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Stellingen behorende bij het proefschrift: 

Data Management For VLSI Design In 
An Open And Distributed Environment 

door 
T.G.R.M. van Leuken 

1. Een data schema, waarin de structuur en de organisatie van data wordt 
beschreven en waarin ook de voorwaarden waaraan deze data moet 
voldoen tot uitdrukking worden gebracht, is een handig instrument om 
een omgeving op een abstracte manier te beschrijven. 

2. Als in een interactieve ontwerpomgeving, de ontwerper wordt bijgestaan 
door een data management systeem, dan zal deze ontwerper efficiënter 
kunnen werken, omdat het data management systeem een groot aantal 
administratieve taken van de ontwerper overneemt. 

3. Als er, net als voor grafische toepassingen, ook een software standaard 
komt voor ontwerpprogramma's, die de opslag en toegang tot ontwerp 
data reguleert, dan is het mogelijk geworden om ontwerpprogramma's 
van verschillende bronnen samen te voegen in een systeem. 

4. Ontspannen werken in een omgeving welke bestaat uit werkstations met 
gedistribueerde opslag capaciteit, valt en staat met de betrouwbaarheid 
en efficiëntie van het computer netwerk. 

5. Zolang India problemen heeft met betrouwbare water - en stroom 
voorzieningen, zal dit land geen grote concurrent worden op het gebied 
van het ontwerpen van geïntegreerde schakelingen. 

6. Als een bedrijf een software pakket heeft ontwikkeld, dat de potentie 
heeft een wereldstandaard te worden, dan moet dit bedrijf deze 
software in het 'public domain' plaatsen. De gevolgen zijn dan dat 
iedereen deze software zal gaan gebruiken, waarna het bedrijf geld zal 



gaan verdienen aan alle randprodukten van dit pakket. 

7. De beste methode, om de ontwikkeling en evolutie van een data 
management systeem en de daarin gebruikte programma's te 
ontkoppelen, is een transactie schema en een aantal basis objecten te 
definiëren, en deze te gebruiken in een software interface tussen het 
data management systeem en de programma's. 

8. Studenten en medewerkers van de TU Delft zouden er mee gebaat zijn, 
als de gebouwen van de TU Delft 24 uur per dag toegankelijk zouden 
zijn, opdat zij zo efficient mogelijk gebruik kunnen maken van de 
beschikbare computer apparatuur. 

9. Als het aantal bezoekers van een toneel, dans of opera gezelschap daalt, 
en de kwaliteit van dit gezelschap niet verbeterbaar is, dan is de beste 
methode om het aantal bezoekers te vergroten, het bouwen van een nieuw 
onderkomen. 
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Samenvatting 

In dit proefschrift wordt een concept gepresenteerd, dat het mogelijk maakt 
verschillende programma's voor het ontwerpen van geintegreerde 
schakelingen samen te voegen in één ontwerpomgeving. 

Programma's voor het ontwerpen van geintegreerde schakelingen worden op 
verschillende plaatsen en door verschillende mensen ontwikkeld. Het 
resultaat is, dat de ontwikkelde ontwerp programma's alleen in de locale 
omgeving gebruikt kunnen worden, omdat iedereen verschillende data 
formaten en verschillende dataschema's gebruikt. Als iemand een ontwerp 
programma uit een andere omgeving wil gebruiken, dan is hij gedwongen of 
wel de programma code te wijzigen, of wel twee vertaalprogramma's te 
schrijven. 

De beschikbaarheid van werkstations heeft de werkomgeving van VLSI 
ontwerpers danig veranderd. De meeste ontwerpers beschikken over hun 
eigen werkstation en hebben toegang tot speciale rekenmachines zoals array 
processors en super mainframes. Deze verandering heeft zijn invloed op de 
eisen die gesteld worden aan ontwerp-programma's, namelijk zij moeten in 
een gedistribueerde omgeving werken. 

In het eerste gedeelte van dit proefschrift worden de VLSI ontwerpomgeving 
en de eisen van een VLSI ontwerpsysteem beschreven. De belangrijkste 
eisen van een ontwerpsysteem zijn de verplaatsbaarheid van het programma 
en de uitwisselbaarheid van ontwerp data. 

In het volgende gedeelte wordt een dataschema gepresenteerd. Nadat 
verschillende data modellen zijn vergeleken, is een semantisch data model 
gekozen, om de structurele semantiek van een VLSI ontwerp database in uit 
te drukken. Het centrale gedeelte in dit dataschema is de 'basic design unit'. 
Deze unit is de grens waar ontwerp data management en laag niveau 
ontwerp data acces elkaar ontmoeten. Ook blijkt deze unit, de unit te zijn 
waarop een versie mechanisme, locking en recovery toegepast kunnen 
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worden. In het laatste gedeelte van dit hoofdstuk wordt een uitgebreider 
dalaschema gepresenteerd, dat de gedistribueerde structuur beschrijft. 

In het vierde hoofdstuk van dit proefschrift wordt een programma interface 
gepresenteerd. Deze programma interface, welke is gebaseerd op de 
invarianten van het dataschema, biedt de software ontwerper een eenvoudig 
beeld van de organisatie van zijn ontwerp data. Alle ontwerp management 
functies zijn voor hem verborgen. Data formaten zijn niet gedefineerd, maar 
als een programma in een andere omgeving moet kunnen werken, dan is een 
neutraal data formaat nodig. Programma communicatie is een belangrijk 
onderdeel in een ontwerpomgeving. Een mechanisme om data tussen 
verschillende programma processen uit te wisselen wordt beschreven. 

Het laatste gedeelte van dit proefschrift bestaat uit drie appendices. De 
eerste appendix beschrijft een dataschema van een technologie database en 
de programma interface functies. De tweede en de derde appendix zijn 
copieen van artikelen. Appendix B is een artikel over een dataschema en een 
versie keten. Appendix C beschrijft een uitgebreider dataschema en een 
systeem architectuur van een gedistribueerd data management systeem voor 
het ontwerpen van VLSI schakelingen. 
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Summary 

In this thesis a concept is presented, which will allow for the integration of 
different VLSI design tools in one design environment. 

Many VLSI design tools are developed at different places by different 
people. As a result, the developed design tools can only be used in the local 
environment, because different data formats and different data schemas are 
employed. If someone wants to use design tools from a different origin, he 
is forced to either change the source code of the program or write two 
translator programs. 

The availability of workstations has changed the work environment of 
VLSI designers to a great extent. Most designers have their own 
workstation and have access to special purpose computers, like array 
processors and super mainframes. This change has its impact on the 
requirements of the design tools. Design tools, design data, data 
management and designers all function in a distributed environment. 

The first part of the thesis describes the VLSI design environment and the 
requirements of a VLSI design system. Most important requirements in an 
open VLSI environment are tool portability and design data exchange. 

In the next chapter a data schema is presented. After the comparison of 
several data models, a semantic data model is chosen to represent the 
structural semantics of a VLSI design database. In this data schema the 
central part is the basic design unit. The basic design unit is the border 
where design data management and low-level design data access meet. Also, 
the basic design unit is the unit of access on which versioning, locking and 
recovery apply. In the last part of this chapter the data schema is extended, 
to structure the distribution of design units. 

In the fourth chapter of this thesis a tool interface is presented. This tool 
interface, which is built on the invariants of the data schema, offers the 
software designer a clear and simple view of the organization of the design 



4 

data. All design data management functions are hidden. Data formats are 
not defined, but if a tool should be "plugged into" another environment, a 
neutral data format is necessary. Tool communication is an important 
aspect of a design environment. A mechanism to exchange data between 
different tool processes is described. 

The last part of this thesis consists of three appendices. The first appendix 
presents a data schema for a technology database and the tool interface 
functions. The second and the third appendix are copies of papers. 
Appendix B is an article on a data schema and a version chain. Appendix C 
presents an extended data schema and system architecture of a distributed 
data management system for VLSI design. 
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1. THE CAD/IC DESIGN ENVIRONMENT 

1.1 Design Data Management 
Design data management became an important subject in the Computer-
Aided Design of Integrated Circuits (CAD/IC) since the beginning of the 
1970s. From this point in time the complexity of Integrated Circuits (IC) 
started to increase dramatically, as did the number of design tools and their 
data formats. Most of the CAD/IC programs were developed at different 
locations by different people, thus had their own data formats and their 
own user interfaces. If someone wanted to use a design tool from another 
source, he had to write translators to and from each program. This 
approach implied that for N programs, N2-N translators had to be written. 
As a result, designers of integrated circuits had to use many translator 
programs to design, simulate and test one simple circuit. The number of 
translators can be reduced to a worst case IN by choosing a common, 
neutral data format and translating to and from that format [Newton86]. 
Several data formats emerged during the 1970s and became public domain 
standards, the best known are CIF [Mead80] and GDS II for mask layout 
descriptions and SPICE [Nagel75] for circuit descriptions. ISPS [Bell7I, 
Barbacci78] was commonly used as the language to describe the behavior of 
a circuit in abstract terms. 

At the same time people started to use conventional databases for the 
management of design data. These record oriented database management 
systems (DBMS) [Held75], were used to store and retrieve all aspects of an 
IC design, such as rectangles, list of connections and transistors. Soon it 
became clear that the application of the conventional database management 
systems was not suited for the CAD/IC environment. A state-of-the-art IC 
can contain more than 150000 transistors. Over 1 Giga-byte of design data 
is required to store all aspects of this design. A design data management 
system (DDMS) has to store this vast amount of design data, controlling the 
access to the data and maintaining its consistency. The answer for a 
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suitable design data management system lies in exploiting the inherent 
hierarchical structure of the design data and the partitioning of the data in 
design data and in meta design data. The meta design data contains 
information about the design data. Other requirements of such a data 
management system include access methods to the design data, multiple 
versions and design alternatives, support for workstation and network 
based transactions and optimal performance with low cost hardware. 

Textual interchange formats were developed to meet the need for design 
data transfer between different design systems. Several different formats 
were used to describe different aspects of an IC. In the 1980s one neutral 
data format is being developed, EDIF (Electronic Design Interchange 
Format), [EDIF87, Eurich86], to replace all other textual formats. The 
definition of this data format can be the basis of a neutral data format in a 
design data management system. 

A design data management system (Figure 1.1) is the kernel of a design 
environment around which design tools can be integrated [Katz83, 
Brouwers87]. A proper DDMS operates first as the neutral repository of 
design data: the design database. The tools create and modify the design 
data, while the DDMS stores and maintains the design data, thereby 
guaranteeing consistency. 

T 0 
1 ( 

o ; L ; s 
i i 

DESIGN DATA MANAGEMENT SYSTEM 

DATA 

Figure 1.1. Tools integrated on top of a DDMS 

Furthermore, a sophisticated DDMS has to supply additional services to 
provide a basis for the construction of an intelligent design system, which 
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relieves the designer from the burden of organizing his design data. Clearly, 
system integration is more than the definition of some common formats: 
Which copy is the latest version? Has this layout been extracted since it 
was updated and, if so, which circuit description was derived from it? If I 
change this layout, which other parts of the design will be affected? It is 
the ability to answer such questions that differentiates a true DDMS from a 
simple data repository [Newton86]. 

Powerful workstations and the availability of computer-aided design tools 
have improved the productivity of designers to a great extent. Medium size 
integrated circuits can be developed on a single workstation. However, the 
design of highly complex circuits still relies heavily on the processing power 
of mainframes and supercomputers. But also in this case workstations are 
invaluable to designers. They provide a fast and interactive work 
environment, where designers can enter a description of a circuit. Computer 
network capabilities provide the designer access to special hardware or 
computer power and offer the opportunity of data sharing among teams of 
designers. 

The UNIX operating system has been chosen by many people as the 
software environment for their workstations, due to its availability, 
portability, flexibility and functionality. It is quickly becoming the 
standard operating system for engineering workstations [Hardwick85]. 
This provides the designers with a common environment for different 
hardware acquired from different vendors. This also helps software 
developers by allowing them to easily port their software to different 
systems without major changes due to the differences in different operating 
systems. Networking provides resources including hardware simulation 
accelerators, mass storage devices, plotting servers, printers and some CPU 
intensive programs available on mainframe computers. A standard 
networking protocol such as TCP/IP allows hardware from different 
vendors to communicate electronically. 
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The open system concept of the UNIX operating system should also be 
applied to the CAD/IC environment. It will allow the software developer 
to add new design tools to his system without major effort. This is a very 
important capability for a system that needs to be dynamically updated as 
design methods change. Supporting hierarchical designs, where any block. 
may be used at multiple levels and with many repetitions, is essential for 
the CAD/IC design environment. Design automation tools have as their goal 
the simplification of the design process by performing many of the synthesis 
processes automatically and guaranteeing correctness (silicon compilation). 
This goal can only be reached, if a well designed DDMS is available. 

Technical innovations have significantly increased the complexity of 
integrated circuit design. An ideal VLSI design environment will have the 
following characteristics: 

— it contains a design database with a neutral data format. 

— it has a database management system which structures the design data 
and controls access to the database. 

— its design tools are integrated with the design database. 

— it is an open system, new tools can be added without a major software 
effort. 

— it supports the hierarchical design methodology. 

— it enables the use of shared design data. 

— it supports different design styles. 

— it supports different design process technologies. 

— it has local storage, which in case of a network breakdown enables the 
user to continue with his design. 

— it has a backup mechanism, which ensures the user that after a 
workstation breakdown design data can be restored. 
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A system that integrates design tools and a design database, and provides a 
human interface is clearly essential, if one wants to manage the design 
process. Also the design system should offer the possibility to extend its 
capabilities using artificial intelligence techniques. This could be achieved if 
the data controlled by the data management system is accessible for 
artificial intelligence programs. 

A design environment consists of three basic components: a database 
containing design and management data, a database interface layer to permit 
orderly and secure access to the database, and a set of integrated design 
tools, which feed and are fed by the database via the database interface. 
This fully developed design system should ease chip development by 
preserving design data as it is produced. Versions of a design are 
automatically stored, and designers have only controlled access to change 
design data. 

The availability of some software standards such as the UNIX operation 
system and the TCP/IP networking protocol provide for an uniform 
workstation environment. The need for high performance computers is still 
present. 

1.2 Reading on VLSI Design and Data Management 

This thesis describes the problem of constructing an effective design data 
management system. For those readers who are interested in acquiring 
information on VLSI design itself and its problems, we give a short list of 
available textbooks, which will serve as a background to the presented 
work. 

One of the best known books about integrated system architecture and 
design is [Mead80]. An introduction in the integrated circuit design using 
CMOS, can be found in [Weste85, Glasser85, Mukherjce86]. There are 
several books about the design of digital systems. [Davio83, Mano82, 
Breuer77, Mano84] describe this area with considerable depth. The latest 
developments in the VLSI design area can each year be read in the VLSI 
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book series [Bryant83, Anceau83]. These describe particular subjects of 
VLSI design, which are in the focus of interest of the VLSI designers. An 
insight in the workstation environment, distributed file systems and 
networking, can be found in [Sun86, Apollo8l]. The books deal with 
implementations of these techniques in a specific workstation environment. 
[Tsichritzis82] provides the reader with a thorough background on relevant 
issues in the field of database management. 
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2. FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM 

2.1 Introduction 

Today, one of the main problems in designing a CAD/IC design environment 
is the management of the complexity of the design data. Further 
improvements in the process technology promise to increase the already 
large complexity of a design by another order of magnitude. 

At this moment it is practically impossible to design an integrated circuit 
without the assistance of computers and special computer programs. Many 
different design tools for computer aided design of integrated circuits have 
been developed and many more will be developed to meet the demand of the 
increasing complexity of integrated circuit design. 

To our knowledge there does not exist a design system at this moment in 
which all tools covering functional design to pattern and test generation are 
integrated around a common database. Such a tool set can only be realized, 
if design tools from different origins can be integrated. This is not an easy 
task, because design tools use different data schemas, different data formats, 
and different graphical interfaces. If software designers would utilize well 
accepted standards by which their tools can be integrated, then the 
productivity of VLSI design could be improved substantially. 

Integrated circuits are no longer designed by one individual designer. 
Complex designs are subdivided into smaller units and each unit is designed 
by one or more designers. The design of an integrated circuit is divided in 
several subtasks. This decomposition creates a need for concurrent data 
sharing, because the designers must use or modify each others design data. 
In this situation, there is a need for a design system that provides database 
management functions, such as concurrency control, a version mechanism 
and the storage of design data relationships. 



14 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM 

In this work we describe the approaches required of a Design Data 
Management System (DDMS) to provide a framework for tool integration 
based on data sharing. In this chapter we will formulate functional 
requirements for design data management. 

2.2 Tte Goals of a DDMS 

The goals of a DDMS are: 

1. Enhancing the portability of tools. 

The DDMS can provide functions and specifications that when put into 
practice, will improve tool portability without greatly restricting the 
freedom of the tool developer. 

2. Facilitate the exchange of design data. 

Design data is exchanged among different sites, among different tools 
and among different organizations. The DDMS should contain facilities 
that can be used to translate, store and retrieve a neutral data format. 

3. Assuring a uniform design environment. 

The design environment is implied by the operating environment that 
the tools create for its users. A frequent reason for lack of uniformity 
is the absence of adequate documentation for user and system interface 
functions, that are portable among host environments. 

4. Provide a framework for supporting design management. 

Large integrated circuits typically are designed by design teams. This 
requires, for example, controlled sharing of design data, protection of 
released design data, and monitoring of design methods and progress. 

5. Provide a framework for reuse of previous designs. 

With the rapid accumulation of design data, the reuse of past designs 
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is becoming increasingly dependent upon support from sophisticated 
browse tools. 

Each of these requirements will be discussed to some detail in the remaining 
of this chapter. Goal one will be discussed in chapter 2.3 and goal two will 
be discussed in chapter 2.4. The goals three, four and five form the subject 
of chapter 2.5. 

2.3 Tool Portability 

Tool portability involves a number of capabilities, 

— Access functions. 

— User interface. 

— Tool interface. 

2.3.1 Access Functions 
A data model will provide the basis for establishing concise semantic 
descriptions of the design data. If the invariants of the data schema are 
standardized within the system, a standard tool interface can be developed, 
which will provide the software designer with standard access functions 
and will also offer some degree of freedom. 

2.3.2 User Inter/ace 
The DDMS has to provide a user interface specification that will result in a 
uniform design environment. This user interface specification consists of 
two parts. The first part is the specification of a set of functions, which will 
allow for the development of design tools with an uniform graphical 
software interface. The second part of the user interface specification is a 
description of how an user can interact with a design tool. This description 
specifies among others the construction of user-menu's, pop-up menu's and 
dialogue windows. In this way the style of interactions between users and 
design tools is defined. At this moment a well defined graphical interface is 
the X-window system [Gettys86]. This standard consists of simple 
graphical functions, but also has standardized menu handling. This will 
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allow for the specification of a DDMS with an uniform user-interface style. 

2.3.3 Tool Inter/ace 
If a tool interface is standardized, software developers can create programs 
in a uniform fashion. The tool interface standard will provide functions, 
which give the software developer the possibility to access design data and 
obtain information about design data, without the necessity to have a 
detailed understanding of the implementation of the DDMS. Tool 
portability and tool compatibility are greatly enhanced using a standard tool 
interface, which are the goals of tool integration. 

The following requirements can be formulated for a tool interface: 

• The tool interface must bring about efficient interaction between the tools 
and the DDMS. 

• The tool interface must be independent of specific tool features or design 
methodologies. It should be universal, to result in an open-ended design 
system where the DDMS acts as a free-for-all public repository that can 
communicate with any type of tool and environment. 

• The tool interface must be independent of specific features of a DDMS. 
For example, it must allow interfacing to DDMS's with or without 
version control, concurrency control, multiple view-types, etc. When 
this requirement is met, the tools can actually be "plugged in" in the 
same way in any DDMS, whether it concerns different releases of a 
DDMS at a certain site or DDMS's at different sites. 

In summary, a tool interface should offer some degrees of freedom, but at 
the same time the necessary discipline to facilitate software evolution and 
exchanges. 

2.4 Data Exchange 

If design tools are integrated in a DDMS, this will impose stringent data 
exchange requirements to ensure communication among data repositories on 
different hosts. The DDMS must provide a small set of standard formats 
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for data exchange, preferably a single one [EDIF87, Eurich86, Newton87]. 
Tools translate into and out of a neutral data format using one pair of 
translators, no longer requiring the creation and maintenance of a possibly 
large number of translators. In addition, it will be necessary to describe the 
data requirements (semantics) of each tool precisely, so that inconsistencies 
in how data is interpreted and represented can be recognized and dealt with. 

2.5 Design Systems 

If the capabilities of design automation are to be fully exploited, not only 
design tools have to be integrated in a design system, but also 
administrative and management tools. If the data representation employed 
by the tools are standardized, these would give the vendors of design tools 
the opportunity to fully support these limited data formats. In addition the 
tools should have common user interface. This will have the effect that 
designers do not have to master different man-machine interfaces. 

2.5.1 Management and Control 
The management and control facilities of a DDMS are responsible for 
supporting two main tasks: 

— controlling and monitoring the design process. 

— enforcing access controls at the software level. 

The DDMS must be able to store dependencies that exist among different 
design objects (e.g. when a schematic is converted by a translator into a 
layout description for use by layout tools). If the schematic is changed and 
a new version is created, the system must be able to relate the new version 
to the preceding one. Also it must be able to store information about the 
design object, e.g. a design history, its validation status and which designers 
have changed the object. 

2.5.2 Data Management 
It is important that a DDMS permits designers to locate, obtain, and 
correlate diverse design data quickly (browsing). A key function of a 
DDMS is that the data management system can deal equally well with 
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design, management, and control data. The data can be distributed among 
any number of different workstations. The software designer of a DDMS 
has to present a clear conceptual model to the user of the DDMS. This 
model will describe how data is structured, its status and will hide to the 
designer all implementation details, like physical distribution. 

