

深下、

# INSTITUTE for AEROSPACE STUDIES

**UNIVERSITY OF TORONTO** 

A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE

by

Zhi-Qiang Liu

5 MAART 1984

Bibliotheek TU Delft Faculteit der Luchtvaart- en Ruimtevaarttechniek Kluyverweg 1 2629 HS Delft

> UTIAS Technical Note No. 246 CN ISSN 0082-5263

d macsdyle

December, 1983

A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE

by

Zhi-Qiang Liu

Submitted March, 1983

232416

| Bibliotheek | TU Delft | L&P |
|-------------|----------|-----|
|             |          |     |
|             |          |     |
|             |          |     |
| C 21799     | 175      |     |
|             |          |     |

UTIAS Technical Note No. 246 CN ISSN 0082-5263

December, 1983

#### ACKNOWLEDGEMENTS

The author would like to express his gratitude to his thesis supervisor, Professor L.D.Reid, for his inspiration and encouragement, for his guidance and willing availability for consulation, and for his constructive criticisms and timely discussions. The assistance he received from the staff and the students at UTIAS is very much appreciated.

Financial support for this work was provided through a China National Graduate Scholarship.

#### ABSTRACT

The conventional linear washout filter and coordinated adaptive washout filter for a six-degree-of-freedom flight simulator are surveyed. A nonlinear optimal washout filter based on nonlinear regulator and optimal control theories has been synthesized. The proposed nonlinear optimal washout filter is capable of producing the drive signal according to the magnitudes of inputs while it minimizes the given performance criterion. For each channel\* four different cases are tested using computer simulation. Comparisons are made with the results obtained from a linear washout filter and an adaptive washout filter. The observation is that the nonlinear optimal and adaptive washout filters are superior to the linear washout filters in some aspects. Recommendations for future work and improvement are also included.

\*Throughout this study the term 'channel' refers to the longitudinal, or the lateral, or the vertical simulator travel direction in which the control signals are applied.

## TABLE OF CONTENTS

| ;e |
|----|
|    |
|    |
| ,  |
|    |
|    |
|    |
|    |
|    |
| ł  |
| ł  |
|    |
| ,  |
| ,  |
|    |
| 5  |
| 5  |
|    |
| 5  |
| 7  |
| 3  |
|    |

| Chapter | r                                     | age |
|---------|---------------------------------------|-----|
| ۷.      | COORDINATED ADAPTIVE WASHOUT FILTER   | 10  |
|         | 5.1 Parameter Optimization            | 10  |
|         | 5.1.1 Mathematical Description of     |     |
|         | Dynamic Systems                       | 10  |
|         | 5.1.2 Optimization by Continuous      |     |
|         | Steepest Descent (CSD)                | 11  |
|         | 5.1.3 Expansion of CSD to             |     |
|         | Dynamic Systems                       | 13  |
|         | 5.2 Model Reference Adaptive          |     |
|         | Control (MRAC)a review                | 13  |
|         | 5.2.1 The General Statement of        |     |
|         | the Problem                           | 14  |
|         | 5.2.2 The Structure of                |     |
|         | the Controller (direct control)       | 14  |
|         | 5.2.3 Modification of                 |     |
|         | the Control Structure                 | 15  |
|         | 5.3 The Adaptive Washout filter       | 16  |
| VI.     | NONLINEAR OPTIMAL WASHOUT FILTER      | 20  |
|         | 6.1 Theoretical Development           | 20  |
|         | 6.2 Controller Design Procedures      | 26  |
|         | 6.3 Formulation of the Washout Filter | 28  |
|         | 6.3.1 Motion Cue Generation           | 28  |
|         | 6.3.2 Linearization                   | 30  |

| Chapter  |    |     |     |      |     |      |     |     |     |     |     |    |    |    |   |     |    |    |   | Pa | g  |
|----------|----|-----|-----|------|-----|------|-----|-----|-----|-----|-----|----|----|----|---|-----|----|----|---|----|----|
|          |    | 6.3 | 3.3 | Sta  | te  | Spa  | ice | Re  | pre | ese | nt  | at | io | n  | • | •   |    |    | • | 3  | 30 |
|          |    | 6.3 | 3.4 | The  | Op  | tim  | al  | Wa  | sho | ut  | F   | il | te | r  | • |     | •  |    | • | 3  | 33 |
| 6.       | 4  | Con | npu | tati | ona | 1 0  | on  | sid | era | ati | on  | s  | •  |    | • | •   | •  | •  |   | 3  | 35 |
| 6.       | 5  | Tes | sts | and  | Di  | scu  | ISS | ion |     | •   | •   | •  | •  | •  |   | •   | •  | •  |   | 3  | 36 |
|          |    | 6.5 | 5.1 | Sel  | ect | ion  | 0   | fW  | eig | ht  | in  | g  |    |    |   |     |    |    |   |    |    |
|          |    |     |     | Mat  | ric | es   | R   | and | Q   | •   |     | •  |    |    |   | •   | •  |    | • | 3  | 36 |
|          |    | 6.5 | 5.2 | Pro  | per | tie  | eso | of  | the | e N | lon | li | ne | ar | C | )pt | in | al |   |    |    |
|          |    |     | n   | Was  | hou | it F | il  | ter | •   | •   | •   | •  | •  | •  | • | •   |    | •  | • | 3  | 37 |
| VII. CO  | NC | LUS | 510 | NS A | ND  | REC  | OMI | MEN | DAJ | CIC | NS  |    | •  | •  | • | •   | •  | •  | • | 3  | 39 |
| REFERENC | ES | •   | •   |      | • • | •    | •   |     | •   | •   | •   | •  | •  | •  | • | •   | •  | •  | • | 4  | 11 |
| APPENDIC | ES | •   | •   | •••  | • • | •    | •   | ••• | •   | •   |     | •  | •  | •  | • | •   | •  | •  | • | 4  | 15 |
| TABLES   |    |     |     |      |     |      |     |     |     |     |     |    |    |    |   |     |    |    |   |    |    |
| FIGURES  |    |     |     |      |     |      |     |     |     |     |     |    |    |    |   |     |    |    |   |    |    |

e

# LIST OF SYMBOLS

| <sup>a</sup> cx, <sup>a</sup> cy, <sup>a</sup> cz                                                                     | Acceleration of the simulated aircraft in body axis,(m/sec )                          |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $\underline{A}$ , $\underline{A}_0$ , $\underline{A}_1$ , $\underline{A}_2$ , $\underline{A}_3$                       | System matrices                                                                       |
| $\underline{B}$ , $\underline{B}_1$ , $\underline{B}_2$ , $\underline{B}_3$                                           | Input matrix                                                                          |
| <u>C</u>                                                                                                              | Output transfer function                                                              |
| $\underline{F}, \ \underline{\widetilde{F}}$                                                                          | Feedback matrices                                                                     |
| $\frac{A}{2c}$ or $\frac{A}{2c}$                                                                                      | Translational forces measured at the centroid location                                |
| f <sub>cx</sub> , f <sub>cy</sub>                                                                                     | Longitudinal and lateral accelerations at the centroid location, in body-axis,(m/sec) |
| fcz                                                                                                                   | Vertical acceleration at the centroid location, in body-axis, (m/sec )                |
| f <sub>ix</sub> , f <sub>iy</sub> , f <sub>iz</sub>                                                                   | Translational acceleration commands prior to translational washout filter             |
| $f(\underline{x}, t)$                                                                                                 | A function of $\underline{x}$ and t                                                   |
| $\frac{f}{c}$                                                                                                         | Specific force vector of the simulated aircraft, in body-fixed frame                  |
| <u>-</u> 1                                                                                                            | Specific force error vector                                                           |
| G(s)                                                                                                                  | Transfer function: Laplace transformation                                             |
| J, J <sub>1</sub> , J <sub>2</sub> , J <sub>3</sub>                                                                   | Cost functions (performance indeces)                                                  |
| ∇J                                                                                                                    | Gradient of the cost function J                                                       |
| $\underline{\underline{L}}_{c_{i}}, \underline{\underline{\hat{L}}}_{c_{i}}, \underline{\underline{\hat{L}}}_{c_{i}}$ | Rotation matrices                                                                     |
| p', q'                                                                                                                | Angular tilt rates,<br>in body-fixed frame,(rad/sec)                                  |
| <u>Q</u> , <u>R</u>                                                                                                   | Weighting matrices                                                                    |
| <u>R</u> T                                                                                                            | Angular rates transformation matrix                                                   |
| <sup>R</sup> <sub>x</sub> , <sup>R</sup> <sub>y</sub> , <sup>R</sup> <sub>z</sub>                                     | The centroid location with respect to the centre of gravity in body-fixed frame       |
| <u>r</u> ci or <u>r</u> ci                                                                                            | The centroid location vector relative to the inertial frame                           |
| <u>r</u>                                                                                                              | Acceleration vector of the simulator in the inertial frame                            |

| $\underline{U}$ , $\underline{U}_1$ , $\underline{U}_2$                                  | Control vectors                                                                                 |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| U <sub>3</sub>                                                                           | Control input used in the vertical optimal filter                                               |
| <u>U</u> L                                                                               | Linear control vector                                                                           |
| <u>U</u> <sub>NL</sub>                                                                   | Nonlinear control vector                                                                        |
| V( <u>x</u> )                                                                            | Lyapunov function in terms of $\underline{x}$                                                   |
| $\nabla_{\underline{\mathbf{x}}} \mathbf{V}(\underline{\mathbf{x}})$                     | Gradient of Lyapunov function with respect<br>to the elements of                                |
| $\underline{W}, \underline{W}_1, \underline{W}_2, \underline{W}_3$                       | Disturbance input vectors                                                                       |
| x, ŷ, ż                                                                                  | Commanded translational positions after compensation                                            |
| x <sub>i</sub> , y <sub>i</sub> , z <sub>i</sub>                                         | The inertial frame translational position commands                                              |
| $\hat{x}_{c}^{}$ , $\hat{y}_{c}^{}$ , $\hat{z}_{c}^{}$                                   | The elements of $\frac{\hat{r}_{c}}{r_{c}}$ (m/sec )                                            |
| x <sub>p</sub> , y <sub>p</sub> , z <sub>p</sub>                                         | Coordinates of pilot's seat with respect<br>to the centre of gravity in<br>body-fixed frame (m) |
| x <sub>pc</sub> , y <sub>pc</sub> , z <sub>pc</sub>                                      | Coordinates of the centroid location with<br>respect to pilot's seat,<br>in body-fixed frame    |
| <u>y</u> .                                                                               | Output vector                                                                                   |
| φ̂, θ̂, ψ̂                                                                               | Commanded angles after compensation,(rad)                                                       |
| $\hat{\phi}_{c}, \hat{\theta}_{c}, \hat{\psi}_{c}$                                       | Euler angles of cockpit of simulator, (rad)                                                     |
| $\phi_c, \theta_c, \psi_c$                                                               | Euler angles of simulated aircraft,(rad)                                                        |
| $\underline{\beta}_{c}, \ \hat{\beta}_{c}$                                               | The angular vectors, when the angles are very small ( << 1 rad )                                |
| β <sub>c</sub>                                                                           | Angular rate vector in body-fixed frame of the simulated aircraft                               |
| <u>Å</u> c                                                                               | Angular rate vector in cockpit-fixed frame of the simulator                                     |
| $\underset{\rightarrow}{\mathfrak{P}_{\mathbf{c}}}$ or $\underline{\omega}_{\mathbf{c}}$ | Rotation rate vector of body-fixed frame relative to inertial frame                             |
| ŵ                                                                                        | Rotation rate vector in cockpit-fixed<br>frame of the simulator relative to the                 |

inertial frame

| <u>ε</u> 2                                                                                      | Rotation rate error vector                            |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $\underline{\Gamma}$ , $\underline{\Gamma}_1$ , $\underline{\Gamma}_2$ , $\underline{\Gamma}_3$ | Disturbance transfer matrices                         |
| < <u>•</u> , •>                                                                                 | Denotes inner product of two vectors                  |
| (_)                                                                                             | Denotes a vector                                      |
| $O^{T}$                                                                                         | Denotes transpose of a matrix or<br>a column vector   |
| Q                                                                                               | Denotes a matrix or a column vector                   |
| ( )                                                                                             | Denotes variable that is in the simulator cockpit     |
| ζ                                                                                               | Damping factor                                        |
| ω <sub>n</sub>                                                                                  | Natural freqency                                      |
| σ( <u>•</u> )                                                                                   | Denotes spectrum or eigenvalues of<br>a square matrix |

#### CHAPTER I

#### INTRODUCTION

The advent of fixed-base flight simulators has provided both researchers and trainees with low-cost safe devices in which the pilot can visualize the simulated flight manoeuvre by means of on board CRT and other instruments located around the pilot. Lacking in motion, this kind of simulator seldom provides high fidelity (this is not the case for space craft simulators). To meet the need for high quality mimicing of the flight situation, motion-base simulators came into being. With the aid of modern techniques in computer science, control theory, and video graphics, motion base simulators can provide more realism and greater authenticity, at the same time reducing the inconsistency in flight results between simulated flight and real flight. It is desired that the simulator cockpit is commanded to move about in accordance with the states that the real aircraft possesses. Unfortunately, simulation as the definition implies, is not duplication, it can reproduce the real world only approximately. Flight simulation is the art of imitating real flight, it uses the mechanisms of illusion and deception to achieve certain purposes.

Normally, there are two basic constraints in simulation. The first is that man-made models, differential equations representing the dynamics of simulated aircraft, for instance, can only approximate the real situation to a certain degree at the very best. Theoretically the mathematical model for the object studied can be built to be as accurate as possible, but in doing so the object should be well understood, which, for a complicated system, is often not feasible in practice. The second and often the most fatal constraint is the physical limitations in the artificial environment. For instance, the flight simulator which can have six degrees of freedom is mounted in a mechanical structure with limited manoeuvre capability. In each degree of freedom the motion system can physical not exceed limits on position, velocity and acceleration. An example of such limitations is summarized in Table 1.1.

It has been of long standing interest to find a way out of the dilemma in dealing with flight simulation. Researchers have made painstaking efforts to construct motion cue generating circuitry as well as to establish useful theories, such as linear washout filter [1], optimal washout filter [2], quasi-optimal washout filter [3], and adaptive washout filter [4] among which the linear washout filter is classical and fundamental. As mentioned earlier, the flight simulator itself is nothing more than a device used to provide (or to "deceive") pilot with the "feeling" of real flight. It is the pilot's perception that is of major concern in flight simulation. Therefore in order to prevent the cockpit from hitting the limits of the motion base, a logical way is to modify the commanded variables [1]. Research related to human motion perception organs has been going on for years [5,6,7]. But today many questions still remain unsolved. However, empirical knowledge combined with theoretical and practical considerations lead to the assumption that a pilot can "sense" the same quantities as can be measured by three linear and three rotational accelerometers mounted along three perpendicular axes [1], or simply, that only the accelerations can be "sensed"by the pilot. Consequently, a specific force is defined, and specific force cues are studied in this report.

In this study, the conventional linear washout filter and adaptive washout filter are briefly surveyed, a computer program to simulate these washout filters is developed, and the time responses to different inputs are plotted for later comparison. The major part of this research is to synthezise a nonlinear optimal washout filter based on nonlinear regulator and optimal control theories. The detailed theoretical background and development are given, then the case study and comparisons are carried out. The computer subroutines used for solving the optimal problem are provided in an appendix.

#### CHAPTER II

#### CONCEPTUAL ASPECTS OF FLIGHT SIMULATION

Broadly speaking, the term "flight simulator" refers to any device, for example a wind tunnel, that imitates the flight environment. However here it is commonly considered as a class of devices used for both research and training in the investigation of man (pilot) and flight vehicle (cockpit plus motion base). The emphasis may vary from man to machine but always with the integration of both.

Conceptually, a piloted flight simulator consists of, in varying degrees, the following components:

- 1. A cockpit which can be moved about via commands issued to servo drive systems.
- 2. Airplane control devices (e.g. stick, rudder pedals etc.) located in the cockpit.
- 3. A real-time computer (not necessarily on board) which takes input signals from the controls and solves aircraft equations of motion to determine its states (e.g. positions, velocities, attitudes, and angular velocities).
- 4. Assorted aircraft instruments and all other visual indicators which might be installed on a real aircraft to provide a measure of the aircraft's states (determined by the computer) to the pilot.

The instruments and visual displays can be commanded to act in accordance with the computed aircraft states. Ideally, the cab would also be commanded to move about in accordance with the aircraft states, but it is impossible to do this in practice because of the constraints in the mechanical structure. Usually a motion base can move only a few feet in any direction with limited velocities and accelerations, similar limitations also exist in angular rotations and rotational rates.

Due to the physical limitations of the motion base, some modification of the computed motion commands is necessary before they are used to control the cockpit motion, otherwise, the motion base would be driven into its limits and hence give totally erroneous motion cues to the pilot. A conceptual block diagram of a flight simulator is given in Figure 2.1.

The object of washout filter research is to investigate ways of using computed motion variables to obtain signals representing simulator motions compatible with the limitations of the motion base. In general, the movement of the motion base is inconsistant with the pilot's instruments and other visual displays. However it is observed that human motion sensing system is also limited and selective, that is, specifically he'she may be more sensitive to some motion cues than others. In practice, acceleration or force is considered to have the most pronounced impact on the human perception system. Based on this observation, the signal modification scheme should involve producing an allowable motion which gives the pilot the best motion cues possible.

#### 2.1 Translational Motion Sensing---specific force

As it is observed that human perception organs are biased to force impact, therefore it is useful to define the specific force for the later development of washout filters.

Specific force is defined to be the difference between inertial acceleration and gravitation [8]. Three appropriately mounted linear accelerometers measure the specific force vector (three components).

Since position and constant velocity are not sensed by human perception organs, initial conditions on these quantities may be selected to satisfy simulator constraints. For example, to good approximation, constant velocity motion may be simulated by a cockpit at rest on the ground.

#### 2.2 Rotational Motion Sensing

Although both rotational rate and acceleration are sensed by the pilot we can consider rotational rate as a primary quantity in our mathematical development. That is, if rotational rates are the same in the motion generator as they are in the aircraft then the rotational accelerations will also be the same.

4

#### CHAPTER III

#### REFERENCE FRAMES, ROTATION MATRICES, AND CENTROID TRANSFORMATION

As mentioned earlier, translational accelerations and rotation rates are considered important inputs to human perception organs. Therefore we may use appropriate quatities from the washout circuitry to eventually serve as the input to the motion drive systems. The main interests are summarized here:

- 1) The three components of specific force acting on the simulated aircraft.
- 2) The three components of rotational rate acting on the pilot at the cockpit location in the simulated aircraft.

#### 3.1 Reference frames

Since the simulator cockpit is supposed to move like a real aircraft, it is convenient to define a cockpit-fixed reference frame  $F_c$ , usually referred to as the body-fixed reference frame in the simulator. Throughout this study,  $F_c$  will be a cockpit-fixed reference frame whose origin is at centroid of the motion platform and whose x-axis is parallel to the cockpit reference line. The z-axis is normally downwards in the plane of symmetry and the y-axis orients according to the right hand rule, the detailed convention of cockpit-fixed reference frame is similar to that of body-fixed reference frame [9], (and see Figure 3.1).

Another commonly used reference frame is the inertial reference frame. Throughout this report the inertial reference frame is denoted by  $F_i$ . It is assumed that the earth's rotation is negligible, therefore we adopt a local tangent plane as an inertial reference, we also assume that gravitation acts along the direction  $Z_i$  of Figuire 3.1 and has a constant magnitude. These assumptions are reasonable for all flight simulators.

For consistency and clarity, throughout this report the following conventions are adopted. The lower-cases c and i when used as subscripts indicate that variables are defined in cockpit and inertial reference frames respectively. To denote variables sensed by a pilot in the cockpit of the simulator, the symbol  $\hat{}$  is used, say,  $\hat{f}$  is a variable sensed in the simulator cockpit.

Conventionally, we make use of the notations given in reference [9] to establish the following definitions, geometric

relationships, and matrices which will be employed in the development of the equations of washout filters.

3.2 The Rotation Matrix and the Rotation rate Matrix

3.2.1. Rotation Matrices ( $\underline{L}_{c_i}$  and  $\underline{L}_{i_c}$ )

|               | cosθcosψ                  | cosθsinψ                  | -sin0    |       |
|---------------|---------------------------|---------------------------|----------|-------|
| <u>L</u> ci = | sinφsinθcosψ<br>-cosφsinψ | sinφsinθsinψ<br>+cosφcosψ | sinφcosθ | (3.1) |
|               | cosφsinθcosψ<br>+sinφsinψ | cos¢sinθsinψ<br>-sin¢cosψ | cosφcosθ |       |

where  $\underline{L}_{c_i}$  denotes the transformation matrix from  $F_i$  to  $F_c$ ;  $\psi$ ,  $\theta$ , and  $\phi$  are the Euler angles defined in reference [9].

It is known that  $\underline{L}_{c\,i}$  is an orthogonal matrix and the following relation exists between  $\underline{L}_{c\,i}$  and  $\underline{L}_{i\,c}$  :

$$\underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}^{-1} = \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}^{\mathrm{T}} = \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}^{\mathrm{T}} = \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{c}}}^{\mathrm{T}}$$
(3.2)

The detailed description of equations (3.1) and (3.2) is available in reference [9].

#### 3.2.2. The Rotation Rate Transformation Matrix $\underline{R}_{T}$ Relating to $F_{i}$ and $F_{c}$

|                       | [1 | 0     | -sin0    |       |
|-----------------------|----|-------|----------|-------|
| $\underline{R}_{T} =$ | 0  | cos¢  | sinφcosθ | (3.3) |
|                       | Lo | -sin¢ | cosψcosθ |       |

The inverse of  $R_{\rm T}$  is

| 1. 1.18                    | [1 | $sin\phi tan\theta$ | cos¢tan0 ] |       |
|----------------------------|----|---------------------|------------|-------|
| $\underline{R}_{T}^{-1} =$ | 0  | cosφ                | -sin¢      | (3.4) |
|                            | Lo | sinφsecθ            | cosφsecθ   |       |

## 3.2.3. The Centroid Transformation

A useful reference point in the simulator is the centroid of the upper frame of the motion base. The location of the centroid with respect to the centre of gravity is defined as (see Figure 3.2)

$$R_x = x_p + x_{p_c}, \quad R_y = y_p + y_{p_c}, \quad R_z = z_p + z_{p_c}$$
 (3.5)

which are in the body-fixed frame, where  $x_p$ ,  $y_p$  and  $z_p$  locate the pilot's seat with respect to the centre of gravity of the simulated aircraft.  $x_{p_c}$ ,  $y_{p_c}$  and  $z_{p_c}$  locate the centroid with respect to pilot's seat. A reference to Figure 3.2 may be helpful in understanding these variables. According to [9], once the centroid location is determined, the translational acceleration of the centroid is given by the following equation

$$\underline{A}_{c} \triangleq \underline{L}_{c_{i}} \stackrel{\mathbf{r}_{c_{i}}}{=} \stackrel{\mathbf{r$$

where  $\underline{\mathfrak{r}}_{c_1}, \underline{\mathfrak{r}}_{c_c}, \underline{\mathfrak{w}}_{c}$ , and  $\underline{\mathtt{R}}_{c}$  are the vectors shown in Figure 3.2.

Usually, once the configuration of the motion base is made,  $\frac{R}{2c}$  is a constant vector. Therefore

$$R_{c} = R_{c} = 0$$

equation (3.6) becomes

$$\underline{A}_{c} = \underline{\mathbf{r}}_{cc} + \underline{\psi}_{c} \times \underline{\mathbf{r}}_{cc} + \underline{\psi}_{c} \times \underline{\mathbf{R}}_{c} + \underline{\psi}_{c} \times \underline{\mathbf{R}}_{c}$$
(3.7)

#### CHAPTER IV

#### LINEAR WASHOUT FILTER

Traditionally, washout filters were derived empirically. Among many methods, the most fundamental ones are

a) Scaling;

-+

- b) residual tilting (coordinating);
- c) linear filtering.

To meet the performance requirements, combinations of these techniques are often necessary. The essential part of washout circuitry is a high-pass filter used to exclude undesired low frequency signals from the motion base input. A high-pass filter is always used in linear washout circuitry, because low frequencies or constant inputs would require a large motion base excursion [1] which might lead the motion base to hit the simulator's travel limits.

In 1970, Conard and Schmidt proposed a coordinated linear washout filter [1]. As the name implies, in this method they coordinate the translational channels and rotational channels to simulate partially steady state specific forces (see Figure 4.1 for the function block diagram). Hence a better representation of the specific forces may be produced in principle.

The detailed derivation of a linear washout filter is given in reference [1].

It is observed that an effective washout filter for the acceleration input should have at least a transfer function of third order. For illustrative purposes, a typical second order high pass is given as follows [1]

$$G(s) = \frac{ks^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$
(4.1)

suppose  $r_c(s)$ ,  $r_c(s)$  are the simulator cockpit and the simulated aircraft accelerations respectively, then

$$\hat{\vec{r}}_{c}(s) = \frac{ks^{2}}{s^{2} + 2\zeta \omega_{n} s + \omega_{n}^{2}} \hat{\vec{r}}_{c}(s)$$
(4.2)

<sup> $\dagger$ </sup>In general,  $\ddot{r}_c$  is only the high frequency part of the total simulator motion base acceleration.

Let the initial conditions be  $\dot{r}_{c}(o) = 0$ ,  $r_{c}(o) = 0$ , and suppose  $\ddot{r}_{c}$  is a step input, then time responses are given in Figures 6.4 $\circ$ 6.7, the values used for  $\zeta$  and  $\omega_{n}$  are given in Table 1 of Appendix C. Investigation of these figures shows that this kind of filter is capable of "washing out" the specific force inputs. However, because of the linearity of the washout filter, all motion cues are washed out at the same time regardless of the difference in magnitudes of inputs. Therefore the linear washout filter often unnecessarily reduces the capability of the motion base, which in turn reduces the fidelity of the simulator.

#### CHAPTER V

#### COORDINATED ADAPTIVE WASHOUT FILTER

Following the same idea of coordination of translation and rotation to generate more accurate longitudinal and lateral force cues, R.V.Parrish et al conceived the coordinated adaptive washout filter in 1974 [4].

The design philosophy for these filters is to present as much of the force cues as possible within the constraints of the motion base. Theoretically, the coordinated adaptive washout filter is based on the theory of parameter optimization.

The detailed development of the adaptive washout filter was carried out by R.V.Parrsh et al [4]. For completeness, some major aspects of this development and theoretical background will be introduced briefly in the following sections. The results of a computer simulation will also be given later.

#### 5.1 Parameter Optimization

Optimization is one of the most important problems in control system engineering. One aspect of optimization is the selection of system parameters in such a manner that the performance of the system is as close to optimum as possible, based on a given criterion for optimality. For example it may be desired to minimize cost or energy consumption or to maximize profit, productivity, or distance of travel etc..

In the following sections, the mathematical development of the parameter optimization using continuous steepest descent is presented.

## 5.1.1 Mathematical Description of Dynamic Systems

Dynamic systems are described by means of differential equations. Any system of order n can be represented by n first-order equations. Without loss of generality the dynamic system can be expressed by the state equation:

$$\underline{\mathbf{x}} = \underline{\mathbf{f}}(\underline{\mathbf{x}}, \, \mathbf{t}, \, \underline{\alpha}, \, \underline{\mathbf{u}}) \tag{5.1}$$

where  $\underline{\dot{x}} \triangleq [\dot{x}_1, \dot{x}_2, ..., \dot{x}_n]^T$ ,  $\underline{x} \triangleq [x_1, x_2, ..., x_n]^T$ ,  $\underline{\alpha} \triangleq [\alpha_1, \alpha_2, ..., \alpha_n]^T$  $\underline{u} \triangleq [u_1, u_2, ..., u_m]^T$  and  $\alpha_i$  represent the adjustable parameters, and  $\underline{u}$  the input.

$$\underline{\mathbf{x}}(\mathbf{0}) = \underline{\mathbf{x}}_{\mathbf{0}}$$

Description of dynamic systems in terms of their states is consistent with modern control system theory and provides for a compact interpretation of the behavior of multiparameter systems.

For each set of parameter values, say,  $\underline{\alpha}^{(1)}$ , or  $\underline{\alpha}^{(2)}$  the system behavior will be described by means of a solution given by  $x(\alpha^{(1)}, t)$  or  $x(\alpha^{(2)}, t)$ .

In solving optimization problems, a performance criterion function relating to the parameters, the input, and the states of the system is always needed. For simplicity we denote the criterion function as

$$J = J(x, \alpha, u)$$

Usually, for an optimization problem, it is desired that by selecting  $\alpha$  or u or both, that

$$J \rightarrow \min J(x, \alpha, u)$$
 or  $\max J(x, \alpha, u)$ 

The configuration of criterion function varies in different problems.

#### 5.1.2 Optimization by Continuous Steepest Descent [10]

In system engineering, optimization is categorized into two main problems; static optimization which ignores the dynamic characteristics of the system and dynamic optimization.

First we consider the problem of static optimization. A typical static system is a set of algebraic equations with a number of adjustable parameters. It may be stated in the matrix form

$$A x = b$$

where x and b are n-dimentional vectors, A is an nxn matrix. A criterion function depending on the particular values of the parameters is denoted as follows

$$J = J(\alpha) \tag{5.2}$$

where A is  $A(\alpha)$  and  $J = J[x(\alpha), \alpha] = J(\alpha)$ .

It is desired to derive a method of adjusting the parameters such that starting from an arbitrary initial point  $\frac{\alpha}{0}$ , the parameters will move toward the values which minimize J. It is known that the path of the steepest descent is the path which is normal to the contour lines in the parameter space which represent constant values of the criterion function. Consequently, it can be seen intuitively that the parameters should be adjusted such that their rate of change with respect to time will be tangental to the gradient vector in this same space. If each component of the changing parameter vector, i.e. each component of  $\frac{\alpha}{2}$  is collinear with the corresponding component of the gradient vector, then the adjustment will in fact be along the path of steepest descent (see Figure 5.1).

To mathematically verify the above statement, we formulate the rate of change of a criterion function with respect to time as follows

$$\frac{dJ}{dt} = \frac{\partial J}{\partial \alpha_1} \frac{d\alpha_1}{dt} + \frac{\partial J}{\partial \alpha_2} \frac{d\alpha_2}{dt} + \dots + \frac{\partial J}{\partial \alpha_n} \frac{d\alpha_n}{dt}$$
(5.3)

or in vector form, equation (5.3) can be written as follows

$$\frac{\mathrm{d}J}{\mathrm{d}t} = \langle \nabla J, \ \underline{\alpha} \rangle \tag{5.4}$$

where

$$\underline{\nabla J} = \begin{bmatrix} \frac{\partial J}{\partial \alpha_1} \\ \frac{\partial J}{\partial \alpha_2} \\ \vdots \\ \frac{\partial J}{\partial \alpha_n} \end{bmatrix}, \quad \underline{\alpha} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

The rate of change of J with respect to time is the inner product of the two vectors  $\forall J$  and  $\dot{\alpha}$  .

Now we wish to maximize dJ/dt. Clearly from equation (5.4), we know that maximizing dJ/dt is equivalant to maximizing the inner product. This occurs when the two vectors  $\nabla J$  and  $\dot{\alpha}$  are parallel or, in other words, when corresponding components of the two vectors are proportional to one another. That is or in vector form

$$\frac{\dot{\alpha}}{\alpha} = K \nabla J \tag{5.6}$$

(5.5)

where K is a coefficient. If K > 0, then equation (5.6) represents an ascent path; if K < 0 it represents a descent path, and is referred to as continuous steepest descent(CSD).

∂J/∂α.

#### 5.1.3 Extension of CSD to Dynamic Systems

The previous section has been concerned with the problem of static parameter optimization. Most engineering problems, however, are concerned with the optimization of dynamic systems described by differential equations, consequently the method outlined in the preceding section cannot be applied directly to dynamic systems.

For the sake of simplicity, we consider a model reference adaptive (MRA) control system depicted in Figure 5.2, where  $y_p(\alpha,t)$  is the output of the dynamic system,  $\alpha$  is the adjustable parameter vector which can be adjusted continuously to make  $y_p(\alpha, t)$  as close to the output of the reference model as possible. However,  $y_p(\alpha, t)$  is not an instantaneous function of due to the characteristics of the dynamic system, rather, it depends on the present state and history of both the system and the parameters. Consequently, the fundamental assumption made in Section 5.1.2, namely, that J is an algebraic function of the parameters is now violated. In dynamic systems J depends on the entire time history of the parameters.

