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ABSTRACT

The conventional linear washout filter and coordinated
adaptive washout filter for a six-degree-of-freedom flight
simulator are surveyed. A nonlinear optimal washout filter
based on nonlinear regulator and optimal control theories has
been synthesized. The proposed nonlinear optimal washout
filter 1is capable of producing the drive signal according to
the magnitudes of inputs while it minimizes the given
performance criterion. For each channel® four different cases
are tested using computer simulation. Comparisons are made
with the results obtained from a linear washout filter and an
adaptive washout filter. The observation is that the nonlinear
optimal and adaptive washout filters are superior to the linear
washout filters in some aspects. Recommendations for future

work and improvement are also included.

*Throughout this study the term 'channel' refers to the
longitudinal, or the lateral, or the vertical simulator travel

direction in which the control signals are applied.
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LIST OF SYMBOLS

Acceleration of the simulated aircraft in
body axis,(m/sec )

System matrices

Input matrix

Output transfer function
Feedback matrices

Translational forces measured at the
centroid location

Longitudinal and lateral accelerations at
the centroid location, in body-axis,(m/sec )

Vertical acceleration at the centroid
location,in body-axis,(m/sec )

Translational acceleration commands
prior to translational washout filter

A function of xand t

Specific force vector of the simulated
aircraft, in body-fixed frame

Specific force error vector

Transfer function: Laplace transformation
Cost functions (performance indeces)
Gradient of the cost function J

Rotation matrices

Angular tilt rates,
in body-fixed frame,(rad/sec)

Weighting matrices
Angular rates transformation matrix

The centroid location with respect to the
centre of gravity in body-fixed frame

The centroid location vector
relative to the inertial frame

Acceleration vector of the simulator in
the inertial frame
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Control vectors

Control input used in the vertical
optimal filter

Linear control vector
Nonlinear control vector
Lyapunov function in terms of x

Gradient of Lyapunov function with respect
to the elements of

Disturbance inpﬁt vectors

Commanded translational positions
after compensation

The inertial frame translational position
command s

The elements of fc (m/sec )

Coordinates of pilot's seat with respect
to the centre of gravity in

body-fixed frame (m)

Coordinates of the centroid location with
respect to pilot's seat,

in body-fixed frame

Output vector

Commanded angles after compensation,(rad)
Euler angles of cockpit of simulator,(rad)
Euler angles of simulated aircraft,(rad)

The angular vectors, when the angles are
very small ( << 1 rad )

Angular rate vector in body-fixed frame
of the simulated aircraft

Angular rate vector in cockpit-fixed frame
of the simulator

Rotation rate vector of body-fixed frame
relative to inertial frame

Rotation rate vector in cockpit-fixed
frame of the simulator relative to the
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inertial frame

Rotation rate error vector
Disturbance transfer matrices
Denotes inner product of two vectors
Denotes a vector |

Denotes transpose of a matrix or |
a column vector

Denotes a matrix or a column vector |

Denotes variable that is in the simulator
cockpit

Damping factor
Natural freqency

Denotes spectrum or eigenvalues of
a square matrix



CHAPTER I
INTRODUCTION

The advent of fixed-base flight simulators has provided
both researchers and trainees with low-cost safe devices in
which the pilot can visualize the simulated flight manoeuvre by
means of on board CRT and other instruments located around the
pilot. Lacking in motion, this kind of simulator seldom
provides high fidelity (this is not the case for space craft
simulators). To meet the need for high quality mimicing of the
flight situation, motion-base simulators came into being. With
the aid of modern techniques 1in computer science, control
theory, and video graphics, motion base simulators can provide
more realism and greater authenticity, at the same time
reducing the inconsistency in flight results between simulated
flight and real flight. It is desired that the simulator
cockpit 1is  commanded to move about in accordance with the
states that the real aireraft possesses. Unfortunately,
simulation as the definition implies, is not duplication, it
can reproduce the real world only approximately. Flight
simulation 1is the art of imitating real flight, it uses the
mechanisms of illusion and deception to achieve certain
pur poses.

Normally, there are two basic constraints in simulation.
The first is that man-made models, differential equations
representing the dynamics of simulated aircraft, for instance,
can only approximate the real situation to a certain degree at
the very best. Theoretically the mathematical model for the
object studied can be built to be as accurate as possible, but
in doing so the object should be well understood, which, for a
complicated system, is often not feasible in practice. The
second and often the most fatal constraint is the physical
limitations in the artificial environment. For instance, the
flight simulator which can have six degrees of freedom is
mounted in a mechanical structure with 1limited manoeuvre
capability. In each degree of freedom the motion system can
not exceed physical limits on position, velocity and
acceleration. An example of such limitations is summarized in
Table 1.1,

It has been of long standing interest to find a way out of
the dilemma in dealing with flight simulation. Researchers
have made painstaking efforts to construct motion cue
generating circuitry as well as to establish useful theories,
such as linear washout filter [1], optimal washout filter [21,
quasi-optimal washout filter [3], and adaptive washout filter
[4] among which the linear washout filter 1is classical and
fundamental.




As mentioned earlier, the flight simulator itself 1is
nothing more than a device used to provide (or to "deceive")
pilot with the "feeling" of real flight. It 1is the pilot's
perception that is of major concern in flight simulation.
Therefore in order to prevent the <cockpit from hitting the
limits of the motion base, a 1logical way is to modify the
commanded variables [1]. Research related to human motion
perception organs has been going on for years [5,6,7]. But
today many questions still remain unsolved. However, empirical
knowledge combined with theoretical and practical
considerations lead to the assumption that a pilot can '"sense"
the same quantities as c¢an be measured by three linear and
three rotational accelerometers moun ted along three
perpendicular axes [1], or simply, that only the accelerations
can be "sensed"by the pilot. Consequently, a specific force is
defined, and specific force cues are studied in this report.

In this study, the conventional linear washout filter and
adaptive washout filter are briefly surveyed, a computer
program to simulate these washout filters is developed, and the
time responses to different inputs are plotted for later
comparison. The major part of this research is to synthezise a
nonlinear optimal washout filter based on nonlinear regulator
and optimal control theories. The detailed theoretical
background and development are given, then the case study and
comparisons are carried out. The computer subroutines used for
solving the optimal problem are provided in an appendix.



CHAPTER 1II
CONCEPTUAL ASPECTS OF FLIGHT SIMULATION

Broadly speaking, the term "flight simulator" refers to
any device, for example a wind tunnel, that imitates the flight
environment. However here it is commonly considered as a class
of devices wused for both research and training in the
investigation of man (pilot) and flight vehicle (cockpit plus
motion base). The emphasis may vary from man to machine but
always with the integration of both.

Conceptually, a piloted flight simulator consists of, in

varying degrees, the following components:

1. A cockpit which can be moved about via commands
issued to servo drive systems.

2. Airplane control devices (e.g. stick, rudder
pedals etc.) located in the cockpit.

3. A real-time computer (not necessarily on board)
which takes input signals from the controls and
solves aircraft equations of motion to determine
its states (e.g. positions, velocities, attitudes,
and angular velocities). .

4. Assorted aircraft instruments and all other visual
indicators which might be installed on a real
aircraft to provide a measure of the aircraft's
states (determined by the computer) to the pilot.

The instruments and visual displays can be commanded to
act in accordance with the computed airecraft states. Ideally,
the cab would also be commanded to move about in accordance
with the aircraft states, but it is impossible to do this in
practice because of the constraints in the mechanical
structure. Usually a motion base can move only a few feet in
any direction with 1limited velocities and accelerations,
similar limitations also exist 1in angular rotations and
rotational rates.

Due to the physical limitations of the motion base, some
modification of the computed motion commands 1is necessary
before they are used to control the cockpit motion, otherwise,
the motion base would be driven into its 1imits and hence give
totally erroneous motion cues to the pilot. A conceptual block
diagram of a flight simulator is given in Figure 2.1.

The object of washout filter research is to investigate
ways of wusing computed motion variables to obtain signals
representing simulator motions compatible with the 1limitations
of the motion base. In general, the movement of the motion
base is inconsistant with the pilot's instruments and other
visual displays. However it 1is observed that human motion
sensing system is also 1limited and selective, that 18
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specifically he/she may be more sensitive to some motion cues
than others. In practice, acceleration or force is considered
to have the most pronounced impact on the human perception
system. Based on this observation, the signal modification
scheme should involve producing an allowable motion which gives
the pilot the best motion cues possible.

