
DATA MANAGEMENT FOR VLSI DESIGN
IN

AN OPEN AND DISTRIBUTED
ENVIRONMENT

TR diss
1620

T.G.R.M. van Leuken

' ' DATA MANAGEMENT FOR VLSI DESIGN
IN

AN OPEN AND DISTRIBUTED
ENVIRONMENT

DATA MANAGEMENT FOR VLSI DESIGN
IN

AN OPEN AND DISTRIBUTED
ENVIRONMENT

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Delft, op gezag van de Rector Magnificus, prof. dr. J.M.

Dirken, in het openbaar te verdedigen ten overstaan van een
commissie aangewezen door het College van Dekanen, op donderdag

24 maart 1988, te 16.00 uur door

T.G.R.M. van Leuken

elektrotechnisch ingenieur

geboren te 's-Gravenhage

r< £v^'sc^

(f A
O Fro "

TR diss
1620

Dit proefschrift is goedgekeurd door de promotor,
Prof.dr.ir. P. Dewilde.

Stellingen behorende bij het proefschrift:

Data Management For VLSI Design In
An Open And Distributed Environment

door
T.G.R.M. van Leuken

1. Een data schema, waarin de structuur en de organisatie van data wordt
beschreven en waarin ook de voorwaarden waaraan deze data moet
voldoen tot uitdrukking worden gebracht, is een handig instrument om
een omgeving op een abstracte manier te beschrijven.

2. Als in een interactieve ontwerpomgeving, de ontwerper wordt bijgestaan
door een data management systeem, dan zal deze ontwerper efficiënter
kunnen werken, omdat het data management systeem een groot aantal
administratieve taken van de ontwerper overneemt.

3. Als er, net als voor grafische toepassingen, ook een software standaard
komt voor ontwerpprogramma's, die de opslag en toegang tot ontwerp
data reguleert, dan is het mogelijk geworden om ontwerpprogramma's
van verschillende bronnen samen te voegen in een systeem.

4. Ontspannen werken in een omgeving welke bestaat uit werkstations met
gedistribueerde opslag capaciteit, valt en staat met de betrouwbaarheid
en efficiëntie van het computer netwerk.

5. Zolang India problemen heeft met betrouwbare water - en stroom
voorzieningen, zal dit land geen grote concurrent worden op het gebied
van het ontwerpen van geïntegreerde schakelingen.

6. Als een bedrijf een software pakket heeft ontwikkeld, dat de potentie
heeft een wereldstandaard te worden, dan moet dit bedrijf deze
software in het 'public domain' plaatsen. De gevolgen zijn dan dat
iedereen deze software zal gaan gebruiken, waarna het bedrijf geld zal

gaan verdienen aan alle randprodukten van dit pakket.

7. De beste methode, om de ontwikkeling en evolutie van een data
management systeem en de daarin gebruikte programma's te
ontkoppelen, is een transactie schema en een aantal basis objecten te
definiëren, en deze te gebruiken in een software interface tussen het
data management systeem en de programma's.

8. Studenten en medewerkers van de TU Delft zouden er mee gebaat zijn,
als de gebouwen van de TU Delft 24 uur per dag toegankelijk zouden
zijn, opdat zij zo efficient mogelijk gebruik kunnen maken van de
beschikbare computer apparatuur.

9. Als het aantal bezoekers van een toneel, dans of opera gezelschap daalt,
en de kwaliteit van dit gezelschap niet verbeterbaar is, dan is de beste
methode om het aantal bezoekers te vergroten, het bouwen van een nieuw
onderkomen.

CONTENTS

Samenvatting 1

Summary 3

1. THE CAD/IC DESIGN ENVIRONMENT 5
1.1 Design Data Management 5

1.2 Reading on VLSI Design and Data Management 9

References 11

2. FUNCTIONAL REQUIREMENTS OF A DESIGN
SYSTEM 13
2.1 Introduction 13
2.2 The Goals of a DDMS 14
2.3 Tool Portability 15
2.4 Data Exchange 16
2.5 Design Systems 17
2.6 Design Methodology 22
2.7 Requirements Overview 23

References 25

3. CONCEPTUAL MODEL OF THE DDMS 27
3.1 Data Models 27
3.2 The Basic Design Object 37
3.3 The Initial Data Schema 38
3.4 Design Management Data Schema 39
3.5 The Design System Architecture 44
3.6 A Logically Distributed Environment 46
3.7 Conclusions 56

References 59

4. SYSTEM ARCHITECTURE 63

4.1 Introduction 63
4.2 Tool Interface Requirements 64
4.3 The Transaction Schema 65
4.4 Related Work. 66
4.5 The Tool Interface 67
4.6 Tool Communication 75
4.7 User Interface 85
4.8 Conclusion 87
4.9 Results 89

References 91

5. APPENDIX A 93
5.1 Technology Database 93

References 97

6. APPENDIX B 99
6.1 Introduction 100
6.2 Basic Concepts 100
6.3 Versions and Concurrency Control 103
6.4 Conclusions and Status 105

References 106

7. APPENDIX C 107
7.1 INTRODUCTION 108
7.2 DATA MODELS 112
7.3 THE DESIGN OBJECT AS THE BASIC ENTITY 116
7.4 HIERARCHY AND MULTIPLE VIEW-TYPES 119
7.5 DESIGN EVOLUTION 125
7.6 SYSTEM ARCHITECTURE 132
7.7 THE DATA MANAGEMENT BROWSER 139
7.8 THE DATA MANAGEMENT INTERFACE (DMI) 140
7.9 CONCLUSIONS AND RESULTS 150

- ii -

References 152

BIBLIOGRAPHY 155

Curriculum Vitae 173

- i i i -

1

Samenvatting

In dit proefschrift wordt een concept gepresenteerd, dat het mogelijk maakt
verschillende programma's voor het ontwerpen van geintegreerde
schakelingen samen te voegen in één ontwerpomgeving.

Programma's voor het ontwerpen van geintegreerde schakelingen worden op
verschillende plaatsen en door verschillende mensen ontwikkeld. Het
resultaat is, dat de ontwikkelde ontwerp programma's alleen in de locale
omgeving gebruikt kunnen worden, omdat iedereen verschillende data
formaten en verschillende dataschema's gebruikt. Als iemand een ontwerp
programma uit een andere omgeving wil gebruiken, dan is hij gedwongen of
wel de programma code te wijzigen, of wel twee vertaalprogramma's te
schrijven.

De beschikbaarheid van werkstations heeft de werkomgeving van VLSI
ontwerpers danig veranderd. De meeste ontwerpers beschikken over hun
eigen werkstation en hebben toegang tot speciale rekenmachines zoals array
processors en super mainframes. Deze verandering heeft zijn invloed op de
eisen die gesteld worden aan ontwerp-programma's, namelijk zij moeten in
een gedistribueerde omgeving werken.

In het eerste gedeelte van dit proefschrift worden de VLSI ontwerpomgeving
en de eisen van een VLSI ontwerpsysteem beschreven. De belangrijkste
eisen van een ontwerpsysteem zijn de verplaatsbaarheid van het programma
en de uitwisselbaarheid van ontwerp data.

In het volgende gedeelte wordt een dataschema gepresenteerd. Nadat
verschillende data modellen zijn vergeleken, is een semantisch data model
gekozen, om de structurele semantiek van een VLSI ontwerp database in uit
te drukken. Het centrale gedeelte in dit dataschema is de 'basic design unit'.
Deze unit is de grens waar ontwerp data management en laag niveau
ontwerp data acces elkaar ontmoeten. Ook blijkt deze unit, de unit te zijn
waarop een versie mechanisme, locking en recovery toegepast kunnen

2

worden. In het laatste gedeelte van dit hoofdstuk wordt een uitgebreider
dalaschema gepresenteerd, dat de gedistribueerde structuur beschrijft.

In het vierde hoofdstuk van dit proefschrift wordt een programma interface
gepresenteerd. Deze programma interface, welke is gebaseerd op de
invarianten van het dataschema, biedt de software ontwerper een eenvoudig
beeld van de organisatie van zijn ontwerp data. Alle ontwerp management
functies zijn voor hem verborgen. Data formaten zijn niet gedefineerd, maar
als een programma in een andere omgeving moet kunnen werken, dan is een
neutraal data formaat nodig. Programma communicatie is een belangrijk
onderdeel in een ontwerpomgeving. Een mechanisme om data tussen
verschillende programma processen uit te wisselen wordt beschreven.

Het laatste gedeelte van dit proefschrift bestaat uit drie appendices. De
eerste appendix beschrijft een dataschema van een technologie database en
de programma interface functies. De tweede en de derde appendix zijn
copieen van artikelen. Appendix B is een artikel over een dataschema en een
versie keten. Appendix C beschrijft een uitgebreider dataschema en een
systeem architectuur van een gedistribueerd data management systeem voor
het ontwerpen van VLSI schakelingen.

3

Summary

In this thesis a concept is presented, which will allow for the integration of
different VLSI design tools in one design environment.

Many VLSI design tools are developed at different places by different
people. As a result, the developed design tools can only be used in the local
environment, because different data formats and different data schemas are
employed. If someone wants to use design tools from a different origin, he
is forced to either change the source code of the program or write two
translator programs.

The availability of workstations has changed the work environment of
VLSI designers to a great extent. Most designers have their own
workstation and have access to special purpose computers, like array
processors and super mainframes. This change has its impact on the
requirements of the design tools. Design tools, design data, data
management and designers all function in a distributed environment.

The first part of the thesis describes the VLSI design environment and the
requirements of a VLSI design system. Most important requirements in an
open VLSI environment are tool portability and design data exchange.

In the next chapter a data schema is presented. After the comparison of
several data models, a semantic data model is chosen to represent the
structural semantics of a VLSI design database. In this data schema the
central part is the basic design unit. The basic design unit is the border
where design data management and low-level design data access meet. Also,
the basic design unit is the unit of access on which versioning, locking and
recovery apply. In the last part of this chapter the data schema is extended,
to structure the distribution of design units.

In the fourth chapter of this thesis a tool interface is presented. This tool
interface, which is built on the invariants of the data schema, offers the
software designer a clear and simple view of the organization of the design

4

data. All design data management functions are hidden. Data formats are
not defined, but if a tool should be "plugged into" another environment, a
neutral data format is necessary. Tool communication is an important
aspect of a design environment. A mechanism to exchange data between
different tool processes is described.

The last part of this thesis consists of three appendices. The first appendix
presents a data schema for a technology database and the tool interface
functions. The second and the third appendix are copies of papers.
Appendix B is an article on a data schema and a version chain. Appendix C
presents an extended data schema and system architecture of a distributed
data management system for VLSI design.

5

1. THE CAD/IC DESIGN ENVIRONMENT

1.1 Design Data Management
Design data management became an important subject in the Computer-
Aided Design of Integrated Circuits (CAD/IC) since the beginning of the
1970s. From this point in time the complexity of Integrated Circuits (IC)
started to increase dramatically, as did the number of design tools and their
data formats. Most of the CAD/IC programs were developed at different
locations by different people, thus had their own data formats and their
own user interfaces. If someone wanted to use a design tool from another
source, he had to write translators to and from each program. This
approach implied that for N programs, N2-N translators had to be written.
As a result, designers of integrated circuits had to use many translator
programs to design, simulate and test one simple circuit. The number of
translators can be reduced to a worst case IN by choosing a common,
neutral data format and translating to and from that format [Newton86].
Several data formats emerged during the 1970s and became public domain
standards, the best known are CIF [Mead80] and GDS II for mask layout
descriptions and SPICE [Nagel75] for circuit descriptions. ISPS [Bell7I,
Barbacci78] was commonly used as the language to describe the behavior of
a circuit in abstract terms.

At the same time people started to use conventional databases for the
management of design data. These record oriented database management
systems (DBMS) [Held75], were used to store and retrieve all aspects of an
IC design, such as rectangles, list of connections and transistors. Soon it
became clear that the application of the conventional database management
systems was not suited for the CAD/IC environment. A state-of-the-art IC
can contain more than 150000 transistors. Over 1 Giga-byte of design data
is required to store all aspects of this design. A design data management
system (DDMS) has to store this vast amount of design data, controlling the
access to the data and maintaining its consistency. The answer for a

6 THE CAD/'IC DESIGN ENVIRONMENT

suitable design data management system lies in exploiting the inherent
hierarchical structure of the design data and the partitioning of the data in
design data and in meta design data. The meta design data contains
information about the design data. Other requirements of such a data
management system include access methods to the design data, multiple
versions and design alternatives, support for workstation and network
based transactions and optimal performance with low cost hardware.

Textual interchange formats were developed to meet the need for design
data transfer between different design systems. Several different formats
were used to describe different aspects of an IC. In the 1980s one neutral
data format is being developed, EDIF (Electronic Design Interchange
Format), [EDIF87, Eurich86], to replace all other textual formats. The
definition of this data format can be the basis of a neutral data format in a
design data management system.

A design data management system (Figure 1.1) is the kernel of a design
environment around which design tools can be integrated [Katz83,
Brouwers87]. A proper DDMS operates first as the neutral repository of
design data: the design database. The tools create and modify the design
data, while the DDMS stores and maintains the design data, thereby
guaranteeing consistency.

T 0
1 (

o ; L ; s
i i

DESIGN DATA MANAGEMENT SYSTEM

DATA

Figure 1.1. Tools integrated on top of a DDMS

Furthermore, a sophisticated DDMS has to supply additional services to
provide a basis for the construction of an intelligent design system, which

7.7 Design Data Management

relieves the designer from the burden of organizing his design data. Clearly,
system integration is more than the definition of some common formats:
Which copy is the latest version? Has this layout been extracted since it
was updated and, if so, which circuit description was derived from it? If I
change this layout, which other parts of the design will be affected? It is
the ability to answer such questions that differentiates a true DDMS from a
simple data repository [Newton86].

Powerful workstations and the availability of computer-aided design tools
have improved the productivity of designers to a great extent. Medium size
integrated circuits can be developed on a single workstation. However, the
design of highly complex circuits still relies heavily on the processing power
of mainframes and supercomputers. But also in this case workstations are
invaluable to designers. They provide a fast and interactive work
environment, where designers can enter a description of a circuit. Computer
network capabilities provide the designer access to special hardware or
computer power and offer the opportunity of data sharing among teams of
designers.

The UNIX operating system has been chosen by many people as the
software environment for their workstations, due to its availability,
portability, flexibility and functionality. It is quickly becoming the
standard operating system for engineering workstations [Hardwick85].
This provides the designers with a common environment for different
hardware acquired from different vendors. This also helps software
developers by allowing them to easily port their software to different
systems without major changes due to the differences in different operating
systems. Networking provides resources including hardware simulation
accelerators, mass storage devices, plotting servers, printers and some CPU
intensive programs available on mainframe computers. A standard
networking protocol such as TCP/IP allows hardware from different
vendors to communicate electronically.

8 THE CA D/IC DESIGN ENVIRONMENT

The open system concept of the UNIX operating system should also be
applied to the CAD/IC environment. It will allow the software developer
to add new design tools to his system without major effort. This is a very
important capability for a system that needs to be dynamically updated as
design methods change. Supporting hierarchical designs, where any block.
may be used at multiple levels and with many repetitions, is essential for
the CAD/IC design environment. Design automation tools have as their goal
the simplification of the design process by performing many of the synthesis
processes automatically and guaranteeing correctness (silicon compilation).
This goal can only be reached, if a well designed DDMS is available.

Technical innovations have significantly increased the complexity of
integrated circuit design. An ideal VLSI design environment will have the
following characteristics:

— it contains a design database with a neutral data format.

— it has a database management system which structures the design data
and controls access to the database.

— its design tools are integrated with the design database.

— it is an open system, new tools can be added without a major software
effort.

— it supports the hierarchical design methodology.

— it enables the use of shared design data.

— it supports different design styles.

— it supports different design process technologies.

— it has local storage, which in case of a network breakdown enables the
user to continue with his design.

— it has a backup mechanism, which ensures the user that after a
workstation breakdown design data can be restored.

1.1 Design Data Management 9

A system that integrates design tools and a design database, and provides a
human interface is clearly essential, if one wants to manage the design
process. Also the design system should offer the possibility to extend its
capabilities using artificial intelligence techniques. This could be achieved if
the data controlled by the data management system is accessible for
artificial intelligence programs.

A design environment consists of three basic components: a database
containing design and management data, a database interface layer to permit
orderly and secure access to the database, and a set of integrated design
tools, which feed and are fed by the database via the database interface.
This fully developed design system should ease chip development by
preserving design data as it is produced. Versions of a design are
automatically stored, and designers have only controlled access to change
design data.

The availability of some software standards such as the UNIX operation
system and the TCP/IP networking protocol provide for an uniform
workstation environment. The need for high performance computers is still
present.

1.2 Reading on VLSI Design and Data Management

This thesis describes the problem of constructing an effective design data
management system. For those readers who are interested in acquiring
information on VLSI design itself and its problems, we give a short list of
available textbooks, which will serve as a background to the presented
work.

One of the best known books about integrated system architecture and
design is [Mead80]. An introduction in the integrated circuit design using
CMOS, can be found in [Weste85, Glasser85, Mukherjce86]. There are
several books about the design of digital systems. [Davio83, Mano82,
Breuer77, Mano84] describe this area with considerable depth. The latest
developments in the VLSI design area can each year be read in the VLSI

10 THE CAD/IC DESIGN ENVIRONMENT

book series [Bryant83, Anceau83]. These describe particular subjects of
VLSI design, which are in the focus of interest of the VLSI designers. An
insight in the workstation environment, distributed file systems and
networking, can be found in [Sun86, Apollo8l]. The books deal with
implementations of these techniques in a specific workstation environment.
[Tsichritzis82] provides the reader with a thorough background on relevant
issues in the field of database management.

References 11

References

Anceau83. Anceau, F. and Aas, E.J., VLSI 83, VLSI Design of Digital
Systems, North-Holland (1983).

Apollo81. Apollo, Computer Inc. and Bellerica, N., Apollo Domain
Architecture. Feb. 1981.

Barbacci78. Barbacci, M.R., "An Introduction to ISPS," Technical Report,
Department of Computer Science, Carnegie-Mellon University, (1978).

Bell71. Bell, C.G. and Newell, A., "Computer Structures: readings and
Examples," Mc-Graw Hill Book Compagny, New York, (1971).

Breuer77. Breuer, M.A., "Digital System Design Automation: Languages,
Simulation and Data Base," London Pitman, (1977).

Brouwers87. Brouwers, J. and Gray, M., "Integrating the Electronic Design
Process," VLSI Systems Design, pp. 38-47 (June 1987).

Bryant83. Bryant, R., Third Caltech Conference on VLSI, Computer Science
Press (1983).

Davio83. Davio, M., Deschamps, J.P., and Thayse, A., Digital Systems with
Algorithm Implementation, John Wiley & Sons (1983).

EDIF87. EDIF„ "Electronic Design Interchange Format, Version 2 0 0,
Reference Manual," EDIF Steering Committee, Electronic Industries
Association, (1987).

Eurich86. Eurich, J.P., "A Tutorial Introduction to the Electronic Design
Interchange Format," Proc. 23rd IEEE Design Automation Conference,
pp. 327-333 (1986).

Glasser85. Glasser, L.A. and Dobberpuhl, D.W., "The Design and Analysis
of VLSI Circuits," Reading MA Addison-Wesley, (1985).

12 References

Hardwick85. Hardwick, M. and Yakoob, N., "Using a Database System and
UNIX to Author CAD Applications," Proc. IEEEICCAD - 85, pp. 53-
55(1985).

Held75. Held, CD. , Stonebraker, M., and Wong, E., "INGRES - A
Relational Database Management System," Proc. 1975 Nat. Computer
Conference, AFIPS Press, (1975).

Katz83. Katz, R.H., "Managing the Chip Design Database," IEEE Computer
Magazine 16(12) pp. 26-35 (Dec 1983).

Mano82. Mano, M.M., Computer System Architecture Second Edition,
Prentice-Hall (1982).

Mano84. Mano, M.M., Digital Design, Prentice-Hall (1984).

Mead80. Mead, C. and Conway, L-, Introduction to VLSI Systems, Addison
Wesley, Reading MA (1980).

Mukherjee86. Mukherjee, A., "Introduction to Nmos and Cmos VLSI
Systems Design," Prentice Hall, (1986).

Nagel75. Nagel, L.W., "SPICE2: A Computer Program to Simulate
Semiconductor Circuits," University of California, Berkeley, (May,
1975).

Newton86. Newton, A.R. and Sangiovanni-Vincentelli, A.L., "Computer-
Aided Design for VLSI Circuits," I EEE Computer Magazine, pp. 38-60
(April 1986).

Sun86. Sun, Microsystems Inc., Networking on tlte Sun Workstation. Feb.
1986.

Tsichritzis82. Tsichritzis, D.C. and Lochovsky, F.H., Data Models,
Prentice-Hall, Englewood Cliffs, NJ (1982).

Weste85. Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design a
System Perspective, Addison-Wesley (1985).

13

2. FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

2.1 Introduction

Today, one of the main problems in designing a CAD/IC design environment
is the management of the complexity of the design data. Further
improvements in the process technology promise to increase the already
large complexity of a design by another order of magnitude.

At this moment it is practically impossible to design an integrated circuit
without the assistance of computers and special computer programs. Many
different design tools for computer aided design of integrated circuits have
been developed and many more will be developed to meet the demand of the
increasing complexity of integrated circuit design.

To our knowledge there does not exist a design system at this moment in
which all tools covering functional design to pattern and test generation are
integrated around a common database. Such a tool set can only be realized,
if design tools from different origins can be integrated. This is not an easy
task, because design tools use different data schemas, different data formats,
and different graphical interfaces. If software designers would utilize well
accepted standards by which their tools can be integrated, then the
productivity of VLSI design could be improved substantially.

Integrated circuits are no longer designed by one individual designer.
Complex designs are subdivided into smaller units and each unit is designed
by one or more designers. The design of an integrated circuit is divided in
several subtasks. This decomposition creates a need for concurrent data
sharing, because the designers must use or modify each others design data.
In this situation, there is a need for a design system that provides database
management functions, such as concurrency control, a version mechanism
and the storage of design data relationships.

14 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

In this work we describe the approaches required of a Design Data
Management System (DDMS) to provide a framework for tool integration
based on data sharing. In this chapter we will formulate functional
requirements for design data management.

2.2 Tte Goals of a DDMS

The goals of a DDMS are:

1. Enhancing the portability of tools.

The DDMS can provide functions and specifications that when put into
practice, will improve tool portability without greatly restricting the
freedom of the tool developer.

2. Facilitate the exchange of design data.

Design data is exchanged among different sites, among different tools
and among different organizations. The DDMS should contain facilities
that can be used to translate, store and retrieve a neutral data format.

3. Assuring a uniform design environment.

The design environment is implied by the operating environment that
the tools create for its users. A frequent reason for lack of uniformity
is the absence of adequate documentation for user and system interface
functions, that are portable among host environments.

4. Provide a framework for supporting design management.

Large integrated circuits typically are designed by design teams. This
requires, for example, controlled sharing of design data, protection of
released design data, and monitoring of design methods and progress.

5. Provide a framework for reuse of previous designs.

With the rapid accumulation of design data, the reuse of past designs

2.2 The Cods ofa DDMS 15

is becoming increasingly dependent upon support from sophisticated
browse tools.

Each of these requirements will be discussed to some detail in the remaining
of this chapter. Goal one will be discussed in chapter 2.3 and goal two will
be discussed in chapter 2.4. The goals three, four and five form the subject
of chapter 2.5.

2.3 Tool Portability

Tool portability involves a number of capabilities,

— Access functions.

— User interface.

— Tool interface.

2.3.1 Access Functions
A data model will provide the basis for establishing concise semantic
descriptions of the design data. If the invariants of the data schema are
standardized within the system, a standard tool interface can be developed,
which will provide the software designer with standard access functions
and will also offer some degree of freedom.

2.3.2 User Inter/ace
The DDMS has to provide a user interface specification that will result in a
uniform design environment. This user interface specification consists of
two parts. The first part is the specification of a set of functions, which will
allow for the development of design tools with an uniform graphical
software interface. The second part of the user interface specification is a
description of how an user can interact with a design tool. This description
specifies among others the construction of user-menu's, pop-up menu's and
dialogue windows. In this way the style of interactions between users and
design tools is defined. At this moment a well defined graphical interface is
the X-window system [Gettys86]. This standard consists of simple
graphical functions, but also has standardized menu handling. This will

16 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

allow for the specification of a DDMS with an uniform user-interface style.

2.3.3 Tool Inter/ace
If a tool interface is standardized, software developers can create programs
in a uniform fashion. The tool interface standard will provide functions,
which give the software developer the possibility to access design data and
obtain information about design data, without the necessity to have a
detailed understanding of the implementation of the DDMS. Tool
portability and tool compatibility are greatly enhanced using a standard tool
interface, which are the goals of tool integration.

The following requirements can be formulated for a tool interface:

• The tool interface must bring about efficient interaction between the tools
and the DDMS.

• The tool interface must be independent of specific tool features or design
methodologies. It should be universal, to result in an open-ended design
system where the DDMS acts as a free-for-all public repository that can
communicate with any type of tool and environment.

• The tool interface must be independent of specific features of a DDMS.
For example, it must allow interfacing to DDMS's with or without
version control, concurrency control, multiple view-types, etc. When
this requirement is met, the tools can actually be "plugged in" in the
same way in any DDMS, whether it concerns different releases of a
DDMS at a certain site or DDMS's at different sites.

In summary, a tool interface should offer some degrees of freedom, but at
the same time the necessary discipline to facilitate software evolution and
exchanges.

2.4 Data Exchange

If design tools are integrated in a DDMS, this will impose stringent data
exchange requirements to ensure communication among data repositories on
different hosts. The DDMS must provide a small set of standard formats

2.4 Data Exchange 17

for data exchange, preferably a single one [EDIF87, Eurich86, Newton87].
Tools translate into and out of a neutral data format using one pair of
translators, no longer requiring the creation and maintenance of a possibly
large number of translators. In addition, it will be necessary to describe the
data requirements (semantics) of each tool precisely, so that inconsistencies
in how data is interpreted and represented can be recognized and dealt with.

2.5 Design Systems

If the capabilities of design automation are to be fully exploited, not only
design tools have to be integrated in a design system, but also
administrative and management tools. If the data representation employed
by the tools are standardized, these would give the vendors of design tools
the opportunity to fully support these limited data formats. In addition the
tools should have common user interface. This will have the effect that
designers do not have to master different man-machine interfaces.

2.5.1 Management and Control
The management and control facilities of a DDMS are responsible for
supporting two main tasks:

— controlling and monitoring the design process.

— enforcing access controls at the software level.

The DDMS must be able to store dependencies that exist among different
design objects (e.g. when a schematic is converted by a translator into a
layout description for use by layout tools). If the schematic is changed and
a new version is created, the system must be able to relate the new version
to the preceding one. Also it must be able to store information about the
design object, e.g. a design history, its validation status and which designers
have changed the object.

2.5.2 Data Management
It is important that a DDMS permits designers to locate, obtain, and
correlate diverse design data quickly (browsing). A key function of a
DDMS is that the data management system can deal equally well with

18 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

design, management, and control data. The data can be distributed among
any number of different workstations. The software designer of a DDMS
has to present a clear conceptual model to the user of the DDMS. This
model will describe how data is structured, its status and will hide to the
designer all implementation details, like physical distribution.

2.5.3 Administration
The administrators of a DDMS must have the ability to store, manage and
access the data schema, designer information, tool descriptions, technology
rules and descriptions of the workstation environment. To meet this goal
the DDMS must be a highly description-driven system. For each type of
information a description should be available, which describes the resource
requirements, the dependencies, input and output requirements and other.
For example, there should be a description of the data schema, describing
the data structure and its constraints. The DDMS reads this description and
arranges internally its data structure accordingly. If the administrator
wants to add some data type, he only has to edit the description file and
restart the DDMS.