In order to make use of the steepest descent method, we have to make some modifications in the development. One way to circumvent the problem is to fix  $\alpha$  with respect to time during computation of the gradient. Another way of modification which is more extensively used in adaptive control problems to attain parameter optimization is to assume that the rate of adjustment of parameters is slow compared to the basic time constraints of the system itself. This is the so-called "approximate gradient method".

#### 5.2 Model Reference Adaptive Control (MRAC) --- a review

In contrast to conventional control theroy, adaptive control refers to the control of partially known systems [11]. For many years there has been an increasing interest in adaptive control which can be attributed to the fact that there is invariably some uncertainty in the dynamic characteristics of most practical systems.

For this class of system, the tools of conventional control theory, even when used efficiently in the design of controllers, are inadequate in achieving satisfactory performance in the entire range over which the characteristics of the system may vary. Hence some type of monitoring of the system's behavior followed by the adjustment of the control input, i.e. feedback, is needed and is referred to as adaptive control. It is possible to monitor different system characteristics and take different control actions, and hence there is a large class of nonlinear feedback systems which can be referred to as adaptive control systems.

Since adaptive control systems are nonlinear feedback systems, there is the distinct possibility that such systems can become unstable. Even though there has been interest in this area for over twenty years, due to the lack of a well developed stability theory for such systems, the application of adaptive control to practical systems has not been attempted on a large scale, until recently. Most applications and research have been made in control of aircraft and spacecraft which indicates that adaptive control theory may be especially suitable for flight vehicle control system design.

Among many theories proposed, the model reference adaptive control has been widely applied. In this investigation, we will use it to solve the motion base control problem.

## 5.2.1 The General Statement of the Problem

The input and output of a linear time-invariant plant with unknown parameters are  $\underline{\alpha}(\cdot)$  and  $y_p(\cdot)$  respectively (see Figure 5.2). A linear time-invariant reference model and a reference input  $r(\cdot)$  are specified which result in a model output  $y_m(\cdot)$ . From all available on-line data it is desired to determine the control input such that the error  $(y_p-y_m)$  tends to zero.

Our interest now is to determine the information needed to solve the problem and generate a model for realizing the controller. The parameterization of the control object, the structure of the controller and the manner in which the controller parameters have to be adjusted to achieve stable control are all found to be important.

### 5.2.2 The Structure of the Controller (direct control)

A controlled plant p is completely represented by the input-output pair {u(•),  $y_p(•)$ } and can be modelled by a transfer function

$$G_{p}(s) = \frac{K_{p}W_{p}(s)}{R_{p}(s)}$$
(5.7)

where  $W_p(s)$  and  $R_p(s)$  are polynomials of degrees  $m(\leq n-1)$  and respectively. A stable reference model is represented by the input-output pair{r(·),  $y_m(\cdot)$ } and has a transfer function

$$G_{m}(s) = \frac{K_{m}W_{m}(s)}{R_{m}(s)}$$
 (5.8)

The error between plant and model outputs is defined as

$$e(t) \triangleq y_{p}(t) - y_{m}(t)$$
(5.9)

The problem is to determine the control input u(t), so that

$$\lim_{t \to \infty} e(t) = 0$$
 (5.10)

Assume that the transfer function  ${}^G{}_p(s)$  for the plant has n poles, then as Narendra asserted in [12],  ${}^G{}_p(s)$  has a maximum of 2n unknown parameters which are coefficients of  ${}^K{}_p{}^W{}_p(s)$  and  ${}^R{}_p(s)$ , therefore the controller structure must have adequate freedom so that by adjusting the control parameters the transfer function of the plant together with the controller can match that of any specified model.

For direct control, the configuration shown in Figure 5.3 has evolved as the basic one for the controller. The input u(t) and the output  $y_p(t)$  of the plant are correspondingly fed into the two filters of identical form, whose state vector  $V_1(t)$  and  $V_2(t)$  are of dimension (n-1). Together with r(t) and the output  $y_p(t)$  they constitute the 2n signals whose linear combination yields the desired input u(t). If  $\underline{\gamma}(t)$  is a control parameter vector with 2n elements, then

 $u(t) = \underline{\gamma}^{T}(t)W(t)$ 

where

$$\underline{\boldsymbol{\gamma}}^{\mathrm{T}}(t) = [\boldsymbol{\gamma}_{1}(t), \boldsymbol{\gamma}_{0}(t), \dots, \boldsymbol{\gamma}_{2n}(t)]$$
$$\underline{\boldsymbol{W}}^{\mathrm{T}}(t) = [\mathbf{r}(t), \underline{\boldsymbol{V}}_{1}^{\mathrm{T}}(t), \boldsymbol{y}_{n}(t), \underline{\boldsymbol{V}}_{2}^{\mathrm{T}}(t)]$$

It is shown in reference [12] that there exists a constant vector  $\underline{Y}^*$  of dimension 2n such that when  $\underline{Y}(t) \equiv \underline{Y}^*$ , the transfer function of the plant will match that of the model. Hence, it only remains to show how  $\underline{Y}(t)$  is to be adjusted so that

$$\lim_{t \to \infty} \underline{\gamma}(t) = \underline{\gamma}^*$$
(5.11)

# 5.2.3 Modification of the Control Structure

The adaptive control structure in the previous section is based on the idea that by adjusting parameters, the system output error will eventually vanish. In the control of a

flight simulator, the model output and the controlled system (i.e. the simulator) output can never be matched because of the special characteristics of the system. Therefore some modifications should be made.

A.P.Sage has suggested a configuration [13]. Instead of directly using the system error as a criterion, he defined a cost function  $J(\underline{e})$  related to the system errors. Then he minimizes the cost function by forming the gradient vector for  $J(\underline{e})$ , and adjusts system parameters, possiblly by a linear programming procedure (approximate steepest descent, for instance), until the gradient becomes zero. Before the model reference adaptive system is in full adaptation to the model, the gradient will not be zero and is defined as the error quantity

$$EQ = \frac{\partial J}{\partial p}$$
(5.12)

where  $\underline{p}^{T} = [p_1, p_2, \dots, p_m]$  is a parameter vector.

The steepest descent procedure is implemented as introduced in Section 5.1.

#### 5.3 The Adaptive Washout Filter [4]

Based on the theory and the discussion in Sections 5.1 and 5.2, the proposed adaptive washout filter is illustrated in Figure 5.4. It is clear that this adaptive filter is a model reference adaptive control system which has a structure similar to the one shown in Figure 5.2, and uses the input generated from the dynamic equations of the simulated aircraft as a reference. The output of the controlled system is compared to the aircraft equations of motion. After the comparison, the adaptive parameters are adjusted according to the motion base environment, at the same time minimizing the cost function by using an approximate steepest descent method.

In this proposed adaptive washout filter, the cost function J is defined for each channel in the form of

> $J = \frac{1}{2} (f_{m} - f_{s})^{2} + \frac{W}{2} (\dot{\alpha}_{m} - \dot{\alpha}_{s})^{2} + \frac{b}{2} x_{s}^{2} + \frac{c}{2} \dot{x}_{s}^{2}$ (5.13)

where

 $f_m$  ----the acceleration of the reference model;  $\dot{\alpha}_{m}$  ----the angular velocity of the reference model;  $f_s$  ----the acceleration of the simulator;  $\dot{\alpha}_s$  ----the angular velocity of the simulator; x<sub>s</sub> ----the position away from the neutral point;  $\dot{x}_s$  ----the translational velocity of the simulator, which are all in inertial frame.

At present, we assume that the hydraulic system of the simulator has only proportional action.

The control law is defined as follows

$$\ddot{x}_{s} = p_{s,1} f_{m} - d\dot{x}_{s} - ex_{s}$$
 (5.14a)

$$\dot{a}_{s} = p_{s,2} f_{m} + p_{s,3} \dot{a}_{m}$$
 (5.14b)

where  $p_{s,j}$  (j = 1,2,3) are adjustable parameters,  $f_m$ ,  $\dot{\alpha}_m$  are reference model inputs,  $\ddot{x}_s$ ,  $\dot{x}_s$ ,  $x_s$ ,  $\alpha_s$  are states of the simulator, and d and e are pre-determined constant coefficients.

Applying steepest descent procedure yields

$$\dot{p}_{s,j} = -K \frac{\partial J}{\partial p_{s,j}}$$
 j = 1, 2, 3 (5.15)

from equation (5.13) we have (where the present case is such that  $f_s = \ddot{x}_s$ )

$$\frac{\partial J}{\partial p_{s,j}} = (f_m - \ddot{x}_s) \left( \frac{\partial f_m}{\partial p_{s,j}} - \frac{\partial \ddot{x}_s}{\partial p_{s,j}} \right) + W(\dot{\alpha}_m - \dot{\alpha}_s) \left( \frac{\partial \alpha_m}{\partial p_{s,j}} - \frac{\partial \dot{\alpha}_s}{\partial p_{s,j}} \right) + bx_s \frac{\partial x_s}{\partial p_{s,j}} + c\dot{x}_s \frac{\partial \dot{x}_s}{\partial p_{s,j}}$$
(5.16)

Substituting equation (5.16) in equation (5.15) we get

$$\dot{\mathbf{p}}_{s,j} = -K \left\{ (\mathbf{f}_{m} - \ddot{\mathbf{x}}_{s}) \left( \frac{\partial \mathbf{f}_{m}}{\partial p_{s,j}} - \frac{\partial \ddot{\mathbf{x}}_{s}}{\partial p_{s,j}} \right) + W(\dot{\alpha}_{m} - \dot{\alpha}_{s}) \left( \frac{\partial \dot{\alpha}_{m}}{\partial p_{s,j}} - \frac{\partial \dot{\alpha}_{s}}{\partial p_{s,j}} \right) \right. \\ \left. + bx_{s} \frac{\partial \mathbf{x}_{s}}{\partial p_{s,j}} + c\dot{\mathbf{x}}_{s} \frac{\partial \dot{\mathbf{x}}_{s}}{\partial p_{s,j}} \right\}$$
(5.17)

The state sensitivity equations are obtained by assuming that the parameters  $P_{s,j}$  are independent, and that derivatives are continuous in the adjustable parameters and time. For example, if x=x(p,t), where p is a parameter vector, t time; p, isn, are independent, and x has continuous derivatives with respect to p and t, therefore we have[14]

$$\frac{\partial}{\partial p_{i}}\left(\frac{\partial^{2} x}{\partial t^{2}}\right) = \frac{d^{2}}{dt^{2}}\left(\frac{\partial x}{\partial p_{i}}\right) = \frac{d}{dt}\left(\frac{\partial x}{\partial p_{i}}\right)$$

From equation (5.14), we get

$$\frac{d}{dt} \left( \frac{\partial x_{s}}{\partial p_{s,j}} \right) = \frac{\partial p_{s,1}}{\partial p_{s,j}} f_{m} + p_{s,1} \frac{\partial f_{m}}{\partial p_{s,j}} - d \frac{\partial x_{s}}{\partial p_{s,j}} - e \frac{\partial x_{s}}{\partial p_{s,j}}$$
(5.18)

$$\frac{d}{dt} \left( \frac{\partial \alpha_{s}}{\partial p_{s,j}} \right) = \frac{\partial p_{s,2}}{\partial p_{s,j}} f_{m} + p_{s,2} \frac{\partial f_{m}}{\partial p_{s,j}} + \frac{\partial p_{s,3}}{\partial p_{s,j}} \dot{\alpha}_{m} + p_{s,3} \frac{\partial \dot{\alpha}_{m}}{\partial p_{s,j}}$$
(5.19)

Note that the assumption that the  $\mathbf{p}_{s,j}$  are independent was used here. Therefore

$$\frac{\partial \mathbf{p}_{s,i}}{\partial \mathbf{p}_{s,j}} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Thus from equation (5.18) and equation (5.19), we have

$$\frac{d}{dt} \left( \frac{\partial x}{\partial p_{s,1}} \right) = f_m - d \frac{\partial x}{\partial p_{s,1}} - e \frac{\partial x}{\partial p_{s,1}}$$
(5.20)

$$\frac{d}{dt} \left( \frac{\partial x_{s}}{\partial p_{s,2}} \right) = p_{s,1} \frac{\partial f_{m}}{\partial p_{s,2}} - d \frac{\partial x_{s}}{\partial p_{s,2}} - e \frac{\partial x_{s}}{\partial p_{s,2}}$$
(5.21)

$$\frac{d}{dt} \left( \frac{\partial x_{s}}{\partial p_{s,3}} \right) = p_{s,1} \frac{\partial f_{m}}{\partial p_{s,3}} - d \frac{\partial x_{s}}{\partial p_{s,3}} - e \frac{\partial x_{s}}{\partial p_{s,3}}$$
(5.22)

$$\frac{d}{dt} \left( \frac{\partial \alpha_{s}}{\partial p_{s,2}} \right) = f_{m} + p_{s,2} \frac{\partial f_{m}}{\partial p_{s,2}}$$
(5.23)

$$\frac{d}{dt} \left( \frac{\partial \alpha}{\partial p_{s,3}} \right) = p_{s,2} \frac{\partial f_m}{\partial p_{s,3}} + \dot{\alpha}_m$$
(5.24)

From simultaneous integration of the equations  $(5.17) \sim (5.23)$  and the corresponding equations of Appendix A in real time, we get the adaptive parameters  $p_{s,j}$  (j=1,2,3) used in the control law. Selection of the values of the constants [W, b, c, d, e,  $k_i [p_{s,j}(0), j = 1, 2, 3$ ] must be based on the constraints of the motion base and the flight environment, as well as the desired emphasis of washout (i.e. to represent specific force, rotational rate, or some combination of both).

The detailed equations for all three channels are documented in Appendix A.

A computer program was made to implement this control system. The time responses to different inputs are given in Figures 6.8 $\circ$ 6.19, the parameters used in the computation are given in Table 2 of Appendix C. The discussion of the results is deferred to Chapter 6 to allow a comparison with the results of the nonlinear optimal washout filter.

#### CHAPTER VI

#### NONLINEAR OPTIMAL WASHOUT FILTER

In developing washout filters for a flight simulator motion base, one of the key objectives is to allow as large force cues as possible and at the same time keep the motion base within its limits. This, hopefully, will provide the pilot with good fidelity. Trying to obtain better motion and force cues is a perplexing problem which has been with the engineers involved in this field for many years. Efforts have been resulted in little improvement so far.

To attack this problem it seems logical that the optimal control theory is one of the most promising methods. Recently, several researchers have developed optimal washout filters As pointed out by J.Sandor and D.Williamson [15], to [2.3]. achieve the desired control for this kind of system certain states should be penalized more heavily. Conventionally this can be done by choosing appropriate weighting of the states in But unfortunately, this approach may performance index. the often lead to "ill conditioned" linear feedback gain which can sometimes destabilize the system. Further study has revealed that the desired process should be highly non-linear. Relying on the application of linear control theory will not help very much to solve the problem.

In the current context, application of nonlinear optimal control theory implies construction of a nonlinear control input for a system which may not necessarily be a nonlinear system. In the following sections, for simplicity, we assume that the controlled system is linear. The detailed development is described below. Examples for the three response channels are given.

6.1 Theoretical Development

It is observed that practical problems of feedback control frequently involve specifications which cannot be met by purely linear designs. For example, soft-saturate type constraints are often imposed on certain state variables such as velocities and accelerations.

For completeness, the following definitions are given for readers.

Definition 1.(square integrable function) [26]

A function  $f \in R$  is said to be square integrable if

 $\mathbf{f} \cdot |\mathbf{f}| \in \mathcal{L}^1(0, \infty; \mathbb{R}^{\Omega})$ 

$$\mathcal{L}^{1}(0, \infty; \mathbb{R}^{\Omega}) \triangleq \left\{ g \mid 0 < \int_{-\infty}^{+\infty} gdm < +\infty, \text{ for all } m \in \mathbb{R}^{\Omega} \right\}$$

The set of all square integrable functions  $\epsilon \ R$  is denoted by  $L^2(0, \ \infty; \ R^\Omega)$ , where  $\ R^\Omega$  is the set of all real numbers and includes  $-\infty$  and  $+\infty$ .

Loosely speaking, if a function f is squared, and the integral satisfies the following relation

$$\infty < \int_{-\infty}^{+\infty} f^2 dm < +\infty$$

we then call f a "square integrable function".

To design an asymptotically stabilizing nonlinear feedback law such that trajectories of the system are optimal in some sense, P.J.Moylan et al [16] established the following definition which will be helpful in the development.

Definition 2. (Return Difference Condition, R.D.C) [16]

Consider the controllable linear system

$$x = f(x, t) + B u(t)$$
 (6.1)

with  $\underline{x}(0) = \underline{x}_0$ ,  $\underline{x}(t) \in \mathbb{R}^n$ , and  $\underline{u}(t) \in \mathbb{R}^m$ .

A function F:  $\mathbb{R}^n \to \mathbb{R}^m$  is said to satisfy the Return Difference Condition (R.D.C.), if

$$\int_{0}^{\infty} \left\| \underline{u}(t) + \underline{F}[\underline{x}(t)] \right\|^{2} dt \ge \int_{0}^{\infty} \left\| \underline{u}(t) \right\|^{2} dt \qquad (6.2)$$

for all  $u \in \mathcal{L}^2(0, \infty; \mathbb{R}^m)$  generating a trajectory  $\underline{x}(\cdot)$  of equation (6.1) with  $\underline{x}(0) = \underline{x}_0 = \underline{0}$  and  $\lim_{t \to \infty} \underline{x}(t) = \underline{0}$  where  $\mathcal{L}^2$  is a set of square integrable functions.

To interpret equation (6.2), we may consider it as implying that a feedback law of  $-\underline{F}[\underline{x}(t)]$  constitutes a negative feedback, with  $\underline{u}_e$  denoting an external control applied to the system (6.1).  $u_e$  can be expressed as follows

$$\underline{\mathbf{u}}_{\mathbf{p}} = \underline{\mathbf{u}}_{\mathbf{L}} + \underline{\mathbf{F}}(\underline{\mathbf{x}}) \tag{6.3}$$

where  $u_L$  denotes a linear control input. This control

structure is shown in Figure 6.1.

The importance of the R.D.C. is shown in the following theorem [16] which we adopt here without proof.

#### Theorem 1.

For the system (6.1), the asymptotically stable control law

$$\underline{\mathbf{u}}(\mathbf{t}) = -\underline{\mathbf{F}}[\underline{\mathbf{x}}(\mathbf{t})] \tag{6.4}$$

is optimal for problem of minimizing, subject to the boundary condition  $x(\infty) = 0$ , a performance index of the form

$$J = \int_{0}^{\infty} [m(\underline{x}) + \underline{u}^{T}\underline{u}] dt \qquad (6.5)$$

with m(x) nonnegative for all x, if and only if F(x) satisfies the R.D.C..

One of Lyapunov's theorems is very important in the design of the present nonlinear washout filter. We introduce it here, the proof of the theorem is quite lengthy. Interested readers may consult reference [17].

Theorem 2.(a theorem of Lyapunov)

For a system

$$\mathbf{x} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}$$

Let  $R(\lambda_i)$  denote the real part of the eigenvalues of the system matrix <u>A</u>, if  $R(\lambda_i) < 0$ , for all  $i \in n$ , and  $\xi(\underline{x})$  is a definite form of even degree of m, then we define V by

$$\sum_{j=1}^{n} (a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n) \frac{\partial V}{\partial x_j} = -\xi(\underline{x})$$
(6.6)

where  $a_{ik}$ ,  $j \in \underline{n}$ ,  $k \in \underline{n}$  are elements of A.

The form V of the degree m defined above is also definite and of sign contrary to  $\xi$ . Especially, if  $\xi > 0$  then dV/dt < 0, this implies that V is a Lyapunov function.

With these theorems, now we consider the system

$$\dot{\mathbf{x}} = \underline{A} \ \underline{\mathbf{x}} + \underline{B} \ \underline{\mathbf{u}} + \underline{\Gamma} \ \underline{W}$$

$$\underline{\mathbf{y}} = \underline{C} \ \underline{\mathbf{x}} + \underline{D} \ \underline{\mathbf{u}}$$
(6.7)

where

$$A \in R^{n \times n}$$
, B  $\in R^{n \times m}$ , C  $\in R^{q \times n}$ ,  $D \in R^{q \times m}$ 

 $\mathbf{x} \in \mathbf{R}^{n}$ ,  $\mathbf{y} \in \mathbf{R}^{q}$ , and  $\mathbf{u} \in \mathbf{R}^{m}$ 

It is convenient to assume that the system (6.7) is completely controllable and observable, i.e.

Rank  $[\underline{B} \mid \underline{A} \mid \underline{B} \mid \dots \mid \underline{A}^{n}\underline{B}] = n$ 

and

$$\operatorname{Rank}\left[\underline{C}^{\mathrm{T}}\right| \begin{array}{c} \underline{A}^{\mathrm{T}}\underline{C}^{\mathrm{T}} \\ \end{array} \right| \begin{array}{c} (\underline{A}^{\mathrm{T}})^{2} C^{\mathrm{T}} \\ \end{array} \right| \begin{array}{c} \dots \\ \end{array} \right| \begin{array}{c} (\underline{A}^{\mathrm{T}})^{n} \underline{C}^{\mathrm{T}} \\ \end{array} \right] = n$$

From lemma 1 [15] and using the definition and the theorems given above, we have the following corollary.

#### Corollary

Find <u>F</u> such that  $\underline{A}_0 = \underline{A} - \underline{B} \underline{F}$  and  $\sigma(\underline{A}_0) \in C$ , where  $\sigma(\cdot)$  denotes the spectrum or eigenvalues of a matrix, C<sup>-</sup> denotes the left half of the complex plane.

Consider the nonlinear function

$$\underline{\mathbf{k}}(\underline{\mathbf{x}}) = -\underline{\mathbf{R}}^{-1}\underline{\mathbf{B}}^{\mathrm{T}}\nabla_{\underline{\mathbf{x}}}\mathbf{V}$$
(6.8)

where  $\underline{R} > 0$ ,  $\underline{R} = diag[r_{11}, r_{22}, \dots r_{mm}]$ ; V is the solution of the following partial differential equation

$$\langle \nabla_{\mathbf{x}} V, \underline{A}_{\mathbf{0}} \underline{\mathbf{x}} \rangle = -\xi(\underline{\mathbf{x}})$$
 (6.9)

for some nonnegative definite homogeneous form  $\xi(\underline{x})$  of even degree, and  $\nabla_{\underline{x}} \underline{V} \underline{\Delta} \partial \underline{V} / \partial \underline{x}$ . Then  $\underline{k}(\underline{x})$  satisties the R.D.C.. For

 $\dot{\underline{x}} = \underline{\underline{A}}_{0} \underline{\underline{x}} - \underline{\underline{B}} \underline{\underline{u}}_{NL}$ (6.10)

where  $\underline{u}_{NL} \triangleq -\underline{k}(\underline{x})$ , the solution  $\underline{x}(\cdot)$  is asymptotically stable and  $\underline{u}_{NL}$  minimizes the performance index

$$J = \int_{0}^{\infty} \left[ \frac{1}{2} \left( \underline{x}^{T} \underline{Q} \ \underline{x} + \underline{u}^{T} \underline{R} \ \underline{u} \right) + \xi(\underline{x}) \right] dt$$
(6.11)

Proof:

By the Lyapunov theorem (given as theorem 2.), and the relation (6.9), we know that V is a Lyapunov function, and for the system (6.10), we assume that

$$\dot{\mathbf{V}} = \left(\frac{\partial \mathbf{V}}{\partial \underline{\mathbf{x}}}\right)^{\mathrm{T}} \frac{\partial \mathbf{x}}{\partial \mathbf{t}} = \left(\frac{\partial \mathbf{V}}{\partial \underline{\mathbf{x}}}\right)^{\mathrm{T}} \frac{\mathbf{\dot{\mathbf{x}}}}{\mathbf{x}} = \left(\frac{\partial \mathbf{V}}{\partial \underline{\mathbf{x}}}\right)^{\mathrm{T}} (\underline{\mathbf{A}}_{\mathbf{0}} \underline{\mathbf{x}} - \underline{\mathbf{B}} \ \underline{\mathbf{u}}_{\mathrm{NL}})$$
$$= -\xi - \left[(\nabla_{\underline{\mathbf{x}}} \mathbf{V})^{\mathrm{T}} \underline{\mathbf{B}}\right] \underline{\mathbf{R}}^{-1} [\underline{\mathbf{B}}^{\mathrm{T}} \nabla_{\underline{\mathbf{x}}} \mathbf{V}]$$
$$= -[\xi + \underline{\mathbf{W}}^{\mathrm{T}} \underline{\mathbf{R}}^{-1} \underline{\mathbf{W}}]$$

where  $\underline{W} \triangleq \underline{B}^T \nabla_{\mathbf{x}} \mathbf{V}$ .

Since it is assumed that  $\xi(\underline{x}) \ge 0$ ,  $\underline{R} > 0$  and  $R=diag[r_{11},r_{22},\ldots,r_{mm}]$ , therefore  $\underline{W}^T\underline{R}^{-1}\underline{W} > 0$ , this implies that

$$\mathbf{\tilde{V}} < \mathbf{0}$$

which confirms that the solution for equation (6.10) is aymptotically stable.

Now we need to prove that with this  $\underline{k}(\underline{x})$ , the R.D.C. is satisfied. We construct a functional as follows

$$\int_{0}^{\infty} \underbrace{\underline{v}^{T} \underline{v}}_{0} dt \leq \int_{0}^{\infty} \left[ \underbrace{\underline{v}^{T} \underline{v}}_{0} + 2\xi(\underline{x}) + \underbrace{\underline{W}^{T} \underline{R}^{-1} \underline{W}}_{0} \right] dt$$

$$= \int_{0}^{\infty} \left( \underbrace{\underline{v}^{T} \underline{v}}_{0} - 2 < \underbrace{\nabla_{\underline{x}} \underline{v}}_{1}, \underbrace{\underline{A}_{0} \underline{x}}_{0} + \underbrace{\underline{W}^{T} \underline{R}^{-1} \underline{W}}_{1} \right) dt \qquad (6.12)$$

along the trajectories

$$\underline{\dot{x}} = \underline{A} \underline{x} - [\underline{B} \ \underline{R}^{-1} \underline{B}^{T} \underline{\nabla}_{\underline{X}} \underline{V} + \underline{B} \ \underline{R}^{-1} \underline{v}]$$
(6.13)

This form is valid, because of the controllability of the system.

The following relation is then verified

$$\langle \nabla_{\underline{x}} V, \underline{A}_{0} \underline{x} \rangle = \langle \nabla_{\underline{x}} V, \underline{\dot{x}} \rangle + \underline{W}^{T} \underline{R}^{-1} \underline{W} + \langle \nabla_{\underline{x}} V, \underline{B} \underline{R}^{-1} \underline{v} \rangle$$
$$\langle \nabla_{\underline{x}} V, \underline{A}_{0} \underline{x} \rangle = \frac{dV}{dt} + \underline{W} \underline{R}^{-1} \underline{W} + \langle \nabla_{\underline{x}} V, \underline{B} \underline{R}^{-1} \underline{v} \rangle$$
(6.14)

or

$$\int_{0}^{\infty} \underline{v}^{T} \underline{v} dt \leq \int_{0}^{\infty} (\underline{v}^{T} \underline{v} - 2 \langle \nabla_{\underline{x}} V, \underline{B} \underline{R}^{-1} \underline{v} \rangle - \underline{w}^{T} \underline{R}^{-1} \underline{w}) dt$$
$$- 2[V(t_{\infty}) - V(t_{0})]$$

Note that  $V(t_{\infty}) = V(t_0) = 0$ , therefore

$$\int_{0}^{\infty} \underline{\underline{v}}^{T} \underline{\underline{v}} dt \leq \int_{0}^{\infty} (\underline{\underline{v}}^{T} \underline{\underline{v}} - 2 < \nabla_{\underline{x}} \underline{\underline{v}}, \underline{\underline{B}} \underline{\underline{R}}^{-1} \underline{\underline{v}} - \underline{\underline{w}}^{T} \underline{\underline{R}}^{-1} \underline{\underline{w}}) dt$$
(6.15)

and

$$\int_{0}^{\infty} \left\| \underline{v} + \underline{k}(\underline{x}) \right\|^{2} dt = \int_{0}^{\infty} (\underline{v} - \underline{R}^{-1} \underline{B}^{T} \nabla_{\underline{x}} \underline{v})^{T} (\underline{v} - \underline{R}^{-1} \underline{B}^{T} \nabla_{\underline{x}} \underline{v}) dt$$
$$= \int_{0}^{\infty} (\underline{v}^{T} \underline{v} - 2\underline{v}^{T} \underline{R}^{-1} \underline{B}^{T} \nabla_{\underline{x}} \underline{v} + \nabla_{\underline{x}} \underline{v}^{T} \underline{B}(\underline{R}^{-1})^{T} \underline{R}^{-1} \underline{B}^{T} \nabla_{\underline{x}} \underline{v}) dt$$
(6.16)

But <u>R</u> is a diagonal, mxm matrix, so is  $\underline{R}^{-1}$ , that is  $(\underline{R}^{-1})^T = \underline{R}^{-1}$ , and note that  $\underline{W} = \underline{B}^T \nabla_x V$ . Therefore equation (6.16) becomes

$$\int_{0}^{\infty} ||\underline{v} + \underline{k}(\underline{x})||^{2} dt = \int_{0}^{\infty} [\underline{v}^{T} \underline{v} - 2 < \nabla_{\underline{x}} V, \underline{B} \underline{R}^{-1} \underline{v} + \underline{W}^{T} (\underline{R}^{-1})^{2} \underline{W}] dt$$
(6.17)

Since  $\underline{R}>0$ , we have  $\underline{R}^{-1} > 0$ , and  $\underline{W}^{T}(\underline{R}^{-1})^{2}\underline{W} > 0$ . From equations (6.15) and (6.17) the following is true

$$\int_{O} \underline{v}^{T} \underline{v} \leq \int_{O} [\underline{v}^{T} \underline{v} - 2 \langle \nabla_{\underline{x}} V, \underline{B} \underline{R}^{-1} \underline{v} \rangle + \underline{W}^{T} (\underline{R}^{-1})^{2} \underline{W}] dt$$
$$= \int_{O} ||\underline{v} + \underline{k} (\underline{x})||^{2} dt$$

By theorem 1 and the conclusion of [16], the results are extended to the case where  $\underline{u}^T \underline{u}$  is replaced by  $\frac{1}{2} \underline{u}^T \underline{R} \underline{u}$  in equation (6.5).

Since

$$\mathbf{m}(\underline{\mathbf{x}}) = \xi(\underline{\mathbf{x}}) + \frac{1}{2} \underline{\mathbf{x}}^{\mathrm{T}} \underline{\mathbf{Q}} \underline{\mathbf{x}} > 0$$

therefore the control law

$$\underline{\mathbf{u}}_{\mathrm{NL}} = \underline{\mathbf{R}}^{-1} \underline{\mathbf{B}}^{\mathrm{T}} \nabla_{\underline{\mathbf{x}}} \mathbf{V}$$

minimizes the performance index J.

As done in reference [15], we also make use of the notation of x[j]. For detailed explanation of x[j] please see Appendix B. The lemma below is helpful in designing the controller.

#### Lemma [6]

Consider the partial differential equation

$$<\underline{A} \underline{x}, \nabla_{\underline{x}} V > = -\xi(\underline{x})$$
 (6.18)

where  $\underline{A}$  is a stable matrix  $^{\dagger}$  ,  $\xi(\cdot)$  is a homogeneous function having the form

$$\xi(\underline{\mathbf{x}}) = \sum_{j=2}^{m} \langle \underline{\mathbf{x}}^{[j]}, \underline{\mathbf{Q}}_{j} \underline{\mathbf{x}}^{[j]} \rangle$$

for some choice of matrices  $Q_i$  . Then there exists a solution

$$V(\underline{x}) = \sum_{j=2}^{m} \langle \underline{x}^{[j]}, \underline{p}_{j} \underline{x}^{[j]} \rangle$$

where  $\underline{P}_i$  is a solution of the linear equation

$$\underline{A}_{[j]}^{T}\underline{p}_{j} + \underline{p}_{j}\underline{A}_{[j]} = -\underline{Q}_{j} \quad \text{for } j = 1, 2, ..., n$$

where the definition of  $\underline{A}_{[i]}$  is given in reference [15].

