefficient of variation of strength parameters

To test the influence of the coefficient of variation of cohesion c and friction angle φ
on the probability of failure of the c-φ slope, the COV of cohesion c is chosen as 0.1,
0.2, 0.3, 0.4, 0.5 and 0.6 and the COV of friction angle φ is set to be 0.1, 0.2 and 0.3 for
three different slopes. The COV of friction angle φ keeps constant as the value given
in Table 5.2 when testing the influence of the COV of cohesion c, and vice versa.

Figure 5.10 shows the probability of failure from 3 different methods. The results
didn’t behave the same increasing trend as the one shown in the undrained slope.
Instead, different results can be observed for three different slope angles.

When slope angle β∗= 45◦, the probability of failure decreased first and kept
increasing as the COV of cohesion c varying from 0.1 to 0.6. But the COV of the
friction angle φ has a positive relationship with the probability of failure.

When slope angle β∗= 55◦, the probability of failure decreased by increasing the
COV of cohesion c and the friction angle φ. And this decreasing trend kept constant
as the value of COV increased.

When slope angle β∗= 63.5◦, the probability of failure decreased by increasing
the COV of cohesion c and the friction angle φ. And the decreasing trend tends to be
stronger as the value of COV increased.
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((a) β∗= 45◦)

((b) β∗= 55◦)

((c) β∗= 63.5◦)

FIGURE 5.10: Probability of failure from 3 different methods vs. co-
efficient of variation; COV of cohesion c (left) and friction angle φ

(right)

5.2.5 Influence of correlation coefficient

To test the influence of the cross-correlation between c and φ, all the other parameters
keep constant as given in Table 5.2 and ρcφ varying from -0.7 to 0.7. The slope chosen
for the analysis is the one with the slope angle β∗= 45◦.

The effect of varying the cross correlation between c and φ on the simulation
results are summarised in Table 5.3. Figure 5.11 shows the overall probability of
failure calculated from 3 MCS methods against the cross correlation.
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ρcφ RF-MCS DS-MCS DC-MCS k1 k2
-0.7 0.0004 0.0002 0.0002 2.00 2.00
-0.5 0.0052 0.0025 0.0025 2.08 2.08

-0.25 0.0163 0.010 0.0086 1.63 1.90
0 0.038 0.0204 0.0218 1.86 1.74

0.25 0.0544 0.0341 0.032 1.60 1.70
0.5 0.0716 0.0476 0.0472 1.50 1.52
0.7 0.0864 0.0597 0.0587 1.45 1.47

TABLE 5.3: Influence of correlation coefficient on the probability of
failure

FIGURE 5.11: Influence of the cross correlation on the probability of
failure

Results have shown that the difference between 3 MCS methods becomes lower
when the correlation coefficient between c and φ increases. Thus, the assumption
of positive relationship between c and φ will give higher results if the actual cross-
correlation is negative.

5.3 Discussion

For all the tested scenarios, the difference of the calculated probability of failure be-
tween RF-MCS method and direct MCS method still existed. But the difference tend
to be smaller by increasing the slope angle which means the probability of failure
will increase. For the c-φ slope analyzed, the difference of results between 3 dif-
ferent methods disappeared when the slope angle β∗ larger than 62.5◦. However,
the probability of failure corresponding to this critical slope angle was much greater
than the acceptable value for engineering design.

For all 3 methods, the calculated probability of failure Pf behave similar trend by
increasing different variables. And this trend was obviously manifested for the in-
fluence of autocorrelation distance. The probability of failure varied the most within
the reasonable range of autocorrelation distance.

5.4 Summary

This chapter performed a wide range of parametric study using 3 different MCS
methods. 2 different types of slopes were analysed: a undrained clay slope with
only cohesion and a c-φ slope. Different results have been found from different
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cases with the application of these 3 methods. Some findings can be drawn after the
analysis:

1. Probability of failure increased with the increasing slope angle both for the
undrained slope with only cohesion and the c-φ slope. For the c-φ slope, the
probability of failure calculated from 3 MCS methods get closer with the in-
creasing slope angle.

2. For the influence of the autocorrelation distance, the probability of failure of
the undrained slope with only cohesion increased with the increasing auto-
correlation distance on both horizontal and vertical direction. The increasing
trend tends to be gentle by increasing the slope angle. And the vertical au-
tocorrelation distance θv is more sensitive than the horizontal autocorrelation
distance θh. For the c-φ slope, the probability of failure from 3 analyzed slope
behaved different trends.

3. For the influence of the coefficient of variation, the probability of failure of
the undrained slope with only cohesion increased with the increasing value of
COV. And this increasing trend keeps constant as the slope angle increases. For
the c-φ slope, different slope angles behave different trends of the probability
of failure.

4. For the influence of the correlation coefficient between c and φ, the probabil-
ity of failure increases with the increasing value of ρcφ. And the difference
between 3 methods gets smaller by increasing the value of ρcφ.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

This study proposes three different MCS methods, which can consider the spatial
variability of soil properties in probabilistic LEM analysis. Three different MCS
methods have been tested in terms of accuracy and efficiency. The analysis is based
on two types of slopes: the undrained slope with only cohesion and the c-φ slope.
What causes the difference in the results from three methods has been investigated.
In the end, parametric studies have been performed to test the robustness of these
three methods. The report is written in the structure to answer the following re-
search questions:

How to assign random field values onto each potential slip circle in three dif-
ferent MCS methods?