2.5.3 Administration 
The administrators of a DDMS must have the ability to store, manage and 
access the data schema, designer information, tool descriptions, technology 
rules and descriptions of the workstation environment. To meet this goal 
the DDMS must be a highly description-driven system. For each type of 
information a description should be available, which describes the resource 
requirements, the dependencies, input and output requirements and other. 
For example, there should be a description of the data schema, describing 
the data structure and its constraints. The DDMS reads this description and 
arranges internally its data structure accordingly. If the administrator 
wants to add some data type, he only has to edit the description file and 
restart the DDMS. 

2.5.4 The Environment 
The environment in which the DDMS operates will most likely be a 
distributed one. Workstations from different vendors will be connected to 
each other, through one or more computer networks. This operating 
environment of a DDMS requires the use of software standards, for its 
implementation. This would allow for the use of a DDMS in several 
different hardware environments. Already there are several accepted 
standards for graphical interfaces, operating systems and computer 
networks. There are no accepted standards for database access functions. 

Model of the Design Process 
The DDMS must be able to support any model for a design process. It must 
be independent of any specific design philosophy. For instance it must be 
able to support, among others a traditional design philosophy as depicted in 
Figure 2.1. 
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Figure 2.1 depicts a possible decomposition of the traditional design process; 
three basic activities are identified. One further level of decomposition for 
these activities is depicted in Figure 2.2. These activities obviously overlap. 
Also there are feedback loops. 

Verification 

Systerr 
Specifica! on 

Functional 
Design 

automated 
by hand 

extraction 

Circuit 
Design 

automated 
by hand 

Layout 
Design Manufacturing 

Figure 2.1. An example of the design process 

Design Analysis 
Design Evaluation 
Design Refinement 
Design Simulation 

Design Test Generation 
Design Verification 

Figure 2.2. Functions of a design activity in some detail 

It must also be able to support, for instance, a Gajski type design model 
[Gajski85, Gajski86] (Figure 2.3), or even a silicon compiler with its various 
tasks. 
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Figure 2.3. Gajski Ychart 

Several different tasks must be performed before the design is ready for 
fabrication. 

1. the functional description is translated into a structural description. 

2. the layout of each structural component is instantiated. 

3. all structural components are placed on silicon and routed. 

Relationships 
There are many objects in a design database that have relationships to other 
objects. One of the most important functions of a DDMS is to store these 
relationships. This would allow for the use of special management tools 
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which can maintain the consistency of a design. 

Design Teams 
In a multi user environment, many designers will t ry to access design data 
at the same time. The DDMS must provide services which control the 
access to the design data. Other issues include data sharing, version control 
and configuration control. 

Managing the Design Process 
The following is a list of general requirements for data management and 
control functions to be supported by a DDMS. 

1. Designers should be protected from unvalidated design changes. 

2. Access to design objects must be limited. 

3. There must be a mechanism which enforces consistency constraints 
over design objects. 

4. In a database supporting multiple versions of objects, policies must be 
provided as to which version is automatically selected at object 
checkout time. 

5. Hierarchical and multilevel representations of arbitrary complexity 
must be supported. 

More specifically: 

Version Management, 
there are two important problems that a DDMS must address. The first is 
that it should be impossible for a designer to use a design object of another 
designer, without the consent of that designer or the design manager. This 
would e.g. protect a designer from using a design object, which is currently 
being changed. Secondly, the DDMS should have some automatic selection 
of the right design objects to be used. This would mean that a designer uses 
design objects with known properties. 
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Control of Modifications, 
a designer has the task of determining whether a design object is consistent, 
that is that it meets its specifications and that it satisfies implementation 
constraints. The DDMS can only provide services to help the designer with 
this task, it can record which design tool has been used on a particular 
object. The designer however, is the one who has to interpret this 
information and take the right decisions. 

Reuse of Designs, 
if information about previous designs is made available to designers, 
significant savings can be achieved. The DDMS data management tools are 
responsible for this task. There are two types of tools which can provide 
designers with information about previous designs and designs in progress. 
They are a browser and a prober. 

Basically a browser is a tool that allows the designer to browse through 
designs. The designer has to decide which design object in the database is 
relevant to him. A probing tool has the capability to search through the 
database, after the designer has partially specified his requirements. The 
probing tool will list all design objects that match these requirements. 
Probing is more difficult than browsing, because probing requires pattern 
matching capabilities and possibly knowledge of what is stored in the 
database. 

2.6 Design Methodology 

A methodology is a combination of rules that describe default, preferred, 
and mandatory steps in a design process. A design system has the 
requirement to support hierarchical designs, to support the division of 
design steps into smaller steps. Also, the design system should support a 
mechanism to control the sequence of steps taken, design check point 
validation and approval for the release of a design. 
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2.7 Requirements Overview 

The main functions of the DDMS are to provide an integrated design 
environment for using tools and managing design data and to support the 
management of the design process and data exchange between organizations. 
It must support these functions in a way that ensures that the DDMS is: 

— adaptable. 

— distributed. 

— portable. 

— extensible. 

— evolutionary. 

The requirements are presented in two groups. The first group defines the 
functional requirements: 

— Tool integration. 

— Data Exchange. 

— Management and Control. 

— Data Management. 

— System Interface. 

The second group defines the required approaches that address the 
functional requirements: 

— Data model and data schema. 

— Tool interfaces. 

— Distributed data management facilities. 

— User interface. 
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The main topic of this thesis is to construct a systematic methodology for a 
DDMS, which will satisfy the functional requirements. 

In the next chapter we shall discuss several data models. One of these data 
models, the semantic data model, seems to be very suitable to describe the 
CAD/IC environment. Two data schemas are presented. The first one 
expresses the structure and properties of a particular design environment, 
the second data schema discloses the extra structure and properties to 
represent a distributed design environment. In chapter 4 a tool interface 
and a user interface are discussed. 
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3. CONCEPTUAL MODEL OF THE DDMS 

3.1 Data Models 
3.1.1 Introduction 
A data model is a collection of concepts and constructs for expressing the 
static properties, dynamic properties, and integrity constraints of an 
application environment [Lyngbaek.84, Afsarmanesh84, Bekk.e83]. It is 
characterized by: 

— A collection of constructs: the data definition language. 

— A collection of fundamental operations: the data manipulation 
language. 

— A set of integrity constraints defined on its constructs. 

Given a data model, a data schema is defined to describe the structure and 
properties of a specific application environment. A data model can be seen 
as a generic mechanism from which data schemas can be instantiated. 

Finally, a database is a data repository containing a possibly large amount 
of interrelated data, structured according to a corresponding data schema. 
Hence, a data schema can be seen as a generic description out of which the 
contents of a database can be instantiated. 

Over the years several data models have been developed. Historically, the 
following four classes of data models can be recognized: 

— hierarchical 

— network. 

— relational 

— semantic 
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The hierarchical, network., and relational data models are frequently 
referred to as the classical data models [Lyngbaek84, Bic86]. In the next 
paragraph an overview is presented of these classical data models 
[Hardwick87]. 

3.1.2 Classical Data Models 

3.1.2.1 Hierarchical Data Model 
The hierarchical data model consists of nodes organized in a tree 
[Tsichritzis76, Bekke83, Bic86]. The nodes in the hierarchical data structure 
correspond to records in tables of data. Between the nodes of a tree a one-
to-many relationship exists. Because the data structure must form a tree, 
the direction of the arcs is always towards the leaves of the tree. The 
existence of a root-node is obligatory. A hierarchical database is a set of 
ordered trees; the placement of nodes in a tree is significant. Thus a node 
can only be seen in the context of its hierarchy. The advantage of the 
hierarchical data model is that it allows for fast retrieval operations and 
easy contextual naming. The main drawback are its limited structuring 
capabilities, e.g. it does not allow to represent many-to-many relations 
directly, and it provides only primitive operations. 

3.1.2.2 Network Data Model 
The network data model is based on nodes and arcs (graphs) [Bachman69]. 
It is an extension of the hierarchical model, a node can have several superior 
as well as several subordinate nodes. An owner record type can have one-
to-many relationships with other member record types, called a set type. 
The presence of the owner record in a set is essential. As is shown in 
[Bekke83] not all record types in a network data schema correspond to the 
complete definition of a particular concept. Thus, to retrieve the 
information of a certain node, several records of different types might have 
to be attended by a one record at a time process called navigation. This 
makes that the algorithms are often complex, while the user must be aware 
of the internal organization. 
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3.1.2.3 Relational Data Model 
The relational data model is a more user oriented data model [Codd70]. It is 
based on the mathematical concept of a relation, i.e. a subset of a cartesian 
product. A relation is a set of n-tuples (records), and is typically 
represented by a table. A column is called an attribute, and the set of values 
from which the attribute values can be drawn is called the domain. Each 
relation has a primary key: one attribute or a combination, the values of 
which distinguish the (unique) tuples from each other. The relations do not 
contain implicit references (pointers). Associations between tuples are 
exclusively represented by attribute values drawn from a common domain. 

The main attraction of the relational model is its mathematical clarity 
[Bic86], which facilitates the formulation of nonprocedural, high-level 
queries and thus separates the user from the internal organization of the 
data. The separation of the logical organization and the internal 
organization, results in data independence for the user. The relational 
model has some serious drawbacks. First it is a flat model; the relations are 
not positioned with respect to each other. The use of composed keys does 
not provide the user with sufficient means to represent all abstractions in a 
precise way. The integrity constraints have to be defined explicitly; this is 
not an integral part of the modeling process. In [Bekke83, Bekke85] several 
examples are given that clearly show the various defects of the relational 
model. 

3.1.3 Semantic Data Models 
The classical data models are all record based. When modeling an 
application environment, not all record types in the resulting schema 
correspond to the complete definition of a particular concept from that 
environment. That is, they lack semantic expressiveness [Bic86, 
Afsarmanesh84, Hardwick87]. 

The semantic data models enable the user to better formalize the semantics 
of his data, and are therefore considered more user oriented. Instead of 
being based on the record model, the semantic data models are object based; 
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the application environment is modeled as a collection of interrelated 
objects, each one corresponding to a concept from this environment. 

Attempts to categorize the semantic data models are described in 
[Lyngbaek.84] and [Afsarmanesh84]. Several semantic data models have 
been investigated. 

3.1.3.1 The OTO-D* Data Model 
In the semantic approach the notion of abstraction, i.e. representing the 
relevant details while suppressing the irrelevant ones, plays a dominant 
role. When representing the invariants of a dynamic environment, not the 
elements themselves but their properties are important. The semantic 
approach is based on objects and the notion of type. Each object has a type, 
which is defined by a certain number of different properties. 

In this chapter we shall use examples, which have no relations with the 
CAD/IC environment to prepare for the data schema that will be defined in 
chapter 3.4. It demonstrates the general application of the discussed data 
models. For example the abstraction: 

TYPE student = name, address, department 

defines an object, type student, characterized by the properties name, 
address and department. These properties are called attributes. An object 
having the properties of a certain type is called an instance of that type. A 
data schema consists of a number of these type definitions. 

3.1.3.1.1 Convertibility and Relatabiiity 
In the semantic data model we can distinguish two types of invariant 
properties [Bekke83]. Convertibility is the property that each type has only 

* OTO-D has been developed at the Mathematics & Computer Science department of the 
Delft University of Technology by ir. J.H. ter Bekke and his group. 
"OTO-D" stands for Object Type Oriented Data model. 
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one predicate and that each predicate belongs to one type. Because the type 
is completely characterized by the predicate (attributes), while on the other 
hand each predicate describes one type, there is a one-to-one correspondence 
between the type and the predicate of an assertion. Convertibility also has 
consequences at the instance level. Each object is uniquely characterized by 
its attribute values; the instance identification is of no importance. Based on 
the notion of convertibility the type definitions can be checked for 
completeness during the construction of the conceptual model. 

The second invariant property, relatability, is the property that, if the name 
of an attribute in a predicate equals the name of a type definition, the 
attribute relates to that type definition. For example in: 

TYPE student = name, address, department 
TYPE department = name, head 

the attribute department in the definition of student is related to the 
definition of department. Relatability also has consequences at the instance 
level. It implies that an attribute value is related to an instance of the type 
of which the attribute is a property. As a consequence the set {student ITS 
department} is at any time a subset of (department}: subset invariance. 

When modeling an application environment it is often simple to recognize a 
number of types and give some preliminary type definitions. However, to 
remove imperfections they have to be checked individually (for 
completeness) and in connection (for consistency). In this process the 
semantic concepts of convertibility and relatability can be applied. 

3.1.3.1.2 Aggregation and Generalization 
OTO-D offers two abstraction primitives to construct a data schema: 
aggregation and generalization. Aggregation is a form of abstraction in 
which a certain number of different properties is combined to create a new 
named object. Examples of aggregations were student and department. 
OTO-D offers a clear diagrammatic notation to visualize the relationships 
among the types of a data schema. The example looks like: 
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aggregation 

Figure 3.1. Example of an aggregation 

Generalization (Figure 3.2) is a form of abstraction that relates a type to a 
more generic one. In knowledge representation research this is known as the 
IS-A relationship. 

teacher 

student 

person 

Figure 3.2. Example of an generalization 

3.1.3.1.3 Data Manipulation Language 
The data manipulation language of OTO-D offers selection, extension and 
modification commands. The most important expression is the selection, the 
general form of which is: 

GET <type name> 
ITS <attr ibutes> property List 
WHERE <condition> qualifying predicate 

As a consequence we can only "look downward" along the schema, starting 
from a composed type to its attributes, its attributes its attributes, etc. 
Given an arbitrary schema, the semantic concepts of OTO-D guarantee that 
all data that can be addressed this way is present (referential integrity) and 
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related in a meaningful way according to the schema. An example of a 
selection command on the data schema presented above: 

GET student 
ITS name, address 
WHERE department ITS name == 'EE'. 

3.1.3.2 DODM 
DODM is a simple object-oriented model for multiple databases 
[Lyngbaek.84]. It provides a small set of primitive operations that allow 
users to define, manipulate and retrieve objects. DODM also supports object 
sharing, access control and inter database relationships. In DODM databases 
are modeled as a collection of objects and relationships, no distinction is 
made between meta design data and design data (see chapter 3.4). All kinds 
of data are stored as objects in the database and the objects are interrelated 
by user defined relationships. The model provides no mechanism for object 
classification. 

Suppose, for example that you want to express in DODM, that the primitive 
objects 'name' and 'head' characterize a 'department', and the objects 'name', 
'address' and 'department' characterize a 'student'. 

In DODM a database will consist of a collection of tuples of the type (x, y, 
z). Let x, y and z be objects. Then the tuple (x, y, z) represents the 
assertion that a relation y exists between x and z. Let FIND ("?", y, z) be 
the basic query which returns all objects, such that (x, y, z) belong to the 
database. 

Now consider the FIND operation: 

FIND (FIND(?, "has dept", FIND(7, "has name", "EE")), "has name", ?) 

The type information has no significance in this operation. The object 
'department' and the object 'student' both have the attribute "has name". 
You can not specify that in FIND (?, "has name", "EE"), only the objects 
'department' are to be considered and not the objects 'student'. There is no 
limited scope for attribute names. An equivalent OTO-D retrieve operation 
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looks like: 

GET student 
ITS name 
WHERE department ITS name = "EE" 

In this case the object classification TYPE has significance in the search 
operation, i.e. the string "EE" is only used in the 'department' object context. 

The main purpose of DODM is not to introduce a high level semantic data 
model, but rather to provide a basic frame work for object oriented 
modeling. DODM supports broadcast communication and point-to-point 
communication. Three functions allow the user to send/receive messages 
to/from a DODM database in a network. For these reasons, DODM could be 
used as an implementation layer, on which the OTO-D model is built. ODM 
provides the basic object functions, while the 'D' (Distributed) in DODM 
will allow for the distribution of objects in a network. 

3.1.3.3 DAPLEX 
DAPLEX [Shipman8l] is a data definition and manipulation language for 
database systems, grounded in a concept of data representation called the 
functional data model. The basic constructs of DAPLEX are the object and 
the function. These are intended to model conceptual objects and their 
properties. In general a DAPLEX function maps a given object into a set of 
target objects. 

Three striking types of functions in DAPLEX are: 

— Derived functions. 

— Multi argument functions. 

— Multi valued functions. 

Derived functions allow users to represent arbitrary object relationships 
directly by defining them in terms of existing relationships. There is a 
connection between the direction of the functional dependencies of objects 
and the queries to be executed. In the data schema the retrieval path 
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possibilities have to be recorded. Each function definition adds such a 
retrieval path. The derived functions give the user the capability to add 
extra retrieval paths. This mechanism allows for faster retrieval of data at 
the cost of redundancy. It is common practice to use pattern matching, in 
resolving a query in a semantic data model. Besides the pattern matching 
facilities, DAPLEX has the derived function mechanism in order to execute 
particular queries. 

In the semantic data model, one of the basic principles is that a relationship 
should be accessible from both directions. The derived function mechanism 
poses a question concerning this basic semantic principle, because of the one 
to many relationships of a function and the one to one relationship of a 
derived function. 

DAPLEX offers the designer of a data schema the use of multi argument 
functions. This construct has the advantage that the introduction of new 
objects can be reduced (Figure 3.3). 

enrollment 

student grade course 

Figure 3.3. Reduction of objects using the multi argument functions 

In this example an extra object, the enrollment, was introduced in the right 
data schema. The problem of the functional data model, with its multi 
argument functions and multi valued functions is the conflict that arises 
with the requirements of semantic convertibility. Convertibility is 
considered as an invariant of all definitions within a conceptual model, i.e. a 
time invariant attribute which is never changed by any database operation. 
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The DAPLEX data model does not clearly define the structure of an object, 
because it makes no distinction between connections that link objects to 
attributes and connections that link, objects to objects, i.e. it has a lack, of 
expressing structural semantics. The DAPLEX data model contains some 
ambiguities, which makes the use of this data model disputable. 

3.1.3.4 Conclusion 
We have described several data models. A database for the CAD/IC 
environment can be modeled using any of these data models [McLeod80, 
Hardwick87]. In our application the design database is a cluster of 
networks. The network data model is suited to represent this cluster of 
networks. However, we can make the following remarks about this data 
model: 

1. The algorithms to store and retrieve information are complex and not 
general (chapter 3.1.2.2). 

2. The network data model can be placed in the category of semantic data 
models. The semantic data model is more general and will give a clear 
overall picture. 

The relational data model and the hierarchical data model are both not 
suited in the CAD/IC environment. Structuring design data is one of the 
important requirements of a database management system. The hierarchical 
data model has limited structuring capabilities, and the relational data 
model is flat. 

In a semantic data model the definition of the integrity constraints 
[Smith77] is an integral part of the modeling process. A semantic data 
model offers a clear diagrammatic notation to visualize the relationships 
among the composed types of a conceptual model. The data manipulation 
language is tuned to the concepts that are of importance during data 
definition. 

Starting from the semantic concepts of convertibility and relatability OTO-
D provides us with the means to formally judge a conceptual model of an 
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application environment, constructed using the abstraction primitives 
aggregation and generalization. Furthermore, it can be shown that the 
conceptual model of the data dictionary, i.e. a database containing data 
about the data (meta design data), can be expressed in terms of OTO-D 
itself. Therefore, we believe that OTO-D comprises a methodology for data 
modeling, suited to formalize the semantics of the design data. It is the data 
model that shall be used further is this work.. 

3.2 The Basic Design Object 

At first sight, classical database management systems (DBMS) offer some 
attractive facilities for the reliable storage of design data, including 
recovery mechanisms and concurrency control. However, most of these 
DBMSs have been targeted for business applications and do not specifically 
address the problems encountered in a design environment [Sidle80]. 
Transactions on a business DBMS typically are short in duration and affect 
only a small amount of data. In the design environment on the other hand, 
the designer requests all the information pertaining to a piece of design to 
modify it extensively over a long period of time before returning it to the 
database [Buchmann84]. 

The important issue is that VLSI design applications invariably deal with 
conceptually localized collections of related data which are manipulated as a 
single entity. This localization needs to be conserved by the design 
database. In line with several other researchers [Katz83, Batory85] we call 
these basic objects design objects. The design object should play a dominant 
role in the organization of the design data within the design database. The 
arguments for this approach are listed below: 

— The design object is the unit of access. Design objects are extracted 
and replaced as a unit. Hence, such issues as concurrency, recovery 
and versioning should be handled at the level of the design object. 

— To support concurrent access a mechanism is needed that locks design 
objects as atomic units. 



38 CONCEPTUAL MODEL OF THE DDMS 

— Recovery issues are also handled at the level of the design object. The 
design database will undo the effects of an incomplete design 
transaction by returning to the last saved copy of the design object 
(additional recovery facilities provided by the tools left out of 
consideration). 

— The design object is the unit of version propagation. Because the 
design object is the unit of retrieval and storage, versioning of design 
data should be handled at this level. 

— Design objects can be seen as the nodes of a hierarchical multi-view 
'matrix' [Dewilde86]. 

— By taking the design object as the basic entity for further modeling, 
we hope to construct a coherent DDMS framework, without getting 
involved with representation details of some predetermined types. 

— To the designer the design object has a well defined meaning: the 
behavioral description of his ALU, the circuit description of a flip-flop 
or his new routing result. 

3.3 The Initial Data Schema 

To define the object type design-object, we have to examine by which other 
object types design-object is characterized. First, a design object has a name 
by which it can be identified. Further, in a logically distributed 
environment each design object has been constructed in connection with a 
certain project. Other attributes of design-object might be its designer or 
the date of construction: 

TYPE design-object = name, project, designer, date 

In a project oriented environment there is no need for all names to be 
globally unique. Therefore, the scope of a design-object ITS name is limited 
to the design-object ITS project. The resulting diagram is given below. 
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Figure 3.4. Diagram of the definition of the type design-object 

3.4 Design Management Data Schema 

At a first glance the DDMS is much like a librarian, providing controlled 
access to its basic objects, the cells, while administering relevant 
information about these objects: the meta design data. The meta design data 
describes how the basic objects are related to each other. It contains all 
hierarchical information of a design, as well as equivalence information 
relating basic objects of possibly different view types. The administration 
of the evolutionary development of a design, which distinguishes a DDMS 
from a classical library, is supported by dedicated version and state control 
mechanisms. 