If <u>A</u> is strictly stable, then the  $\underline{P}_j$  are unique, which in turn implies that  $V(\underline{x})$  is unique. Furthermore, if  $\xi(\underline{x})$  is nonnegative definite, so too is  $V(\underline{x})$ .

#### 6.2 Controller Design Procedures

With the results obtained in Section 6.1, we establish the following procedures for the design of nonlinear optimal washout filter.

Given the system

$$\frac{\mathbf{x}}{\mathbf{x}} = \underline{\mathbf{A}} \ \mathbf{x} + \underline{\mathbf{B}} \ \underline{\mathbf{u}} + \underline{\Gamma} \ \underline{\mathbf{W}}$$
$$\underline{\mathbf{y}} = \underline{\mathbf{c}} \ \underline{\mathbf{x}} + \underline{\mathbf{D}} \ \underline{\mathbf{u}}$$

with  $(\underline{A}, \underline{B})$  -controllable and  $(\underline{C}, \underline{A})$  -observable,  $\underline{W}$  is the disturbance vector.

<sup>†</sup>A nxn matrix is said to be stable, if  $\sigma(A) \in C^{-}$ . For a controllable system this assumption is always valid.
#### Step 1:

Check <u>A</u>, see if it has the spectrum  $\sigma(\underline{A}) \in C$ , if not, construct a feedback matrix <u>F</u>, such that

$$\sigma(\underline{A} - \underline{B} \underline{F}) = \{\lambda_1, \lambda_2, \dots, \lambda_n\} \in C^{-1}$$

where  $\lambda_i$  are the desired eigenvalues of A-B F .

Now the system has the form

$$\mathbf{x} = (\mathbf{A} - \mathbf{B} \mathbf{F})\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{\Gamma} \mathbf{W}$$

Since the system is completely controllable, such exists [18].

Step 2:

For optimal control, we need to solve the following algeraic Riccati equation

$$\underline{A}_{O}^{T} \underline{P} + \underline{P} \underline{A}_{O} - \underline{P} \underline{B} \underline{R}^{-1} \underline{B}^{T} \underline{P} + \underline{Q} = \underline{O}$$

where  $\underline{A} \triangleq \underline{A} - \underline{B} \underline{F}$ , and  $\underline{F}$  is given in step 1.

Step 3:

Find  $\frac{\widetilde{F}}{\widetilde{F}}$  of the form

$$\underline{\tilde{F}} = -\underline{R}^{-1}\underline{B}^{T}\underline{P}$$

Step 4:

Reconstruct the system matrix with the new  $\check{F}$ :

$$\frac{\Delta}{\underline{A}}_{O} = \underline{A}_{O} - \underline{B} \frac{\Delta}{\underline{F}}$$

Step 5:

Construct a cost function according to the corollary

$$J = \int_{\Omega} \left[ \frac{1}{2} \left( \underline{x}^{T} \underline{Q} \ \underline{x} + \underline{u}^{T} \underline{R} \ \underline{u} \right) + \xi(\underline{x}) \right] dt$$

where  $\underline{Q}$ ,  $\underline{R}$ , and  $\xi(\underline{x})$  are determined accordingly. Step 6: According to the given system and  $\xi(\underline{x})$ , define a Lyapunov function with its coefficients to be determined later.

#### <u>Step 7:</u>

Solve for the coefficients of V(x) from the equation

$$\xi(\underline{A}_{O} - \underline{B} \ \underline{F})\underline{x}, \ \nabla_{\mathbf{X}} V = -\xi(\underline{x})$$

Step 8:

Construct the control

$$\underline{\mathbf{u}} = \underline{\mathbf{u}}_{\mathrm{L}} + \underline{\mathbf{u}}_{\mathrm{NL}} = -\underline{\mathbf{R}}^{-1}\underline{\mathbf{B}}^{\mathrm{T}}\underline{\mathbf{p}} \ \underline{\mathbf{x}} - \underline{\mathbf{R}}^{-1}\underline{\mathbf{B}}^{\mathrm{T}}\nabla_{\underline{\mathbf{x}}} \mathbf{V}$$

#### Step 9:

Rewrite the closed loop system as

$$\frac{\dot{\mathbf{x}}}{\mathbf{x}} = (\underline{\mathbf{A}}_{\mathbf{o}} - \underline{\mathbf{B}} \ \underline{\mathbf{F}})\mathbf{x} - \underline{\mathbf{B}} \ \underline{\mathbf{R}}^{-1}\underline{\mathbf{B}}^{\mathrm{T}}\nabla_{\mathbf{x}}\mathbf{V} + \underline{\Gamma} \ \underline{\mathbf{W}}$$
$$\mathbf{y} = \underline{\mathbf{C}} \ \underline{\mathbf{x}} + \underline{\mathbf{D}} \ \underline{\mathbf{u}}$$

Solving for x, we finally get the controlled trajetories.

To intuitively illustrate the design procedures, a flow chart is depicted in Figure 6.2.

#### 6.3 Formulation of the Washout filter

In the two preceding sections we introduced the theoretical development and the optimal control system.

We will use all the results obtained to formulate the nonlinear optimal filter in this section.

#### 6.3.1 Motion Cue Generation

From the work done by Schmindt and Conard, we know that the specific force vector and angular velocity in the cab frame of the simulated aircraft can be represented as follows

$$\underline{\mathbf{f}}_{\mathbf{c}} = \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}(\underline{\ddot{\mathbf{r}}}_{\mathbf{c}_{\mathbf{i}}} - \underline{\mathbf{g}}) = \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}\underline{\ddot{\mathbf{r}}}_{\mathbf{c}_{\mathbf{i}}} - \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}\underline{\mathbf{g}} = \underline{\mathbf{A}}_{\mathbf{c}} - \underline{\mathbf{L}}_{\mathbf{c}_{\mathbf{i}}}\underline{\mathbf{g}}$$
(6.19)

$$\underline{\omega}_{\mathbf{C}} = \underline{\mathbf{R}}_{\mathbf{T}} \underline{\boldsymbol{\beta}}_{\mathbf{C}}$$
(6.20)

where

$$\underline{\dot{\beta}}_{c}^{T} = [\dot{\phi}_{c} \ \dot{\theta}_{c} \ \dot{\psi}_{c}], \quad \underline{g}^{T} = [0 \ 0 \ g], \quad \text{and} \quad g = 9.81 \text{ m/sec}^{2}$$

The specific force vector and angular velocity in the cab frame of the simulator have the forms similar to equations (6.19) and (6.20). For completeness, the we give the expression as follows,

$$\underline{\hat{f}}_{c} = \underline{\hat{L}}_{c_{1}}(\underline{\hat{\ddot{r}}}_{c_{1}} - \underline{g})$$
(6.21)

$$\hat{\underline{\omega}}_{\mathbf{c}} = \hat{\underline{R}}_{\mathbf{T}} \quad \hat{\underline{\beta}}_{\mathbf{c}} \tag{6.22}$$

As mentioned before, it is desired that  $\underline{f}_C$  and  $\underline{\omega}_C$  are generated as close to  $\underline{f}_C$  and  $\underline{\omega}_C$  respectively as possible. But due to the physical constraints of the simulator motion base, we know that it is not practical to have them identical. Therefore we will choose

$$\hat{\underline{\mathbf{f}}}_{\mathbf{C}} = \underline{\mathbf{f}}_{\mathbf{C}} + \underline{\varepsilon}_{\mathbf{1}}$$
(6.23)

$$\hat{\underline{\omega}}_{\mathbf{c}} = \underline{\omega}_{\mathbf{c}} + \underline{\varepsilon}_{2} \tag{6.24}$$

and constrain the  $\underline{\epsilon_1}$  and  $\underline{\epsilon_2}$  such that motion base excursion is limited by defining the cost function with the form

$$J = \int_{\Omega} \frac{1}{2} \left( \underline{x}^{T} \underline{Q} \ \underline{x} + \underline{u}^{T} \underline{R} \ \underline{u} \right) + \xi(\underline{x}) dt \qquad (6.25)$$

where

$$\underline{\mathbf{u}} \triangleq \begin{bmatrix} \underline{\varepsilon}_1 \\ \underline{\varepsilon}_2 \end{bmatrix}, \quad \underline{\mathbf{x}} \triangleq \begin{bmatrix} \hat{\mathbf{r}}_{\mathbf{c}_1} \\ \hat{\underline{v}}_{\mathbf{c}_1} \\ \hat{\underline{\beta}}_{\mathbf{c}_1} \end{bmatrix}, \quad \hat{\underline{\mathbf{r}}}_{\mathbf{c}_1} \triangleq \hat{\underline{v}}_{\mathbf{c}_1}$$

Upon substituting equations (6.19), (6.20), (6.21), and (6.22) into equations (6.23) and (6.24), we, have

$$\hat{\underline{r}}_{c_{1}} = \hat{\underline{L}}_{c_{1}}^{-1} (\underline{L}_{c_{1}} \ \underline{\ddot{r}}_{c_{1}} + \underline{\varepsilon}_{1}) - \hat{\underline{L}}_{c_{1}}^{-1} \ \underline{L}_{c_{1}} \ \underline{g} + \underline{g}$$

$$\hat{\underline{\beta}}_{c_{1}} = \hat{\underline{R}}_{T}^{-1} (\underline{\omega}_{c} + \underline{\varepsilon}_{2})$$
(6.27)

and from equation (3.6), equation (6.26) becomes

$$\underline{\hat{\vec{r}}}_{c_{1}} = \underline{\hat{L}}_{c_{1}}^{-1} (\underline{A}_{c} + \underline{\varepsilon}_{1}) - [\underline{\hat{L}}_{c_{1}} - \underline{I}]\underline{g}$$
(6.26a)

where  $\underline{\hat{L}}_{c_i}$  is obtained from equation (3.1) by replacing  $\phi$ ,  $\theta$ ,  $\psi$  with  $\hat{\phi}_c$ ,  $\hat{\theta}_c$ ,  $\hat{\psi}_c$  respectively, and  $\underline{\tilde{L}}_{c_i} \triangleq \underline{\hat{L}}_{c_i}^{-1} \underline{L}_{c_i}$ 

$$\underline{\hat{f}}_{c} \triangleq [\hat{f}_{cx} \hat{f}_{cy} \hat{f}_{cz}]^{T}, \underline{A}_{c} = [a_{cx}, a_{cy}, a_{cz}]^{T}, \text{ and } \underline{\omega}_{c} = [P_{c}, Q_{c}, R_{c}]^{T}$$

#### 6.3.2 Linearization

It is clear that equations (6.26) and (5.27) are nonlinear and time variable. For simplicity, we linearize (6.26) and (6.27) about the equilibrium states

$$\hat{\mathbf{r}}_{c_1}(e) = \underline{0}, \quad \hat{\mathbf{r}}_{c_1}(e) = \underline{0}, \quad \hat{\theta}_{c}(e) = \hat{\phi}_{c}(e) = \hat{\psi}_{c}(e) = 0$$

and  $\underline{A}_c$ ,  $\underline{\epsilon}_1, \underline{\epsilon}_2$ ,  $\underline{\omega}_c$ , and  $\hat{\underline{R}}_T^{-1}$  are also taken to be linearized about the equilibrium point.

Then

$$\underbrace{\widetilde{L}}_{c_{i}} = \begin{bmatrix} 1 & \psi_{c} - \psi_{c} & -(\theta_{c} - \hat{\theta}_{c}) \\ -(\psi_{c} - \hat{\psi}_{c}) & 1 & \phi_{c} - \hat{\phi}_{c} \\ \theta_{c} - \hat{\theta}_{c} & -(\phi_{c} - \hat{\phi}_{c}) & 1 \end{bmatrix}$$
(6.28)

The equations (6.26) and (6.27) then become

$$\underline{\ddot{r}}_{c_{1}} = \underline{A}_{c} + \underline{\varepsilon}_{1} - \underline{\ddot{g}}(\underline{\beta}_{c} - \underline{\beta}_{c})$$
(6.29)

where

$$\frac{\partial}{\underline{g}} = \begin{bmatrix} 0 & -g & 0 \\ g & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and

$$\hat{\underline{\beta}}_{c} = \underline{\omega}_{c} + \underline{\varepsilon}_{2}$$
(6.30)

#### 6.3.3 State Space Representation

It is convenient to treat the problem in state space. Here we define

$$\underline{\mathbf{r}}_{c_1} \triangleq \underline{\mathbf{v}}_{c_1}$$

$$\underline{\mathbf{x}} = \begin{bmatrix} \hat{\mathbf{r}}_{\mathbf{c}_{\mathbf{i}}} \\ \hat{\mathbf{v}}_{\mathbf{c}_{\mathbf{i}}} \\ \hat{\boldsymbol{\beta}}_{\mathbf{c}} \end{bmatrix}$$

Therefore state equation for the linearized system is

 $\underline{\mathbf{x}} = \underline{\mathbf{A}} \ \underline{\mathbf{x}} + \underline{\mathbf{B}} \ \underline{\mathbf{u}} + \underline{\Gamma} \ \underline{\mathbf{W}}$ 

where

$$\underline{A} \in \mathbb{R}^{9 \times 9}$$
,  $\underline{B}$ ,  $\underline{\Gamma} \in \mathbb{R}^{9 \times 6}$ ;  $\underline{u}$ ,  $\underline{W} \in \mathbb{R}^{6 \times 1}$ 

with

$$\underline{A} \triangleq \begin{bmatrix} \underline{0} & \underline{I} & \underline{0} \\ \underline{0} & \underline{0} & \underline{g} \\ \underline{0} & \underline{0} & \underline{0} \end{bmatrix}, \qquad \underline{B} \triangleq \begin{bmatrix} \underline{0} & \underline{0} \\ \underline{I} & \underline{0} \\ \underline{0} & \underline{I} \end{bmatrix} \triangleq \underline{\Gamma}$$

$$\underline{\mathbf{u}} = \begin{bmatrix} \underline{\varepsilon}_{1} \\ \underline{\varepsilon}_{2} \end{bmatrix}, \quad \underline{\mathbf{W}} \triangleq \begin{bmatrix} \underline{\mathbf{A}}_{\mathbf{c}} + \underline{\mathbf{\tilde{g}}} & \underline{\beta}_{\mathbf{c}} \\ \underline{\omega}_{\mathbf{c}} \end{bmatrix}, \quad \underline{\varepsilon}_{1} = \begin{bmatrix} \mathbf{f}_{\mathbf{x}_{e}} \\ \mathbf{f}_{\mathbf{y}_{e}} \\ \mathbf{f}_{\mathbf{z}_{e}} \end{bmatrix}, \quad \underline{\varepsilon}_{2} = \begin{bmatrix} \boldsymbol{\omega}_{\mathbf{y}_{e}} \\ \boldsymbol{\omega}_{\mathbf{x}_{e}} \\ \boldsymbol{\omega}_{\mathbf{z}_{e}} \end{bmatrix}$$

or explicitly expressed as follows

| x <sub>c</sub> ] | ſ | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0  | 0 ] | $\begin{bmatrix} x \end{bmatrix}$ |    | 0 | 0 | 0 | 0 | 0 | 0] | -                |
|------------------|---|---|---|---|---|---|---|---|----|-----|-----------------------------------|----|---|---|---|---|---|----|------------------|
| ŷ                |   | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0  | 0   | ŷ                                 |    | 0 | 0 | 0 | 0 | 0 | 0  | fxe              |
| î<br>Z           |   | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0  | 0   | 2<br>C                            |    | 0 | 0 | 0 | 0 | 0 | 0  | fye              |
| v<br>v           |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g | 0   | v <sub>x</sub>                    |    | 1 | 0 | 0 | 0 | 0 | 0  | fz               |
| $\hat{v}_{y}$ =  |   | 0 | 0 | 0 | 0 | 0 | 0 | g | 0  | 0   | v <sub>y</sub>                    | +. | 0 | 1 | 0 | 0 | 0 | 0  | <sup>ω</sup> y   |
| v <sub>z</sub>   |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | v <sub>z</sub>                    |    | 0 | 0 | 1 | 0 | 0 | 0  | <sup>ω</sup> x   |
| ∲ <sub>c</sub>   |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | $\hat{\phi}_{c}$                  |    | 0 | 0 | 0 | 1 | 0 | 0  | - <sup>ω</sup> z |
| êc               |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | θ <sub>c</sub>                    |    | 0 | 0 | 0 | 0 | 1 | 0  |                  |
| ψ <sub>c</sub>   |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0   | Lŷ,                               |    | 0 | 0 | 0 | 0 | 0 | 1  |                  |

Contd...

(6.31)

which can be further partitioned into three subsystems each representing a channel. 1) Longitudinal Subsystem

$$\begin{bmatrix} \hat{x}_{c} \\ \hat{v}_{x} \\ \hat{\theta}_{c} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -g \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_{c} \\ \hat{v}_{x} \\ \hat{\theta}_{c} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f_{xe} \\ w_{xe} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{cx} + g\phi_{c} \\ 0 \\ Q_{c} \end{bmatrix}$$

or

$$\dot{\mathbf{x}}_{1} = \underline{\mathbf{A}}_{1}\underline{\mathbf{x}}_{1} + \underline{\mathbf{B}}_{1}\underline{\mathbf{u}}_{1} + \underline{\Gamma}_{1}\underline{\mathbf{W}}_{1}$$
(6.32)

2) Lateral subsystem

$$\begin{bmatrix} \dot{y}_{c} \\ \dot{v}_{y} \\ \dot{\phi}_{c} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & g \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{y}_{c} \\ \dot{v}_{y} \\ \dot{\phi}_{c} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f_{ye} \\ w_{ye} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{cy} - g\phi_{c} \\ & \\ & \\ & P_{c} \end{bmatrix}$$

or

$$\underline{\mathbf{x}}_2 = \underline{\mathbf{A}}_2 \underline{\mathbf{x}}_2 + \underline{\mathbf{B}}_2 \underline{\mathbf{u}}_2 + \underline{\Gamma}_2 \underline{\mathbf{W}}_2$$
(6.33)

3) Vertical subsystem

$$\begin{bmatrix} \dot{z}_{c} \\ \dot{v}_{z} \\ \dot{\psi}_{c} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{z}_{c} \\ \dot{v}_{z} \\ \dot{\phi}_{c} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f_{ze} \\ \omega_{ze} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{cz} \\ R_{c} \end{bmatrix}$$

$$\dot{\underline{\mathbf{x}}}_{3} = \underline{A}_{3}\underline{\mathbf{x}}_{3} + \underline{B}_{3}\underline{\mathbf{u}}_{3} + \underline{\Gamma}_{3}\underline{\mathbf{W}}_{3}$$
(6.34)

A quick inspection shows that all these three subsystems are controllable.

#### 6.3.4 The Optimal Washout Filter

In Sections 6.3.2 and 6.3.3 we derived the system state space equations. All these equations were linearized and decoupled, which allows us to construct the nonlinear optimal washout filters channel-wise. Later we will see that decoupling is very important in applying this approach.

#### 1) Longitudinal Washout Filter

For the system given by equation (6.29) we construct the following cost function

$$J = \int_{0}^{\infty} \left[ \frac{1}{2} \left( \underline{x}_{1}^{T} \underline{Q} \ \underline{x}_{1} + \underline{u}_{1}^{T} \ \underline{R} \ \underline{u}_{1} \right) + \xi(\underline{x}_{1}) \right] dt$$
(6.35)

which has the same form as (6.11), where

$$\underline{R} = \text{diag} \begin{bmatrix} \frac{1}{R_{11}^2}, \frac{1}{R_{22}^2} \end{bmatrix}$$

$$\underline{Q} = \text{diag} \begin{bmatrix} \frac{a_{11}}{x_L^2}, \frac{a_{22}}{V_L^2}, \frac{a_{33}}{\theta_L^2} \end{bmatrix}. \{R_{11}, i = 1, 2\}, \{a_{jj}, j = 1, 2, 3\}$$

 $x_1$ ,  $V_1$  and  $\theta_1$  are determined by the designer.

 $\xi(\underline{\mathbf{x}}_{1}) = \frac{\mathbf{a}_{0}}{2} \left[ \left( \begin{array}{c} \hat{\mathbf{x}}_{c} \\ \mathbf{x}_{L} \end{array} \right)^{4} + \left( \begin{array}{c} \hat{\mathbf{v}}_{x} \\ \mathbf{v}_{L} \end{array} \right)^{4} + \left( \begin{array}{c} \hat{\theta}_{c} \\ \overline{\theta}_{L} \end{array} \right)^{4} \right]$ (6.36)

Looking at  $\underline{A}_1$ , we see that

$$\sigma(A_1) = \{0, 0, 0\} \notin C$$

i.e. the system is at the critical point. In order to solve the Riccati equation we need to make it stable. It is convenient to assume that the desired eigenvalues are

$$\sigma(A_{-}) = \{-1, -1, -1\}$$

33

Using the method introduced by Wonham [18], for this simple system, a short calculation yields (a computer program is available for this manipulation and is listed in Appendix D),

$$\underline{\mathbf{F}} = \begin{bmatrix} \mathbf{f}_{11} & \mathbf{f}_{12} & \mathbf{f}_{13} \\ \mathbf{f}_{21} & \mathbf{f}_{22} & \mathbf{f}_{23} \end{bmatrix}$$

Then the new system matrix becomes

$$\underline{A}_{o} = \underline{A}_{1} - \underline{B}_{1}\underline{F}$$

Now the algebraic Riccati equation

$$\underline{A}_{0}^{T} \underline{P} + \underline{P} \underline{A}_{0} - \underline{P} \underline{B} \underline{R}^{-1} \underline{B}^{T} \underline{P} + \underline{Q} = \underline{0}$$

can be solve by a modified Riccati subroutine which gives  $\frac{P}{F}$  and  $\frac{F}{F}$  in return (see Appendix D), with

 $\frac{\underline{\gamma}}{\underline{F}} = -\underline{R}^{-1} \underline{B}_{1}^{T} \underline{P}$ 

and

$$\sigma(\underline{A}_{o} - \underline{B}_{1} \stackrel{\sim}{\underline{F}}) \in C^{-}$$

Using the Lyapunov function form of equation (6.15)  $V(\underline{x}) = a_{1}\hat{x}_{c}^{4} + a_{2}\hat{x}_{c}^{3}\hat{\theta}_{c} + a_{3}\hat{x}_{c}^{2}\hat{\theta}_{c}\hat{v}_{x} + a_{4}\hat{x}_{c}\hat{\theta}^{2}v_{x} + a_{5}\hat{\theta}_{c}^{2}\hat{v}_{x}^{2}$   $+ a_{6}\hat{\theta}_{c}^{3}\hat{v}_{x} + a_{7}\hat{\theta}_{c}^{4} + a_{8}\hat{\theta}_{c}^{3}\hat{x}_{c} + a_{9}\hat{\theta}_{c}^{2}\hat{x}_{c}^{2} + a_{10}\hat{\theta}_{c}\hat{x}_{c}\hat{v}_{x}^{2}$   $+ a_{11}\hat{x}_{c}^{3}\hat{v}_{x} + a_{12}\hat{x}_{c}^{2}\hat{v}_{x}^{2} + a_{13}\hat{x}_{c}\hat{v}_{x}^{3} + a_{14}\hat{\theta}_{c}\hat{v}_{x}^{3} + a_{15}\hat{v}_{x}^{4}$ (6.37)

The coefficients  $a_i$  (i=1,2,3,...,15) are to be determined, that is, we have to solve 15 equations! For this simple third order system the problem is not severe, but for systems with the order of five, for instance, there will be seventy unknown coefficients, to determine these coefficients uniquely, seventy equations have to be solved! (The number of equations to solved can be determined by the formula

$$N = \frac{(n+3)!}{(n-1)!4!}$$

where n is the order of a given system.) Even for a computer, this is an awesome number. This explains why decouplability of a system is important in using this method, which is a significant disadvantage.

Now we use the equation

$$<(\underline{A}_{o} - \underline{B}_{1} \quad \underline{F})\underline{x}_{1}, \quad \nabla_{\underline{x}}V > = -\xi(\underline{x})$$

by equating the coefficients of terms of same order on both sides, we get fifteen equations which are solved for the a; .

The controlled system is then reconstructed having a form like the one given in Step 9 of Section 6.2.

#### 2) Lateral and vertical washout filters

Following exactly the same way we synthesize nonlinear optimal washout filters for lateral and vertical channels.

#### 6.4 Computational Considerations

The proposed nonlinear optimal washout filter is expected to be implemented by a real-time mini-computer. As usual, one of the main concerns in real-time digital computer control is the computational feasibility. The algorithms should be so compact that they can be implemented using a very short sampling period [19], and the configurations of the algorithms should not require too large an amount of memory. These problems have existed with modern control practice for many years. Generally speaking, most modern control methodologies depend on the digital computer, some of them, for instance the Kalman filter, were even tailored to be implemented on the the intricacies of control systems, computer. Due to algorithms developed from these theories are often not feasible in practice, and special treatment or modification [21] is Fortunately, the system studied in this chapter often needed. is, at least for the time being, simplified, linear, and time invariant, therefore the Riccati equations are algebraic and can be solved off-line and have constant solutions throughout the control process.

To illustate the problem, the discrete counterpart to the continuous systems is as follows

$$\mathbf{x}(\mathbf{k}+1) = \mathbf{A} \mathbf{x}(\mathbf{k}) + \mathbf{B} \mathbf{u}(\mathbf{k}) + \mathbf{\Gamma} \mathbf{W}(\mathbf{k})$$
(6.38)

where  $\underline{x}(k)$  ,  $\underline{u}(k)$  , and  $\underline{w}(k)$  denote the values sampled at the time  $t_k$  .

The cost function is

$$J = \sum_{j=0}^{N} \left\{ \frac{1}{2} \left[ \underline{x}^{T}(j) \underline{Q} \ \underline{x}(j) + \underline{u}^{T}(j) \underline{R} \ \underline{u}(j) \right] + \xi[\underline{x}(j)] \right\}$$
(6.39)

where  $\underline{Q} \ge 0$ ,  $\underline{R} > 0$  and  $\xi[\underline{x}(j)]$  are the same as in the previous sections.

Since the system is supposed to be linear and time invariant, the method described in Section 6.2 can be directly applied to this case to solve for the coefficients in V(x). In this way V(x) and  $\nabla_x V$  can be formulated beforehand. With the system and the cost function given in equations (6.38) and (6.39), the following control input for the discrete system results,

$$\underline{\mathbf{u}}(\mathbf{k}) = \underline{\mathbf{u}}_{\mathrm{L}}(\mathbf{k}) + \underline{\mathbf{u}}_{\mathrm{NL}}(\mathbf{k}) = -\underline{\mathbf{R}}^{-1} \underline{\mathbf{B}}^{\mathrm{T}} \underline{\mathbf{P}} \underline{\mathbf{x}}(\mathbf{k}) - \underline{\mathbf{R}}^{-1} \underline{\mathbf{B}}^{\mathrm{T}} \nabla_{\mathbf{x}} \mathbf{V}(\mathbf{k})$$
(6.40)

This is eventually used to drive the motion base. For illustrative purposes, the general scheme for the control system is depicted in Figure 5.3.

It is clear that when this control system is implemented in real-time, the main task for the computer is to manipulate some multiplications and additions which are not considered to be a heavy burden, and therefore should not introduce significant delay into the simulation.

As the simulator is a complex system which involves several parts to be controlled by the computer, consideration of computational aspects for the simulator is a topic open for further studies.

#### 6.5 Tests and Discussion

#### 6.5.1 Selection of Weighting Matrices $\underline{R}$ and $\underline{Q}$

It is evident that the solution of the Riccati equation is closely dependent on the weighting matrices  $\underline{R}$  and  $\underline{Q}$  in the cost function. Despite years of theoretical research and steadily growing lore of applications, so little is known about the relationships between the weighting matrices and specific criteria (the cost functions) that the designer must invariantly resort to trial and error iterations.

To solve this problem, serious researchers have devised various intuitive ways to "select quadratic weights". These range from the simple diagonal inverse-square weighting approach of Bryson [20], to local quadratic equivalence methods [21], and various versions of model-following [22,23,24] among which Bryson's method is considered most general and popular. In the investigation of the proposed design approach, Bryson's method was adopted to choose the weighting matrices because the system is simple and well defined.

In each channel four different weighting matrices were chosen. The parameters selected are summarized in Table 3 of Appendix C. The performance characteristics of the nonlinear optimal washout filter are discussed in the next section along with the linear and adaptive washout filters.

#### 6.5.2 Properties of the Nonlinear Optimal Washout Filter

To explore the differences among the three types of washout filter in terms of system time responses to step inputs, the responses of the filters are plotted in Figures 6.4~6.39. For clarity the inputs used in different cases are given in Appendix C. The parameters selected for the linear washout filter and the adaptive washout filter are also summarized in Appendix C.

Due to the linearity of the washout filter, Figures 6.4%6.7 show that the time responses for each case always vanish (i.e. become zero) at the same time. This means that the controlled system will be driven to move for the same time duration regardless of the magnitude of input. As described at the beginning of this chapter, this phenomenon is due to the intrinsic properties of linear systems, and is considered inefficient, as it often makes the already poor performance of the simulator even poorer.

The responses of the adaptive washout filter to different inputs are shown in Figures 6.8~6.19, which reveal the nonlinearity of the control system. In this case, the responses to different magnitudes of inputs no longer vanish at the same point, but owing to the large number of parameters required, it is very hard to obtain the desired responses.

In Figure 6.40 the responses of  $\hat{\theta}_c$  and  $\hat{\theta}_c$  to step inputs  $f_x = 0.6 \text{ m/sec}^2$ ,  $f_y = 0.5 \text{ m/sec}^2$ , and  $\hat{\theta}_c = 0.16 \text{ rad/sec}$  are depicted. It is clear that for  $\hat{\theta}_c$  the adaptive washout filter responds as an exponential function.  $\hat{\theta}_c$  becomes zero and  $\hat{\theta}_c$  reaches its steady state of 0.16 rad in about 6 seconds. The adaptive control law has a tilt coordination feature (see Appendix A), that is, the rotational channel is coordinated with the translational acceleration to simulate steady state specific force. To explore this feature the response of  $\hat{\theta}_c$  to  $f_{ix} = 0.3g$  alone is given in Figure 6.41 which is obtained by setting the parameters  $n_2 = 0.2$  and  $n_3 = 0$  (see Appendix A for, the corresponding equations). In this figure we can see that  $\hat{\theta}_c$  is increasing with time though very slowly. From Figures 6.40~6.41, we find that the tilt angles are obtained by coordination of both force (or acceleration) and rotation cues in the adaptive washout filter.

Looking at the responses for the nonlinear optimal washout filter in Figures 6.20%6.31, we find an expected, interesting feature of the control system. Unlike the linear washout filters, the response durations are dependent on the magnitude of input. When the input is one g  $(9.18 \text{m/sec}^2)$  the durations of the initial positive responses in all the three channels are longer than that for the three g input. Remarkably, the relative negative overshoots (see Appendix B for the definition) are much less than with both the linear and adaptive washout filters; for instance, for a step acceleration input of 3g the relative negative overshoot of the linear washout filter in Figure 6.4 is 0.22, for the adaptive filter in Figure 6.8 is 0.34, and for the nonlinear optimal washout filter in Figure 6.20 is 0.17. The negative overshoot often causes confusion to the pilot, therefore the effort to reduce the negative motion cues to below the threshold of the pilot's perception is an important design specification for the simulator. For comparison, the relative negative overshoots for all the cases are summarized in Table 6.1.

Finally, it is interesting to compare the excursion responses of the linear and adaptive washout filters. In order to investigate the characteristics of the two filters in terms of excursion, for each filter four different sets of parameters are selected, and two step acceleration inputs with different magnitudes are fed into the filter for each set of parameters. It is observed from Figures  $6.36 \times 6.39$  that for the adaptive washout filter the excursion profiles in response to the two different acceleration inputs are fairly close, while in Figures 6.3206.35 for the linear washout filter the excursions are strongly related to the magnitudes of the inputs, and in the steady state the excursions are proportional to the inputs. It is also found that in Figures 6.3206.39 the excursion responses of the linear washout filter for all the cases, except case 4, are much lower than that of the adaptive washout filter. As mentioned earlier, the response of the linear washout filter is always proportional to the input. If a step input with a fairly large magnitude is used then the excursion will exceed the limits of the motion base no matter what parameters have been chosen. But for the adaptive washout filter, if a set of parameters is carefully selected the excursion profiles can be controlled within the given limits (see Figure 5.39). This reveals that, owing to the strong adaptation characteristics, the adaptive washout filter may be used to control the motion base to remain well within the travel limits, and by proper selection of parameters better performance will be achieved.