2.1 Translational Motion Sensing---specific force

As it is observed that human perception organs are biased
to force impact, therefore it is useful to define the specific
force for the later development of washout filters.

Specific force is defined to be the difference between
inertial acceleration and gravitation [8]. Three appropriately
mounted linear accelerometers measure the specific force vector
(three components).

Since position and constant velocity are not sensed by
human perception organs, initial conditions on these quantities
may be selected to satisfy simulator constraints. For example,
to good approximation, constant velocity motion may be
simulated by a cockpit at rest on the ground.

2.2 Rotational Motion Sensing

Although both rotational rate and acceleration are sensed
by the pilot we can consider rotational rate as a primary
quantity in our mathematical development. That i) i i
rotational rates are the same in the motion generator as they
are in the aircraft then the rotational accelerations will also
be the same.



CHAPTER III

REFERENCE FRAMES, ROTATION MATRICES,
AND CENTROID TRANSFORMATION

As mentioned -earlier, translational accelerations and
rotation rates are considered important inputs to human
perception organs. Therefore we may use appropriate quatities
from the washout circuitry to eventually serve as the input to
the motion drive systems. The main interests are summarized
here:

1) The three components of specific force
acting on the simulated aircraft.

2) The three components of rotational rate acting
on the pilot at the cockpit location in the
simulated aircraft.

3.1 Reference frames

Since the simulator cockpit is supposed to move 1like a
real aircraft, it 1is convenient to define a cockpit-fixed
reference frame F., wusually referred to as the body-fixed
reference frame in the simulator. Throughout this study, F¢
will be a cockpit-fixed reference frame whose origin 1is at
centroid of the motion platform and whose x-axis is parallel to
the cockpit reference 1ine. The z-axis is normally downwards
in the plane of symmetry and the y-axis orients according to
the right hand rule, the detailed convention of cockpit-fixed
reference frame 1is similar to that of body-fixed reference
frame [9], (and see Figure 3.1).

Another commonly used reference frame 1is the inertial
reference frame. Throughout this report the inertial reference
frame is denoted by F;. It is assumed that the earth's
rotation is negligible, therefore we adopt a local tangent
plane as an inertial reference, we also assume that gravitation
acts along the direction Zj of Figuire 3.1 and has a constant
magnitude. These assumptions are reasonable for all flight
simulators.

For consistency and clarity, throughout this report the
following conventions are adopted. The lower-cases ¢ and i
when used as subscripts indicate that variables are defined in
cockpit and inertial reference frames respectively. To denote
variables sensed by a pilot in the cockpit of the simulator,
the symbol ~ 1is wused, say, f is a variable sensed in the
simulator cockpit.

Conventionally, we make use of the notations given in
reference [9] to establish the following definitions, geometric
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relationships,
development of the equations of washout filters.

3.2 The Rotation Matrix and the Rotation rate Matrix

and matrices

which will

be

employed

3.2.1. Rotation Matrices (Lqi and Eic)
cosfcosy cosfOsiny -sinb
i sin¢sinbcosy sindsinBsiny :
L-Ci -cos¢siny +cos¢cosy el
cos¢sinbBcosy cosdpsinbsiny cos¢dcosB
+sindsiny -sin¢cosy
where Lc; denotes the transformation matrix

from Fj

in the

393

to Fc

Y, 6, and ¢ are the Euler angles defined in reference [9].

It is known that
following relation exists between L¢j and Lic :

The detailed description of equations (3.1) and

ey

!.:_ci is

i

= Le,

available in reference [9]1.

an

orthogonal

Li

3.2.2. The Rotation Rate Transformation Matrix Ry

matrix

Relating to F; and F_

1 0 -sin®
BT = 0 coso sin¢cosb
0 -sing cosycoso

The inverse of Ry is

1 sindtanbd cosdptand
_;1 =|0 cosd -sing
0 singsecH cosdpsecHd

and the

(3.2)

(3729 1s

(323)

(3.4)



3.2.3. The Centroid Transformation

A useful reference point in the simulator is the centroid
of the wupper frame of the motion base. The location of the
centroid with respect to the centre of gravity 1is defined as
(see Figure 3.2)

Rx = xp * Xpes Ry = yp s g 50 Rz = zp g 1. (3.5)

which are in the body-fixed frame, where x y Yp and  z locate
the pilot's seat with respect to the centre of gravigy of the
simulated aircraft. Xpc , Ypc and Zp. locate the centroid with
respect ¢to pilot's seat. A reference to Figure 3.2 may be
helpful in understanding these variables. According to [917,
once the centriod 1location is determined, the translational
acceleration of the centroid is given by the following equation

. L]
+ W X + w XR
3¢ Fee T ¥R

AL =.I:C.+ii+ X

A . T w
¢ =-=Cj 31 T 3¢ T B T %

&

Cc

+ 2w XR  + w X X
->C —->C >C >

cC >C B>c (3.-6)

where ey Boor W » and Ec are the vectors shown in Figure 3.2.

Usually, once the configuration of the motion base is
made, Bc is a constant vector. Therefore

equation (3.6) becomes

=T  +@Xr  + 0 XR + w xXw xR ' (3.7)



CHAPTER IV

LINEAR WASHOUT FILTER

Traditionally, washout filters were derived empirically.
Among many methods, the most fundamental ones are
a) Scaling;
b) residual tilting (coordinating);
¢) linear filtering.

To meet the performance requirements, combinations of
these techniques are often necessary. The essential part of
washout circuitry 1is a high-pass filter used to exclude
undesired 1low frequency signals from the motion base input. A
high-pass filter is always used in 1linear washout circuitry,
because 1low frequencies or constant inputs would require a
large motion base excursion [1] which might 1lead the motion
base to hit the simulator's travel limits.

In 1970, Conard and Schmidt proposed a coordinated 1linear
washout filter [1]. As the name implies, in this method they
coordinate the translational channels and rotational channels
to simulate partially steady state specific forces (see Figure
4.1 for the function block diagram). Hence a better
representation of the specific forces may be produced in
principle.

The detailed derivation of a 1linear washout filter is
given in reference [1].

It is observed that an effective washout filter for the
acceleration input should have at least a transfer function of
third order. For illustrative purposes, a typical second order
high pass is given as follows [1]

k52
G(s) = 5 5 “4.1)
S i Zgwns + wn
suppose Trc(s) , 1c(s) are the simulator cockpit and the
simulated aircraft accelerations respectively, then
o k‘s2
a 3 3 P
1 Rt t_(s) (4.2)

+ 2Cw_ s + W
n n

+In general, ¥c is only the high frequency part of the
total simulator motion base acceleration.



Let the initial conditions be 1c(0) =0 , 1rc(0) =0, 3and
suppose T¢ is a step input, then time responses are given in
Figures 6.47"6.7, the values used for ¢z and w, are given in
Table 1 of Appendix C. Investigation of these figures shows
that this kind of filter 1is capable of "washing out" the
specific force inputs. However, because of the linearity of
the washout filter, all motion cues are washed out at the same
time regardless of the difference in magnitudes of inputs.
Therefore the linear washout filter often unnecessarily reduces
the capability of the motion base, which in turn reduces the
fidelity of the simulator.



CHAPTER V

COORDINATED ADAPTIVE WASHOUT FILTER

Following the same idea of coordination of translation and
rotation to generate more accurate longitudinal and lateral
force cues, R.V.Parrish et al conceived the coordinated
adaptive washout filter in 1974 [4].

The design philosophy for these filters is to present as
much of the force cues as possible within the constraints of
the motion base. Theoretically, the coordinated adaptive
washout filter is based on the theory of parameter
optimization.

The detailed development of the adaptive washout filter
was carried out by R.V.Parrsh et al [4]. For completeness,
some major aspects of this development and theoretical
background will be introduced briefly in the following
sections. The results of a computer simulation will also be
given later.

5.1 Parameter Optimization

Optimization is one of the most important problems in
control system engineering. One aspect of optimization is the
selection of system parameters in such a manner that the
performance of the system is as close to optimum as possible,
based on a given criterion for optimality. For example it may
be desired to minimize cost or energy consumption or to
maximize profit, productivity, or distance of travel etc..