Our approach employs a semantic data modeling technique (OTO-D) as a 
formalized tool for the analysis of the semantics of the meta design data 
[Leuken85, Wolf86, Wolf88]. In this way a conceptual data schema, 
reflecting the different object types and their relationships, is derived. 
When the dependencies encountered in the design data are made explicit, 
they can be maintained and made available to both management tools and 
sophisticated design tools. The semantic data model employs a declarative 
data manipulation language, which provides a simple and clear access 
mechanism to the meta design data. 



40 CONCEPTUAL MODEL OF THE DDMS 

layer 1: Design data stream^ 

equivalency 

lock 
■ 1 ' — 

X . 

stream 

lame 

N. 
mode tool name 

version s 

layer2: Meta design data — 
module 

hierarchy 

^ 
s<S 

cell 

tatus state 

module 

name vie 

project 

w type 

project name owner 

layer3: Environment data 

Figure 3.5. Conceptual data schema 

Figure 3.5 depicts the semantic data schema [Leuken85, Wolf86, Wolf88], 
which we take as representative for a design environment. The data schema 
contains hierarchies, equivalencies, versions, locks and views. The basic 
objects in the data schema are the design objects or cells. The data 
management system maintains information about the design objects: the 
meta design data. The meta design data describes how the design objects are 
related to each other. It contains all hierarchical information of a design 



3.4 Design Management Data Schema 41 

description in a particular view, as well as equivalence information relating 
design objects in possibly different views. The version information of an 
object, locking information, ownership etc. are also considered meta design 
data, being maintained by the data management system. 

The functional capabilities of the DDMS are partitioned into three layers. 
The first layer contains low level I/O functions. Its objective is to provide 
efficient access to the design data. It also offers data independence, which 
allows for the usage of data compression techniques. The second layer 
provides controlled access to the design data, while maintaining information 
about it. The object types in this layer will be discussed in more detail in 
the next chapters. The logical distribution of design data across different 
local databases requires a dedicated communication mechanism, while 
consistency among these databases should be preserved. These issues are 
resolved by the third functional layer. 

3.4.1 The Cells 
The basic object in the data schema is thus the cell. A cell represents by 
definition a logically related set of design data. It describes a functional 
part of an integrated circuit in terms of primitives of a certain view type, as 
well as references to other cells of the same or different view type. The cell 
is the appropriate unit of exclusive access for manipulation of the design 
data by the user. The DDMS does not interpret the representation details of 
a cell; these are handled by the design tools. 

3.4.2 Relationships and View-Types 
It is generally accepted that the complexity of VLSI design can effectively 
be managed by partitioning the design data into hierarchically related 
objects while introducing multiple levels of abstraction (view types) at 
which a design can be described. The relationships between cells of possibly 
different view types are administered explicitly by an equivalency 
mechanism. By introducing the object types hierarchy, equivalence, and the 
attribute view-type in the data schema we allow the designers and their tools 
to exploit the hierarchical and equivalence relationships, e.g. for top down 
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design or layout to circuit extraction. In our decomposition, equivalent cells 
are not required to have isomorphic hierarchical trees of subcells. 

A view of an object can have a more general meaning. In the Smalltalk 
system [Goldberg83] a view is an abstraction of an object that automatically 
can be generated by object methods. We use view-type in a different way, 
as the classification of an object, e.g. it is an attribute of an object with a 
static value. This necessary in our environment because of the evolutionary 
nature of the design data. 

3.4.3 The Version Mechanism 
The version mechanism (Figure 3.6) permits several cells to exist as the 
different versions of a module, i.e., bearing the same name, while a version 
status is attached to each of them [Dewilde86a, Leuken85, Wolf86, 
Wolf88]. 
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Figure 3.6. Version mechanism 

The version statuses available are backup, working, actual and derived. The 
actual version status is unique in a particular module. The actual cells of 
the different modules form a (hierarchically) consistent set. An update 
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transaction roughly proceeds as follows. A cell that has to be updated is 
checked out. After updating, the data will be checked in as a working cell, 
which can be verified and/or reedited independently of other design 
activities [Bayer80]. When a cell has reached some definite state, it may be 
added to the hierarchically consistent set by invoking the install command. 
After successful completion the installing procedure will give the working 
cell the actual version status. The former actual cell will obtain the backup 
version status. The hierarchical links from actual and working cells calling 
this cell will be redirected to the new actual cell. Only one working cell can 
exist per module; it is the only cell of a module that can be modified by a 
designer at a particular time. 

It is possible to have several derived cells per module. These are temporary 
cells derived from other representations, allowed to co-exist for verification 
purposes or automatically generated. A selected derived cell may be added 
to the version chain. Thus, our module consists of a linear chain of cells, 
each with an explicit version status. 

3.4.4 Locking and Concurrency Control 
A concurrency control mechanism synchronizes the execution of the design 
transactions in a multi designer and multi process environment. A 
commonly used mechanism is locking. In a system with a lock mechanism 
access to a database object is allowed when the transaction owns a lock on 
it. Design transactions differ from classical database transactions in that the 
former are of long duration. Consequently, the whole design transaction is 
not known in advance and common locking techniques are not suitable here, 
see also [Bancilhon85]. 

In our data schema the lock mechanism of the design data is represented by 
the object type lock. It is an aggregation of cell (i.e. the object to lock), tool 
(i.e. the design tool who submits the transaction), and lockmode (i.e. the 
type of the lock). Types of locks are: readonly, write, and attach. During a 
read transaction on a hierarchically consistent cell (i.e. with version actual), 
it should be locked with readonly. Editing a cell is only allowed on a 
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working version, on which occasion it is locked exclusively for write. Thus, 
the version mechanism contributes to the concurrency control mechanism 
by omiting conflicting combinations of transactions, i.e. the read-write 
conflicts [Bernstein83]. This solution is suitable for transactions of long 
duration. Design tools frequently put some additional information into a 
cell. The transactions involved should lock the cell with attach. This type 
of lock is not necessarily exclusive. The ranges, i.e. the sets of streams 
accessed, of certain design tools might be disjoint, allowing for concurrent 
execution even within the cell environment. A table containing the 
compatible tools will be consulted before granting a lock request of attach 
type. 

3.5 The Design System Architecture 

To describe the distributed situation we need a new data schema on top of 
the data management schema presented so far. A verbose characterization 
of the design management environment is as follows (Figure 3.7 and Figure 
3.8). Design objects that constitute an integrated circuit are grouped 
together in a project. A project is a set of related design objects that 
describe an integrated circuit. It provides a logical context for the designers. 
There can be several designers working simultaneously on the same project. 
The group of designers that can work in a project is administrated in the 
configuration database. Passwords and log-on dates are recorded here too. 
To distinguish projects on the same machine, a project has a project owner. 
The project owner is usually the name of the logical machine where the 
design data of the project is completely stored, in combination with a chosen 
name, for example "hostnameiprojectl". This provides an unique 
identification of a project within a community of workstations. A logical 
machine constitutes a central processing unit and a, possibly distributed, file 
system. Each integrated circuit is designed using a particular design process. 
Properties of the technology used are stored in the technology database. 
Each designer has its own private workspace, represented in the data schema 
as user database. Here, a designer can store private data, which allows him 
for example to override some system configuration defaults. The universe is 
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technology 

name location 

Figure 3.7. Project data schema 

the collection of projects, the technology database, the configuration 
database and the user databases. 

The design data of a team of designers working on the same integrated 
circuit, is stored on a logical machine in a project. Each project is managed 
by a design management process. The design management process maintains 
the meta design data of the project. All design transactions taken by a 
designer working on a design object in a project are by consent of the design 
management process. The design management process controls the 
concurrent sharing of design data, the version evolution, stores hierarchical 
relations, equivalence relations, grants and administrates access to the 
project. 

In the data schema and design management architecture presented so far no 
provisions are made for distributed design management. In the next chapter 
an extension of the data schema will be presented that includes provisions 
for distributed design. 
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Figure 3.8. Project environment 

3.6 A Logically Distributed Environment 

The logical distribution of the design data across different databases is 
expressed in the data schema by the object type project. A project 
represents a collection of cells, thereby offering a local context in which the 
activities of a designer take place. The logical distribution of the design 
data is visible to the designer, providing a clear and simple concept of his 
environment. The project acts as the unit of authorization, the software 
verifies access permissions when designers or tools try to enter the project. 
Furthermore, the concept of project can be used to administer certain 
properties of the cells that belong to a certain project at a global level. For 
instance, we administer the technology of the cells at the project level, 
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restricting the cells within that project to being designed using this 
technology. 

3.6.1 The extended data schema 
Formalizing the previous description of the design data manager 
environment and consequently incorporating the distribution features are 
the next tasks. This will be achieved through the implementation of a new 
data schema. In the previous chapter we introduced a design system 
environment. The most important aspects of the design system 
environment are: 

— The data schema, describing relations between design data. These 
relations are stored in the meta design data. 

— A design management process (DMP), that manages the meta design data 
within a project. 

In a modern design environment a group of designers work, on their 
individual workstations, to design an integrated circuit in a reasonable 
amount of time. This introduces the problem of distributed design 
management, which we should envision as residing on top of the design data 
schema. Distribution means that 

1. the data schema has to be extended to include information about where 
design data is stored and its status. 

2. if the network between the workstations breaks down, designers can 
continue to work without major interruptions. 

3. the performance of the system should be acceptable. 

4. data transfers on the network should be as minimal as possible. 

5. The physical distribution of the data should be invisible for the 
designer. 

A distributed design management system creates the problem of localization 
of design data at different places within one project and the problem to 
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maintain the consistency of the meta design data and the design data. 

dale designer 

Figure 3.9. Extended project data schema 

We propose a solution, where the project is divided in subprojects (Figure 
3.9). A subproject consists of a set of design objects, and is a project. If a 
designer wants to modify some cells of a project, he asks the design 
management process of his local project to provide him with design data 
from a remote project. The local design management process contacts the 
remote design management process. The remote design management process 
verifies the status of the design data and makes the design data available if 
the status is in order. The local design management process creates a sub-
project with the attribute subproject-owner equal to the remote design 
management process project owner. In the subproject-configuration database 
(Figure 3.10) data is stored about who created the sub-project and when it 
was created. The design data in question can consist of one cell or an 
hierarchy of cells, depending on the designers request. At the same time the 
remote design management process creates also a sub-project with the 
appropriate attributes set. Both design management processes, now have 
information about where the design data is present and who owns it. 
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Figure 3.10. Extended project environment 

Depending on the mode wherein the designer made his request to provide 
him with design data, the version attributes and lock, attributes are altered 
on the remote project. If the mode was read-only, the requested version is 
made available and a read lock is set. If the mode was edit the version 
attributes are possibly changed and a write lock is set, and the version is 
made available to the local design management process. The design data is 
not available if a write lock has already been set on the requested design 
data. In addition to the design data that has been copied from the remote 
project to the local project, the meta design data belonging to the requested 
design data is copied also. The designer working on the local project can 
now work completely independently from the remote project. If the design 
data was copied from the remote project with mode edit, after the editing is 
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done, it has to be installed on the remote project. This includes updating the 
design data on the remote project as well as updating the meta design data 
on the remote projects. 

The subproject-owner attribute is used to verify the access rights of a 
designer. If the subproject-owner name of a subproject is different than the 
project owner name, permission to modify or access design data has to be 
obtained from the design management process managing the project of the 
project owner. 

3.6.2 The Distributed Design Data Manager 
The data schema of the distributed design manager has some additional data 
types. The added type subproject allows for the storage in the meta design 
data of information consisting of: the name of a subproject, the subproject 
owner, the list of all cell names in a subproject and the physical location of 
the design data of each cell. Since the locking strategy is identical in the 
distributed environment, no change is necessary. The lock, modes are write 
and read [Widya88]. In all situations a cell can be edited by only one 
designer. 

This distributed design manager requires some extra functionality. The 
extra functionality is transparent for the software designer. He sees no 
difference between a tool running in a non distributed environment and a 
distributed one. Some additions are made internally in the design manager. 
First, the functions of the design manager have to check, the attribute 
projectowner. This will decide if a tool can access design data locally, or if 
the design data should be copied from another machine. Secondly, since the 
data schema is extended, additional hard coded queries are needed. In 
principle, queries could be handled by a general purpose query interpreter. 
However, for efficiency reasons special purpose functions are to be added. 

Two new design management tools are necessary. The first one enables the 
designer to create a subproject. The second one installs the subproject in the 
project. 
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The program that creates a subproject has as arguments the name of a 
project, the name of a root cell and a number representing the required 
hierarchical depth of the tree. It copies the design data of each cell in the 
tree to the appropriate machine and copies the relevant meta design data. 
The relevant meta design data encompasses the first order relationships of 
each cell. The program also updates the meta design data of the project 
owner and the meta design data of the subproject owner. Design tools can 
now work, normally on the subproject machine, as long as the design data is 
present. If a design tool wants access to design data not present on the 
machine, the design manager will first copy all relevant data from the 
project owner machine after which the design tool can continue to operate. 
It is possible that several copies of a working version exist. It is the task of 
the design manager to assure that a change of a working version is 
broadcasted to all subprojects were this version is present. 

After the designer has finished his work, the subproject should be installed 
on the project owner machine. The install design management tool takes 
care of this task. Using the transaction history mechanism it installs all 
modified cells. 

3.6.3 Examples 
We will discus the procedure to edit a cell on a workstation in different 
cases. The situation is (Figure 3.11): 
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Figure 3.11. Example of data distribution on workstations 

— Workstation 1 is the project owner. 

— Workstation 2 has checked out subproject A. The cells in subproject A 
are checked out with lock mode read, and all the cells have the version 
status actual. 

— Workstation 3 has checked out subproject B. The cells in subproject B 
are checked out with lock mode write, and all the cells have the version 
status working. 

The project owner has stored in its sub-configuration database the following 
information: 

— that cell X is in subproject A, lock mode read. 

— that cell Y is in subproject A, lock mode read. 

— that cell Z is in subproject A and in subproject B. 
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— that cell Z is edited (lock mode write) in subproject B. 

The cases which we will now present, will demonstrate that only one copy 
of a cell can be edited at any time on any machine. 

Case 1. Suppose workstation 2 wants to edit cell X. Actions: 

1. Workstation 2 does a checkout of cell X for editing. The intended 
result will be that the version status of cell X will be changed from 
actual to working. 

2. The checkout function sees that workstation 2 is not the owner of cell 
X. Workstation 2 inquires the lock mode of cell X with the project 
owner. 

3. The project owner checks its tables for cell X, it has lock mode read, it 
changes lock mode to write and answers workstation 2 OK. 

4. The checkout function changes the version status actual to the version 
status working on workstation 1 and workstation 2. 

Case 2. Suppose workstation 2 wants to edit cell Z. Actions: 

1. Workstation 2 does a checkout of cell Z for editing. The intended 
result is that the version status of cell Z will be changed from actual 
to working. 

2. The checkout function sees that workstation 2 is not the owner of cell 
Z. Workstation 2 inquires the lock mode of cell Z with the project 
owner. 

3. The project owner checks its tables for cell Z, has lock mode write, 
answers workstation 2 NOTOK, since the cell is edited by workstation 
3. 



54 CONCEPTUAL MODEL OF THE DDMS 

4. The checkout function returns with an error message. Cell Z continues 
to have the version status actual. 

Case 3. Suppose workstation 2 wants to checkin cell X after editing. 
Actions: 

1. Workstation 2 does a checkin of cell X. The intended result is that 
cell X with version status working will be copied from workstation2 
to workstation 1. 

2. The checkin function sees that workstation 2 is not the owner of cell 
X. Workstation 2 inquires the lock mode of cell X with the project 
owner. 

3. The project owner checks its tables for cell X, has lock mode write, 
edited by workstation 2, answers OK. 

4. the checkin function sends a checkin request to the project owner, and 
then the design data of cell X. Depending on the mode of the checkin, 
the project owner changes the lock mode of cell X in its sub-
configuration tables. 

Case 4. Suppose workstation 3 wants to checkin cell Z after editing. 
Actions: 

1. Workstation 3 does a checkin of cell Z. The intended result is that cell 
Z with version status working will be copied from workstation3 to 
workstation 1. 

2. The checkin function sees that workstation 3 is not the owner of cell 
Z. Workstation 3 inquires the lock mode of cell Z with the project 
owner. 
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3. The project owner checks its tables for cell Z, has lock mode write, 
edited by workstation 3, answers OK. 

4. The checkin function sends a checkin request and the design data to 
the project owner. 

The install procedure, i.e. the procedure that installs a working version of a 
cell in the hierarchical consistent actual tree of a design, can be started on 
any workstation. If the procedure is started to install a cell in a subproject, 
the install procedure will copy the working version of the cell to the project 
owner machine, where after it continues to run on the project owner 
machine. If for some reason the network connection breaks down, a 
designer can continue to work on his workstation. The install procedure 
still works correctly in this situation, however it can not copy the working 
version to the project owner machine. In this case the install procedure will 
install the cell in the version chain of the subproject. This method of 
working has an advantage and a disadvantage. The advantage is that a 
designer can continue to work without interruption. The disadvantage is 
that the versions of a cell created locally have to be merged in the version 
chain of the project owner, after the network connection is available again. 
This could be done by a special tool, which can only operate in close contact 
with the designer. 

3.6.4 Discussion 
There are three important issues, when implementing a distributed data 
manager. The first question is: how important is autonomy. If you want to 
be able to continue to work after a network crash, copies of design data and 
meta design data have to be made. If you find autonomy not important and 
you have a network file system, no copies of the design data have to be 
made. The meta design data is also copied in this case. 

The next issue is performance. It takes computer resources to make copies 
of data. Thus, it is important to copy only that part of the design data that 
actually will be used by a designer. If a subproject is created, the question 
is: which versions of a cell will be copied. There are several possibilities. 
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First, only the actual version is copied. This can be done without 
consequence for the database consistency. In this case it is impossible to 
edit a cell in a subproject. Secondly, the actual and, if it exists, the working 
version are copied. This means that multiple copies of an editable version 
exist. The distributed data manager has to maintain the consistency of the 
database. This could be achieved by one of in the following ways. 1). Only 
one copy of a working version can actually be edited. This can be 
implemented by checking designer names, or by allowing only one 
subproject to edit a working version, until the version is installed. 2). If a 
working version is changed, the updated version is broadcasted to all other 
users. As third possibility it is possible to copy the actual version and copy 
the working version only when desired. After editing, the working version 
remains in the subproject, until it is installed. In this situation only one 
copy exists. 

The third issue is the consistency of the database. As we saw before, it is 
important that only one editable working version exists in the universe. 
The locking procedure of the distributed data manager guarantees that only 
one designer can edit a version at a particular time. However, if multiple 
copies of a working version exist, several different version can come into 
existence. This is a undesirable situation. The distributed data manager 
should prevent the existence of more than one editable working version in a 
universe. 

3.7 Conclusions 

We argued that the design object, being manipulated as a single entity by 
VLSI design applications, should play a dominant role in the definition of 
the organization of the design data. An initial data schema was constructed, 
reflecting the object type design-object as the aggregation of a number of 
attributes that characterize a design object. 

Taking the design object as the basic entity for further modeling will result 
in a conceptually uniform framework for a design data management 
system. In our approach the detailed design data, i.e. structural/behavioral 
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descriptions of pieces of hardware, is concentrated within atomic objects. 
Although access to these design objects is provided by the design data 
management system, it does not interpret their representation details; these 
are handled by the tools. Instead, the design data management system 
maintains information about the design objects, i.e. the meta design data. 

The meta design data describes how the design objects, at this level viewed 
as atoms, are related to each other. The version information of an object, 
locking information, ownership etc. are also considered meta design data, 
being maintained by the design data management system. The concept of 
the design object provides a basis for a consistent system philosophy, not 
being blurred by view dependent issues. 

We have presented a distributed design management system for the VLSI 
design environment. A semantic data model is used to model and structure 
the design data. To increase design speed a distributed environment is 
necessary. The data schema is extended with subprojects, representing the 
temporary distribution of the design data in a community of workstations. 

Dividing our distributed data schema in projects, subprojects and cells with 
their attributes, provides us with the next database properties. 

1. The individual databases are autonomous. They are physically 
independent. 

2. The individual databases are homogeneous. 

3. A project, or a design database has a horizontal fragmentation. The 
distribution of the design data is based on subsets of cells 
(subprojects). Counter part of a horizontal fragmentation is a vertical 
fragmentation where the distribution is based on subsets of attributes. 

4. The design data is temporarily partly redundant. Some cells may be 
present on one or more workstations at a particular time. 

5. Most importantly the access of the design data will be primarily local. 
After a copy has been made from the project-owner to the local 
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workstation no further data transfers over the net are necessary. In 
most cases the access times of data over a net is at least 20% slower 
than accessing the data on a local disk.. 

6. The project-owner knows where copies of cells are present and their 
status, because this information is stored in the rneta design data. 

7. Communication will primarily exist between the project-owner and a 
local workstation. 

In the next chapter we will describe a design data management system 
architecture, which incorporates the presented data schema. The two most 
important aspects are the tool interface and the user interface. 
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4. SYSTEM ARCHITECTURE 

4.1 Introduction 
It is generally acknowledged that a crucial part of an integrated VLSI design 
environment is a Design Data Management System (DDMS), to form the 
kernel around which all design tools are integrated [Katz83, Newton86]. 
The DDMS provides essential facilities to the tools and the designer, based 
on the knowledge it has of relationships that are present within the design 
data. To mention are such aspects as concurrency control, crash recovery, 
support for design evolution in a hierarchical multi-view context 
(versioning, maintaining verification statuses and equivalence relationships) 
and physical distribution across multiple workstations. These facilities 
offer the tool developer a way to manage the complexity by exploiting their 
properties and relieve the designer from the burden of organizing his design 
data. These issues were discussed in the previous chapter. 