#### CHAPTER VII

#### CONCLUSIONS AND RECOMMENDATIONS

A nonlinear optimal washout filter has been synthesized using techniques based on the nonlinear regulator and optimal control theories and tested on the computer. This proposed washout filter was superior to the conventional linear washout filter in that it provided different control signals for the system according to the input magnitudes such that the motion of the simulator was optimized by minimizing a given performance criterion.

It is also observed that the adaptive washout filter has very strong adaptation capability. It automatically changes the gain according to the input such that for different input levels, it can keep the excursion of the motion base fairly close. This indicates that by proper selection of the parameters, we may be able to control the simulator to achieve excellent performance.

In making use of the nonlinear optimal washout filter, the control system must be decoupled to avoid the generation of an enormous number of algebraic equations which are to be solved for the coefficients used in synthesizing the control system. As decoupling is a widely adopted technique in studying the behavior of flight vehicles (in normal performance), it will have no significant effects on many simulation applications.

The overall study indicates that the nonlinear optimal and the adaptive washout filters may be considered as the preferred options in generating washout filters.

It is recommended that for future research in this area, the following suggestions be considered

- A human pilot model and gust model should be used to obtain a linear system which describes the stochastic properties of the desired specific forces and angular velocities.
- 2) As mentioned in 1), the input provided by the pilot can be highly random. In dealing with this sort of control problem, the multistage adaptive control theory [25] holds substantial prospects.
- 3) The dynamics of the hydraulic system should be included in the controlled system equations, which may result in the following nonlinear state equations

 $\mathbf{x} = \mathbf{f}(\mathbf{x}, \mathbf{t}) + \mathbf{B}(\mathbf{t})\mathbf{u} + \Gamma(\mathbf{t})\mathbf{W}$ 

The optimal control for this system would be more difficult to implement on a real-time computer. The development of techniques to handle this case is a topic for further research.

#### REFERENCES

1. Schmidt, S.F. and Conard, B.,

Motion Drive Signals for Piloted Flight Simulators NASA CR-1601, 1970

2. Kurosak, M., Optimal Washout Filter for Control of a Motion Base <u>Simulator</u> Proc. Seventh Triennal World Congress of FFAC

- 3. Friedland, B.; King, C.K.; and Hotton, M.F., Quasi-Optimum Design of a Six-Degree-of-Freedom Moving Base Simulator Control System NASA CR-2312, Otc. 1973
- 4. Parrish, R.V.; Dieudonne, J.E.; Martin, D.J., Jr.; and Bowles, R.L., Coordinated Adaptive Filters for Motion Simulators

Proc. of the 1973 Summer Computer Simulation Conference, Simulation Councils, Inc., C. 1973, pp.295-300

5. Young, L.R.; and Oman, C.M.,

Model for Vestibular Adaptation to Horizontal Rotation Fourth Symp. on the Role of the Vestibular Organ in Space Exploration, NASA SP-187, 1970

6. Metry, J.L.,

The Vestibular System and Human Space Orientation NASA CR-628, 1966

7. Peter, R.A., Dynamics of the Vetibular System and Their Relation to Motion Perception, Spatial Disorientation and Illusions

NASA CR-1309, 1969

8. Broxmeter, C.,

Inertial Navigation Systems

Electronic Sciences Series, McGraw-Hill Book Comp., 1964

9. Etkin, B.,

Dynamics of Atmospheric Flight

John Wiley Sons, Inc., 1972

10. Wong, Yong-Chu,

An Introduction to Design of Optimal Control Systems

(in Chinese)

Academic Press, China, 1980

11. Landau, I.D.,

A Survey of Model Reference Adaptive

Techniques ---- Theory and application

Automatica, Vol. 10, pp. 353-379

12. Narendra, K.S. and Valavani, L.S.,

Stable Adaptive Controller Design --- Direct Control

IEEE Trans.on Automatic Control, Vol.AC-23, No.4, Aug. 1978

13. Sage, A.P.,

Optimum Systems Control

Prentice-Hall, Inc., 1968

14. Coddington, E.A. and Levinson, N.,

Theory of Ordinary Differential Equations

McGraw-Hill Book Co., Inc., 1955

15. Sandor, J. and Williamson, D.,

Design of Nonlinear Regulators for Linear Plants

IEEE Trans.on Automatic Control, Vol.AC-22, No. 1, Feb. 1977

16. Moylan, P.J. and Anderson, B.D.O.,

Nonlinear Regulator Theory and an Inverse

Optimal Control Problem

IEEE Trans.on Automatic Control, Vol.AC-18, No.5, Oct. 1973

17. Cesari,L.,

Asymptotic Behavior and Stability Problems in Ordinary Differential Equations Springer-Verlag, 1959

18. Wonham, W.M.,

Linear Multivariable Control: A Geometric Approach Springer-Verlag, 1979

19. Takeshi,T.,

Improved Direct Digital Control Algorithm for Microprossesor Implementation

IEEE Trans.on Automatic Control, Vol.AC-27, No.2, Apr. 1982

20. Bryson, A.E., and Ho, Y.C.,

Applied Optimal Control

Ginn and Company, 1969

21. Skelton, G.B.,

Launch Booster Gust Alleviation

3rd Annu. AIAA Meeting, Boston, MA, Nov. 1966, paper 56-969

22. Tyler, J.S.Jr.,

-

The Characteristics of Model Following Systems as Synthesized by Optimal Control

IEEE Trans. on Automatic Control, Vol. AC-9, 1966

23. Sten, G. and Henke, A.H., <u>A Design Procedure and Handling Quality Criterion for</u> Lateral-Directional Flight Control Systems May 1971, AFFDL-TR-70-152

- 24. Kreindler, E. and Rothchild, D., <u>Model Following in Linear-Quadratic Optimization</u> AIAA J., Vol. 14,pp.835-842, July 1976
- 25. Dunn, H.J. and Montgomery, R.C., <u>A Moving Window Parameter Adaptive Control System for the</u> <u>the F8-DFBW Aircraft</u> IEEE Trans.on Automatic Control, Vol.AC-22, No.5, Oct. 1977
- 26. Jacobs,K.,

Measure and Integral

Academic Press, 1978

#### APPENDIX A

#### EQUATIONS FOR THE ADAPTIVE WASHOUT FILTER [4]

#### 1. Body to Inertial Transformation

#### (a) Specific force

In the adaptive washout filter design the behaviour of the system is studied in the inertial reference frame. We denote specific force in aircraft body axes  $F_B$  components as follows:

$$\underline{\mathbf{f}}_{\mathrm{B}} = \begin{bmatrix} \mathbf{f}_{\mathrm{X}} \\ \mathbf{f}_{\mathrm{y}} \\ \mathbf{f}_{\mathrm{z}} \end{bmatrix} \stackrel{\bullet}{=} \begin{bmatrix} \mathbf{f}_{\mathrm{X}} \\ \mathbf{f}_{\mathrm{y}} \\ -\mathbf{g} \end{bmatrix}$$
(A.1)

where we assume that  $f_z \doteq -g$  as a simplifying approximation (i.e., all Euler angles are small and the inertial acceleration  $a_{zc} \ll g$ ).

Let the desired specific force in simulator body axes  $F_c$  components be  $\begin{bmatrix} \hat{f}_x \end{bmatrix}$ 

$$\hat{\mathbf{f}}_{\mathbf{c}} = \begin{bmatrix} \mathbf{f}_{\mathbf{x}} \\ \mathbf{f}_{\mathbf{y}} \\ \mathbf{f}_{\mathbf{z}} \end{bmatrix}$$
(A.2)

and the following relation holds for an ideal simulator,

$$\frac{\hat{f}}{f_c} = \frac{f_B}{B}$$
(A.3)

To transform  $\hat{f}_c$  to the inertial frame, we have

$$\hat{\underline{\mathbf{f}}}_{\mathbf{i}} = \hat{\underline{\mathbf{L}}}_{\mathbf{i}_{\mathbf{c}}} \hat{\underline{\mathbf{f}}}_{\mathbf{c}} = \hat{\underline{\mathbf{L}}}_{\mathbf{i}_{\mathbf{c}}} \hat{\underline{\mathbf{f}}}_{\mathbf{B}}$$
(A.4)

For small Euler angles, equation (A.4) becomes

$$\frac{\hat{f}_{i}}{\hat{f}_{i}} = \begin{bmatrix} f_{ix} \\ f_{iy} \\ f_{iz} \end{bmatrix} = \begin{bmatrix} f_{x} - \psi f_{y} - \hat{\theta} g \\ \hat{\psi} f_{x} + f_{y} + \hat{\phi} g \\ -\hat{\theta} f_{x} + \hat{\phi} f_{y} - g \end{bmatrix}$$
(A.5)

#### Remark:

If the inertial acceleration of the simulator in  $F_i$  is  $[\hat{x}_c, \hat{y}_c \hat{z}_c]^T$ , then, by the definition of specific force, the actual simulator specific

force in  $F_i$  is

$$\hat{\mathbf{f}}_{\mathbf{i}} = \begin{vmatrix} \hat{\mathbf{x}}_{\mathbf{c}} \\ \hat{\mathbf{y}}_{\mathbf{c}} \\ \hat{\mathbf{z}}_{\mathbf{c}}^{-g} \end{vmatrix}$$

From equations (A.5) and (A.6), it is clear that for an ideal simulator

$$\ddot{x}_{c} = f_{ix}, \qquad \ddot{y}_{c} = f_{iy}$$

#### (b) The partial derivatives

From equation (A.4) the exact expression for  $f_{\mbox{ix}}$  and  $f_{\mbox{iy}}$  are given as follows:

$$f_{ix} = f_x \cos\theta_c \cos\psi_c + f_y (\sin\phi_c \sin\theta_c \cos\psi_c - \cos\phi_c \sin\psi_c) + f_z (\cos\phi_c \sin\theta_c \cos\psi_c + \sin\phi_c \sin\psi_c)$$
(A.7)

(A.6)

$$f_{iy} = f_x \cos \hat{\theta}_c \sin \hat{\psi}_c + f_y (\sin \hat{\phi}_c \sin \hat{\theta}_c \sin \hat{\psi}_c + \cos \hat{\phi}_c \cos \hat{\psi}_c)$$
  
+  $f_z (\cos \hat{\phi}_c \sin \hat{\theta}_c \sin \hat{\psi}_c - \sin \hat{\phi}_c \cos \hat{\psi}_c)$  (A.8)

Therefore from equations (A.7) and (A.8) we have the following partial derivatives:

$$\frac{\partial f_{ix}}{\partial \hat{\theta}_{c}} = -f_{x} \sin \hat{\theta}_{c} \cos \hat{\psi}_{c} + f_{y} \sin \hat{\phi}_{c} \cos \hat{\theta}_{c} \cos \hat{\psi}_{c} \qquad (A.9)$$

$$\frac{\partial f_{iy}}{\partial \hat{\phi}_{c}} = f_{y} (\cos \hat{\phi}_{c} \sin \hat{\theta}_{c} \sin \hat{\psi}_{c} - \sin \hat{\phi}_{c} \cos \hat{\psi}_{c})$$

$$+ f_{z} (-\sin \hat{\phi}_{c} \sin \hat{\theta}_{c} \sin \hat{\psi}_{c} - \cos \hat{\phi}_{c} \cos \hat{\psi}_{c}) \qquad (A.10)$$

For small Euler angles and  $f_z \doteq -g$ , equations (A.9) and (A.10) become

$$\frac{\partial f_{ix}}{\partial \hat{\theta}_c} = -f_x + f_y \hat{\phi}_c - g \qquad (A.11)$$

$$\frac{\partial f_{iy}}{\partial \hat{\phi}_c} = -\hat{\phi}_c f_y + g$$

2. Longitudinal Filter (variables are in inertial frame  $F_i$ )

(a) The cost function

$$J_{x} = \frac{1}{2} (f_{ix} - \hat{x}_{c})^{2} + \frac{\omega_{x}}{2} (\dot{\theta}_{c} - \dot{\theta}_{c})^{2} + \frac{b_{x}}{2} \hat{x}_{c} + \frac{c_{x}}{2} \hat{x}_{c}$$

(b) The control laws

$$\hat{\vec{x}}_{c} = \eta_{1}f_{ix} - d_{x}\hat{\vec{x}}_{c} - e_{x}\hat{\vec{x}}_{c}$$
$$\hat{\vec{\theta}}_{c} = \eta_{2}f_{ix} + \eta_{3}\hat{\vec{\theta}}_{c}$$

(c) Steepest descent for the adaptive parameters

$$\dot{n}_{1} = -k_{x} \frac{\partial J_{x}}{\partial n_{1}}$$
$$\dot{n}_{2} = -k_{x} \frac{\partial J_{y}}{\partial n_{2}}$$
$$\dot{n}_{3} = -k_{x} \frac{\partial J_{z}}{\partial n_{3}}$$

(d) State sensitivity equations

$$\frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{1}} = \mathbf{f}_{\mathbf{i}\mathbf{x}} - d\mathbf{x} \frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{1}} - \mathbf{e}_{\mathbf{x}} \frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{1}}$$
$$\frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{2}} = \eta_{1} \frac{\partial \mathbf{f}_{\mathbf{i}\mathbf{x}}}{\partial \eta_{2}} - d\mathbf{x} \frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{2}} - \mathbf{e}_{\mathbf{x}} \frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{2}}$$
$$\frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{3}} = \eta_{1} \frac{\partial \mathbf{f}_{\mathbf{i}\mathbf{x}}}{\partial \eta_{3}} - d\mathbf{x} \frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{3}} - \mathbf{e}_{\mathbf{x}} \frac{\partial \hat{\mathbf{x}}_{\mathbf{c}}}{\partial \eta_{3}}$$

with

$$\frac{\partial \mathbf{f}_{ix}}{\partial n_2} = \frac{\partial \mathbf{f}_{ix}}{\partial \hat{\theta}_c} \frac{\partial \hat{\theta}_c}{\partial n_2}$$
$$\frac{\partial \mathbf{f}_{ix}}{\partial n_3} = \frac{\partial \mathbf{f}_{ix}}{\partial \hat{\theta}_c} \frac{\partial \hat{\theta}_c}{\partial n_3}$$

and

$$\frac{\partial \hat{\theta}_{c}}{\partial \eta_{2}} = f_{ix} + \eta_{2} \frac{\partial f_{ix}}{\partial \hat{\theta}_{c}} \frac{\partial \hat{\theta}_{c}}{\partial \eta_{2}}$$
$$\frac{\partial \hat{\theta}_{c}}{\partial \eta_{3}} = \eta_{2} \frac{\partial f_{ix}}{\partial \eta_{3}} + \hat{\theta}_{c} = \eta_{2} \frac{\partial f_{ix}}{\partial \hat{\theta}_{c}} \frac{\partial \hat{\theta}_{c}}{\partial \eta_{3}} + \hat{\theta}_{c}$$

From the cost function  $J_2$ , we have

$$\frac{\partial J_{x}}{\partial \eta_{1}} = (\hat{x}_{c} - f_{ix}) \frac{\partial \hat{x}_{c}}{\partial \eta_{1}} + b_{x} \hat{x}_{c} \frac{\partial \hat{x}_{c}}{\partial \eta_{1}} + c_{x} \hat{x}_{c} \frac{\partial \hat{x}_{c}}{\partial \eta_{1}}$$

$$\frac{\partial J_{x}}{\partial \eta_{2}} = (f_{ix} - \hat{x}_{c}) \left( \frac{\partial f_{ix}}{\partial \hat{\theta}_{c}} \frac{\partial \hat{\theta}_{c}}{\partial \eta_{2}} - \frac{\partial \hat{x}_{c}}{\partial \eta_{2}} \right) - \omega_{x} (\hat{\theta}_{c} - \hat{\theta}_{c}) \frac{\partial \hat{\theta}_{c}}{\partial \eta_{2}}$$

$$+ b_{x} \hat{x}_{c} \frac{\partial \hat{x}_{c}}{\partial \eta_{2}} + c_{x} \hat{x}_{c} \frac{\partial \hat{x}_{c}}{\partial \eta_{2}}$$

$$\frac{\partial J_{x}}{\partial \eta_{3}} = (f_{ix} - \hat{x}_{c}) \left( \frac{\partial f_{ix}}{\partial \hat{\theta}_{c}} \frac{\partial \hat{\theta}_{c}}{\partial \eta_{3}} - \frac{\partial \hat{x}_{c}}{\partial \eta_{3}} \right) - \omega_{x} (\hat{\theta}_{c} - \hat{\theta}_{c}) \frac{\partial \hat{\theta}_{c}}{\partial \eta_{3}}$$

$$+ b_{x} \hat{x}_{c} \frac{\partial \hat{x}_{c}}{\partial \eta_{3}} + c_{x} \hat{x}_{c} \frac{\partial \hat{x}_{c}}{\partial \eta_{3}} \right) - \omega_{x} (\hat{\theta}_{c} - \hat{\theta}_{c}) \frac{\partial \hat{\theta}_{c}}{\partial \eta_{3}}$$

- 3. Lateral Filter
- (a) Cost function

$$J_{y} = \frac{1}{2} (f_{iy} - \hat{\ddot{y}}_{c})^{2} + \frac{W_{y}}{2} (\phi_{c} - \phi_{c})^{2} + \frac{b_{y}}{2} \hat{y}_{c}^{2} + \frac{c_{y}}{2} \hat{\dot{y}}_{c}^{2}$$

(b) Control laws

$$\hat{\ddot{y}}_{c} = \xi_{1}f_{iy} - d_{y}\hat{\ddot{y}}_{c} - e_{y}\hat{y}_{c}$$
$$\hat{\dot{\phi}}_{c} = -\xi_{2}f_{iy} + \xi_{3}\dot{\phi}_{c}$$

(c) Steepest descent for the adaptive parameters

$$\dot{\xi}_1 = -k_y \frac{\partial J_y}{\partial \xi_1}$$

$$\dot{\xi}_2 = -k_y \frac{\partial J_y}{\partial \xi_2}$$
$$\dot{\xi}_3 = -k_y \frac{\partial J_y}{\partial \xi_3}$$

## (d) State sensitivity equations

$$\frac{\partial \ddot{y}_{c}}{\partial \xi_{1}} = f_{iy} - d_{y} \frac{\partial \ddot{y}_{c}}{\partial \xi_{1}} - e_{y} \frac{\partial \dot{y}_{c}}{\partial \xi_{1}}$$
$$\frac{\partial \ddot{y}_{c}}{\partial \xi_{2}} = \xi_{1} \frac{\partial f_{iy}}{\partial \xi_{2}} - d_{y} \frac{\partial \dot{y}_{c}}{\partial \xi_{2}} - e_{y} \frac{\partial \dot{y}_{c}}{\partial \xi_{2}}$$
$$\frac{\partial \ddot{y}_{c}}{\partial \xi_{3}} = \xi_{1} \frac{\partial f_{iy}}{\partial \xi_{3}} - d_{y} \frac{\partial y_{c}}{\partial \xi_{3}} - e_{y} \frac{\partial \dot{y}_{c}}{\partial \xi_{3}}$$

with

and

$$\frac{\partial \hat{\phi}_{c}}{\partial \xi_{2}} = -f_{iy} - \xi_{2} \frac{\partial f_{iy}}{\partial \hat{\phi}_{c}} \frac{\partial \hat{\phi}_{c}}{\partial \xi_{2}}$$
$$\frac{\partial \hat{\phi}_{c}}{\partial \xi_{3}} = -\xi_{2} \frac{\partial f_{iy}}{\partial \xi_{3}} + \dot{\phi}_{c}$$

 $\frac{\partial \mathbf{f}_{iy}}{\partial \xi_2} = \frac{\partial \mathbf{f}_{iy}}{\partial \hat{\phi}_c} \frac{\partial \hat{\phi}_c}{\partial \xi}$  $\frac{\partial \hat{f}_i}{\partial \xi_3} = \frac{\partial \mathbf{f}_{iy}}{\partial \hat{\phi}_c} \frac{\partial \hat{\phi}_c}{\partial \xi_3}$ 

From the cost function  $J_y$ , we have

$$\frac{\partial J_{\mathbf{y}}}{\partial \xi_{1}} = (\hat{\vec{y}}_{c} - \mathbf{f}_{iy}) \frac{\partial \hat{\vec{y}}_{c}}{\partial \xi_{1}} + \mathbf{b}_{y} \hat{\mathbf{y}}_{c} \frac{\partial \hat{\vec{y}}_{c}}{\partial \xi_{1}} + \mathbf{c}_{y} \hat{\vec{y}} \frac{\partial \hat{\vec{y}}_{c}}{\partial \xi_{1}}$$

$$\frac{\partial J_{\mathbf{y}}}{\partial \xi_{2}} = (\mathbf{f}_{iy} - \hat{\vec{y}}_{c}) \left( \frac{\partial \mathbf{f}_{iy}}{\partial \xi_{2}} - \frac{\partial \hat{\vec{y}}_{c}}{\partial \xi_{2}} \right) - \mathbf{w}_{y} (\dot{\phi}_{c} - \hat{\phi}_{c}) \frac{\partial \hat{\phi}_{c}}{\partial \xi_{2}} + \mathbf{b}_{y} \hat{\vec{y}}_{c} \frac{\partial \hat{\vec{y}}_{c}}{\partial \xi_{2}}$$

$$+ \mathbf{c}_{y} \hat{\vec{y}}_{c} \frac{\partial \hat{\vec{y}}_{c}}{\partial \xi_{2}}$$

$$\frac{\partial J_{y}}{\partial \xi_{3}} = (f_{iy} - \hat{\ddot{y}}_{c}) \left( \frac{\partial f_{iy}}{\partial \xi_{3}} - \frac{\partial \hat{\ddot{y}}_{c}}{\partial \xi_{3}} \right) - w_{y}(\dot{\phi}_{c} - \hat{\phi}_{c}) \frac{\partial \hat{\phi}_{c}}{\partial \xi_{3}} + b_{y}\hat{y}_{c} \frac{\partial \hat{y}_{c}}{\partial \xi_{3}}$$
$$+ c_{y}\hat{\ddot{y}}_{c} \frac{\partial \hat{\ddot{y}}_{s}}{\partial \xi_{3}}$$

- 4. Vertical Filter
- (a) Cost function

$$J_{z} = \frac{1}{2} \left( f_{1z} - \hat{z}_{c} \right)^{2} + \frac{b_{z}}{2} \hat{z}_{c}^{2} + \frac{c_{z}}{2} \hat{z}_{c}^{2}$$

(b) The control law

$$\hat{\tilde{z}}_{c} = \xi f_{iz} - d_{z}\hat{\tilde{z}}_{c} - e_{z}\hat{\tilde{z}}_{c}$$

(c) Steepest descent

$$\xi = -k_z \frac{\partial J_z}{\partial \xi}$$

(d) State sensitivity equations

$$\frac{\partial \ddot{z}_{c}}{\partial \xi} = \mathbf{f}_{iz} - \mathbf{d}_{z} \frac{\partial \ddot{z}_{c}}{\partial \xi} - \mathbf{e}_{z} \frac{\partial \hat{z}_{c}}{\partial \xi}$$
$$\frac{\partial J_{z}}{\partial \xi} = (\hat{\ddot{z}}_{c} - \mathbf{f}_{iz}) \frac{\partial \ddot{\ddot{z}}_{c}}{\partial \xi} + \mathbf{b}_{z}\hat{z}_{c} \frac{\partial \hat{z}_{c}}{\partial \xi} + \mathbf{c}_{z}\hat{\ddot{z}}_{c} \frac{\partial \dot{\ddot{z}}_{c}}{\partial \xi}$$

#### APPENDIX B

1. Definition of  $\underline{x}^{[p]}$ 

 $\underline{x}^{[p]}$  is a  $N_n^p = \binom{n+p-1}{n}$  dimensional vector with elements of the form

$$\begin{array}{c} \alpha & \Pi & \mathbf{x}_{\mathbf{i}} \\ \mathbf{i} = 1 & \mathbf{i} \end{array}$$

where  $\mathbf{p}_{i}$  are the non-negative integers such that

$$\sum_{i=1}^{n} p_{i} = p \quad \text{and} \quad \alpha = \sqrt{\begin{pmatrix} p \\ p_{1} \end{pmatrix} \begin{pmatrix} p-p_{1} \\ p_{2} \end{pmatrix} \cdots \begin{pmatrix} p-p_{1}-\cdots-p_{n-1} \\ p_{n} \end{pmatrix}}$$

or explicitly,

$$\alpha^{2} = \frac{p!}{(p-p_{1})!p_{1}!} \cdot \frac{(p-p_{1})!}{(p-p_{1}-p_{2})!p_{2}!} \cdots \frac{(p-p_{1}-\dots-p_{n-2})!}{(p-p_{1}-p_{2}-\dots-p_{n-1})!p_{n-1}!}$$
$$\cdot \frac{(p-p_{1}-\dots-p_{n-1})!}{0!p_{n}!} = \frac{p!}{p_{1}!p_{2}!p_{3}!\dots p_{n}!}$$

It is shown in reference [15] that

 $\|\underline{\mathbf{x}}^{[p]}\| = \|\underline{\mathbf{x}}\|^p$ 

For illustration, we use the following examples:

Example 1

Let n = 2, p = 2, we have the following possible combinations:

$$p_{11} = 1$$
,  $p_{21} = 1$   
 $p_{12} = 0$ ,  $p_{22} = 2$   
 $p_{13} = 2$ ,  $p_{23} = 0$ 

Therefore, from the definition above, it yields

$$\underline{x}^{[2]} = \begin{bmatrix} n & p_{i1} \\ \alpha_{1} & \Pi & x_{i}^{1} \\ n & p_{i2} \\ \alpha_{2} & \Pi & x_{i}^{2} \\ i = 1 & n \\ \alpha_{3} & \Pi & x_{i}^{3} \\ i = 1 & i \end{bmatrix} = \begin{bmatrix} \sqrt{2} & x_{1}x_{2} \\ x_{2}^{2} \\ x_{1}^{2} \end{bmatrix}$$

where

$$\alpha_1 = \sqrt{\left(\begin{array}{c} 2\\1\end{array}\right)} = \sqrt{\frac{2!}{(2-1)!1!}} = \sqrt{2}$$
$$\alpha_2 = \sqrt{\left(\begin{array}{c} 2\\0\end{array}\right)} = 1$$
$$\alpha_3 = \sqrt{\left(\begin{array}{c} 2\\2\end{array}\right)} = 1$$

## Example 2

Let n = 3, p = 2, since

$$\sum_{j=1}^{3} p_{ij} = p = 2$$

the possible combinations are

| P <sub>11</sub> | = | 1, | P <sub>21</sub> | = | 1, | P <sub>31</sub> | = | 0 |
|-----------------|---|----|-----------------|---|----|-----------------|---|---|
| p <sub>12</sub> | = | 1, | P <sub>22</sub> | = | 0, | P <sub>32</sub> | = | 1 |
| P <sub>13</sub> | = | 0, | P <sub>23</sub> | = | 1, | P <sub>33</sub> | = | 1 |
| p <sub>14</sub> | = | 0, | P <sub>24</sub> | = | 0, | P <sub>34</sub> | = | 2 |
| p <sub>15</sub> | = | 0, | P <sub>25</sub> | = | 2, | P <sub>35</sub> | = | 0 |
| P <sub>16</sub> | = | 2, | P <sub>26</sub> | = | 0, | P <sub>36</sub> | = | 0 |

Therefore

$$\mathbf{x}^{[2]} = \begin{bmatrix} a_{1} & \prod_{i=1}^{3} & p_{i1} \\ a_{1} & \prod_{i=1}^{\pi} & x_{i}^{1} \\ a_{2} & \prod_{i=1}^{\pi} & x_{i}^{2} \\ a_{2} & \prod_{i=1}^{\pi} & x_{i}^{2} \\ a_{3} & \prod_{i=1}^{\pi} & x_{i}^{3} \\ a_{3} & \prod_{i=1}^{\pi} & x_{i}^{1} \\ a_{4} & \prod_{i=1}^{\pi} & x_{i}^{1} \\ a_{5} & \prod_{i=1}^{\pi} & x_{i}^{15} \\ a_{5} & \prod_{i=1}^{\pi} & x_{i}^{16} \\ a_{6} & \prod_{i=1}^{\pi} & x_{i}^{2} \end{bmatrix} = \begin{bmatrix} x_{1}^{2} \\ x_{2}^{2} \\ x_{2}^{2} \\ x_{1}^{2} \end{bmatrix}$$

where

$$\alpha_{1} = \sqrt{\frac{2!}{(2-1)!1!} \cdot \frac{(2-1)!}{(2-2)!1!}} = \sqrt{2}$$

$$\alpha_{2} = \sqrt{\frac{2!}{(2-1)!1!} \cdot \frac{(2-1)!}{(2-1-0)!}} = \sqrt{2}$$

$$\alpha_3 = \alpha_4 = \alpha_5 = \alpha_6 = 1$$

2. Pole Assignment - construct the feedback stabilizing matrix F.

#### Theorem of pole assignment [18]

For a system

 $\frac{\mathbf{x}}{\mathbf{x}} = \underline{\mathbf{A}} \mathbf{x} + \underline{\mathbf{B}} \mathbf{u} + \underline{\Gamma} \mathbf{W}$ 

The pair (A, B) is controllable if and only if for every symmetric set of n complex numbers, there exists a map  $F: H \rightarrow U$  such that

 $\sigma(\underline{A} + \underline{BF}) = \Lambda$ 

where H and U denote the state space and control space respectively.

#### 3. The Relative Negative Overshoot

#### Definition

The relative negative overshoot is defined as follows:

$$S_i = \frac{b_s}{a_i}$$

where  $S_i$  is the relative negative overshoot value,  $b_s$  is the value measured at the first peak of negative overshoot with its sign,  $a_i$  is the initial value of the response curve.