In the following sections, the mathematical development of

the parameter optimization using continuous steepest descent is
presented.

5.1.1 Mathematical Description of Dynamic Systems

Dynamic systems are described by means of differential
equations. Any system of order n can be represented by n
first-order equations. Without loss of generality the dynamic
system can be expressed by the state equation:

x=£(x, t, &, w (5.1)

where ié [;(l’ ;(2"'-, in] > Eé [Xl, X250y Xn]T, Q_A_ [Ol'ly OLZ:--*:%]T
ul [up, ug,...,up]* and @j represent the adjustable parameters,
and u the input.

10

<



The initial condition is given by

x(0) = x,

Description of dynamic systems in terms of their states is
consistent with modern control system theory and provides for a
compact interpretation of the behavior of multiparameter
systems.

2
For each set of parameter values, say, QUJ s Or a( ) the

system behavior will be described by means of a solution given
by i(g(l), t)=ior 5(9(2), )%

In solving optimization problems, a performance c¢riterion
function relating to the parameters, the input, and the states
of the system is always needed. For simplicity we denote the
criterion function as

J = J(_)S: a, E)

Usually, for an optimization problem, it is desired that
by selecting o or u or both, that

J > minJ(x, o, u) or maxJ(x, o, u)

The configuration of criterion function varies in
different problems.

5.1.2 Optimization by Continuous Steepest Descent [10]

In system engineering, optimization 1is categorized into
two main problems; static optimization which ignores the
dynamic characteristics of the system and dynamic optimization.

First we consider the problem of static optimization. A
typical static system 1is a set of algebraic equations with a
number of ad justable parameters. It may be stated in the

matrix form

Ax =B

where x and b are n-dimentional vectors, A is an nxn matrix. A
criterion function depending on the particular values of the
parameters is denoted as follows

J=J(@ (5.2)
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where A is A(a) and J = J[x(a), a] = J(@).

It is desired to derive a method of adjusting the
parameters such that starting from an arbitrary initial point
%o, the parameters will move toward the values which minimize

It is known that the path of the steepest descent is the
path which is normal to the contour 1lines 1in the parameter
space which represent constant values of the «criterion
function. Consequently, it can be seen intuitively that the
parameters should be adjusted such that their rate of change
Wwith respect to time will be tangental to the gradient vector
in this same space. If each component of the changing
parameter vector, i.e. each component of g is colinear with
the corresponding component of the gradient vector, then the
ad justment will in fact be along the path of steepest descent
(see Figure 5.1).

(@]

To mathematically verify the above statement, we formulate
the rate of change of a criterion function with respect to time
as follows

ATy Nl iy DR+ W
dt . 80L1 dt 30, dt do dt

(5.3)

or in vector form, equation (5.3) can be written as follows

dJ °
b S > 5.4
&g S 2 (84
where

f 9d ] nng
Bal 3
oJ .
— o

vJ = Bocz , 4= 2

3J .
o0 OLn

L, A L J

The rate of change of J with respect to time is the inner
product of the two vectors VJ and a.

Now we wish to maximize dJ/dt. Clearly from equation CRONY:
we know that maximizing dJ/dt is equivalant to maximizing the
inner product. This occurs when the two vectors VJ and 4 are
parallel or, 1in other words, when corresponding components of
the two vectors are proportional to one another. That is

1.2



(5.5)

or in vector form

o = KvJ (5.6)
where K is a coefficient. If K> 0, then equation (5.6)
represents an ascent path; if K< 0 it represents a descent

path, and is referred to as continuous steepest descent(CSD).

5.1.3 Extension of CSD to Dynamic Systems

The previous section has been concerned with the problem
of static parameter optimization. Most engineering problems,
however, are concerned with the optimization of dynamic systems
described by differential equations, consequently the method
outlined in the preceding section cannot be applied directly to
dynamic systems.

For the sake of simplicity, we consider a model reference
adaptive (MRA) control system depicted in Figure 5.2, where
yp(o,t) is the output of the dynamic system, a is the adjustable
parameter vector which can be adjusted continuously to make
yqu t) as close to the output of the reference model as
possible. However, yp(@, t) is not an instantaneous function of

due to the characteristics of the dynamic system, rather, it
depends on the present state and history of both the system and
the parameters. Consequently, the fundamental assumption made
in Section 5.1.2, namely, that J is an algebraic function of
the parameters is now violated. In dynamic systems J depends
on the entire time history of the parameters.

In order to make use of the steepest descent method, we
have to make some modifications in the development. One way to
circumvent the problem is to fix o with respect to time during
computation of the gradient. Another way of modification which
is more extensively used in adaptive control problems to attain
parameter optimization is to assume that the rate of adjustment
of parameters is slow compared to the basic time constraints of
the system itself. This is the so-called "approximate gradient
method".

5.2 Model Reference Adaptive Control (MRAZ)---a review

In contrast to conventional control theroy, adaptive
control refers to the control of partially known systems [11].
For many years there has been an increasing interest in
adaptive control which can be attributed to the fact that there
is invariably some uncertainty in the dynamic characteristics
of most practical systems.

For this class of system, the tools of conventional
control theory, even when used efficiently in the design of
controllers, are inadequate in achieving satisfactory
performance in the entire range over which the characteristics
of the system may vary. Hence some type of monitoring of the
system's behavior followed by the ad justment of the control
input, i.e. feedback, is needed and is referred to as adaptive

13




control. It is possible to monitor different system
characteristics and take different control actions, and hence
there 1is a large class of nonlinear feedback systems which can
be referred to as adaptive control systems.

Since adaptive control systems are nonlinear feedback
systems, there 1is the distinct possibility that such systems
can become unstable. Even though there has been interest in
this area for over twenty years, due to the lack of a well
developed stability theory for such systems, the application of
adaptive control to practical systems has not been attempted on
a large scale, until recently. Most applications and research
have been made in control of aircraft and spacecraft which
indicates that adaptive control theory may be especially
suitable for flight vehicle control system design.

Among many theories proposed, the model reference adaptive
control has been widely applied. 1In this investigation, we
will use it to solve the motion base control problem.

5.2.1 The General Statement of the Problem

The input and output of a linear time-invariant plant with
unknown parameters are &(*) and Yp(ﬂ respectively (see Figure
5.2). A linear time-invariant reference model and a reference
input r(*) are specified which result in a model output yp(*) .
From all available on-line data it is desired to determine the
control input such that the error 0@—Ym) tends to zero.

Our interest now is to determine the information needed to
solve the problem and generate a model for realizing the
controller. The parameterization of the control object, the
structure of the controller and the manner in which the
controller parameters have to be adjusted to achieve stable
control are all found to be important.

5.2.2 The Structure of the Controller (direct control)

A controlled plant p 1is completely represented by the
input-output pair {u(-), yp(*J} and can be modelled by a
transfer function

KW _(s)
£ BD
Gp(s)- Rp(s) (5°.7)

where W,(s) and Ry(s) are polynomials of degrees m(< n-1) and
respectively. A" stable reference model is represented by the
input-output pair{r(s), ypn(*)} and has a transfer function

mem(s)

Gm(S) = RmT) (5.8)
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The error between plant and model outputs is defined as
o) 4 ¥ By yo (0 (5.9)

The problem is to determine the control input u(t), so
that

Lim
t>o0

e(t) =0 (5.10)

Assume that the transfer function Gp(s) for the plant has

n poles, then as Narendra asserted in [12],Gp(s) has a maximum

of 2n unknown parameters which are coefficients of K Wy (s) and

Rp(s) , therefore the controller structure must have adequate

reedom so that by adjusting the control parameters the

transfer function of the plant together with the controller can
match that of any specified model.

For direct control, the configuration shown in Figure 5.3
has evolved as the basic one for the controller. The input
u(t) and the output Yp(t) of the plant are correspondingly fed
into the two filters of identical form, whose state vector
Vi(t) and V2(t) are of dimension (n-1). Together with r(t) and
the output yp(t) they constitute the 2n signals whose linear
combination yields the desired input u(t). If y(t) is a
control parameter vector with 2n elements, then

u(t) = y (H)H(t)

where

)
~
+
p—
I

= (), Y(0)y weny v, (0]

=
1=,
~
ﬂ
p—4
]

[r(6), Y (8), ¥, (6), V3(0)]

It is shown in reference [12] that there exists a constant
vector Y* of dimension 2n such that when Y(t) = % the transfer
function of the plant will match that of the model. Hence, it
only remains to show how Y(t) is to be ad justed so that

o
s X(E) = Y (5.11)

5.2.3 Modification of the Control Structure

The adaptive control structure in the previous section is
based on the idea that by adjusting parameters, the system
output error will eventually vanish. In the control of a

1S




flight simulator, the model output and the controlled system
(i.e. the simulator) output can never be matched because of
the special characteristics of the system. Therefore some
modifications should be made.