In this chapter, we will focus on the interface between VLSI design tools 
and such a DDMS in an environment where both the tools and the DDMS 
are constantly evolving. In this environment, the tools should depend as 
little as possible on the DDMS to avoid extensive tool modifications with 
each new release of the DDMS. Furthermore, the DDMS must be open-
ended: It should be easy to add new tools to the system in such a way that 
they become a consistent part of the design environment. Thus, what is 
needed is a decoupling of the software development and evolution of the 
DDMS on the one hand and the tools on the other hand. 

The only way to effectuate this decoupling is by a standardization of the 
Data Management Tool Inter/ace (DMTI) [Meijs87] between the tools and 
the DDMS. Via the DMTI the tools obtain access to the design data, while 
taking advantage of the facilities that are provided by the DDMS. In 
practice, a DMTI is a set of library functions that can be used by the tool 
developer, in such a way that he does not need to have a detailed 
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understanding of the implementation of the DDMS. In this chapter, we will 
introduce such a DMTI, based on a transaction schema that formalizes the 
procedural aspects of the communication between the tools and the DDMS. 

4.2 Tool Interface Requirements 

The following requirements can be formulated for the Tool Interface (TI) 
(see chapter 2): 

• The TI must bring about efficient interaction between the tools and the 
DDMS. 

• The TI must not be tailored to specific tool features or design 
methodologies. It should be universal, to result in an open-ended design 
system where the DDMS acts as a free-for-all public repository that can 
communicate with any type of tool and environment. 

• The TI must not be tailored to specific features of a DDMS. For example, 
it must allow interfacing to DDMS's with or without version control, 
concurrency control, multiple view-types, etc. When this requirement is 
met, the tools can actually be "plugged in" in the same way in any 
DDMS, whether it concerns different releases of a DDMS at a certain site 
or DDMS's at different sites. 

In summary, a TI should offer some degrees of freedom, but at the same 
time the necessary discipline to facilitate software evolution and exchanges. 
Our opinion on how to introduce this discipline is expressed most concisely 
by the following thesis: 

Thesis 
The optimal way to decouple the development and 
evolution of the DDMS and the tools is to agree on 
a common transaction schema, and reflect this in 
the definition of the TI. 

A transaction schema consists of a set of procedures which are to be 
executed in a particular sequence, according to which the tools obtain access 



4.2 Tool Interface Requirements 65 

to the design data. Our transaction schema is based on a number of 
assumptions that we believe to be general within the context of chip design. 

As argued in chapter 3, the design data is organized on a per project basis. 
A project offers the designer a local context in which a collection of cells is 
present. A cell represents a logically related set of design data, describing a 
functional part of an integrated circuit in terms of certain primitives, as 
well as references to other cells. It is the appropriate unit of exclusive 
access for manipulation of the design data by the user. Within a cell the 
actual design data is organized as a set of streams, but no assumptions are 
made on the contents of these streams. 

The agreement on these assumptions permits the definition of a transaction 
schema, and hence a TI, that localizes the interaction between the tools and 
the DDMS. Any tool modifications that are required to adapt the tool to 
other implementations of a DDMS will then be strictly local and will not 
alter the structure of the program. Consequently, they can be done with 
much less effort. 

We can in this respect draw an analogy with a public library, where the 
books (cells) are organized in racks based on certain criteria as author, title 
or language, without making any assumptions on the actual text that is 
contained in the books. If the internal organization is hidden from the 
public, we can have the following procedure employed. To borrow a book, 
a form describing it should be filled in. This form is accepted at the desk 
and the book is returned (if it is available). If this is the only direct 
interaction between the public and the library personnel, it permits the 
library (DDMS) to be reorganized invisibly. For example, new racks can be 
placed or internal procedures automated, without having this local 
interaction with the public (tools) changed. 

4.3 The Transaction Schema 

In this section, the TI transaction schema will be defined. As a consequence 
of the recognition of project, cell and stream as units of access, the 
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transaction schema will be a layered one. The effect of a tool on a design 
environment is called a tool-execution. It is a (possibly interleaved) 
sequence of project transactions bracketed by an initialization and a 
terminalion. Similarly, a project transaction is a (possibly interleaved) 
sequence of cell transactions bracketed by an open project and a close 
project. A cell transaction is a (possibly interleaved) sequence of design 
data transactions bracketed by a checkout and a checkin, while a design data 
transaction is a sequence of design data 10 operations bracketed by an open 
stream and a close stream. A design data 10 operation is either a read 
operation or a write operation. 

We present these definitions graphically in Figure 4.1. The boxes on one 
level represent a sequence of actions, executed from the left to the right. 
Child boxes specify a refinement of the father action. A starred box 
represents an iteration and boxes with a small circle imply alternatives. 
This diagram is a variation on a Entity-Action diagram as defined in 
[Jackson83]. 

4.4 Related Work 

There are just a few tool interfaces for design data management purposes 
[Brouwers87]. Most likely, a reason for this is that design data management 
is a relatively new field in CAD/IC. Recently one tool interface was 
introduced: OCT [Harrison86]. 

The OCT data manager provides simple procedures to store and retrieve 
design data. The basic design unit in OCT is a facet, the attributes of a facet 
are cell name and view type. A facet can be a set of nets, transistors, boxes, 
edges, etc. The OCT interface contains functions to open and close a facet, 
and read and write objects in a facet. Also it provides functions to attach 
and detach different objects. It is possible to attach a transistor to a net, or 
a box to a layer, or a facet to another facet. The OCT data manager has no 
concurrency control, has no version mechanism and has no support for high 
level design transactions. In other words, OCT incorporates a simple storage 
mechanism, and provides none of the services of a more advanced DDMS. 
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Figure 4.1. Transaction Schema 

4.5 The Tool Interface 

4.5.1 Concepts 
The TI defines a set of functions that should be used by the tool developer 
to obtain access to the design data. Basically, there is one function in the TI 
for each leaf of the tree in Figure 4.1. These functions co-operate with each 
other in such a way that this access will proceed in accordance to the 
transaction schema presented in the chapter 4.3. That is, they implement 
the procedure according to which access to the design data can be obtained. 

Access to either the design environment, a project, a cell or a stream can be 
obtained by executing the corresponding opening-bracket function, as 
represented by the leafs at the left-hand side of the tree in Figure 4.1. A 
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transaction is terminated by executing the corresponding closing-bracket 
function at the right-hand side. In between, lower-level transactions can be 
performed. 

The functions in the TI communicate with each other by means of abstract 
data types, called keys. The contents of these keys is not fully specified in 
this TI definition, but can depend on the particular DDMS at hand. 

There are four types of keys, one for each layer: 

DM_UNIVERSE universe transaction key, 
DM_PROJECT project transaction key, 
DM_CELL cell transaction key, 
DM_STREAM design data transaction key. 

The key returned by an opening-bracket function at some layer is part of 
the argument list of the functions at the next lower level and of the closing 
bracket function. This allows the interleaving of more than one sequence of 
calls of lower-level functions. The closing bracket function invalidates the 
key. 

Typically, a key contains all necessary information about the object for 
which access was obtained, for use by the lower-level functions. Depending 
on the particular DDMS at hand, this can for example be physical location, 
access permissions and state. 

Each key contains a pointer to the next higher level key that was passed as 
an argument to the function returning the lower level key, so that the 
complete context is known at the lowest levels. Also, all keys with the 
same "parent key" are linked together in a list that is attached to this parent 
key. This facilitates error recovery and automatic clean-up actions. For 
instance, the closing bracket functions could terminate all their lower level 
transactions still in progress. When a key is invalidated by the 
corresponding closing bracket function, it is removed from the list. 
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The opening bracket functions take as arguments, apart from a parent key, 
an identification of the object for which access is to be obtained and possibly 
an access mode. In an actual implementation these arguments will reflect 
certain features of the DDMS: When it provides version control at the cell 
level, the parameters of the dmCheckOut function must somehow identify 
the version to be checked-out [Meijs86]. 

After verifying and establishing the access, appropriate information for 
further use by the lower level functions is stored in the key that is 
returned. As a direct advantage, the visibility of particular features of the 
DDMS can be confined to a small number of places in the TI. The fact that 
there is a version mechanism at the cell level is visible in the argument list 
of dmCheckOut, but only there. It is not visible in the argument lists of the 
lower level functions, but completely hidden in the implementation of the 
DM_CELL key. 

In an actual implementation of a DDMS, appropriate actions will be 
associated with each function of the TI. By introducing the right levels of 
intervention, the TI as presented here provides a natural and universal 
framework to localize these actions. In the next section, the functions at the 
different layers are presented, together with some examples that illustrate 
how particular DDMS features can be embedded in the TI. 

4.5.2 The TI Functions 

4.5.2.1 Global Initialization and Termination 
Two functions are needed for global initialization and termination. They 
establish and release contact between the tool and the design environment. 
• dmlnil (toolname): unikey 
• dmQuit (unikey) 

Dmlnit is the opening bracket function of a tool-execution and returns a 
DM_UNIVERSE key. This key contains information about the design 
environment (for example hostname, user-id, process-id, working directory 
etc.) in which the tool is executed. The main purpose of dmlnit is to 
initialize the TI interface. The tool identifies itself by means of the 
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argument toolname. An action that might be performed by the DDMS is to 
consult a tool database to obtain more detailed information about the tool. 

DmQuit is the closing bracket of a tool-execution. It takes care of the 
necessary clean up operations. 

Between dmlnit and dmQuit the project transactions are executed. 

4.5.2.2 Project Transaction Layer 
At this level such aspects as projects, libraries and distributed databases can 
be handled. 
• dmOpenProject (unikey. projid. openprojmode): projectkey 
• dmCloseProject (projectkey. closeprojmode) 

DmOpenProject initiates a project transaction and returns a DM_PROJECT 
key. This key contains information about the particular local database or 
project, represented by projid, and the access mode, represented by 
openprojmode. Actions that might be performed are verification of the 
access rights, retrieval of technology information, setting up LAN 
connections or contacting a local manager process. The project key will be 
passed as an argument to the functions at the cell transaction layer. 

DmCloseProject terminates the project transaction. The details of this 
operation are specified by closeprojmode. In a physically distributed 
environment, actions to be performed might include returning local copies, 
closing LAN connections, etc. 

4.5.2.3 Cell Transaction Layer 
The functions at this layer take care of aspects of cell transactions. To 
mention are concurrency control, versioning, view-types, maintenance of 
verification statuses and equivalence relationships, etc. 
• dmCheckOut (projectkey. cellid. checkoutmode): cellkey 
• dmCheckln (cellkey. checkinmode) 

DmCheckOut is the opening bracket function of a cell transaction. Its 
arguments are a DM ^PROJECT key, identifying the particular project for 
which access rights have been obtained by dmOpenProject, and an 
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identification of a particular cell, denoted by cellid. The checkoutmode 
parameter specifies what type of interaction is to take place, so that the TI 
can anticipate on it. For example, in a multi-user environment any number 
of simultaneous readonly or only one single update transaction can be 
allowed at the same time. 

DmCheckIn is called to terminate a cell transaction initiated by 
dmCheckOut. Cellkey has been obtained from dmCheckOut. Checkinmode 
specifies how the transaction has to be terminated, e.g. whether the 
transaction should commit or rewind. Actions that might be performed 
include removal of locks, updating of verification statuses, deletion of 
scratch data that was created for recovery purposes, etc. 

In order to hide the versioning capabilities of a DDMS and possible different 
view-type values, a browse function is provided. 
• dmBrowse (projectkey): cellid 

This function has one argument projectkey and returns a cellid. dmBrowse 
is a machine-man interface routine, which displays on a screen a 
representation of the data schema of the project and allows the user to select 
a cell. 

In a DDMS that recognizes cell as a unit of access, an administration will be 
present on top of these cells. Compare this to the card-trays of a public 
library. This administration is used by the DDMS itself to maintain some 
information about the cells. It should also be accessible to the tools, for 
instance, to allow them to obtain a cell-list or to ask for and insert 
equivalences. For this purpose the functions dmGetMetaDesignData and 
dmPutMetaDesignData are provided. 

• dmGetMetaDesignData (projectkey. request, arguments) 
• dmPutMetaDesignData (projectkey. request, arguments) 

DmGetMetaDesignData (DmPutMetaDesignData) can be used to obtain 
(store) information from (into) the local administration of the project 
identified by projectkey. 
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By means of the request argument and a variable argument list, the specific 
retrieval or update operations (queries) can be passed to the DDMS. Which 
queries can actually be formulated depends on the conceptual model that is 
employed by the DDMS for the organization of its administration. For 
instance, a DDMS supporting equivalence relationships between cells of 
(possibly) different view-types, will accept queries on this information. 

4.5.2.4 Design Data Transaction Layer 
These functions are at the lowest level, i.e. closest to the physical 10. They 
map the design data to and from the physical storage structure being 
exploited. 
• dmOpenStream (cellkey. strname. iomode): streamkey 
• dmCloseSlream (streamkey. closestreammode) 
• dmGelDesignData (streamkey. format, arguments) 
• dmPutDesignData (streamkey. format, arguments) 

DmOpenStream returns a DM_STREAM key which will be used by 
dmCetDesignData, dmPutDesignData and dmCloseStream. The cellkey 
argument is obtained from dmCheckOut. Strname identifies a stream of data 
belonging to the cell identified by cellkey. Iomode specifies the mode of 
access to the data, e.g. read or write. DmOpenStream can check this mode 
against the checkout mode. For example, it should be forbidden to open a 
stream for writing if the checkout mode was readonly. 

In a Unix implementation, a stream will probably be implemented as a file, 
but this need not be the case. For example, experiments have shown that it 
is possible to transparently map 10 operations onto shared memory as an 
efficient channel for direct inter-tool communication via the TI. Anyway, 
dmOpenStream knows where and how to find the data, given the 
information that is present in cellkey and its parent DM_PROJECT key. 

DmCetDesignData and dmPutDesignData perform the actual in- and output 
of design data. They know the mapping to and from the storage structure 
employed. Streamkey is obtained from dmOpenStream. DmCetDesignData 
and dmPutDesignData do not restrict the formats of the detailed design data 
that can be transferred. The mechanism used is very similar to that of the 
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printf() and scanf() functions in C. 

DmCloseStream. must be called to terminate a design data transaction. Files 
can be closed or allocated memory can be freed. Closestreammode specifies 
the details. 

4.5.2.5 Calling Pattern 
As an illustration of how these functions co-operate, we present in Figure 
4.2 a calling pattern of the functions of the TI. The layered structure of the 
transaction schema is reflected in the indentation of the code. 

I DM_UNIVERSE unikey; 
DM_PROJECT projectkey: 
DM_CELL cellkey: 
DM_STREAM streamkey: 

unikey > dmlnit (toolname); 

projectkey := dmOpenProject (unikey. projid. openprojmode); 

cellkey := dmCheckOut (projectkey. cellid. checkoutmode); 

streamkey > dmOpenStream (cellkey. strname. iomode); 

dmGetDesignData (streamkey. format, arguments): 
dmPutDesignData (streamkey, format, arguments); 

dmCloseStream (streamkey. closestreammode); 

dmCheckln (cellkey. checkinmode): 

dmCloseProject (projectkey. closeprojmode); 

dmQuit (unikey): 

Figure 4.2. TI calling pattern 

4.5.3 Discussion 
The TI introduced here formalizes the procedural aspects of the interaction 
between VLSI design tools and a DDMS that provides a number of facilities 
to these tools. It does not prescribe the semantics of the design data, which 
would be unacceptable. It also does not completely prescribe the argument 
lists of the TI functions or the interpretation of these arguments. For 
example, the version of a cell to be checked-out will be an argument of the 
dmCheckOut function in a DDMS with a version mechanism, and is 
unimportant otherwise. 
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Openness is retained by avoiding tool-specific aspects in the TI definition. 
Furthermore, we illustrated the ability of the Tl to absorb DDMS-specific 
features that not necessarily have to be visible to the tools. By offering a 
proper set of "anchor points", the standard TI greatly facilitates software 
exchangeability: Modifications that are required to adapt a tool to another 
DDMS will be strictly local and will not alter the structure of the program. 
In fact, most of the work can usually be done mechanically, for example 
with a stream editor. 

The TI introduced in this paper has been implemented in the Delft Release 2 
and 3 of the ICD-NELSIS system [Dewilde86], which currently contains 
over 40 DDMS-intensive CAD/IC tools such as layout editors and 
generators, design rule checkers, extractors, a placement and routing system, 
simulators, etc. The decoupling introduced by the TI turns out to be 
extremely useful for software development, as it permits DDMS and tools 
to evolve separately to a large extent. As an illustration of the openness, we 
remark that integration of the KIC layout editor [Billingsley83] via the TI 
was completed in about two days. 

From the experience we have gained, it appears that the principles 
introduced in this paper indeed allow to do proper data management 
efficiently. 

As an additional benefit, the TI completely hides operating system 
dependencies. There are no path-names, file access modes, system calls etc. 
visible in the tools. Consequently, it should be easy to port the design 
system to other operating systems by changing the TI library. For example, 
a VMS implementation can exist side by side to a UNIX implementation. It 
is also possible to port some (small) parts of the system to PC-like systems. 

Our approach should be distinguished from such general object management 
systems as offered by the Portable Common Tool Environment (PCTE) 
[Bull85]. We recognize four levels of intervention, at which access to the 
environment, projects, cells and streams is arranged. This layered 
transaction schema has been adopted specifically for application in the area 
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of VLSI design. From our point of view, general object management 
systems are a possible implementation vehicle for a DDMS for VLSI design. 

The standardization that we propose emphasizes the procedural aspects of 
the interaction between the tools and the DDMS. Standardization of 1) the 
features of the DDMS that can not be absorbed by the TI but must be 
visible to the tools and 2) the semantics of the design data that is 
transferred, should also be considered. 

The particular features of the DDMS that must be visible to the tools 
manifest themselves most profoundly in the arguments of the functions at 
the project- and cell transaction layers. The more one can agree on the effect 
of such generally accepted aspects as versions and view-types on the 
arguments of the standard functions is reached, the easier it becomes to 
obtain consistent integration of a foreign tool in a specific DDMS 
environment. 

Also for the sake of consistent integration, agreement should be reached on 
the semantics of the design data. If tools are exchanged and should operate 
in close co-operation with each other, this kind of standardization across 
different sites will be very useful. For several tools to communicate they 
should understand each other. This is the point where the ideas presented 
in this paper meet the EDIF standardization activities [EDIF87], which also 
require a common interpretation of design data at different sites. 

4.6 Tool Communication 

Implementing a design data management system involves two important 
decisions. First, one has to decide which data schema will be used to model 
the design data. Then a design management program has to be written that 
incorporates the chosen data schema. Important elements of the program 
are the data handling and the communication with other programs. In our 
design environment several types of design tools are used. The first group 
are the application processes. Layout editors, simulators, design tools in 
general belong here. The second group are the designer interface processes. 
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Typically these are the command interpreter and window manager 
processes. The third group are the data management processes. Process 
group 1 and 2 are connected with designer activities, while process group 3 
is connected with project activity. 

In the distributed environment two communication mechanisms are 
important. The first type of communication will typically take place at one 
site, while the second type of communication will take place between 
different sites. 

4.6.1 Communication Between Group 1 and Group 3 Processes 
Application processes (group 1) require access to the meta design data 
managed by the data management process (group 3). Communication 
between group 1 processes and group 3 processes will take place on one site. 

There are several possibilities to implement an efficient communication 
mechanism between processes, given the Unix environment. 

1. pipes, communication mechanism between father and son processes. 

2. named pipes (System V only), communication mechanism between 
unrelated processes. 

3. shared memory and message queues. 

4. sockets, communication mechanism between unrelated processes on 
different sites using IPC primitives. 

The problem is to define a communication mechanism with the following 
properties: 

1. Fast access to the meta design data. 

2. Local as well as remote data communication. 

3. Controls the update of the meta design data. 

Figure 4.3 depicts our solution. 
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read and write access 

The tool process and the design management process have 
direct read access to the meta design data, because the meta 
design data is stored in shared memory. The tool process has 
write access to the meta design data via the design 
management process. This is a queue based mechanism. 

Figure 4.3. Meta data access 

Our solution for the communication problem is a combination of the use of 
shared memory and the use of message queues. We divide the queries in 
read-only requests and in update requests, and use different communication 
mechanisms for them. Meta data is stored in shared memory. This is done 
because application tools frequently execute requests to obtain information 
about the design data. Queries that require read operations on the meta 
design data, are executed by functions that have direct access to the 
information stored in the meta design data. These functions also have the 
possibility to deny access to the meta design data, for example when the 
meta design data is being updated. 
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Queries that can alter the contents of the meta design data, are implemented 
with functions that use message queues to send the request to the design 
management process. If an application process wants to modify the contents 
of the meta design data, it sends a message to the design management 
process, requesting some write operation. When the design management 
process receives a request to modify the meta design data, it disables all 
read accesses to the meta design data. Then it executes the request, updates 
the meta design data and enables the read access to the meta design data 
again. Disabling and enabling the access to the meta design data is done 
using signals and semaphores. It is also possible to defer a request as long as 
the design management process 'thinks' it is best to do so. Since only one 
process has write access to the meta design data, no conflicts arise about 
multiple write operations. 