### APPENDIX C THE PARAMETERS CHOSEN FOR THE TESTS

### TABLE 1. THE PARAMETERS FOR THE LINEAR WASHOUT FILTER

In each case the following step inputs are used

$$\ddot{x} = 1g$$
,  $3g$ ,  $(g = 9.81 \text{ m/sec}^2)$ 

| case NO.<br>parameters   | 1    | 2   | 3   | 4    |
|--------------------------|------|-----|-----|------|
| ζ                        | 0.7  | 0.5 | 0.3 | 1.1  |
| ω <sub>n</sub> (rad/sec) | 1.42 | 2.0 | 3.3 | 0.91 |

### TABLE 2. THE PARAMETERS FOR THE ADAPTIVE WASHOUT FILTER

In all the three filters the following step inputs are used for each case

$$f_x = f_y = 1g$$
 and  $f_x = f_y = 3g$ 

$$\dot{\theta}_{c} = 0.13 \text{ rad/sec}$$

|                               |        | $\varphi_{\rm C} = 0.2$ | rad/sec |       |
|-------------------------------|--------|-------------------------|---------|-------|
| case NO.<br>parameters        | 1      | 2                       | 3       | 4     |
| $W_y (m^2/rad^2 sec^2)$       | 0.0085 | 0.0063                  | 0.01    | 0.015 |
| by (per sec <sup>4</sup> )    | 0.01   | 0.007                   | 0.015   | 0.02  |
| c <sub>y</sub> (per sec)      | 2.0    | 1.64                    | 2.3     | 3.4   |
| d <sub>y</sub> (rad/sec)      | 1.273  | 1.0                     | 1.4     | 2.3   |
| ey (rad/sec <sup>2</sup> )    | 0.81   | 0.52                    | 1.0     | 1.5   |
| $k_y (sec^3/m^2)$             | 0.517  | 0.37                    | 0.72    | 1.2   |
| <sup>ξ</sup> 1(0)             | 0.05   | 0.035                   | 0.1     | 0.13  |
| ξ <sub>2</sub> (0)            | 0.02   | 0.02                    | 0.05    | 0.83  |
| <sup>ξ</sup> <sub>3</sub> (0) | 1.5    | 1.25                    | 2.0     | 2.4   |

b) The lateral filter  $\dot{\phi}_{c} = 0.2$  rad/se

c) The vertical filter

 $\dot{\psi}_{c} = 0.3 \text{ rad/sec}$ 

| case NO.<br>parameters                 | 1      | 2     | 3    | 4     |
|----------------------------------------|--------|-------|------|-------|
| $b_{\psi}$ (per sec <sup>4</sup> )     | 0.1    | 0.07  | 0.06 | 0.13  |
| $e_{\psi}$ (rad/sec <sup>2</sup> )     | 0.3    | 0.28  | 0.24 | 0.34  |
| $k_{\psi}$ (sec/rad <sup>2</sup> )     | 100.0  | 95.0  | 85.0 | 120.0 |
| b <sub>z</sub> (per sec <sup>4</sup> ) | 0.1    | 0.06  | 0.07 | 0.11  |
| c <sub>z</sub> (per sec <sup>2</sup> ) | 0.1    | 0.08  | 0.09 | 0.12  |
| d <sub>z</sub> (rad/sec)               | 1.2727 | 1.0   | 1.62 | 1.4   |
| $e_z$ (rad/sec <sup>2</sup> )          | 0.81   | 0.62  | 0.7  | 0.92  |
| $k_z (sec^3/m^2)$                      | 0.517  | 0.27  | 0.83 | 0.95  |
| ξ                                      | 0.05   | 0.025 | 0.09 | 0.12  |

### TABLE 3. THE NONLINEAR OPTIMAL WASHOUT FILTER

## a) The longitudinal filter

| case NO.<br>parameters    | 1   | 2    | 3    | 4    |
|---------------------------|-----|------|------|------|
| $R_{11} (m/sec^2)$        | 0.1 | 0.45 | 0.45 | 0.45 |
| R <sub>22</sub> (rad/sec) | 0.2 | 0.1  | 0.1  | 0.1  |
| xL (m)                    | 0.1 | 0.91 | 0.91 | 0.91 |
| v <sub>L</sub> (m/sec)    | 0.2 | 0.61 | 0.61 | 0.61 |
| $\theta_{\rm L}$ (rad)    | 0.1 | 0.44 | 0.44 | 0.44 |
| a <sub>11</sub>           | 0.1 | 0.05 | 0.15 | 0.1  |
| a <sub>22</sub>           | 0.1 | 0.05 | 0.15 | 0.1  |
| <sup>a</sup> 33           | 0.1 | 0.05 | 0.15 | 0.1  |
| a <sub>o</sub>            | 0.2 | 1.2  | 1.2  | 0.8  |

# Step input: $a_{cx} = 1g, 3g$ and $\dot{\theta}_c = 0.2 \text{ rad/sec}$

### b) The lateral filter

|                           | Cy   | 0, 0 | ···· |      |
|---------------------------|------|------|------|------|
| case NO.<br>parameters    | 1    | 2    | 3    | 4    |
| $R_{11} (m/sec^2)$        | 0.2  | 0.2  | 0.2  | 0.2  |
| R <sub>22</sub> (rad/sec) | 0.05 | 0.05 | 0.05 | 0.05 |
| y <sub>L</sub> (m)        | 0.91 | 0.91 | 0.91 | 0.91 |
| v <sub>L</sub> (m/sec)    | 4.8  | 4.8  | 4.8  | 4.8  |
| $\phi_{\rm L}$ (rad)      | 0.44 | 0.44 | 0.44 | 0.44 |
| b <sub>11</sub>           | 0.1  | 0.05 | 0.15 | 0.1  |
| b 22                      | 0.1  | 0.05 | 0.15 | 0.1  |
| b 33                      | 0.1  | 0.05 | 0.15 | 0.1  |
| b <sub>o</sub>            | 1.2  | 1.2  | 1.2  | 0.8  |

Step input:  $a_{cv} = 1g, 3g$  and  $\dot{\phi}_c = 0.2 \text{ rad/sec}$ 

## c) The vertical filter

| Step input                     | : a <sub>cz</sub> = | 1g,3g |       |      |
|--------------------------------|---------------------|-------|-------|------|
| case NO.<br>parameters         | 1                   | 2     | 3     | 4    |
| $R_{11}$ (m/sec <sup>2</sup> ) | 1.57                | 1.962 | 1.57  | 1.57 |
| c <sub>11</sub>                | 0.1                 | 0.05  | 0.05  | 0.1  |
| c <sub>22</sub>                | 0.1                 | 0.05  | 0.05  | 0.1  |
| c <sub>o</sub>                 | 0.9                 | 0.6   | 0.9   | 0.9  |
| v <sub>L</sub> (m/sec)         | 0.61                | 0.61  | 0.61  | 0.72 |
| z <sub>L</sub> (m)             | 0.991               | 0.991 | 0.991 | 0.72 |

## APPENDIX D

## A LIST OF PROGRAMS USED

| FORT | RAN-VIID           | RØ5-ØØ . ØØ                                                        | 17/02/83 16:58:18 PAGE 1/        |
|------|--------------------|--------------------------------------------------------------------|----------------------------------|
| FORT | RAN VIID:          | LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 ***, SEE D | OCUMENTATION PACKAGE, Ø4-1Ø1M99. |
| 1    |                    | C THIS PROGRAM SIMULATES THE NONLINEAR OPTIMAL LONGITUDINAL        | 1                                |
| 2    |                    | C WASHOUT FILTER. THIS PROGRAM WORKED SCCESSFULLY THE FIRST        | . 2                              |
| 3    |                    | C TIME ON THE MTM ON OCT.20,1982,PM 2:10.                          | 3                                |
| 4    |                    | \$HOLL                                                             | 4                                |
| 5    | ØØØØØØØI           | IMPLICIT REAL*8(A-H,O-Z)                                           | 5                                |
| 6    | ØØØØØ61            | DIMENSION A(3,3),B(3,2),Q(3,3),R(2,2),P(3,3),F(2,3),W(3,3),        | 6                                |
| 7    |                    | *WA(3,3),WP(3,3),WQ(3,3),A1(15),X(3),XD(3),WK2(450),XO1(3),        | 1                                |
| 8    |                    | /TT(602),X0(3),XDD1(602),XDD2(602),WORKA(6)                        | 8                                |
| 9    | 0000061            | COMMON/DOT1/F, PT, GT, KT, G                                       | 10                               |
| 110  | 0000061            | COMMON/DOT2/A1,DLA,DLA,DLA,DLA,DTHA,TI                             | 11                               |
| 11   | 0000061            |                                                                    | 12                               |
| 12   | 00000061           | CALL PLOTS(1 & Ø)                                                  | 13                               |
| 14   | .0000001           |                                                                    | 14                               |
| 15   |                    | C READ IN THE SYSTEM MATRICES AND THE STABILIZING FEEDBACK MATRIX. | 15                               |
| 16   |                    | C .                                                                | 16                               |
| 17   | ØØ499CI            | OPEN(UNIT=Ø5,FILE='LONDAT.DTA')                                    | 17                               |
| 18   | ØØ49E8I            | OPEN(UNIT=Ø6,FILE='CON:')                                          | 18                               |
| 19   | ØØ4A34I            | WRITE(6,444)                                                       | 19                               |
| 2.0  | ØØ4A5ØI            | $DO \ 1 \ I = 1,3$                                                 | 210                              |
| 21   | ØØ4A581            | 1  READ(5, *) (A(1, J), J = 1, 3)                                  | 21                               |
| 22   | ØØ4AECI            | UU = 1,3                                                           | 22                               |
| 23   | 004AF41            | 4  READ(3), 7 (D(1), V, V = 1, 2)                                  | 23                               |
| 24   | 004D041<br>004D041 | 3  pran(5 *) (F(II,JK),JK=1,3)                                     | 25                               |
| 26   | agac 201           | WRITE(6, 100)                                                      | 26                               |
| 27   | ØØ4C3CI            | WRITE(6,101)                                                       | 27                               |
| 28   | ØØ4C58I            | WRITE(6,102) ((A(I,J),J=1,3),I=1,3)                                | 28                               |
| 29   | ØØ4CF8I            | WRITE(6,110)                                                       | 29                               |
| 3Ø   | ØØ4D14I            | WRITE(6,103)                                                       | 3.Ø                              |
| 31   | ØØ4D3ØI            | WRITE(6,104) ((B(I,J),J=1,2),I=1,3)                                | 31                               |
| 32   | ØØ4DCCI            | WRITE(6,11Ø)                                                       | 32                               |
| 33   | ØØ4DE8I            | WRITE(6,111)                                                       | 33                               |
| 34   | ØØ4EØ41            | WK1 E(b, 102) ((r(1, J), J=1, S), I=1, Z)                          | 34                               |
| 35   | GGAEAAT            | 0.15  JN = 1.4                                                     | 35                               |
| 27   | 004EA41            | C 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1                            | 37                               |
| 38   | RRAFACT            | TP = 0                                                             | 38                               |
| 39   | ØØ4FB4I            | IS = 2                                                             | 39                               |
| 40   | ØØ4EBCI            | T = 1.D - 4                                                        | 4.0                              |
| 41   | ØØ4EC8I            | NN = 3                                                             | 41                               |
| 42   | ØØ4EDØI            | MM= 2                                                              | 42                               |
| 43   | ØØ4ED8I            | N2 = 15                                                            | 43                               |
| 44   | ØØ4EEØI            | G = 9.8%62                                                         | 44                               |
| 45   |                    | C = EPS = 1.0E-6                                                   | 45                               |
| 46   | 004EECI            |                                                                    | 40                               |
| 4/   | MØ4EF41            | M = G g g                                                          | 47                               |
| 48   | MALE OF            | M = 600                                                            | 40                               |
| 50   | QQAF281            | $H = -\beta^2$                                                     | 5Ø                               |
| 51   | ØØAF3AT            | $A X = 6 \cdot 0$                                                  | 51                               |
| 52   | ØØ4F4ØT            | AY=4.0                                                             | 52                               |
| 53   |                    | C*************************************                             | 53                               |
| 54   | ØØ4F4CI            | READ(5,*) DETL,DETN,XL,VL,THTL,QW,GW                               | 54                               |
| 55   | ØØ4F8ØI            | WRITE(6,100)                                                       | 55                               |
| 56   | ØØ4F9CI            | WRITE(6,109)                                                       | 56                               |
| 57   | ØØ4FB8I            | WRITE(6,108) DETL, DETN, XL, VL, THTL, QW, GW                      | 5/                               |

1

| FORT | RAN-VIID    | RØ5-1 | 00.00 | \$Ø                                                                   |      | 17/Ø2/83 16:58:18 PAGE 2/             |
|------|-------------|-------|-------|-----------------------------------------------------------------------|------|---------------------------------------|
| FORT | RAN VIID:   | LICI  | ENSE  | D RESTRICTED RIGHTS AS STATED IN LICENSE CL-ØØ13                      | ***, | SEE DOCUMENTATION PACKAGE, Ø4-1Ø1M99. |
| 58   | ØØAFFØI     |       |       | PT = DETN/(2.*XL**4)                                                  |      | 58                                    |
| 59   | 0050121     |       |       | QT = DETN/(2.*VL**4)                                                  |      | 59                                    |
| 60   | 0050341     |       |       | RT = DFTN/(2,*THTL**4)                                                |      | 6Ø                                    |
| 61   | QQ5Q56I     |       |       | DIX = DFT / (XI * XI)                                                 |      | 61                                    |
| 62   | age a 7 a 1 |       |       | D(V) = D(T) / (V(*V))                                                 |      | 62                                    |
| 62   | DO DO TO T  |       |       | DIT = DET ((THT + THT))                                               |      | 63                                    |
| 63   | DDDDDDAI    |       |       |                                                                       |      | 64                                    |
| 64   | 0050A41     |       |       |                                                                       |      | 65                                    |
| 65   | 0050B61     |       |       |                                                                       |      | 66                                    |
| 66   | 0050081     |       |       | Q(1,1) - DLA                                                          |      | 67                                    |
| 6/   | 0050041     |       |       | Q(1,2) = 0                                                            |      | 68                                    |
| 68   | 0050E01     |       |       | Q(1,3) = .0                                                           |      | 60                                    |
| 69   | ØØ5ØEC1     |       |       | Q(2,1) = .0                                                           |      | 70                                    |
| 7Ø   | ØØ5ØF81     |       |       | Q(2,2) = DLV                                                          |      | 7.0                                   |
| 71   | ØØ51Ø4I     |       |       | Q(2,3) = .0                                                           |      | 71                                    |
| 72   | ØØ511ØI     |       |       | Q(3,1) = .0                                                           |      | 12                                    |
| 73   | ØØ511CI     |       |       | $Q(3,2) = .\emptyset$                                                 |      | 73                                    |
| 74   | ØØ5128I     |       |       | Q(3,3) = DLT                                                          |      | 74                                    |
| 75   | ØØ5134I     |       |       | R(1,1) = 1./GW2                                                       |      | 75                                    |
| 76   | ØØ5146I     |       |       | R(1,2) = .0                                                           |      | 76                                    |
| 77   | ØØ5152I     |       |       | R(2,1) = .0                                                           |      | 77                                    |
| 78   | ØØ515EI     |       |       | R(2,2) = 1./QW2                                                       |      | 78                                    |
| 79   | ØØ517ØI     |       |       | DO 2 II = 1.15                                                        |      | 79                                    |
| 80   | ØØ51781     |       | 2     | $A1(II) = .\emptyset$                                                 |      | 8.0                                   |
| 81   | ØØ51A21     |       |       | WRITE(6,110)                                                          |      | 81                                    |
| 82   | ØØ51BCI     |       |       | WRITE(6.105)                                                          |      | 82                                    |
| 83   | 0051081     |       |       | WRITE(6, 102) ((Q(I,J),J = 1,3),I=1.3)                                |      | 83                                    |
| 84   | 0052741     |       |       | WRITE(6.110)                                                          |      | 84                                    |
| 85   | 0052901     |       |       | WRITE(6.106)                                                          |      | 85                                    |
| 86   | ØØ52ACT     |       |       | WRITE(6.104) ((R(I,J),J=1.2),I=1.2)                                   |      | 86                                    |
| 87   | 0053481     |       |       | WRITE(6,110)                                                          |      | 87                                    |
| 88   | ØØ53641     |       |       | CALL RICATI(A, B, Q, R, P, F, 3, 2, NN, MM, IP, IS, T, W, WA, WP, WQ) |      | 88                                    |
| 89   | ØØ53CCI     |       |       | WRITE(6.1%7)                                                          |      | 89                                    |
| 90   | ØØ53E8I     |       |       | $WRITE(6,102)$ {(F(I,J),J = 1,3),I = 1,2)                             |      | 9.0                                   |
| 91   | ØØ54881     |       |       | WRITE(6,110)                                                          |      | 91                                    |
| 92   | ØØ54A41     |       |       | CALL ZSPOW(AUX2, NSIG,N2,ITMAX,PAR,A1,FNORM1,WK2,IER2)                |      | 92                                    |
| 93   | ØØ54DCI     |       |       | WRITE(6.112)                                                          |      | 93                                    |
| 94   | ØØ54F81     |       |       | WRITE(6.113)                                                          |      | 94                                    |
| 95   | 0055141     |       |       | WRITE(6, 120) (A1(JI).JI = 1.7)                                       |      | 95                                    |
| 96   | 0055861     |       |       | WRITE(6.121)                                                          |      | 96                                    |
| 97   | ØØSSAØI     |       |       | WRITE(6, 122) (A1(JI), JI = 8, 15)                                    |      | 97                                    |
| 98   | 0056121     |       |       | WRITE(6, 100)                                                         |      | 98                                    |
| 99   | 00562CI     |       |       | XA = 1.0                                                              |      | 99                                    |
| 100  | 0056201     |       |       | VA = 5 5                                                              |      | 100                                   |
| 100  | AGECAAT     |       |       | TELIN CT 2 AND MOD(IN 2) NE (I) CO TO 21                              |      | 101                                   |
| 102  | 0056441     |       |       | F(MOD(1N, 2), ED(0)) = 0 TO TO TO                                     |      | 102                                   |
| 102  | RAECBCI     |       |       |                                                                       |      | 103                                   |
| 100  | AGECC21     |       | 21    | CONTINUE                                                              |      | 104                                   |
| 105  | RREEC21     |       | C 1   | $X \Delta = 9 \alpha$                                                 |      | 1Ø5                                   |
| 100  | aasecet     |       |       | VA = 5  Ø                                                             |      | 1Ø6                                   |
| 100  | ARECDAT     |       |       | CO TO 20                                                              |      | 107                                   |
| 107  | AND SODAL   |       | 10    | CONTINUE                                                              |      | 108                                   |
| 108  | 0056E01     |       | 13    |                                                                       |      | 109                                   |
| 109  | 0056E01     |       |       |                                                                       |      | 110                                   |
| 110  | 0056ECI     |       | ~~    | YA = -3.                                                              |      | 111                                   |
| 111  | 0056F8I     |       | 210   | CALL PLOTING VA -2)                                                   |      | 112                                   |
| 112  | 0056181     |       |       | CALL FLOTINA, TA, -3/                                                 |      | 113                                   |
| 113  | 005/201     | ~     |       | CALL REGION                                                           |      | 114                                   |
| 114  |             | 6     |       |                                                                       |      |                                       |

D-3

| FORTRAN-VIID | RØ5-ØØ.ØØ |             |        |        |        |            |     |
|--------------|-----------|-------------|--------|--------|--------|------------|-----|
| FODTDAN VITO | I TCENCED | DESTRICTED. | DICUTS | AC CTA | TED TI | N I TCENCE | CI. |

3

| FURI | RAN VIID: | LICENSED RESTRICTED     | ATTON IN THE CRAPH                               | ***, SEE DOCUMENTATION | PACKAGE. |
|------|-----------|-------------------------|--------------------------------------------------|------------------------|----------|
| 115  |           | C PUT THE EXPLAN        | ATTON IN THE GRAPH                               |                        | 115      |
| 116  | ~~~~~~    |                         | 1 05 0 C0 0 10 INON I INFAR OFFICIAL INCOMENT    |                        | 116      |
| 11/  | 0057281   | CALL SYMBOL             | 1.25,3.68,0.12, NON-LINEAR OPTIMAL WASHOUT       | FILTER',Ø.,            | 11/      |
| 118  |           | /+33)                   |                                                  |                        | 118      |
| 119  | ØØ57BCI   | CALL SYMBOL             | 2.0,3.42,0.12,'(LONGITUDINAL)',0.,+14)           |                        | 119      |
| 12Ø  | ØØ5838I   | CALL SYMBOL (           | 1.56,3.25,0.07,2,0.,-1)                          |                        | 12Ø      |
| 121  | ØØ58A4I   | CALL SYMBOL (           | $1.62, 3.19, \emptyset.1, 45, \emptyset., -1)$   |                        | 121      |
| 122  | ØØ591ØI   | CALL NUMBER (           | 999.,999.,Ø.1,3.Ø,Ø.,+1)                         |                        | 122      |
| 123  | ØØ598ØI   | CALL SYMBOL (           | 999.,999.,Ø.1,'G (INPUT)',Ø.,+9)                 |                        | 123      |
| 124  | ØØ59FCI   | CALL SYMBOL (           | 1.56,3.0,0.07,5,0.,-1)                           |                        | 124      |
| 125  | ØØ5A68I   | CALL SYMBOL (           | 1.62,2.94,0.1,45,0.,-1)                          |                        | 125      |
| 126  | ØØ5AD4I   | CALL NUMBER (           | 999.,999.,Ø.1,1.Ø,Ø.,+1)                         |                        | 126      |
| 127  | ØØ5B44I   | CALL SYMBOL (           | 999.,999.,Ø.1,'G (INPUT)',Ø.,+9)                 |                        | 127      |
| 128  | ØØ5BCØI   | CALL SYMBOL (           | 4.Ø, 3.25, Ø.1, 'PARAMETERS', Ø., +1Ø)           |                        | 128      |
| 129  | ØØ5C3CI   | CALL SYMBOL (           | 4.2,3.Ø8,Ø.1,'DETL= ',Ø.,+6)                     |                        | 129      |
| 13Ø  | ØØ5CBØI   | CALL NUMBER (           | 999.,999.,Ø.1,DETL,Ø.,+3)                        |                        | 13Ø      |
| 131  | ØØ5D14I   | CALL SYMBOL (           | 4.2,2.91,Ø.1,'DETN= ',Ø.,+6)                     |                        | 131      |
| 132  | ØØ5D88I   | CALL NUMBER (           | 999.,999.,Ø.1,DETN,Ø.,+3)                        |                        | 132      |
| 133  | ØØ5DECI   | CALL SYMBOL (           | $4.2, 2.74, \emptyset.1, XL = ', \emptyset., +4$ |                        | 133      |
| 134  | ØØ5E6ØI   | CALL NUMBER             | 999.,999.,Ø.1,XL,Ø.,+3)                          |                        | 134      |
| 135  | ØØ5EC41   | CALL SYMBOL             | 4.2,2.5/,Ø.1, VL= ',Ø.,+4)                       |                        | 135      |
| 136  | ØØ5F38I   | CALL NUMBER (           | 999.,999.,Ø.1,VL,Ø.,+3)                          |                        | 136      |
| 137  | ØØ5F9CI   | CALL SYMBOL (           | 4.2,2.4,Ø.1,'THTL= ',Ø.,+6)                      |                        | 137      |
| 138  | ØØ6Ø1ØI   | CALL NUMBER (           | 999.,999.,Ø.1,THTL,Ø.,+3)                        |                        | 138      |
| 139  | ØØ6Ø74I   | CALL SYMBOL (           | 4.2,2.23,Ø.1,'QW= ',Ø.,+4)                       |                        | 139      |
| 140  | ØØ6ØE8I   | CALL NUMBER (           | 999.,999.,Ø.1,QW,Ø.,+3)                          |                        | 140      |
| 141  | ØØ614CI   | CALL SYMBOL (           | 4.2,2.Ø6,Ø.1,'GW= ',Ø.,+4)                       |                        | 141      |
| 142  | ØØ61CØI   | CALL NUMBER (           | 999.,999.,Ø.1,GW,Ø.,+3)                          |                        | 142      |
| 143  |           | C                       |                                                  |                        | 143      |
| 144  | ØØ6224I   | DO $100 J = 1$ ,        | 2                                                |                        | 144      |
| 145  | ØØ622CI   | X(1) = .0               |                                                  |                        | 145      |
| 146  | ØØ6238I   | X(2) = .0               |                                                  |                        | 146      |
| 147  | ØØ6244I   | X(3) = .0               |                                                  |                        | 147      |
| 148  | ØØ625ØI   | T1 = .0                 |                                                  |                        | 148      |
| 149  | ØØ625CI   | READ(5,*) FX            | A, DTHTA                                         |                        | 149      |
| 15Ø  | ØØ627CI   | FXA = 9.81 * F          | XÁ                                               | M/SS                   | 15Ø      |
| 151  | ØØ628EI   | WRITE(6,116)            | FXA,DTHTA                                        |                        | 151      |
| 152  | ØØ62BØI   | WRITE(6,11Ø)            |                                                  |                        | 152      |
| 153  | ØØ62CCI   | WRITE(6,117)            |                                                  |                        | 153      |
| 154  | ØØ62E8I   | $DO \ 11 \ JP = 1$      | ,M                                               |                        | 154      |
| 155  | ØØ62FCI   | CALL RKM(3,H            | ,T1,X,X0,X01,XD,SYS)                             |                        | 155      |
| 156  | ØØ6338I   | TT(JP) = T1             |                                                  |                        | 156      |
| 157  | ØØ634CI   | IF(J.EQ.2) G            | 0 TO 22                                          |                        | 157      |
| 158  | ØØ6362I   | XDD1(JP) = X            | D(2)                                             |                        | 158      |
| 159  | ØØ6374I   | GO TO 12                |                                                  |                        | 159      |
| 16Ø  | ØØ637AI   | $22 \times DD2(JP) = X$ | D(2)                                             |                        | 16Ø      |
| 161  | ØØ638CI   | 12 IF (MOD(JP, 20       | ).EQ.Ø) WRITE(6,118) T1,XD(1),XD(2),XD(3).X      | (1),X(3)               | 161      |
| 162  | ØØ63ECI   | 11 CONTINUE             |                                                  |                        | 162      |
| 163  | ØØ64Ø4I   | WRITE(6,100)            |                                                  |                        | 163      |
| 164  | ØØ642ØI   | 1Ø CONTINUE             |                                                  |                        | 164      |
| 165  | ØØ6436I   | CALL SCALE (T           | T,6.,M,2)                                        |                        | 165      |
| 166  | ØØ646CI   | CALL SCALE(X            | DD1,4.,M,2)                                      |                        | 166      |
| 167  | ØØ64A4I   | CALL SCALE(X            | DD2,4.,M,2)                                      |                        | 167      |
| 168  | ØØ64DCI   | WRITE(6,777)            | XDD1(M+1), XDD2(M+1), XDD1(M+2), XDD2(M+2)       |                        | 168      |
| 169  | ØØ656ØI   | WRITE(6,100)            |                                                  |                        | 169      |
| 17Ø  |           | C                       |                                                  |                        | 17Ø      |
| 171  |           | C SELECT THE COM        | MON SCALE FACTORS                                |                        | 171      |

~~ .
| FORT | RAN-VIID  | RØ5-ØØ.ØØ                                                                 | 17/02/83 16.58.19 BACE 4/                |
|------|-----------|---------------------------------------------------------------------------|------------------------------------------|
| FORT | RAN VIID: | LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013                   | ***. SEE DOCUMENTATION PACKAGE GA-101M99 |
| 172  |           | C                                                                         | 172                                      |
| 173  | ØØ657CI   | WORKA(1) = XDD1(M+1)                                                      | 172                                      |
| 174  | ØØ659ØI   | WORKA(2) = XDD2(M+1)                                                      | 174                                      |
| 175  | ØØ65A21   | WORKA(3) = XDD1(M+1)+XDD1(M+2)*AY                                         | 174                                      |
| 176  | ØØ65CCI   | WORKA(4) = XDD2(M+1) + XDD2(M+2) * AY                                     | 175                                      |
| 177  | ØØ65F2I   | CALL SCALE (WORKA, 4, 4, 2)                                               | 170                                      |
| 178  | 0066301   | XDD1(M+1) = WORKA(5)                                                      | 177                                      |
| 179  | ØØ66441   | XDD2(M+1) = WORKA(5)                                                      | 178                                      |
| 180  | ØØ66561   | XDD1(M+2) = WORKA(6)                                                      | 1/5                                      |
| 181  | ØØ66661   | XDD2(M+2) = WORKA(6)                                                      | 180                                      |
| 182  |           | C                                                                         | 181                                      |
| 183  |           | C PRINT OUT THE SCALE FACTORS                                             | 182                                      |
| 184  |           |                                                                           | 183                                      |
| 185  | MARETCI   | WRITE(6.555) M XDD1(M+1) XDD2(M+1) XDD1(M+2) XDD2(M+2)                    | 184                                      |
| 186  | QQ67QAT   | $W_{1} = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5$                       | 185                                      |
| 187  | 0067201   | UDITEC, 100) OF, WORKA(37, WORKA(87)                                      | 186                                      |
| 188  | 0001201   | WKITE(0, 100)                                                             | 187                                      |
| 199  |           | C CALLES FOR BLOTTING                                                     | 188                                      |
| 190  |           | C CALLES FOR FLOTTING                                                     | 189                                      |
| 191  | MACTAOT   | CALL AVIELO O STIMELOED SI LO AV O TTUMES TOURS                           | 19Ø                                      |
| 192  | 0007401   | CALL AAIS( $b, b, r$ , TIME(SEC.), $-1b, AX, b, r$ (M+1), $\Gamma(M+2)$ ) | 191                                      |
| 192  | MOOVEC1   | (VDD1(M+1) VDD1(M+2))                                                     | 192                                      |
| 104  | RACODOT   | (M+1), $(M+2)$                                                            | 193                                      |
| 194  | 0068981   | CALL LINE(11, XDD1, M, 2, 80, 2)                                          | 194                                      |
| 193  | aacooat   | CALL LINE(11,XDD2,M,2,80,5)                                               | 195                                      |
| 107  | 0069201   |                                                                           | 196                                      |
| 197  | 0069361   | (ALL PLOT(b, b, +999))                                                    | 197                                      |
| 198  | 0069781   | 100 FORMAT(1X, $50$ (1H*))                                                | 198                                      |
| 199  | 0069881   | 101 FORMAT(1X,6(1H*),2X, MATRIX A',2X,6(1H*))                             | 199                                      |
| 200  | 0069AC1   | 102 FORMAT(3(1X,F8.4,2X))                                                 | 200                                      |
| 2/01 | NN69BEI   | 103 FORMAT(1X,6(1H*),2X,'MATRIX B',2X,6(1H*))                             | 2Ø1                                      |
| 202  | 0069E21   | 104 FORMAT(2(1X,F8.4,2X))                                                 | 2.02                                     |
| 203  | ØØ69F41   | 105 FORMAT(1X,6(1H*),2X,'MATRIX Q',2X,6(1H*))                             | 2.03                                     |
| 2.04 | ØØ6A181   | 106 FORMAT(1X,6(1H*),2X,'MATRIX R',2X,6(1H*))                             | 2Ø4                                      |
| 205  | 006A3C1   | 107 FORMAT(1X,6(1H*),2X,'MATRIX F',2X,6(1H*))                             | 205                                      |
| 206  | ØØ6A6ØI   | 108 FORMAT(1X,7(F7.4,2X))                                                 | 206                                      |
| 2.07 | 006A721   | 109 FORMAT(3X, 'DETL', 5X, 'DETN', 5X, 'XL', 8X, 'VL', 6X, 'THTL', 5X     | (,'QW',7X,'G 2Ø7                         |
| 208  |           | /W')                                                                      | 2Ø8                                      |
| 2.09 | ØØ6AAAI   | 110 FORMAT(1X,28(1H*))                                                    | 209                                      |
| 210  | ØØ6ABAI   | 111 FORMAT(1X,6(1H*),2X,'MATRIX FØ',2X,6(1H*))                            | 210                                      |
| 211  | ØØ6AEØI   | 112 FORMAT(1X,5(1H*),2X,'THE COEFFICIENTS',2X,5(1H*))                     | 211                                      |
| 212  | ØØ6BØCI   | 113 FORMAT(6X,'A1',12X,'A2',12X,'A3',12X,'A4',12X,'A5',12X,               | 'A6',12X,'A 212                          |
| 213  |           | (7')                                                                      | 213                                      |
| 214  | ØØ6B3EI   | 116 FORMAT(6X,'FXA = ',F7.4,2X,'DTHTA = ',F7.4)                           | 214                                      |
| 215  | ØØ6B62I   | 117 FORMAT(4X,'T',10X,'XD1',11X,'XD2',11X,'XD3',10X,'X1',12               | 215                                      |
| 216  | ØØ6B9ØI   | 118 FORMAT(1X, F6.3,2X,5(E12.5,2X))                                       | 216                                      |
| 217  | ØØ6BA8I   | 12Ø FORMAT(1X,7(E12.5 ,2X))                                               | 217                                      |
| 218  | ØØ6BBCI   | 121 FORMAT(6X, 'A8', 12X, 'A9', 12X, 'A10', 11X, 'A11', 11X, 'A12', 1     | 18. 218                                  |
| 219  |           | /'A13',11X,'A14',11X,'A15')                                               | 219                                      |
| 220  | ØØ6BFAI   | 122 FORMAT(1X,8(E12.5,2X))                                                | 220                                      |
| 221  | ØØ6CØEI   | 123 FORMAT(1X, 'THE ITERATIONS ARE', 1X, 14)                              | 221                                      |
| 222  | ØØ6C3ØI   | 444 FORMAT(8(1H*),2X,'THE RESULTS OF THE LONGITUDINAL WASHO               | UT 222                                   |
| 223  |           | /FILTER',2X,8(1H*))                                                       | 223                                      |
| 224  | ØØ6C8ØI   | 555 FORMAT(1X, 'M=', I4, 2X, 'XDD1WL=', F7, 4, 2X, 'XDD2WL=', F7, 4, 2    | 224                                      |
| 225  |           | /'XDD1WU=',F7.4,2X,'XDD2WU=',F7.4)                                        | 225                                      |
| 226  | ØØ6CC81   | 666 FORMAT(1X,'JP=', I4, 2X, 'WORKA5=', F7, 4, 2X, 'WORKA6=', F7, 4)      | 226                                      |
| 227  | ØØ6CF6I   | 777 FORMAT(1X, 'XDD1L=', F7.4, 2X, 'XDD2L=', F7.4, 2X, 'XDD1U=', F7       | .4. 227                                  |
| 228  |           | /2X.'XDD2U='.F7.4)                                                        | 220                                      |

FORTRAN-VIID RØ5-ØØ.ØØ FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-ØØ13 229 ØØ6D321 STOP 23Ø ØØ6D3AI END

17/02/83 16:58:18 PAGE 5/ \*\*\*, SEE DOCUMENTATION PACKAGE, 04-101M99. 229 230

D - 6

5

6

NO ERRORS:F7D RØ5-ØØ.ØØ MAINPROG .MAIN 17/Ø2/83 16:58:42 TABLE SPACE: 9 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 157 WORDS SINGLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