2.5.4 The Environment
The environment in which the DDMS operates will most likely be a
distributed one. Workstations from different vendors will be connected to
each other, through one or more computer networks. This operating
environment of a DDMS requires the use of software standards, for its
implementation. This would allow for the use of a DDMS in several
different hardware environments. Already there are several accepted
standards for graphical interfaces, operating systems and computer
networks. There are no accepted standards for database access functions.

Model of the Design Process
The DDMS must be able to support any model for a design process. It must
be independent of any specific design philosophy. For instance it must be
able to support, among others a traditional design philosophy as depicted in
Figure 2.1.

2.5 Design Systems 19

Figure 2.1 depicts a possible decomposition of the traditional design process;
three basic activities are identified. One further level of decomposition for
these activities is depicted in Figure 2.2. These activities obviously overlap.
Also there are feedback loops.

Verification

Systerr
Specifica! on

Functional
Design

automated
by hand

extraction

Circuit
Design

automated
by hand

Layout
Design Manufacturing

Figure 2.1. An example of the design process

Design Analysis
Design Evaluation
Design Refinement
Design Simulation

Design Test Generation
Design Verification

Figure 2.2. Functions of a design activity in some detail

It must also be able to support, for instance, a Gajski type design model
[Gajski85, Gajski86] (Figure 2.3), or even a silicon compiler with its various
tasks.

20 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

Structural Representation Functional Representation

register transfer

nets

gn rules

functions

electrical rules

layout

schematic

Qoorplan

Geometrical Representation

Figure 2.3. Gajski Ychart

Several different tasks must be performed before the design is ready for
fabrication.

1. the functional description is translated into a structural description.

2. the layout of each structural component is instantiated.

3. all structural components are placed on silicon and routed.

Relationships
There are many objects in a design database that have relationships to other
objects. One of the most important functions of a DDMS is to store these
relationships. This would allow for the use of special management tools

2.5 Design Systems 21

which can maintain the consistency of a design.

Design Teams
In a multi user environment, many designers will t ry to access design data
at the same time. The DDMS must provide services which control the
access to the design data. Other issues include data sharing, version control
and configuration control.

Managing the Design Process
The following is a list of general requirements for data management and
control functions to be supported by a DDMS.

1. Designers should be protected from unvalidated design changes.

2. Access to design objects must be limited.

3. There must be a mechanism which enforces consistency constraints
over design objects.

4. In a database supporting multiple versions of objects, policies must be
provided as to which version is automatically selected at object
checkout time.

5. Hierarchical and multilevel representations of arbitrary complexity
must be supported.

More specifically:

Version Management,
there are two important problems that a DDMS must address. The first is
that it should be impossible for a designer to use a design object of another
designer, without the consent of that designer or the design manager. This
would e.g. protect a designer from using a design object, which is currently
being changed. Secondly, the DDMS should have some automatic selection
of the right design objects to be used. This would mean that a designer uses
design objects with known properties.

22 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

Control of Modifications,
a designer has the task of determining whether a design object is consistent,
that is that it meets its specifications and that it satisfies implementation
constraints. The DDMS can only provide services to help the designer with
this task, it can record which design tool has been used on a particular
object. The designer however, is the one who has to interpret this
information and take the right decisions.

Reuse of Designs,
if information about previous designs is made available to designers,
significant savings can be achieved. The DDMS data management tools are
responsible for this task. There are two types of tools which can provide
designers with information about previous designs and designs in progress.
They are a browser and a prober.

Basically a browser is a tool that allows the designer to browse through
designs. The designer has to decide which design object in the database is
relevant to him. A probing tool has the capability to search through the
database, after the designer has partially specified his requirements. The
probing tool will list all design objects that match these requirements.
Probing is more difficult than browsing, because probing requires pattern
matching capabilities and possibly knowledge of what is stored in the
database.

2.6 Design Methodology

A methodology is a combination of rules that describe default, preferred,
and mandatory steps in a design process. A design system has the
requirement to support hierarchical designs, to support the division of
design steps into smaller steps. Also, the design system should support a
mechanism to control the sequence of steps taken, design check point
validation and approval for the release of a design.

2.6 Design Methodology 23

2.7 Requirements Overview

The main functions of the DDMS are to provide an integrated design
environment for using tools and managing design data and to support the
management of the design process and data exchange between organizations.
It must support these functions in a way that ensures that the DDMS is:

— adaptable.

— distributed.

— portable.

— extensible.

— evolutionary.

The requirements are presented in two groups. The first group defines the
functional requirements:

— Tool integration.

— Data Exchange.

— Management and Control.

— Data Management.

— System Interface.

The second group defines the required approaches that address the
functional requirements:

— Data model and data schema.

— Tool interfaces.

— Distributed data management facilities.

— User interface.

24 FUNCTIONAL REQUIREMENTS OF A DESIGN SYSTEM

The main topic of this thesis is to construct a systematic methodology for a
DDMS, which will satisfy the functional requirements.

In the next chapter we shall discuss several data models. One of these data
models, the semantic data model, seems to be very suitable to describe the
CAD/IC environment. Two data schemas are presented. The first one
expresses the structure and properties of a particular design environment,
the second data schema discloses the extra structure and properties to
represent a distributed design environment. In chapter 4 a tool interface
and a user interface are discussed.

References 25

R e f e r e n c e s

EDIF87. EDIF„ "Electronic Design Interchange Format, Version 2 0 0,
Reference Manual," EDIF Steering Committee, Electronic Industries
Association, (1987).

Eurich86. Eurich, J.P., "A Tutorial Introduction to the Electronic Design
Interchange Format," Proc. 23rd IEEE Design Automation Conference,
pp. 327-333(1986).

Gajski85. Gajski, D.D., "ARSENIC Silicon Compiler," Proc. ISCAS '85, pp.
399-402(1985).

Gajski86. Gajski, D.D., Dutt, N.D., and Pangrle, B.M., "Silicon Compilation
(tutorial)," IEEE 1986 Custom Integrated Circuits Conference, pp.
102-110(1986).

Gettys86. Gettys, J., Newman, R., and Fera, T. Delia, "Xlib - C Language
X Interface, Protocol Version 10," MIT, Cambridge, Mass., (1986).

Linn86. Linn, J.L. and Winner, R.I., Engineering Information Systems, The
Institute for Defense Analyses, Alexandria, Virginia (1986).

Navathe86. Navathe, S., Elmasri, R., and Larson, J., "Integrating User
Views in Database Design," IEEE Computer Magazine 19(1) pp. 50-62
(Jan 1986).

Newton87. Newton, A.R., "Electronic Design Interchange Format,
Introduction to (EDIFVersion 2 0 0) ," Proc. IEEECICC '87, pp. 531-
535(1987).

Roussopoulos84. Roussopoulos, N. and Yeh, R.T., "An Adaptable
Methodology for Database Design," IEEE Computer Magazine, pp.
64-80 (May 1984).

26

27

3. CONCEPTUAL MODEL OF THE DDMS

3.1 Data Models
3.1.1 Introduction
A data model is a collection of concepts and constructs for expressing the
static properties, dynamic properties, and integrity constraints of an
application environment [Lyngbaek.84, Afsarmanesh84, Bekk.e83]. It is
characterized by:

— A collection of constructs: the data definition language.

— A collection of fundamental operations: the data manipulation
language.

— A set of integrity constraints defined on its constructs.

Given a data model, a data schema is defined to describe the structure and
properties of a specific application environment. A data model can be seen
as a generic mechanism from which data schemas can be instantiated.

Finally, a database is a data repository containing a possibly large amount
of interrelated data, structured according to a corresponding data schema.
Hence, a data schema can be seen as a generic description out of which the
contents of a database can be instantiated.

Over the years several data models have been developed. Historically, the
following four classes of data models can be recognized:

— hierarchical

— network.

— relational

— semantic

28 CONCEPTUAL MODEL OF THE DDMS

The hierarchical, network., and relational data models are frequently
referred to as the classical data models [Lyngbaek84, Bic86]. In the next
paragraph an overview is presented of these classical data models
[Hardwick87].

3.1.2 Classical Data Models

3.1.2.1 Hierarchical Data Model
The hierarchical data model consists of nodes organized in a tree
[Tsichritzis76, Bekke83, Bic86]. The nodes in the hierarchical data structure
correspond to records in tables of data. Between the nodes of a tree a one-
to-many relationship exists. Because the data structure must form a tree,
the direction of the arcs is always towards the leaves of the tree. The
existence of a root-node is obligatory. A hierarchical database is a set of
ordered trees; the placement of nodes in a tree is significant. Thus a node
can only be seen in the context of its hierarchy. The advantage of the
hierarchical data model is that it allows for fast retrieval operations and
easy contextual naming. The main drawback are its limited structuring
capabilities, e.g. it does not allow to represent many-to-many relations
directly, and it provides only primitive operations.

3.1.2.2 Network Data Model
The network data model is based on nodes and arcs (graphs) [Bachman69].
It is an extension of the hierarchical model, a node can have several superior
as well as several subordinate nodes. An owner record type can have one-
to-many relationships with other member record types, called a set type.
The presence of the owner record in a set is essential. As is shown in
[Bekke83] not all record types in a network data schema correspond to the
complete definition of a particular concept. Thus, to retrieve the
information of a certain node, several records of different types might have
to be attended by a one record at a time process called navigation. This
makes that the algorithms are often complex, while the user must be aware
of the internal organization.

3.1 Data Models 29

3.1.2.3 Relational Data Model
The relational data model is a more user oriented data model [Codd70]. It is
based on the mathematical concept of a relation, i.e. a subset of a cartesian
product. A relation is a set of n-tuples (records), and is typically
represented by a table. A column is called an attribute, and the set of values
from which the attribute values can be drawn is called the domain. Each
relation has a primary key: one attribute or a combination, the values of
which distinguish the (unique) tuples from each other. The relations do not
contain implicit references (pointers). Associations between tuples are
exclusively represented by attribute values drawn from a common domain.

The main attraction of the relational model is its mathematical clarity
[Bic86], which facilitates the formulation of nonprocedural, high-level
queries and thus separates the user from the internal organization of the
data. The separation of the logical organization and the internal
organization, results in data independence for the user. The relational
model has some serious drawbacks. First it is a flat model; the relations are
not positioned with respect to each other. The use of composed keys does
not provide the user with sufficient means to represent all abstractions in a
precise way. The integrity constraints have to be defined explicitly; this is
not an integral part of the modeling process. In [Bekke83, Bekke85] several
examples are given that clearly show the various defects of the relational
model.

3.1.3 Semantic Data Models
The classical data models are all record based. When modeling an
application environment, not all record types in the resulting schema
correspond to the complete definition of a particular concept from that
environment. That is, they lack semantic expressiveness [Bic86,
Afsarmanesh84, Hardwick87].

The semantic data models enable the user to better formalize the semantics
of his data, and are therefore considered more user oriented. Instead of
being based on the record model, the semantic data models are object based;

30 CONCEPTUAL MODEL OF THE DDMS

the application environment is modeled as a collection of interrelated
objects, each one corresponding to a concept from this environment.

Attempts to categorize the semantic data models are described in
[Lyngbaek.84] and [Afsarmanesh84]. Several semantic data models have
been investigated.

3.1.3.1 The OTO-D* Data Model
In the semantic approach the notion of abstraction, i.e. representing the
relevant details while suppressing the irrelevant ones, plays a dominant
role. When representing the invariants of a dynamic environment, not the
elements themselves but their properties are important. The semantic
approach is based on objects and the notion of type. Each object has a type,
which is defined by a certain number of different properties.

In this chapter we shall use examples, which have no relations with the
CAD/IC environment to prepare for the data schema that will be defined in
chapter 3.4. It demonstrates the general application of the discussed data
models. For example the abstraction:

TYPE student = name, address, department

defines an object, type student, characterized by the properties name,
address and department. These properties are called attributes. An object
having the properties of a certain type is called an instance of that type. A
data schema consists of a number of these type definitions.

3.1.3.1.1 Convertibility and Relatabiiity
In the semantic data model we can distinguish two types of invariant
properties [Bekke83]. Convertibility is the property that each type has only

* OTO-D has been developed at the Mathematics & Computer Science department of the
Delft University of Technology by ir. J.H. ter Bekke and his group.
"OTO-D" stands for Object Type Oriented Data model.

3.1 Data Models 31

one predicate and that each predicate belongs to one type. Because the type
is completely characterized by the predicate (attributes), while on the other
hand each predicate describes one type, there is a one-to-one correspondence
between the type and the predicate of an assertion. Convertibility also has
consequences at the instance level. Each object is uniquely characterized by
its attribute values; the instance identification is of no importance. Based on
the notion of convertibility the type definitions can be checked for
completeness during the construction of the conceptual model.

The second invariant property, relatability, is the property that, if the name
of an attribute in a predicate equals the name of a type definition, the
attribute relates to that type definition. For example in:

TYPE student = name, address, department
TYPE department = name, head

the attribute department in the definition of student is related to the
definition of department. Relatability also has consequences at the instance
level. It implies that an attribute value is related to an instance of the type
of which the attribute is a property. As a consequence the set {student ITS
department} is at any time a subset of (department}: subset invariance.

When modeling an application environment it is often simple to recognize a
number of types and give some preliminary type definitions. However, to
remove imperfections they have to be checked individually (for
completeness) and in connection (for consistency). In this process the
semantic concepts of convertibility and relatability can be applied.

3.1.3.1.2 Aggregation and Generalization
OTO-D offers two abstraction primitives to construct a data schema:
aggregation and generalization. Aggregation is a form of abstraction in
which a certain number of different properties is combined to create a new
named object. Examples of aggregations were student and department.
OTO-D offers a clear diagrammatic notation to visualize the relationships
among the types of a data schema. The example looks like:

32 CONCEPTUAL MODEL OF THE DDMS

aggregation

Figure 3.1. Example of an aggregation

Generalization (Figure 3.2) is a form of abstraction that relates a type to a
more generic one. In knowledge representation research this is known as the
IS-A relationship.

teacher

student

person

Figure 3.2. Example of an generalization

3.1.3.1.3 Data Manipulation Language
The data manipulation language of OTO-D offers selection, extension and
modification commands. The most important expression is the selection, the
general form of which is:

GET <type name>
ITS <attr ibutes> property List
WHERE <condition> qualifying predicate

As a consequence we can only "look downward" along the schema, starting
from a composed type to its attributes, its attributes its attributes, etc.
Given an arbitrary schema, the semantic concepts of OTO-D guarantee that
all data that can be addressed this way is present (referential integrity) and

3.1 Data Models 33

related in a meaningful way according to the schema. An example of a
selection command on the data schema presented above:

GET student
ITS name, address
WHERE department ITS name == 'EE'.

3.1.3.2 DODM
DODM is a simple object-oriented model for multiple databases
[Lyngbaek.84]. It provides a small set of primitive operations that allow
users to define, manipulate and retrieve objects. DODM also supports object
sharing, access control and inter database relationships. In DODM databases
are modeled as a collection of objects and relationships, no distinction is
made between meta design data and design data (see chapter 3.4). All kinds
of data are stored as objects in the database and the objects are interrelated
by user defined relationships. The model provides no mechanism for object
classification.

Suppose, for example that you want to express in DODM, that the primitive
objects 'name' and 'head' characterize a 'department', and the objects 'name',
'address' and 'department' characterize a 'student'.

In DODM a database will consist of a collection of tuples of the type (x, y,
z). Let x, y and z be objects. Then the tuple (x, y, z) represents the
assertion that a relation y exists between x and z. Let FIND ("?", y, z) be
the basic query which returns all objects, such that (x, y, z) belong to the
database.

Now consider the FIND operation:

FIND (FIND(?, "has dept", FIND(7, "has name", "EE")), "has name", ?)

The type information has no significance in this operation. The object
'department' and the object 'student' both have the attribute "has name".
You can not specify that in FIND (?, "has name", "EE"), only the objects
'department' are to be considered and not the objects 'student'. There is no
limited scope for attribute names. An equivalent OTO-D retrieve operation

34 CONCEPTUAL MODEL OF THE DDMS

looks like:

GET student
ITS name
WHERE department ITS name = "EE"

In this case the object classification TYPE has significance in the search
operation, i.e. the string "EE" is only used in the 'department' object context.

The main purpose of DODM is not to introduce a high level semantic data
model, but rather to provide a basic frame work for object oriented
modeling. DODM supports broadcast communication and point-to-point
communication. Three functions allow the user to send/receive messages
to/from a DODM database in a network. For these reasons, DODM could be
used as an implementation layer, on which the OTO-D model is built. ODM
provides the basic object functions, while the 'D' (Distributed) in DODM
will allow for the distribution of objects in a network.

3.1.3.3 DAPLEX
DAPLEX [Shipman8l] is a data definition and manipulation language for
database systems, grounded in a concept of data representation called the
functional data model. The basic constructs of DAPLEX are the object and
the function. These are intended to model conceptual objects and their
properties. In general a DAPLEX function maps a given object into a set of
target objects.

Three striking types of functions in DAPLEX are:

— Derived functions.

— Multi argument functions.

— Multi valued functions.

Derived functions allow users to represent arbitrary object relationships
directly by defining them in terms of existing relationships. There is a
connection between the direction of the functional dependencies of objects
and the queries to be executed. In the data schema the retrieval path

3.1 Data Models 35

possibilities have to be recorded. Each function definition adds such a
retrieval path. The derived functions give the user the capability to add
extra retrieval paths. This mechanism allows for faster retrieval of data at
the cost of redundancy. It is common practice to use pattern matching, in
resolving a query in a semantic data model. Besides the pattern matching
facilities, DAPLEX has the derived function mechanism in order to execute
particular queries.

In the semantic data model, one of the basic principles is that a relationship
should be accessible from both directions. The derived function mechanism
poses a question concerning this basic semantic principle, because of the one
to many relationships of a function and the one to one relationship of a
derived function.

DAPLEX offers the designer of a data schema the use of multi argument
functions. This construct has the advantage that the introduction of new
objects can be reduced (Figure 3.3).

enrollment

student grade course

Figure 3.3. Reduction of objects using the multi argument functions

In this example an extra object, the enrollment, was introduced in the right
data schema. The problem of the functional data model, with its multi
argument functions and multi valued functions is the conflict that arises
with the requirements of semantic convertibility. Convertibility is
considered as an invariant of all definitions within a conceptual model, i.e. a
time invariant attribute which is never changed by any database operation.

36 CONCEPTUAL MODEL OF THE DDMS

The DAPLEX data model does not clearly define the structure of an object,
because it makes no distinction between connections that link objects to
attributes and connections that link, objects to objects, i.e. it has a lack, of
expressing structural semantics. The DAPLEX data model contains some
ambiguities, which makes the use of this data model disputable.

3.1.3.4 Conclusion
We have described several data models. A database for the CAD/IC
environment can be modeled using any of these data models [McLeod80,
Hardwick87]. In our application the design database is a cluster of
networks. The network data model is suited to represent this cluster of
networks. However, we can make the following remarks about this data
model:

1. The algorithms to store and retrieve information are complex and not
general (chapter 3.1.2.2).

2. The network data model can be placed in the category of semantic data
models. The semantic data model is more general and will give a clear
overall picture.

The relational data model and the hierarchical data model are both not
suited in the CAD/IC environment. Structuring design data is one of the
important requirements of a database management system. The hierarchical
data model has limited structuring capabilities, and the relational data
model is flat.

In a semantic data model the definition of the integrity constraints
[Smith77] is an integral part of the modeling process. A semantic data
model offers a clear diagrammatic notation to visualize the relationships
among the composed types of a conceptual model. The data manipulation
language is tuned to the concepts that are of importance during data
definition.

Starting from the semantic concepts of convertibility and relatability OTO-
D provides us with the means to formally judge a conceptual model of an

3.1 Data Models 37

application environment, constructed using the abstraction primitives
aggregation and generalization. Furthermore, it can be shown that the
conceptual model of the data dictionary, i.e. a database containing data
about the data (meta design data), can be expressed in terms of OTO-D
itself. Therefore, we believe that OTO-D comprises a methodology for data
modeling, suited to formalize the semantics of the design data. It is the data
model that shall be used further is this work..

3.2 The Basic Design Object

At first sight, classical database management systems (DBMS) offer some
attractive facilities for the reliable storage of design data, including
recovery mechanisms and concurrency control. However, most of these
DBMSs have been targeted for business applications and do not specifically
address the problems encountered in a design environment [Sidle80].
Transactions on a business DBMS typically are short in duration and affect
only a small amount of data. In the design environment on the other hand,
the designer requests all the information pertaining to a piece of design to
modify it extensively over a long period of time before returning it to the
database [Buchmann84].

The important issue is that VLSI design applications invariably deal with
conceptually localized collections of related data which are manipulated as a
single entity. This localization needs to be conserved by the design
database. In line with several other researchers [Katz83, Batory85] we call
these basic objects design objects. The design object should play a dominant
role in the organization of the design data within the design database. The
arguments for this approach are listed below:

— The design object is the unit of access. Design objects are extracted
and replaced as a unit. Hence, such issues as concurrency, recovery
and versioning should be handled at the level of the design object.

— To support concurrent access a mechanism is needed that locks design
objects as atomic units.

38 CONCEPTUAL MODEL OF THE DDMS

— Recovery issues are also handled at the level of the design object. The
design database will undo the effects of an incomplete design
transaction by returning to the last saved copy of the design object
(additional recovery facilities provided by the tools left out of
consideration).

— The design object is the unit of version propagation. Because the
design object is the unit of retrieval and storage, versioning of design
data should be handled at this level.

— Design objects can be seen as the nodes of a hierarchical multi-view
'matrix' [Dewilde86].

— By taking the design object as the basic entity for further modeling,
we hope to construct a coherent DDMS framework, without getting
involved with representation details of some predetermined types.

— To the designer the design object has a well defined meaning: the
behavioral description of his ALU, the circuit description of a flip-flop
or his new routing result.

3.3 The Initial Data Schema

To define the object type design-object, we have to examine by which other
object types design-object is characterized. First, a design object has a name
by which it can be identified. Further, in a logically distributed
environment each design object has been constructed in connection with a
certain project. Other attributes of design-object might be its designer or
the date of construction:

TYPE design-object = name, project, designer, date

In a project oriented environment there is no need for all names to be
globally unique. Therefore, the scope of a design-object ITS name is limited
to the design-object ITS project. The resulting diagram is given below.

3.3 The Initial Data Schema 39

Figure 3.4. Diagram of the definition of the type design-object

3.4 Design Management Data Schema

At a first glance the DDMS is much like a librarian, providing controlled
access to its basic objects, the cells, while administering relevant
information about these objects: the meta design data. The meta design data
describes how the basic objects are related to each other. It contains all
hierarchical information of a design, as well as equivalence information
relating basic objects of possibly different view types. The administration
of the evolutionary development of a design, which distinguishes a DDMS
from a classical library, is supported by dedicated version and state control
mechanisms.

Our approach employs a semantic data modeling technique (OTO-D) as a
formalized tool for the analysis of the semantics of the meta design data
[Leuken85, Wolf86, Wolf88]. In this way a conceptual data schema,
reflecting the different object types and their relationships, is derived.
When the dependencies encountered in the design data are made explicit,
they can be maintained and made available to both management tools and
sophisticated design tools. The semantic data model employs a declarative
data manipulation language, which provides a simple and clear access
mechanism to the meta design data.

40 CONCEPTUAL MODEL OF THE DDMS

layer 1: Design data stream^

equivalency

lock
■ 1 ' —

X .

stream

lame

N.
mode tool name

version s

layer2: Meta design data —
module

hierarchy

^
s<S

cell

tatus state

module

name vie

project

w type

project name owner

layer3: Environment data

Figure 3.5. Conceptual data schema

Figure 3.5 depicts the semantic data schema [Leuken85, Wolf86, Wolf88],
which we take as representative for a design environment. The data schema
contains hierarchies, equivalencies, versions, locks and views. The basic
objects in the data schema are the design objects or cells. The data
management system maintains information about the design objects: the
meta design data. The meta design data describes how the design objects are
related to each other. It contains all hierarchical information of a design

3.4 Design Management Data Schema 41

description in a particular view, as well as equivalence information relating
design objects in possibly different views. The version information of an
object, locking information, ownership etc. are also considered meta design
data, being maintained by the data management system.

The functional capabilities of the DDMS are partitioned into three layers.
The first layer contains low level I/O functions. Its objective is to provide
efficient access to the design data. It also offers data independence, which
allows for the usage of data compression techniques. The second layer
provides controlled access to the design data, while maintaining information
about it. The object types in this layer will be discussed in more detail in
the next chapters. The logical distribution of design data across different
local databases requires a dedicated communication mechanism, while
consistency among these databases should be preserved. These issues are
resolved by the third functional layer.

3.4.1 The Cells
The basic object in the data schema is thus the cell. A cell represents by
definition a logically related set of design data. It describes a functional
part of an integrated circuit in terms of primitives of a certain view type, as
well as references to other cells of the same or different view type. The cell
is the appropriate unit of exclusive access for manipulation of the design
data by the user. The DDMS does not interpret the representation details of
a cell; these are handled by the design tools.

3.4.2 Relationships and View-Types
It is generally accepted that the complexity of VLSI design can effectively
be managed by partitioning the design data into hierarchically related
objects while introducing multiple levels of abstraction (view types) at
which a design can be described. The relationships between cells of possibly
different view types are administered explicitly by an equivalency
mechanism. By introducing the object types hierarchy, equivalence, and the
attribute view-type in the data schema we allow the designers and their tools
to exploit the hierarchical and equivalence relationships, e.g. for top down

42 CONCEPTUAL MODEL OE THE DDMS

design or layout to circuit extraction. In our decomposition, equivalent cells
are not required to have isomorphic hierarchical trees of subcells.

A view of an object can have a more general meaning. In the Smalltalk
system [Goldberg83] a view is an abstraction of an object that automatically
can be generated by object methods. We use view-type in a different way,
as the classification of an object, e.g. it is an attribute of an object with a
static value. This necessary in our environment because of the evolutionary
nature of the design data.

3.4.3 The Version Mechanism
The version mechanism (Figure 3.6) permits several cells to exist as the
different versions of a module, i.e., bearing the same name, while a version
status is attached to each of them [Dewilde86a, Leuken85, Wolf86,
Wolf88].

version status: b

O
cell: cell 1

b a w

-o o o
cell_4 cell 5 cell 7

d

o
cell 10

d d

o o
cell 11 cell 12

1

module

Figure 3.6. Version mechanism

The version statuses available are backup, working, actual and derived. The
actual version status is unique in a particular module. The actual cells of
the different modules form a (hierarchically) consistent set. An update

3.4 Design Management Data Schema 43

transaction roughly proceeds as follows. A cell that has to be updated is
checked out. After updating, the data will be checked in as a working cell,
which can be verified and/or reedited independently of other design
activities [Bayer80]. When a cell has reached some definite state, it may be
added to the hierarchically consistent set by invoking the install command.
After successful completion the installing procedure will give the working
cell the actual version status. The former actual cell will obtain the backup
version status. The hierarchical links from actual and working cells calling
this cell will be redirected to the new actual cell. Only one working cell can
exist per module; it is the only cell of a module that can be modified by a
designer at a particular time.

It is possible to have several derived cells per module. These are temporary
cells derived from other representations, allowed to co-exist for verification
purposes or automatically generated. A selected derived cell may be added
to the version chain. Thus, our module consists of a linear chain of cells,
each with an explicit version status.

3.4.4 Locking and Concurrency Control
A concurrency control mechanism synchronizes the execution of the design
transactions in a multi designer and multi process environment. A
commonly used mechanism is locking. In a system with a lock mechanism
access to a database object is allowed when the transaction owns a lock on
it. Design transactions differ from classical database transactions in that the
former are of long duration. Consequently, the whole design transaction is
not known in advance and common locking techniques are not suitable here,
see also [Bancilhon85].