A.P.Sage has suggested a configuration [13]. Instead of
directly using the system error as a criterion, he defined a
cost function J(e) related to the system errors. Then he
minimizes the cost function by forming the gradient vector for
J(e) , and adjusts system parameters, possiblly by a linear
programming procedure (approximate steepest descent, for
instance), until the gradient becomes zero. Before the model
reference adaptive system is in full adaptation to the model,
the gradient will not be zero and is defined as the error
quantity

EQ = 7] (8123
i 3
where p = [p;s Pys -..,Pplis a parameter vector.
The steepest descent procedure is implemented as

introduced in Section 5.1.

5.3 The Adaptive Washout Filter [4]

Based on the theory and the discussion in Sections 5.1 and
5.2, the proposed adaptive washout filter is illustrated in
Figure 5.4. It is clear that this adaptive filter is a model
reference adaptive control system which has a structure similar
to-the one shown in Figure 5.2, and uses the input generated
from the dynamic equations of the simulated aircraft as a
reference. The output of the controlled system is compared to
the aircraft equations of motion. After the comparison, the
adaptive parameters are adjusted according to the motion base
environment, at the same time minimizing the cost function by
using an approximate steepest descent method.

In this proposed adaptive washout filter,  the cost
function J is defined for each channel in the form of

J=3 @, - £)? +§(am-as)2+-t2’-x52 + S x 2 (5.13)
where fn ----the acceleration of the reference model;

Gy =----the angular velocity of the reference model;

fg =----the acceleration of the Simulator;

4g ----the angular velocity of the simulator;

Xg =---the position away from the neutral point;

X, =---the translational velocity of the simulator,

S
which are all in inertial frame.
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At present, we assume that the hydraulic system of the
simulator has only proportional action.

The control law is defined as follows

Xy ¥ ps’1 fm - dxs - ex_ (5.14a)

e A ps,2 fm + ps’3 o (5.14b)

where pg ; (J = 1,2,3) are adjustable parameters, fn, O are
referende model inputs, Xs, Xg, Xg, Qg are states of the
simulator, and d and e are pre-determined constant
coefficients.

Applying steepest descent procedure yields

57 .
. = -K =1, 2, 3 5.15
ps’J aPs’j J ( )

from equation (5.13) we have (where the present case 1is such
that fg=Xg)

53 of 3X . . o L
= (£ -Xx) - ]+W(0c—oc) -
P,y M 5T LA 5 O mosT U9 5 9P
ax ax
‘ S
+ bxs aps j * Coxg aps j (5.16)

Substituting equation (5.16) in equation (5.15) we get

. Bf B L 3o 30,
.= -K{(f_ - X - +Wo - a -
Y53 {( m XS [ %, ; 9P ] J (O = %) [ %, ; 0P, ; ]
3 .y
+ bx + CX } (5.17)
S5 S g

The state sensitivity equations are obtained by assuming
that the parameters Pg ; are independent, and that derivatives
are continuous in the égjustable parameters and time. For
example, if x=x(p,t), where p is a parameter vector, t time;
p ,ien , are independent, and x has continuous derivatives with
respect to p and t, therefore we havel14]

i[ﬁ]=£ [aL]J_[i]
Wy feme? -0 g A PR d 8T 1088y

17



From equation (5.14), we get

d [ st ] Bps 1 afm BXS ax
P = — f P B — - e (5.18)
dt Bps,j Bps,j m s,1 aps,j aps,J BpS’J
§_.[ P ] = 2 £ +p "n + Bs,8 6 +p i (5.19)
dt Bps’j BpS,J m Siy 2 ’c)ps’J aps’j m Sis3 Bps,j
Note that the assumption that the p . are independent was
used here. Therefore S»5J
aps,i = { 0 i#]
Ps,io L1 i=j

Thus from equation (5.18) and equation (5.19), we have

a [ Z)xs ] e Bxs o axs o

dt Bps 1 m Bps 1 Bps 1 3

g 1A of 3x ax_

dat ¥ aps,2 ) ; ps,l T,Z ok aps,2 b aps,2 s

o 7 3 ax ox

o aps,s J ! ps,l 8ps,?; 8ps 3 o 3ps,2’> e

d | 3&5 I e _Efﬂ_

dt | Bps,z ] m " Ps2 op )2 5% ol

4 of :

dt aps,3 ] gt W 8ps,3 * On (5.24)
From simultaneous integration of the equations

(5.17)~(5.23) and the corresponding equations of Appendix A in
real time, we get the adaptive parameters Ps,j (j=1,2,3) used in
the control 1law. Selection of the values of the constants
[W, b c,d, e, kip; :(0),5 = 1,2, 3}] must be based on the
constraints of fhe motion base and the flight environment, as
well as the desired emphasis of washout (i.e. to represent
specific force, rotational rate, or some combination of both).

The detailed equations for all three channels are
documented in Appendix A.

A computer program was made to implement this control
system. The time responses to different inputs are given in

18



Figures 6.8v6.19, the parameters used in the computation are
given in Table 2 of Appendix C. The discussion of the results
is deferred to Chapter 6 to allow a comparison with the results
of the nonlinear optimal washout filter.
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CHAPTER VI

NONLINEAR OPTIMAL WASHOUT FILTER

In developing washout filters for a flight simulator
motion base, one of the key objectives is to allow as large
force cues as possible and at the same time keep the motion
base within its 1limits. This, hopefully, will provide the
pilot with good fidelity. Trying to obtain better motion and
force cues 1is a perplexing problem which has been with the
engineers involved in this field for many years. Efforts have
been resulted in little improvement so far.

To attack this problem it seems logical that the optimal
control theory is one of the most promising methods. Recently,
several researchers have developed optimal washout filters
(2,34 As pointed out by J.Sandor and D.Williamson [151, to
achieve the desired control for this kind of system <certain
states should be penalized more heavily. Conventionally this
can be done by choosing appropriate weighting of the states 1in
the performance index. But unfortunately, this approach may
often lead to "ill conditioned" linear feedback gain which c¢an
sometimes destabilize the system. Further study has revealed
that the desired process should be highly non-linear. Relying
on the application of linear control theory will not help very
much to solve the problem.

In the current context, application of nonlinear optimal
control theory implies construction of a nonlinear control
input for a system which may not necessarily be a nonlinear
system. In the following sections, for simplicity, we assume
that the controlled system is linear. The detailed development
is described below. Examples for the three response channels
are given.

6.1 Theoretical Development

It is observed that practical problems of feedback control
frequently involve specifications which cannot be met by purely
linear designs. For example, soft-saturate type constraints
are often imposed on certain state variables such as velocities
and accelerations.

For completeness, the following definitions are given for
readers.

Definition 1.(square integrable function) [26]

A function fe R is said to be square integrable if

9]

fe|f| e &0, »; R
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where

400

) é_{g| 0 < J gdm < 4o, for all'in & B }

—00

g, =; R

The set of all squar%zintegrable functions € R is denoted
by £2(0, »; R¥) , where R° is the set of all real numbers and
includes -« and +» ,

Loosely speaking, if a function f is squared, and the
integral satisfies the following relation

+00

o < J fzdm < 4o

we then call f a "square integrable function". [

To design an asymptotically stabilizing nonlinear feedback
law such that trajectories of the system are optimal in some
sense, P.J.Moylan et al [16] established the following
definition which will be helpful in the development.

Definition 2. (Return Difference Condition,R.D.C) [16]

Consider the controllable linear system
x= £(x, t) + Bu(t) (6.1)

with x(0)=x_, x(t) € R", and u(t) e R".