4.6.2 Communication Between Group 3 Processes 
This type of communication takes place between design management 
processes. Since projects can reside on different sites, the implementation of 
a communication mechanism uses the facilities of the network between the 
sites. In a Unix environment an ethernet connection and TCP/IP protocols 
are generally present. In this case all the requests are send to the processes 
using the TCP/IP networking interface. The sent requests are mostly 
inquire queries. The same communication protocols and communication 
procedures can be used for both message queue mechanism as for the 
TCP/IP network mechanism. A design management process not only polls 
its message queues but also its ethernet connection to see if any request has 
arrived. All received requests have the same format and require the same 
execution. 

4.6.3 Communication Between Group 1 Processes 
Sometimes a design step requires several design tools to execute. Here 
frequently the need exists to pass design data from one design tool process 
to the next design tool process. The Unix environment provides no 
mechanism to create a multi data communication mechanism between 
processes. However, this type of data communication can be simulated 
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using named pipes or by multiplexing the design data on one io-channel. An 
other possibility to implement multiple pipes is the use of shared memory 
segments. Each communication mechanism has its own shared memory 
segment assigned to it. One process writes data in the memory segment 
while the next process reads the data from the segment. The advantage of 
this type of data communication is that disk access is considerably reduced, 
which leads to faster execution of the design tools. The disadvantage is that 
the size of the freely available memory of a system is reduced. 

4.6.4 Group 2 Processes 
The designer interface processes communicate with the designer and with 
the design management process. The function of these type of processes is 
to provide information and to activate design tools. All relevant 
information is stored in the meta design data. The processes in group 2 have 
the same requirements as the processes in group 1, i.e. fast access to the 
meta design data and local as well as remote data communication. 
However, they don't need mechanisms to share design data. They do need 
fast access to the meta design data, and a communication mechanism to 
communicate with group 3 processes. 

4.6.5 Query Language 
To obtain information from the meta design data or to store information in 
the meta design data a query language is needed. The query language 
should support design transactions functions as well as administration 
functions and browse functions. 

We believe that just a few language constructs can provide us with the 
functionality we need. The language constructs can for example be taken 
from a set operation language (a recent example is the the enhanced C 
language) (Figure 4.4) [Katzenelson83, Katzenelson85], or a dedicated data 
manipulation language [Bekke83] (Figure 4.5). 



80 SYSTEM ARCHITECTURE 

exists expressionl in expression 2 suchthat expression 3 

If there exists an element in expression2 such that expression 3 is true 
then the lvalue of expressionl is set to the value of such an element. 

add expressionl in expression2 position expression3 

Add adds the element expressionl to the sequence expression2 in 
position expression3. 

Figure 4.4. Query language using the EC syntax 

get subject its property list where qualifying predicate 

Given a type (subject) and the qualifying predicate the system will be 
able to determine the set of instances of the subject. 

insert subject its list of assignments 

The subject is inserted with the list assignments. 

Figure 4.5. Query language using the OTO-D data manipulation language 

We propose an inline expansion of the query language constructs using a 
simple preprocessor. This type of integration is also used in Ingres 
[Held75]. The preprocessor program expands the query language constructs 
into C language code and into remote procedure calls. The advantage of this 
approach are: readable source code, fast program execution and easy to use. 
Code optimization also can be done by the preprocessor. Since there are 
only a few query language constructs the preprocessor is simple to develop. 

4.6.6 Communication Procedure 
When a request of a design process can not be executed locally, the request 
has to be send to the appropriate remote machine (see chapter 3.6). The 
transmission of a request can be implemented using Remote Procedure Calls 
(RPC) [Birrell84]. 

The idea of remote procedure calls is based on the mechanism for transfer 
of control and data, which normally takes place within a computer program 
composed of several procedures. The same mechanism can be used both for 
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a program running on a single computer as for a program running on several 
computers, connected through a computer network. When a remote 
procedure is invoked, the calling environment is suspended, the parameters 
are passed across the network to the environment where the procedure is to 
execute, and the desired procedure is executed there. When the procedure 
has finished and has produced its results, the results are passed back to the 
calling environment, where execution resumes. 

When making a remote call, five pieces of program are involved: the local 
design process, the RPC client interface library, the communication package, 
the RPC server interface library, the remote design process. Their 
relationship is shown in Figure 4.6. 

local machine 

call 

ret 

pack 

inpach 

xmit 

win 

refcv 

Network 

call packet 

result packet 

recv 

xmit 

remote machine 

inpacl 

pack 

call 

work 

Figure 4.6. Interactions for a remote procedure call 

At the moment that the design process makes a remote call, it makes a call 
to a procedure which will invoke the corresponding procedure in the RPC 
client interface library on the local machine. This procedure is responsible 
for placing a specification of the target procedure and the arguments into 
one or more packets and asking the TCP/IP network interface to transmit 
these in a reliable way to the remote machine. On receipt of these packets, 
the TCP/IP network interface on the remote machine passes them to the 
RPC server interface library. The RPC server interface unpacks them and 
again makes a normal local call, which invokes the appropriate procedure on 
the remote machine. Meanwhile, the local process in the local machine is 
suspended awaiting a result packet. When the call in the remote machine 
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completes, it returns to the RPC remote interface library and the results are 
passed back to the suspended process in the local machine. There they are 
unpacked and the RPC client interface library returns them to the local 
design process. The TCP/IP network interface is responsible for 
retransmissions, acknowledgments, packet routing, and encryption. The 
user sees no difference between a procedure executing on the local machine 
and a procedure executing on a remote machine. 

Besides using the TCP/IP network interface for the communication 
mechanism, message queues can be used if both client and server process 
execute on the same machine. The message queue mechanism is a faster 
mechanism for passing packets than the TCP/IP network mechanism. This 
is particularly useful in a distributed environment where programs need to 
communicate with local programs as well as remotely executed programs. 
The interface library decides which communication mechanism to use. If 
the request can be executed locally, the message queue mechanism is used, 
otherwise the TCP/IP network interface is used. For a program developer 
the use of the RPC library is transparent. 

4.6.7 Implementation 
A Data Management Process (DMP) controls the access to the meta design 
data of a project and communicates with design processes and other DMP's. 
Efficient access to the meta design data is achieved by using shared memory 
techniques. Requests from processes to update the meta design data are 
placed in a queue. The DMP executes these requests sequentially 
[Bernstein83]. Since the DMP also controls the read access to the meta 
design data, it is capable of prohibiting access while a critical update is in 
progress. 

Requests that concern cells in other projects are sent to the appropriate 
DMP, using RPC message passing techniques. In this way the physical 
distribution of the design data in a distributed workstation environment is 
made transparent to both the tools and the designer. 
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In a design environment several workstation configurations are possible. In 
a simple environment there is no physical distribution of design data and no 
distribution of tool processes (Figure 4.7). If the file server concept is used 
together with some diskless workstations, it is possible to distribute the tool 
processes (Figure 4.8). In this case interactive programs will have a faster 
response time. A Network File System (NFS) provides access to the design 
data on the file server. A major drawback of this environment is the 
limited reliability of the network. If the network is not accessible, 
designers will be unproductive. In Figure 4.9 a workstation environment is 
depicted, where the workstation has local storage. In this case there is 
physical distribution of the design data and distribution of tool processes. 
If the network is not accessible, the designer can continue without 
interruption. However, special tools are necessary to merge the design data 
when the network is again in working order. 

The DDMS presented in chapter 3.6 supports three workstation 
environments. In the first case (Figure 4.7), the DMP provides tool 
communication mechanisms, which don't need networking capabilities. In 
the second case (Figure 4.8), the DMP provides tool communication, using a 
RPC mechanism. This makes it possible to run design tools on physically 
different workstations. In the last case (Figure 4.9), the DMP provides the 
mechanisms to distribute design data on physically different machines, 
using the sub-project concept. In all three cases the DMP controls the access 
of the meta design data and thus the access of the design data. 
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ShM = Shared Memory, DMP = Data Management Process, T = Tool. 
A = dumb terminal, B = workstation. 

Figure 4.7. Project Environment for one Workstation 

ShM = Shared Memory, DMP = Data Management Process, T = Tool. 
A = diskless workstation, B = fileserver. 

Figure 4.8. Project Environment for one file server and several diskless 
Workstations 
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ShM = Shared Memory, DMP = Data Management Process, T = Tool. 
A = workstation, B = fileserver. 

Figure 4.9. Project Environment for one file server and several 
Workstations 

4.1 User Interface 

A User Interface (UI) provides the designer with an interface, which enables 
him to browse through the meta design data of his universe. If his universe 
is partitioned into a technology database, a project database, a user database 
and a configuration database, then the UI can provide him information about 
which technologies are present in the technology database, which projects 
there are in the project database and so on. After the designer has obtained 
the name of a project, he could open this project and ask the UI to list all 
modules in this particular project. This type of information is typically 
meta design data. At this level the designer is not interested in design data. 
The user interface program should be written based on a distributed 
windowing system. The X-window system [Gettys86] is the only 
windowing system that has this functionality and is a well accepted 
standard. 

Besides the browse function, the UI should have the functionality of a 
command interpreter; there is a command syntax which enables the designer 
to start design tools with the proper arguments. The command syntax, the 
query language, can also provide the designer with a more sophisticated 
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type of browsing, "probing", if it supports wildcards. For example: 

GET module 
ITS name 
WHERE name == "D*" 

which will return all module names starting with a "D". 

Figure 4.10 presents the process structure. 

Figure 4.10. The process structure of an UI and several D.VlP's 

Assumed is an environment with a windowing system like X-windows. 
After startup, the UI opens a window on the screen. The designer can now 
browse through information available to him from the configuration 
database. When the designer has obtained the name of a project, the 
designer can open this project. The UI opens another window on the screen 
and tries to establish communication with the DMP which controls the 
particular project. After a successful connection, the designer has access to 
the meta design data of that project. It is now possible for him to start 
design tools in this project. 
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The difference between the UI and an ordinary design tool is that the UI 
only accesses meta design data and will not access design data. Both type of 
tools use the same TI and use the same communication mechanisms. 

4.8 Conclusion 

At this point of our development, we are able to verify that, the functional 
requirements as stated in chapter 2 have been achieved. The approaches 
used to address the functional requirements of a DDMS are: 

— A data model and a data schema. 

— Tool interfaces. 

— Distributed data management facilities. 

— An user interface. 

In chapter 3 a data model and a data schema were presented. The data 
schema describes the structural semantics of the data in a VLSI design 
system. Also a data schema was presented that structures the distribution 
of data across a network of design systems. In chapter 4 a tool interface 
and an user interface were presented. These form the interface between the 
design tools and the system software and between the design tools and the 
designers of VLSI circuits. 

The functional requirements of a DDMS are (chapter 2): 

— Tool integration. 

— Data Exchange. 

— Management and Control. 

— Data Management. 

— System Interface. 

Data exchange is achieved by using a standard language which allows for 
the transport of a description of a VLSI circuit from one design system to 
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another [EDIF87]. The design system has tools available which will 
translate/extract this language to/from its database. 

Management and control of data and design data management are achieved 
by the introduction of a version chain, concurrency control and a 
transaction schema. The linear version chain and concurrency control allow 
for the existence of several versions of a cell, while only one of these 
versions can be edited by only one designer at a time. The versions have a 
status and there is a default selection of a version, which provides the 
designer with information about a version and which relieves him of the 
task, of identifying each version, when he wants to access it. Formulated 
where the following requirements for a tool interface: 

• The tool interface must bring about efficient interaction between the tools 
and the DDMS. 

• The tool interface must be independent of specific tool features or design 
methodologies. It should be universal, to result in an open-ended design 
system where the DDMS acts as a free-for-all public repository that can 
communicate with any type of tool and environment. 

• The tool interface must be independent of specific features of a DDMS. 

The first requirement is met in the following way. The data in the DDMS is 
split in two types: design data and meta design data. The meta design data 
is controlled by the DMP, and the design tools can access the meta design 
data via the DMP. Design tools have direct access to the design data, after 
they have obtained the mandatory permission. The design tools can now 
built their own optimal data structure. They communicate with the 
database with two simple functions (Figure 4.1). 

The second requirement is achieved by introducing a small set of complex 
objects: the universe, the project, the cell and the stream. No assumptions 
are made on the exact attributes of these types. Besides these complex 
object types, the DDMS supports hierarchy and equivalence relations. This 
allows for the use of any design methodology and any type of design tool. 
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The implementation of the DDMS makes use of well known standards as 
the C language and the X-windows system. There are strong indications 
that the DMTI proposed by us will become a standard [SECT87]. 

The third requirement is achieved by the introduction of the dmbrowse 
function in the DMTI. This function hides DDMS specific features like 
versioning. Concurrency control and transaction recovery is also hidden by 
the DMTI. The DDMS has its own user interface. This means that no 
design tool program has to be changed to incorporate any new DDMS browse 
facility. 

4.9 Results 

A DDMS for VLSI design that provides an open framework for the 
integration of design tools and relieves the designer from the burden of 
organizing his design data has been presented. After identifying the basic 
entity that is involved in a design transaction, the cell, a data schema 
representing the logical organization of the VLSI design data was developed. 
The OTO-D semantic data model, offering a set of well defined modeling 
constructs, permitted us to formalize the semantics of the meta design data. 
Openness of the DDMS was secured by avoiding incorporation of features of 
a particular tool set or design representation. 

The resulting data schema is simple, yet powerful enough to reflect the basic 
requirements of the DDMS outlined in chapter 2. It incorporates such 
features as hierarchical decomposition, multilevel design, design 
transactions / concurrency control and versioning. Thus, it provides the 
basis for a DDMS that implements a set of global system facilities to 
provide a framework for the construction of a powerful design 
environment. The DDMS serves both the tools and the designer by making 
the information about the structure and status of the design available to 
them. 

This DDMS-research has been carried out in the context of the ICD-NELSIS 
system [Dewilde86], which currently contains over 40 DDMS-intensive 
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CAD/IC tools such as layout editors and generators, design rule checkers, 
extractors, a placement and routing system, simulators, etc. These tools 
have all been equipped with the DMTI defined in this thesis. The 
decoupling introduced by this DMTI turns out to be extremely useful for 
our software developments, as it permits DDMS and tools to evolve 
separately to a large extent. 

In the ICD-NELSIS system, several DDMS-experiments have been carried 
out and a prototype has been produced. Currently, work, is under way 
towards a DDMS-release that comprises all facilities described in this thesis. 
The meta design data storage module exploiting shared memory is 
operational, including the query facilities. An attractive version mechanism 
and interactive browsing facilities are currently being implemented. 

Performance comparison between a software release without design data 
management functions and the software release with the DDMS functions 
shows, depending on the design tool in question, a difference in execution 
speed between 0 and 20 percent. The decrease in performance has no 
relation with the function of a design tool. It depends on the number of 
design transactions requested by the tool. 

Future work will, among other things, focus on powerful design 
management facilities that can guide the designer through the design process 
towards a correct design. The first ideas for this are presented in appendix 
C. Another area of interest is the management of information about such 
environmental aspects as technologies, tools, and designers, as a logical 
extension of the information modeling approach presented in this thesis. 
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5 . A P P E N D I X A 

5.1 Technology Database 

The data schema of the technology database (Figure 5.1) is based on the 
EDIF [EDIF87] dataschema. 

technology 

numberdefinition flgurcgroup fabricate simulationinfo physicaldesignrule 

Figure 5.1. The Data schema of the technology database 

The technology database contains all information related to the intended 
implementation of a design. Figure 5.2 gives an example of a technology 
description in the EDIF syntax. 

The most important data types in the data schema are technology, 
figuregroup, fabricate, simulationinfo and physicaldesignrule. 

5.7.2 Numberdefinition 
The numberdefinition type contains scaling information for the designs in a 
project. Scale defines the relationship between numbers used in the project 
database and numbers outside of that project. For example, a cell can be 
designed on lambda grid, and lambda is four micron. Numberdefinition 
relates symbolic units to physical units. 
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(technology 
(numberDefinition 

(scale edi fUni ts ex terna lUni ts (unit uni tType)) 

) 
(figureGroup f i gureGroupNameDef 

(cornerType cornerType) 
(endType endType) 
(width ui dth) 
(color psrcentRed percentGreen percentBlue) 

(property proper tyNameDef . . . ) 

) 

(fabricate I ayerNameOef figureGroupNameRef) 

(simulationinfo 
(logicValue logicNameDef 
. . . ) 

) 
(physicalDesignRule 

(figureWidthruleNameDef . . . ) 

(overlapDistance r u l eNameDef . . . ) 

(interFigureGroupSpacing r u l eNameDef . . . ) 

) 
(comment . . . ) 
(userdata . . . ) 

) 
Figure 5.2. A technology description in EDIF 

5.7.2 Figuregroup 
The figuregroup type defines graphical default characteristics. Attributes 
which may be given default values here are: cornertype, endtype, 
pathwidth, borderwidth, color, fillpattern, borderpattern, textheight and 
visible. The figuregroup type is used also within the physicaldesignrule 
type. 
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5.1.3 Fabricate 
The fabricate type defines which figuregroups are intended to be used for 
physical fabrication and introduces the layer names. 

5.1.4 Simulationin/o 
The simulationinfo type collects all information about the logic values used 
for modeling. Values are defined by names and by specifying their 
characteristics, which may be: electrical, Boolean and relational between 
other logic values. Attributes in the logicvalue type are: voltagemap, 
currentmap, Booleanmap, compound, weak, string, dominates, 
logicmapoutput, logicmapinput, isolated, resolves, property, comment and 
userdata. 

5.1.5 Physicaldesignrule 
The physicaldesignrule type specifies a set of geometrical design rules 
applying to the actual design process. It is possible to represent rules for 
single figures using the attributes: figurewidth, figurearea, rectanglesize, 
figureperimeter, intrafiguregroupspacing, notchspacing and notallowed. 
Rules for pairs of figures are represented by the attributes: overlapdistance, 
overhangdistance, enclosuredistance and interfiguregroupspacing. The 
physicaldesignrule type also may include definitions of new figure groups 
which are created with the figuregroup type. The data schema should be 
extended if conditional design rules are to be stored in the technology 
database. 

5.1.5.1 The Tool Inter/ace for the Technology Layer 
• dmOpenTechnology (envkey. techid. openlechmode): techkey 
• dmCloseTechnology (techkey. closetechmode) 

DmOpenTechnology opens the technology database and returns a 
DMJTECHNOLOGY key. This key contains information about the 
particular technology, represented by techid, and the access mode, 
represented by opentechmode. Actions that might be performed are 
verification of the access rights. The technology key will be passed as an 
argument to the functions in the technology access layer. 
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DmCloseTechnology terminates the technology transaction. The details of 
this operation are specified by closetechmode. 
• dmGetTechnologyData (techkey. request, arguments) 
• dmPutTechnologyData (techkey. request, arguments) 

DmGetTechnologyData (DmPutTechnologyData) can be used to obtain (store) 
information from (into) the technology database with the technology 
identified by techkey. 

By means of the request argument and a variable argument list, the specific 
retrieval or update operations (queries) can be passed to the interface 
function. Which queries can actually be formulated depends on the 
conceptual model that is employed by the DDMS for the organization of its 
technology database. 
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ABSTRACT 
To organize the design process of VLSI circuits and the design evolution 
involved, a design data management system is needed that supports reliable 
storage, concurrency control, hierarchical decomposition, multilevel design 
and version control. A design system data scheme can be based on a 
semantic (object oriented) data model, where objects are used for modeling 
the structures imposed on the design data. Using the basic constructs of the 
data model a data scheme can be defined that reflects the object types and 
their relationships encountered in VLSI designs. 

A dominant part of the design data management system is the 
transaction manager, supporting versions and concurrency control. In our 
version mechanism some of the versions of each ceil have a special status, 
thereby allowing automated selection of the right version on a certain 
request. This version mechanism offers the user a clear conceptual picture 
and supports the evolutionary development of a design in a highly 
automated fashion. 

This research was supported in part by the commission of the EEC under the 3744/81 
program (ICD-contract). 
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6.1 Introduction 

In the ever increasing complexity of integrated circuit design a new way has 
to be found to control and organize the design data and the design evolution. 
A team of integrated circuit designers usually generates huge amounts of 
interrelated data. They often work in an iterative way, making small 
changes in existing cell descriptions, in an attempt to decrease the dimension 
of the design or to improve the performance. This design process involves 
several levels of abstraction, called views. The system view, network view 
and layout view are the most used among them. 

To organize the design process, making the designers job more cost 
effective, a design data management system is needed that supports reliable 
storage, concurrency control, hierarchical decomposition, multilevel design 
and version control. This will not only diminish the administrative task of 
the designer, but also allow the construction of more sophisticated design 
tools. 

In the next section we will discuss the concepts of our design data 
management system. In section 3 we describe the version management and 
concurrency control. Conclusions and implementation results are given in 
section 4. 

6.2 Basic Concepts 

The development of a design data management system includes the 
definition of a conceptual model, reflecting the different types of data and 
their dependencies. When the dependencies encountered in design data are 
stored explicitly, they can be maintained and made available to both 
management tools and sophisticated design tools. 

The basic entities in our design system are the design objects. A design 
object contains a logically related set of design data, describing a part of an 
integrated circuit in terms of primitives of a certain view, as well as 
references to other objects in the same view. The structuring of design data 
as a set of interrelated design objects provides us with a flexible design 
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system, because no assumptions are made about the views that have to be 
supported. Furthermore, the design object is the appropriate unit of 
exclusive access for manipulation by the user. 

Although access to the design objects is provided by the data 
management system, it does not interpret their representation details. These 
are handled by the design tools. The data management system maintains 
information about the design objects: the meta data. The meta data 
describes how the design objects, at this level viewed as atoms, are related 
to each other. It contains all hierarchical information of a design description 
in a particular view, as well as equivalence information relating design 
objects in possibly different views. The version information of an object, 
locking information, ownership etc. are also considered meta data, being 
maintained by the data management system. 