In our data schema the lock mechanism of the design data is represented by
the object type lock. It is an aggregation of cell (i.e. the object to lock), tool
(i.e. the design tool who submits the transaction), and lockmode (i.e. the
type of the lock). Types of locks are: readonly, write, and attach. During a
read transaction on a hierarchically consistent cell (i.e. with version actual),
it should be locked with readonly. Editing a cell is only allowed on a

44 CONCEPTUAL MODEL OF THE DDMS

working version, on which occasion it is locked exclusively for write. Thus,
the version mechanism contributes to the concurrency control mechanism
by omiting conflicting combinations of transactions, i.e. the read-write
conflicts [Bernstein83]. This solution is suitable for transactions of long
duration. Design tools frequently put some additional information into a
cell. The transactions involved should lock the cell with attach. This type
of lock is not necessarily exclusive. The ranges, i.e. the sets of streams
accessed, of certain design tools might be disjoint, allowing for concurrent
execution even within the cell environment. A table containing the
compatible tools will be consulted before granting a lock request of attach
type.

3.5 The Design System Architecture

To describe the distributed situation we need a new data schema on top of
the data management schema presented so far. A verbose characterization
of the design management environment is as follows (Figure 3.7 and Figure
3.8). Design objects that constitute an integrated circuit are grouped
together in a project. A project is a set of related design objects that
describe an integrated circuit. It provides a logical context for the designers.
There can be several designers working simultaneously on the same project.
The group of designers that can work in a project is administrated in the
configuration database. Passwords and log-on dates are recorded here too.
To distinguish projects on the same machine, a project has a project owner.
The project owner is usually the name of the logical machine where the
design data of the project is completely stored, in combination with a chosen
name, for example "hostnameiprojectl". This provides an unique
identification of a project within a community of workstations. A logical
machine constitutes a central processing unit and a, possibly distributed, file
system. Each integrated circuit is designed using a particular design process.
Properties of the technology used are stored in the technology database.
Each designer has its own private workspace, represented in the data schema
as user database. Here, a designer can store private data, which allows him
for example to override some system configuration defaults. The universe is

3.5 The Design System Architecture 45

technology

name location

Figure 3.7. Project data schema

the collection of projects, the technology database, the configuration
database and the user databases.

The design data of a team of designers working on the same integrated
circuit, is stored on a logical machine in a project. Each project is managed
by a design management process. The design management process maintains
the meta design data of the project. All design transactions taken by a
designer working on a design object in a project are by consent of the design
management process. The design management process controls the
concurrent sharing of design data, the version evolution, stores hierarchical
relations, equivalence relations, grants and administrates access to the
project.

In the data schema and design management architecture presented so far no
provisions are made for distributed design management. In the next chapter
an extension of the data schema will be presented that includes provisions
for distributed design.

46 CONCEPTUAL MODEL OF THE DDMS

Figure 3.8. Project environment

3.6 A Logically Distributed Environment

The logical distribution of the design data across different databases is
expressed in the data schema by the object type project. A project
represents a collection of cells, thereby offering a local context in which the
activities of a designer take place. The logical distribution of the design
data is visible to the designer, providing a clear and simple concept of his
environment. The project acts as the unit of authorization, the software
verifies access permissions when designers or tools try to enter the project.
Furthermore, the concept of project can be used to administer certain
properties of the cells that belong to a certain project at a global level. For
instance, we administer the technology of the cells at the project level,

3.6 A Logically Distributed Environment 47

restricting the cells within that project to being designed using this
technology.

3.6.1 The extended data schema
Formalizing the previous description of the design data manager
environment and consequently incorporating the distribution features are
the next tasks. This will be achieved through the implementation of a new
data schema. In the previous chapter we introduced a design system
environment. The most important aspects of the design system
environment are:

— The data schema, describing relations between design data. These
relations are stored in the meta design data.

— A design management process (DMP), that manages the meta design data
within a project.

In a modern design environment a group of designers work, on their
individual workstations, to design an integrated circuit in a reasonable
amount of time. This introduces the problem of distributed design
management, which we should envision as residing on top of the design data
schema. Distribution means that

1. the data schema has to be extended to include information about where
design data is stored and its status.

2. if the network between the workstations breaks down, designers can
continue to work without major interruptions.

3. the performance of the system should be acceptable.

4. data transfers on the network should be as minimal as possible.

5. The physical distribution of the data should be invisible for the
designer.

A distributed design management system creates the problem of localization
of design data at different places within one project and the problem to

48 CONCEPTUAL MODEL OE THE DDMS

maintain the consistency of the meta design data and the design data.

dale designer

Figure 3.9. Extended project data schema

We propose a solution, where the project is divided in subprojects (Figure
3.9). A subproject consists of a set of design objects, and is a project. If a
designer wants to modify some cells of a project, he asks the design
management process of his local project to provide him with design data
from a remote project. The local design management process contacts the
remote design management process. The remote design management process
verifies the status of the design data and makes the design data available if
the status is in order. The local design management process creates a sub-
project with the attribute subproject-owner equal to the remote design
management process project owner. In the subproject-configuration database
(Figure 3.10) data is stored about who created the sub-project and when it
was created. The design data in question can consist of one cell or an
hierarchy of cells, depending on the designers request. At the same time the
remote design management process creates also a sub-project with the
appropriate attributes set. Both design management processes, now have
information about where the design data is present and who owns it.

3.6 A Logically Distributed Environment 49

Figure 3.10. Extended project environment

Depending on the mode wherein the designer made his request to provide
him with design data, the version attributes and lock, attributes are altered
on the remote project. If the mode was read-only, the requested version is
made available and a read lock is set. If the mode was edit the version
attributes are possibly changed and a write lock is set, and the version is
made available to the local design management process. The design data is
not available if a write lock has already been set on the requested design
data. In addition to the design data that has been copied from the remote
project to the local project, the meta design data belonging to the requested
design data is copied also. The designer working on the local project can
now work completely independently from the remote project. If the design
data was copied from the remote project with mode edit, after the editing is

50 CONCEPTUAL MODEL OF THE DDMS

done, it has to be installed on the remote project. This includes updating the
design data on the remote project as well as updating the meta design data
on the remote projects.

The subproject-owner attribute is used to verify the access rights of a
designer. If the subproject-owner name of a subproject is different than the
project owner name, permission to modify or access design data has to be
obtained from the design management process managing the project of the
project owner.

3.6.2 The Distributed Design Data Manager
The data schema of the distributed design manager has some additional data
types. The added type subproject allows for the storage in the meta design
data of information consisting of: the name of a subproject, the subproject
owner, the list of all cell names in a subproject and the physical location of
the design data of each cell. Since the locking strategy is identical in the
distributed environment, no change is necessary. The lock, modes are write
and read [Widya88]. In all situations a cell can be edited by only one
designer.

This distributed design manager requires some extra functionality. The
extra functionality is transparent for the software designer. He sees no
difference between a tool running in a non distributed environment and a
distributed one. Some additions are made internally in the design manager.
First, the functions of the design manager have to check, the attribute
projectowner. This will decide if a tool can access design data locally, or if
the design data should be copied from another machine. Secondly, since the
data schema is extended, additional hard coded queries are needed. In
principle, queries could be handled by a general purpose query interpreter.
However, for efficiency reasons special purpose functions are to be added.

Two new design management tools are necessary. The first one enables the
designer to create a subproject. The second one installs the subproject in the
project.

3.6 A Logically Distributed Environment 51

The program that creates a subproject has as arguments the name of a
project, the name of a root cell and a number representing the required
hierarchical depth of the tree. It copies the design data of each cell in the
tree to the appropriate machine and copies the relevant meta design data.
The relevant meta design data encompasses the first order relationships of
each cell. The program also updates the meta design data of the project
owner and the meta design data of the subproject owner. Design tools can
now work, normally on the subproject machine, as long as the design data is
present. If a design tool wants access to design data not present on the
machine, the design manager will first copy all relevant data from the
project owner machine after which the design tool can continue to operate.
It is possible that several copies of a working version exist. It is the task of
the design manager to assure that a change of a working version is
broadcasted to all subprojects were this version is present.

After the designer has finished his work, the subproject should be installed
on the project owner machine. The install design management tool takes
care of this task. Using the transaction history mechanism it installs all
modified cells.

3.6.3 Examples
We will discus the procedure to edit a cell on a workstation in different
cases. The situation is (Figure 3.11):

52 CONCEPTUAL MODEL OF THE DDMS

project owner

workstation! workstation2 workstation 3

Figure 3.11. Example of data distribution on workstations

— Workstation 1 is the project owner.

— Workstation 2 has checked out subproject A. The cells in subproject A
are checked out with lock mode read, and all the cells have the version
status actual.

— Workstation 3 has checked out subproject B. The cells in subproject B
are checked out with lock mode write, and all the cells have the version
status working.

The project owner has stored in its sub-configuration database the following
information:

— that cell X is in subproject A, lock mode read.

— that cell Y is in subproject A, lock mode read.

— that cell Z is in subproject A and in subproject B.

3.6 A Logically Distributed Environment 53

— that cell Z is edited (lock mode write) in subproject B.

The cases which we will now present, will demonstrate that only one copy
of a cell can be edited at any time on any machine.

Case 1. Suppose workstation 2 wants to edit cell X. Actions:

1. Workstation 2 does a checkout of cell X for editing. The intended
result will be that the version status of cell X will be changed from
actual to working.

2. The checkout function sees that workstation 2 is not the owner of cell
X. Workstation 2 inquires the lock mode of cell X with the project
owner.

3. The project owner checks its tables for cell X, it has lock mode read, it
changes lock mode to write and answers workstation 2 OK.

4. The checkout function changes the version status actual to the version
status working on workstation 1 and workstation 2.

Case 2. Suppose workstation 2 wants to edit cell Z. Actions:

1. Workstation 2 does a checkout of cell Z for editing. The intended
result is that the version status of cell Z will be changed from actual
to working.

2. The checkout function sees that workstation 2 is not the owner of cell
Z. Workstation 2 inquires the lock mode of cell Z with the project
owner.

3. The project owner checks its tables for cell Z, has lock mode write,
answers workstation 2 NOTOK, since the cell is edited by workstation
3.

54 CONCEPTUAL MODEL OF THE DDMS

4. The checkout function returns with an error message. Cell Z continues
to have the version status actual.

Case 3. Suppose workstation 2 wants to checkin cell X after editing.
Actions:

1. Workstation 2 does a checkin of cell X. The intended result is that
cell X with version status working will be copied from workstation2
to workstation 1.

2. The checkin function sees that workstation 2 is not the owner of cell
X. Workstation 2 inquires the lock mode of cell X with the project
owner.

3. The project owner checks its tables for cell X, has lock mode write,
edited by workstation 2, answers OK.

4. the checkin function sends a checkin request to the project owner, and
then the design data of cell X. Depending on the mode of the checkin,
the project owner changes the lock mode of cell X in its sub-
configuration tables.

Case 4. Suppose workstation 3 wants to checkin cell Z after editing.
Actions:

1. Workstation 3 does a checkin of cell Z. The intended result is that cell
Z with version status working will be copied from workstation3 to
workstation 1.

2. The checkin function sees that workstation 3 is not the owner of cell
Z. Workstation 3 inquires the lock mode of cell Z with the project
owner.

3.6 A Logically Distributed Environment 55

3. The project owner checks its tables for cell Z, has lock mode write,
edited by workstation 3, answers OK.

4. The checkin function sends a checkin request and the design data to
the project owner.

The install procedure, i.e. the procedure that installs a working version of a
cell in the hierarchical consistent actual tree of a design, can be started on
any workstation. If the procedure is started to install a cell in a subproject,
the install procedure will copy the working version of the cell to the project
owner machine, where after it continues to run on the project owner
machine. If for some reason the network connection breaks down, a
designer can continue to work on his workstation. The install procedure
still works correctly in this situation, however it can not copy the working
version to the project owner machine. In this case the install procedure will
install the cell in the version chain of the subproject. This method of
working has an advantage and a disadvantage. The advantage is that a
designer can continue to work without interruption. The disadvantage is
that the versions of a cell created locally have to be merged in the version
chain of the project owner, after the network connection is available again.
This could be done by a special tool, which can only operate in close contact
with the designer.

3.6.4 Discussion
There are three important issues, when implementing a distributed data
manager. The first question is: how important is autonomy. If you want to
be able to continue to work after a network crash, copies of design data and
meta design data have to be made. If you find autonomy not important and
you have a network file system, no copies of the design data have to be
made. The meta design data is also copied in this case.

The next issue is performance. It takes computer resources to make copies
of data. Thus, it is important to copy only that part of the design data that
actually will be used by a designer. If a subproject is created, the question
is: which versions of a cell will be copied. There are several possibilities.

56 CONCEPTUAL MODEL OF THE DDMS

First, only the actual version is copied. This can be done without
consequence for the database consistency. In this case it is impossible to
edit a cell in a subproject. Secondly, the actual and, if it exists, the working
version are copied. This means that multiple copies of an editable version
exist. The distributed data manager has to maintain the consistency of the
database. This could be achieved by one of in the following ways. 1). Only
one copy of a working version can actually be edited. This can be
implemented by checking designer names, or by allowing only one
subproject to edit a working version, until the version is installed. 2). If a
working version is changed, the updated version is broadcasted to all other
users. As third possibility it is possible to copy the actual version and copy
the working version only when desired. After editing, the working version
remains in the subproject, until it is installed. In this situation only one
copy exists.

The third issue is the consistency of the database. As we saw before, it is
important that only one editable working version exists in the universe.
The locking procedure of the distributed data manager guarantees that only
one designer can edit a version at a particular time. However, if multiple
copies of a working version exist, several different version can come into
existence. This is a undesirable situation. The distributed data manager
should prevent the existence of more than one editable working version in a
universe.

3.7 Conclusions

We argued that the design object, being manipulated as a single entity by
VLSI design applications, should play a dominant role in the definition of
the organization of the design data. An initial data schema was constructed,
reflecting the object type design-object as the aggregation of a number of
attributes that characterize a design object.

Taking the design object as the basic entity for further modeling will result
in a conceptually uniform framework for a design data management
system. In our approach the detailed design data, i.e. structural/behavioral

3.7 Conclusions 57

descriptions of pieces of hardware, is concentrated within atomic objects.
Although access to these design objects is provided by the design data
management system, it does not interpret their representation details; these
are handled by the tools. Instead, the design data management system
maintains information about the design objects, i.e. the meta design data.

The meta design data describes how the design objects, at this level viewed
as atoms, are related to each other. The version information of an object,
locking information, ownership etc. are also considered meta design data,
being maintained by the design data management system. The concept of
the design object provides a basis for a consistent system philosophy, not
being blurred by view dependent issues.

We have presented a distributed design management system for the VLSI
design environment. A semantic data model is used to model and structure
the design data. To increase design speed a distributed environment is
necessary. The data schema is extended with subprojects, representing the
temporary distribution of the design data in a community of workstations.

Dividing our distributed data schema in projects, subprojects and cells with
their attributes, provides us with the next database properties.

1. The individual databases are autonomous. They are physically
independent.

2. The individual databases are homogeneous.

3. A project, or a design database has a horizontal fragmentation. The
distribution of the design data is based on subsets of cells
(subprojects). Counter part of a horizontal fragmentation is a vertical
fragmentation where the distribution is based on subsets of attributes.

4. The design data is temporarily partly redundant. Some cells may be
present on one or more workstations at a particular time.

5. Most importantly the access of the design data will be primarily local.
After a copy has been made from the project-owner to the local

58 CONCEPTUAL MODEL OF THE DDMS

workstation no further data transfers over the net are necessary. In
most cases the access times of data over a net is at least 20% slower
than accessing the data on a local disk..

6. The project-owner knows where copies of cells are present and their
status, because this information is stored in the rneta design data.

7. Communication will primarily exist between the project-owner and a
local workstation.

In the next chapter we will describe a design data management system
architecture, which incorporates the presented data schema. The two most
important aspects are the tool interface and the user interface.

References 59

R e f e r e n c e s

Afsarmanesh84. Afsarmanesh, H. and McLeod, D., "A Framework for
Semantic Database Models," Proc. NTU Symposium on New Directions
for Database Systems, (May 1984).

Bachman69. Bachman, C.W., "Data Structure Diagrams," Data Base
1(2) pp. 4-10(1969).

Bancilhon85. Bancilhon, F., Kim, W., and Korth, H.F., "Transactions and
Concurrency Control in CAD Databases," Proc. IEEEICCD, pp. 86-89
(1985).

Batory85. Batory, D.S. and Kim, Won, "Modeling Concepts for VLSI CAD
Objects," ACM Trans, on Database Systems 10(3) pp. 322-346. (Sept
1985).

Bayer80. Bayer, R., Heller, H., and Reiser, A., "Parallelism and Recovery in
Database Systems," ACM Trans, on Database Systems 5(2) pp. 139-156
(June 1980).

Bekke83. Bekke, J.H. ter, "Database Design (in Dutch)," Stenfert Kroese,
(1983).

Bekke85. Bekke, J.H. ter, "De Effectiviteit van Relationele Systemen,"
Proc. Conf. Data: Beheer en Controle, pp. 19-28 NGI, Sectie EDP-
Auditing, (May 1985).

Bekke86. Bekke, J.H. ter, "OTO-D: Object type oriented data modeling,"
Report 86-02, Delft University of Technology, Delft (1986).

Bernstein83. Bernstein, P.A. and Goodman, N., "Analyzing Concurrency
Control Algorithms When User and System Operations Differ," IEEE
trans, on Software Engineering SE-9(3) pp. 233-239 (May 1983).

Bic86. Bic, L. and Gilbert, J.P., "Learning from AI: New Trends in
Database Technology," IEEE Computer Magazine 19(3) pp. 44-54

60 References

(March 1986).

Buchmann84. Buchmann, A.P., "Current trends in CAD databases,"
Computer-Aided Design 16(3) pp. 123-126 (May 1984).

Codd70. Codd, E.F., "A Relational Model of Data for Large Shared Data
Banks," Comm. of the ACM. 13 pp. 377-387 (1970).

Dewilde86. Dewilde, P., Annevelink, J., Leuken, T.G.R. v., and Wolf, P.
v.d., Intelligent VLSI Datamanagement, Delft University of
Technology (1986).

Dewilde86a. Dewilde, P., Leuken, T.G.R. van, and Wolf, P. van der,
"Datamanagement for Hierarchical and Multiview VLSI Design," pp.
1.1-1.29 in The Integrated Circuit Design Book: Papers on VLSI
Design Methodology from the ICD-NELSIS Project, ed. P. Dewilde,
Delft University Press, Delft (1986).

Goldberg83. Goldberg, A. and Robson, D., "Smalltalk80 The Language and
its Implementation," Addison-Wesley Pub. Co, (1983).

Hardwick87. Hardwick, M. and Spooner, D.L., "Comparison of Some Data
Models for Engineering Objects," IEEECG&A, pp. 56-66 (1987).

Katz83. Katz, R.H., "Managing the Chip Design Database," IEEE Computer
Magazine 16(12) pp. 26-35 (Dec 1983).

Leuken85. Leuken, T.G.R. van and Wolf, P. van der, "The ICD Design
Management System," Proc. IEEEICCAD - 85, pp. 18-20 (1985).

Lyngbaek84. Lyngbaek, P., Information Modeling and Sharing in Highly
Autonomous Database Systems, Ph.D. Thesis, Univ. of So. California,
Los Angeles (August 1984).

McLeod80. McLeod, D., "Abstraction in Databases," ACM special issue,
Proc. of the workshop on Data Abstraction, Databases and Conceptual
Modelling, pp. 19-25 (1980).

References 61

Shipman81. Shipman, D.W., "The Functional Data Model and the Data
Language DAPLEX," ACM Trans, on Database Systems 6(1) pp. 140-
173 (March 1981).

Sidle80. Sidle, T.W., "Weaknesses of Commercial Data Base Management
Systems in Engineering Applications," Proc. 17th IEEE Design
Automation Conference, pp. 57-61 (June 1980).

Smith77. Smith, J.M. Smith and D.C.P., "Database abstractions:
Aggregation and Generalization," ACM Trans. Database Systems
2(2) pp. 105-133 (June 1977).

Tsichritzis76. Tsichritzis, D.C. and Lochovsky, F.H., "Hierarchical Data­
base Management: A Survey," ACM Comput. Surv. 8 pp. 67-103
(1976).

Widya88. Widya, I., Leuken, T.G.R. v., and Wolf, P. v.d., "Concurrency
Control in a VLSI Design Database," Proc. 25th Design Automation
Conference, (1988).

Wolf86. Wolf, P. van der, "Conceptual Design of a Design Data
Management System for VLSI Design," MS-Thesis, Delft University
of Technology, Delft (July 1986).

Wolf88. Wolf, P. van der and Leuken, T.G.R. van, "A Distributed Data
Management System for VLSI Design," Proc. 25th Design Automation
Conference, (1988).

62

63

4. SYSTEM ARCHITECTURE

4.1 Introduction
It is generally acknowledged that a crucial part of an integrated VLSI design
environment is a Design Data Management System (DDMS), to form the
kernel around which all design tools are integrated [Katz83, Newton86].
The DDMS provides essential facilities to the tools and the designer, based
on the knowledge it has of relationships that are present within the design
data. To mention are such aspects as concurrency control, crash recovery,
support for design evolution in a hierarchical multi-view context
(versioning, maintaining verification statuses and equivalence relationships)
and physical distribution across multiple workstations. These facilities
offer the tool developer a way to manage the complexity by exploiting their
properties and relieve the designer from the burden of organizing his design
data. These issues were discussed in the previous chapter.

In this chapter, we will focus on the interface between VLSI design tools
and such a DDMS in an environment where both the tools and the DDMS
are constantly evolving. In this environment, the tools should depend as
little as possible on the DDMS to avoid extensive tool modifications with
each new release of the DDMS. Furthermore, the DDMS must be open-
ended: It should be easy to add new tools to the system in such a way that
they become a consistent part of the design environment. Thus, what is
needed is a decoupling of the software development and evolution of the
DDMS on the one hand and the tools on the other hand.

The only way to effectuate this decoupling is by a standardization of the
Data Management Tool Inter/ace (DMTI) [Meijs87] between the tools and
the DDMS. Via the DMTI the tools obtain access to the design data, while
taking advantage of the facilities that are provided by the DDMS. In
practice, a DMTI is a set of library functions that can be used by the tool
developer, in such a way that he does not need to have a detailed

64 SYSTEM ARCHITECTURE

understanding of the implementation of the DDMS. In this chapter, we will
introduce such a DMTI, based on a transaction schema that formalizes the
procedural aspects of the communication between the tools and the DDMS.

4.2 Tool Interface Requirements

The following requirements can be formulated for the Tool Interface (TI)
(see chapter 2):

• The TI must bring about efficient interaction between the tools and the
DDMS.

• The TI must not be tailored to specific tool features or design
methodologies. It should be universal, to result in an open-ended design
system where the DDMS acts as a free-for-all public repository that can
communicate with any type of tool and environment.

• The TI must not be tailored to specific features of a DDMS. For example,
it must allow interfacing to DDMS's with or without version control,
concurrency control, multiple view-types, etc. When this requirement is
met, the tools can actually be "plugged in" in the same way in any
DDMS, whether it concerns different releases of a DDMS at a certain site
or DDMS's at different sites.

In summary, a TI should offer some degrees of freedom, but at the same
time the necessary discipline to facilitate software evolution and exchanges.
Our opinion on how to introduce this discipline is expressed most concisely
by the following thesis:

Thesis
The optimal way to decouple the development and
evolution of the DDMS and the tools is to agree on
a common transaction schema, and reflect this in
the definition of the TI.

A transaction schema consists of a set of procedures which are to be
executed in a particular sequence, according to which the tools obtain access

4.2 Tool Interface Requirements 65

to the design data. Our transaction schema is based on a number of
assumptions that we believe to be general within the context of chip design.

As argued in chapter 3, the design data is organized on a per project basis.
A project offers the designer a local context in which a collection of cells is
present. A cell represents a logically related set of design data, describing a
functional part of an integrated circuit in terms of certain primitives, as
well as references to other cells. It is the appropriate unit of exclusive
access for manipulation of the design data by the user. Within a cell the
actual design data is organized as a set of streams, but no assumptions are
made on the contents of these streams.

The agreement on these assumptions permits the definition of a transaction
schema, and hence a TI, that localizes the interaction between the tools and
the DDMS. Any tool modifications that are required to adapt the tool to
other implementations of a DDMS will then be strictly local and will not
alter the structure of the program. Consequently, they can be done with
much less effort.

We can in this respect draw an analogy with a public library, where the
books (cells) are organized in racks based on certain criteria as author, title
or language, without making any assumptions on the actual text that is
contained in the books. If the internal organization is hidden from the
public, we can have the following procedure employed. To borrow a book,
a form describing it should be filled in. This form is accepted at the desk
and the book is returned (if it is available). If this is the only direct
interaction between the public and the library personnel, it permits the
library (DDMS) to be reorganized invisibly. For example, new racks can be
placed or internal procedures automated, without having this local
interaction with the public (tools) changed.

4.3 The Transaction Schema

In this section, the TI transaction schema will be defined. As a consequence
of the recognition of project, cell and stream as units of access, the

66 SYSTEM ARCHITECTURE

transaction schema will be a layered one. The effect of a tool on a design
environment is called a tool-execution. It is a (possibly interleaved)
sequence of project transactions bracketed by an initialization and a
terminalion. Similarly, a project transaction is a (possibly interleaved)
sequence of cell transactions bracketed by an open project and a close
project. A cell transaction is a (possibly interleaved) sequence of design
data transactions bracketed by a checkout and a checkin, while a design data
transaction is a sequence of design data 10 operations bracketed by an open
stream and a close stream. A design data 10 operation is either a read
operation or a write operation.

We present these definitions graphically in Figure 4.1. The boxes on one
level represent a sequence of actions, executed from the left to the right.
Child boxes specify a refinement of the father action. A starred box
represents an iteration and boxes with a small circle imply alternatives.
This diagram is a variation on a Entity-Action diagram as defined in
[Jackson83].

4.4 Related Work

There are just a few tool interfaces for design data management purposes
[Brouwers87]. Most likely, a reason for this is that design data management
is a relatively new field in CAD/IC. Recently one tool interface was
introduced: OCT [Harrison86].

The OCT data manager provides simple procedures to store and retrieve
design data. The basic design unit in OCT is a facet, the attributes of a facet
are cell name and view type. A facet can be a set of nets, transistors, boxes,
edges, etc. The OCT interface contains functions to open and close a facet,
and read and write objects in a facet. Also it provides functions to attach
and detach different objects. It is possible to attach a transistor to a net, or
a box to a layer, or a facet to another facet. The OCT data manager has no
concurrency control, has no version mechanism and has no support for high
level design transactions. In other words, OCT incorporates a simple storage
mechanism, and provides none of the services of a more advanced DDMS.

4.4 Related Work 67

Initialize

OpcnProject

Checkout

OpenStream

Tool-execution

Project
Transaction

Cell "
Transaction

Design Data
Transaction

Design Data
10

0
GctDesignData PutDe

Quit

CloscProject

Checkln

CloseStream

0
signData

Figure 4.1. Transaction Schema

4.5 The Tool Interface

4.5.1 Concepts
The TI defines a set of functions that should be used by the tool developer
to obtain access to the design data. Basically, there is one function in the TI
for each leaf of the tree in Figure 4.1. These functions co-operate with each
other in such a way that this access will proceed in accordance to the
transaction schema presented in the chapter 4.3. That is, they implement
the procedure according to which access to the design data can be obtained.