FORTRAN-VIID RØ5-ØØ.ØØ FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-8013 17/82/83 16:58:18 PAGE 1/ \*\*\*, SEE DOCUMENTATION PACKAGE, \$4-1\$1M99. ØØØØØØI SUBROUTINE REGION 1 231 2 0000041 XR = 6.0 232 3 ØØØØ1ØI YR = 4.0 4 ØØØØICI CALL NEWPEN(3) 233 234 5 ØØØØ3CI CALL PLOT(XR,Ø.,2) 235 6 ØØØØ7ØI CALL PLOT(XR, YR, 2) 236 7 ØØØØ98I CALL PLOT(Ø., YR, 2) 237 8 ØØØØCCI CALL PLOT(Ø.,Ø.,2) 238 9 ØØØ1ØCI CALL NEWPEN(1) 239 1Ø ØØØ12CI RETURN 240 11 ØØØ1321 END 241 NO ERRORS: F7D R#5-##.## SUBROUTINE REGION 17/#2/83 16:58:43 TABLE SPACE: 1 KB STATEMENT BUFFER: 20 LINES/1321 BYTES STACK SPACE: 52 WORDS

SINGLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

1

| FORT  | RAN-VIID                              | R.05-00   | 0.00<br>JSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 ***. SEE DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17/02/83 16:58:18 PAGE 1/<br>CUMENTATION PACKAGE, 04-101M99. |
|-------|---------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| TURIS | agagagat                              | LICCH     | SUBOUTINE AUX2(A1 K PAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 242                                                          |
| 2     | M M M M M M M M M M M M M M M M M M M |           | IMPLICIT REAL *8(A-H,O-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 243                                                          |
| 2     | COCCA I                               |           | DIMENSION A1(15), PAR(1), F(2,3), WK2(450), FT(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 244                                                          |
| 1     | agaaaA I                              |           | COMMON/DOT1/F.PT.OT.BT.G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 245                                                          |
| 5     | 0000041                               | c         | CO TO (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15).K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 246                                                          |
| c     | ANANAAT                               | c         | $ET(1) = E(1, 1) \times A1(1) \times E(2, 1) \times A1(2) = PT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 247                                                          |
| 0     | 0000041                               | ~         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 248                                                          |
| -     | MAMECOL                               | L         | RETORN<br>FT721 - A1/121-A *F/1 21*A1/151-F(2 2)*A1/1A)+PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 249                                                          |
| 8     | DODEC81                               | ~         | F(12) = A1(13) = 4, $F(1,2) = A1(13) = 1(2,2) = A1(14) + K(13) = 1(2,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250                                                          |
| 10    | agaraci                               | L         | ETURN<br>ETURN = (C + E(1 - 2)) * (A + (C + A - *E(2 - 2)) * (A + (C + E(1 - 2))) * (A +                                                                                                                                                            | 251                                                          |
| 11    | 0001001                               | c         | perilpn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 252                                                          |
| 12    | AMAEDET                               | C         | FT(A) = A * a1(1) - 2 * F(1, 1) * a1(12) - F(1, 2) * a1(11) - F(2, 1) * a1(3) - F(2, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 253                                                          |
| 12    | DODESEI                               |           | (*, 1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 254                                                          |
| 14    |                                       | c         | PETIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                                          |
| 14    | MANTANT                               | C         | ET(E) = 2 *A1(2) = 2 *E(1 + 1)*A1(10) = (E(1 + 2) + E(2 + 3))*A1(3) = 2 *(C+E(1 + 3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 256                                                          |
| 15    | 000FA01                               |           | $\Gamma_{1}(3) - 3$ , $M_{1}(2) - 2$ , $\Gamma_{1}(1,1) - M_{1}(1,0) - (\Gamma_{1}(2,1)) - (\Gamma_{1}(3,0)) - M_{1}(3,1) - 2$ , $(3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3,1) + (3$                                                                                                                                  | 257                                                          |
| 10    |                                       | ~         | 7/7/MIL12/-2. TL2,1/ AIL4/-2. TL2,2/ AIL3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 258                                                          |
| 1/    | ~~                                    | C         | $\frac{RETURN}{ETTCA} = 2 \pm 61(2) = 2 \pm 6(1 - 1) \pm 61(1/1/2) \pm 6(1 - 2) \pm 61(1/3) = 2 \pm 6(2 \pm 6(1 - 2)) \pm 61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 259                                                          |
| 18    | 0010321                               |           | $F_1(0) = 2A_1(3) = 3F(1,1).A_1(14) = 2F(1,2).A_1(14) = 3A_1(14).A_1(14) = 3A_1(14).A_1(14) = 3A_1(14).A_1(14) = 3A_1(14).A_1(14).A_1(14) = 3A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).A_1(14).$                                                                                                                                                                                 | 260                                                          |
| 19    |                                       |           | 2 (13)-2. "F(2,1)"AI(3)-2. "F(2,2)"AI(4)-F(2,3)"AI(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 261                                                          |
| 20    |                                       | C         | RETURN<br>FT/71- 41/41-/2 *F(1 2)-2 *F/2 2))*41/F1-2 */C+F(1 2))*41/14)-2 *F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 262                                                          |
| 21    | 0010061                               |           | $F_{(7)} = A_{(4)} - (2 F_{(1,2)} + 2 F_{(2,3)} - A_{(3)} - 3 (G + F_{(1,3)} - A_{(1,4)} - 3 F_{(1,2)} - 3 F_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 262                                                          |
| 22    |                                       | 1000      | /(2,2) AI(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 203                                                          |
| 23    |                                       | C         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 264                                                          |
| 24    | ØØ114ØI                               |           | $F_{8} = A_{1(8)} - (F_{1,2}) + 3. + (2,3) - A_{1(6)} - 2 (G+F_{1,3}) - A_{1(5)} - 4 F_{2,2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                          |
| 25    |                                       | Section 2 | /)*A1(/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                          |
| 26    |                                       | С         | REIURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 207                                                          |
| 27    | ØØ11A21                               |           | FT(9) = 2.*A1(9) - 2.*F(1,1)*A1(6) - (F(1,2)+2.*F(2,3))*A1(4) - 2.*(G+F(1,1))*A1(4) -                                                                                                                                                            | 200                                                          |
| 28    |                                       | 100       | (1,3) $(10)$ $(3)$ $(2,1)$ $(3)$ $(2,2)$ $(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 205                                                          |
| 29    |                                       | С         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 270                                                          |
| 3Ø    | ØØ123AI                               |           | $F_1(10) = A_1(10) - (3. + (1,2) + (2,3)) - A_1(14) - 4 (G+(1,3)) - A_1(15) - 2 (G+(1,3)) - 2 ($                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 271                                                          |
| 31    |                                       |           | /2,2)*A1(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 272                                                          |
| 32    |                                       | C         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 273                                                          |
| 33    | ØØ129CI                               |           | FT(11)=3.*A1(11)-3.*F(1,1)*A1(13)-2.*F(1,2)*A1(12)-F(2,1)*A1(10)-F(2,1)*A1(10)-F(2,1)*A1(10)-F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)*A1(10)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1)+F(2,1                                                                                                                                                           | 2/4                                                          |
| 34    |                                       |           | /(2,2)*A1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 275                                                          |
| 35    |                                       | C         | RETURN 0 +41/10) 4 +5/1 1)+41/15) 2 +5/1 2)+41/12)-5/2 1)+41/14)-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270                                                          |
| 36    | ØØ13Ø41                               |           | $F_{(12)=2}$ , $A_1(12)=4$ , $F_{(1,1)}$ , $A_1(15)=3$ , $F_{(1,2)}$ , $A_1(13)=F_{(2,1)}$ , $A_1(14)=F_{(1,1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270                                                          |
| 37    |                                       | - 21      | /(2,2)*A1(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270                                                          |
| 38    |                                       | С         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 275                                                          |
| 39    | ØØ136CI                               |           | FT(13)=F(1,1)*AI(3)+(G+F(1,3))*AI(11)+2.*F(2,1)*AI(9)+F(2,3)*AI(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                          |
| 4Ø    |                                       | С         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 281                                                          |
| 41    | ØØ13C2I                               |           | $f_{1,1} = f_{1,1} + A_{1}(4) + (G+F_{1,3}) + A_{1}(3) + 3 \cdot F_{2,1} + A_{1}(8) + 2 \cdot F_{2,3} + A_{1}(8) + A_{1$ | 282                                                          |
| 42    |                                       | 15 10 1   | /9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 283                                                          |
| 43    |                                       | С         | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 284                                                          |
| 44    | ØØ141EI                               |           | FT(15)=F(1,1)*A1(6)+(G+F(1,3))*A1(4)+4.*F(2,1)*A1(7)+3.*F(2,3)*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+F(1,3))*A1(6)+(G+                                                                                                                                                           | 285                                                          |
| 45    | ALL BUT I                             |           | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 286                                                          |
| 46    | ØØ147AI                               |           | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28/                                                          |
| 47    | ØØ148ØI                               |           | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 288                                                          |
| WARN  | ING #                                 | 3 ****    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |
|       | >                                     | >> VAR    | IABLE NOT INITIALIZED IN PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (((                                                          |

WK2

NO ERRORS:F7D RØ5-ØØ.ØØ SUBROUTINE AUX2 17/Ø2/83 16:58:51 TABLE SPACE: 2 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 154 WORDS DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| FORT | RAN-VIID | RØ5-ØØ.00     |                          |                     |           |       | 1////2/83     | 19:28:   | 8 PAGE     | 1/ |
|------|----------|---------------|--------------------------|---------------------|-----------|-------|---------------|----------|------------|----|
| FORT | RAN VIID | LICENSED REST | RICTED RIGHTS AS STA     | TED IN LICENSE CL-A | 8013 ***  | , SEE | DOCUMENTATION | PACKAGE, | Ø4-1Ø1M99. | ,  |
| 1    | ØØØØØØI  | SUBROU        | TINE RKM(N, H, X, Y, YO, | (01, YP, SYS)       |           |       |               | 289      |            |    |
| 2    | 0000041  | IMPLIC        | IT REAL*8(A-H,O-Z)       |                     |           |       |               | 290      |            |    |
| 3    | ØØØØØ41  | DIMENS        | ION Y(N), YO(N), YO1(N   | ,YP(N),GI(5),A1(15  | 5),F(2,3) |       |               | 291      |            |    |
| 4    | ØØØØØAI  | COMMON        | /DOT1/F.PT.QT.RT.G       |                     |           |       |               | 292      |            |    |
| 5    | ØØØØØAI  | COMMON        | /DOT2/A1.DLX.DLV.DLT     | FXA.DTHTA.T1        |           |       |               | 293      |            |    |
| 6    | ØØØØØAI  | COMMON        | /DOT3/GW2,QW2            |                     |           |       |               | 294      |            |    |
| 7    | ØØØØØAI  | GI(1)         | = .5                     |                     |           |       |               | 295      |            |    |
| 8    | 000066I  | GI(2)         | = .5                     |                     |           |       |               | 296      |            |    |
| 9    | 8888781  | GI(3)         | = 1.                     |                     |           |       |               | 297      |            |    |
| 10   | ØØØØ7AI  | GI(4)         | = 1.                     |                     |           |       |               | 298      |            |    |
| 11   | ØØØØ841  | GI(5)         | = .5                     |                     |           |       |               | 299      |            |    |
| 12   | ØØØØ8EI  | XO = X        |                          |                     |           |       |               | 300      |            |    |
| 13   | ØØØØ9AI  | DO 1 I        | = 1,N                    |                     |           |       |               | 3Ø1      |            |    |
| 14   | ØØØØAEI  | YO(I)         | = Y(I)                   |                     |           |       |               | 302      |            |    |
| 15   | ØØØØD6I  | 1 YO1(I)      | = Y(I)                   |                     | 1         |       |               | 3Ø3      |            |    |
| 16   | ØØØ116I  | DO 2 J        | = 1,4                    |                     |           |       |               | 3.04     |            |    |
| 17   | ØØØ11EI  | CALL S        | YS(N,X,YO1,YP)           |                     |           |       |               | 3.05     |            |    |
| 18   | ØØØ168I  | X = XC        | )+GI(J)*H                |                     |           |       |               | 3Ø6      |            |    |
| 19   | ØØØ186I  | DO 2 1        | = 1,N                    |                     |           |       |               | 307      |            |    |
| 20   | ØØØ19AI  | YO1(I)        | = $YO(I)+GI(J)*H*YP($    | [)                  |           |       |               | 308      |            |    |
| 21   | ØØØ1E8I  | 2 Y(I) =      | Y(I)+GI(J+1)*H*YP(I      | )/3.Ø               |           |       |               | 3.09     |            |    |
| 22   | ØØØ26CI  | RETURN        |                          |                     |           |       |               | 31Ø      |            |    |
| 23   | ØØØ272I  | END           |                          |                     |           |       |               | 311      |            |    |
|      |          |               |                          |                     |           |       |               |          |            |    |

. 1

8

. 9

NO ERRORS: F7D RØ5-ØØ.ØØ SUBROUTINE RKM 17/Ø2/83 16:58:52 TABLE SPACE: 2 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 158 WORDS DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| FORTI | RAN-VIID   | RØ5-ØØ.ØØ                                                                        | 3 16:58:18 PAGE 1/  |
|-------|------------|----------------------------------------------------------------------------------|---------------------|
| FORTI | RAN VIID:  | LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-\$\$13 ***, SEE DOCUMENTATION | PACKAGE, Ø4-1Ø1M99. |
| 1 .   | ØØØØØØI    | SUBROUTINE SYS(N.T.X.XD)                                                         | 312                 |
| 2     | ØØØØØ4I    | IMPLICIT REAL*8(A-H.O-Z)                                                         | 313                 |
| 3     | ØØØØØAI    | DIMENSION X(3),XD(3),F(2,3),A1(15)                                               | 314                 |
| 4     | ØØØØØ41    | COMMON/DOT1/F.PT,QT,RT,G                                                         | 315                 |
| 5     | ØØØØØ4I    | COMMON/DOT2/A1, DLX, DLV, DLT, FXA, DTHTA, T1                                    | 316                 |
| 6     | ØØØØØ4I    | COMMON/DOT3/GW2, QW2                                                             | 317                 |
| 7     | ØØØØØ4I    | DXLV = A1(3)*X(1)*X(1)*X(3)+A1(4)*X(1)*X(3)*X(3)+2.*A1(5)*X(3)*X(3)              | 318                 |
| 8     |            | <pre>/)*X(2)+A1(6)*X(3)*X(3)*X(3)+2.*A1(1Ø)*X(1)*X(2)*X(3)+A1(11)*X(1)*X</pre>   | 319                 |
| 9     |            | /(1)*X(1)+2.*A1(12)*X(1)*X(1)*X(2)+3.*A1(13)*X(1)*X(2)*X(2)*3.*A1(1              | 320                 |
| 19    |            | (4)*X(3)*X(2)*X(2)+4.*A1(15)*X(2)*X(2)*X(2)                                      | 321                 |
| 11    | ØØØ1B81    | DXLT = A1(2)*X(1)*X(1)*X(1)+A1(3)*X(1)*X(1)*X(2)+2.*A1(4)*X(1)*X(2)              | 322                 |
| 12    |            | <pre>/)*X(3)+2.*A1(5)*X(2)*X(2)*X(3)+3.*A1(6)*X(2)*X(3)*X(3)+4.*A1(7)*X(</pre>   | 323                 |
| 13    |            | /3)*X(3)*X(3)+3.*A1(8)*X(1)*X(3)*X(3)+2.*A1(9)*X(1)*X(1)*X(3)+A1(1Ø              | 324                 |
| 14    | State City | /)*X(1)*X(2)*X(2)+A1(14)*X(2)*X(2)*X(2)                                          | 325                 |
| 15    | ØØØ35C1    | XD(1) = X(2)                                                                     | 326                 |
| 16    | ØØØ37ØI    | XD(2) = -F(1,1)*X(1)-F(1,2)*X(2)-(F(1,3)+G)*X(3)-DXLV*GW2+FXA                    | 327                 |
| 17    |            | /+G*DTHTA*T1                                                                     | 328                 |
| 18    | ØØØ3E4I    | XD(3) = -F(2,1)*X(1)-F(2,2)*X(2)-F(2,3)*X(3)-DXLT*QW2+DTHTA                      | 329                 |
| 19    | ØØØ43EI    | RETURN                                                                           | 33Ø                 |
| 20    | 8884441    | END                                                                              | 331                 |
|       |            | 이 가장이 그는 것 같은 것 같                                  |                     |

NO ERRORS: F7D RØ5-ØØ.ØØ SUBROUTINE SYS 17/Ø2/83 16:58:54 TABLE SPACE: 2 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 146 WORDS DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| FORT | RAN-VIID            | RØ5- | 00.00 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17/02/83     | 16:58:18 PAGE 1/    |
|------|---------------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|
| FORT | RAN VIID:           | LIC  | ENSE  | RESTRICTED RIGHTS AS STATED IN LICENSE CL-ØØ13 ***, SEE DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OCUMENTATION | PACKAGE, Ø4-1Ø1M99. |
| 1    | ØZØZØZI             |      | 1.5   | UBROUTINE RICATI(A,B,Q,R,P,F,N,M,NN,MM,IP,IS,T,W,WA,WP,WQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00041500     | 332                 |
| 2    |                     | С    | 1.1.1 | SUBROUTINE RICATI(A,B,Q,R,P,F,N,M,NN,MM,IP,IS,T,W,WA,WP,WQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00041460     | 333                 |
| 3    |                     | С    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00041470     | 334                 |
| 4    |                     | С    | S     | $\beta = A'P + PA + Q - PB(R.INV.)B'P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00041480     | 335                 |
| 5    |                     | Č    | 100   | The Filler and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00041490     | 336                 |
| E C  |                     | č    | 1     | - R*F) HAS THE DESIRED SPECTRUM UPON RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00041500     | 337                 |
| 7    |                     | č    | Ċ     | LIS SUBPOLITINES MAT AND LYAPUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00041510     | 338                 |
| -    |                     | č    | U.    | The print contract $= 0.12$ 2 GIVES FULL PRINTOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00041520     | 339                 |
| 8    |                     | č    | 1     | 13 FRINT CONTROL $= 3, 1, 2$ $= 2$ (A-RE) IS ASSIMED STARLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QQQ4153Q     | 340                 |
| 10   |                     | č    | 1     | $r = 1$ (ANGED FOR SUCCESS SET = $\alpha$ FOR NON-CONVERGENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00041540     | 341                 |
| 1.0  |                     | c    | 1     | SET NEGATIVE FOR NON-CONVERGENCE IN S/R LYAPUN (INSTABILITY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041550     | 342                 |
| 11   |                     | č    |       | VOPLING STOPAGE (V) (VA) (VP) (VQ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00041560     | 343                 |
| 12   |                     | č    |       | DIMENSION OF CHANCED FROM FINN NO TO FIM NO. DATE: 30/08/1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aaa157a      | 344                 |
| 13   |                     | C    | -     | CARLENSIN OF F CHANGED FROM FUN, NO TO THE SUBTONICALLY STADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00041571     | 345                 |
| 14   |                     | C    | 2     | ABILITY IS IN THE SENSE THAT THE STATEM IS ASTHITOTICALLY STABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00041571     | 240                 |
| 15   |                     | Ç    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00041500     | 340                 |
| 16   |                     | С    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00041550     | 347                 |
| 17   | ØØØØØ4 I            |      |       | (MPLICIT REAL*8(A-H,O-Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00041610     | 348                 |
| 18   | ØØØØØ4I             |      |       | )IMENSION A(NN,N),B(NN,M),P(NN,N),Q(NN,N),R(MM,M),F(M,N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00041630     | 349                 |
| 19   | ØØØØØAI             |      |       | )IMENSION W(NN,N),WA(NN,N),WP(NN,N),WQ(NN,N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041640     | 350                 |
| 20   | ØØØØØAI             |      |       | ABS(X)=DABS(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00041620     | 351                 |
| 21   | ØØØØE4I             |      |       | . I T = 3Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00041650     | 352                 |
| 22   | ØØØØEEI             |      |       | IRR=1.E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00041660     | 353                 |
| 23   | ØØØØFAI             |      |       | LERO=1.E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ØØØ4167Ø     | 354                 |
| 24   | ØØØ1Ø6I             |      |       | JS=Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00041680     | 355                 |
| 25   | ØØØ1ØEI             |      |       | FRO=1.E+5Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00041690     | 356                 |
| 26   | ØØØ11AI             |      |       | (IF(IP.GE.1) WRITE(6,901)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00041700     | 357                 |
| 27   | ØØØ1441             |      |       | (F(IP.LE.1) GO TO 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | øøø4171ø     | 358                 |
| 28   | ØØØ15AT             |      | S. 1  | JRITE(6.902)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041720     | 359                 |
| 29   | aga174T             |      |       | 00 13 I=1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00041730     | 36Ø                 |
| 30   | add1881             |      | 13    | JR ITE(6, 910) (A(1, J), J=1, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00041740     | 361                 |
| 31   | 0001001             |      | 10    | JRITE(6, 911)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00041750     | 362                 |
| 22   | 0002501             |      |       | 10  14  J=1  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00041760     | 363                 |
| 22   | 0002591             |      | 14    | $J_{\rm R}$ TTF (6, 916) (B(T, J), J=1, M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ØØØ4177Ø     | 364                 |
| 33   | 0002001             |      | 1.4   | $\mu_{11} = (6, 911)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ØØØ4178Ø     | 365                 |
| 25   | 0003101<br>00003101 |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00041790     | 366                 |
| 35   | 0003341             |      | 15    | $J_{\text{P}}$ TTE (5 916) (Q(1, J), J=1, N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041800     | 367                 |
| 27   | 0003401             |      | 10    | (r T F ( 6 9 1 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00041810     | 368                 |
| 20   | 0000SF01            |      |       | 0.0 15 T=1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041820     | 369                 |
| 30   | 0004141             |      | 10    | $D_{1} = 1, (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QQQA1830     | 370                 |
| 39   | 0004281             |      | 10    | $\frac{1}{2} \frac{1}{2} \frac{1}$ | aaaA18Aa     | 371                 |
| 4.0  | 0004081             | -    |       | TNVEDT (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aaa.1850     | 372                 |
| 41   |                     | C    |       | INVERT (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aaa1186a     | 373                 |
| 42   | 0004141             |      | 19    | JU 20 1=1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aaa197a      | 374                 |
| 43   | 0005081             |      |       | JU 20 J=1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aaa1199a     | 374                 |
| 44   | ØØØ51CI             |      | 210   | (1, J) = K(1, J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00041000     | 276                 |
| 45   | 0005941             |      |       | ALL MAILP, P, M, M, M, NN, ZERU, DET, K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00041000     | 277                 |
| 46   | ØØØ5ECI             | Sec. |       | IF (IS.LT.2) GO TO 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00041500     | 270                 |
| 47   |                     | C    |       | GIVEN (A - BAF) STABLE , FIND PD BY SOLVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00041510     | 370                 |
| 48   |                     | C    |       | (A - BF)'P + P(A - BF) + (F'RF + Q) = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00041920     | 375                 |
| 49   | ØØØ6Ø2I             |      |       | WRITE(6,912)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041930     | 380                 |
| 50   | ØØØ61CI             |      |       | IF(IP.LE.1) GO TO 14Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00041940     | 381                 |
| 51   | ØØØ632I             |      |       | 00 135 I=1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041950     | 382                 |
| 52   | ØØØ646I             |      | 135   | <pre>write(6,910)(F(I,J),J=1,N)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00041960     | 383                 |
| 53   | ØØØ6F4I             |      |       | WRITE(6,911)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00041970     | 384                 |
| 54   | ØØØ71ØI             |      | 140   | 00 6Ø I=1,N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00041980     | 385                 |
| 55   | ØØØ724I             |      |       | 00 6Ø J=1,M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00041990     | 386                 |
| 56   | ØØØ738I             |      |       | S=Ø.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00042000     | 387                 |
| 57   | ØØØ744I             |      |       | 00 50 K=1.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00042010     | 388                 |

| FORT | RAN-VIID  | RØ5. | -øø. | 88                                                      |     | 17/02/83           | 16.58.19 PACE       | 21 |
|------|-----------|------|------|---------------------------------------------------------|-----|--------------------|---------------------|----|
| FORT | RAN VIID: | IIC  | FNS  | ED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 ***   | SEE | DOCUMENTATION      | PACKACE CA-101M00   | 21 |
| 58   | 0007581   |      | 50   | S=S+E(V,T)*E(V,T)                                       | JLL | GOGADOOD           | 1ACKAGE, 04-1011193 |    |
| 50   | adaac AT  |      | Ca   |                                                         |     | 00042020           | 303                 |    |
| CA   | 0007041   |      | 0.0  | $V_{1}, 0, -3$                                          |     | 10.0.104 2.10 3.20 | 3910                |    |
| 6.0  | MMM 81EI  |      |      |                                                         |     | 00042040           | 391                 |    |
| 61   | 0008321   |      |      | D0 82 J=1, N                                            |     | 00042050           | 392                 |    |
| 62   | 0008461   |      |      | S=Ø.                                                    |     | 00042060           | 393                 |    |
| 63   | ØØØ8521   |      |      | SS=Ø.                                                   |     | 00042070           | 394                 |    |
| 64   | ØØØ85EI   |      |      | DO 70 K=1.M                                             |     | 00042080           | 395                 |    |
| 65   | ØØØ8721   |      |      | S=S+B(I,K)*F(K,J)                                       |     | 00042030           | 396                 |    |
| 66   | MAMACEI   |      | 701  | SS=SS+W(T,K)*F(K,J)                                     |     | 000002100          | 297                 |    |
| 67   | 0009321   |      |      | VO(1, 1) = O(1, 1) + SS                                 |     | 00042100           | 202                 |    |
| 68   | adadadi   |      | 80   |                                                         |     | 00042110           | 200                 |    |
| 69   | ØØØØFFI   |      | 0.0  | CALL LYAPUN (WA VO UP W N NN T)                         |     | 00042120           | 399                 |    |
| 70   | OCCATAT   |      | 00   | CONTINUE                                                |     | 00042130           | 4.6.0               |    |
| 710  | 600A741   | ~    | 33   |                                                         |     | 00042140           | 4.01                |    |
| /1   |           | L    |      | $F = (K \cdot INV/(B'))  P = (B(K \cdot INV/B'))$       |     | 00042150           | 4.02                |    |
| 12   | 000A/41   |      |      | DO 240 I=1,M                                            |     | ØØØ4216£           | 4.03                |    |
| 73   | ØØØA88I   |      |      | DO 240 J=1,N                                            |     | \$\$\$\$4217\$     | 4.04                |    |
| 74   | ØØØA9CI   |      |      | S=Ø.                                                    |     | 00042180           | 4.05                |    |
| 75   | ØØØAA8I   |      |      | DO 23Ø K=1,M                                            |     | ØØØ4219Ø           | 4.06                |    |
| 76   | ØØØABCI   |      | 230  | S=S+P(I,K)*B(J,K)                                       |     | 00042200           | 4.07                |    |
| 77   | ØØØB28I   |      | 240  | F(I,J)=S                                                |     | 00042210           | 4.08                |    |
| 78   | ØØØB82I   |      |      | DO 26Ø I=1,N                                            |     | 00042220           | 409                 |    |
| 79   | ØØØB96I   |      |      | $DO 26\emptyset J=1.N$                                  |     | 00042230           | 410                 |    |
| 80   | ØØØBAAI   |      |      | $IF(IS, LT, 2)$ $WP(I, J) = \emptyset$ .                |     | MAMA22AM           | 411                 |    |
| 81   | RARREAT   |      |      | S=0                                                     |     | 00042250           | 412                 |    |
| 02   | AAADEAI   |      |      | DO 250 K-1 M                                            |     | 00042250           | 412                 |    |
| 02   | DODDFDI   |      |      |                                                         |     | 00042260           | 413                 |    |
| 83   | 0000041   |      | 250  | S=S+B(1,K)^r(K,J)                                       |     | 00042270           | 414                 |    |
| 84   | 0000701   |      | 260  | P(1,J)=S                                                |     | ØØØ4228Ø           | 415                 |    |
| 85   |           | C    | -    |                                                         |     | ØØØ4229Ø           | 416                 |    |
| 86   | ØØØCCAI   |      | 300  |                                                         |     | 00042300           | 417                 |    |
| 87   |           | C    |      | W = (B(R.INV)B'P)                                       |     | ØØØ4231Ø           | 418                 |    |
| 88   | NNNCDEI   |      |      | DO 420 1=1,N                                            |     | ØØØ4232Ø           | 419                 |    |
| 89   | ØØØCF21   |      |      | DO 428 J=1,N                                            |     | ØØØ4233Ø           | 420                 |    |
| 9Ø   | ØØØDØ6I   |      |      | S=Ø.                                                    |     | 00042340           | 421                 |    |
| 91   | ØØØD12I   |      |      | DO 410 K=1,N                                            |     | 00042350           | 422                 |    |
| 92   | ØØØD26I   |      | 410  | S=S+P(I,K)*WP(K,J)                                      |     | 00042360           | 423                 |    |
| 93   | ØØØD921   |      | 420  | W(I,J)=S                                                |     | ØØØ4237Ø           | 424                 |    |
| 94   |           | C    |      | $WA = (A-B(R, INV)B'P) \qquad WQ = (Q + PB(R, INV)B'P)$ | 1   | 00012380           | 125                 |    |
| 95   | MAMDECT   |      |      | DO 450 I=1.N                                            |     | 00042300           | 425                 |    |
| 96   | AAAFAAI   |      |      | DO 450 - 1=1 N                                          |     | 00042350           | 420                 |    |
| 97   | ØØØF1AT   |      |      | S=0                                                     |     | 00042400           | 427                 |    |
| 90   | agar 201  |      |      | DO 430 K-1 N                                            |     | 00042410           | 420                 |    |
| 00   | ACCE 201  |      | 100  |                                                         |     | 00042420           | 429                 |    |
| 100  | DDDC341   |      | 430  | 5-57WF(1,K/*W(K,U/                                      |     | 00042430           | 4310                |    |
| 100  | DODEADI   |      |      | WU(1,0)=Stut1,0)                                        |     | 10.0.04244.0       | 431                 |    |
| 101  | NNNEFEI   | 1    | 46.0 | WA(1, J) = A(1, J) - W(1, J)                            |     | ØØØ4245Ø           | 432                 |    |
| 102  |           | С    |      | SOLVE $\emptyset = (WA)'(WP) + (WP)(WA) + (WQ)$         |     | 00042460           | 433                 |    |
| 1Ø3  | ØØØF8AI   |      |      | CALL LYAPUN(WA,WQ,WP,W,N,NN,T)                          |     | 00042470           | 434                 |    |
| 1Ø4  | ØØ1ØØØI   |      |      | TRN=Ø.                                                  |     | 00042480           | 435                 |    |
| 105  | ØØ1ØØCI   |      |      | DO 51Ø I=1,N                                            |     | 00042490           | 436                 |    |
| 106  | ØØ1Ø2ØI   |      | 510  | TRN=TRN+WP(I,I)                                         |     | 00042500           | 437                 |    |
| 107  |           | C    |      | TEST CONVERGENCE BY TRACE(P)                            |     | ØØØ42510           | 438                 |    |
| 108  | 0010681   | - T  |      | IF(IP, EQ. 1) WRITE(6, 905) IT. TRN                     |     | aaa1252a           | 139                 |    |
| 109  | ØØIØ9CI   |      |      | CRIT=ABS(TRN-TRO)/TRO                                   |     | aaa1252a           | AAR                 |    |
| 110  | AATACET.  |      |      | IF/CPIT LE EPP) CO TO 515                               |     | 00042330           | 441                 |    |
| 111  | RAIRECT   |      |      |                                                         |     | 00042340           | 441                 |    |
| 110  | agi grot  |      |      | IF(IF,LE,I) GO TO DID                                   |     | 00042550           | 442                 |    |
| 112  | MOINFUI   |      | 919  | 17 (17. NE. 1) WKIIE(0, 300) 11, IKN                    |     | 00042560           | 443                 |    |
| 113  | 0011301   |      |      | UU 52/0 1=1,N                                           |     | ØØØ4257Ø           | 444                 |    |
| 114  | ØØ1144I   |      | 520  | WRIIE(6,910)(WP(I,J),J=1,N)                             |     | 00042580           | 445                 |    |