The logical organization of the meta design data is represented in a data 
scheme using a data model. The classical data models: the hierarchical, 
network and relational models, are all record oriented. Recently, new object 
oriented data models have been developed; the semantic data models 
[Lyngbaek84, Shipman8l]. Using a semantic data model, data schemes can 
be defined as object types and relationships between object types. Each 
object type corresponds to a collection of objects (or entities) that share 
common properties. As opposed to the classical data models a well defined 
semantic data model may act as a formalized tool to support strict 
modeling. 



102 Proc. ICCAD-85 

hier-rel equiv-rel 

selector design_obj 

cell 

constructor 

other design 
object type 

versionstatus version* 

Figure 6.1. Design data management subscheme 

The data scheme is divided in several similar subschemes, one per view. 
Each subscheme (Figure 6.1) contains a design-object type, whose instances 
agree with the design objects of a particular view. If the design data is 
structured in a hierarchical way, it seems natural that the data scheme 
reflects this structure. Each subscheme contains one type (hier-rel), whose 
instances correspond to a hierarchical relationship between two design 
objects, with an attached selector and constructor. Subschemes may be 
connected by one or more equiv-rel, whose instances are the equivalence 
objects linking two design objects from possibly different views. Based on 
this data scheme, reflecting the structure of the meta design data, 
dependencies are made available to both design tools and designers by the 
design data management system. The latter is supported by a user interface 
consisting of a set of browse commands. 
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6.3 Versions and Concurrency Control 

Design data is a too precious resource to let it simply be overwritten on 
every design transaction. This would also consequently override any 
verification effort that was made before. A better approach is to create new 
versions at certain design transactions [Katz84], thereby not only offering a 
backup facility, but also simplifying recovery. This way the evolution of a 
design is remained to some extent and older versions can be used to explore 
possible design alternatives. 

In principle it is possible to support whole trees of versions per cell, 
where users can select versions for updates without any conceptual 
constraints. This would result in a highly complicated version mechanism 
because of the hierarchical relationships between the versions of different 
cells. A clear concept has to be offered to the user for a version mechanism 
to become effective. A satisfying solution can be obtained by restricting the 
evolution to a linear chain of versions, while additional commands allow 
explicit manipulation of the version chain. One version has a special status, 
and will be used in an update transaction. 

At any time the design data has to form a hierarchically consistent set. 
Unfortunately, consistency checks on every design transaction would mean 
that flexibility and performance of the design system degrade. Our version 
mechanism allows the coexistence of a hierarchically consistent set of design 
data and a set of newly created design objects for which only the downward 
consistency is maintained. Design data that has to be updated is checked 
out. After updating, the data will be checked in as a 'working' version, that 
can be verified and reedited independently of other design activities. When 
it has reached some definite state, it may be added to the hierarchically 
consistent set by invoking the 'install' command. This installing procedure 
performs some checks and will give the 'working' version the 'actual' status. 
The hierarchical links from 'actual' and 'working' versions of other cells 
calling this cell will be redirected to the new 'actual'. The former 'actual' 
version will obtain the 'backup' status. As a result, the version chain has 
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the following appearance (Figure 6.2). 

b b b a w 

V y 
backup actual working 

versions version version 

Figure 6.2. Design data management version chain 

The 'actual' version is always present and is part of the hierarchically 
consistent set. One 'working' version and one or more 'backup' versions 
may be present. Because some of the versions of each cell have a special 
status, automated selection of such a version is possible. This relieves the 
user from explicit specification on every transaction. The 'actual' versions 
have global scope, meaning that when a designer refers to a cell for 
inclusion as a subcell in a composite object, the 'actual' version will be 
handed to him. As a result we have an hierarchically consistent set of 
'actual' versions that is maintained implicitly, and a set of 'working' 
versions attached to it. 

Besides the install command, other commands are present to manipulate 
the version chain. One of them is a restore command, that allows the user 
to make a 'backup' configuration 'actual' again. Other commands allow the 
removal of versions and the reusal of 'backup' versions by transporting 
them to a new cell. 

VLSI designs typically are created by teams of designers working 
simultaneously on different pieces of the circuit. The design system should 
control concurrent sharing of design data. A locking mechanism is 
provided, the transaction lock, which ensures that only one designer can 
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generate a new 'working' version of a particular cell at a time. The version 
mechanism allows a flexible locking strategy, where all other cells remain 
available for update. Furthermore, any other designer can browse the 
'actual' versions of the locked design data. In our implementation all 
designer processes in the same process group inherit the assigned access 
rights. This mechanism makes it possible to stop a layout editor session, 
start a verification program and resume the layout editor session after the 
verification program has terminated. 

6.4 Conclusions and Status 

We have implemented a design data management system that, based on an 
extendible data scheme, not only allows conventional bottom-up cell 
assembly, but also offers a framework for top-down design and silicon 
compilation. It supports multiple levels of abstraction, called views. Each 
view contains hierarchically related design objects, that may be mapped on 
equivalent design objects in other views. 

The version mechanism presented proved to be successful. To the user it 
supports the evolutionary development of a part of a design in a highly 
automated fashion, based on a clear conceptual picture. Additional 
commands allow explicit manipulation of the version chain. To ensure 
exclusive access rights of a design object a flexible locking procedure is 
supported. 

A data access layer provides us with an unified set of interface functions 
that execute the access operations on the design data. Because our data 
access layer is based on several generalities recognized in design 
transactions, forward compatibility is achieved. At the same time it offers 
data independence. At this moment we are investigating the 
implementation of a distributed object oriented design data management 
system. 



106 Proc. ICCAD-85 

References 

Katz84. Katz, R.H. and Weiss, S., "Design Transaction Management," Proc. 
21st IEEE Design Automation Conference, pp. 692-693 (1984). 

Lyngbaek84. Lyngbaek, P., Information Modeling and Sharing in Highly 
Autonomous Database Systems, Ph.D. Thesis, Univ. of So. California, 
Los Angeles (August 1984). 

Shipman81. Shipman, D.W., "The Functional Data Model and the Data 
Language DAPLEX," ACM Trans, on Database Systems 6(1) pp. 140-
173 (March 1981). 

Vogel84. Vogel, T., Wolf, P. van der, and Dewilde, P., "Conceptual 
Database Model ICD," Internal Report, Delft University of 
Technology, Delft (Oct 1984). 

Wiederhold82. Wiederhold, G., Beetem, A.F., and Short, G.E., "A Database 
Approach to Communication in VLSI Design," IEEE Trans, on CAD of 
Integrated Circuits and Systems CAD-1(2) pp. 57-63 (April 1982). 



107 

7. APPENDIX C 

DATA MANAGEMENT FOR VLSI DESIGN: CONCEPTUAL 
MODELING, TOOL INTEGRATION & USER INTERFACE* 

P. van der Wolf, N. van der Meijs, T.G.R. van Leuken, 
I. Widya and P. Dewilde 

Delft University of Technology 
Department of Electrical Engineering 
Mekelweg 4, 2628 CD Delft 
The Netherlands 

A Data Management System (DMS) for VLSI design is presented that 
supports hierarchical decomposition, multiple levels of abstraction, 
concurrency control and design evolution in a distributed workstation 
environment. Semantic data modeling techniques are employed to derive a 
simple, yet powerful, data schema that represents the logical organization of 
VLSI design data. The resulting DMS provides an open framework for the 
integration of design tools and relieves the designer from the burden of 
organizing his design data. The Data Management Browser (DMB) enables 
the designer to browse through the information that is maintained by the 
DMS about the structure and status of his design. The Data Management 
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Interface (DMI) decouples the development of the tools and the DMS. The 
DMS-principles have been tested in practice. 

7.1 INTRODUCTION 

It is generally acknowledged that a crucial part of an integrated VLSI design 
environment is a Data Management System (DMS), to form the kernel 
around which all tools are integrated [Katz83, Brouwers87]. A proper DMS 
operates first of all as the common repository of design data: the design 
database. The tools create and modify the design data, while the DMS 
stores and maintains the design data, thereby guaranteeing consistency. 

T 0 O 

DATA MANAGEMENT SYSTEM 

DATA 

Figure 7.1. Tools integrated on top of DMS 

Furthermore, a DMS has to supply additional services to provide a basis for 
the construction of an intelligent design system. Clearly, system integration 
is more than the definition of some common formats: Which copy is the 
latest version? Has this layout been extracted since it was updated and, if 
so, which circuit description was derived from it? If I change this layout, 
which other parts of the design will be affected? It is the ability to answer 
such questions that differentiates a true DMS from a simple data repository 
[Newton86]. 

In this paper we focus on the construction of such a DMS that serves both 
the tools and the designer. It must provide an intelligent framework for 
tool integration that permits the designer to easily retrieve information 
about the structure and status of his design. Going a bit more into detail, 
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we can identify a number of aspects that a modern DMS for VLSI design 
should cover: 

• A uniform interface to the tools. 
A transaction mechanism is needed to control the interaction between the 
tools and the DMS. Via this interface the tools obtain access to the 
design data to perform updates or verifications, while taking advantage 
of the facilities provided by the DMS. 

• An interface to the designer. 
Basically, the DMS is the bookkeeper of the design system. It must 
therefore offer an attractive user interface that allows the designer to 
browse through his design data and make inquiries about the status of 
specific parts of his design. 

• Views and hierarchy. 
Generally accepted aspects of chip design are hierarchy and multiple 
view-types, i.e. levels of abstraction at which a design can be described. 
These aspects have to be supported by the DMS such that the designer 
and his tools can exploit them. 

• Concurrent design activities. 
VLSI designs are created by teams of designers, working together in the 
same project environment. Moreover, each designer can have multiple 
tasks running concurrently. The DMS has to provide facilities to 
guarantee consistency under concurrent operations. 

• Version mechanism. 
A version mechanism has to be incorporated to support the evolutionary 
development of a design. Also, a proper version mechanism potentially 
permits a more flexible concurrency control mechanism for long design 
transactions. 

• Verification statuses. 
The evolutionary nature of the design process also requires the DMS to 
maintain the verification statuses of the design under construction. That 



110 Proc.IFIP-87 

is, administer the statuses and warrant their consistency. Previously 
derived verification results can then be reused, which is particularly 
effective in combination with hierarchical design strategies. Secondly, 
the designer can get well-informed when deciding which operation to 
apply where. Important related aspects are the generation and 
maintenance of consistent documentation and the support for auditing 
when the design reaches its final stage. 

• Logically distributed design data management. 
The DMS has to offer the designer a conceptual environment where the 
design data is logically distributed across different projects. Some 
formalism must allow him to refer from his own project to design 
descriptions created by other designers. In this way libraries also 
become an integral part of the design system. 

• Physically distributed design data management. 
The DMS must operate in an environment of physically dispersed 
workstations and file servers, connected by some network. 

• Efficiency. 
It is one thing to invent elegant concepts for the above mentioned aspects 
of data management, but it is yet another challenge to arrive at an 
implementation of a DMS that handles them efficiently. This is not only 
a matter of smart software engineering at the implementation stage, but 
also implies that particular choices have to be made at the conceptual 
design stage. 

The facilities mentioned above offer the tool developer as well as the 
designer a way to manage the complexity by exploiting their properties. 
Yet, these properties have to be sufficiently general so that the DMS will not 
restrict the functionality of the design system. 

Obviously, the construction of a DMS is not just a matter of 
straightforward implementation of the different facilities. A more 
fundamental approach is required to build a DMS that provides a coherent 
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open framework, on top of which design tools can be integrated. Our 
approach in this is best characterized as follows: 

• First of all, we clearly distinguish between (local) tool aspects and 
(global) system aspects, especially when taking the design data into 
account. The DMS must be based on the invariants that can be 
recognized here, rather than the features of a particular tool set or design 
representation. 

• A formalized approach to the construction of a conceptual model, 
reflecting the different types of data and their relationships encountered 
in VLSI design (a data schema), is adopted. Our approach is original in 
that we import semantic data modeling techniques from the database 
area, to be used as a formalized tool for data analysis. Based on these 
techniques a data schema is derived for the management data. 

• Given this data schema, a DMS is implemented that provides the above 
mentioned facilities, based on the knowledge it has of relationships that 
are present within the design data. As we will show, this approach 
provides a basis for intelligent interaction with the designer, being based 
on global system concepts rather than detailed tool aspects. 

In the next section we briefly introduce a number of data models and 
motivate our choice of one semantic variant. In section 3 we look at the 
design data itself and recognize the design object as the basic entity. The 
data schema is extended in section 4 to comprise the notions of view and 
hierarchy. In the following section the transaction model for the design 
objects is described and versioning is incorporated. In section 6 the system 
architecture is described in more detail and the implementation of the 
different components is discussed. The interaction with the designer is 
discussed in section 7. In section 8 we focus on the Data Management 
Interface (DMI) which takes care of the communication between VLSI 
design tools and the DMS. Our conclusions are given in section 9. 
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1.2 DATA MODELS 
7.2.1 Introduction 
A data model is a collection of concepts and constructs for expressing the 
static properties, dynamic properties, and integrity constraints of an 
application environment [Lyngbaek84]. 

Given a data model, a data schema can be defined, describing the structure 
and properties of a specific application environment. 

A database is a data repository containing a possibly large amount of 
interrelated data, structured according to a corresponding data schema. 

Historically, the following four classes of data models can be recognized 
[Afsarmanesh84]: 

• hierarchical data models 

• network data models 

• relational data models 

• semantic data models 

The hierarchical, network, and relational data models are frequently 
referred to as the classical data models [Lyngbaek84, Bic86]. The 
hierarchical and network models only provide primitive operations, and the 
user must deal with aspects of the internal organization. The relational data 
model is a more user oriented data model. However, it is a fiat model: the 
relations are not positioned with respect to each other. As opposed to the 
hierarchical and network approach, relations do not contain implicit 
references (pointers). Associations between tuples are exclusively 
represented by attribute values drawn from a common domain. The use of 
composed keys does not provide the user with sufficient means to represent 
all abstractions in a precise way. Furthermore, the definition of various 
integrity constraints is not an integral part of the modeling process 
[Bekke83]. 
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7.2.2 Semantic Data Models 
The classical data models are all record based. When modeling an 
application environment, not all record types in the resulting schema 
correspond to the complete definition of a particular concept from that 
environment. That is, they lack semantic expressiveness [Afsarmanesh84, 
Bic86, Hardwick.87]. 

The semantic data models enable the user to better formalize the semantics 
of his data, and are therefore considered more user oriented. Instead of 
being based on the record model, the semantic data models are object based; 
the application environment is modeled as a collection of interrelated 
objects, each one corresponding to a concept from this environment. 

Attempts to categorize the semantic data models are described in 
[Lyngbaek.84] and [Afsarmanesh84]. For our purpose the data model 
preferably comprises a methodology for data modeling, permitting us to 
formalize the semantics of the design data. We concluded that the OTO-D 
semantic data model [Bekke83] is best suited, as it offers a number of 
well-defined modeling constructs accompanied by an attractive query 
language and has a clear way of visualizing the data schemas one defines. 
OTO-D stands for Object Type Oriented Data model. It can be seen as a 
follow-up on the semantic hierarchy model, as originally pioneered by 
Smith and Smith [Smith77]. For a good understanding of the data schemas 
that will be derived in the following sections, we first give a short 
introduction to the OTO-D data model. 

7.2.3 The OTO-D Data Model 

7.2.3.1 Data Definition: the Notion of Type 
The semantic approach is based on the notion of type. A type is defined by a 
certain number of different properties. For example the abstraction: 

TYPE student = name, address, department 

defines a student as being completely characterized by the properties name, 
address and department. These properties are called attributes. An object 
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having the properties of a certain type is called an instance of that type. 

A type definition is a positive statement or assertion about the application 
environment, consisting of a subject and a predicate. A data schema consists 
of a number of these type definitions. The subject denotes the new concept 
and the predicate denotes the collection of known properties by means of 
which the concept is described. Thus, as opposed to the relational approach, 
object types are defined in terms of previously defined object types. 

OTO-D offers two forms of semantics to formally judge a data schema. The 
first one is convertibility: each object is uniquely characterized by its 
attribute values. Based on the notion of convertibility the type definitions 
can be checked for completeness. The second one is relatability: an attribute 
is related to a type with the same name. For example "department" in: 

TYPE department = name, head 
TYPE student = name, address, department 

Relatability automatically fixes referential integrity constraints at the 
instance level: an attribute value is related to an instance of the type to 
which the attribute is related. 

7.2.3.2 Aggregation and Generalization 
OTO-D offers two abstraction primitives to construct a data schema: 
aggregation and generalization. Aggregation is a form of abstraction in 
which a certain number of different properties is combined to create a new 
named object. Examples of aggregations were student and department. 
Together they constitute an aggregation hierarchy. Generalization is a form 
of abstraction that relates a type to a more generic one. In knowledge 
representation research this is known as the IS-A relationship. It is possible 
that a type appears more than once as an attribute in a type definition, to 
fulfil different roles. For this purpose OTO-D offers role attributes, denoted 
by a prefix. Examples of the use of role attributes will follow in section 4. 

OTO-D offers a clear diagrammatic notation to visualize the relationships 
among the types of a data schema. The student-department example looks 
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like: 

aggregation 

Figure 7.2. Example of an aggregation 

Along with these pictures goes a quite strict interpretation. Each attribute 
relationship is represented by a line that goes from the bottom of the 
composed type to the top of the attribute type. The referential integrity 
constraints along these lines always have to be satisfied: an instance of a 
composed type is existence-dependent on the instances of its attribute types. 

7.2.3.3 Data Manipulation Language 
The Data Manipulation Language (DML) of OTO-D allows the formulation 
of nonprocedural, high-level queries and thus separates the user from the 
internal organization of the data. It offers selection, extension and 
modification commands. The most important expression is the selection, the 
general form of which is: 

<type name> 
ITS < attributes > 
WHERE < condition > 

property list 
qualifying predicate 

The ITS construct permits downward traversal along the attribute 
relationships of the data schema; starting from a composed type we can 
"look downward" to ITS attributes, ITS attributes ITS attributes, etc. Given 
an arbitrary schema, the semantic concepts of OTO-D guarantee that all 
data that can be addressed this way is present (referential integrity) and 
related in a meaningful way according to the schema. The ITS construct can 
be used both in the property list to retrieve lower attribute values, and in 
the qualifying predicate to impose constraints on these lower attribute 
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values for object selection. 

Using the keyword GET, a selection command can be formulated. A typical 
query on the data schema presented above: 

GET student 
ITS name, address 
WHERE department ITS name = *EE'. 

To modify the contents of the database, three types of modification 
commands are available: INSERT, DELETE and UPDATE. 

7.2.3.4 Conclusion 
It has been our conclusion that OTO-D supports the definition of a data 
schema that correctly reflects the (structural) semantics of an application 
environment. It offers a number of well-defined modeling constructs, 
incorporates integrity constraints in the modeling process, offers a clear 
diagrammatic notation and has a simple, but powerful, data manipulation 
language. In the following sections we will use OTO-D to derive a data 
schema for the logical organization of VLSI design data. 

7.3 THE DESIGN OBJECT AS THE BASIC ENTITY 
7.3.1 The Design Object as the Basic Entity 
At first sight, conventional database management systems (DBMS) offer 
some attractive facilities for the reliable storage of design data, including 
recovery mechanisms, concurrency control and integrity maintenance. 
However, most of these DBMSs have been targeted for business applications 
and do not specifically address the problems encountered in a design 
environment [Sidle80]. Transactions on a business DBMS typically are 
short in duration and affect only a small amount of data. Concurrency and 
recovery strategies have been tuned towards these characteristics. In the 
design environment on the other hand, the designer requests all the 
information pertaining to a piece of design to modify it extensively over a 
long period of time before returning it to the database [Katz83, 
Buchmann84]. 
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The important issue is that VLSI design applications invariably deal with 
conceptually localized collections of related data which are manipulated as a 
single entity. This localization needs to be conserved by the design 
database. In line with several other researchers [Katz83, Batory85] we call 
these basic entities design objects. Examples of design objects are: a piece of 
layout, a netlist description, etc. The design object must play a dominant 
role in the organization of the design data within the design database. The 
arguments for this approach are listed below: 

• The design object is the unit of access. Design objects are extracted and 
replaced as a unit. Hence, such issues as concurrency, recovery and 
versioning should be handled at the level of the design object. 

• As will be shown in section 4, design objects are the nodes of the 
hierarchical multi-view 'matrix'. 

• By taking the design object as the basic entity for further modeling, we 
hope to construct a coherent DMS framework, without getting involved 
with representation details of some predetermined view-types. 

• To the designer the design object has a well defined meaning: the 
behavioral description of his ALU, the circuit description of a flip-flop or 
his new routing result. 

7.3.2 The Initial Data Schema 
To define the object type design-object with OTO-D, we have to examine by 
which other object types design-object is characterized. First, a design 
object has a name by which it can be identified. Further, in a logically 
distributed environment each design object has been constructed in 
connection with a certain project. Other attributes of design-object might be 
its designer or the date of construction: 

TYPE design-object = name, project, designer, date 

Thus, a design object is completely characterized by its name, project, 
designer and date. Name and date can be base types. Designer might be 
defined separately, using such properties as name, address, department, 
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salary, etc. The same holds for project, although it might as well be a base 
type. These details are not important when defining the object type design-
object. 

In a project oriented environment there is no need for all names of design 
objects to be globally unique. Therefore, the scope of a design-object ITS 
name is limited to the design-object ITS project. In fact, a project can be 
seen as a clustering object containing a number of design objects. The 
schema models correctly that a design object can only exist in connection 
with one existing project: design-object ITS project. Of course we need 
mechanisms to refer to a design object from other projects, e.g. for 
hierarchical inclusion. However, the actual description resides in its "home" 
project, which may be a library. The resulting diagram is given in Figure 
7.3. 