Access to either the design environment, a project, a cell or a stream can be
obtained by executing the corresponding opening-bracket function, as
represented by the leafs at the left-hand side of the tree in Figure 4.1. A

68 SYSTEM ARCHITECTURE

transaction is terminated by executing the corresponding closing-bracket
function at the right-hand side. In between, lower-level transactions can be
performed.

The functions in the TI communicate with each other by means of abstract
data types, called keys. The contents of these keys is not fully specified in
this TI definition, but can depend on the particular DDMS at hand.

There are four types of keys, one for each layer:

DM_UNIVERSE universe transaction key,
DM_PROJECT project transaction key,
DM_CELL cell transaction key,
DM_STREAM design data transaction key.

The key returned by an opening-bracket function at some layer is part of
the argument list of the functions at the next lower level and of the closing
bracket function. This allows the interleaving of more than one sequence of
calls of lower-level functions. The closing bracket function invalidates the
key.

Typically, a key contains all necessary information about the object for
which access was obtained, for use by the lower-level functions. Depending
on the particular DDMS at hand, this can for example be physical location,
access permissions and state.

Each key contains a pointer to the next higher level key that was passed as
an argument to the function returning the lower level key, so that the
complete context is known at the lowest levels. Also, all keys with the
same "parent key" are linked together in a list that is attached to this parent
key. This facilitates error recovery and automatic clean-up actions. For
instance, the closing bracket functions could terminate all their lower level
transactions still in progress. When a key is invalidated by the
corresponding closing bracket function, it is removed from the list.

4.5 The Tool Inter/ace 69

The opening bracket functions take as arguments, apart from a parent key,
an identification of the object for which access is to be obtained and possibly
an access mode. In an actual implementation these arguments will reflect
certain features of the DDMS: When it provides version control at the cell
level, the parameters of the dmCheckOut function must somehow identify
the version to be checked-out [Meijs86].

After verifying and establishing the access, appropriate information for
further use by the lower level functions is stored in the key that is
returned. As a direct advantage, the visibility of particular features of the
DDMS can be confined to a small number of places in the TI. The fact that
there is a version mechanism at the cell level is visible in the argument list
of dmCheckOut, but only there. It is not visible in the argument lists of the
lower level functions, but completely hidden in the implementation of the
DM_CELL key.

In an actual implementation of a DDMS, appropriate actions will be
associated with each function of the TI. By introducing the right levels of
intervention, the TI as presented here provides a natural and universal
framework to localize these actions. In the next section, the functions at the
different layers are presented, together with some examples that illustrate
how particular DDMS features can be embedded in the TI.

4.5.2 The TI Functions

4.5.2.1 Global Initialization and Termination
Two functions are needed for global initialization and termination. They
establish and release contact between the tool and the design environment.
• dmlnil (toolname): unikey
• dmQuit (unikey)

Dmlnit is the opening bracket function of a tool-execution and returns a
DM_UNIVERSE key. This key contains information about the design
environment (for example hostname, user-id, process-id, working directory
etc.) in which the tool is executed. The main purpose of dmlnit is to
initialize the TI interface. The tool identifies itself by means of the

70 SYSTEM ARCHITECTURE

argument toolname. An action that might be performed by the DDMS is to
consult a tool database to obtain more detailed information about the tool.

DmQuit is the closing bracket of a tool-execution. It takes care of the
necessary clean up operations.

Between dmlnit and dmQuit the project transactions are executed.

4.5.2.2 Project Transaction Layer
At this level such aspects as projects, libraries and distributed databases can
be handled.
• dmOpenProject (unikey. projid. openprojmode): projectkey
• dmCloseProject (projectkey. closeprojmode)

DmOpenProject initiates a project transaction and returns a DM_PROJECT
key. This key contains information about the particular local database or
project, represented by projid, and the access mode, represented by
openprojmode. Actions that might be performed are verification of the
access rights, retrieval of technology information, setting up LAN
connections or contacting a local manager process. The project key will be
passed as an argument to the functions at the cell transaction layer.

DmCloseProject terminates the project transaction. The details of this
operation are specified by closeprojmode. In a physically distributed
environment, actions to be performed might include returning local copies,
closing LAN connections, etc.

4.5.2.3 Cell Transaction Layer
The functions at this layer take care of aspects of cell transactions. To
mention are concurrency control, versioning, view-types, maintenance of
verification statuses and equivalence relationships, etc.
• dmCheckOut (projectkey. cellid. checkoutmode): cellkey
• dmCheckln (cellkey. checkinmode)

DmCheckOut is the opening bracket function of a cell transaction. Its
arguments are a DM ^PROJECT key, identifying the particular project for
which access rights have been obtained by dmOpenProject, and an

4.5 The Tool Interface 71

identification of a particular cell, denoted by cellid. The checkoutmode
parameter specifies what type of interaction is to take place, so that the TI
can anticipate on it. For example, in a multi-user environment any number
of simultaneous readonly or only one single update transaction can be
allowed at the same time.

DmCheckIn is called to terminate a cell transaction initiated by
dmCheckOut. Cellkey has been obtained from dmCheckOut. Checkinmode
specifies how the transaction has to be terminated, e.g. whether the
transaction should commit or rewind. Actions that might be performed
include removal of locks, updating of verification statuses, deletion of
scratch data that was created for recovery purposes, etc.

In order to hide the versioning capabilities of a DDMS and possible different
view-type values, a browse function is provided.
• dmBrowse (projectkey): cellid

This function has one argument projectkey and returns a cellid. dmBrowse
is a machine-man interface routine, which displays on a screen a
representation of the data schema of the project and allows the user to select
a cell.

In a DDMS that recognizes cell as a unit of access, an administration will be
present on top of these cells. Compare this to the card-trays of a public
library. This administration is used by the DDMS itself to maintain some
information about the cells. It should also be accessible to the tools, for
instance, to allow them to obtain a cell-list or to ask for and insert
equivalences. For this purpose the functions dmGetMetaDesignData and
dmPutMetaDesignData are provided.

• dmGetMetaDesignData (projectkey. request, arguments)
• dmPutMetaDesignData (projectkey. request, arguments)

DmGetMetaDesignData (DmPutMetaDesignData) can be used to obtain
(store) information from (into) the local administration of the project
identified by projectkey.

72 SYSTEM ARCHITECTURE

By means of the request argument and a variable argument list, the specific
retrieval or update operations (queries) can be passed to the DDMS. Which
queries can actually be formulated depends on the conceptual model that is
employed by the DDMS for the organization of its administration. For
instance, a DDMS supporting equivalence relationships between cells of
(possibly) different view-types, will accept queries on this information.

4.5.2.4 Design Data Transaction Layer
These functions are at the lowest level, i.e. closest to the physical 10. They
map the design data to and from the physical storage structure being
exploited.
• dmOpenStream (cellkey. strname. iomode): streamkey
• dmCloseSlream (streamkey. closestreammode)
• dmGelDesignData (streamkey. format, arguments)
• dmPutDesignData (streamkey. format, arguments)

DmOpenStream returns a DM_STREAM key which will be used by
dmCetDesignData, dmPutDesignData and dmCloseStream. The cellkey
argument is obtained from dmCheckOut. Strname identifies a stream of data
belonging to the cell identified by cellkey. Iomode specifies the mode of
access to the data, e.g. read or write. DmOpenStream can check this mode
against the checkout mode. For example, it should be forbidden to open a
stream for writing if the checkout mode was readonly.

In a Unix implementation, a stream will probably be implemented as a file,
but this need not be the case. For example, experiments have shown that it
is possible to transparently map 10 operations onto shared memory as an
efficient channel for direct inter-tool communication via the TI. Anyway,
dmOpenStream knows where and how to find the data, given the
information that is present in cellkey and its parent DM_PROJECT key.

DmCetDesignData and dmPutDesignData perform the actual in- and output
of design data. They know the mapping to and from the storage structure
employed. Streamkey is obtained from dmOpenStream. DmCetDesignData
and dmPutDesignData do not restrict the formats of the detailed design data
that can be transferred. The mechanism used is very similar to that of the

4.5 The Tod Interface 73

printf() and scanf() functions in C.

DmCloseStream. must be called to terminate a design data transaction. Files
can be closed or allocated memory can be freed. Closestreammode specifies
the details.

4.5.2.5 Calling Pattern
As an illustration of how these functions co-operate, we present in Figure
4.2 a calling pattern of the functions of the TI. The layered structure of the
transaction schema is reflected in the indentation of the code.

I DM_UNIVERSE unikey;
DM_PROJECT projectkey:
DM_CELL cellkey:
DM_STREAM streamkey:

unikey > dmlnit (toolname);

projectkey := dmOpenProject (unikey. projid. openprojmode);

cellkey := dmCheckOut (projectkey. cellid. checkoutmode);

streamkey > dmOpenStream (cellkey. strname. iomode);

dmGetDesignData (streamkey. format, arguments):
dmPutDesignData (streamkey, format, arguments);

dmCloseStream (streamkey. closestreammode);

dmCheckln (cellkey. checkinmode):

dmCloseProject (projectkey. closeprojmode);

dmQuit (unikey):

Figure 4.2. TI calling pattern

4.5.3 Discussion
The TI introduced here formalizes the procedural aspects of the interaction
between VLSI design tools and a DDMS that provides a number of facilities
to these tools. It does not prescribe the semantics of the design data, which
would be unacceptable. It also does not completely prescribe the argument
lists of the TI functions or the interpretation of these arguments. For
example, the version of a cell to be checked-out will be an argument of the
dmCheckOut function in a DDMS with a version mechanism, and is
unimportant otherwise.

74 SYSTEM ARCHITECTURE

Openness is retained by avoiding tool-specific aspects in the TI definition.
Furthermore, we illustrated the ability of the Tl to absorb DDMS-specific
features that not necessarily have to be visible to the tools. By offering a
proper set of "anchor points", the standard TI greatly facilitates software
exchangeability: Modifications that are required to adapt a tool to another
DDMS will be strictly local and will not alter the structure of the program.
In fact, most of the work can usually be done mechanically, for example
with a stream editor.

The TI introduced in this paper has been implemented in the Delft Release 2
and 3 of the ICD-NELSIS system [Dewilde86], which currently contains
over 40 DDMS-intensive CAD/IC tools such as layout editors and
generators, design rule checkers, extractors, a placement and routing system,
simulators, etc. The decoupling introduced by the TI turns out to be
extremely useful for software development, as it permits DDMS and tools
to evolve separately to a large extent. As an illustration of the openness, we
remark that integration of the KIC layout editor [Billingsley83] via the TI
was completed in about two days.

From the experience we have gained, it appears that the principles
introduced in this paper indeed allow to do proper data management
efficiently.

As an additional benefit, the TI completely hides operating system
dependencies. There are no path-names, file access modes, system calls etc.
visible in the tools. Consequently, it should be easy to port the design
system to other operating systems by changing the TI library. For example,
a VMS implementation can exist side by side to a UNIX implementation. It
is also possible to port some (small) parts of the system to PC-like systems.

Our approach should be distinguished from such general object management
systems as offered by the Portable Common Tool Environment (PCTE)
[Bull85]. We recognize four levels of intervention, at which access to the
environment, projects, cells and streams is arranged. This layered
transaction schema has been adopted specifically for application in the area

4.5 The Tool Interface 75

of VLSI design. From our point of view, general object management
systems are a possible implementation vehicle for a DDMS for VLSI design.

The standardization that we propose emphasizes the procedural aspects of
the interaction between the tools and the DDMS. Standardization of 1) the
features of the DDMS that can not be absorbed by the TI but must be
visible to the tools and 2) the semantics of the design data that is
transferred, should also be considered.

The particular features of the DDMS that must be visible to the tools
manifest themselves most profoundly in the arguments of the functions at
the project- and cell transaction layers. The more one can agree on the effect
of such generally accepted aspects as versions and view-types on the
arguments of the standard functions is reached, the easier it becomes to
obtain consistent integration of a foreign tool in a specific DDMS
environment.

Also for the sake of consistent integration, agreement should be reached on
the semantics of the design data. If tools are exchanged and should operate
in close co-operation with each other, this kind of standardization across
different sites will be very useful. For several tools to communicate they
should understand each other. This is the point where the ideas presented
in this paper meet the EDIF standardization activities [EDIF87], which also
require a common interpretation of design data at different sites.

4.6 Tool Communication

Implementing a design data management system involves two important
decisions. First, one has to decide which data schema will be used to model
the design data. Then a design management program has to be written that
incorporates the chosen data schema. Important elements of the program
are the data handling and the communication with other programs. In our
design environment several types of design tools are used. The first group
are the application processes. Layout editors, simulators, design tools in
general belong here. The second group are the designer interface processes.

76 SYSTEM ARCHITECTURE

Typically these are the command interpreter and window manager
processes. The third group are the data management processes. Process
group 1 and 2 are connected with designer activities, while process group 3
is connected with project activity.

In the distributed environment two communication mechanisms are
important. The first type of communication will typically take place at one
site, while the second type of communication will take place between
different sites.

4.6.1 Communication Between Group 1 and Group 3 Processes
Application processes (group 1) require access to the meta design data
managed by the data management process (group 3). Communication
between group 1 processes and group 3 processes will take place on one site.

There are several possibilities to implement an efficient communication
mechanism between processes, given the Unix environment.

1. pipes, communication mechanism between father and son processes.

2. named pipes (System V only), communication mechanism between
unrelated processes.

3. shared memory and message queues.

4. sockets, communication mechanism between unrelated processes on
different sites using IPC primitives.

The problem is to define a communication mechanism with the following
properties:

1. Fast access to the meta design data.

2. Local as well as remote data communication.

3. Controls the update of the meta design data.

Figure 4.3 depicts our solution.

4.6 Tool Communication 11

read and write access

The tool process and the design management process have
direct read access to the meta design data, because the meta
design data is stored in shared memory. The tool process has
write access to the meta design data via the design
management process. This is a queue based mechanism.

Figure 4.3. Meta data access

Our solution for the communication problem is a combination of the use of
shared memory and the use of message queues. We divide the queries in
read-only requests and in update requests, and use different communication
mechanisms for them. Meta data is stored in shared memory. This is done
because application tools frequently execute requests to obtain information
about the design data. Queries that require read operations on the meta
design data, are executed by functions that have direct access to the
information stored in the meta design data. These functions also have the
possibility to deny access to the meta design data, for example when the
meta design data is being updated.

78 SYSTEM ARCHITECTURE

Queries that can alter the contents of the meta design data, are implemented
with functions that use message queues to send the request to the design
management process. If an application process wants to modify the contents
of the meta design data, it sends a message to the design management
process, requesting some write operation. When the design management
process receives a request to modify the meta design data, it disables all
read accesses to the meta design data. Then it executes the request, updates
the meta design data and enables the read access to the meta design data
again. Disabling and enabling the access to the meta design data is done
using signals and semaphores. It is also possible to defer a request as long as
the design management process 'thinks' it is best to do so. Since only one
process has write access to the meta design data, no conflicts arise about
multiple write operations.

4.6.2 Communication Between Group 3 Processes
This type of communication takes place between design management
processes. Since projects can reside on different sites, the implementation of
a communication mechanism uses the facilities of the network between the
sites. In a Unix environment an ethernet connection and TCP/IP protocols
are generally present. In this case all the requests are send to the processes
using the TCP/IP networking interface. The sent requests are mostly
inquire queries. The same communication protocols and communication
procedures can be used for both message queue mechanism as for the
TCP/IP network mechanism. A design management process not only polls
its message queues but also its ethernet connection to see if any request has
arrived. All received requests have the same format and require the same
execution.

4.6.3 Communication Between Group 1 Processes
Sometimes a design step requires several design tools to execute. Here
frequently the need exists to pass design data from one design tool process
to the next design tool process. The Unix environment provides no
mechanism to create a multi data communication mechanism between
processes. However, this type of data communication can be simulated

4.6 Tool Communication 79

using named pipes or by multiplexing the design data on one io-channel. An
other possibility to implement multiple pipes is the use of shared memory
segments. Each communication mechanism has its own shared memory
segment assigned to it. One process writes data in the memory segment
while the next process reads the data from the segment. The advantage of
this type of data communication is that disk access is considerably reduced,
which leads to faster execution of the design tools. The disadvantage is that
the size of the freely available memory of a system is reduced.

4.6.4 Group 2 Processes
The designer interface processes communicate with the designer and with
the design management process. The function of these type of processes is
to provide information and to activate design tools. All relevant
information is stored in the meta design data. The processes in group 2 have
the same requirements as the processes in group 1, i.e. fast access to the
meta design data and local as well as remote data communication.
However, they don't need mechanisms to share design data. They do need
fast access to the meta design data, and a communication mechanism to
communicate with group 3 processes.

4.6.5 Query Language
To obtain information from the meta design data or to store information in
the meta design data a query language is needed. The query language
should support design transactions functions as well as administration
functions and browse functions.

We believe that just a few language constructs can provide us with the
functionality we need. The language constructs can for example be taken
from a set operation language (a recent example is the the enhanced C
language) (Figure 4.4) [Katzenelson83, Katzenelson85], or a dedicated data
manipulation language [Bekke83] (Figure 4.5).

80 SYSTEM ARCHITECTURE

exists expressionl in expression 2 suchthat expression 3

If there exists an element in expression2 such that expression 3 is true
then the lvalue of expressionl is set to the value of such an element.

add expressionl in expression2 position expression3

Add adds the element expressionl to the sequence expression2 in
position expression3.

Figure 4.4. Query language using the EC syntax

get subject its property list where qualifying predicate

Given a type (subject) and the qualifying predicate the system will be
able to determine the set of instances of the subject.

insert subject its list of assignments

The subject is inserted with the list assignments.

Figure 4.5. Query language using the OTO-D data manipulation language

We propose an inline expansion of the query language constructs using a
simple preprocessor. This type of integration is also used in Ingres
[Held75]. The preprocessor program expands the query language constructs
into C language code and into remote procedure calls. The advantage of this
approach are: readable source code, fast program execution and easy to use.
Code optimization also can be done by the preprocessor. Since there are
only a few query language constructs the preprocessor is simple to develop.

4.6.6 Communication Procedure
When a request of a design process can not be executed locally, the request
has to be send to the appropriate remote machine (see chapter 3.6). The
transmission of a request can be implemented using Remote Procedure Calls
(RPC) [Birrell84].

The idea of remote procedure calls is based on the mechanism for transfer
of control and data, which normally takes place within a computer program
composed of several procedures. The same mechanism can be used both for

4.6 Tooi Communication 81

a program running on a single computer as for a program running on several
computers, connected through a computer network. When a remote
procedure is invoked, the calling environment is suspended, the parameters
are passed across the network to the environment where the procedure is to
execute, and the desired procedure is executed there. When the procedure
has finished and has produced its results, the results are passed back to the
calling environment, where execution resumes.

When making a remote call, five pieces of program are involved: the local
design process, the RPC client interface library, the communication package,
the RPC server interface library, the remote design process. Their
relationship is shown in Figure 4.6.

local machine

call

ret

pack

inpach

xmit

win

refcv

Network

call packet

result packet

recv

xmit

remote machine

inpacl

pack

call

work

Figure 4.6. Interactions for a remote procedure call

At the moment that the design process makes a remote call, it makes a call
to a procedure which will invoke the corresponding procedure in the RPC
client interface library on the local machine. This procedure is responsible
for placing a specification of the target procedure and the arguments into
one or more packets and asking the TCP/IP network interface to transmit
these in a reliable way to the remote machine. On receipt of these packets,
the TCP/IP network interface on the remote machine passes them to the
RPC server interface library. The RPC server interface unpacks them and
again makes a normal local call, which invokes the appropriate procedure on
the remote machine. Meanwhile, the local process in the local machine is
suspended awaiting a result packet. When the call in the remote machine

82 SYSTEM ARCHITECTURE

completes, it returns to the RPC remote interface library and the results are
passed back to the suspended process in the local machine. There they are
unpacked and the RPC client interface library returns them to the local
design process. The TCP/IP network interface is responsible for
retransmissions, acknowledgments, packet routing, and encryption. The
user sees no difference between a procedure executing on the local machine
and a procedure executing on a remote machine.

Besides using the TCP/IP network interface for the communication
mechanism, message queues can be used if both client and server process
execute on the same machine. The message queue mechanism is a faster
mechanism for passing packets than the TCP/IP network mechanism. This
is particularly useful in a distributed environment where programs need to
communicate with local programs as well as remotely executed programs.
The interface library decides which communication mechanism to use. If
the request can be executed locally, the message queue mechanism is used,
otherwise the TCP/IP network interface is used. For a program developer
the use of the RPC library is transparent.

4.6.7 Implementation
A Data Management Process (DMP) controls the access to the meta design
data of a project and communicates with design processes and other DMP's.
Efficient access to the meta design data is achieved by using shared memory
techniques. Requests from processes to update the meta design data are
placed in a queue. The DMP executes these requests sequentially
[Bernstein83]. Since the DMP also controls the read access to the meta
design data, it is capable of prohibiting access while a critical update is in
progress.

Requests that concern cells in other projects are sent to the appropriate
DMP, using RPC message passing techniques. In this way the physical
distribution of the design data in a distributed workstation environment is
made transparent to both the tools and the designer.

4.6 Tool Communication S3

In a design environment several workstation configurations are possible. In
a simple environment there is no physical distribution of design data and no
distribution of tool processes (Figure 4.7). If the file server concept is used
together with some diskless workstations, it is possible to distribute the tool
processes (Figure 4.8). In this case interactive programs will have a faster
response time. A Network File System (NFS) provides access to the design
data on the file server. A major drawback of this environment is the
limited reliability of the network. If the network is not accessible,
designers will be unproductive. In Figure 4.9 a workstation environment is
depicted, where the workstation has local storage. In this case there is
physical distribution of the design data and distribution of tool processes.
If the network is not accessible, the designer can continue without
interruption. However, special tools are necessary to merge the design data
when the network is again in working order.

The DDMS presented in chapter 3.6 supports three workstation
environments. In the first case (Figure 4.7), the DMP provides tool
communication mechanisms, which don't need networking capabilities. In
the second case (Figure 4.8), the DMP provides tool communication, using a
RPC mechanism. This makes it possible to run design tools on physically
different workstations. In the last case (Figure 4.9), the DMP provides the
mechanisms to distribute design data on physically different machines,
using the sub-project concept. In all three cases the DMP controls the access
of the meta design data and thus the access of the design data.

84 SYSTEM ARCHITECTURE

ShM = Shared Memory, DMP = Data Management Process, T = Tool.
A = dumb terminal, B = workstation.

Figure 4.7. Project Environment for one Workstation

ShM = Shared Memory, DMP = Data Management Process, T = Tool.
A = diskless workstation, B = fileserver.

Figure 4.8. Project Environment for one file server and several diskless
Workstations

4.6 Tool Communication 85

ShM = Shared Memory, DMP = Data Management Process, T = Tool.
A = workstation, B = fileserver.

Figure 4.9. Project Environment for one file server and several
Workstations

4.1 User Interface

A User Interface (UI) provides the designer with an interface, which enables
him to browse through the meta design data of his universe. If his universe
is partitioned into a technology database, a project database, a user database
and a configuration database, then the UI can provide him information about
which technologies are present in the technology database, which projects
there are in the project database and so on. After the designer has obtained
the name of a project, he could open this project and ask the UI to list all
modules in this particular project. This type of information is typically
meta design data. At this level the designer is not interested in design data.
The user interface program should be written based on a distributed
windowing system. The X-window system [Gettys86] is the only
windowing system that has this functionality and is a well accepted
standard.

Besides the browse function, the UI should have the functionality of a
command interpreter; there is a command syntax which enables the designer
to start design tools with the proper arguments. The command syntax, the
query language, can also provide the designer with a more sophisticated

8 6 SYSTEM A RCHITECTURE

type of browsing, "probing", if it supports wildcards. For example:

GET module
ITS name
WHERE name == "D*"

which will return all module names starting with a "D".

Figure 4.10 presents the process structure.

Figure 4.10. The process structure of an UI and several D.VlP's

Assumed is an environment with a windowing system like X-windows.
After startup, the UI opens a window on the screen. The designer can now
browse through information available to him from the configuration
database. When the designer has obtained the name of a project, the
designer can open this project. The UI opens another window on the screen
and tries to establish communication with the DMP which controls the
particular project. After a successful connection, the designer has access to
the meta design data of that project. It is now possible for him to start
design tools in this project.

4.7 User Interface 87

The difference between the UI and an ordinary design tool is that the UI
only accesses meta design data and will not access design data. Both type of
tools use the same TI and use the same communication mechanisms.

4.8 Conclusion

At this point of our development, we are able to verify that, the functional
requirements as stated in chapter 2 have been achieved. The approaches
used to address the functional requirements of a DDMS are:

— A data model and a data schema.

— Tool interfaces.

— Distributed data management facilities.

— An user interface.

In chapter 3 a data model and a data schema were presented. The data
schema describes the structural semantics of the data in a VLSI design
system. Also a data schema was presented that structures the distribution
of data across a network of design systems. In chapter 4 a tool interface
and an user interface were presented. These form the interface between the
design tools and the system software and between the design tools and the
designers of VLSI circuits.

The functional requirements of a DDMS are (chapter 2):

— Tool integration.

— Data Exchange.

— Management and Control.

— Data Management.

— System Interface.

Data exchange is achieved by using a standard language which allows for
the transport of a description of a VLSI circuit from one design system to

88 SYSTEM ARCHITECTURE

another [EDIF87]. The design system has tools available which will
translate/extract this language to/from its database.

Management and control of data and design data management are achieved
by the introduction of a version chain, concurrency control and a
transaction schema. The linear version chain and concurrency control allow
for the existence of several versions of a cell, while only one of these
versions can be edited by only one designer at a time. The versions have a
status and there is a default selection of a version, which provides the
designer with information about a version and which relieves him of the
task, of identifying each version, when he wants to access it. Formulated
where the following requirements for a tool interface:

• The tool interface must bring about efficient interaction between the tools
and the DDMS.

• The tool interface must be independent of specific tool features or design
methodologies. It should be universal, to result in an open-ended design
system where the DDMS acts as a free-for-all public repository that can
communicate with any type of tool and environment.

• The tool interface must be independent of specific features of a DDMS.

The first requirement is met in the following way. The data in the DDMS is
split in two types: design data and meta design data. The meta design data
is controlled by the DMP, and the design tools can access the meta design
data via the DMP. Design tools have direct access to the design data, after
they have obtained the mandatory permission. The design tools can now
built their own optimal data structure. They communicate with the
database with two simple functions (Figure 4.1).

The second requirement is achieved by introducing a small set of complex
objects: the universe, the project, the cell and the stream. No assumptions
are made on the exact attributes of these types. Besides these complex
object types, the DDMS supports hierarchy and equivalence relations. This
allows for the use of any design methodology and any type of design tool.

4.8 Conclusion 89

The implementation of the DDMS makes use of well known standards as
the C language and the X-windows system. There are strong indications
that the DMTI proposed by us will become a standard [SECT87].

The third requirement is achieved by the introduction of the dmbrowse
function in the DMTI. This function hides DDMS specific features like
versioning. Concurrency control and transaction recovery is also hidden by
the DMTI. The DDMS has its own user interface. This means that no
design tool program has to be changed to incorporate any new DDMS browse
facility.

4.9 Results

A DDMS for VLSI design that provides an open framework for the
integration of design tools and relieves the designer from the burden of
organizing his design data has been presented. After identifying the basic
entity that is involved in a design transaction, the cell, a data schema
representing the logical organization of the VLSI design data was developed.
The OTO-D semantic data model, offering a set of well defined modeling
constructs, permitted us to formalize the semantics of the meta design data.
Openness of the DDMS was secured by avoiding incorporation of features of
a particular tool set or design representation.