When formulating the probabilistic LEM model for these three MCS methods, a
combination of Cholesky decomposition and midpoint method is used to generate
random fields. The difference between RF-MCS method and direct MCS method is
how to assign the random field values onto each potential slip circle. For direct MCS
method, the correlation structure used in the Cholesky decomposition procedure
depends on the coordinates of the midpoint of each slice base from each potential
slip circle. The random field values are generated and directly assigned onto each
potential slip circle. For RF-MCS method, the random field generation is irrelevant
with the generation of the potential slip circle. The correlation structure depends on
the rectangular mesh-grid whose domain matches the geometry of the slope. The
random field values are generated and then map onto the rectangular mesh-grid.
The value at the midpoint of each slice base is derived by linear interpolation from
the mesh-grid.

How does the proposed RF-MCS method compared with two direct MCS meth-
ods in terms of accuracy and efficiency?

Based on the two types of slopes analyzed, the system probability of failure Pf
calculated by RF-MCS method is more than twice as large as that by the direct MCS
method. This difference implies that how the random fields are generated and how
the random field values are assigned to each potential slip surface can significantly
influence the statistical outcomes. For actual engineering practice, it is unaccept-
able that the relative difference between the results obtained by different methods
exceeds 200%. The results from new proposed RF-MCS method are closer to the re-
sults given in the relevant literature. And considering the fundamental definition of
the system probability of failure of a slope, RF-MCS method is more preferable to
direct MCS method. However, RF-MCS method needs longer computational time
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to yield accurate results. Because the system probability of failure Pf requires mul-
tiple realisations to reach convergence. Instead, direct MCS method only needs one
realisation to produce a decent result.

The parametric studies of two types of slopes show different results. For the
undrained slope with only cohesion, the slope angle, autocorrelation distance and
the COV of cohesion all have similar effects on Pf . That is, the Pf has a positive
relationship with each corresponding variable. However, for the c-φ slope, there is
the worst-case parameter that gives the highest probability of failure for different
slope angles.

How is the robustness of 3 different MCS methods in different situations?
In different test scenarios, the results of the RF-MCS method and the direct MCS

method shows the same growth trend while large difference still exist. The results
indicate sensitivity analysis has nothing to do with using different methods and a
combination of three methods is more efficient for future parameter studies.

There are also some other conclusions can be drawn in this study:

• For RF-MCS method, Pf derived by by combining the critical deterministic slip
circle and the random fields is incorrect, and underestimates the system prob-
ability of failure of a slope. When the correlation between different potential
slip circles increases, the difference between the Pf of the fixed slip circle and
the system probability of failure of a slope decreases.

• For direct MCS method, since the methodology used to calculate the system
probability of failure is different from RF-MCS method, there is no difference
between the Pf of the deterministic slip circle and the system probability of
failure of the slope.

• For RF-MCS method, the combination of LEM and random fields can visualise
various failure mechanisms against the distribution of random fields. Various
failure mechanisms caused by the inherent spatial variability of soil properties
can not be manifested by the deterministic analysis. Instead of analyzing the
fixed deterministic critical failure circle, the program can locate the probabilis-
tic critical failure circle by the search algorithm. The critical slip circle always
passes through areas with relatively low soil properties, which means that the
failure mechanism tends to find weaker areas on slopes.

• For RF-MCS method, Pf increased with finer meshes which is opposite to
RFEM (probability of failure decreased with smaller random field mesh sizes).
This increasing trend decreased by increasing the mesh density. This means
that the calculated probability of failure will reach convergence by increasing
the mesh density.

6.2 Recommendations

• Because sensitivity analysis has nothing to do with using different methods, it
is recommended to combine the 3 MCS methods for future parameter study.
RF-MCS method can produce more accurate results but direct MCS method is
more efficient. When choosing to use one of these methods, additional atten-
tion is required.
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• In the process of formulating the probabilistic LEM model, the basic determin-
istic model has been well verified by the commercial software D-Geo stability
and the results given in the literature. However, the probability of failure cal-
culated by the proposed RF-MCS method is different from the result given by
(Cho, 2009) and (Jiang et al., 2015). Both authors used Karhunen-Loève Ex-
pansion combined with Latin hypercube sampling (LHS) to generate random
fields. Instead, this study used Cholesky decomposition in combination with
standard normal sampling in the process of random fields generation. In fu-
ture research, more work can be done to find out the reasons for this difference.

• All the analyses have done in this study are based on a single-layered slope.
Various failure mechanisms have been observed when the correlation between
different potential slip circles is small. The deterministic critical failure sur-
face approaches the probabilistic critical failure surface when the correlation
between different potential slip circles is high enough. These findings can be
further validated by extrapolated the single-layered slope model to a multi-
layered slope.