DESIGN-OBJECT 

Figure 7.3. Diagram of the definition of the type design-object 

The concept of design object provides a profound basis for a consistent 
system philosophy, not being blurred by view-type dependent issues. The 
'real' design data, i.e. the polygons, wires, devices, nets, ports, etc., is 
concentrated within the atomic design objects. Although access to the 
design objects is provided by the DMS, it does not interpret their 
representation details; these are handled by the tools. Instead, the DMS 
maintains information about the design objects to provide the facilities 
described in section one. This data is called the meta design data. 

The meta design data describes how the design objects, viewed as atoms, are 
related to each other. As we will see in the following sections the 
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hierarchical and equivalence information can be found at this level. The 
version information of an object, verification statuses, locking information, 
ownership etc. are also considered meta design data, being maintained by 
the DMS. 

We can compare the way we look at a design object with the way a 
librarian looks at a book: an object characterized by e.g. a title, author and 
date as the abstraction of its contents about which no further knowledge is 
required. An important distinction from a public library, however, is that 
in the design environment many relationships may exist between the 
individual "books" (design objects), while the "books" are also subject to 
evolution. 

7.4 HIERARCHY AND MULTIPLE VIEW-TYPES 

7.4.1 Hierarchy 
The most obvious way to handle the inherent complexity of VLSI design is 
by structuring the design in a hierarchical way: decompose a circuit into 
several smaller subcircuits, preferably with well defined interfaces and 
limited mutual interaction, which in turn can be decomposed into even 
smaller sub-subcircuits, etc [Niessen83]. The advantages are clear: the 
subcircuits can be constructed and verified independently, and once verified 
they need not be verified again when changes occur in either higher circuits 
or neighboring subcircuits; only the interaction needs to be verified. 

The structure of an hierarchical VLSI design can be typified as a directed 
acyclic graph, with the design objects being the vertices and the hierarchical 
relationships being the edges connecting these vertices. These hierarchical 
relationships are the only composition information about the design that is 
known to the DMS. A design object is constructed using zero or more 
component- or son-design objects, and can be used as a component by zero 
or more composite- or father-design objects. It is even allowed that a 
father-design object refers more than one time to the same son-design 
object. The leaf nodes are design objects that do not refer to component 
design objects; they are just convenient collections of primitive description 
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elements. 

If a design object is used more than once as a component, the corresponding 
hierarchical relationships are just references to a common definition. 
Attached to the hierarchical relationship is the information unique to the 
son-object's instance, i.e. how the son-object is actually used within the 
father-object. This composition information is called the constructor. It can 
be used by design tools to compute the actual instances, thereby 
instantiating the directed acyclic graph into a tree of instances. The details 
of the constructor differ according to the view-type. For instance, in the 
layout view the compositions are described by geometric transformations. 
The constructor generally contains repetition data to describe regular 
structures in an efficient way. 

An instance name can be used as an additional selector to identify the 
various instances within the same father-object. 

The connection between the object types design-object, hierarchical-
relationship (having a one-to-one correspondence with instance), constructor 
and instance-name is defined as follows: 

TYPE hierarchical-rel (or instance) = instance-name, 
father_design-object, son_design-object, constructor 

Figure 7.4. Modeling the hierarchical relationships between design objects 

All information concerning an instance is aggregated into a private entity; 
an instance is an object that can be derived from a son-design object using a 
constructor, to be used in a father-design object with an additional selector 
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instance-name. The two design-object attributes each have their own role 
(role attributes), denoted by the prefixes fattier and son. The schema 
correctly reflects that a design object can be involved in zero or more 
hierarchical relationships, both as a father- and as a son-design object. 
Multiple hierarchical relationships may exist between a father- and a son-
design object, distinguished by their instance names and constructors. 
Relatability guarantees that a hierarchical relationship can not exist without 
both a father- and a son-design object. 

The schema allows the DMS to administer which design objects are used 
where, and to make this information available to the tools and the designer. 
Given a father-object, the son-objects can be retrieved, but in a similar way 
the father-objects can be retrieved given a son-object. For example, the 
son-objects of a design object named 'ALU' can be retrieved by the simple 
query: 

GET hier-rel / instance 
ITS inst-name, son_design-object ITS name 
WHERE father_design-object ITS name = 'ALU' 

With a similar query we can also retrieve the father-objects that use this 
'ALU': 

GET hier-rel / instance 
ITS father_design-object ITS name, 
father_design-object ITS designer 
WHERE son_design-object ITS name = 'ALU' 

7.4.2 View-types 
The second important way to handle the inherent complexity of VLSI 
design is to support several Levels of abstraction at which a design can be 
represented. The different abstractions of a design are called the views of 
that particular design. Each view describes the design to a certain extent, 
omitting details that are irrelevant to that specific level of abstraction. Well 
known view-types are layout, circuit, logic and functional. 
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It is not up to the DMS to determine which view-types are supported. New 
design methodologies, and their associated representations, are still evolving. 
Hence, the DMS must provide support for organizing multiple views of a 
design, without it understanding their detailed structure. In this line of 
thought, a design object is a representation of a design at some level of 
abstraction. Consequently, we have to extend the type design-object with 
the classifying attribute view-type. 

TYPE design-object = name, view-type, project, designer, date 

According to this type definition each design object is of one view-type. 
This classification logically partitions the complete set of design objects into 
a number of subsets, one for each view-type. For instance: the layouts. 
Retrieval of such a subset can be done by a simple query: 

GET design-object 
ITS name, designer, date 
WHERE view-type = 'layout' 

The scope of the name of the design object is limited from the project to the 
view-type. A system-wide identification of a design object is given by the 
triplet (project, view-type, name). 

An interesting aspect of the last modeling step is that we did not introduce 
some grouping object, e.g. design, to which all views of a piece of design are 
related. This could have been done by introducing the type design as an 
intermediate level in our data schema: 

TYPE design = name, project 
TYPE design-object = design, view-type, designer, date 

However, in the multiview context we want each design object to carry ITS 
own name, instead of attaching the name to a more generic grouping object. 
This name can then be assigned or changed independent of the names of 
design objects of other view-types. Retrieval of all design objects that carry 
the same name is in our approach just one of many simple queries that can 
be issued: 
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GET design-object 
ITS view-type, designer, date 
WHERE name = 'flipflop' 
AND project = 'our_project' 

The reason for this approach is, that we do not want to suggest implicit 
relationships between objects of different view-types that carry the same 
name. Such implicit relationships are not desirable in an environment 
where the design objects are constantly evolving and consistency 
maintenance across relationships is of primary importance. Secondly, we 
want a more flexible mechanism for administering these relationships. For 
instance, it must allow more than one layout to be related to the same 
functional description. 

7.4.3 Equivalence Relationships 
We say that two design objects are equivalent if certain aspects of both 
descriptions have shown to be identical, for instance, by deriving one 
representation from the other in the synthesis or verification process. The 
DMS must provide the mechanisms to store and maintain the equivalence 
relationships between the original and the derived design objects. For this 
purpose we define the object type equivalence-rel as follows: 

TYPE equivalence-rel = original_design-object, derived_design-object, 
tool, constructor 

Figure 7.5. Modeling the equivalence relationships between design objects 

Tool is the tool that derived the relationship and constructor is some 
information used for this operation (e.g. parameter values). According to 
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this schema the DMS supports equivalence relationships that have been 
established between pairs of design objects, without any premature 
assumption about their nature. A design object can be involved in zero or 
more equivalence relationships; many-to-many relationships are covered by 
this schema. It also models correctly that an equivalence relationship can 
only exist if both design objects exist. When one of them is removed the 
semantic integrities require the removal of the equivalence. 

The following example shows how we can retrieve the "extracted circuit(s) 
of a layout named flipflop": 

GET equivalence-rel 
ITS derived_design-object ITS . . . . 
WHERE tool = 'extractor' 
AND derived_design-object ITS view-type = 'circuit' 
AND original_design-object ITS view-type = 'layout' 
AND original_design-object ITS name = 'flipflop' 

7.4.4 Tfie Interplay between Hierarchy and Equivalence 
It is generally acknowledged that the constraint of identical hierarchical 
decompositions across all view-types yields an unacceptable inflexibility 
[Katz83a]. In our approach the orthogonal concepts of hierarchy and 
equivalence have not been intertwined; there are no mutual dependencies 
between the hierarchical and equivalence relationships in the schema. 
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Figure 7.6. The hierarchical multiview framework. 

According to our data schema, Figure 7.7 gives a typical example of the 
structure of a design: 

hierarchy 

equivalence 

Figure 7.7. Typical structure of a design 

Design objects are related as atomic objects by either 'vertical' hierarchical 
relationships or 'horizontal' equivalence relationships. This is called the 
hierarchy multiview matrix [Dewilde86]. Structure, where it exists, can be 
exploited without constraining the designer. Browse tools should 
interactively visualize this hierarchical multiview structure to the designer, 
thereby encouraging him to follow a structured design methodology, 
exploiting the principles of view and hierarchy. 

7.5 DESIGN EVOLUTION 
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7.5.1 Design Transactions and Concurrency Control 

7.5.1.1 The Transaction Model 
In conventional database technology, the notion of transaction plays an 
important role. A transaction is a collection of database operations that are 
either executed completely or not at all. It is the atomic unit of consistency 
and recovery. We define a design transaction as a transaction in which a 
(single) design object is involved. Examples are an edit session or some 
verification on a design object. In section 3 we already mentioned that 
design transactions exhibit different characteristics than transactions on 
business DBMSs. They typically are of long duration and involve large 
amounts of data. 

To support design transactions we adopt the transaction model described by 
Lorie [Lorie83]. A design object is CheckedOut from a shared database to a 
so called private database, while flagging the object by a lock. A Checkln 
can be issued by the private system to return the design object to the shared 
database, thereby removing the lock. A design transaction is the period of 
time from a CheckOut to the corresponding Checkln. 

oo 
SHARED - ^ 
SYSTEM \Jy 

O 
Figure 7.8. A CheckedOut design object 

Adopting this model, recovery issues can be handled quite easily. Updates 
are not done in place, so when a tool is being aborted, or worse, in case of a 
system crash, the design transaction can easily be rewinded by returning to 
the last saved copy. 
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Design 
Transaction 

Figure 7.9. Locking between CheckOut and Checkln 

The concurrency control strategy is very simple: a complete design object is 
locked by creating a design lock entity during the CheckOut transaction on 
the shared system. Once the design object has been CheckedOut 
successfully, unconstrained access to all the requested representation details 
of the object is allowed to the tool that initiated the transaction. 

Tools that issue a CheckOut request on an object that has already been 
CheckedOut will hit a lock. On this occasion we do not simply refuse the 
new request, as even at the level of design object some concurrency has to 
be offered, e.g. to allow multiple read-only transactions. A tool can 
CheckOut a design object with one of several modes. If the design object 
has already been locked by another tool, this mode is compared with the 
lock mode to see if they conflict. If so, the designer is notified and allowed 
to proceed with other, non-conflicting design activities. Thus, the design 
lock has a conceptual meaning to the designer, as opposed to locks in 
business DBMSs which are pure implementation matters. 

General rules can be applied to decide on the modes. For instance, "update is 
exclusive, concurrent read-onlys are allowed". To increase concurrency, 
new modes accompanied by refined rules can be introduced. Ultimately, the 
CheckOut operation might consult some rule base containing tool specific 
compatibility information. For instance, we may define under which 
circumstances a DRC and LtoC-extractor are permitted to run concurrently 
on the same layout object, even though they both might attach derived 

CheckOut 

Locked 

Checkln 
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information to it. 

7.5.1.2 Incorporating the Design Lock in the Data Schema 
We represent the semantics of the design lock, as follows: 

TYPE design-lock = design-object, lock-mode, date, tool, designer 

A design-lock is characterized by the design-object that is locked with lock-
mode by tool and designer at date. More than one design lock may be 
related to one design object, each with its own lock-mode, date, tool etc. 

DESIGN-LOCK/TRANSACTION 

TOOL DESIGNER 

LOCK-MODE DESIGN-OBJECT 

Figure 7.10. Design-lock as the aggregation of its relevant properties 

Because there is a one-to-one correspondence between a design lock and a 
design transaction, we identify the design-lock object type with a design-
transaction object type. This type aggregates a design object, a tool, a 
designer, a date and a lock mode into a meaningful entity: a design 
transaction. 

Not only the in-progress transactions are administered this way. Based on 
this data schema we record all transactions in which a design object has been 
involved, switching the mode to completed or failure upon Checkln. In this 
way a complete update and verification history is maintained for the 
designer. 
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Simple queries permit the retrieval of information about transactions that 
have been issued on a certain design object, by a certain designer, with a 
certain tool or mode, since a certain date, etc. For instance: 

GET design-lock. / transaction 
ITS design-object ITS name, lock-mode 
WHERE designer = 'Gilmour' 
AND tool = 'DRC' 
AND date > 871103 

7.5.1.3 State Management: Towards Powerful Design Management 
As was demonstrated by a prototype implementation of a state manager 
[Willems87], powerful design management facilities can be offered by 
exploiting the transaction information. This state manager relies on two 
types of information to perform its tasks. 

Firstly, it derives state descriptions for the individual design objects, by 
observing the transactions that are performed on them. In fact, the state of 
a design object is represented by its transaction history, which has already 
been modeled in the data schema (Figure 7.10). The transaction history 
reflects "what" has been done "when" to the object, and can be exploited by 
the state manager. 

Secondly, the state manager consults an external rule base containing 
information about the transactions (state transitions) that tools may execute 
and their dependencies. Obviously, this information depends on the 
particular tool set at hand and must be extended when a new tool is added 
to the system. However, this knowledge is well localized within an external 
description, instead of being contained in the code of the DMS. Moreover, 
default cases allow tools to be added without even modifying the rule base. 

The prototype state manager uses the information about the states and state 
transitions to perform the following tasks: 

• Maintain state descriptions for the individual design objects: The design 
transactions that are executed by the tools are identified and 
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administered to maintain an overview of the states of the design 
objects. The state manager takes into account that new transactions 
may invalidate previous ones. The dependency information from the 
rule base is applied to compress the list of valid transactions. 

• Check start conditions of transactions: The tool-specific start condition 
of the requested transaction, which is retrieved from the rule base, is 
checked against the state of the design object upon CheckOut. The state 
manager decides whether the intended design transaction is allowed for 
the particular object. 

• Automatic tool activation: If the design object is not in the proper state 
upon CheckOut, the state manager tries to bring it into that state. It 
consults the dependency information from the rule base to see if it can 
run preprocessor-tool(s) that bring the object into the proper state. If 
this seems possible, it asks the designer for a confirmation and, if 
confirmed, runs the tool(s). After successful completion, the state 
manager reconsiders the original CheckOut request, which will then be 
granted. 

The advantages of this state management facility are clear. The designer 
does not have to worry any more whether certain mandatory preprocessing 
steps have already been performed and arc still valid, before applying the 
next design tool. In the future we can even make the dependency 
information from the rule base available to the individual designer. This 
will allow him to tune the design system to his personal design style, by 
adding the proper dependencies. For instance, he might like to have valid 
DRC results, before starting a LtoC-extraction on a layout. 

The state manager has been written in Objective-C [Cox86]. This is a 
hybrid language that contains all of the C programming language plus a 
number of extensions for object oriented programming. An important 
aspect of the prototype implementation is that the state management is 
completely hidden from the tools. As will be described in section 8, the 
tools interact with the DMS via the Data Management Interface (DMI). Not 
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a single extension / modification had to be made to this DMI, and hence to 
the tools, to incorporate the state manager into the DMS. 

7.5.2 Versioning 
The VLSI design process is both iterative and tentative. While incremental 
changes are being applied, a design typically evolves through several 
versions. The DMS must support the designer in maintaining multiple 
versions of his design. As an additional advantage, versioning permits 
flexible concurrency control and consistency propagation as multiple 
versions are allowed to coexist; previous versions can be browsed without 
regard to in-progress update transactions on experimental versions that still 
have to be verified [Leuken85]. 

We call a collection of related versions a module. The relationship between 
module and design-object is a one-to-many dependency: a module consists 
of several design objects (versions), but each design object belongs to one 
module. This is represented by the following refinement of the data 
schema: 

TYPE module = name, view-type, project 
TYPE design-object = module, V#, V-status, designer, date 

Figure 7.11. Module as a single-view version chain 

We introduced the type module as a grouping object to which all versions 
having the same name, view-type and project are related; it is a "family" of 
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versions. According to the schema, a design object does no longer carry its 
own name; the name is attached to the more generic module object, to be 
shared as design-object ITS module ITS name by the versions of the module. 
The alternative would have been to let each design object (version) carry its 
own name and simply extend the type design-object with additional 
attributes V# and V-status. However, we prefer to attach the name to a 
separate module object, as it corresponds to the designer's idea of a "version 
chain". This is a piece of design under construction to which a name can be 
assigned, whose name can be changed, etc. A system-wide identification of a 
module is given by the triplet (project, view-type, name). Identification of 
an individual design object requires an additional version number (V#). 

Simply maintaining a collection of numbered versions per module does not 
really help the designer. Some mechanism has to be imposed on the version 
propagation, to permit the version selection to be automated. For this 
purpose, an attribute V-status has been added to design-object. A version 
mechanism that exploits this version status in an attractive way has been 
described in [Leuken85] and [Wolf86]. We will not present this version 
mechanism in detail here, but confine ourselves to listing its most important 
features: 

• Rules for default version selection upon CheckOut can be applied, taking 
tool and CheckOut-mode into account. 

• Flexible concurrency control in an environment of hierarchically related 
design objects. 

• A flexible mechanism for consistency propagation in the hierarchical 
multiview context. 

7.6 SYSTEM ARCHITECTURE 
7.6.1 Introduction 
Summarizing the aspects that have been covered in the previous sections, we 
conclude: 
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• The DMS operates as a librarian with the design objects as its basic 
entities. 

• A transaction model for these design objects has been defined. 

• The DMS maintains an administration on top of the design objects: the 
meta design data. 

• This meta design data has been modeled according to the following data 
schema: 

H1ER-REL / INST. EQUIVALENCE-REL LOCK / TRANSACT. 

I-NAME CONSTR. DESIGN-OBJECT TOOL / L-MODE 

V-STATUS DATE DESIGNER 

MODULE 

NAME PROJECT VIEW-TYPE 

Figure 7.12. The data schema 

The data schema defines how the various objects and their relationships are 
logically organized, including various integrity constraints. It provides the 
basis for the construction of an intelligent DMS, that makes the information 
about the structure and status of the design available to both the tools and 
the designer. Various example queries already demonstrated that a great 
variety of information can be retrieved from a DMS that is based on this 
schema. 
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DESIGN TOOLS 
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META DESIGN DATA 

in core table handling 

DESIGN-OBJECTS 

UNIX file system 

Figure 7.13. System architecture 

Starting from these points, we refine Figure 7.1, to come to the system 
architecture depicted in Figure 7.13. The distinction between the detailed 
design data, contained in the design objects, and the meta design data is 
reflected by the use of different storage components. The design objects are 
simply mapped to a distributed hierarchical file system, with a small layer 
on top of it to guarantee atomic updates. 

The properties of the meta design data are quite different. The meta design 
data of a project typically is small in size when compared to the volume of 
the corresponding detailed design data. Also, ad-hoc queries for small 
amounts of data are issued frequently by the DMS and the (browse) tools. 
These are primarily read accesses. The meta design data is designer-
oriented: browse and query facilities must allow the designer to consult the 
meta design data. A dedicated storage module has been developed for the 
meta design data, to deal with these aspects. See section 6.2. 
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The actual DMS, i.e. the "operational facilities", has been built on top of 
these storage components. While handling the design transactions via its 
Data Management Interface (DM1), it consults and updates its meta design 
data. Important modules of the DMS are the version handler, concurrency 
controller and state manager. The version handler identifies the design 
object upon Checkout, assigns a V# and V-status upon Checkln and checks 
/ propagates consistency across relationships upon installation of a new 
version in an existing design hierarchy. As described in 5.1, the 
concurrency controller decides on concurrency matters upon CheckOut. The 
state manager inspects the state of the design object upon CheckOut and 
administers the transaction upon Checkln. See section 5.1. 

Among the tools on top of the DMS we can distinguish the design tools, e.g. 
editors, checkers and simulators, and the browse tools. The browse tools 
only access meta design data and do not access design objects. Both types of 
tools interface to the DMS via the same DMI. 

7.6.2 The Storage Module for the Meta Design Data 

7.6.2.1 Meta Design Data Access 
As we mentioned in the introduction of this section, a dedicated storage 
module has been developed for the meta design data. To its clients, i.e. 
(browse) tools and the DMS itself, it appears as an implementation of the 
OTO-D data model. Via its programming interface, queries can be issued to 
store or retrieve information that is structured according to the data 
schema. The queries can simply be passed as strings, according to the 
OTO-D Data Manipulation Language (DML). 

The data schema has not been hard-wired in this storage module, as we do 
not assume that the schema of Figure 7.12 represents the "fixed-for-all-
times" data schema in full detail. Instead, the storage module reads its 
schema from an external description at startup. This allows our DMS to 
evolve without extensive programming efforts at its lower levels. 
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A more or less classical transaction facility permits clients to issue multiple 
queries as one transaction, that is, without interference from other clients. 
This facility permits certain DMS-operations, e.g. CheckOut or Checkln, to 
be implemented as atomic actions. These low level transactions should not 
be confused with the high level design transactions as presented in section 
5.1. The low level transactions are restricted to access to the meta design 
data and are assumed to be of short duration. In fact these transactions are 
used to implement the long design transactions on design objects. 

7.6.2.2 Implementation 
The implementation of the storage module consists of a query layer on top 
of a generic table handler. The table handler operates as a storage module 
for tabularly structured data. The query layer on top of it takes care of 
query interpretation and query resolution. It maps each composed type of 
the data schema to one or more tables. 