The resulting data schema is simple, yet powerful enough to reflect the basic
requirements of the DDMS outlined in chapter 2. It incorporates such
features as hierarchical decomposition, multilevel design, design
transactions / concurrency control and versioning. Thus, it provides the
basis for a DDMS that implements a set of global system facilities to
provide a framework for the construction of a powerful design
environment. The DDMS serves both the tools and the designer by making
the information about the structure and status of the design available to
them.

This DDMS-research has been carried out in the context of the ICD-NELSIS
system [Dewilde86], which currently contains over 40 DDMS-intensive

90 SYSTEM ARCHITECTURE

CAD/IC tools such as layout editors and generators, design rule checkers,
extractors, a placement and routing system, simulators, etc. These tools
have all been equipped with the DMTI defined in this thesis. The
decoupling introduced by this DMTI turns out to be extremely useful for
our software developments, as it permits DDMS and tools to evolve
separately to a large extent.

In the ICD-NELSIS system, several DDMS-experiments have been carried
out and a prototype has been produced. Currently, work, is under way
towards a DDMS-release that comprises all facilities described in this thesis.
The meta design data storage module exploiting shared memory is
operational, including the query facilities. An attractive version mechanism
and interactive browsing facilities are currently being implemented.

Performance comparison between a software release without design data
management functions and the software release with the DDMS functions
shows, depending on the design tool in question, a difference in execution
speed between 0 and 20 percent. The decrease in performance has no
relation with the function of a design tool. It depends on the number of
design transactions requested by the tool.

Future work will, among other things, focus on powerful design
management facilities that can guide the designer through the design process
towards a correct design. The first ideas for this are presented in appendix
C. Another area of interest is the management of information about such
environmental aspects as technologies, tools, and designers, as a logical
extension of the information modeling approach presented in this thesis.

References 91

References

Bekke83. Bekke, J.H. ter, "Database Design (in Dutch)," Stenfert Kroese,
(1983).

Bernstein83. Bernstein, P.A. and Goodman, N., "Analyzing Concurrency
Control Algorithms When User and System Operations Differ," IEEE
trans, on Software Engineering SE-9(3) pp. 233-239 (May 1983).

Billingsley83. Billingsley, G. and Keller, K., "KIC: A Graphics Editor for
Integrated Circuits," User's Manual, University of California at
Berkeley (1983).

Birrell84. Birrell, A.D. and Nelson, B.J., "Implementing Remote Procedure
Calls," ACM Trans, on Comm. Sys. 2(1) pp. 39-59 (Feb 1984).

Brouwers87. Brouwers, J. and Gray, M., "Integrating the Electronic Design
Process," VLSI Systems Design, pp. 38-47 (June 1987).

Bull85. Bull,, GEC„ ICL„ Nixdorf,, Olivetti,, and Siemens,, PCTE: A basis
for a portable common tooi environment, Third edition, volume I 1985.

Dewilde86. Dewilde, P., Leuken, T.G.R. van, and Wolf, P. van der,
"Datamanagement for Hierarchical and Multiview VLSI Design," pp.
1.1-1.29 in The Integrated Circuit Design Book: Papers on VLSI
Design Methodology from the ICD-NELSIS Project, ed. P. Dewilde,
Delft University Press, Delft (1986).

EDIF87. EDIF,, "Electronic Design Interchange Format, Version 2 0 0,
Reference Manual," EDIF Steering Committee, Electronic Industries
Association, (1987).

Gettys86. Gettys, J., Newman, R., and Fera, T. Delia, "Xlib - C Language
X Interface, Protocol Version 10," MIT, Cambridge, Mass., (1986).

Harrison86. Harrison, D.S., Moore, P., Spickelmier, R.L., and Newton, A.R.,
"Data Management and Graphics Editing in the Berkeley Design

92 References

Environment," Proc.IEEEICCAD-86, pp. 24-27 (1986).

Held75. Held, CD., Stonebraker, M., and Wong, E., "INGRES - A
Relational Database Management System," Proc, 1975 Nat. Computer
Conference, AFIPS Press, (1975).

Jackson83. Jackson, M., System Development, Prentice Hall, Englewood
Cliffs, N.J. (1983).

Katz83. Katz, R.H., "Managing the Chip Design Database," IEEE Computer
Magazine 16(12) pp. 26-35 (Dec 1983).

Katzenelson83. Katzenelson, J., "Higher Level Programming and Data
Abstractions - A Case Study Using Enhanced C," Software Practice
and Experience 13 pp. 577 - 595 (1983).

Katzenclson85. Katzenelson, J., The Enhanced C Programming Language
Reference Manual, Technion - Israel Institute of Technology, Haifa
32000, Israel (March 21, 1985).

Meijs86. Meijs, N. v.d., Leuken, T.G.R. v., Wolf, P. v.d., Widya, I., and
Dewilde, P., "Data Management Interface Definition," ESPRIT project,
code 991, WP1, task 1., (Dec 31, 1986).

Meijs87. Meijs, N. v.d., Leuken, T.G.R. v., Wolf, P. v.d., Widya, I., and
Dewilde, P., "A Data Management Interface to Facilitate CAD/IC
Software Exchanges," Proc. IEEEICCD '87, (1987).

Newton86. Newton, A.R. and Sangiovanni-Vincentelli, A.L., "Computer-
Aided Design for VLSI Circuits," I EEE Computer Magazine, pp. 38-60
(April 1986).

SECT87. SECT,, "Software Environment for CAD Tools," The Sect Data
Handling Committee, CadLab, CNET, NMP-CAD, ES2, TU Delft,
(1987).

93

5 . A P P E N D I X A

5.1 Technology Database

The data schema of the technology database (Figure 5.1) is based on the
EDIF [EDIF87] dataschema.

technology

numberdefinition flgurcgroup fabricate simulationinfo physicaldesignrule

Figure 5.1. The Data schema of the technology database

The technology database contains all information related to the intended
implementation of a design. Figure 5.2 gives an example of a technology
description in the EDIF syntax.

The most important data types in the data schema are technology,
figuregroup, fabricate, simulationinfo and physicaldesignrule.

5.7.2 Numberdefinition
The numberdefinition type contains scaling information for the designs in a
project. Scale defines the relationship between numbers used in the project
database and numbers outside of that project. For example, a cell can be
designed on lambda grid, and lambda is four micron. Numberdefinition
relates symbolic units to physical units.

94 APPENDIX A

(technology
(numberDefinition

(scale edi fUni ts ex terna lUni ts (unit uni tType))

)
(figureGroup f i gureGroupNameDef

(cornerType cornerType)
(endType endType)
(width ui dth)
(color psrcentRed percentGreen percentBlue)

(property proper tyNameDef . . .)

)

(fabricate I ayerNameOef figureGroupNameRef)

(simulationinfo
(logicValue logicNameDef
. . .)

)
(physicalDesignRule

(figureWidthruleNameDef . . .)

(overlapDistance r u l eNameDef . . .)

(interFigureGroupSpacing r u l eNameDef . . .)

)
(comment . . .)
(userdata . . .)

)
Figure 5.2. A technology description in EDIF

5.7.2 Figuregroup
The figuregroup type defines graphical default characteristics. Attributes
which may be given default values here are: cornertype, endtype,
pathwidth, borderwidth, color, fillpattern, borderpattern, textheight and
visible. The figuregroup type is used also within the physicaldesignrule
type.

5.1 Technology Database 95

5.1.3 Fabricate
The fabricate type defines which figuregroups are intended to be used for
physical fabrication and introduces the layer names.

5.1.4 Simulationin/o
The simulationinfo type collects all information about the logic values used
for modeling. Values are defined by names and by specifying their
characteristics, which may be: electrical, Boolean and relational between
other logic values. Attributes in the logicvalue type are: voltagemap,
currentmap, Booleanmap, compound, weak, string, dominates,
logicmapoutput, logicmapinput, isolated, resolves, property, comment and
userdata.

5.1.5 Physicaldesignrule
The physicaldesignrule type specifies a set of geometrical design rules
applying to the actual design process. It is possible to represent rules for
single figures using the attributes: figurewidth, figurearea, rectanglesize,
figureperimeter, intrafiguregroupspacing, notchspacing and notallowed.
Rules for pairs of figures are represented by the attributes: overlapdistance,
overhangdistance, enclosuredistance and interfiguregroupspacing. The
physicaldesignrule type also may include definitions of new figure groups
which are created with the figuregroup type. The data schema should be
extended if conditional design rules are to be stored in the technology
database.

5.1.5.1 The Tool Inter/ace for the Technology Layer
• dmOpenTechnology (envkey. techid. openlechmode): techkey
• dmCloseTechnology (techkey. closetechmode)

DmOpenTechnology opens the technology database and returns a
DMJTECHNOLOGY key. This key contains information about the
particular technology, represented by techid, and the access mode,
represented by opentechmode. Actions that might be performed are
verification of the access rights. The technology key will be passed as an
argument to the functions in the technology access layer.

96 APPENDIX A

DmCloseTechnology terminates the technology transaction. The details of
this operation are specified by closetechmode.
• dmGetTechnologyData (techkey. request, arguments)
• dmPutTechnologyData (techkey. request, arguments)

DmGetTechnologyData (DmPutTechnologyData) can be used to obtain (store)
information from (into) the technology database with the technology
identified by techkey.

By means of the request argument and a variable argument list, the specific
retrieval or update operations (queries) can be passed to the interface
function. Which queries can actually be formulated depends on the
conceptual model that is employed by the DDMS for the organization of its
technology database.

References 97

References

EDIF87. EDIF„ "Electronic Design Interchange Format, Version 2 0 0,
Reference Manual," EDIF Steering Committee, Electronic Industries
Association, (1987).

98

99

6. A P P E N D I X B

T H E ICD DESIGN M A N A G E M E N T S Y S T E M *

T. C. R. van Leuken
P. van der Wolf

Department of Electrical Engineering
Delft University of Technology

The Netherlands

ABSTRACT
To organize the design process of VLSI circuits and the design evolution
involved, a design data management system is needed that supports reliable
storage, concurrency control, hierarchical decomposition, multilevel design
and version control. A design system data scheme can be based on a
semantic (object oriented) data model, where objects are used for modeling
the structures imposed on the design data. Using the basic constructs of the
data model a data scheme can be defined that reflects the object types and
their relationships encountered in VLSI designs.

A dominant part of the design data management system is the
transaction manager, supporting versions and concurrency control. In our
version mechanism some of the versions of each ceil have a special status,
thereby allowing automated selection of the right version on a certain
request. This version mechanism offers the user a clear conceptual picture
and supports the evolutionary development of a design in a highly
automated fashion.

This research was supported in part by the commission of the EEC under the 3744/81
program (ICD-contract).

100 Proc. ICCAD-85

6.1 Introduction

In the ever increasing complexity of integrated circuit design a new way has
to be found to control and organize the design data and the design evolution.
A team of integrated circuit designers usually generates huge amounts of
interrelated data. They often work in an iterative way, making small
changes in existing cell descriptions, in an attempt to decrease the dimension
of the design or to improve the performance. This design process involves
several levels of abstraction, called views. The system view, network view
and layout view are the most used among them.

To organize the design process, making the designers job more cost
effective, a design data management system is needed that supports reliable
storage, concurrency control, hierarchical decomposition, multilevel design
and version control. This will not only diminish the administrative task of
the designer, but also allow the construction of more sophisticated design
tools.

In the next section we will discuss the concepts of our design data
management system. In section 3 we describe the version management and
concurrency control. Conclusions and implementation results are given in
section 4.

6.2 Basic Concepts

The development of a design data management system includes the
definition of a conceptual model, reflecting the different types of data and
their dependencies. When the dependencies encountered in design data are
stored explicitly, they can be maintained and made available to both
management tools and sophisticated design tools.

The basic entities in our design system are the design objects. A design
object contains a logically related set of design data, describing a part of an
integrated circuit in terms of primitives of a certain view, as well as
references to other objects in the same view. The structuring of design data
as a set of interrelated design objects provides us with a flexible design

6.2 Basic Concepts 101

system, because no assumptions are made about the views that have to be
supported. Furthermore, the design object is the appropriate unit of
exclusive access for manipulation by the user.

Although access to the design objects is provided by the data
management system, it does not interpret their representation details. These
are handled by the design tools. The data management system maintains
information about the design objects: the meta data. The meta data
describes how the design objects, at this level viewed as atoms, are related
to each other. It contains all hierarchical information of a design description
in a particular view, as well as equivalence information relating design
objects in possibly different views. The version information of an object,
locking information, ownership etc. are also considered meta data, being
maintained by the data management system.

The logical organization of the meta design data is represented in a data
scheme using a data model. The classical data models: the hierarchical,
network and relational models, are all record oriented. Recently, new object
oriented data models have been developed; the semantic data models
[Lyngbaek84, Shipman8l]. Using a semantic data model, data schemes can
be defined as object types and relationships between object types. Each
object type corresponds to a collection of objects (or entities) that share
common properties. As opposed to the classical data models a well defined
semantic data model may act as a formalized tool to support strict
modeling.

102 Proc. ICCAD-85

hier-rel equiv-rel

selector design_obj

cell

constructor

other design
object type

versionstatus version*

Figure 6.1. Design data management subscheme

The data scheme is divided in several similar subschemes, one per view.
Each subscheme (Figure 6.1) contains a design-object type, whose instances
agree with the design objects of a particular view. If the design data is
structured in a hierarchical way, it seems natural that the data scheme
reflects this structure. Each subscheme contains one type (hier-rel), whose
instances correspond to a hierarchical relationship between two design
objects, with an attached selector and constructor. Subschemes may be
connected by one or more equiv-rel, whose instances are the equivalence
objects linking two design objects from possibly different views. Based on
this data scheme, reflecting the structure of the meta design data,
dependencies are made available to both design tools and designers by the
design data management system. The latter is supported by a user interface
consisting of a set of browse commands.

6.2 Basic Concepts 103

6.3 Versions and Concurrency Control

Design data is a too precious resource to let it simply be overwritten on
every design transaction. This would also consequently override any
verification effort that was made before. A better approach is to create new
versions at certain design transactions [Katz84], thereby not only offering a
backup facility, but also simplifying recovery. This way the evolution of a
design is remained to some extent and older versions can be used to explore
possible design alternatives.

In principle it is possible to support whole trees of versions per cell,
where users can select versions for updates without any conceptual
constraints. This would result in a highly complicated version mechanism
because of the hierarchical relationships between the versions of different
cells. A clear concept has to be offered to the user for a version mechanism
to become effective. A satisfying solution can be obtained by restricting the
evolution to a linear chain of versions, while additional commands allow
explicit manipulation of the version chain. One version has a special status,
and will be used in an update transaction.

At any time the design data has to form a hierarchically consistent set.
Unfortunately, consistency checks on every design transaction would mean
that flexibility and performance of the design system degrade. Our version
mechanism allows the coexistence of a hierarchically consistent set of design
data and a set of newly created design objects for which only the downward
consistency is maintained. Design data that has to be updated is checked
out. After updating, the data will be checked in as a 'working' version, that
can be verified and reedited independently of other design activities. When
it has reached some definite state, it may be added to the hierarchically
consistent set by invoking the 'install' command. This installing procedure
performs some checks and will give the 'working' version the 'actual' status.
The hierarchical links from 'actual' and 'working' versions of other cells
calling this cell will be redirected to the new 'actual'. The former 'actual'
version will obtain the 'backup' status. As a result, the version chain has

104 Proc. ICCAD-85

the following appearance (Figure 6.2).

b b b a w

V y
backup actual working

versions version version

Figure 6.2. Design data management version chain

The 'actual' version is always present and is part of the hierarchically
consistent set. One 'working' version and one or more 'backup' versions
may be present. Because some of the versions of each cell have a special
status, automated selection of such a version is possible. This relieves the
user from explicit specification on every transaction. The 'actual' versions
have global scope, meaning that when a designer refers to a cell for
inclusion as a subcell in a composite object, the 'actual' version will be
handed to him. As a result we have an hierarchically consistent set of
'actual' versions that is maintained implicitly, and a set of 'working'
versions attached to it.

Besides the install command, other commands are present to manipulate
the version chain. One of them is a restore command, that allows the user
to make a 'backup' configuration 'actual' again. Other commands allow the
removal of versions and the reusal of 'backup' versions by transporting
them to a new cell.

VLSI designs typically are created by teams of designers working
simultaneously on different pieces of the circuit. The design system should
control concurrent sharing of design data. A locking mechanism is
provided, the transaction lock, which ensures that only one designer can

6.3 Versions and Concurrency Control 105

generate a new 'working' version of a particular cell at a time. The version
mechanism allows a flexible locking strategy, where all other cells remain
available for update. Furthermore, any other designer can browse the
'actual' versions of the locked design data. In our implementation all
designer processes in the same process group inherit the assigned access
rights. This mechanism makes it possible to stop a layout editor session,
start a verification program and resume the layout editor session after the
verification program has terminated.

6.4 Conclusions and Status

We have implemented a design data management system that, based on an
extendible data scheme, not only allows conventional bottom-up cell
assembly, but also offers a framework for top-down design and silicon
compilation. It supports multiple levels of abstraction, called views. Each
view contains hierarchically related design objects, that may be mapped on
equivalent design objects in other views.

The version mechanism presented proved to be successful. To the user it
supports the evolutionary development of a part of a design in a highly
automated fashion, based on a clear conceptual picture. Additional
commands allow explicit manipulation of the version chain. To ensure
exclusive access rights of a design object a flexible locking procedure is
supported.

A data access layer provides us with an unified set of interface functions
that execute the access operations on the design data. Because our data
access layer is based on several generalities recognized in design
transactions, forward compatibility is achieved. At the same time it offers
data independence. At this moment we are investigating the
implementation of a distributed object oriented design data management
system.

106 Proc. ICCAD-85

References

Katz84. Katz, R.H. and Weiss, S., "Design Transaction Management," Proc.
21st IEEE Design Automation Conference, pp. 692-693 (1984).

Lyngbaek84. Lyngbaek, P., Information Modeling and Sharing in Highly
Autonomous Database Systems, Ph.D. Thesis, Univ. of So. California,
Los Angeles (August 1984).

Shipman81. Shipman, D.W., "The Functional Data Model and the Data
Language DAPLEX," ACM Trans, on Database Systems 6(1) pp. 140-
173 (March 1981).

Vogel84. Vogel, T., Wolf, P. van der, and Dewilde, P., "Conceptual
Database Model ICD," Internal Report, Delft University of
Technology, Delft (Oct 1984).

Wiederhold82. Wiederhold, G., Beetem, A.F., and Short, G.E., "A Database
Approach to Communication in VLSI Design," IEEE Trans, on CAD of
Integrated Circuits and Systems CAD-1(2) pp. 57-63 (April 1982).

107

7. APPENDIX C

DATA MANAGEMENT FOR VLSI DESIGN: CONCEPTUAL
MODELING, TOOL INTEGRATION & USER INTERFACE*

P. van der Wolf, N. van der Meijs, T.G.R. van Leuken,
I. Widya and P. Dewilde

Delft University of Technology
Department of Electrical Engineering
Mekelweg 4, 2628 CD Delft
The Netherlands

A Data Management System (DMS) for VLSI design is presented that
supports hierarchical decomposition, multiple levels of abstraction,
concurrency control and design evolution in a distributed workstation
environment. Semantic data modeling techniques are employed to derive a
simple, yet powerful, data schema that represents the logical organization of
VLSI design data. The resulting DMS provides an open framework for the
integration of design tools and relieves the designer from the burden of
organizing his design data. The Data Management Browser (DMB) enables
the designer to browse through the information that is maintained by the
DMS about the structure and status of his design. The Data Management

This research was supported in part by the commission of the EC under ESPRIT
contract 991.

108 Proc. IFIP-87

Interface (DMI) decouples the development of the tools and the DMS. The
DMS-principles have been tested in practice.

7.1 INTRODUCTION

It is generally acknowledged that a crucial part of an integrated VLSI design
environment is a Data Management System (DMS), to form the kernel
around which all tools are integrated [Katz83, Brouwers87]. A proper DMS
operates first of all as the common repository of design data: the design
database. The tools create and modify the design data, while the DMS
stores and maintains the design data, thereby guaranteeing consistency.

T 0 O

DATA MANAGEMENT SYSTEM

DATA

Figure 7.1. Tools integrated on top of DMS

Furthermore, a DMS has to supply additional services to provide a basis for
the construction of an intelligent design system. Clearly, system integration
is more than the definition of some common formats: Which copy is the
latest version? Has this layout been extracted since it was updated and, if
so, which circuit description was derived from it? If I change this layout,
which other parts of the design will be affected? It is the ability to answer
such questions that differentiates a true DMS from a simple data repository
[Newton86].

In this paper we focus on the construction of such a DMS that serves both
the tools and the designer. It must provide an intelligent framework for
tool integration that permits the designer to easily retrieve information
about the structure and status of his design. Going a bit more into detail,

7.7 INTRODUCTION 109

we can identify a number of aspects that a modern DMS for VLSI design
should cover:

• A uniform interface to the tools.
A transaction mechanism is needed to control the interaction between the
tools and the DMS. Via this interface the tools obtain access to the
design data to perform updates or verifications, while taking advantage
of the facilities provided by the DMS.

• An interface to the designer.
Basically, the DMS is the bookkeeper of the design system. It must
therefore offer an attractive user interface that allows the designer to
browse through his design data and make inquiries about the status of
specific parts of his design.

• Views and hierarchy.
Generally accepted aspects of chip design are hierarchy and multiple
view-types, i.e. levels of abstraction at which a design can be described.
These aspects have to be supported by the DMS such that the designer
and his tools can exploit them.

• Concurrent design activities.
VLSI designs are created by teams of designers, working together in the
same project environment. Moreover, each designer can have multiple
tasks running concurrently. The DMS has to provide facilities to
guarantee consistency under concurrent operations.

• Version mechanism.
A version mechanism has to be incorporated to support the evolutionary
development of a design. Also, a proper version mechanism potentially
permits a more flexible concurrency control mechanism for long design
transactions.

• Verification statuses.
The evolutionary nature of the design process also requires the DMS to
maintain the verification statuses of the design under construction. That

110 Proc.IFIP-87

is, administer the statuses and warrant their consistency. Previously
derived verification results can then be reused, which is particularly
effective in combination with hierarchical design strategies. Secondly,
the designer can get well-informed when deciding which operation to
apply where. Important related aspects are the generation and
maintenance of consistent documentation and the support for auditing
when the design reaches its final stage.

• Logically distributed design data management.
The DMS has to offer the designer a conceptual environment where the
design data is logically distributed across different projects. Some
formalism must allow him to refer from his own project to design
descriptions created by other designers. In this way libraries also
become an integral part of the design system.

• Physically distributed design data management.
The DMS must operate in an environment of physically dispersed
workstations and file servers, connected by some network.

• Efficiency.
It is one thing to invent elegant concepts for the above mentioned aspects
of data management, but it is yet another challenge to arrive at an
implementation of a DMS that handles them efficiently. This is not only
a matter of smart software engineering at the implementation stage, but
also implies that particular choices have to be made at the conceptual
design stage.

The facilities mentioned above offer the tool developer as well as the
designer a way to manage the complexity by exploiting their properties.
Yet, these properties have to be sufficiently general so that the DMS will not
restrict the functionality of the design system.

Obviously, the construction of a DMS is not just a matter of
straightforward implementation of the different facilities. A more
fundamental approach is required to build a DMS that provides a coherent

7.1 INTRODUCTION 111

open framework, on top of which design tools can be integrated. Our
approach in this is best characterized as follows:

• First of all, we clearly distinguish between (local) tool aspects and
(global) system aspects, especially when taking the design data into
account. The DMS must be based on the invariants that can be
recognized here, rather than the features of a particular tool set or design
representation.

• A formalized approach to the construction of a conceptual model,
reflecting the different types of data and their relationships encountered
in VLSI design (a data schema), is adopted. Our approach is original in
that we import semantic data modeling techniques from the database
area, to be used as a formalized tool for data analysis. Based on these
techniques a data schema is derived for the management data.

• Given this data schema, a DMS is implemented that provides the above
mentioned facilities, based on the knowledge it has of relationships that
are present within the design data. As we will show, this approach
provides a basis for intelligent interaction with the designer, being based
on global system concepts rather than detailed tool aspects.

In the next section we briefly introduce a number of data models and
motivate our choice of one semantic variant. In section 3 we look at the
design data itself and recognize the design object as the basic entity. The
data schema is extended in section 4 to comprise the notions of view and
hierarchy. In the following section the transaction model for the design
objects is described and versioning is incorporated. In section 6 the system
architecture is described in more detail and the implementation of the
different components is discussed. The interaction with the designer is
discussed in section 7. In section 8 we focus on the Data Management
Interface (DMI) which takes care of the communication between VLSI
design tools and the DMS. Our conclusions are given in section 9.

112 Proc.IFIP-87

1.2 DATA MODELS
7.2.1 Introduction
A data model is a collection of concepts and constructs for expressing the
static properties, dynamic properties, and integrity constraints of an
application environment [Lyngbaek84].

Given a data model, a data schema can be defined, describing the structure
and properties of a specific application environment.

A database is a data repository containing a possibly large amount of
interrelated data, structured according to a corresponding data schema.

Historically, the following four classes of data models can be recognized
[Afsarmanesh84]:

• hierarchical data models

• network data models

• relational data models

• semantic data models

The hierarchical, network, and relational data models are frequently
referred to as the classical data models [Lyngbaek84, Bic86]. The
hierarchical and network models only provide primitive operations, and the
user must deal with aspects of the internal organization. The relational data
model is a more user oriented data model. However, it is a fiat model: the
relations are not positioned with respect to each other. As opposed to the
hierarchical and network approach, relations do not contain implicit
references (pointers). Associations between tuples are exclusively
represented by attribute values drawn from a common domain. The use of
composed keys does not provide the user with sufficient means to represent
all abstractions in a precise way. Furthermore, the definition of various
integrity constraints is not an integral part of the modeling process
[Bekke83].

7.2 DATA MODELS 113

7.2.2 Semantic Data Models
The classical data models are all record based. When modeling an
application environment, not all record types in the resulting schema
correspond to the complete definition of a particular concept from that
environment. That is, they lack semantic expressiveness [Afsarmanesh84,
Bic86, Hardwick.87].

The semantic data models enable the user to better formalize the semantics
of his data, and are therefore considered more user oriented. Instead of
being based on the record model, the semantic data models are object based;
the application environment is modeled as a collection of interrelated
objects, each one corresponding to a concept from this environment.

Attempts to categorize the semantic data models are described in
[Lyngbaek.84] and [Afsarmanesh84]. For our purpose the data model
preferably comprises a methodology for data modeling, permitting us to
formalize the semantics of the design data. We concluded that the OTO-D
semantic data model [Bekke83] is best suited, as it offers a number of
well-defined modeling constructs accompanied by an attractive query
language and has a clear way of visualizing the data schemas one defines.
OTO-D stands for Object Type Oriented Data model. It can be seen as a
follow-up on the semantic hierarchy model, as originally pioneered by
Smith and Smith [Smith77]. For a good understanding of the data schemas
that will be derived in the following sections, we first give a short
introduction to the OTO-D data model.

7.2.3 The OTO-D Data Model

7.2.3.1 Data Definition: the Notion of Type
The semantic approach is based on the notion of type. A type is defined by a
certain number of different properties. For example the abstraction:

TYPE student = name, address, department

defines a student as being completely characterized by the properties name,
address and department. These properties are called attributes. An object

114 Proc.IFlP-87

having the properties of a certain type is called an instance of that type.

A type definition is a positive statement or assertion about the application
environment, consisting of a subject and a predicate. A data schema consists
of a number of these type definitions. The subject denotes the new concept
and the predicate denotes the collection of known properties by means of
which the concept is described. Thus, as opposed to the relational approach,
object types are defined in terms of previously defined object types.