A function F: R"™ > R" is said to satisfy the Return
Difference Condition (R.D.C.), if
2 2
J u(t) + F[x(t)]]|“dt 2 I u(t) ]|"dt (6.2)
(0] (0]

for all u e £?(0,au N% generating a trajectory x(¢) of equation
(6.1) withx(0) = x, = 0 and %_{g x(t)=0 where £° is a set of square
integrable functions. [

To interpret equation (6.2), we may consider it as
implying that a feedback law of -F[x(t)] constitutes a negative
feedback, with ue denoting an external control applied to the
system (6.1). "ug can be expressed as follows

u, =u + ER) (6.3)

where u denotes a 1linear control input. This control
L3
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structure is shown in Figure 6.1.

The importance of the R.D.C. 1is shown 1in the following
theorem [16] which we adopt here without proof.

Theorem 1.

For the system (6.1), the asymptotically stable control
law

u(t) = -F[x(t)] (6.4)

is optimal for problem of minimizing, subject to the boundary
condition x(») = 0, a performance index of the form

[oe]

J = J [m(x) + u'u]dt (6.5)
0

with m(x) nonnegative for all x, if and only if F(x) satisfies
the R.D.C.. 3 I

One of Lyapunov's theorems is very important in the design
of the present nonlinear washout filter. We introduce it here,
the proof of the theorem is quite lengthy. Interested readers
may consult reference [17].

Theorem 2.(a theorem of Lyapunov)

B e ey

For a system
X'=hx 4By

Let R(Ai) denote the real part of the eigenvalues of the system
matrvix. Ay AL RO4)Y <0, for7atli'e n, and g(x) is a definite
form of even degree of m, then we define v by

v _
Jzl(ajlx1 tagXy) b ajnxn) ;" -£(x) (6.6)

where ajk,jeg,keg are elements of A.

The form V of the degree m defined above is also definite
and of sign contrary to &. Especially, if &€ > 0 then dV/dt<O0,
this implies that V is a Lyapunov function. (]

With these theorems, now we consider the system

%o

=8

| >

*3

|

+ I W
Dk (6.7)

+

s

%
|o
1=
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where

It is convenient to assume that the system (6.7) is
completely controllable and observable, i.e.

Rank[Bi A B ...1A
and

Rank([C | A'C f @) ... c] =n

I
|
|

From lemma 1 [15] and using. the definition and the
theorems given above, we have the following corollary.

Corollary

Find F such that A, =A-BF and o(Ay) € o , wWhere o(e)
denotes the spectrum or elgenvalues of a matrix, C denotes the
left half of the complex plane.

Consider the nonlinear function

kx) = R BV (6.8)

where R > 0, R = diag[ry;, r22,...Tpynl; V is the solution of the
f0110w1n° partlal differential equation

<YV, Ax> = -E(X) (6.9)
for some nonnegative definite homogeneous form £(x) of even

degree, and vV VA3V/3x. Then k(x) satisties the R.D.C.. For

- B

. 3 uaL (6.10)

A X
—0—

where Uy, A-k(x) , the solution x(*) is asymptotically stable
and_Ju‘ minimizes the performance index

J=J[%(ig_{+25_)+g(§_)] dt (6.11)

Proof:
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By the Lyapunov theorem (given as theorem 2.), and the
relation (6.9), we know that V is a Lyapunov function, and for
the system (6.10), we assume that

T i T
. oV X _ [ 9V | s _ | 3V o
e ) R (R ) e e
T -1,.T
= -& -lﬁig? B]R [E Z£p
= - + WRW]
T
where WA BV V.
Since 2% . '1» assumed that €(x) 20, R>0 and
R=diag[r11,722,...,Tm], therefore WIR-lw > o, this implies that

Vi< 0

which confirms that the solution for equation (6.10) is
aymptotically stable.

Now we need to prove that with thisk(x), the R.D.C. is
satisfied. We construct a functional as follows
J v'y dt s J [v'v + 26(x) + WR 'Wlae
o o
-1
- J (Vv -2<VV, Ax> + WR Wdt (6.12)
o}
along the trajectories
. —1 T _1
§=Ao§—[_§5 EVXV+§E _] (6.13)

This form is valid, because of the controllability of the
system.

The following relation is then verified

WV, AXx> =<V, x>+ WR W+ <VV, BR v>
or
< v,Ax>=ﬂ+WR“IW+<v B R Ly (6.14)
X o =0~ t iyl Dk Rl = s
. Upon subtituting equation (6.14) into equation (6.12), we
ge .
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v - 20y, BR 7w - WR wat

Sm——
|<
-3
| <
[a
(5
IA
O SY——
7N
<

2[V(t,) - V(t)]

Note that V(t ) = V(ty) = therefore
JXTX dt < J (v'v - 2<7,V, B R v - WR Wyt (6.15)
) ) >

and

o (o]

[ e+ koo et = [ v - R0 T - R8T

0 0 o FE

oo

J(VV-ZVTR BVV+VVB(R)R BVV)dt (6.16)

(0}
But R is a diagonal, mxm matrix, so is 5‘% that 1is U{ ) =5
and note thatw = B“VV Therefore equation (6.16) becomes

[+ koo Pae = [ 'y - 290,y B 87+ WTaTHAar (6.17)
0 0
-1
Since R0, we have R~ >0, and W (R ) W >0, From equations

(6.15) and (6. 17) the follow1ng is true

IA

o]

IxTx J [v'v - 2<7,v, BR v + 0 R7D)W]ae
(0]

0

- | e+ ke e

0

By theorem 1 and the conclusion of [16]1, the results are

extended to the case where uTu is replaced by %u Ru in equation
(6.5).

Since
mx) = £(x) + 2 X'Qx >0
therefore the control law
_ -1 T
g, <R BNV

X

minimizes the performance index J. []
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As done in reference [15]1, we also make use of the
notation of x[i]l. For detailed explanation of x[J] please see
Appendix B. The 1lemma below is helpful 1in "designing the
controller.

Lemma [6]

Consider the partial differential equation

<Ax, VV> = -E(x) (6.18)

where A is a stable matrix*, £E(*) is a homogeneous function
having the form

P T

2 =

o~ 8

E(x) =
j

for some choice of matricesQ; . Then there exists a solution

T

MR
2 "

V(x) =
j

N~

where Ej is a solution of the linear equation

T .
AL..D. AL, = -Q. tiowr:” sy <2, 15
ARy T BiAG) T Y : v

where the definition of A[j] is given in reference [15].

If A is strictly stable, then the B; are unique, which in
turn implies that V(x) is unique. %urthermore, i E(x) 138
nonnegative definite, so too is V(x). [

6.2 Controller Design Procedures

With the results obtained in Section 6.1, we establish the
following procedures for the design of nonlinear optimal
washout filter.

Given the system

|54
n
| >
|
+
|
|
<
| —
|=

X:

Kel
|

+
)
=

with (A, B) -controllable and (C, A) -observable, W is the
disturbance vector.

TA nxn matrix is said to be stable, if o(A) e C , For. ' a
controllable system this assumption is always valid.
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Step 1:

Check A, see if it has the spectrum o(A) e C , if “net,
construct a feedback matrix F , such that

oA -BE =1, A .0 AT eC

where A; are the desired eigenvalues of A-B F .

Now the system has the form

[ %o

=@A-BPx+BuslH

Since the systemvis completely controllable, such exists
r1817.

Step 2:

o ey

For optimal control, we need to solve the following
algeraic Riccati equation

Alp+pA -PBRIBP+Q=0

0 - —-—=0 == —-= = =
where A A A-B F, and F is given in step 1.
Step 3:

Find jﬁ of the form

F-R7B'P

Step U4:

Reconstruct the system matrix with the new%f:

$>e
[

A -BY
—0 -_—

Step 5:

e

Construct a cost function according to the corollary

J-= J [—;— (XTQE +ETBE) + F,(_)S):,dt

where Q,R,and &(X) are determined accordingly.

Step 6:

S —

27




According to the given system and £&(x), define a Lyapunov
function with its coefficients to be determined later.

Step 7:
Solve for the coefficients of V(x) from the equation

ny
<Qﬁo -~ B F)x, VXV> = -£(x)
Step 8:
Construct the control
i R O - R T
u=uy +u, =-RBpx-R'BVYV
Step 9:
Rewrite the closed loop system as
< ABNx~BR BUV YL W
i g U

Solving for X, we finally get the controlled trajetories.

To intuitively illustrate the design procedures, a flow
chart is depicted in Figure 6.2.