D-10

| FORT | RAN-VIID   | RØ5-ØØ.            | ØØ                                                                 | 17/         | 02/83 16:58:11 | 8 PAGE 3/  | 12 |
|------|------------|--------------------|--------------------------------------------------------------------|-------------|----------------|------------|----|
| FORT | RAN VIID:  | LICENS             | ED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 ***. SE          | E DOCUMENTA | TION PACKAGE.  | Ø4-1Ø1M99. |    |
| 115  | ØØ11F4I    | 61Ø                | IF(CRIT.LE.ERR) GO TO 800                                          | 00042590    | 445            |            |    |
| 116  | ØØ12ØCI    |                    | IF (TRN.GE.1.E+6 $\emptyset$ ) GO TO $1\emptyset1\emptyset$        | 60042600    | 447            |            |    |
| 117  | ØØ1224I    |                    | TRO=TRN                                                            | 00042610    | 448            |            |    |
| 118  | ØØ123ØI    | 700                | CONTINUE                                                           | 00042620    | 449            |            |    |
| 119  | ØØ1248I    |                    | IS=Ø                                                               | ØØØ4263Ø    | 450            |            |    |
| 120  | ØØ125ØI    |                    | WRITE(6,907) IT                                                    | 00042540    | 451            |            |    |
| 121  | ØØ127ØI    | 800                | DO 820 I=1.M                                                       | ØØØ4265Ø    | 452            |            |    |
| 122  | ØØ1284I    |                    | DO 82Ø J=1,N                                                       | 00042660    | 453            |            |    |
| 123  | ØØ1298I    |                    | S=Ø.                                                               | 00042670    | 454            |            |    |
| 124  | ØØ12A4I    |                    | DO 810 K=1, N                                                      | ØØØ4268Ø    | 455            |            |    |
| 125  | ØØ12881    | 81Ø                | S=S+F(I,K)*WP(K,J)                                                 | 00042690    | 456            |            |    |
| 126  | ØØ1324I    | 82Ø                | W(I,J)=S                                                           | 00042700    | 457            |            |    |
| 127  | ØØ137EI    |                    | DO 84Ø I=1,N                                                       | 00042710    | 458            |            |    |
| 128  | ØØ13921    |                    | DO 83Ø J=1,N                                                       | 00042720    | 459            |            |    |
| 129  | ØØ13A6I    | 83Ø                | P(I,J)=WP(I,J)                                                     | 00042730    | 460            |            |    |
| 13Ø  | ØØ14Ø6I    |                    | DO 84Ø J=1,M                                                       | 00042740    | 461            |            |    |
| 131  | ØØ141AI    | 84Ø                | F(J,I) = W(J,I)                                                    | 00042750    | 462            |            |    |
| 132  | ØØ1492I    |                    | IF(IP.LE.1) GO TO 777                                              | ØØØ4276Ø    | 463            |            |    |
| 133  | ØØ14A8I    |                    | WRITE(6,911)                                                       | ØØØ4277Ø    | 464            |            |    |
| 134  | ØØ14C4I    |                    | DO 85Ø I=1,M                                                       | ØØØ4278Ø    | 465            |            |    |
| 135  | ØØ14D8I    | 85Ø                | WRITE(6,91Ø)(F(I,J),J=1,N)                                         | 00042790    | 466            |            |    |
| 136  | ØØ1588I    |                    | GO TO 777                                                          | 00042800    | 467            |            |    |
| 137  | ØØ158EI    | 1Ø1Ø               | IS=-IS                                                             | 00042810    | 468            |            |    |
| 138  | ØØ159CI    |                    | WRITE(6,908) IT                                                    | ØØØ4282Ø    | 469            |            |    |
| 139  | ØØ15BCI    | 777                | IF(IP.GE.1) WRITE(6,906) IT,TRN                                    | 00042830    | 47Ø            |            |    |
| 14Ø  | ØØ15FØI    | Contraction of the | RETURN                                                             | 00042840    | 471            |            |    |
| 141  | ØØ15F6I    | 9Ø1                | FORMAT(/,1X,12Ø(1H*),//,2ØX,17HSUBROUTINE RICATI //)               | ØØØ4285Ø    | 472            |            |    |
| 142  | ØØ162ØI    | 9.02               | FORMAT(30X,38HRICCATI PROBLEM MATRICES A / B / Q / R ,/)           | ØØØ4286Ø    | 473            |            |    |
| 143  | ØØ1654I    | 9Ø5                | FORMAT(/,1ØX,16HRICATI_ITERATION,14,1ØX,4HCOST,1PE2Ø.6,/)          | ØØØ4287Ø    | 474            |            |    |
| 144  | ØØ1682I    | 9Ø6                | FORMAT(//.20X,22HEXIT FROM RICATI AFTER ,13,12H ITERATIONS ,10X    | , ØØØ4288Ø  | 475            |            |    |
| 145  |            |                    | L 6HCOST =, IPE2Ø.6, /, IX, 12Ø(1H*), //)                          | ØØØ4289Ø    | 476            |            |    |
| 146  | ØØ16021    | 907                | FORMAT(///,20X,20HNO CONVERGENCE AFTER,14,12H ITERATIONS ,//)      | ØØØ429ØØ    | 477            |            |    |
| 14/  | 0017081    | 908                | FORMAT(///, 20X, 18HSYSTEM UNSTABLE AT , 14, 13H-TH ITERATION ,//) | ØØØ4 1      | 478            |            |    |
| 148  | 0017301    | 910                | FORMAT(5X, IPIDEI2.3)                                              |             | 479            |            |    |
| 149  | 00174E1    | 911                | FORMAT(7, 10X, 20(1H-7,7))                                         | 00042930    | 480            |            |    |
| 150  | 0017601    | 912                | FORMAT(7, 19X, 26HSTABILIZATION IS INDICATED ,7)                   | 00042940    | 481            |            |    |
| LADN | TNC # 201  | *****              |                                                                    | 0.0042950   | 482            |            |    |
| WARN | 1116 # 301 | \ UNDCC            |                                                                    | ***         |                |            |    |
|      | "          | / UNKEFT           | INCINCED LADEL                                                     |             | (((            |            |    |

-----

..... -~ ~

NO ERRORS:F7D RØ5-ØØ.ØØ SUBROUTINE RICATI 17/02/83 16:59:08 TABLE SPACE: 6 KB STATEMENT BUFFER: 20 LINES/1321 BYTES STACK SPACE: 186 WORDS DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| FUR  | IRAN-VIID  | RØ5-ØØ.8                                 |                                                                   | 17/02/8:                 | 3 16:58:18 PACE | 1/  |
|------|------------|------------------------------------------|-------------------------------------------------------------------|--------------------------|-----------------|-----|
| FORT | FRAN VIID: | LICENSE                                  | D RESTRICTED RIGHTS AS STATED IN LICENSE CL-ØØ13 ***. SFF         | DOCUMENTATION            | PACKAGE GA-101M | 00  |
| 1    | ØØØØØØI    |                                          | SUBROUTINE MAT (B,A,M,N,ND,ZERO,D,IRANK)                          | aga3115a                 | 192             | 33. |
| 2    |            | С                                        | CALCULATES RANK. DETERMINANT AND INVERSE OF MATPLY                | 000001100                | 403             |     |
| 3    |            | С                                        | METHOD IS DOUBLE PIVOTTED CAUSSIAN ELIMINATION                    | 888031158                | 404             |     |
| A    |            | ŕ                                        | B IS A M BY N MATPLY STOPED IN NO DY N MATPLY IN CALLING POWERNE  | 00031176                 | 485             |     |
| 5    |            | č                                        | TRANK IS BETHENED AS DANKED IN NO BY A MARKIA IN CALLING ROUTINE. | 00031180                 | 486             |     |
| c    |            | č                                        | A IS USED AS WKG/STOR.                                            | ØØØ3119Ø                 | 487             |     |
| 7    |            | č                                        | D IS REFORMED AS DEF(B)                                           | 00031200                 | 488             |     |
| ,    |            | L                                        | IF M=N A IS RETURNED AS (B.INVERSE)                               | ØØØ3121Ø                 | 489             |     |
| 8    |            | C                                        | ZERO IS USED TO TEST RELATIVE PIVOT SIZE.                         | 00031220                 | 498             |     |
| 9    |            | C                                        | IF STR USED BY RECURSIVE ROUTINE SET IPRNT=Ø TO SUPPRESS PRINTING | .00031230                | 491             |     |
| 10   |            | C                                        | REVERSE THE FOLLOWING 2 CARDS TO OBTAIN THE REAL*4 VERSION.       | 00031240                 | 492             |     |
| 11   | ØØØØØ41    |                                          | IMPLICIT REAL*8(A-H,O-Z)                                          | 00031250                 | 493             |     |
| 12   | ØØØØØ4I    |                                          | DIMENSION A(ND,N) ,B(ND,N)                                        | ØØØ3127Ø                 | 191             |     |
| 13   | ØØØØØAI    |                                          | DIMENSION ISWCH (100), JSWCH(100)                                 | 00031280                 | 195             |     |
| 14   | ØØØØØAI    |                                          | ABS(Q)=DABS(Q)                                                    | <i>aaa</i> 2126 <i>a</i> | 400             |     |
| 15.  | ØØØ3CCI    |                                          | NSW=1ØØ                                                           | aaa21200                 | 4 3 0           |     |
| 16   | ØØØ3D6I    |                                          | IPRNT=1                                                           | 00031250                 | 497             |     |
| 17   | ØØØ3DEI    |                                          | IPRNT=Ø                                                           | 00031300                 | 498             |     |
| 18   | ØØØ3E6I    |                                          | IRANK=Ø                                                           | 00031310                 | 499             |     |
| 19   | ØØØ3EEI    |                                          | D=1.                                                              | 00031320                 | 500             |     |
| 20   | ØØØ3FAI    |                                          | IF(M.NE.N) D=Ø.                                                   | 00031330                 | 5/01            |     |
| 21   | ØØØ418I    |                                          | DO 10 II=1.M                                                      | 00031340                 | 5.02            |     |
| 22   | MAMA2CI    |                                          | DO 10 12=1 N                                                      | 00031350                 | 5.03            |     |
| 22   | aaaaaat    | 10                                       |                                                                   | 00031360                 | 5.04            |     |
| 23   | 0004401    | 1.0                                      | A(11,12/=D(11,12)                                                 | 00031370                 | 5.05            |     |
| 24   | 0004881    |                                          | DO I I=1,NSW                                                      | 00031380                 | 506             |     |
| 25   | 0004CC1    |                                          | ISWCH(I)=Ø                                                        | 00031390                 | 507             |     |
| 26   | ØØØ4DAI    | 1                                        | JSWCH(I)=Ø                                                        | 00031400                 | 508             |     |
| 21   | ØØØ5ØØI    |                                          | MM=M                                                              | 00031410                 | 509             |     |
| 28   | ØØØ5ØCI    |                                          | IF(N.LT.M) MM=N                                                   | 00031420                 | 510             |     |
| 29   | ØØØ52AI    |                                          | DO 2 I=1,MM                                                       | 00031430                 | 511             |     |
| 30   | ØØØ53EI    |                                          | AMAX=Ø.Ø                                                          | 00031440                 | 512             |     |
| 31   | ØØØ54AI    |                                          | DO 3 I1=1,M                                                       | 00031450                 | 513             |     |
| 32   | ØØØ55EI    |                                          | DO 4 I2=1,N                                                       | 99931469                 | 514             |     |
| 33   | ØØØ572I    |                                          | IF(ISWCH(I1).NE.Ø.OR.JSWCH(I2).NE.Ø) GO TO 4                      | 00031470                 | E1E             |     |
| 34   | ØØØ5A4I    |                                          | IF (ABS(A(I1,I2)), LE, AMAX) GO TO A                              | 00031470                 | 515             |     |
| 35   | ØØØ5F81    |                                          | IPIVOT=I1                                                         | 00031480                 | 516             |     |
| 36   | ØØØ6Ø4I    |                                          | JPIVOT=12                                                         | 88831498                 | 51/             |     |
| 37   | 0006101    |                                          | ABIG=A(11,12)                                                     | 00031500                 | 518             |     |
| 38   | ØØØ63AI    |                                          | AMAX=ABS(ABIG)                                                    | 20031510                 | 519             |     |
| 39   | 0006541    | 4                                        | CONTINUE                                                          | 0.0031520                | 520             |     |
| 40   | AAAAAA     | 3                                        |                                                                   | 00031530                 | 521             |     |
| 11   | aaac 8 A T |                                          |                                                                   | 00031540                 | 522             |     |
| 12   | adacaci    |                                          |                                                                   | 00031550                 | 523             |     |
| 12   | adachei    |                                          | ITAI.NE.I/ GO TO 33                                               | ØØØ3156Ø                 | 524             |     |
| 43   | 0000BACI   |                                          |                                                                   | ØØØ3157Ø                 | 525             |     |
| 44   | 0006881    |                                          | IF ((AMAX.LE.ZERO).AND.(M.EQ.N)) GO TO 999                        | 00031580                 | 526             |     |
| 45   | MMM6EZI    |                                          | IF (AMAX.LE.ZERO) GO TO 99                                        | 00031590                 | 527             |     |
| 46   | 0006FAI    | Section Republic                         | GO TO 34                                                          | 00031600                 | 528             |     |
| 41   | 0007001    | 33                                       | CMAX=AMAX/BMAX                                                    | 00031610                 | 529             |     |
| 48   | 0007121    |                                          | IF((CMAX.LE.ZERO).AND.(M.EQ.N)) GO TO 999                         | 00031620                 | 530             |     |
| 49   | ØØØ73CI    |                                          | IF(CMAX.LE.ZERO) GO TO 99                                         | 00031630                 | 531             |     |
| 5.0  | ØØØ754I    | 34                                       | IRANK=IRANK+1                                                     | 00031640                 | 532             |     |
| 51   | ØØØ762I    |                                          | APIVOT=1.Ø/A(IPIVOT,JPIVOT)                                       | 00031650                 | 533             |     |
| 52   | ØØØ792I    |                                          | A(IPIVOT,JPIVOT)=APIVOT                                           | 00031660                 | 524             |     |
| 53   | ØØØ7BCI    | Start in                                 | ISWCH(IPIVOT)=JPIVOT                                              | 00001670                 | 534             |     |
| 54   | ØØØ7CEI    | 1                                        | JSWCH(JPIVOT)=IPIVOT                                              | 000001000                | 555             |     |
| 55   | ØØØ7EØI    |                                          | DO 5 I1=1.M                                                       | 00031060                 | 030             |     |
| 56   | ØØØ7F4I    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | DO 6 I2=1.N                                                       | 00031690                 | 53/             |     |
| 57   | 0008081    | a second                                 | IF(II.FO. IPIVOT. OR IZ FO. IPIVOT) CO TO 5                       | 00031700                 | 538             |     |
|      |            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |                                                                   | 00031/10                 | 539             |     |

| FORT | RAN-VIID  | RØ5-ØØ.ØØ                                                                                                                                              | /83 16:58:18 PAGE 2/ 1 |
|------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| FORT | RAN VIID: | LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-ØØ13 ***, SEE DOCUMENTATIO                                                                          | DN PACKAGE, Ø4-1Ø1M99. |
| 58   | 6668321   | A(I1, I2)=A(I1, I2)-A(IPIVOT, I2)*A(I1, JPIVOT)*APIVOT 000031720                                                                                       | 540                    |
| 59   | PPPRCAI   | 6 CONTINUE                                                                                                                                             | 541                    |
| 69   | ROOSE21   | 5 CONTINUE                                                                                                                                             | 542                    |
| 61   | AAASENT   | DO 170 11=1.M                                                                                                                                          | 543                    |
| 62   | addodet   | IE (11 EQ LEVOT) CO TO 170 0000000000000000000000000000000000                                                                                          | 544                    |
| 62   | RRRDDCI   |                                                                                                                                                        | 545                    |
| 63   | 0009261   |                                                                                                                                                        | 545                    |
| 64   | 0009741   | 170 CONTINUE 80031700                                                                                                                                  | 545                    |
| 65   | 00098C1   | 00 1/5 J1=1,N                                                                                                                                          | 547                    |
| 66   | ØØØ9AØI   | IF (J1.EQ.JP1V0) GO TO 175                                                                                                                             | 548                    |
| 67   | ØØØ9B8I   | A(IPIVO1, J1) = -A(IPIVO1, J1) * APIVO1                                                                                                                | 549                    |
| 68   | ØØØAØEI   | 175 CONTINUE 000031820                                                                                                                                 | 5510                   |
| 69   | ØØØA26I   | 2 CONTINUE 80031830                                                                                                                                    | 551                    |
| 7Ø   | ØØØA3EI   | 99 IF(IPRNT.EQ.1) WRITE(6,9Ø1)M,N,IRANK,BMAX,AMAX,D ØØØ3184Ø                                                                                           | 552                    |
| 71   | ØØØA8ØI   | IF(M.NE.N) GO TO 771 ØØØ3185Ø                                                                                                                          | 553                    |
| 72   | ØØØA98I   | DO 77 I1=1,M ØØØ3186Ø                                                                                                                                  | 554                    |
| 73   | ØØØAACI   | 11 IF(ISWCH(II).EQ.II) GO TO 77 ØØØ3187Ø                                                                                                               | 555                    |
| 74   | ØØØACAT   | K=ISWCH(II) ØØØ3188Ø                                                                                                                                   | 556                    |
| 75   | ØØØADCI   | DO 88 J=1.M ØØØ3189Ø                                                                                                                                   | 557                    |
| 76   | ØØØAFØI   | TEMP=A(11,J)                                                                                                                                           | 558                    |
| 77   | ØØØRIAT   | A(T1, J) = A(K, J) (00031910                                                                                                                           | 559                    |
| 78   | ACCERC 21 | A(K, 1)=TEMP 00031920                                                                                                                                  | 560                    |
| 79   | AGABACI   |                                                                                                                                                        | 561                    |
| 00   | MANDALI   |                                                                                                                                                        | 562                    |
| 0.0  | DODDA41   |                                                                                                                                                        | 562                    |
| 01   | NONBB01   |                                                                                                                                                        | 565                    |
| 82   | DODBLEI   |                                                                                                                                                        | 564                    |
| 83   | NNNBENI   | 00 TO TT 000000000000000000000000000000                                                                                                                | 565                    |
| 84   | 000BE41   | 77 CONTINUE 00031980                                                                                                                                   | 566                    |
| 85   | ØØØBFCI   | DO 55 I=1,M.                                                                                                                                           | 56/                    |
| 86   | ØØØC1ØI   | 12 IF (JSWCH(I).EQ.I) GO TO 55 00032000                                                                                                                | 568                    |
| 87   | ØØØC2EI   | K=JSWCH(I) ØØØ32Ø1Ø                                                                                                                                    | 569                    |
| 88   | ØØØC4ØI   | DO 44 J=1,M ØØØ32Ø2Ø                                                                                                                                   | 57Ø                    |
| 89   | ØØØC54I   | TEMP=A(J,I) ØØØ32Ø3Ø                                                                                                                                   | 571                    |
| 9Ø   | ØØØC7EI   | $A(J,I) = A(J,K) \qquad \qquad$ | 572                    |
| 91   | ØØØCC6I   | A(J,K)=TEMP ØØØ32Ø5∅                                                                                                                                   | 573                    |
| 92   | ØØØCFØI   | 44 CONTINUE 88832868                                                                                                                                   | 574                    |
| 93   | ØØØDØ8I   | ITEMP=JSWCH(I) ØØØ32Ø7Ø                                                                                                                                | 575                    |
| 94   | ØØØDIAI   | JSWCH(I)=JSWCH(K) ØØØ32Ø8Ø                                                                                                                             | 576                    |
| 95   | ØØØD321   | JSWCH(K)=ITEMP 00032090                                                                                                                                | 577                    |
| 96   | ANADAAT   | GO TO 12 00032100                                                                                                                                      | 578                    |
| 97   | adaDist   | 55 CONTINUE 00032110                                                                                                                                   | 579                    |
| 00   | agabcat   | 71 DETIIN 8002120                                                                                                                                      | 580                    |
| 00   | adabcci   |                                                                                                                                                        | 591                    |
| 100  | 00000001  |                                                                                                                                                        | 502                    |
| 100  | 0000721   | WELLE( $b$ , $2\pi\lambda^{2}$ / $m$ , $n$                                                                   | 502                    |
| 101  | 1 OAUQUAD | 301 FURMAN (57, 7 RANK UF, 13, 30 BT, 13, 10 MAIRIA 13, 13, 53, 53, 7 MUSL 130                                                                         | 505                    |
| 102  |           | 124HELASI AND LASI FIVOIS, IFELD.S, IFEL4.S, 5A, 14HDELEKMINANI, ND032100                                                                              | 504                    |
| 103  |           | ZIPEI3.3) 000321/0                                                                                                                                     | 565                    |
| 1.04 | DODEDAI   | 200 FURMAI(5X,/HRANK UF,13,3H BY,13,10H MAIRIX 15,13,5X, 00032180                                                                                      | 200                    |
| 1.05 |           | 124HFIKST AND LAST PIVOIS, IPE10.3, IPE14.3, 5X, 15H ** SINGULAR **)00032190                                                                           | 58/                    |
| 1Ø6  | ØØØE7ØI   | RETURN ØØØ322ØØ                                                                                                                                        | 588                    |
| 1.Ø7 | ØØØE76I   | END ØØØ3221Ø                                                                                                                                           | 589                    |
|      |           |                                                                                                                                                        |                        |

NO ERRORS:F7D RØ5-ØØ.ØØ SUBROUTINE MAT 17/Ø2/83 16:59:18 TABLE SPACE: 3 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 183 WORDS DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| FORT | RAN-VIID           | RØ5-ØØ.)   | 0.0                                                       |                                                                  | 03 10:30:18 PAGE 1/   |
|------|--------------------|------------|-----------------------------------------------------------|------------------------------------------------------------------|-----------------------|
| FORT | RAN VIID:          | LICENS     | ED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013         | ***, SEE DOCUMERIATIO                                            | N PACKAGE, 24-101M99. |
| 1    | ØØØØØØI            |            | SUBROUTINE LYAPUN (A,C,Q,WS1,N,NDIM,T)                    | ØØØ3Ø162                                                         | 59.0                  |
| 2    |                    | C          |                                                           | ØØØ3Ø17Ø                                                         | 591                   |
| 3    |                    | Č          | SOLVES THE LYAPUNOV EQUATION : A'Q + QA + C = Ø           | ØØØ3Ø18Ø                                                         | 592                   |
| 4    |                    | č          |                                                           | ØØØ3Ø19Ø                                                         | 593                   |
| 4    |                    | č          | CALLS S / MAT FOR MATRIX INVERSION                        | 88838282                                                         | 594                   |
| 5    |                    | C          | TVDICAL STEP_SIZE - 1 E_4 1 E_7 FOR WIDE SPREAD           | OF FICENVALUESAAA3A21A                                           | 595                   |
| 6    |                    | L          | TYPICAL STEP-SIZE - T.E-4, T.E-7 FOR WIDE STREAD          | addada2d22d                                                      | 596                   |
| 1    |                    | C          | THE LOLT BEAL FOLD IL O 7                                 | 000000220                                                        | 595                   |
| 8    | 0000041            |            | IMPLICIT REAL S(A-H, U-Z)                                 | 00030230                                                         | 500                   |
| 9    | ØØØØØ41            | String and | DIMENSION A(NDIM, N), G(NDIM, N), C(NDIM, N), WSI(NDIM, N |                                                                  | 550                   |
| 1Ø   |                    | C-1        |                                                           | MUS(DNR=)MUS(00030260                                            | 233                   |
| 11   |                    | C-1        |                                                           | )X(ELBD=)X(B00030270                                             | 600                   |
| 12   | ØØØØØAI            |            | DOUBLE PRECISION SUM                                      | ØØØ3Ø29Ø                                                         | 6.01                  |
| 13   | ØØØØØAI            |            | LOGICAL FLAG                                              | ØØØ3Ø3ØØ                                                         | 6.02                  |
| 14   | ARAAAAT            |            | DUB(X) = X                                                | ØØØ3Ø24Ø                                                         | 6.03                  |
| 15   | AAAAACT            |            | RD(SUM)=SUM                                               | 00030250                                                         | 6.024                 |
| 16   | aga11AT            |            | FLAG= FALSE                                               | ØØØ3Ø31Ø                                                         | 6.05                  |
| 17   | agailer            |            | MAXIT=40                                                  | 00030320                                                         | 6Ø6                   |
| 10   | 0001261            |            | ZERO=1 E-12                                               | ØØØ3Ø33Ø                                                         | 6.07                  |
| 19   | 0001201            |            | FPR=1 F-12                                                | 00030340                                                         | 608                   |
| 20   | add1321            |            |                                                           | 00030350                                                         | 609                   |
| 20   | 00013EI<br>00014CI | E          |                                                           | <i><b><i>а</i></b><i>аа</i><b>3</b><i>а</i><b>3</b><i>6а</i></i> | 610                   |
| 21   | 0001461            | 5          |                                                           | <i><i><i>xxxxxxxxxxxxx</i></i></i>                               | 611                   |
| 22   | ØØØ15A1            |            | DO IO J=1, N                                              | 00030370                                                         | 612                   |
| 23   | ØØØ16EI            | 1Ø         | WS1(I,J)=0.0                                              | 00030380                                                         | 612                   |
| 24   | ØØØ1C8I            |            | DO 11 I=1,N                                               | 00030390                                                         | 613                   |
| 25   | ØØØ1DCI            | 11         | WS1(I,I)=1.Ø                                              | 00030400                                                         | 614                   |
| 26   | ØØØ21EI            |            | T1=Ø.5*T                                                  | 00030410                                                         | 615                   |
| 27   | ØØØ23ØI            |            | T2=T1*T/6.Ø                                               | 00030420                                                         | 616                   |
| 28   | ØØØ2481            |            | DO 20 I=1.N                                               | ØØØ3Ø43Ø                                                         | 617                   |
| 29   | ØØØ25CI            |            | DO 20 K=1.N                                               | 00030440                                                         | 618                   |
| 30   | ØØØ27ØI            |            | SUM=Ø,ØDØ                                                 | 00030450                                                         | 619                   |
| 21   | aga27CI            |            | DO 15 J=1.N                                               | ØØØ3Ø46Ø                                                         | 620                   |
| 22   | adazoat            | 15         | SUM=SUM+T2*A(1, 1)*A(1, K)                                | 88838478                                                         | 621                   |
| 32   | 0002301            | 20         |                                                           | ada 3 a 1 8 a                                                    | 622                   |
| 33   | 0003021            | 210        |                                                           | 0000000000                                                       | 622                   |
| 34   | 00038F1            |            | DO 21 1=1, N                                              | 00030430                                                         | 62.5                  |
| 35   | ØØØ3A21            | 10 A 20    | DO 21 J=1,N                                               | 00030500                                                         | 624                   |
| 36   | ØØØ3B6I            | 21         | A(I,J)=RD(DUB(II)*DUB(A(I,J)))                            | 00030510                                                         | 625                   |
| 37   | ØØØ488I            |            | DO 24 I=1,N                                               | 00030520                                                         | 626                   |
| 38   | ØØØ49CI            |            | DO 24 J=1,N                                               | 00030530                                                         | 627                   |
| 39   | ØØØ4BØI            |            | Q(I,J) = WS1(I,J) - A(I,J)                                | ØØØ3Ø54Ø                                                         | 628                   |
| 40   | ØØØ51CI            | 24         | WS1(I,J)=WS1(I,J)+A(I,J)                                  | ØØØ3Ø55Ø                                                         | 629                   |
| 41   | ØØØ5881            |            | CALL MAT(Q.Q.N.N.NDIM,ZERO,DET,IRANK)                     | ØØØ3Ø56Ø                                                         | 63Ø                   |
| 42   | ØØØ61ØT            |            | DO 28 I=1.N                                               | ØØØ3Ø57Ø                                                         | 631                   |
| 12   | agac 211           |            | DO 28 J=1.N                                               | ØØØ3Ø58Ø                                                         | 632                   |
| 40   | 0000241            |            |                                                           | <i><b>ААА34596</b></i>                                           | 633                   |
| 44   | 0000301            |            |                                                           | 88838688                                                         | 634                   |
| 45   | 0006441            |            |                                                           | ARADRE 1 A                                                       | 625                   |
| 46   | 0006581            | 26         | SUM=SUM + G(I,K)-WSI(K,G)                                 | 00030010                                                         | 636                   |
| 47   | ØØØ6C4I            | 28         | A(1, J)=SUM                                               | 00030620                                                         | 636                   |
| 48   | ØØØ71EI            | 1          | DO 3Ø I=1,N                                               | 101003105310                                                     | 637                   |
| 49   | ØØØ7321            |            | $DO 3\emptyset J=I,N$                                     | 00030640                                                         | 638                   |
| 5Ø   | ØØØ74AI            |            | C(I,J)=RD(DUB(T)*DUB(C(I,J))/3.)                          | ØØØ3Ø65Ø                                                         | 639                   |
| 51   | ØØØ7F4I            |            | Q(I,J)=C(I,J)                                             | ØØØ3Ø66Ø                                                         | 64Ø                   |
| 52   | ØØØ83CI            | 3Ø         | Q(J,I) = Q(I,J)                                           | ØØØ3Ø67Ø                                                         | 641                   |
| 53   | ØØØ8B4T            | 40         | KK=KK+1                                                   | ØØØ3Ø68Ø                                                         | 642                   |
| 54   | ØØØ8C2T            |            | IF (KK.EQ.Ø) GO TO 8Ø                                     | ØØØ3Ø69Ø                                                         | 643                   |
| 55   | AAABDBI            |            | DO 65 I=1.N                                               | ØØØ3Ø7ØØ                                                         | 644                   |
| EG   | AAAAECI            |            | DO 65 K=1.N                                               | 00030710                                                         | 645                   |
| 50   | addoddat           |            |                                                           | ØØØ3Ø72Ø                                                         | 646                   |
| 5/   | וממכממט            |            | SOUL-N + N DN                                             | NNNONIEN                                                         |                       |

| FORT | RAN-VIID  | RØ5-ØØ. | 38                                                         |        | 17/1       | 2/8: | 3 16:58:18 PAGE 2/  | 16 |
|------|-----------|---------|------------------------------------------------------------|--------|------------|------|---------------------|----|
| FORT | RAN VIID: | LICENS  | ED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 **       | *, SEE | DOCUMENTA  | FION | PACKAGE, Ø4-1Ø1M99. |    |
| 58   | ØØØ9ØCI   |         | DO 6Ø J=1,N                                                |        | ØØØ3Ø73Ø   |      | 647                 |    |
| 59   | ØØØ92ØI   | 6.8     | SUM=SUM+A(I,J)*A(J,K)                                      |        | ØØØ3Ø742   |      | 648                 |    |
| 6Ø   | Ø0098CI   | 65      | WS1(I,K)=SUM                                               |        | ØØØ30755   |      | 649                 |    |
| 61   | ØØØ9E6I   |         | DO 7Ø I=1.N                                                |        | 88838768   |      | 65¢                 |    |
| 62   | ØØØ9FAI   |         | DO 7Ø J=1,N                                                |        | ØØØ3Ø77Ø   |      | 651                 |    |
| 63   | ØØØAØEI   | 7Ø      | A(I,J) = WS1(I,J)                                          |        | ØØØ3Ø78Ø   |      | 652                 |    |
| 64   | ØØØA861   | 8Ø      | DO 95 I=1,N                                                |        | ØØØ3Ø79Ø   |      | 653                 |    |
| 65   | ØØØA9AI   |         | DO 95 K=1.N                                                |        | ØØØ3Ø8ØØ   |      | 654                 |    |
| 66   | ØØØAAEI   |         | SUM=Ø.ØDØ                                                  |        | ØØØ3Ø81Ø   |      | 655                 |    |
| 67   | ØØØABAI   |         | $DO 9\emptyset J=1,N$                                      |        | 00030820   |      | 656                 |    |
| 68   | ØØØACEI   | 9.0     | SUM=SUM+Q(I,J)*A(J,K)                                      |        | 00039830   |      | 657                 |    |
| 69   | ØØØB3AI   | 95      | WS1(I,K)=SUM                                               |        | ØØØ3Ø84Ø   |      | 658                 |    |
| 7Ø   | ØØØB94I   |         | DO 118 I=1,N                                               |        | ØØØ3Ø85Ø   |      | 659                 |    |
| 71   | ØØØBA8I   |         | DO 110 K=I,N                                               |        | ØØØ3Ø86Ø   |      | 660                 |    |
| 72   | ØØØBCØI   |         | SUM=Ø.ØDØ                                                  |        | ØØØ3Ø87Ø   |      | 661                 |    |
| 73   | ØØØBCCI   |         | DO $1\emptyset\emptyset$ J=1,N                             |        | 00030880   |      | 662                 |    |
| 74   | ØØØBEØI   | 100     | SUM=SUM+A(J,I)*WS1(J,K)                                    |        | ØØØ3Ø89Ø   |      | 663                 |    |
| 75   | ØØØC4CI   |         | IF(DABS(SUM).GT.ERR) FLAG=.FALSE.                          |        | ØØØ3Ø9ØØ   |      | 664                 |    |
| 76   | ØØØC78I   | 737     | IF (KK.GT.Ø) GO TO 1Ø5                                     |        | 00030910   |      | 665                 |    |
| 77   | ØØØC8EI   |         | Q(I,K) = 2.0 * (Q(I,K) + 2.0 * SUM)                        |        | ØØØ3Ø92Ø   |      | 666                 |    |
| 78   | ØØØCE8I   |         | GO TO 110                                                  |        | 00030930   |      | 667                 |    |
| 79   | ØØØCEEI   | 1.05    | Q(I,K)=Q(I,K)+SUM                                          |        | 00030940   |      | 668                 |    |
| 80   | ØØØD3CI   | 110     | CONTINUE                                                   |        | ØØØ3Ø95Ø   |      | 669                 |    |
| 81   | ØØØD6CI   |         | IF (FLAG) GO TO 130                                        |        | ØØØ3Ø96Ø   |      | 67Ø                 |    |
| 82   | ØØØD7EI   |         | IF(KK.GT.MAXIT) GO TO 130                                  |        | ØØØ3Ø97Ø   |      | 671                 |    |
| 83   | ØØØD96I   |         | DO $12\emptyset$ I=1,N                                     |        | ØØØ3Ø98Ø   |      | 672                 |    |
| 84   | ØØØDAAI   |         | DO 12Ø J=I,N                                               |        | ØØØ3Ø99Ø   |      | 673                 |    |
| 85   | ØØØDC2I   | 120     | Q(J,I)=Q(I,J)                                              |        | 00031000   |      | 674                 |    |
| 86   | ØØØE3AI   |         | FLAG=.TRUE.                                                |        | ØØØ31Ø1Ø   |      | 675                 |    |
| 87   | ØØØE42I   |         | GO TO 40                                                   |        | 00031020   |      | 676                 |    |
| 88   | ØØØE46I   | 13Ø     | $DO 14\emptyset I=1, N$                                    |        | 00031030   |      | 677                 |    |
| 89   | ØØØE5AI   |         | DO $14\emptyset$ J=I,N                                     |        | 00031040   |      | 678                 |    |
| 90   | ØØØE72I   |         | Q(I,J) = Q(I,J) - C(I,J)                                   |        | 00031050   |      | 679                 |    |
| 91   | ØØØEDEI   | 140     | Q(J,I)=Q(I,J)                                              |        | 00031060   |      | 68Ø                 |    |
| 92   | ØØØF56I   |         | IF(KK.LE.MAXIT) GO TO 77                                   |        | 00031070   |      | 681                 |    |
| 93   | ØØØF6EI   | 25.0    | WRITE(6,9300)                                              |        | ØØØ31Ø8Ø   |      | 682                 |    |
| 94   | ØØØF88I   | 77      | WRITE(6,8765) KK                                           |        | 00031090   |      | 683                 |    |
| 95   | ØØØFA8I   |         | RETURN                                                     |        | 00031100   |      | 684                 |    |
| 96   | ØØØFAEI   | 8765    | FORMAT( 43X,22HEXIT FROM LYAPUN AFTER , I3, 11H ITERATION  | s . /  | ) ØØØ31110 |      | 685                 |    |
| 97   | ØØØFEØI   | 9300    | FORMAT(7,10X,5(1H*),26H NO CONVERGENCE IN LYAPUN ,5(1H*),/ | )      | 00031120   |      | 686                 |    |
| 98   | ØØ1Ø14I   |         | END                                                        |        | 00031130   |      | 687                 |    |
| WARN | ING # 3Ø1 | ****    | ***************************************                    | *****  | **         |      |                     |    |
|      | >>        | > UNREF | ERENCED LABEL                                              |        |            | <<<  |                     |    |
|      |           |         |                                                            |        |            |      |                     |    |