OTO-D offers two forms of semantics to formally judge a data schema. The
first one is convertibility: each object is uniquely characterized by its
attribute values. Based on the notion of convertibility the type definitions
can be checked for completeness. The second one is relatability: an attribute
is related to a type with the same name. For example "department" in:

TYPE department = name, head
TYPE student = name, address, department

Relatability automatically fixes referential integrity constraints at the
instance level: an attribute value is related to an instance of the type to
which the attribute is related.

7.2.3.2 Aggregation and Generalization
OTO-D offers two abstraction primitives to construct a data schema:
aggregation and generalization. Aggregation is a form of abstraction in
which a certain number of different properties is combined to create a new
named object. Examples of aggregations were student and department.
Together they constitute an aggregation hierarchy. Generalization is a form
of abstraction that relates a type to a more generic one. In knowledge
representation research this is known as the IS-A relationship. It is possible
that a type appears more than once as an attribute in a type definition, to
fulfil different roles. For this purpose OTO-D offers role attributes, denoted
by a prefix. Examples of the use of role attributes will follow in section 4.

OTO-D offers a clear diagrammatic notation to visualize the relationships
among the types of a data schema. The student-department example looks

7.2 DATA MODELS 115

like:

aggregation

Figure 7.2. Example of an aggregation

Along with these pictures goes a quite strict interpretation. Each attribute
relationship is represented by a line that goes from the bottom of the
composed type to the top of the attribute type. The referential integrity
constraints along these lines always have to be satisfied: an instance of a
composed type is existence-dependent on the instances of its attribute types.

7.2.3.3 Data Manipulation Language
The Data Manipulation Language (DML) of OTO-D allows the formulation
of nonprocedural, high-level queries and thus separates the user from the
internal organization of the data. It offers selection, extension and
modification commands. The most important expression is the selection, the
general form of which is:

<type name>
ITS < attributes >
WHERE < condition >

property list
qualifying predicate

The ITS construct permits downward traversal along the attribute
relationships of the data schema; starting from a composed type we can
"look downward" to ITS attributes, ITS attributes ITS attributes, etc. Given
an arbitrary schema, the semantic concepts of OTO-D guarantee that all
data that can be addressed this way is present (referential integrity) and
related in a meaningful way according to the schema. The ITS construct can
be used both in the property list to retrieve lower attribute values, and in
the qualifying predicate to impose constraints on these lower attribute

116 Proc.IFIP-87

values for object selection.

Using the keyword GET, a selection command can be formulated. A typical
query on the data schema presented above:

GET student
ITS name, address
WHERE department ITS name = *EE'.

To modify the contents of the database, three types of modification
commands are available: INSERT, DELETE and UPDATE.

7.2.3.4 Conclusion
It has been our conclusion that OTO-D supports the definition of a data
schema that correctly reflects the (structural) semantics of an application
environment. It offers a number of well-defined modeling constructs,
incorporates integrity constraints in the modeling process, offers a clear
diagrammatic notation and has a simple, but powerful, data manipulation
language. In the following sections we will use OTO-D to derive a data
schema for the logical organization of VLSI design data.

7.3 THE DESIGN OBJECT AS THE BASIC ENTITY
7.3.1 The Design Object as the Basic Entity
At first sight, conventional database management systems (DBMS) offer
some attractive facilities for the reliable storage of design data, including
recovery mechanisms, concurrency control and integrity maintenance.
However, most of these DBMSs have been targeted for business applications
and do not specifically address the problems encountered in a design
environment [Sidle80]. Transactions on a business DBMS typically are
short in duration and affect only a small amount of data. Concurrency and
recovery strategies have been tuned towards these characteristics. In the
design environment on the other hand, the designer requests all the
information pertaining to a piece of design to modify it extensively over a
long period of time before returning it to the database [Katz83,
Buchmann84].

7.3 THE DESIGN OBJECT AS THE BASIC ENTITY 117

The important issue is that VLSI design applications invariably deal with
conceptually localized collections of related data which are manipulated as a
single entity. This localization needs to be conserved by the design
database. In line with several other researchers [Katz83, Batory85] we call
these basic entities design objects. Examples of design objects are: a piece of
layout, a netlist description, etc. The design object must play a dominant
role in the organization of the design data within the design database. The
arguments for this approach are listed below:

• The design object is the unit of access. Design objects are extracted and
replaced as a unit. Hence, such issues as concurrency, recovery and
versioning should be handled at the level of the design object.

• As will be shown in section 4, design objects are the nodes of the
hierarchical multi-view 'matrix'.

• By taking the design object as the basic entity for further modeling, we
hope to construct a coherent DMS framework, without getting involved
with representation details of some predetermined view-types.

• To the designer the design object has a well defined meaning: the
behavioral description of his ALU, the circuit description of a flip-flop or
his new routing result.

7.3.2 The Initial Data Schema
To define the object type design-object with OTO-D, we have to examine by
which other object types design-object is characterized. First, a design
object has a name by which it can be identified. Further, in a logically
distributed environment each design object has been constructed in
connection with a certain project. Other attributes of design-object might be
its designer or the date of construction:

TYPE design-object = name, project, designer, date

Thus, a design object is completely characterized by its name, project,
designer and date. Name and date can be base types. Designer might be
defined separately, using such properties as name, address, department,

118 Proc.IFIP-87

salary, etc. The same holds for project, although it might as well be a base
type. These details are not important when defining the object type design-
object.

In a project oriented environment there is no need for all names of design
objects to be globally unique. Therefore, the scope of a design-object ITS
name is limited to the design-object ITS project. In fact, a project can be
seen as a clustering object containing a number of design objects. The
schema models correctly that a design object can only exist in connection
with one existing project: design-object ITS project. Of course we need
mechanisms to refer to a design object from other projects, e.g. for
hierarchical inclusion. However, the actual description resides in its "home"
project, which may be a library. The resulting diagram is given in Figure
7.3.

DESIGN-OBJECT

Figure 7.3. Diagram of the definition of the type design-object

The concept of design object provides a profound basis for a consistent
system philosophy, not being blurred by view-type dependent issues. The
'real' design data, i.e. the polygons, wires, devices, nets, ports, etc., is
concentrated within the atomic design objects. Although access to the
design objects is provided by the DMS, it does not interpret their
representation details; these are handled by the tools. Instead, the DMS
maintains information about the design objects to provide the facilities
described in section one. This data is called the meta design data.

The meta design data describes how the design objects, viewed as atoms, are
related to each other. As we will see in the following sections the

7.3 THE DESIGN OBJECT AS THE BASIC ENTITY 119

hierarchical and equivalence information can be found at this level. The
version information of an object, verification statuses, locking information,
ownership etc. are also considered meta design data, being maintained by
the DMS.

We can compare the way we look at a design object with the way a
librarian looks at a book: an object characterized by e.g. a title, author and
date as the abstraction of its contents about which no further knowledge is
required. An important distinction from a public library, however, is that
in the design environment many relationships may exist between the
individual "books" (design objects), while the "books" are also subject to
evolution.

7.4 HIERARCHY AND MULTIPLE VIEW-TYPES

7.4.1 Hierarchy
The most obvious way to handle the inherent complexity of VLSI design is
by structuring the design in a hierarchical way: decompose a circuit into
several smaller subcircuits, preferably with well defined interfaces and
limited mutual interaction, which in turn can be decomposed into even
smaller sub-subcircuits, etc [Niessen83]. The advantages are clear: the
subcircuits can be constructed and verified independently, and once verified
they need not be verified again when changes occur in either higher circuits
or neighboring subcircuits; only the interaction needs to be verified.

The structure of an hierarchical VLSI design can be typified as a directed
acyclic graph, with the design objects being the vertices and the hierarchical
relationships being the edges connecting these vertices. These hierarchical
relationships are the only composition information about the design that is
known to the DMS. A design object is constructed using zero or more
component- or son-design objects, and can be used as a component by zero
or more composite- or father-design objects. It is even allowed that a
father-design object refers more than one time to the same son-design
object. The leaf nodes are design objects that do not refer to component
design objects; they are just convenient collections of primitive description

120 Proc.IFIP-87

elements.

If a design object is used more than once as a component, the corresponding
hierarchical relationships are just references to a common definition.
Attached to the hierarchical relationship is the information unique to the
son-object's instance, i.e. how the son-object is actually used within the
father-object. This composition information is called the constructor. It can
be used by design tools to compute the actual instances, thereby
instantiating the directed acyclic graph into a tree of instances. The details
of the constructor differ according to the view-type. For instance, in the
layout view the compositions are described by geometric transformations.
The constructor generally contains repetition data to describe regular
structures in an efficient way.

An instance name can be used as an additional selector to identify the
various instances within the same father-object.

The connection between the object types design-object, hierarchical-
relationship (having a one-to-one correspondence with instance), constructor
and instance-name is defined as follows:

TYPE hierarchical-rel (or instance) = instance-name,
father_design-object, son_design-object, constructor

Figure 7.4. Modeling the hierarchical relationships between design objects

All information concerning an instance is aggregated into a private entity;
an instance is an object that can be derived from a son-design object using a
constructor, to be used in a father-design object with an additional selector

1.4 HIERARCHY AND MULTIPLE VIEW-TYPES 121

instance-name. The two design-object attributes each have their own role
(role attributes), denoted by the prefixes fattier and son. The schema
correctly reflects that a design object can be involved in zero or more
hierarchical relationships, both as a father- and as a son-design object.
Multiple hierarchical relationships may exist between a father- and a son-
design object, distinguished by their instance names and constructors.
Relatability guarantees that a hierarchical relationship can not exist without
both a father- and a son-design object.

The schema allows the DMS to administer which design objects are used
where, and to make this information available to the tools and the designer.
Given a father-object, the son-objects can be retrieved, but in a similar way
the father-objects can be retrieved given a son-object. For example, the
son-objects of a design object named 'ALU' can be retrieved by the simple
query:

GET hier-rel / instance
ITS inst-name, son_design-object ITS name
WHERE father_design-object ITS name = 'ALU'

With a similar query we can also retrieve the father-objects that use this
'ALU':

GET hier-rel / instance
ITS father_design-object ITS name,
father_design-object ITS designer
WHERE son_design-object ITS name = 'ALU'

7.4.2 View-types
The second important way to handle the inherent complexity of VLSI
design is to support several Levels of abstraction at which a design can be
represented. The different abstractions of a design are called the views of
that particular design. Each view describes the design to a certain extent,
omitting details that are irrelevant to that specific level of abstraction. Well
known view-types are layout, circuit, logic and functional.

122 Proc.IFIP-87

It is not up to the DMS to determine which view-types are supported. New
design methodologies, and their associated representations, are still evolving.
Hence, the DMS must provide support for organizing multiple views of a
design, without it understanding their detailed structure. In this line of
thought, a design object is a representation of a design at some level of
abstraction. Consequently, we have to extend the type design-object with
the classifying attribute view-type.

TYPE design-object = name, view-type, project, designer, date

According to this type definition each design object is of one view-type.
This classification logically partitions the complete set of design objects into
a number of subsets, one for each view-type. For instance: the layouts.
Retrieval of such a subset can be done by a simple query:

GET design-object
ITS name, designer, date
WHERE view-type = 'layout'

The scope of the name of the design object is limited from the project to the
view-type. A system-wide identification of a design object is given by the
triplet (project, view-type, name).

An interesting aspect of the last modeling step is that we did not introduce
some grouping object, e.g. design, to which all views of a piece of design are
related. This could have been done by introducing the type design as an
intermediate level in our data schema:

TYPE design = name, project
TYPE design-object = design, view-type, designer, date

However, in the multiview context we want each design object to carry ITS
own name, instead of attaching the name to a more generic grouping object.
This name can then be assigned or changed independent of the names of
design objects of other view-types. Retrieval of all design objects that carry
the same name is in our approach just one of many simple queries that can
be issued:

7.4 HIERARCHY AND MULTIPLE VIEW-TYPES 123

GET design-object
ITS view-type, designer, date
WHERE name = 'flipflop'
AND project = 'our_project'

The reason for this approach is, that we do not want to suggest implicit
relationships between objects of different view-types that carry the same
name. Such implicit relationships are not desirable in an environment
where the design objects are constantly evolving and consistency
maintenance across relationships is of primary importance. Secondly, we
want a more flexible mechanism for administering these relationships. For
instance, it must allow more than one layout to be related to the same
functional description.

7.4.3 Equivalence Relationships
We say that two design objects are equivalent if certain aspects of both
descriptions have shown to be identical, for instance, by deriving one
representation from the other in the synthesis or verification process. The
DMS must provide the mechanisms to store and maintain the equivalence
relationships between the original and the derived design objects. For this
purpose we define the object type equivalence-rel as follows:

TYPE equivalence-rel = original_design-object, derived_design-object,
tool, constructor

Figure 7.5. Modeling the equivalence relationships between design objects

Tool is the tool that derived the relationship and constructor is some
information used for this operation (e.g. parameter values). According to

124 Proc.IFIP-87

this schema the DMS supports equivalence relationships that have been
established between pairs of design objects, without any premature
assumption about their nature. A design object can be involved in zero or
more equivalence relationships; many-to-many relationships are covered by
this schema. It also models correctly that an equivalence relationship can
only exist if both design objects exist. When one of them is removed the
semantic integrities require the removal of the equivalence.

The following example shows how we can retrieve the "extracted circuit(s)
of a layout named flipflop":

GET equivalence-rel
ITS derived_design-object ITS
WHERE tool = 'extractor'
AND derived_design-object ITS view-type = 'circuit'
AND original_design-object ITS view-type = 'layout'
AND original_design-object ITS name = 'flipflop'

7.4.4 Tfie Interplay between Hierarchy and Equivalence
It is generally acknowledged that the constraint of identical hierarchical
decompositions across all view-types yields an unacceptable inflexibility
[Katz83a]. In our approach the orthogonal concepts of hierarchy and
equivalence have not been intertwined; there are no mutual dependencies
between the hierarchical and equivalence relationships in the schema.

7.4 HIERARCHY AND MULTIPLE VIEW-TYPES 125

Figure 7.6. The hierarchical multiview framework.

According to our data schema, Figure 7.7 gives a typical example of the
structure of a design:

hierarchy

equivalence

Figure 7.7. Typical structure of a design

Design objects are related as atomic objects by either 'vertical' hierarchical
relationships or 'horizontal' equivalence relationships. This is called the
hierarchy multiview matrix [Dewilde86]. Structure, where it exists, can be
exploited without constraining the designer. Browse tools should
interactively visualize this hierarchical multiview structure to the designer,
thereby encouraging him to follow a structured design methodology,
exploiting the principles of view and hierarchy.

7.5 DESIGN EVOLUTION

126 Proc.IFIP-87

7.5.1 Design Transactions and Concurrency Control

7.5.1.1 The Transaction Model
In conventional database technology, the notion of transaction plays an
important role. A transaction is a collection of database operations that are
either executed completely or not at all. It is the atomic unit of consistency
and recovery. We define a design transaction as a transaction in which a
(single) design object is involved. Examples are an edit session or some
verification on a design object. In section 3 we already mentioned that
design transactions exhibit different characteristics than transactions on
business DBMSs. They typically are of long duration and involve large
amounts of data.

To support design transactions we adopt the transaction model described by
Lorie [Lorie83]. A design object is CheckedOut from a shared database to a
so called private database, while flagging the object by a lock. A Checkln
can be issued by the private system to return the design object to the shared
database, thereby removing the lock. A design transaction is the period of
time from a CheckOut to the corresponding Checkln.

oo
SHARED - ^
SYSTEM \Jy

O
Figure 7.8. A CheckedOut design object

Adopting this model, recovery issues can be handled quite easily. Updates
are not done in place, so when a tool is being aborted, or worse, in case of a
system crash, the design transaction can easily be rewinded by returning to
the last saved copy.

7.5 DESIGN EVOLUTION 127

Design
Transaction

Figure 7.9. Locking between CheckOut and Checkln

The concurrency control strategy is very simple: a complete design object is
locked by creating a design lock entity during the CheckOut transaction on
the shared system. Once the design object has been CheckedOut
successfully, unconstrained access to all the requested representation details
of the object is allowed to the tool that initiated the transaction.

Tools that issue a CheckOut request on an object that has already been
CheckedOut will hit a lock. On this occasion we do not simply refuse the
new request, as even at the level of design object some concurrency has to
be offered, e.g. to allow multiple read-only transactions. A tool can
CheckOut a design object with one of several modes. If the design object
has already been locked by another tool, this mode is compared with the
lock mode to see if they conflict. If so, the designer is notified and allowed
to proceed with other, non-conflicting design activities. Thus, the design
lock has a conceptual meaning to the designer, as opposed to locks in
business DBMSs which are pure implementation matters.

General rules can be applied to decide on the modes. For instance, "update is
exclusive, concurrent read-onlys are allowed". To increase concurrency,
new modes accompanied by refined rules can be introduced. Ultimately, the
CheckOut operation might consult some rule base containing tool specific
compatibility information. For instance, we may define under which
circumstances a DRC and LtoC-extractor are permitted to run concurrently
on the same layout object, even though they both might attach derived

CheckOut

Locked

Checkln

128 Proc.IFIP-87

information to it.

7.5.1.2 Incorporating the Design Lock in the Data Schema
We represent the semantics of the design lock, as follows:

TYPE design-lock = design-object, lock-mode, date, tool, designer

A design-lock is characterized by the design-object that is locked with lock-
mode by tool and designer at date. More than one design lock may be
related to one design object, each with its own lock-mode, date, tool etc.

DESIGN-LOCK/TRANSACTION

TOOL DESIGNER

LOCK-MODE DESIGN-OBJECT

Figure 7.10. Design-lock as the aggregation of its relevant properties

Because there is a one-to-one correspondence between a design lock and a
design transaction, we identify the design-lock object type with a design-
transaction object type. This type aggregates a design object, a tool, a
designer, a date and a lock mode into a meaningful entity: a design
transaction.

Not only the in-progress transactions are administered this way. Based on
this data schema we record all transactions in which a design object has been
involved, switching the mode to completed or failure upon Checkln. In this
way a complete update and verification history is maintained for the
designer.

7.5 DESIGN EVOLUTION 129

Simple queries permit the retrieval of information about transactions that
have been issued on a certain design object, by a certain designer, with a
certain tool or mode, since a certain date, etc. For instance:

GET design-lock. / transaction
ITS design-object ITS name, lock-mode
WHERE designer = 'Gilmour'
AND tool = 'DRC'
AND date > 871103

7.5.1.3 State Management: Towards Powerful Design Management
As was demonstrated by a prototype implementation of a state manager
[Willems87], powerful design management facilities can be offered by
exploiting the transaction information. This state manager relies on two
types of information to perform its tasks.

Firstly, it derives state descriptions for the individual design objects, by
observing the transactions that are performed on them. In fact, the state of
a design object is represented by its transaction history, which has already
been modeled in the data schema (Figure 7.10). The transaction history
reflects "what" has been done "when" to the object, and can be exploited by
the state manager.

Secondly, the state manager consults an external rule base containing
information about the transactions (state transitions) that tools may execute
and their dependencies. Obviously, this information depends on the
particular tool set at hand and must be extended when a new tool is added
to the system. However, this knowledge is well localized within an external
description, instead of being contained in the code of the DMS. Moreover,
default cases allow tools to be added without even modifying the rule base.

The prototype state manager uses the information about the states and state
transitions to perform the following tasks:

• Maintain state descriptions for the individual design objects: The design
transactions that are executed by the tools are identified and

130 Proc.IFIP-87

administered to maintain an overview of the states of the design
objects. The state manager takes into account that new transactions
may invalidate previous ones. The dependency information from the
rule base is applied to compress the list of valid transactions.

• Check start conditions of transactions: The tool-specific start condition
of the requested transaction, which is retrieved from the rule base, is
checked against the state of the design object upon CheckOut. The state
manager decides whether the intended design transaction is allowed for
the particular object.

• Automatic tool activation: If the design object is not in the proper state
upon CheckOut, the state manager tries to bring it into that state. It
consults the dependency information from the rule base to see if it can
run preprocessor-tool(s) that bring the object into the proper state. If
this seems possible, it asks the designer for a confirmation and, if
confirmed, runs the tool(s). After successful completion, the state
manager reconsiders the original CheckOut request, which will then be
granted.

The advantages of this state management facility are clear. The designer
does not have to worry any more whether certain mandatory preprocessing
steps have already been performed and arc still valid, before applying the
next design tool. In the future we can even make the dependency
information from the rule base available to the individual designer. This
will allow him to tune the design system to his personal design style, by
adding the proper dependencies. For instance, he might like to have valid
DRC results, before starting a LtoC-extraction on a layout.

The state manager has been written in Objective-C [Cox86]. This is a
hybrid language that contains all of the C programming language plus a
number of extensions for object oriented programming. An important
aspect of the prototype implementation is that the state management is
completely hidden from the tools. As will be described in section 8, the
tools interact with the DMS via the Data Management Interface (DMI). Not

7.5 DESIGN EVOLUTION 131

a single extension / modification had to be made to this DMI, and hence to
the tools, to incorporate the state manager into the DMS.

7.5.2 Versioning
The VLSI design process is both iterative and tentative. While incremental
changes are being applied, a design typically evolves through several
versions. The DMS must support the designer in maintaining multiple
versions of his design. As an additional advantage, versioning permits
flexible concurrency control and consistency propagation as multiple
versions are allowed to coexist; previous versions can be browsed without
regard to in-progress update transactions on experimental versions that still
have to be verified [Leuken85].

We call a collection of related versions a module. The relationship between
module and design-object is a one-to-many dependency: a module consists
of several design objects (versions), but each design object belongs to one
module. This is represented by the following refinement of the data
schema:

TYPE module = name, view-type, project
TYPE design-object = module, V#, V-status, designer, date

Figure 7.11. Module as a single-view version chain

We introduced the type module as a grouping object to which all versions
having the same name, view-type and project are related; it is a "family" of

132 Proc.IFIP-87

versions. According to the schema, a design object does no longer carry its
own name; the name is attached to the more generic module object, to be
shared as design-object ITS module ITS name by the versions of the module.
The alternative would have been to let each design object (version) carry its
own name and simply extend the type design-object with additional
attributes V# and V-status. However, we prefer to attach the name to a
separate module object, as it corresponds to the designer's idea of a "version
chain". This is a piece of design under construction to which a name can be
assigned, whose name can be changed, etc. A system-wide identification of a
module is given by the triplet (project, view-type, name). Identification of
an individual design object requires an additional version number (V#).

Simply maintaining a collection of numbered versions per module does not
really help the designer. Some mechanism has to be imposed on the version
propagation, to permit the version selection to be automated. For this
purpose, an attribute V-status has been added to design-object. A version
mechanism that exploits this version status in an attractive way has been
described in [Leuken85] and [Wolf86]. We will not present this version
mechanism in detail here, but confine ourselves to listing its most important
features:

• Rules for default version selection upon CheckOut can be applied, taking
tool and CheckOut-mode into account.

• Flexible concurrency control in an environment of hierarchically related
design objects.

• A flexible mechanism for consistency propagation in the hierarchical
multiview context.

7.6 SYSTEM ARCHITECTURE
7.6.1 Introduction
Summarizing the aspects that have been covered in the previous sections, we
conclude:

7.6 SYSTEM ARCHITECTURE 133

• The DMS operates as a librarian with the design objects as its basic
entities.

• A transaction model for these design objects has been defined.

• The DMS maintains an administration on top of the design objects: the
meta design data.

• This meta design data has been modeled according to the following data
schema:

H1ER-REL / INST. EQUIVALENCE-REL LOCK / TRANSACT.

I-NAME CONSTR. DESIGN-OBJECT TOOL / L-MODE

V-STATUS DATE DESIGNER

MODULE

NAME PROJECT VIEW-TYPE

Figure 7.12. The data schema

The data schema defines how the various objects and their relationships are
logically organized, including various integrity constraints. It provides the
basis for the construction of an intelligent DMS, that makes the information
about the structure and status of the design available to both the tools and
the designer. Various example queries already demonstrated that a great
variety of information can be retrieved from a DMS that is based on this
schema.

134 Proc.IFIP-87

DESIGNER

BROWSE
TOOLS

& QUERY
INTERFACE

DESIGN TOOLS

check-out / check-ih -H-
DMS

META DESIGN DATA

in core table handling

DESIGN-OBJECTS

UNIX file system

Figure 7.13. System architecture

Starting from these points, we refine Figure 7.1, to come to the system
architecture depicted in Figure 7.13. The distinction between the detailed
design data, contained in the design objects, and the meta design data is
reflected by the use of different storage components. The design objects are
simply mapped to a distributed hierarchical file system, with a small layer
on top of it to guarantee atomic updates.

The properties of the meta design data are quite different. The meta design
data of a project typically is small in size when compared to the volume of
the corresponding detailed design data. Also, ad-hoc queries for small
amounts of data are issued frequently by the DMS and the (browse) tools.
These are primarily read accesses. The meta design data is designer-
oriented: browse and query facilities must allow the designer to consult the
meta design data. A dedicated storage module has been developed for the
meta design data, to deal with these aspects. See section 6.2.

7.6 SYSTEM ARCHITECTURE 135

The actual DMS, i.e. the "operational facilities", has been built on top of
these storage components. While handling the design transactions via its
Data Management Interface (DM1), it consults and updates its meta design
data. Important modules of the DMS are the version handler, concurrency
controller and state manager. The version handler identifies the design
object upon Checkout, assigns a V# and V-status upon Checkln and checks
/ propagates consistency across relationships upon installation of a new
version in an existing design hierarchy. As described in 5.1, the
concurrency controller decides on concurrency matters upon CheckOut. The
state manager inspects the state of the design object upon CheckOut and
administers the transaction upon Checkln. See section 5.1.

Among the tools on top of the DMS we can distinguish the design tools, e.g.
editors, checkers and simulators, and the browse tools. The browse tools
only access meta design data and do not access design objects. Both types of
tools interface to the DMS via the same DMI.

7.6.2 The Storage Module for the Meta Design Data

7.6.2.1 Meta Design Data Access
As we mentioned in the introduction of this section, a dedicated storage
module has been developed for the meta design data. To its clients, i.e.
(browse) tools and the DMS itself, it appears as an implementation of the
OTO-D data model. Via its programming interface, queries can be issued to
store or retrieve information that is structured according to the data
schema. The queries can simply be passed as strings, according to the
OTO-D Data Manipulation Language (DML).

The data schema has not been hard-wired in this storage module, as we do
not assume that the schema of Figure 7.12 represents the "fixed-for-all-
times" data schema in full detail. Instead, the storage module reads its
schema from an external description at startup. This allows our DMS to
evolve without extensive programming efforts at its lower levels.

136 Proc.IFIP-87

A more or less classical transaction facility permits clients to issue multiple
queries as one transaction, that is, without interference from other clients.
This facility permits certain DMS-operations, e.g. CheckOut or Checkln, to
be implemented as atomic actions. These low level transactions should not
be confused with the high level design transactions as presented in section
5.1. The low level transactions are restricted to access to the meta design
data and are assumed to be of short duration. In fact these transactions are
used to implement the long design transactions on design objects.

7.6.2.2 Implementation
The implementation of the storage module consists of a query layer on top
of a generic table handler. The table handler operates as a storage module
for tabularly structured data. The query layer on top of it takes care of
query interpretation and query resolution. It maps each composed type of
the data schema to one or more tables.

To offer a transaction facility, concurrency control and recovery
mechanisms have to be employed. Concurrent access to the meta design
data must be controlled to preserve its consistency, in particular when
multiple queries are issued as one transaction. Recovery facilities have to be
such that results of committed transactions are persistent across hard- or
soft crashes, and results of incomplete transactions can always be rewinded.