6.3 Formulation of the Washout filter

In the two preceding sections we introduced the
theoretical development and the optimal control system.

We will use all the results obtained to formulate the
nonlinear optimal filter in this section.

6.3.1 Motion Cue Generation

From the work done by Schmindt and Conard, we know that
the specific force vector and angular velocity in the cab frame
of the simulated aircraft can be represented as follows

£, = Ley(Fe; - 8) = Lej¥ey - Lejg8 = AL - Lejg (6.19)
95 & S (6.20)
where
T o ° ° T 2
B~ [d)c ec wc], g =1[00¢g], and g = 9.81 m/sec
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The specific force vector and angular velocity in the cab
frame of the simulator have the forms similar to equations
(6.19)  and- (6.20): For completeness, the we give the

expression as follows,

(6.21)

(6.22)

~

As mentioned before, it is desired that f. and wc are
generated as close to fc and wc respectively as possible. But
due to the physical constraints of the simulator motion base,
we know that it 1is not practical to have them identical.

Therefore we will choose

‘e (6.23)

J’H-n

+ € (6.24)

(LE>

and constrain the g; and €5 such that motion base excursion 1is
limited by defining the cost function with the form

oo}

J = J % (iTg_)ﬁ + ETE u) + g(x) dt (6.25)
o)
where
- ey
_€_1 A /0\ A
uld > XA | Ve; |s Tey A Ve
i Be;

Upon substituting equations (6.19),(6.20),(6.21),and (6.22)into
equations (6.23) and (6.24), we,have

0 ~-1 we ~-1

Tey = Ley(Ley Yoy * 7)) ~ Loy Le; 8+ 8 (6.26)
é = I/i—l(u) + £,) (6.27)
Bej St i, ¥ 8,

and from equation (3.6), equation (6.26) becomes
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2y

i | n
ShestA ¥ Bl [lee 210G (6.26a)

whereA_Qamis obtained from equatiop (3.1) by replacing ¢ ,6, ¢
with ¢., 6

cr Ve respectively, and Eci éksi Lci
£ A [£ £ 1, A =[a_,a ,a 1, adw =[P, Q,R]"
= =F CX cy CZ =C CX Cy CczZ . C C C

6.3. 2t Linearization

It is clear that equations (6.26) and (56.27) are nonlinear
and time variable. For simplicity, we linearize (6.26) and
(6.27) about the equilibrium states

A

re,(e) =0, Ic(e) =0, O(e) =4 () = (e) = 0

~-1
and Ac, £1,€2, W, and Rt are also taken to be 1linearized about
the equilibrium point.

Then

4 S B L.

~

L, = -(wc-djc) 1 ¢ -0 (6.28)

c ¢
L _(¢c_¢c) 1

The equations (6.26) and (6.27) then become

= uY 4
Icy = A + € - g(ﬁc - —Bc) (6.29)
where
0 -g 0
Selip. "0/ 0
0 0 0
and i
B, =W, *E, (6.30)

6.3.3 State Space Representation

It is convenient to treat the problem in state space.
Here we define

Ci

| e
=t

ofA
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o~

Then we construct the state vector

where

with

or explicitly

» e
o

<o Ne <o
b (¢] (g]

De) o) <o) <o
(¢] N <

(¢}

o>

1}
(¢l

-

>
fie>

=
(>

| =

x=A

|lo |o |o
o |o |+

(L>

AE

expressed

|o lmelo

0 0 01 x_ T
C
0 0 O Ye
0 0 0 z
C
0 -g O L.
0 0 v
g Yy
0 0 O v
Z
0 0 0 9.
0 0 0 )
(o}
o 0 o[y,

S

Ty

~

457

~

B

-
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+Bu+TW
e R9x6' u,
0

BA I
9

> g =

6x1

Therefore state equation for the linearized system is

0
W fxe
0
f
0 I
f
0 z€
w
0 ye
w
0 Xe
— w -
0 ze
0
1 —
Contd. .



- ‘ (6.31)

‘Wwhich can be further partitioned into three subsystems each
representing a channel.
1) Longitudinal Subsystem

x g1 9olF= 00 : 0 0 ][a_ +go

C AC £ CX c
v.|=]0 0 - v, [#]1 0 b K B R

A N w

6 0 0 0]|6 0 1 ik 0 1 Q

C - (4 C

or
X = Axy o+ By, + Elﬂl (6.32)

Y 0 A oA e, 58 00 0 O acy - g¢c

v = i 0 v + 120 * 1480

9, 0 0 o0]|¢ L0 a4 P
or

X, = AXx, + Bu, + LW, (6.33) §

3) Vertical subsystem "

z § e ) e 0o o[ "0 0. TFa

c c £ cz

Welw b0 0 it b LT D Gty B R B

A N w

H ze

0. 0 0 0|9, 6 1 LB e d TR
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or

X, = A.x, + B.u, + T W (6.34)

A quick inspection shows that all these three subsystems
are controllable.

6.3.4 The Optimal Washout Filter

In Sections 6.3.2 and 6.3.3 we derived the system state

space equations. A1l these equations were 1linearized and
decoupled, which allows us to construct the nonlinear optimal
washout filters channel-wise. Later we will see that

decoupling is very important in applying this approach.

1) Longitudinal Washout Filter

For the system given by equation (6.29) we construct the
following cost function

J = J {-% (x1Q x; +u) Ru) + E(EJ)} dt (6.35)

R = diag | 5 5 |
LRy Ry d

a a a
Q = diag | A1 22 7337
B x 2 v e’

L L L *

X,, V, and 6_ are determined by the designer.
L&t L> 'L L

(6.36)

o
Y
—
><l><>
= |0
| ——— )
S
+
=N
<|<>
[l I
SRS
S
+
")
D D>
= |0
, R
S
e

0
Ex;) = -

Looking at A; , we see that
o(A) = {0, 0, 0} ¢ C

i.e. the system is at the critical point. In order to solve
the Riccati equation we need ¢to make it stable. It is
convenient to assume that the desired eigenvalues are

o(a) = {-1, -1, -1}
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Using the method introduced by Wonham [18], for this
simple system, a short calculation yields (a computer program
is available for this manipulation and is 1listed in Appendix
D),

Now the algebraic Riccati equation

AT P + P A —PBR"IBTP+Q=0

—O0 g e Sidmieel e =

%an be solve by a modified Riccati subroutine which gives P and
F in return (see Appendix D), with

F- g

E
and

0(50 -El E) o ol

Using the Lyapunov function form of equation (6.15)

\ =
Vix) Sl Pl ec i c e<:Vx ¥ a4xc g o 359 Vx

@
<

a3x
63A+ 6 +a_b * . g 0rex +ag;;2
+abcvx a7c 8cxc 9-e: e JEe e i

A A A AN A A A A A

+axv+axv2+a X Vv + a 3+a v4 (6.37)
e X 127¢ +x 157 % 14°c x 15°x :

The coefficients 2i (i=1,2,3,...,15) are to be determined, s
that 1is, we have to solve 15 equations! For this simple third
order system the problem is not severe, but for systems with
the order of five, for instance, there will be seventy unknown
coefficients, to determine these coefficients uniquely, seventy
equations have to be solved! (The number of equations to
solved can be determined by the formula

e ) !
N T
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where n is the order of a given system.) Even for a computer,
this is an awesome number. This explains why decouplability of
a system 1is 1important 1in wusing this method, which 1is a
significant disadvantage.
Now we use the equation
ny
<(AO N El E-)il, E> = _E(z(_)
by equating the coefficients of terms of same order on both

sides, we get fifteen equations which are solved for the a; .

The controlled system is then reconstructed having a form
like the one given in Step 9 of Section 6.2.

2) Lateral and vertical washout filters

Following exactly the same way we synthesize nonlinear
optimal washout filters for lateral and vertical channels.

6.4 Computational Considerations

The proposed nonlinear optimal washout filter is expected
to be implemented by a real-time mini-computer. As usual, one
of the main concerns in real-time digital computer control is
the computational feasibility. The algorithms should be so
compact that they c¢an be implemented wusing a very short
sampling period [19]1, and the configurations of the algorithms
should not require too 1large an amount of memory. These
problems have existed with modern control practice for many
years. Generally speaking, most modern control methodologies
depend on the digital computer, some of them, for instance the
Kalman filter, were even tailored to be implemented on the
computer. Due to the 1intricacies of control systems,
algorithms developed from these theories are often not feasible
in practice, and special treatment or modification [21] is
often needed. Fortunately, the system studied in this chapter
is, at 1least for the time being, simplified, linear, and time
invariant, therefore the Riccati equations are algebraic and
can be solved off-line and have constant solutions throughout
the control process.