5 737 25Ø

NO ERRORS:F7D RØ5-ØØ.ØØ SUBROUTINE LYAPUN 17/Ø2/83 16:59:31 TABLE SPACE: 4 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 214 WORDS DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| FORT | RAN-VIID       | RØ5-ØØ.0    | 10                                                                                                             | 25/04/83 12:01:06 PACE 1/           |
|------|----------------|-------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|
| FORT | RAN VIID:      | LICENSE     | D RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 ***. SE                                                       | E DOCUMENTATION PACKAGE, Ø4-1Ø1M99. |
| 1    | ØØØØØØI        |             | SUBROUTINE SETPOL(A, B, F, POLZ, N, M, ND, ZERO, JGUD, NSET, R, U, V)                                          | 1                                   |
| 2    |                | С           | POLE-ASSIGNMENT FOR PAIR(A,B)                                                                                  | 2                                   |
| 3    |                | С           | RESTRICTION: ASSIGNMENT IS ALONG REAL AXIS ONLY.                                                               | . 3                                 |
| 4    |                | С           | CONTROLLABLE MODES ARE SET TO (POLZ)                                                                           | 4                                   |
| 5    |                | C           | NSET POLES ARE ASSIGNED, RIGHTMOST FIRST                                                                       | 5                                   |
| 67   |                | C           | NSEI .LI. Ø PRODUCES DETAILED PRINTOUT                                                                         | <u>6</u>                            |
| 8    |                | c           | WORKING STOPACE IS B II V                                                                                      | /                                   |
| 9    | AAAAAA I       | C           | DIMENSION A(ND,N), B(ND,M), F(ND,N), POLZ(N)                                                                   | 8                                   |
| 10   | ØØØØØAI        |             | DIMENSION VR( $2\emptyset$ ), VI( $2\emptyset$ ), IANA( $2\emptyset$ ), VB( $2\emptyset$ ), FM( $2\emptyset$ ) | 10                                  |
| 11   | ØØØØØAI        |             | DIMENSION R(ND,N),V(ND,N),U(ND,N)                                                                              | ĨĨ                                  |
| 12   | ØØØØØAI        |             | DOUBLE PRECISION VB,S                                                                                          | 12                                  |
| 13   | ØØØØØAI        |             | MSET=IABS(NSET)                                                                                                | 13                                  |
| 14   | ØØØ256I        |             | WRITE(6,901) MSET,N                                                                                            | 14                                  |
| 15   | ØØØ278I        |             | IF(NSET.GT.Ø) GO TO 5                                                                                          | 15                                  |
| 16   | ØØØ28EI        |             | WRITE(6,902)                                                                                                   | 16                                  |
| 1/   | 0002A81        | -           | DU 3 I=I, N                                                                                                    | 17                                  |
| 19   | MAM26CI        | 3           | WRITE(6,5227 (A(1,07,0=1,N)                                                                                    | 18                                  |
| 20   | 0003881        |             | DO(A = 1 = 1 N)                                                                                                | 19                                  |
| 21   | ØØØ39CI        | 4           | WRITE(6, 922) (B(1, J), J=1, M)                                                                                | 21                                  |
| 22   | ØØØ44CI        | 5           | RYTMAX=POLZ(1)                                                                                                 | 22                                  |
| 23   | ØØØ45CI        | Pet 1 - 200 | DO 6 I=1,MSET                                                                                                  | 23                                  |
| 24   | ØØØ47ØI        |             | IF(POLZ(I).GT.RYTMAX) RYTMAX=POLZ(I)                                                                           | 24                                  |
| 25   | ØØØ4AAI        | 6           | CONTINUE                                                                                                       | 25                                  |
| 26   | ØØØ4C2I        |             | DO 10/ I=1,N                                                                                                   | 26                                  |
| 27   | ØØØ4D6I        | 4           | DO 9 J=1,M                                                                                                     | 27                                  |
| 28   | ØØØ4EAI        | 9           | $F(\mathbf{J},\mathbf{I}) = \mathbf{M}$ .                                                                      | 28                                  |
| 29   | 00052CI        | 10          | DU 10 J = 1, N                                                                                                 | 29                                  |
| 31   | 0005401        | C           | SET POLES 1 MODE AT A TIME                                                                                     | 310                                 |
| 32   | ØØØ5B8T        | 101         | DO 500 MO=1.MSET                                                                                               | 31                                  |
| 33   | ØØØ5CCI        |             | WRITE(6,966)                                                                                                   | 33                                  |
| 34   |                | C           | GET EIGÉNVALUES AND LEFT EIGENVECTORS OF (A+B*F)                                                               | 34                                  |
| 35   | ØØØ5E8I        |             | T1=24.                                                                                                         | 35                                  |
| 36   | Section 2.     | C-2         |                                                                                                                | 36                                  |
| 37   | ØØØ5F4I        |             | CALL EIGENP(N,ND,R,T1,VR,VI,V,U,IANA)                                                                          | 37                                  |
| 38   | ~~~~~~         | C-2         | LEANDER OF MILLON TO 107                                                                                       | 38                                  |
| 39   | 0006601        |             | IF (NSEI.GI.2) GUIUI2/                                                                                         | 39                                  |
| 4.0  | AAAC9AI        |             |                                                                                                                | 4.10                                |
| 42   | ØØØ6A4 I       |             | IE(IANA(J), EQ. 0) WRITE(6.909)                                                                                | 41                                  |
| 43   | ØØØ6D4I        | 105         | WRITE(6,910) J.VR(J),VI(J), IANA(J)                                                                            | 42                                  |
| 44   | ØØØ754I        | 1.07        | WRITE(6,905) (POLZ(I), I=1,MSET)                                                                               | 44                                  |
| 45   | ØØØ7DCI        |             | WRITE(6, 903)(VR(I), I=1, N)                                                                                   | 45                                  |
| 46   |                | C           | FIND RIGHTMOST POLE                                                                                            | 46                                  |
| 47   | ØØØ85CI        |             | MM=1                                                                                                           | 47                                  |
| 48   | ØØØ8641        |             | RYT=VR(1)                                                                                                      | 48                                  |
| 49   | 00086E1        |             | DO 110 1=2, N                                                                                                  | 49                                  |
| 51   | 0000021        |             |                                                                                                                | 5 <i>U</i>                          |
| 52   | ØØØ8AC I       |             | RVT=VR(MM)                                                                                                     | 52                                  |
| 53   | ØØØ8BEI        | 110         | CONTINUE                                                                                                       | 53                                  |
| 54   | ØØØ8D61        |             | IF(RYT.LT.RYTMAX) GO TO 311                                                                                    | 54                                  |
| 55   | ØØØ8EEI        |             | WRITE(6,9300) MM,POLZ(MO)                                                                                      | 55                                  |
| 56   | Section of the | C           | CALCULATE FEEDBACK GAINS, CHOOSE THE LOWEST                                                                    | 56                                  |
| 57   | ØØØ92CI        |             | DO 21Ø J=1,M                                                                                                   | 57                                  |

| FORT | DAN WITT            |          |                                                  |         |     | 25/01/83      | 12    | · 01 · 05 | PACE    | 21 | 2 |
|------|---------------------|----------|--------------------------------------------------|---------|-----|---------------|-------|-----------|---------|----|---|
| FURI | KAN-VIID            | K05-00.4 | DE RECTORER DIQUES AS STATED IN LICENCE CL (1)   | ***     | err | DOCUMENTATION | DACY  | ACE CA    | 101100  | -1 | - |
| FORT | RAN VIID:           | LICENSE  | D RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 | · · · , | SEE | DUCUMENTATION | FACK  | AGE, 24   | -101699 | •  |   |
| 58   | ØØØ94ØI             |          | $VB(J) = \emptyset$ .                            |         |     |               | 58    |           |         |    |   |
| 59   | ØØØ9521             |          | DO 21Ø I=1,N                                     |         |     |               | 59    |           |         |    |   |
| 6.0  | ØØØ9661             | 21Ø      | VB(J) = VB(J) + V(I,MM) + B(I,J)                 |         |     |               | 6Ø    |           |         |    |   |
| 61   | ØØØAØ2I             |          | JJ=1                                             |         |     |               | 61    |           |         |    |   |
| 62   | ØØØAØAI             |          | VDB=Ø.                                           |         |     |               | 62    |           |         |    |   |
| 63   | ØØØA16I             |          | DO 220 J=1.M                                     |         |     |               | 63    |           |         |    |   |
| 64   | ØØØA2AT             |          | IF (DABS(VB(J)), LT, VDB) GO TO 220              |         |     |               | 64    |           |         |    |   |
| CE   | agaA721             |          | 1.12-1                                           |         |     |               | 65    |           |         |    |   |
| 00   | DODA721             |          |                                                  |         |     |               | 66    |           |         |    |   |
| 00   | DUDA/EI             |          |                                                  |         |     |               | 67    |           |         |    |   |
| 6/   | NONABA1             | 2210     |                                                  |         |     |               | 62    |           |         |    |   |
| 68   | 000AD21             |          | IF (NSE1.L1.0.7) WRITE(6, 517) (VB(0), 0-1, 47)  |         |     |               | 60    |           |         |    |   |
| 69   | ØØØB641             | 1        | IF (VDB.LT.ZERO) GO TO 301                       |         |     |               | 70    |           |         |    |   |
| 7.0  |                     | C        | - MODE MM IS CONTROLLABLE                        |         |     |               | 7.0   |           |         |    |   |
| 71   | ØØØB7CI             |          | FHAT=(POL2(MO)-VR(MM))/VB(JJ)                    |         |     |               | 71    |           |         |    |   |
| 72   | ØØØBC6I             |          | DO 246 I=1,N                                     |         |     |               | 12    |           |         |    |   |
| 73   | ØØØBDAI             |          | FM(I)=FHAT*V(I,MM)                               |         |     |               | 13    |           |         |    |   |
| 74   | ØØØC1ØI             | 246      | F(JJ,I)=F(JJ,I)+FM(I)                            |         |     |               | 74    |           |         |    |   |
| 75   | ØØØC7CI             |          | IF(NSET.LT.Ø) WRITE(6.919) (FM(I),I=1.N)         |         |     |               | 75    |           |         |    |   |
| 76   | MANDACT             |          | GO TO 450                                        |         |     |               | 76    |           |         |    |   |
| 77   | RRRD12I             | 201      | $V_{R}TF(6, 9200) VR(MM)$                        |         |     |               | 77    |           |         |    |   |
| 70   | acadaat             | 5.01     |                                                  |         |     |               | 78    |           |         |    |   |
| 70   | 0000441             | 211      |                                                  |         |     |               | 79    |           |         |    |   |
| 19   | DDDD4A1             | 311      |                                                  |         |     |               | 80    |           |         |    |   |
| 80   | 0000641             |          |                                                  |         |     |               | 01    |           |         |    |   |
| 81   |                     | C        | - GET NEW (A+B+F)TRANSPOSE                       |         |     |               | 02    |           |         |    |   |
| 82   | ØØØD6AI             | 4510     | DO 455 I=I,N                                     |         |     |               | 02    |           |         |    |   |
| 83   | ØØØD7EI             |          | DO 455 J=1,N                                     |         |     |               | 83    |           |         |    |   |
| 84   | ØØØD921             |          | S=Ø.D.Ø                                          |         |     |               | 84    |           |         |    |   |
| 85   | ØØØD9EI             |          | DO 453 K=1,M                                     |         |     |               | 85    |           |         |    |   |
| 86   | ØØØDB2I             | 453      | S=S+B(I,K)*F(K,J)                                |         |     |               | 86    |           |         |    |   |
| 87   | ØØØE2AI             |          | V(I,J)=S+A(I,J)                                  |         |     |               | 87    |           |         |    |   |
| 88   | ØØØE9ØI             | 455      | R(J,I)=V(I,J)                                    |         |     |               | 88    |           |         |    |   |
| 89   | ØØØFØ8I             |          | IF (RYT.LT.RYTMAX) GO TO 600                     |         |     |               | 89    |           |         |    |   |
| 90   | ØØØF2ØT             | 500      | CONTINUE                                         |         |     |               | 90    |           |         |    |   |
| 91   |                     | C        | - CHECK POLE ASSGINMENT                          |         |     |               | 91    |           |         |    |   |
| 92   | AUAL 381            | 600      | WRITE(6,912)                                     |         |     |               | 92    |           |         |    |   |
| 93   | Ø Ø Ø Ø F 5 A I     | 0        | DO 512 I=1.M                                     |         |     |               | 93    |           |         |    |   |
| 91   | RAREC ST            | 512      | VP ITE(6, 922) (F(1, 1), J=1, N)                 |         |     |               | 94    |           |         |    |   |
| 05   | aalalot             | J.2      | $\mathbf{F}(\mathbf{N})$                         |         |     |               | 95    |           |         |    |   |
| 95   | aalaget             |          |                                                  |         |     |               | 96    |           | *       |    |   |
| 20   | DO IDZEI<br>OCIOZEI |          | WRITE(0,513)                                     |         |     |               | 97    |           |         |    |   |
| 97   | 0010481             | F10      | $U_0$ 515 1-1, N                                 |         |     |               | 00    |           |         |    |   |
| 98   | 0010501             | 513      | WRITE(6,922) (V(1,0),0=1,N)                      |         |     |               | 00    |           |         |    |   |
| 99   | ØØ11ØC1             | 514      | JGOD=1                                           |         |     |               | 100   |           |         |    |   |
| 100  | ØØ1114I             |          | IF (RYI.LI.RYIMAX) GO TO 625                     |         |     |               | 1.00  |           |         |    |   |
| 1Ø1  | ØØ112CI             |          | WRITE(6,966)                                     |         |     |               | 1.01  |           |         |    |   |
| 102  | ØØ1148I             |          | T1=24.                                           |         |     |               | 1.02  |           |         |    |   |
| 1.03 |                     | C-2      |                                                  |         |     |               | 103   |           |         |    |   |
| 1.04 | ØØ1154I             |          | CALL EIGENP(N,ND,R,T1,VR,VI,V,U,IANA)            |         |     |               | 1Ø4   |           |         |    |   |
| 105  | ØØ11CØI             |          | WRITE(6,905) (POLZ(I),I=1,MSET)                  |         |     |               | 1Ø5   |           |         |    |   |
| 1.06 | ØØ1248I             |          | WRITE(6,9Ø3) (VR(I),I=1,N)                       |         |     |               | 1Ø6   |           |         |    |   |
| 107  | ØØ12C8I             |          | WRITE(6,904) (VI(I), I=1,N)                      |         |     |               | 1Ø7   |           |         |    |   |
| 108  | 0013481             |          | IF(MSET.LT.N) GO TO 625                          |         |     |               | 108   |           |         |    |   |
| 109  | ØØ13601             |          | DO 61Ø I=1.N                                     |         |     |               | 1.09  |           |         |    |   |
| 110  | ØØ13741             |          | IF(VR(I), GT, RYTMAX*, 9) GO TO 620              |         |     |               | 110   |           |         |    |   |
| 111  | 0013741             | 610      | CONTINUE                                         |         |     |               | 111   |           |         |    |   |
| 112  | aal 2021            | 610      | WPITE(6 967)                                     |         |     |               | 112   |           |         |    |   |
| 112  | 0013621             | 020      | DETIIDN                                          |         |     |               | 113   |           |         |    |   |
| 113  | aalanat             | 620      |                                                  |         |     |               | 114   |           |         |    |   |
| 114  | 0013071             | 060      |                                                  |         |     |               | A A T |           |         |    |   |

| FORT | RAN-VIID  | RØ5-ØØ.ØØ                                                   | 25/84/83 12:83:33 PACE 2/           |
|------|-----------|-------------------------------------------------------------|-------------------------------------|
| FORT | RAN VIID: | LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-0013 *** | SEE DOCUMENTATION PACKAGE GA-101M00 |
| 115  | ØØ13DAI   | GO TO 625                                                   | 115 115                             |
| 116  |           | c                                                           | 115                                 |
| 117  | ØØ13DEI   | 901 FORMAT(//,1X,125('*'),/20X,'SETPOL :',10X,'POLF-        | 117                                 |
| 118  |           | *ASSIGNMENT OF', ' CONTROLLABLE MODES './/                  | 119                                 |
| 119  |           | *, 30X, 'SET', I3, ' MODES OF', I3, '-TH ORDER SYSTEM', //) | 119                                 |
| 120  | ØØ1468I   | 902 FORMAT(20X, 'SYSTEM MATRICES :A AND B'./)               | 120                                 |
| 121  | ØØ148EI   | 903 FORMAT(2X, 'REAL PART OF SPECTRUM :', 10/9.3)           | 121                                 |
| 122  | ØØ14B6I   | 904 FORMAT(2X,'IMAG PART OF SPECTRUM :',10F9.3)             | 122                                 |
| 123  | ØØ14DEI   | 905 FORMAT(/,5X,'DESIRED POLES :',5X,10F9.3)                | 123                                 |
| 124  | ØØ15Ø2I   | 908 FORMAT(10X,'EIGENVALUES : REAL AND IMAG. PARTS :')      | 124                                 |
| 125  | ØØ1532I   | 909 FORMAT(60X,10('*'), 'REAL PART NOT FOUND')              | 125                                 |
| 126  | ØØ1558I   | 91Ø FORMAT(15,5X,1P2E2Ø.8,11Ø)                              | 126                                 |
| 127  | ØØ156EI   | 912 FORMAT(/,20X,'FEEDBACK MATRIX F',/)                     | 127                                 |
| 128  | ØØ158EI   | 913 FORMAT(//,20X,'CLOSED-LOOP MATRIX (A+B*F)',/)           | 128                                 |
| 129  | ØØ15B8I   | 917 FORMAT(2X, 'B-TILDA ROW :', 1P1ØE11.3, /15X, 1P1ØE11.3) | 129                                 |
| 130  | ØØ15E4I   | 919 FORMAT(5X, 'FEEDBACK :', 1P1ØE11.3, /, 15X, 1P1ØE11.3)  | 13Ø                                 |
| 131  | ØØ16ØEI   | 922 FORMAT(5X,1P1ØE11.3)                                    | 131                                 |
| 132  | ØØ162ØI   | 966 FORMAT(//,1X)                                           | 132                                 |
| 133  | ØØ162CI   | 967 FORMAT(//,20X,'EXIT FROM SETPOL',/,1X,125('*'),//)      | 133                                 |
| 134  | 0016561   | 9200 FORMAT(40X,20('='),'MODE UNCONTROLLABLE :',F20.4)      | 134                                 |
| 135  | 0016801   | 9300 FORMAT(7,5x, 'ASSIGNING MODE', I3, 'TO', F10.5, '')    | 135                                 |
| 136  | 0016AC1   | 9400 FORMAT(7,20X, ALL POLES ARE LEFTWARD OF RIGHTMOST      | 136                                 |
| 13/  |           | *DESIRED POLE , , )                                         | 137                                 |
| 138  | DØI6FAI   | END                                                         | 138                                 |
| WARN | ING # 301 |                                                             | ****                                |
|      | >>        | > UNKEFEKENCED LABEL                                        | <<<                                 |
|      |           |                                                             |                                     |

1Ø1

NO ERRORS:F7D RØ5-ØØ.ØØ SUBROUTINE SETPOL 25/Ø4/83 12:Ø3:4Ø TABLE SPACE: 6 KB STATEMENT BUFFER: 2Ø LINES/1321 BYTES STACK SPACE: 186 WORDS SINGLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

| Degree of    | Performance limits             |             |              |  |  |  |  |  |  |
|--------------|--------------------------------|-------------|--------------|--|--|--|--|--|--|
| freedom      | Position                       | Velocity    | Acceleration |  |  |  |  |  |  |
| Horizontal x | Forward 1.245 m<br>Aft 1.219 m | ±0.610m/sec | ±0.6g        |  |  |  |  |  |  |
| Lateral y    | Left 1.219 m<br>Right 1.219 m  | ±0.610m/sec | ±0.6g        |  |  |  |  |  |  |
| Vertical z   | Up 0.991 m<br>Down 0.762 m     | ±0.610m/sec | ±0.6g        |  |  |  |  |  |  |
| Yaw ¥        | ±32°                           | ±15 /sec    | ±50 /sec     |  |  |  |  |  |  |
| Pitch θ      | +30°<br>-20°                   | ±15 /sec    | ±50 /sec     |  |  |  |  |  |  |
| Ro11 ¢       | ±22°                           | ±15 /sec    | ±50 /sec     |  |  |  |  |  |  |

TABLE 1.1 PERFORMANCE LIMITS [1]

TABLE 6.1 Least relative negative overshoot of  $\hat{\vec{x}}_{c}, \hat{\vec{y}}_{c}, \hat{\vec{z}}_{c}$ 

1) The linear washout filter

| case NO. | 1     | 2     | 3     | 4     |  |
|----------|-------|-------|-------|-------|--|
|          | -0.22 | -0.32 | -0.46 | -0.12 |  |

#### 2) The adaptive washout filter

| case NO.     | 1      |       | 2     |       | 3     |       | 4     |       |
|--------------|--------|-------|-------|-------|-------|-------|-------|-------|
| channe1      | a      | b     | a     | b     | a     | b     | a     | b     |
| Longitudinal | -0.347 | -0.53 | -0.39 | -0.64 | -0.33 | -0.46 | -0.28 | -0.36 |
| Lateral      | -0.6   | -0.82 | -0.46 | -0.63 | -0.35 | -0.62 | -0.27 | -0.45 |
| Vertical     | -0.31  | -0.45 | -0.37 | -0.31 | -0.23 | -0.25 | -0.29 | -0.28 |

### 3) The nonlinear optimal washout filter

| case NO.     | 1     |      | 2     |       | 3     |       | 4     |       |
|--------------|-------|------|-------|-------|-------|-------|-------|-------|
| channe1      | a     | b    | a     | b     | a     | b     | a     | b     |
| Longitudinal | -0.16 | 0.0  | -0.02 | -0.03 | 0.0   | 0.0   | 0.0   | 0.0   |
| Lateral      | -0.17 | -0.2 | -0.15 | -0.17 | -0.15 | -0.18 | -0.17 | -0.2  |
| Vertical     | -0.12 | -0.2 | -0.11 | -0.2  | -0.1  | -0.19 | -0.12 | -0.17 |



. .

FIGURE 2.1 AN ILLUSTRATIVE CONFIGURATION OF A SIMULATOR







in body-fixed frame.

## FIGURE 3.2 CENTROID TRANSFORMATION



FIGURE 4.1 BLOCK DIAGRAM OF LINEAR WASHOUT FILTER [1]



FIGURE 5.1 CONTOUR LINES AND STEEPEST DESCENT IN PARAMETER SPACE



# FIGURE 5.2 BLOCK DIAGRAM OF MODEL REFERENCE ADAPTIVE CONTROL SYSTEM

\* \*

\$





#### FIGURE 5.4 BLOCK DIAGRAM OF THE ADAPTIVE WASHOUT FILTER

× 1



.

FIGURE 6.1 NONLINEAR OPTIMAL CONTROL DIAGRAM





# FIGURE 6.3 THE FLOW CHART FOR REAL TIME DIGITAL CONTROL













\*
















And in





r .

0





A Mar Si

A





| AS Technical Note No. 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| stitute for Aerospace Studies, University of Toronto (UTIAS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UTIAS Technical Note No. 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| S Dufferin Street, Downsview, Ontario, Canada, M3H 5T6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Institute for Aerospace Studies, University of Toronto (UTIAS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| A Shi-Diang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `    |
| Dight cimulation 2 Nonlinear activity of a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Liu. Zhi-Oiang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| The Simulation 2. Nonlinear optimal control 3. Washout filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1. Flight simulation 2. Nonlinear optimal control 3. Washout filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Liu, Zhi-Qiang II. UIIAS Technical Note No. 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I. Liu. Zhi-Qiang II. UTIAS Technical Note No. 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| -degree-of-freedom flight simulator are surveyed. A nonlinear optimal washout<br>ter based on nonlinear regulator and optimal control theories has been synthesized.<br>proposed nonlinear optimal washout filter is capable of producing the drive signal<br>ording to the magnitudes of inputs while it minimizes the given performance criterion.<br>each channel four different cases are tested using computer simulation. Comparisons<br>made with the results obtained from a linear washout filter and an adaptive washout<br>ter. The observation is that the nonlinear optimal and adaptive washout filters are<br>erior to the linear washout filters in some aspects. Recommendations for future work<br>improvement are also included. | The conventional linear washout filter and coordinated adaptive washout filter for a six-degree-of-freedom flight simulator are surveyed. A nonlinear optimal washout filter based on nonlinear regulator and optimal control theories has been synthesized. The proposed nonlinear optimal washout filter is capable of producing the drive signal according to the magnitudes of inputs while it minimizes the given performance criterion. For each channel four different cases are tested using computer simulation. Comparisons are made with the results obtained from a linear washout filter and an adaptive washout filters are superior to the linear washout filters in some aspects. Recommendations for future work and improvement are also included.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The set of the card to OTIAS, if you required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uire |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246<br>Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246<br>Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 5T6<br>A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246<br>Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 5T6<br>A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE<br>Liu, Zhi-Qiang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246<br>Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 5T6<br>A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE<br>Liu, Zhi-Qiang<br>1. Flight simulation 2. Nonlinear optimal control 3. Washout filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246<br>Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 5T6<br>A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE<br>Liu, Zhi-Qiang<br>1. Flight simulation 2. Nonlinear optimal control 3. Washout filters<br>I. Liu, Zhi-Qiang II. UTIAS Technical Note No. 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>UTIAS Technical Note No. 246</li> <li>Institute for Aerospace Studies, University of Toronto (UTIAS)<br/>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 576</li> <li>A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE</li> <li>Liu, Zhi-Qiang</li> <li>I. Flight simulation 2. Nonlinear optimal control 3. Washout filters</li> <li>I. Liu, Zhi-Qiang II. UTIAS Technical Note No. 246</li> <li>The conventional linear washout filter and coordinated adaptive washout filter for a<br/>six-degree-of-freedom flight simulator are surveyed. A nonlinear optimal washout<br/>filter based on nonlinear regulator and optimal control theories has been synthesized.<br/>The proposed nonlinear optimal washout filter is capable of producing the drive signal<br/>according to the magnitudes of inputs while it minimizes the given performance criterion.<br/>For each channel four different cases are tested using computer simulation. Comparisons<br/>are made with the results obtained from a linear washout filter and an adaptive washout<br/>filter. The observation is that the nonlinear optimal and adaptive washout filters are<br/>superior to the linear washout filters in some aspects. Recommendations for future work<br/>and improvement are also included.</li> </ul> |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246 Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 5T6 A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE Liu, Zhi-Qiang 1. Flight simulation 2. Nonlinear optimal control 3. Washout filters 1. Liu, Zhi-Qiang II. UTIAS Technical Note No. 246 The conventional linear washout filter and coordinated adaptive washout filter for a six-degree-of-freedom flight simulator are surveyed. A nonlinear optimal washout filter based on nonlinear regulator and optimal control theories has been synthesized. The proposed nonlinear optimal washout filter is capable of producing the drive signal according to the magnitudes of inputs while it minimizes the given performance criterion. For each channel four different cases are tested using computer simulation. Comparisons are made with the results obtained from a linear washout filter and a adaptive washout filters are superior to the linear washout filters in some aspects. Recommendations for future work and improvement are also included.                                                                                                                                                                                            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UTIAS Technical Note No. 246 Institute for Aerospace Studies, University of Toronto (UTIAS)<br>4925 Dufferin Street, Downsview, Ontario, Canada, M3H 576 A STUDY OF WASHOUT FILTERS FOR A SIMULATOR MOTION BASE Liu, Zhi-Qiang 1. Flight simulation 2. Nonlinear optimal control 3. Washout filters 1. Liu, Zhi-Qiang II. UTIAS Technical Note No. 246 The conventional linear washout filter and coordinated adaptive washout filter for a six-degree-of-freedom flight simulator are surveyed. A nonlinear optimal washout filter hased on nonlinear regulator and optimal control theories has been synthesized. The proposed nonlinear of inputs while it minimizes the given performance criterion. For each channel four different cases are tested using computer simulation. Comparisons are made with the results obtained from a linear washout filter and adaptive washout filter. The observation is that the nonlinear optimal and adaptive washout filter. The observation is that the nonlinear optimal adaptive washout filter washout filter. The observation is that the nonlinear optimal adaptive washout filter washout filters in some aspects. Recommendations for future work and improvement are also included.                                                                              |      |

18 × 1

2

2

ť