The table handler provides basic concurrency control and recovery
mechanisms. Access to the tables is controlled by an open / close strategy:
They must be opened before their contents can be accessed to resolve a
query request. The tables can be opened for "write", which is exclusive, and
for "read-only", which is non-exclusive with respect to other read-onlys.
Multiple tables can be opened at once. The correct operation of the open /
close strategy is guaranteed by semaphores supplied by the UNIX operating
system. The query layer implements its transaction strategy on top of the
open / close strategy of the table handler. All tables that are required to
perform the transaction are opened at the start of the transaction and closed
when the operations have been finished, thereby committing the transaction.

7.6 SYSTEM ARCHITECTURE 137

As all requested tables are opened at once no deadlocks can occur.

Special attention has to be paid to the communication mechanisms that are
employed internally by the storage module, as a number of requirements
for the meta design data access have to be satisfied:

• Fast access to the meta design data.
The potentially large number of accesses by DMS and tools must be
handled efficiently.

• Sharing of the meta design data.
The module must offer high accessibility in a concurrent environment.

• Local as well as remote data communication.
The module has to operate in a distributed environment.

Our solution (Figure 7.14) is a combination of the use of shared memory
techniques and the use of a server process per project that responds to
messages that appear in its message queue.

Local Tool Remote Tool

sign Objects in
File System

Figure 7.14. Mechanisms for (meta) design data access

138 Proc.IFIP-87

When a project becomes "active", a Data Management Process (DMP) is
started which maps the meta design data of this project into shared memory
(UNIX system V and BSD 4.3). Tool processes that run on the same
machine as the project and its DMP can attach this shared memory to their
data space. That is, several processes can share data directly, by having
some pages of their virtual memory referring to the same physical memory.
Queries from these local processes are executed efficiently by functions that
have direct access to the meta design data in shared memory.

If a tool process runs on a different machine than the project with its DMP,
its access functions can not directly access the meta design data in shared
memory. In this case, the functions send their requests to the appropriate
DMP [Birrell84]. At the side of the DMP, the requests from the remote
processes appear in a message queue. The DMP executes the requests for the
remote processes and sends the result back, to them.

The physical distribution of the (meta) design data is made transparent to
the higher layers of the system, by hiding the local / remote selection in the
"low level" access functions. These functions also have the possibility to
defer access, for example when the requested part of the meta design data is
being updated; a short wait may occur when a table has already been opened
in a conflicting mode by another process. As only short transactions occur
at this level, such a split-second delay is felt to be a minor inconvenience.

An interesting efficiency aspect in this concurrent environment results from
the distinction that we make between the detailed design data contained in
the design objects and the meta design data on top of it. Concurrency issues
concerning the detailed design data are resolved at the meta design data
level upon CheckOut (section 5.1). Once access to a design object has been
granted, a tool can freely dive into the corresponding design data. Access
functions permit efficient retrieval (storage) of the detailed design data from
the file(s) in which it is contained, without the overhead for concurrency
control. This is particularly important as relatively large amounts of data
have to be handled at this level.

7.6 SYSTEM ARCHITECTURE 139

7.7 THE DATA MANAGEMENT BROWSER
The Data Management Browser (DMB) enables the designer to browse
through the meta design data, which is maintained by the DMS. The
designer can start a DMB and open one of his projects. The DMB tries to
establish communication with the particular project and opens a window on
the screen. After a successful connection has been established, the designer
has access to the meta design data of that project. The browse facilities fall
apart in two categories: a generic query interface and dedicated browse
facilities. The query interface is generic in that it can handle arbitrary data
schemas. The implementation of the dedicated browse facilities, on the
other hand, depends on the data schema at hand.

Via the query interface the designer can issue OTO-D query requests.
While deriving the schema of Figure 7.12, we already presented various
queries to illustrate the use of the OTO-D DML for information retrieval.
However, we have not yet discussed how the interaction with the designer
actually proceeds. At the moment the DMB accepts the queries in textual
form, passes them directly to the storage module for the meta design data
and displays the responses. For instance, with a simple query the designer
can ask the DMB to list all modules in the particular project. A more
sophisticated type of browsing is offered by supporting wildcards. For
example,

GET module
ITS name, view-type
WHERE name = 'F*'

returns the names and view-types of the modules whose name starts with a
"F":

140 Proc.IFlP-87

module

mlOO
m l l 8
ml20
ml33
ml49

name

FlipFlop
FullAdd
FlipFlop
FlipFlopl
FullAdder

view-type

layout
layout
circuit
circuit
logic

At the moment we are working towards an implementation of the DMB that
lets the designer enter his queries in a more convenient way. It graphically
displays the data schema together with some menus containing, among other
things, the OTO-D keywords. With this facility the designer can
interactively compose correct query requests by pointing with his mouse at
the proper keywords, types and attribute relationships.

Dedicated browse facilities allow the designer to inspect particular aspects
of his design in an attractive way. For instance, browse tools have been
constructed to interactively visualize the hierarchical multiview structure,
to inspect the version chains, or to display the transaction histories of the
design objects. They exploit graphical facilities, pop-up menus, etc. to
present graph-like representations of the structure of the design, which can
easily be browsed by the designer.

The DMB has been written using a distributed windowing system: X-
windows. The X-windows system [Gettys86] is the only windowing
system that has this functionality and is a well accepted standard.

1.8 THE DATA MANAGEMENT INTEREACE (DMI)
7.8.1 Introduction
The tools communicate with the DMS via the Data Management Inter/ace
(DMI) [Meijs87]. This is a set of library functions that can be used by the
tool developer, without the necessity to have a detailed understanding of the
implementation of the DMS. By means of this DMI the tools obtain access
to the design data, while taking advantage of the facilities that are provided

7.8 THE DATA MANAGEMENT INTERFACE (DMI) 141

by the DMS.

With our data modeling activities we have been aiming at a DMS that is
based on the invariants in VLSI design rather than the features of a
particular tool set or design representation. Although this permits our DMS
to be relatively stable over time, we have to be aware of system evolution.
The implementation of all required DMS facilities is a huge task., which
implies iteration over several "releases". Secondly, we do not pretend to
have a complete view of all DM-issues at this moment. We must allow new
facilities to be added and existing ones to be modified whenever necessary.

Consequently, the tools should depend as little as possible on the DMS to
avoid extensive tool modifications with each new release of the DMS.
Furthermore, the DMS must be open-ended: It should be easy to add new
tools to the system in such a way that they become a consistent part of the
design environment. Thus, what we need is a DMI that somehow decouples
the software development and evolution of the DMS on the one hand and
the tools on the other hand. We will introduce such a DMI, based on a
transaction schema that formalizes the procedural aspects of the
communication between the tools and the DMS.

7.8.2 DMI Requirements
The following requirements have to be satisfied by a DMI:

• The DMI must bring about efficient interaction between the tools and the
DMS. For instance, efficiency partially results from choices that have
been made in the previous sections, such as the distinction between meta
design data and the design objects. The DMI should somehow adhere to
these choices.

• The DMI should be independent of specific tool features or design
methodologies. For example, the DMI must not prescribe data formats.
It should be universal, to result in an open-ended design system where
the DMS acts as a free-for-all public repository that can communicate
with any type of tool and environment.

142 Proc.IFIP-87

• The DMI should be independent of specific features of a DMS. For
example, it must allow interfacing to DMSs with or without versioning,
concurrency control, multiple view-types, etc. When this requirement is
met, the tools can actually be "plugged in" in the same way in different
DMSs.

In summary, a DMI should offer some degrees of freedom, but at the same
time the necessary discipline to facilitate software evolution and exchanges.
Our opinion on how to introduce this discipline is expressed most concisely
by the following thesis:

Thesis
The optimal way to decouple the development and evolution of the DMS
and the tools is to agree on a common transaction schema, and reflect this
in the definition of the DMI.

A transaction schema (not to be confused with a data schema) is a
procedure according to which the tools obtain access to the design data. Our
transaction schema is based on a number of assumptions that we believe to
be completely general within the context of chip design.

We assume that the design data is organized on a per project basis. A
project offers the designer a local context in which a collection of design
objects is present. As elucidated before, a design object describes a
functional part of an integrated circuit in terms of certain primitives as
well as references to other design objects, and is the appropriate unit of
(exclusive) access for manipulation of the design data. Within a design
object the actual design data is organized as a set of streams, but no
assumptions are made on the contents of these streams.

The agreement on these assumptions permits the definition of a transaction
schema, and hence a DMI, that localizes the interaction between the tools
and the DMS. Any tool modifications that are required to adapt the tool to
other implementations of a DMS will then be strictly local and will not alter
the structure of the program. Consequently, they can be done with much

7.5 THE DATA MANAGEMENT INTERFACE (DMI) 143

less effort.

7.5.3 DMI Transaction Schema
As a consequence of the recognition of project, design object and stream as
units of access, the transaction schema is a layered one. The effect of a tool
on a design environment is called a tool-execution. It is a (possibly
interleaved) sequence of project transactions bracketed by an initialization
and a termination. Similarly, a project transaction is a (possibly
interleaved) sequence of design transactions, i.e. transactions on design
objects (section 5.1), bracketed by an open project and a close project. A
design transaction is a (possibly interleaved) sequence of design data
transactions bracketed by a CheckOut and a Checkln, while a design data
transaction is a sequence of design data 10 operations bracketed by an open
stream and a close stream. A design data 10 operation is either a read
operation or a write operation.

We present these definitions graphically in Figure 7.15. The boxes on one
level represent a sequence of actions, executed from the left to the right.
Child boxes specify a refinement of the father action. A starred box
represents an iteration and boxes with a small circle imply alternatives.
This diagram is a variation on a Entity-Action diagram as defined in
[Jackson83].

7.8.4 The DMI

7.8.4.1 Concepts
Basically, there is one access function in the DMI for each leaf of the tree in
Figure 7.15. Access to either the design environment, a project, a design
object or a stream can be obtained by executing the corresponding opening
bracket function, as represented by the leafs at the left-hand side of the
tree. A transaction is terminated by executing the corresponding closing
bracket function at the right-hand side. In between, lower level
transactions can be performed.

144 Proc. IFIP-87

Figure 7.15. Transaction Schema

The functions in the DMI co-operate with each other in such a way that
access proceeds in accordance to the transaction schema. They communicate
by means of abstract data types, called keys. The contents of these keys is
not fully specified in the DMI definition, but can depend on the particular
DMS at hand. There are four types of keys, one for each layer. The key
returned by an opening bracket function is part of the argument list of the
functions at the next lower level and of the closing bracket function. This
allows the interleaving of more than one sequence of calls of lower level
functions. The closing bracket function invalidates the key.

7.8 THE DATA MANAGEMENT INTERFACE (DMI) 145

After verifying and establishing access, the opening bracket function stores
appropriate information in the key that is returned, for further use by the
lower level functions. As a direct advantage, the visibility of particular
features of the DMS is confined to a small number of places in the DMI.
Depending on the particular DMS at hand, the key may contain, for
instance, information about the physical location, access permissions and
state of the object for which access was obtained. Each key contains a
pointer to its "parent key", so that the complete context is known at the
lowest levels. Also, all keys with the same parent key are linked together
in a list that is attached to this parent key. This facilitates error recovery
and automatic clean-up actions.

The opening bracket functions take as arguments, apart from a parent key,
an identification of the object for which access is to be obtained and an
access mode. In an actual implementation these arguments may reflect
certain features of the DMS. In section 5.1 we already saw that the DMS
takes the CheckOut mode into account to decide on concurrency matters.
As another example: when the DMS provides versioning facilities, the
parameters of the dmCheckOut function must somehow allow identification
of the version to be CheckedOut. Including browse capabilities for object
selection in the opening bracket functions may, however, hide such DMS-
specific features from the tools.

In an actual implementation of a DMS, appropriate actions will be
associated with each function of the DMI. By introducing the right levels of
intervention, the DMI provides a natural and universal framework to
localize these actions. In the next subsection, the functions at the different
layers are presented, together with some examples that illustrate how
particular DMS features can be embedded in the DMI.

7.8.4.2 The DMI functions

7.8.4.2.1 Global initialization and termination
Two functions are needed for global initialization and termination. They
establish and release contact between the tool and the design environment.

146 Proc. IFIP-87

• dmlnit (toolname): envkey
• dmQuit (envkey)

Dmlnit is the opening bracket function of a tool-execution and returns an
environment key. This key contains information about the design
environment (for example hostname, user-id, process-id, working directory
etc.) in which the tool is executed. The tool identifies itself by means of
the argument toolname. An action that might be performed by the DMS is
to consult a tool database to obtain more detailed information about the
tool.

DmQuit is the closing bracket of a tool-execution. It takes care of the
necessary clean up operations.

7.8.4.2.2 Project transaction layer
At this level such aspects as projects, libraries and distributed databases can
be handled.

• dmOpenProject (envkey, projid, openprojmode): projectkey
• dmCloseProject (projectkey, closeprojmode)

DmOpenProject initiates a project transaction and returns a project key.
This key contains information about the particular project, represented by
projid, and the access mode, represented by openprojmode. Actions that
might be performed are verification of the access rights, retrieval of
technology information, setting up network connections or contacting a Data
Management Process.

DmCloseProject terminates the project transaction. The details of this
operation are specified by closeprojmode. In a physically distributed
environment, actions to be performed might include returning local copies,
closing network connections, etc.

7.8.4.2.3 Design transaction layer
The functions at this layer take care of aspects of design transactions. To
mention are concurrency control, versioning, view-types, maintenance of
verification statuses and equivalence relationships, etc. See also section 5.

7.8 THE DATA MANAGEMENT INTEREACE (DM!) 147

• dmCheckOut (projectkey, deslgnobjectid, checkoutmode): deslgnobjectkey
• dmCheckln (deslgnobjectkey, checklnmode)

DmCheckOut is the opening bracket function of a design transaction. Its
arguments are a project key, identifying the particular project for which
access rights have been obtained by dmOpenProject, and an identification of
a design object, denoted by designobjectid. The checkoutmode parameter
specifies what type of interaction is to take place, so that the DMS can
anticipate on it. This mode may, for example, be used by the concurrency
controller, as explained in section 5.1. The version handler may take the
mode into account for selection of a particular version, e.g. the object having
V-status "working" is by default selected for update transactions.

DmCheckln is called to terminate a design transaction initiated by
dmCheckOut. Designobjectkey has been obtained from dmCheckOut.
Checkinmode specifies how the transaction has to be terminated, e.g.
whether the transaction should commit or rewind. Actions that might be
performed include removal of locks, updating of verification statuses,
deletion of scratch data that was created for recovery purposes, etc.

7.8.4.2.4 Design-data transaction layer
These functions are at the lowest level, i.e. closest to the physical 10. They
map the design data to and from the physical storage structure being
exploited.

• dmOpenStream (deslgnobjectkey, strname, iomode): streamkey
• dmCloseStream (streamkey, closestreammode)
• dmGetDesignData (streamkey, format, arguments)
• dmPutDeslgnData (streamkey, format, arguments)

DmOpenStream returns a stream key, which is used by dmGetDesignData,
dmPutDesignData and dmCloseStream. Strname identifies a stream of data
belonging to the design object identified by designobjectkey. Iomode
specifies the mode of access to the data, e.g. read-only or write.
DmOpenStream can check this mode against the CheckOut mode. For
example, it should be forbidden to open a stream for write if the CheckOut
mode was read-only. A stream can simply be implemented as a file, but

148 Proc.IFIP-87

this need not be the case. For example, experiments have shown that it is
possible to transparently map 10 operations onto shared memory as an
efficient channel for inter-tool communication via the DMI.

DmGetDesignData and dmPutDesignData perform the actual in- and output
of design data. They know the mapping to and from the storage structure
employed. They do not restrict the formats of the detailed design data that
can be transferred. The mechanism used is very similar to that of the
printfO and scanfO functions in C.

DmCloseStream must be called to terminate a design data transaction. Files
can be closed or allocated memory can be freed. Closestreammode specifies
the details.

7.8.4.2.5 Calling pattern
As an illustration of how these functions co-operate, we present in Figure
7.16 a calling pattern of the functions of the DMI. The layered structure of
the transaction schema is reflected in the indentation of the code.

envkey :- dmlnit (toolname);

projectkey :- dmOpenProject (envkey, projid, openprojmode);

desobjkey :- dmCheckOut (projectkey, desobjid, checkoutmode);

streamkey :- dmOpenStream (desobjkey, strname, iomode);

dmPutDesignData (streamkey, format, arguments);
dmGetDesignData (streamkey, format, arguments);

dmCloseStream (streamkey, closestreammode);

dmCheckln (desobjkey, checklnmode);

dmCloseProject (projectkey, closeprojmode);

dmQuit (envkey);

Figure 7.16. DMI Calling Pattern

7.8 THE DATA MANAGEMENT INTEREACE (DMI) 149

7.8.4.2.6 Meta Design Data Access
The transaction schema presented sofar is mainly concerned with access to
the detailed design data; it defines the procedure that must be followed to
arrive at the contents of the design objects. However, the tools must also be
allowed to access the meta design data, for instance, to obtain a module-list
or to ask. for and insert equivalences. For this purpose the functions
dmGetMetaDesignData and dmPutMetaDesignData are provided.

• dmGetMetaDesignData (projectkey, request)
• dmPutMetaDesignData (projectkey, request)

DmGetMetaDesignData (DmPutMetaDesignData) can be used to obtain
(store) information from (into) the meta design data of the project
identified by projectkey. By means of the request argument, the specific
retrieval or update operations (queries) can be passed to the DMS. These
functions hide the actual implementation of the meta design data storage
module.

Which queries can actually be formulated depends, of course, on the data
schema employed by the DMS. For instance, a DMS supporting equivalence
relationships between design objects of (possibly) different view-types,
accepts queries on this information. Tools that interact at this level with
the DMS are therefore vulnerable to schema changes. Decoupling can,
however, be obtained as long as the queries that the tool formulates on its
"application schema" can be mapped to (emulated by) queries on the DMS
schema.

7.8.5 Discussion
The DMI introduced here formalizes the procedural aspects of the
interaction between VLSI design tools and a DMS that provides a number of
facilities to these tools. Openness is retained by avoiding tool-specific
aspects in the DMI definition. Furthermore, we illustrated the ability of the
DMI to absorb DMS-specific features that not necessarily have to be visible
to the tools.

150 Proc.IFIP-87

By offering a proper set of "anchor points", the DMI greatly facilitates
software exchangeability: Modifications that are required to adapt a tool to
another DMS are strictly local and do not alter the structure of the
program. In fact, most of the work, can usually be done mechanically, for
example with a stream editor. As an illustration of the openness, we
remark, that integration of the KIC layout editor [Billingsley83] via the
DMI was completed in about two days.

As an additional benefit, the DMI completely hides operating system
dependencies. There are no path-names, file access modes, system calls etc.
visible in the tools. Consequently, it should be easy to port the design
system to other operating systems by changing the DMI library.

7.9 CONCLUSIONS AND RESULTS

We have presented a DMS for VLSI design that provides an open
framework, for the integration of design tools and relieves the designer from
the burden of organizing his design data. After identifying the basic entity
that is involved in a design transaction, the design object, we developed a
data schema representing the logical organization of the VLSI design data.
The OTO-D semantic data model, offering a set of well defined modeling
constructs, permitted us to formalize the semantics of the meta design data.
Openness of the DMS was secured by avoiding incorporation of features of a
particular tool set or design representation.

The resulting data schema is simple (5 composed types), yet powerful
enough to reflect the basic concepts of the DMS we outlined in section 1. It
incorporates such features as hierarchical decomposition, multilevel design,
design transactions / concurrency control, maintenance of verification
statuses and versioning. Thus, it provides the basis for a DMS that
implements a set of global system facilities to provide a framework, for the
construction of a powerful design environment. The DMS serves both the
tools and the designer by making the information about the structure and
status of the design available to them.

7.9 CONCLUSIONS AND RESULTS 151

This DMS-research has been carried out in the context of the ICD-NELSIS
system [Dewilde86a], which currently contains over 40 DMS-intensive
CAD/IC tools such as layout editors and generators, design rule checkers,
extractors, a placement and routing system, simulators, etc. These tools
have all been equipped with the DMI defined in this paper. The decoupling
introduced by this DMI turns out to be extremely useful for our software
developments, as it permits DMS and tools to evolve separately to a large
extent. Work, is under way to define a DMI standard in a wider context
[SECT87].

In the ICD-NELSIS system, several DMS-experiments have been carried out
and a prototype has been produced. Currently, we are working towards a
DMS-release that comprises all facilities described in this paper (and more).
The meta design data storage module exploiting shared memory is
operational, including the query facilities. An attractive version mechanism
and state manager have been implemented. Interactive browsing facilities
are currently being implemented. Bringing these parts together will yield
an operational DMS at short notice, to which all tools can easily be
interfaced via the DMI. The implementation of the DMS makes use of well
known standards as the C programming language and the X-windows
system. From the experience we have gained, it appears that the principles
introduced in this paper indeed allow to do proper data management
efficiently.

Future work will, among other things, focus on powerful design
management facilities that can guide the designer through the design process
towards a correct design. The first ideas for this have already been
presented in section 5.1. Another area of interest is the management of
information about such environmental aspects as technologies, tools,
designers, etc, as a logical extension of the information modeling approach
presented in this paper.

152 References

References

Afsarmanesh84. Afsarmanesh, H. and McLeod, D., "A Framework for
Semantic Database Models," Proc. NTU Symposium on New Directions
for Database Systems, (May 1984).

Batory85. Batory, D.S. and Kim, Won, "Modeling Concepts for VLSI CAD
Objects," ACM Trans, on Database Systems 10(3) pp. 322-346. (Sept
1985).

Bekke83. Bekke, J.H. ter, "Database Design (in Dutch)," Stenfert Kroese,
(1983).

Bic86. Bic, L. and Gilbert, J.P., "Learning from AI: New Trends in
Database Technology," IEEE Computer Magazine 19(3) pp. 44-54
(March 1986).

Billingsley83. Billingsley, G. and Keller, K., "KIC: A Graphics Editor for
Integrated Circuits," User's Manual, University of California at
Berkeley (1983).

Birrell84. Birrell, A.D. and Nelson, B.J., "Implementing Remote Procedure
Calls," ACM Trans, on Comm. Sys. 2(1) pp. 39-59 (Feb 1984).

Brouwers87. Brouwers, J. and Gray, M., "Integrating the Electronic Design
Process," VLSI Systems Design, pp. 38-47 (June 1987).

Buchmann84. Buchmann, A.P., "Current trends in CAD databases,"
Computer-Aided Design 16(3) pp. 123-126 (May 1984).

Cox86. Cox, B.J., Object Oriented Programming: An Evolutionary Approach,
Addison-Wesley Publishing Company (Aug 1986).

Dewilde86. Dewilde, P., Annevelink, J., Leuken, T.G.R. v., and Wolf, P.
v.d., Intelligent VLSI Datamanagement, Delft University of
Technology (1986).

References 153

Dewilde86a. Dewilde, P., Leuken, T.G.R. van, and Wolf, P. van der,
"Datamanagement for Hierarchical and Multiview VLSI Design," pp.
1.1-1.29 in The Integrated Circuit Design Book: Papers on VLSI
Design Methodology from the ICD-NELSIS Project, ed. P. Dewilde,
Delft University Press, Delft (1986).

Gettys86. Gettys, J., Newman, R., and Fera, T. Delia, "Xlib - C Language
X Interface, Protocol Version 10," MIT, Cambridge, Mass., (1986).

Hardwick87. Hardwick, M. and Spooner, D.L., "Comparison of Some Data
Models for Engineering Objects," IEEECC&A, pp. 56-66 (1987).

Jackson83. Jackson, M., System Development, Prentice Hall, Englewood
Cliffs, N.J. (1983).

Katz83. Katz, R.H., "Managing the Chip Design Database," IEEE Computer
Magazine 16(12) pp. 26-35 (Dec 1983).

Katz83a. Katz, R.H. and Weiss, S., "Chip Assemblers: Concepts and
Capabilities," Proc. 20th IEEE Design Automation Conference, pp. 25-
30(1983).

Leuken85. Leuken, T.G.R. van and Wolf, P. van der, "The ICD Design
Management System," Proc. IEEEICCAD - 85, pp. 18-20 (1985).

Lorie83. Lorie, R. and Plouffe, W., "Complex Objects and Their Use in
Design Transactions," Proc. Databases for Engineering Applications,
ACM Database Week, pp. 115-121 (May 1983).

Lyngbaek84. Lyngbaek, P., Information Modeling and Sharing in Highly
Autonomous Database Systems, Ph.D. Thesis, Univ. of So. California,
Los Angeles (August 1984).

Meijs87. Meijs, N. v.d., Leuken, T.G.R. v., Wolf, P. v.d., Widya, I., and
Dewilde, P., "A Data Management Interface to Facilitate CAD/IC
Software Exchanges," Proc. IEEEICCD '81, (1987).

154 References

Newton86. Newton, A.R. and Sangiovanni-Vincentelli, A.L., "Computer-
Aided Design for VLSI Circuits," IEEE Computer Magazine, pp. 38-60
(April 1986).

Niessen83. Niessen, C , "Hierarchical Design Methodologies and Tools for
VLSI Chips," Proceedings of the IEEE1\{\) pp. 66-75 (Jan 1983).

SECT87. SECT,, "Software Environment for CAD Tools," The Sect Data
Handling Committee, CadLab, CNET, NMP-CAD, ES2, TU Delft,
(1987).

Sidle80. Sidle, T.W., "Weaknesses of Commercial Data Base Management
Systems in Engineering Applications," Proc. 17th IEEE Design
Automation Conference, pp. 57-61 (June 1980).

Smith77. Smith, J.M. Smith and D.C.P., "Database abstractions:
Aggregation and Generalization," ACM Trans. Database Systems
2(2) pp. 105-133 (June 1977).

Willems87. Willems, W.G.H.M., "A VLSI Design Manager Based on State
Management," MS-Thesis, Delft University of Technology, Delft
(Sept 1987).

Wolf86. Wolf, P. van der, "Conceptual Design of a Design Data
Management System for VLSI Design," MS-Thesis, Delft University
of Technology, Delft (July 1986).

Bibliography 155

B I B L I O G R A P H Y

Ackiand, B., Dickenson, A., Ensor, R., Gabbe, J., Kollaritsch, P.,
London, T., Poirier, C , Subrahmanyam, P., and Watanabe, H.,
"CADRE - A System of Cooperating VLSI Design Experts," Proc. IEEE
ICCD '85, pp. 99-104 (1985).

Afsarmanesh, H. and McLeod, D., "A Framework for Semantic
Database Models," Proc. NTU Symposium on New Directions for
Database Systems, (May 1984).

Afsarmanesh, H., Knapp, D., McLeod, D., and Parker, A., "An
Extensible Object-Oriented Approach to databases for VLSI/CAD,"
Proc. Int. Con/, on VLDB '85, (Aug. 1985).

Aho, A.V., Hopcroft, J.E., and Ullman, S.D., "The Design and Analysis
of Computer Algorithms," Reading MA Addison-Wesley, (1974).

Anceau, F. and Aas, E.J., VLSI 83, VLSI Design of Digital Systems,
North-Holland (1983).

Annevelink, J., "Object Oriented Data Management for VLSI Design,"
Internal Report, Delft University of Technology, Delft (Jan 1986).

Apollo, Computer Inc. and Bellerica, N., Apollo Domain Architecture.
Feb. 1981.

Bachman, C.W., "Data Structure Diagrams," Data Base 1(2) pp. 4-10
(1969).

Backus, J., "Can Programming Be Liberated from the von Neuman
Style? A Functional Style and Its Algebra of Programs," Comm. of the
ACM. 21 . no 8. pp. 613-641 (August 1978).

Bancilhon, F., Kim, W., and Korth, H.F., "Transactions and
Concurrency Control in CAD Databases," Proc. IEEE ICCD, pp. 86-89

Bibliography

(1985).

Barbacci, M.R., "An Introduction to ISPS," Technical Report,
Department of Computer Science, Carnegie-Mellon University, (1978).