• This study demonstrates the influence of spatial variability of soil properties
on the probabilistic outcomes. Two types of slopes investigated in this study
using all 3 methods, namely the undrained slope with only cohesion and the
cohesive and frictional c-φ slope, show significantly different results. Another
important soil parameter, unit weight γ, remained constant throughout the
entire study. Therefore, the influence of spatial variability of unit weight γ can
be investigated in future research. For example, the cross-correlated c-γ slope,
the cross-correlated φ-γ slope and the extreme slope with only friction φ.

• All the analyses in this study are limited to the two-dimensional random fields.
Although it has provided an in-depth understanding of the application of
uncertainty in slope stability analysis, and has shown the importance of the
spatial variability of soil properties in probabilistic analysis approach, a three-
dimensional random fields would be preferable which can better characterise
the soil properties in reality.
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Appendix A

Appendix

In order to highlight the first main difference between RF-MCS and the direct MCS
(mentioned in ??), 4 different fixed slip circles are reanalysed by 3 MCS methods.
The chosen slip circles are varying in the sliding length (For convenience’ sake, 4
testing cases will be named as "very deep", "deep", "medium" and "shallow" circle
according to their sliding length). 50,000 random fields have been generated for each
single slip surface.

Figure A.1 shows the geometry of different slip circle and the convergence of
probability of failure from 3 different methods. Table A.1 ∼ Table A.4 gives the
corresponding analysis results. The last column k in the table indicate the relative
difference of probability of failure Pf from different methods. It is calculated by the
Pf from RF-MCS divided by the Pf from DS-MCS and DC-MCS.

Figure A.2 shows the value of Pf ratio with the varying sliding length. It can be
observed the value of k1, k2 doesn’t follow a linear relationship with the increas-
ing sliding length. This can prove that the random field value is somehow "circle
dependent".

In order to further demonstrate this phenomenon, the correlation matrix that is
used to define the correlation relationship between the midpoint of each slice base
are shown in Figure A.3. It can be clearly observed that the correlation matrix of
DS-MCS and DC-MCS changed with the varying sliding length. This can further
influence the random values (the cohesion value c here in this section) generated
because the correlation matrix will be used in the Cholesky decomposition process.

FIGURE A.2: Pf ratio from 3 methods with different sliding depth
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(Case4 (very deep circle): Sliding length = 34.48m)

(Case3 (deep circle): Sliding length = 30.57m)

(Case2 (medium circle): Sliding length = 22.98m)

(Case1 (shallow circle): Sliding length = 16.60m)

FIGURE A.1: Slip circle geometry (left) and corresponding conver-
gence of probability of failure (right)
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Method Pf (-) µFSmin σFSmin COVFSmin k(-)
RF-MCS (50,000) 6.2× 10−3 1.4616 0.2171 0.1486 -
DS-MCS (50,000) 8.84× 10−3 1.4635 0.2297 0.1569 1.43
DC-MCS (50,000) 8.76× 10−3 1.4639 0.2303 0.1573 1.42

TABLE A.1: Results of 3 different methods from fixed very deep fail-
ure circle

Method Pf (-) µFSmin σFSmin COVFSmin k(-)
RF-MCS (50,000) 1.48× 10−2 1.4167 0.2203 0.1555 -
DS-MCS (50,000) 1.68× 10−2 1.4153 0.2264 0.1600 1.13
DC-MCS (50,000) 1.66× 10−2 1.4158 0.2271 0.1604 1.12

TABLE A.2: Results of 3 different methods from fixed deep failure
circle

Method Pf (-) µFSmin σFSmin COVFSmin k(-)
RF-MCS (50,000) 1.27× 10−2 1.4873 0.2590 0.1741 -
DS-MCS (50,000) 1.40× 10−2 1.4856 0.2595 0.1747 1.10
DC-MCS (50,000) 1.39× 10−2 1.4853 0.2614 0.1760 1.09

TABLE A.3: Results of 3 different methods from fixed medium failure
circle

Method Pf (-) µFSmin σFSmin COVFSmin k(-)
RF-MCS (50,000) 1.08× 10−3 1.8382 0.3585 0.1950 -
DS-MCS (50,000) 1.42× 10−3 1.8382 0.3655 0.1988 1.31
DC-MCS (50,000) 1.4× 10−3 1.8398 0.3663 0.1991 1.30

TABLE A.4: Results of 3 different methods from fixed shallow failure
circle

For the RF-MCS, the random field is generated first and the correlation matrix
keeps constant for all the potential slip circles since the absolute distance between
the mesh points didn’t change for each realisation. Figure A.4 shows the correlation
matrix used in the RF-MCS which is different from that in the DS-MCS and DC-MCS.

FIGURE A.4: Schematic visualization of the correlation matrix of RF-
MCS; Number of mesh point 3× 3 (left) and 60× 60 (right)
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(Very deep: Sliding length = 34.48m)

(Deep: Sliding length = 30.57m)

(Medium: Sliding length = 22.98m)

(Shallow: Sliding length = 16.60m)

FIGURE A.3: Schematic visualization of the correlation matrix of dif-
ferent slip circles; Number of slice division 9 (left) and 100 (right)
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