To offer a transaction facility, concurrency control and recovery 
mechanisms have to be employed. Concurrent access to the meta design 
data must be controlled to preserve its consistency, in particular when 
multiple queries are issued as one transaction. Recovery facilities have to be 
such that results of committed transactions are persistent across hard- or 
soft crashes, and results of incomplete transactions can always be rewinded. 

The table handler provides basic concurrency control and recovery 
mechanisms. Access to the tables is controlled by an open / close strategy: 
They must be opened before their contents can be accessed to resolve a 
query request. The tables can be opened for "write", which is exclusive, and 
for "read-only", which is non-exclusive with respect to other read-onlys. 
Multiple tables can be opened at once. The correct operation of the open / 
close strategy is guaranteed by semaphores supplied by the UNIX operating 
system. The query layer implements its transaction strategy on top of the 
open / close strategy of the table handler. All tables that are required to 
perform the transaction are opened at the start of the transaction and closed 
when the operations have been finished, thereby committing the transaction. 
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As all requested tables are opened at once no deadlocks can occur. 

Special attention has to be paid to the communication mechanisms that are 
employed internally by the storage module, as a number of requirements 
for the meta design data access have to be satisfied: 

• Fast access to the meta design data. 
The potentially large number of accesses by DMS and tools must be 
handled efficiently. 

• Sharing of the meta design data. 
The module must offer high accessibility in a concurrent environment. 

• Local as well as remote data communication. 
The module has to operate in a distributed environment. 

Our solution (Figure 7.14) is a combination of the use of shared memory 
techniques and the use of a server process per project that responds to 
messages that appear in its message queue. 

Local Tool Remote Tool 

sign Objects in 
File System 

Figure 7.14. Mechanisms for (meta) design data access 
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When a project becomes "active", a Data Management Process (DMP) is 
started which maps the meta design data of this project into shared memory 
(UNIX system V and BSD 4.3). Tool processes that run on the same 
machine as the project and its DMP can attach this shared memory to their 
data space. That is, several processes can share data directly, by having 
some pages of their virtual memory referring to the same physical memory. 
Queries from these local processes are executed efficiently by functions that 
have direct access to the meta design data in shared memory. 

If a tool process runs on a different machine than the project with its DMP, 
its access functions can not directly access the meta design data in shared 
memory. In this case, the functions send their requests to the appropriate 
DMP [Birrell84]. At the side of the DMP, the requests from the remote 
processes appear in a message queue. The DMP executes the requests for the 
remote processes and sends the result back, to them. 

The physical distribution of the (meta) design data is made transparent to 
the higher layers of the system, by hiding the local / remote selection in the 
"low level" access functions. These functions also have the possibility to 
defer access, for example when the requested part of the meta design data is 
being updated; a short wait may occur when a table has already been opened 
in a conflicting mode by another process. As only short transactions occur 
at this level, such a split-second delay is felt to be a minor inconvenience. 

An interesting efficiency aspect in this concurrent environment results from 
the distinction that we make between the detailed design data contained in 
the design objects and the meta design data on top of it. Concurrency issues 
concerning the detailed design data are resolved at the meta design data 
level upon CheckOut (section 5.1). Once access to a design object has been 
granted, a tool can freely dive into the corresponding design data. Access 
functions permit efficient retrieval (storage) of the detailed design data from 
the file(s) in which it is contained, without the overhead for concurrency 
control. This is particularly important as relatively large amounts of data 
have to be handled at this level. 
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7.7 THE DATA MANAGEMENT BROWSER 
The Data Management Browser (DMB) enables the designer to browse 
through the meta design data, which is maintained by the DMS. The 
designer can start a DMB and open one of his projects. The DMB tries to 
establish communication with the particular project and opens a window on 
the screen. After a successful connection has been established, the designer 
has access to the meta design data of that project. The browse facilities fall 
apart in two categories: a generic query interface and dedicated browse 
facilities. The query interface is generic in that it can handle arbitrary data 
schemas. The implementation of the dedicated browse facilities, on the 
other hand, depends on the data schema at hand. 

Via the query interface the designer can issue OTO-D query requests. 
While deriving the schema of Figure 7.12, we already presented various 
queries to illustrate the use of the OTO-D DML for information retrieval. 
However, we have not yet discussed how the interaction with the designer 
actually proceeds. At the moment the DMB accepts the queries in textual 
form, passes them directly to the storage module for the meta design data 
and displays the responses. For instance, with a simple query the designer 
can ask the DMB to list all modules in the particular project. A more 
sophisticated type of browsing is offered by supporting wildcards. For 
example, 

GET module 
ITS name, view-type 
WHERE name = 'F*' 

returns the names and view-types of the modules whose name starts with a 
"F": 
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module 

mlOO 
m l l 8 
ml20 
ml33 
ml49 

name 

FlipFlop 
FullAdd 
FlipFlop 
FlipFlopl 
FullAdder 

view-type 

layout 
layout 
circuit 
circuit 
logic 

At the moment we are working towards an implementation of the DMB that 
lets the designer enter his queries in a more convenient way. It graphically 
displays the data schema together with some menus containing, among other 
things, the OTO-D keywords. With this facility the designer can 
interactively compose correct query requests by pointing with his mouse at 
the proper keywords, types and attribute relationships. 

Dedicated browse facilities allow the designer to inspect particular aspects 
of his design in an attractive way. For instance, browse tools have been 
constructed to interactively visualize the hierarchical multiview structure, 
to inspect the version chains, or to display the transaction histories of the 
design objects. They exploit graphical facilities, pop-up menus, etc. to 
present graph-like representations of the structure of the design, which can 
easily be browsed by the designer. 

The DMB has been written using a distributed windowing system: X-
windows. The X-windows system [Gettys86] is the only windowing 
system that has this functionality and is a well accepted standard. 

1.8 THE DATA MANAGEMENT INTEREACE (DMI) 
7.8.1 Introduction 
The tools communicate with the DMS via the Data Management Inter/ace 
(DMI) [Meijs87]. This is a set of library functions that can be used by the 
tool developer, without the necessity to have a detailed understanding of the 
implementation of the DMS. By means of this DMI the tools obtain access 
to the design data, while taking advantage of the facilities that are provided 
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by the DMS. 

With our data modeling activities we have been aiming at a DMS that is 
based on the invariants in VLSI design rather than the features of a 
particular tool set or design representation. Although this permits our DMS 
to be relatively stable over time, we have to be aware of system evolution. 
The implementation of all required DMS facilities is a huge task., which 
implies iteration over several "releases". Secondly, we do not pretend to 
have a complete view of all DM-issues at this moment. We must allow new 
facilities to be added and existing ones to be modified whenever necessary. 

Consequently, the tools should depend as little as possible on the DMS to 
avoid extensive tool modifications with each new release of the DMS. 
Furthermore, the DMS must be open-ended: It should be easy to add new 
tools to the system in such a way that they become a consistent part of the 
design environment. Thus, what we need is a DMI that somehow decouples 
the software development and evolution of the DMS on the one hand and 
the tools on the other hand. We will introduce such a DMI, based on a 
transaction schema that formalizes the procedural aspects of the 
communication between the tools and the DMS. 

7.8.2 DMI Requirements 
The following requirements have to be satisfied by a DMI: 

• The DMI must bring about efficient interaction between the tools and the 
DMS. For instance, efficiency partially results from choices that have 
been made in the previous sections, such as the distinction between meta 
design data and the design objects. The DMI should somehow adhere to 
these choices. 

• The DMI should be independent of specific tool features or design 
methodologies. For example, the DMI must not prescribe data formats. 
It should be universal, to result in an open-ended design system where 
the DMS acts as a free-for-all public repository that can communicate 
with any type of tool and environment. 
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• The DMI should be independent of specific features of a DMS. For 
example, it must allow interfacing to DMSs with or without versioning, 
concurrency control, multiple view-types, etc. When this requirement is 
met, the tools can actually be "plugged in" in the same way in different 
DMSs. 

In summary, a DMI should offer some degrees of freedom, but at the same 
time the necessary discipline to facilitate software evolution and exchanges. 
Our opinion on how to introduce this discipline is expressed most concisely 
by the following thesis: 

Thesis 
The optimal way to decouple the development and evolution of the DMS 
and the tools is to agree on a common transaction schema, and reflect this 
in the definition of the DMI. 

A transaction schema (not to be confused with a data schema) is a 
procedure according to which the tools obtain access to the design data. Our 
transaction schema is based on a number of assumptions that we believe to 
be completely general within the context of chip design. 

We assume that the design data is organized on a per project basis. A 
project offers the designer a local context in which a collection of design 
objects is present. As elucidated before, a design object describes a 
functional part of an integrated circuit in terms of certain primitives as 
well as references to other design objects, and is the appropriate unit of 
(exclusive) access for manipulation of the design data. Within a design 
object the actual design data is organized as a set of streams, but no 
assumptions are made on the contents of these streams. 

The agreement on these assumptions permits the definition of a transaction 
schema, and hence a DMI, that localizes the interaction between the tools 
and the DMS. Any tool modifications that are required to adapt the tool to 
other implementations of a DMS will then be strictly local and will not alter 
the structure of the program. Consequently, they can be done with much 
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less effort. 

7.5.3 DMI Transaction Schema 
As a consequence of the recognition of project, design object and stream as 
units of access, the transaction schema is a layered one. The effect of a tool 
on a design environment is called a tool-execution. It is a (possibly 
interleaved) sequence of project transactions bracketed by an initialization 
and a termination. Similarly, a project transaction is a (possibly 
interleaved) sequence of design transactions, i.e. transactions on design 
objects (section 5.1), bracketed by an open project and a close project. A 
design transaction is a (possibly interleaved) sequence of design data 
transactions bracketed by a CheckOut and a Checkln, while a design data 
transaction is a sequence of design data 10 operations bracketed by an open 
stream and a close stream. A design data 10 operation is either a read 
operation or a write operation. 

We present these definitions graphically in Figure 7.15. The boxes on one 
level represent a sequence of actions, executed from the left to the right. 
Child boxes specify a refinement of the father action. A starred box 
represents an iteration and boxes with a small circle imply alternatives. 
This diagram is a variation on a Entity-Action diagram as defined in 
[Jackson83]. 

7.8.4 The DMI 

7.8.4.1 Concepts 
Basically, there is one access function in the DMI for each leaf of the tree in 
Figure 7.15. Access to either the design environment, a project, a design 
object or a stream can be obtained by executing the corresponding opening 
bracket function, as represented by the leafs at the left-hand side of the 
tree. A transaction is terminated by executing the corresponding closing 
bracket function at the right-hand side. In between, lower level 
transactions can be performed. 
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Figure 7.15. Transaction Schema 

The functions in the DMI co-operate with each other in such a way that 
access proceeds in accordance to the transaction schema. They communicate 
by means of abstract data types, called keys. The contents of these keys is 
not fully specified in the DMI definition, but can depend on the particular 
DMS at hand. There are four types of keys, one for each layer. The key 
returned by an opening bracket function is part of the argument list of the 
functions at the next lower level and of the closing bracket function. This 
allows the interleaving of more than one sequence of calls of lower level 
functions. The closing bracket function invalidates the key. 
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After verifying and establishing access, the opening bracket function stores 
appropriate information in the key that is returned, for further use by the 
lower level functions. As a direct advantage, the visibility of particular 
features of the DMS is confined to a small number of places in the DMI. 
Depending on the particular DMS at hand, the key may contain, for 
instance, information about the physical location, access permissions and 
state of the object for which access was obtained. Each key contains a 
pointer to its "parent key", so that the complete context is known at the 
lowest levels. Also, all keys with the same parent key are linked together 
in a list that is attached to this parent key. This facilitates error recovery 
and automatic clean-up actions. 

The opening bracket functions take as arguments, apart from a parent key, 
an identification of the object for which access is to be obtained and an 
access mode. In an actual implementation these arguments may reflect 
certain features of the DMS. In section 5.1 we already saw that the DMS 
takes the CheckOut mode into account to decide on concurrency matters. 
As another example: when the DMS provides versioning facilities, the 
parameters of the dmCheckOut function must somehow allow identification 
of the version to be CheckedOut. Including browse capabilities for object 
selection in the opening bracket functions may, however, hide such DMS-
specific features from the tools. 

In an actual implementation of a DMS, appropriate actions will be 
associated with each function of the DMI. By introducing the right levels of 
intervention, the DMI provides a natural and universal framework to 
localize these actions. In the next subsection, the functions at the different 
layers are presented, together with some examples that illustrate how 
particular DMS features can be embedded in the DMI. 

7.8.4.2 The DMI functions 

7.8.4.2.1 Global initialization and termination 
Two functions are needed for global initialization and termination. They 
establish and release contact between the tool and the design environment. 
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• dmlnit (toolname): envkey 
• dmQuit (envkey) 

Dmlnit is the opening bracket function of a tool-execution and returns an 
environment key. This key contains information about the design 
environment (for example hostname, user-id, process-id, working directory 
etc.) in which the tool is executed. The tool identifies itself by means of 
the argument toolname. An action that might be performed by the DMS is 
to consult a tool database to obtain more detailed information about the 
tool. 

DmQuit is the closing bracket of a tool-execution. It takes care of the 
necessary clean up operations. 

7.8.4.2.2 Project transaction layer 
At this level such aspects as projects, libraries and distributed databases can 
be handled. 

• dmOpenProject (envkey, projid, openprojmode): projectkey 
• dmCloseProject (projectkey, closeprojmode) 

DmOpenProject initiates a project transaction and returns a project key. 
This key contains information about the particular project, represented by 
projid, and the access mode, represented by openprojmode. Actions that 
might be performed are verification of the access rights, retrieval of 
technology information, setting up network connections or contacting a Data 
Management Process. 

DmCloseProject terminates the project transaction. The details of this 
operation are specified by closeprojmode. In a physically distributed 
environment, actions to be performed might include returning local copies, 
closing network connections, etc. 

7.8.4.2.3 Design transaction layer 
The functions at this layer take care of aspects of design transactions. To 
mention are concurrency control, versioning, view-types, maintenance of 
verification statuses and equivalence relationships, etc. See also section 5. 
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• dmCheckOut (projectkey, deslgnobjectid, checkoutmode): deslgnobjectkey 
• dmCheckln (deslgnobjectkey, checklnmode) 

DmCheckOut is the opening bracket function of a design transaction. Its 
arguments are a project key, identifying the particular project for which 
access rights have been obtained by dmOpenProject, and an identification of 
a design object, denoted by designobjectid. The checkoutmode parameter 
specifies what type of interaction is to take place, so that the DMS can 
anticipate on it. This mode may, for example, be used by the concurrency 
controller, as explained in section 5.1. The version handler may take the 
mode into account for selection of a particular version, e.g. the object having 
V-status "working" is by default selected for update transactions. 

DmCheckln is called to terminate a design transaction initiated by 
dmCheckOut. Designobjectkey has been obtained from dmCheckOut. 
Checkinmode specifies how the transaction has to be terminated, e.g. 
whether the transaction should commit or rewind. Actions that might be 
performed include removal of locks, updating of verification statuses, 
deletion of scratch data that was created for recovery purposes, etc. 

7.8.4.2.4 Design-data transaction layer 
These functions are at the lowest level, i.e. closest to the physical 10. They 
map the design data to and from the physical storage structure being 
exploited. 

• dmOpenStream (deslgnobjectkey, strname, iomode): streamkey 
• dmCloseStream (streamkey, closestreammode) 
• dmGetDesignData (streamkey, format, arguments) 
• dmPutDeslgnData (streamkey, format, arguments) 

DmOpenStream returns a stream key, which is used by dmGetDesignData, 
dmPutDesignData and dmCloseStream. Strname identifies a stream of data 
belonging to the design object identified by designobjectkey. Iomode 
specifies the mode of access to the data, e.g. read-only or write. 
DmOpenStream can check this mode against the CheckOut mode. For 
example, it should be forbidden to open a stream for write if the CheckOut 
mode was read-only. A stream can simply be implemented as a file, but 
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this need not be the case. For example, experiments have shown that it is 
possible to transparently map 10 operations onto shared memory as an 
efficient channel for inter-tool communication via the DMI. 

DmGetDesignData and dmPutDesignData perform the actual in- and output 
of design data. They know the mapping to and from the storage structure 
employed. They do not restrict the formats of the detailed design data that 
can be transferred. The mechanism used is very similar to that of the 
printfO and scanfO functions in C. 

DmCloseStream must be called to terminate a design data transaction. Files 
can be closed or allocated memory can be freed. Closestreammode specifies 
the details. 

7.8.4.2.5 Calling pattern 
As an illustration of how these functions co-operate, we present in Figure 
7.16 a calling pattern of the functions of the DMI. The layered structure of 
the transaction schema is reflected in the indentation of the code. 

envkey :- dmlnit (toolname); 

projectkey :- dmOpenProject (envkey, projid, openprojmode); 

desobjkey :- dmCheckOut (projectkey, desobjid, checkoutmode); 

streamkey :- dmOpenStream (desobjkey, strname, iomode); 

dmPutDesignData (streamkey, format, arguments); 
dmGetDesignData (streamkey, format, arguments); 

dmCloseStream (streamkey, closestreammode); 

dmCheckln (desobjkey, checklnmode); 

dmCloseProject (projectkey, closeprojmode); 

dmQuit (envkey); 

Figure 7.16. DMI Calling Pattern 
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7.8.4.2.6 Meta Design Data Access 
The transaction schema presented sofar is mainly concerned with access to 
the detailed design data; it defines the procedure that must be followed to 
arrive at the contents of the design objects. However, the tools must also be 
allowed to access the meta design data, for instance, to obtain a module-list 
or to ask. for and insert equivalences. For this purpose the functions 
dmGetMetaDesignData and dmPutMetaDesignData are provided. 

• dmGetMetaDesignData (projectkey, request) 
• dmPutMetaDesignData (projectkey, request) 

DmGetMetaDesignData (DmPutMetaDesignData) can be used to obtain 
(store) information from (into) the meta design data of the project 
identified by projectkey. By means of the request argument, the specific 
retrieval or update operations (queries) can be passed to the DMS. These 
functions hide the actual implementation of the meta design data storage 
module. 

Which queries can actually be formulated depends, of course, on the data 
schema employed by the DMS. For instance, a DMS supporting equivalence 
relationships between design objects of (possibly) different view-types, 
accepts queries on this information. Tools that interact at this level with 
the DMS are therefore vulnerable to schema changes. Decoupling can, 
however, be obtained as long as the queries that the tool formulates on its 
"application schema" can be mapped to (emulated by) queries on the DMS 
schema. 

7.8.5 Discussion 
The DMI introduced here formalizes the procedural aspects of the 
interaction between VLSI design tools and a DMS that provides a number of 
facilities to these tools. Openness is retained by avoiding tool-specific 
aspects in the DMI definition. Furthermore, we illustrated the ability of the 
DMI to absorb DMS-specific features that not necessarily have to be visible 
to the tools. 
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By offering a proper set of "anchor points", the DMI greatly facilitates 
software exchangeability: Modifications that are required to adapt a tool to 
another DMS are strictly local and do not alter the structure of the 
program. In fact, most of the work, can usually be done mechanically, for 
example with a stream editor. As an illustration of the openness, we 
remark, that integration of the KIC layout editor [Billingsley83] via the 
DMI was completed in about two days. 

As an additional benefit, the DMI completely hides operating system 
dependencies. There are no path-names, file access modes, system calls etc. 
visible in the tools. Consequently, it should be easy to port the design 
system to other operating systems by changing the DMI library. 

7.9 CONCLUSIONS AND RESULTS 

We have presented a DMS for VLSI design that provides an open 
framework, for the integration of design tools and relieves the designer from 
the burden of organizing his design data. After identifying the basic entity 
that is involved in a design transaction, the design object, we developed a 
data schema representing the logical organization of the VLSI design data. 
The OTO-D semantic data model, offering a set of well defined modeling 
constructs, permitted us to formalize the semantics of the meta design data. 
Openness of the DMS was secured by avoiding incorporation of features of a 
particular tool set or design representation. 

The resulting data schema is simple (5 composed types), yet powerful 
enough to reflect the basic concepts of the DMS we outlined in section 1. It 
incorporates such features as hierarchical decomposition, multilevel design, 
design transactions / concurrency control, maintenance of verification 
statuses and versioning. Thus, it provides the basis for a DMS that 
implements a set of global system facilities to provide a framework, for the 
construction of a powerful design environment. The DMS serves both the 
tools and the designer by making the information about the structure and 
status of the design available to them. 
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This DMS-research has been carried out in the context of the ICD-NELSIS 
system [Dewilde86a], which currently contains over 40 DMS-intensive 
CAD/IC tools such as layout editors and generators, design rule checkers, 
extractors, a placement and routing system, simulators, etc. These tools 
have all been equipped with the DMI defined in this paper. The decoupling 
introduced by this DMI turns out to be extremely useful for our software 
developments, as it permits DMS and tools to evolve separately to a large 
extent. Work, is under way to define a DMI standard in a wider context 
[SECT87]. 

In the ICD-NELSIS system, several DMS-experiments have been carried out 
and a prototype has been produced. Currently, we are working towards a 
DMS-release that comprises all facilities described in this paper (and more). 
The meta design data storage module exploiting shared memory is 
operational, including the query facilities. An attractive version mechanism 
and state manager have been implemented. Interactive browsing facilities 
are currently being implemented. Bringing these parts together will yield 
an operational DMS at short notice, to which all tools can easily be 
interfaced via the DMI. The implementation of the DMS makes use of well 
known standards as the C programming language and the X-windows 
system. From the experience we have gained, it appears that the principles 
introduced in this paper indeed allow to do proper data management 
efficiently. 

Future work will, among other things, focus on powerful design 
management facilities that can guide the designer through the design process 
towards a correct design. The first ideas for this have already been 
presented in section 5.1. Another area of interest is the management of 
information about such environmental aspects as technologies, tools, 
designers, etc, as a logical extension of the information modeling approach 
presented in this paper. 
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