Batory, D.S. and Kim, Won, "Modeling Concepts for VLSI CAD
Objects," ACM Trans, on Database Systems 10(3) pp. 322-346. (Sept
1985).

Bayer, R., Heller, H., and Reiser, A., "Parallelism and Recovery in
Database Systems," ACM Trans, on Database Systems 5(2) pp. 139-156
(June 1980).

Bekke, J.H. ter, "Database Design (in Dutch)," Stenfert Kroese, (1983).

Bekke, J.H. ter, "De Effectiviteit van Relationele Systemen," Proc.
Conf. Data: Beheer en Controle, pp. 19-28 NGI, Sectie EDP-Auditing,
(May 1985).

Bekke, J.H. ter, "OTO-D: Object type oriented data modeling," Report
86-02, Delft University of Technology, Delft (1986).

Bell, C.G. and Newell, A., "Computer Structures: readings and
Examples," Mc-Graw Hill Book Compagny, New York, (1971).

Bennett, K.R., "A Practical Application of Data Modelling to Design
System Integration," Proc. IEEE Custom IC Conference, pp. 436-440
(1984).

Bernstein, P.A., "Concurrency Control in Distributed Database
Systems," ACM Computing Surveys 13(2) pp. 185-221 (1981).

Bernstein, P.A., "Query Processing in a System for Distributed
Databases (SDD-l)," ACM Transactions on Database Systems 6(4) pp.
602-625(1981).

Bernstein, P.A. and Goodman, N., "Analyzing Concurrency Control
Algorithms When User and System Operations Differ," IEEE trans, on

Bibliography 157

Software Engineering SE-9(3) pp. 233-239 (May 1983).

Bic, L. and Gilbert, J.P., "Learning from AI: New Trends in Database
Technology," IEEE Computer Magazine 19(3) pp. 44-54 (March 1986).

Billingsley, G. and Keller, K., "KIC: A Graphics Editor for Integrated
Circuits," User's Manual, University of California at Berkeley (1983).

Birmingham, W., Joobbani, R., and Kim, J., "Knowledge-Based Expert
Systems and Their Application," Proc. 23rd IEEE Design Automation
Conference, pp. 531-539 (1986).

Birrell, A.D., Levin, R., Needham, R.M., and Schroeder, M.D.,
"Grapevine: An Exercise in Distributed Computing," Comm. of the
ACM. 25 . no 4. pp. 260-274 (April 1982).

Birrell, A.D. and Nelson, B.J., "Implementing Remote Procedure
Calls," ACM Trans, on Comm. Sys. 2(1) pp. 39-59 (Feb 1984).

Bochmann, G.V and Sunshine, C.A., "Formal Methods in
Communication Protocol Design," IEEE tran. on Communications
COM-28(4) pp. 624-631 (April 1980).

Boggs, D.R., Shoch, J.F., Taft, E.A., and Metcalfe, R.M., "Pup: An
Internetwork Architecture," IEEE Trans, on Comm. 28. no 4. pp.
612-623 (April 1980).

Brachman, R.J., Fikes, R.E., and Levesque, H.J., "Krypton: A
Functional Approach to Knowledge Representation," IEEE Computer
Magazine, pp. 67-73 (Oct 1983).

Breuer, M.A., "Digital System Design Automation: Languages,
Simulation and Data Base," London Pitman, (1977).

Brodie, M.L., "On Modelling Behavioural Semantics of Databases,"
Proc. 7th IEEE Int. Conference on Very Large Databases, pp. 32-42
(Sept 1981).

158 Bibliography

Brodie, ML. and (Eds), S.N. Zilles, "Proc. of Workshop on Data
Abstraction, Databases and Conceptual Modelling at Pingree Park, June
23-26 1980," Sigplan Notices 16(l)(Jan 1981).

Brouwers, J. and Gray, M., "Integrating the Electronic Design Process,"
VLSI Systems Design, pp. 38-47 (June 1987).

Bryant, R., Third Caltech Conference on VLSI, Computer Science Press
(1983).

Buchmann, A.P., "Current trends in CAD databases," Computer-Aided
Design 16(3) pp. 123-126 (May 1984).

Buckley, G.N. and Silberschatz, A, "Beyond Two-Phase Locking,"
Journal of the ACM 32(2) pp. 314-326 (April 1985).

Bull,, GEC„ ICL„ Nixdorf,, Olivetti,, and Siemens,, PCTE: A basis f or a
portable common tool environment, Third edition, volume 1 1985.

Bushnell, M.L. and Director, S.W., "VLSI CAD Tool Integration using
the ULYSSES Environment," Proc. 23rd IEEE Design Automation
Conference, pp. 55-61 (1986).

Chu, K.C., Fishburn, J.P., Honeyman, P., and Lien, Y.E., "A Database-
Driven VLSI Design System," IEEE trans. Computer-Aided Design
CAD-5(1) pp. 180-187 (January, 1986).

Codd, E.F., "A Relational Model of Data for Large Shared Data
Banks," Comm. of the ACM. 13 pp. 377-387 (1970).

Cooper, E.C., "Analysis of Distributed Commit Protocols," ACM
Proceedings of SIGMOD Conference, pp. 175-183 (June 1982).

Cox, B.J., "The Object Oriented Pre-Compiler: Programming Smalltalk
80 Methods in C language," ACM Sigplan Notices 18(1) pp. 15-22 (Jan
1983).

Bibliography 159

Cox, B.J., "Message/Object Programming: An Evolutionary Change in
Programming Technology," IEEE Software Magazine, pp. 50-61 (Jan
1984).

Cox, B.J., Object Oriented Programming: An Evolutionary Approach,
Addison-Wesley Publishing Company (Aug 1986).

Daniel, M.E. and Gwyn, C.W., "CAD Systems for IC Design," IEEE
Trans, on CAD of Integrated Circuits and Systems CAD-l (l) pp. 2-12
(Jan 1982).

Daniels, D., "An Introduction to Distributed Query Compilation in
R*," Distributed Data Bases, pp. 291-309 North-Holland Company,
(1982).

Danthine, A.A.S., "Protocol Representation with Finite-State Models,"
IEEEtran. on Communications COM-28(4) pp. 632-643 (April 1980).

Date, C.J., An Introduction to Database Systems, Addison-Wesley
Systems Programming Series (1981).

Davio, M., Deschamps, J.P., and Thayse, A., Digital Systems with
Algorithm Implementation, John Wiley & Sons (1983).

Dewilde, P., Leuken, T.G.R. van, and Wolf, P. van der,
"Datamanagement for Hierarchical and Multiview VLSI Design," pp.
1.1-1.29 in The Integrated Circuit Design Book: Papers on VLSI
Design Methodology from the ICD-NELSIS Project, ed. P. Dewilde,
Delft University Press, Delft (1986).

Dewilde, P. ed., The integrated circuit design book: Papers on VLSI
design methodology from the ICD-NELSIS Project, Delft University
Press, Delft, The Netherlands (1986).

Dewilde, P., Annevelink, J., Leuken, T.G.R. v., and Wolf, P. v.d.,
Intelligent VLSI Datamanagement, Delft University of Technology
(1986).

Bibliography

Director, S.W., Parker, A.C., Siewiorek, D.P., and Thomas, D.E. Jr., "A
Design Methodology and Computer Aids for Digital VLSI Systems,"
IEEE Trans, on Circuits and Systems CAS-28(7) pp. 634-644 (July
1981).

EDIF,, "Electronic Design Interchange Format, Version 2 0 0, Reference
Manual," EDIF Steering Committee, Electronic Industries Association,
(1987).

Eastman, CM., "Database Facilities for Engineering Design,"
Proceedings of the IEEE 69(10) pp. 1249-1263 (Oct 1981).

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L., "The Notions
of Consistency and Predicate Locks in a Database System,"
Communications of the ACM 19(11) pp. 624-633 (Nov 1976).

Eurich, J.P., "A Tutorial Introduction to the Electronic Design
Interchange Format," Proc. 23rd IEEE Design Automation Conference,
pp. 327-333 (1986).

Gajski, D.D., "ARSENIC Silicon Compiler," Proc. ISCAS '85, pp. 399-
402(1985).

Gajski, D.D., Dutt, N.D., and Pangrle, B.M., "Silicon Compilation
(tutorial)," IEEE 1986 Custom Integrated Circuits Conference, pp.
102-110(1986).

Gettys, J., Newman, R., and Fera, T. Delia, "Xlib - C Language X
Interface, Protocol Version 10," MIT, Cambridge, Mass., (1986).

Glasser, L.A. and Dobberpuhl, D.W., "The Design and Analysis of
VLSI Circuits," Reading MA Addison-Wesley, (1985).

Goldberg, A. and Robson, D., "Smalltalk80 The Language and its
Implementation," Addison-Wesley Pub. Co, (1983).

Bibliography 161

Gonzalez-Sustaeta, J. and Buchmann, A.P., "An Automated Database
Design Tool Using the ELKA Conceptual Model," Proc. 23rd IEEE
Design Automation Conference, pp. 752-759 (1986).

Green, P.E., "An Introduction to Network. Architectures and
Protocols," IEEE tran. on Communications COM-28(4) pp. 413-424
(April 1980).

Guttag, J.V., Horowitz, E., and Musser, D.R., "Abstract Data Types
and Software Validation," Communications of the ACM 21(12) pp.
1048-1064 (Dec 1978).

Hammer, M., "Reliability Mechanisms for SDD-1: A System for
Distributed Databases," ACM Transactions on Database Systems
5(4) pp. 431-466(1980).

Hardwick, M., "Extending the Relational Database Data Model for
Design Applications," Proc. 21st IEEE Design Automation Conference,
pp. 110-116(1984).

Hardwick, M. and Yakoob, N., "Using a Database System and UNIX to
Author CAD Applications," Proc. IEEE ICCAD - 85, pp. 53-55
(1985).

Hardwick, M. and Spooner, D.L., "Comparison of Some Data Models
for Engineering Objects," IEEECG&A, pp. 56-66 (1987).

Harrison, D.S., Moore, P., Spickelmier, R.L., and Newton, A.R., "Data
Management and Graphics Editing in the Berkeley Design
Environment," Proc. IEEEICCAD-86, pp. 24-27 (1986).

Hartzband, D.J. and Maryanski, F.J., "Enhancing Knowledge
Representation in Engineering Databases," IEEE Computer Magazine,
pp. 39-48 (Sept 1985).

Haydamack, W.J. and Griffin, D.J., "VLSI Design Strategies and Tools,"
Hewlett-Packard Journal, pp. 5-12 (June 1981).

Bibliography

Haynie, M.N., "The Relational/Network. Hybrid Data Model for Design
Automation Databases," Proc. 18th IEEE Design Automation
Conference, pp. 646-652 (1981).

Haynie, M.N., "Tutorial: The Relational Data Model for Design
Automation," Proc. 20th IEEE Design Automation Conference, pp.
599-607(1983).

Held, CD. , Stonebraker, M., and Wong, E., "INGRES - A Relational
Database Management System," Proc. 1975 Nat. Computer Conference,
AFIPS Press, (1975).

Ho, W.P.C., Hu, Y.H., and Yun, D.Y.Y., "An Intelligent Librarian for
VLSI Cell Databases," Proc. IEEEICCD '85, pp. 78-81 (1985).

Hoare, C.A.R., "Notes on Data Structuring," pp. 83-174 in Structured
Programming, ed. E.W. Dijkstra, Academic Press, New York (1972).

Hollaar, L., Nelson, B., Carter, T., and Lorie, R.A., "The Structure and
Operation of a Relational Database System in a Cell-Oriented
Integrated Circuit Design System," Proc. 21st IEEE Design Automation
Conference, pp. 117-125 (1984).

Horn, E.C. van, "Expressing Product Development Information in
Application Terms," Proc. IEEEICCD '85, pp. 82-85 (1985).

Israel, D.J., "The Role of Logic in Knowledge Representation," IEEE
Computer Magazine, pp. 37-41 (Oct 1983).

Jackson, M., System Development, Prentice Hall, Englewood Cliffs, N.J.
(1983).

Jullien, C , Leblond, A., and Lecourvoisier, J., "A Database Interface
for an Integrated CAD System," Proc. 23rd IEEE Design Automation
Conference, pp. 760-767 (1986).

Bibliography 163

Katz, R., "Computer-Aided Design Databases," IEEE Design and Test,
pp. 70-74 (Febraury, 1985).

Katz, R.H., "A Database Approach for Managing VLSI Design Data,"
Proc. 19th IEEE Design Automation Conference, pp. 274-282 (June
1982).

Katz, R.H. and Weiss, S., "Chip Assemblers: Concepts and
Capabilities," Proc. 20th IEEE Design Automation Conference, pp. 25-
30(1983).

Katz, R.H., "Managing the Chip Design Database," IEEE Computer
Magazine 16(12) pp. 26-35 (Dec 1983).

Katz, R.H. and Lehman, T.J., "Database Support for Versions and
Alternatives of Large Design Files," IEEE Trans, on Software
Engineering SE-10(2) pp. 191-200 (March 1984).

Katz, R.H. and Weiss, S., "Design Transaction Management," Proc. 21st
IEEE Design Automation Conference, pp. 692-693 (1984).

Katz, R.H., Anwarrudin, M., and Chang, E., "A Version Server for
Computer-Aided Design Data," Proc. 23rd IEEE Design Automation
Conference, pp. 27-33 (1986).

Katzenelson, J., "Higher Level Programming and Data Abstractions - A
Case Study Using Enhanced C," Software Practice and Experience
13 pp. 5 7 7 - 5 9 5 (1 9 8 3) .

Katzenelson, J., "Introduction to Enhanced C (EC)," Software Practice
and Experience 13 pp. 551-576 (1983).

Katzenelson, J., The Enhanced C Programming Language Reference
Manual, Technion - Israel Institute of Technology, Haifa 32000, Israel
(March 21, 1985).

164 Bibliography

Kernighan, B. and Ritchie, D., The C Programming Language, Prentice
Hall (1978).

Knapp, D.W. and Parker, A.C., "A Design Utility Manager: the ADAM
Planning Engine," Proc. 23rd IEEE Design Automation Conference, pp.
48-54(1986).

Lamport, L., "Time, Clocks, and the Ordering of Events in a
Distributed System," Communications of the ACM 21(7) pp. 558-565
(July 1978).

Lechner, E., "CLIB - A Database Management System Designed for
Standard Cell Applications," Proc. IEEE ICCAD - 85, pp. 21-23
(1985).

Leffler, S.J., Joy, W.N., and Fabry, R.S., 4.2BSD Network
Implementation Notes. 1983.

Leffler, S.J., Fabry, R.S., and Joy, W.N., A 4.2BSD Interprocess
Communication Primer. 1984.

Leuken, T.G.R. van and Wolf, P. van der, "The ICD Design
Management System," Proc. IEEE ICCAD - 85, pp. 18-20 (1985).

Leuken, T.G.R. van, "A Distributed Design Data Management
System.," ESPRIT project nr. 991. task 3, (1986).

Leuken, T.G.R. van and Graaf, S. de, "The ICD User's Manual,"
ESPRIT project nr. 991. task 3, (1986).

Lindsay, B.G., Haas, L.M., Mohan, C , Wilms, P.F., and Yost, R.A.,
"Computation and Communication in R": A Distributed Database
Manager," ACM trans, on Com. Sys. 2. no 1. pp. 24-38 (Feb. 1984).

Linn, J.L. and Winner, R.I., Engineering Information Systems, The
Institute for Defense Analyses, Alexandria, Virginia (1986).

Bibliography 165

Lorie, R. and Plouffe, W., "Complex Objects and Their Use in Design
Transactions," Proc. Databases for Engineering Applications, ACM
Database Week, pp. 115-121 (May 1983).

Lyngbaek, P., Information Modeling and Sharing in Highly
Autonomous Database Systems, Ph.D. Thesis, Univ. of So. California,
Los Angeles (August 1984).

Mano, M.M., Computer System Architecture Second Edition, Prentice-
Hall (1982).

Mano, M.M., Digital Design, Prentice-Hall (1984).

McCalla, B., "Chipbuster VLSI Design System," Proc. 1EEEICCAD-86,
pp. 20-23 (1986).

McCalla, G. and Cercone, N., "Approaches to Knowledge
Representation," IEEE Computer Magazine, pp. 12-18 (Oct 1983).

McLellan, P., "Effective Data Management for VLSI Design," Proc.
22nd IEEE/ACM Design Automation Conference, pp. 652-657 (July
1985).

McLeod, D., "Abstraction in Databases," ACM special issue, Proc. of
the workshop on Data Abstraction, Databases and Conceptual
Modelling, pp. 19-25(1980).

McLeod, D., Narayanaswamy, K., and Rao, K.V. Bapa, "An Approach
to Information Management for CAD/VLSI Applications," Proc.
Databases for Engineering Applications, ACM Database Week, pp.
39-50 (May 1983).

Mead, C. and Conway, L., Introduction to VLSI Systems, Addison
Wesley, Reading MA (1980).

Meijs, N. van der, Hoeven, A. van der, Vogel, T., Wolf, P. van der, and
Graaf, S. de, "DBM Interface Functions: Applications Notes for Release

166 Bibliography

2," Internal Report nr. 85-28, Delft University of Technology, Delft
(1985).

Meijs, N. van der, Hoeven, A. van der, Vogel, T., Wolf, P. van der,
Leuken, T.G.R. van, and Dewilde, P., "DBM Programmers Manual: A
Proposal for an ICD Standard," ICD Project Deliverable i.08, Delft
University of Technology, Delft (June 1985).

Meijs, N. v.d., Leuken, T.G.R. v., Wolf, P. v.d., Widya, I., and
Dewilde, P., "Data Management Interface Definition," ESPRIT project,
code 991, WP1, task 1., (Dec 31, 1986).

Meijs, N. v.d., Leuken, T.G.R. v., Wolf, P. v.d., Widya, I., and
Dewilde, P., "A Data Management Interface to Facilitate CAD/IC
Software Exchanges," Proc. 1EEEICCD '87, (1987).

Metcalfe, R.M. and Boggs, D.R., "Ethernet: Distributed Packet
Switching for Local Computer Networks," Communications of the
ACM 19(7) pp. 395-404 (July 1976).

Moss, J.E.B., "Nested Transactions and Reliable Distributed
Computing," The Proceedings of the Symposium on Reliability in
Distributed Software and Database Systems, pp. 33-39 (July 1982).

Mukherjee, A., "Introduction to Nmos and Cmos VLSI Systems
Design," Prentice Hall, (1986).

Myers, W., "Introduction to Expert Systems," IEEE Expert 1. no 1. pp.
100-109 (Spring 1986).

Mylopoulos, J., "An Overview of Knowledge Representation," ACM
special issue, Proc. of the workshop on Data Abstraction, Databases and
Conceptual Modelling, pp. 5-12 (1980).

Mylopoulos, J., Shibahara, T., and Tsotsos, J.K., "Building
Knowledge-Based Systems: The PSN Experience," IEEE Computer
Magazine, pp. 83-89 (Oct 1983).

Bibliography 167

Nagel, L.W., "SPICE2: A Computer Program to Simulate
Semiconductor Circuits," University of California, Berkeley, (May,
1975).

Navathe, S., Elmasri, R., and Larson, J., "Integrating User Views in
Database Design," IEEE Computer Magazine 19(1) pp. 50-62 (Jan
1986).

NeweU, M. and Fitzpatrick, D.T, "Exploitation of Hierarchy in
Analyses of Integrated Circuit Artwork," IEEE Trans, on CAD CAD-
l(4)(Oct. 1982).

Newton, A.R., Pederson, D.O., Sangiovanni-Vincentelli, A.L., and
Sequin, C.H., "Design Aids for VLSI: The Berkeley Perspective," IEEE
Trans, on Circuits and Systems CAS-28(7) pp. 666-679 (July 1981).

Newton, A.R. and Sangiovanni-Vincentelli, A.L., "Computer-Aided
Design for VLSI Circuits," IEEE Computer Magazine, pp. 38-60 (April
1986).

Newton, A.R., "Electronic Design Interchange Format, Introduction to
(EDIFVersion 2 0 0) ," Proc. IEEECICC '87, pp. 531-535 (1987).

Niessen, C , "Hierarchical Design Methodologies and Tools for VLSI
Chips," Proceedings of the IEEE 71(1) pp. 66-75 (Jan 1983).

O'Neill, L.A., "Designers Workbench — Efficient and Economical
Aids," Proc. 16th IEEE Design Automation Conference, pp. 185-199
(1979).

Ozsu, M.T., "Modeling and Analysis of Distributed Database
Concurrency Control Algorithms Using an Extended Petri Net
Formalism," IEEE tran. on Software Engineering SE-ll(lO) pp. 1225-
1239 (Oct 1985).

Pin, Y., Foo, S., and Kobayashi, H., "A Knowledge-Based System for
VLSI Module Selection," Proc. IEEEICCD '86, pp. 184-187 (1986).

Bibliography

Rieu, D. and Nguyen, G.T., "Semantics of CAD Objects for Generalized
Databases," Proc. 23rd IEEE Design Automation Conference, pp. 34-40
(1986).

Roberts, K.A., Baker, T.E., and Jerome, D.H., "A Vertically Organized
Computer-Aided Design Data Base," Proc. 18th IEEE Design
Automation Conference, pp. 595-602 (1981).

Rose, C.W., Ordy, M., and Park, F.I., "NmPc: A Retrospective," Proc.
20th IEEE Design Automation Conference, pp. 506-514 (June, 1983).

Rothnie, J.B., "Introduction to a System for Distributed Databases
(SDD-1)," ACM Transactions on Database Systems 5(1) pp. 1-17
(March 1980).

Roussopoulos, N. and Yeh, R.T., "An Adaptable Methodology for
Database Design," IEEE Computer Magazine, pp. 64-80 (May 1984).

Rowe, L.A. and Birman, K.P., "A Local Network Based on the Unix
Operating System," IEEE tran. on Software Engineering SE-
8(2)(March 1982).

SECT,, "Software Environment for CAD Tools," The Sect Data
Handling Committee, CadLab, CNET, NMP-CAD, ES2, TU Delft,
(1987).

Sarna, CS. , Reddy, G.R., and Hsieh, D., "Managing VLSI Data in a
Workstation Configuration," IEEECir. and Dev. Magazine 2. no 4. pp.
36-40 (July 1986).

Sequin, C.H., "Managing VLSI Complexity: An Outlook," Proceedings
of the IEEEll(.\) pp. 149-166 (Jan 1983).

Shipman, D.W., "The Functional Data Model and the Data Language
DAPLEX," ACM Trans, on Database Systems 6(1) pp. 140-173 (March
1981).

Bibliography 169

Sidle, T.W., "Weaknesses of Commercial Data Base Management
Systems in Engineering Applications," Proc. 17th IEEE Design
Automation Conference, pp. 57-61 (June 1980).

Silberschatz, A. and Kedem, Z., "Consistency in Hierarchical Database
Systems," Journal of the ACM 27(1) pp. 72-80 (Jan. 1980).

Smith, J.M. Smith and D.C.P., "Database abstractions: Aggregation and
Generalization," ACM Trans. Database Systems 2(2) pp. 105-133 (June
1977).

Spector, A.Z., "Performing Remote Operations Efficiently on a Local
Computer Network," Comm. of the ACM. 25. no 4. pp. 246-259
(April 1982).

Sun, Microsystems Inc., Networking on the Sun Workstation. Feb.
1986.

Teorey, T.J. and Fry, J.P., Design of Database Structures, Prentice-Hall,
Englewood Cliffs, N.J. (1982).

Trimberger, S., "A Structured Design Methodology and Associated
Software Tools," IEEE Transactions on Circuits & Systems CAS-
28(7)(July 1981).

Tsichritzis, D.C. and Lochovsky, F.H., "Hierarchical Data-base
Management: A Survey," ACM Comput. Surv. 8 pp. 67-103 (1976).

Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall,
Englewood Cliffs, NJ (1982).

Tucker, M. and Scheffer, L., "A Constrained Design Methodology for
VLSI," VLSI Design, pp. 60-65 (May/June 1982).

Vogel, T., Wolf, P. van der, and Dewilde, P., "Conceptual Database
Model ICD," Internal Report, Delft University of Technology, Delft
(Oct 1984).

Bibliography

Voss, K., "Using Predicate/Transition-Nets to Model and Analyze
Distributed Database Systems," IEEE tran. on Software Engineering
SE-6(6) pp. 539-544 (Nov. 1980).

Waxman, R., "VLSI - A Design Challenge," Proc. 16th IEEE Design
Automation Conference, pp. 546-547 (1979).

Weiss, S., Rotzell, K., Rhyne, T., and Goldfein, A., "DOSS: A Storage
System for Design Data," Proc. 23rd IEEE Design Automation
Conference, pp. 41-47(1986).

Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design a
System Perspective, Addison-Wesley (1985).

Widya, I., Leuken, T.G.R. v., and Wolf, P. v.d., "Concurrency Control
in a VLSI Design Database," Proc. 25th Design Automation Conference,
(1988).

Wiederhold, G., Database Design, Computer Science Press, Mc. Graw
Hill (1977).

Wiederhold, G., Beetem, A.F., and Short, G.E., "A Database Approach
to Communication in VLSI Design," IEEE Trans, on CAD of Integrated
Circuits and Systems CAD-l(2) pp. 57-63 (April 1982).

Wiederhold, G., "Knowledge and Database Management," IEEE
Software Magazine l (l) pp. 63-73 (Jan 1984).

Willems, W.G.H.M., "A VLSI Design Manager Based on State
Management," MS-Thesis, Delft University of Technology, Delft
(Sept 1987).

Wolf, P. van der, "Conceptual Design of a Design Data Management
System for VLSI Design," MS-Thesis, Delft University of Technology,
Delft (July 1986).

Bibliography 171

Wolf, P. van der, Meijs, N. van der, Leuken, T.G.R. van, Widya, I., and
Dewilde, P., "Data Management for VLSI Design: Conceptual
Modeling, Tool Integration & User Interface," Proc. IFIP WG 10.2
Workshop on Tool Integration and Design Environment, North-Holland,
(1987).

Wolf, P. van der and Leuken, T.G.R. van, "A Distributed Data
Management System for VLSI Design," Proc. 25th Design Automation
Conference, (1988).

Wolf, W., "An Object-Oriented Procedural Database for VLSI Chip
Planning," Proc. 23rd IEEE Design Automation Conference, pp. 744-
751 (1986).

Woods, W.A., "What's Important About Knowledge Representation?,"
IEEE Computer Magazine, pp. 22-27 (Oct 1983).

Yalamanchili, S., Malek, M., and Aggarwai, J.K., "Workstations in a
local Area Network Environment," IEEE Computer Magazine, pp. 74-
86 (Nov 1984).

Yannakakis, M., "A Theory of Safe Locking Policies in Database
Systems," Journal of the ACM 29(3) pp. 718-740 (July 1982).

Zara, R.V. and Henke, D.R., "Building A Layered Database for Design
Automation," Proc. 22nd IEEE/ACM Design Automation Conference,
pp. 645-651 (July 1985).

Zintl, G., "A Codasyl CAD Data Base System," Proc. 18th IEEE Design
Automation Conference, pp. 589-594 (1981).

172

173

Curriculum Vitae

Na zijn geboorte op 14 april 1955 in 's-Gravenhage doorliep René van
Leuken achtereenvolgens de kleuterschool, de lagere school, het atheneum en
de Technische Universiteit te Delft om in 1983 het diploma voor
elektrotechnisch ingenieur te behalen, waarna hij als wetenschappelijk
assistent in de vakgroep Netwerktheorie van de Technische Universiteit
Delft, onder leiding van Prof. dr. ir. P. Dewilde, onderzoek verrichtte aan
database modellering, programma interfaces voor databases en mede leiding
gaf aan de ontwikkeling van een systeem voor het ontwerp van
geïntegreerde schakelingen.