To illustate the problem, the discrete counterpart to the
continuous systems is as follows

x(k+1) = A x(k) + Bu(k) + I W(k) (6.38)

where x(k) , u(k), and wk) denote the values sampled at the time
£ 2 = i
k.

The cost function is
N
Py {% [x (3)Q x(3) + u' (IR u(§)] + E[{(J’)]} (6.39)
J:
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where Q 20, R >0 andg[x(j)] are the same as in the previous
sections. i

Since the system is supposed ¢to be 1linear and time
invariant, the method described in Section 6.2 can be directly
applied to this case to solve for the coefficients in V(). 1In
this way V(x) and VxV can be formulated beforehand. With the
system and the cost function given 1in equations (6.38) and
(6.39), the following control input for the discrete system
results,

1 1

uk) =u, (K) +u (k) = R B Px(k) -R BV VK (6.40)

This 1is eventually used to drive the motion base. For
"illustrative purposes, the general scheme for the control
system is depicted in Figure 5.3.

It is clear that when this control system is implemented
in real-time, the main task for the computer is to manipulate
some multiplications and additions which are not considered to
be a heavy burden, and therefore should not introduce
significant delay into the simulation.

As the simulator is a complex system which 1involves
several parts to be controlled by the computer, consideration
of computational aspects for the simulator is a topiec open for
further studies.

6.5 Tests and Discussion

6.5.1 Selection of Weighting Matrices R and Q

It is evident that the solution of the Riccati equation is
closely dependent on the weighting matrices R and Q in the cost
function. Despite years of theoretical research and steadily
growing 1lore of applications, so 1little is known about the
relationships between the weighting matrices and specific
criteria (the cost functions) that the designer must
invariantly resort to trial and error iterations.

To solve this problem, serious researchers have devised
various intuitive ways to "select quadratic weights". These
range from the simple diagonal inverse-square weighting
approach of Bryson [20] , to 1local quadratic equivalence
methods [21], and various versions of model-following
[22,23,24] among which Bryson's method 1is considered most
general and popular. In the investigation of the proposed
design approach, Bryson's method was adopted to choose the
weighting matrices because the system is simple and well
defined.

In each channel four different weighting matrices were

chosen. The parameters selected are summarized in Table 3 of
Appendix C. :
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The performance characteristics of the nonlinear optimal
washout filter are discussed in the next section along with the
linear and adaptive washout filters.

6.5.2 Properties of the Nonlinear Optimal Washout Filter

To explore the differences among the three types of
washout filter in terms of system time responses to step
inputs, the responses of the filters are plotted in Figures
6.U4n6. 39, For «clarity the inputs used in different cases are
given in Appendix C. The parameters selected for the 1linear
washout filter and the adaptive washout filter are also
summarized in Appendix C. :

Due to the 1linearity of the washout filter, Figures
6.4v6.7 show that the time responses for each case always
vanish (i.e. become zero) at the same time. This means that
the controlled system will be driven to move for the same time
duration regardless of the magnitude of input. As described at
the beginning of this chapter, this phenomenon is due to the
intrinsic properties of 1linear systems, and 1is considered
inefficient, as it often makes the already poor performance of
the simulator even poorer.

The responses of the adaptive washout filter to different
inputs are shown in Figures 6.8~6.19, which reveal the
nonlinearity of the control system. In this case, the
responses to different magnitudes of inputs no longer vanish at
the same point, but owing to the 1large number of parameters
required, it is very hard to obtain the desired responses.

In Figure 6.40 the responses of 9. and 6. to step inputs
fx = 0.6 m/secz, fy = 0-5¢m/seC2 , and 6. = 0.16 rad/sec are depicted.
It is clear that for6. the adaptive washout filter responds as
an exponential function. ét becomes zero and 6. reaches its
steady state of 0.16 rad in about 6 seconds. The adaptive
control 1law has a tilt coordination feature (see Appendix A),
that 1is, the rotational channel 1is coordinated with the
translational acceleration to simulate steady state specific
force. To explore this feature the response of 6¢ to fix = 0.3g
alone 1is given in Figure 6.41 which is obtained by setting the

parameters np = 0.2 and nz =0 (see Appendix A for,. the
corresponding equations). In this figure we can see that 6. is
increasing with time though very slowly. From Figures

6.40~6.41, we find that the ¢tilt angles are obtained by
coordination of both force (or acceleration) and rotation cues
in the adaptive washout filter.

Looking at the responses for the nonlinear optimal washout
filter in Figures 6.20v6.31, we find an expected, interesting
feature of the control system. Unlike the 1linear washout
filters, the response durations are dependent on the magnitude
of input. When the input is one g (9.18m/sec?) the durations
of the initial positive responses in all the three channels are
longer than that for the three g 1input. Remarkably, the
relative negative overshoots (see Appendix B for the
definition) are much 1less than with both the 1linear and
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adaptive washout filters; for ‘instance, for a step
acceleration input of 3g the relative negative overshoot of the
linear washout filter 1in Figure 6.4 is 0.22, for the adaptive
filter in Figure 6.8 is 0.34, and for the nonlinear optimal
washout filter in Figure 6.20 is 0.17. The negative overshoot
often causes confusion to the pilot, therefore the effort to
reduce the negative motion cues to below the threshold of the
pilot's perception is an important design specification for the
simulator. For comparison, the relative negative overshoots
for all the cases are summarized in Table 6.1.

Finally, it 1is 1interesting ¢to compare the excursion
responses of the linear and adaptive washout filters. 1In order
to investigate the characteristics of the two filters in terms
of excursion, for each filter four different sets of parameters
are selected, and two step acceleration inputs with different
magnitudes are fed into the filter for each set of parameters.
It is observed from Figures 6.3676.39 that for the adaptive
washout filter the excursion profiles in response to the two
different Aacceleration inputs are fairly close, while 1in
Figures 6.32v6.35 for the linear washout filter the excursions
are strongly related to the magnitudes of the inputs, and in
the steady state the excursions are proportional to the inputs.
It is also found that 1in Figures 6.32v6.39 the excursion
responses of the 1linear washout filter for all the cases,
except case U4, are much lower than that of the adaptive washout
filter. As mentioned earlier, the response of the linear
washout filter is always proportional to the input. If a step
input with a fairly large magnitude is used then the excursion
Will exceed the limits of the motion base no matter what
parameters have been chosen. But for the adaptive washout
filter, if a set of parameters 1is carefully selected the
excursion profiles can be controlled within the given limits
(see Figure 5.39). This reveals that, owing to the strong
adaptation characteristics, the adaptive washout filter may be
used to control the motion base to remain well within the
travel 1imits, and by proper selection of parameters better
performance will be achieved.
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

A nonlinear optimal washout filter has been synthesized
using techniques based on the nonlinear regulator and optimal
control theories and tested on the computer. This proposed
washout filter was superior to the conventional linear washout
filter in that it provided different control signals for the
system according to the input magnitudes such that the motion
of the simulator was optimized by minimizing a given
performance criterion.

It is also observed that the adaptive washout filter has
very strong adaptation capability. It automatically changes
the gain according to the input such that for different input
levels, it can keep the excursion of the motion base fairly
close. This 1indicates that by proper selection of the
parameters, we may be able to control the simulator to achieve
excellent performance.

In making use of the nonlinear optimal washout filter, the
control system must be decoupled to avoid the generation of an
enormous number of algebraic equations which are to be solved
for the coefficients used in synthesizing the control system.
As decoupling is a widely adopted technique 1in studying the
behavior of flight vehicles (in normal performance), it will
have no significant effects on many simulation applications.

The overall study indicates that the nonlinear optimal and
the adaptive washout filters may be considered as the preferred
options in generating washout filters.

It is recommended that for future research in this area,
the following suggestions be considered

1) A human pilot model and gust model should be
used to obtain a linear system which describes
the stochastic properties of the desired specific
forces and angular velocities.

2) As mentioned in 1), the input provided by
the pilot can be highly random. In dealing with
this sort of control problem, the multistage
adaptive control theory [25] holds substantial
prospects.

3) The dynamics of the hydraulic system should
be included in the controlled system equations,
which may result in the following nonlinear
state equations

x = £(x, t) + B(t)u + L()W
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The optimal control for this system would be more
difficult to implement on a real-time computer.
The development of techniques to handle this case
is a topie for further research.
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APPENDIX A

EQUATIONS FOR THE ADAPTIVE WASHOUT FILTER [4]

1. Body to Inertial Transformation

(a) Specific force

In the adaptive washout filter design the behaviour of the system
is studied in the inertial reference frame. We denote specific force
in aircraft body axes Fp components as follows:

f
X
f = f 2 f A.l
—B y y (A-1)
£, . "8
where we assume that f, = -g as a simplifying approximation (i.e., all

Euler angles are small and the inertial acceleration azc << g).

Let the desired specific force in simulator body axes F. components

be £
A ~X
fc = fy (A.2)
f
=g
and the following relation holds for an ideal simulator,
f.= 5 (A.3)
To transform fc to the inertial frame, we have
Bio-Ligfo-Lig £y | (A.4)
For small Euler angles, equation (A.4) becomes
ix fx - wfy - %2
£i = fiy = wfx + fy + 0g (A.5)

Rl < g

Remark:

A ”~

. g . . : o g 8% al
If the inertial acceleration of the simulator in Fj is [X., ¥. zc] ',
then, by the definition of specific force, the actual simulator specific




force in Fi is

£o=| 5 (A.6)
-8 )
From equations (A.5) and (A.6), it is clear that for an ideal
- simulator

g =1, §C=f

e ix iy

(b) The partial derivatives

From equation (A.4) the exact expression for fjx and fiy are given as
follows:

/e\ ~ f N ~N N A AN
. f cosO cos + sin¢ sinb cos - cos¢ _sin
ix X c lpc y( ¢c (o] 1pc ¢c lpc)

fz(coscbcsmeccosq)c + 51n¢c51nwc) (A.7)

+

fiy fxc056C31nwc + fy(51n¢c51n6c51nwc - cos¢ccoswc)

fZ(cosd)csmecsmlpC - 51n¢ccoswc) (A.8)

-+

Therefore from equations (A.7) and (A.8) we have the following partial

derivatives:
afix ~ A A ~ A
" = —fx51n9ccoswc + fysln¢cc056ccoswc (A.9)
c
afiy ~ ~ ~ ~ ~
8$ = fy(coscbcsmecumpc - 51n¢ccoswc)
c
+ fz(—smcbcsmecsmwc - cos¢ccoswc) (A.10) "
For small Euler angles and fz = -g, equations (A.9) and (A.10) e
become
afix 2
= =t % f - A.11
" é y¢>c g ( )
c

A2



2. Longitudinal Filt
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(a) The cost function
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4. Vertical Filter

(a) Cost function
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APPENDIX B

1. Definition of §ﬁp]

i[p] is a NE = (n+p—1) dimensional vector with elements of the form
5 7 G N
o I x.*
R

where p; are the non-negative integers such that

n p ] [p-p P-p,-...-p
Y P, =D and o = [ [ $ ] e [ . B ]

Py P,

or explicitly,

2 _ _ p! . (p-p;)! (P-py=----P,_)!
(P-py)ipyt (P-py-PI!py! 77T (P-PyPym-- P )P 4!
(P"pl'-;"Pn_l)! ) I')|
| | I |
0! P} P1'Py'Pzt.-.p, !

It is shown in reference [15] that
[Pl = 5P
X200 = x|

For illustration, we use the following examples:

Example 1
Let n = 2, p = 2, we have the following possible combinations:
Ppp =1 Py =l
7 Ryg =% = Doy 2
o L T

Therefore, from the definition above, it yields
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where

Examgle 2

Let n

(2]

| >

1

n
Il
n
I x
n
Il

—

i &

w
bl
[y

H-
[

3, p = 2, since

el
e
N

i)
e
(93}

Popn s
Py, = 0,
Pyz = 1,
Pog =
Pys = 2,
P26 = 0-

(2 21
1 J= /“(2‘-‘1)11! . Vg

" 2 X, X
= 2

2
L *¥q
IR
Pigikid
Ygai? &
Pzy Ty
Byg Y
Pic. 5%
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Therefore

3. P ;
o II x,ll V2 X.X
] R 3 172
1=1
3. .
12
a, .H X, V2 X, Xq
izl
3
o I XPiS %X
sl o
3 p.
o n x 14 X 4
4 . 3
p i CER
3
Pig 2
a I x X
5. 2
i=l 1
3
Pie 2
o I x X
6 . 1
L i=1 1 g L _
where
1 RY
B = [ 2! . (2-1)! - /3

17 @O " @2

[ 7 (2-1) 1
% = rJ(Z'l)!1! (2-1-0)
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2. Pole Assignment - construct the feedback stabilizing matrix F.

Theorem of pole assignment [18]

For a system
X=Ax+Bu+TH¥

The pair (A, B) is controllable if and only if for every symmetric
set of n complex numbers, there exists a map F: H - U such that

o(A + BF) = A

where H and U denote the state space and control space respectively.

3. The Relative Negative Overshoot

Definition
The relative negative overshoot is defined as follows:
bs

S. = —
a.

-
b 4

where S; is the relative negative overshoot value, bg is the value measured
at the first peak of negative overshoot with its sign, aj is the initial
value of the response curve.

B-4



APPENDIX C

THE PARAMETERS CHOSEN FOR THE TESTS

TABLE 1. THE PARAMETERS FOR THE LINEAR WASHOUT FILTER

In each case the following step inputs are used

x —1lg, 3g, (g —9.81 m/sec?)
case NO. 1 2 3 4
parameters
c 0.7 0.5 0.3 1.4
wy (rad/sec) 1.42 2.0 3.3 0.91
TABLE 2. THE PARAMETERS FOR THE ADAPTIVE WASHOUT FILTER
In all the three filters the following step inputs are used
for each case
£y ==fy — 1lg and £, —_—=fy = 3g
a) The longitudinal filter
8= 0.13 rad/sec
case NO. 1 2 3 4
parameters
wx (m2/rad2sec?)] 0.0093 0.0063 | 0.0122 0.065
b, (per sec*) 0.01 0.005 | 0.02 0.07
cx (per sec) 0.2 0.15 0.4 0.54
dx (rad/sec) 0.707 0.323 1.2 1.7
ex (rad/sec?) 0.25 0.16 0.65 0.85
ky (sec3/m?) 0.323 | 0.22 0.6 0.8
ny (0) 0.02 0.015 0.06 0.08
ny (0) 0.0058 | 0.005 0.007 0.01
n3(0) 0.5 0.38 0.7 0.3

C=d




b) The lateral filter T et i
case NO. 1 5 3 1
parameters
W, (mz/radzsecz) 0.0085 0.0063 0.01 0.015
by (per sec4) 0.01 0.007 0.015.1.0.07
¢y (per sec) 2.0 1.64 2.3 4 3M
d, (rad/sec) eare 4 o 1.4 - p2.d
ey (rad/sec?) 0.81 0.52 1.0 1.5
ky (seCS/mZ) 0517 0.37 Q72 1.2
£1(0) 0.05 0.035 | 0.1 | 0.13
€2(0) 0.02 0.02 0.05 0.83
*3(0) 1.5 R e
c) The vertical filter .
' Y= 0.3 rad/sec
case NO. 1 > 3 1
parameters
b faber wdl V8 101 0.07 0.06 | 0.13
ep (rad/sec’) | 0,3 0.28 0.24 | 0.34
k, (sec/rad?) | 100.0 95.0 85.0 120.0
b, (per sect) | 0.1 0.06 0.07 0.11
c, (per secz) 0.1 0.08 0.09 0.12
d, (rad/sec) 1.2727 1.0 1.62 1.4
eé (rad/sec?) 0.81 0.62 0.7 0.92
k, (sec3/m? | 0.517 | 0.27 0.83 | 0.95
£ 0.05 0.025 0.09 0.12




TABLE 3. THE NONLINEAR OPTIMAL WASHOUT FILTER

a) The longitudinal filter

Step input: a.y —1g,3g and 8. = 0.2 rad/sec

case NO. 1 2 3 4
parameters
Ry; (m/sec?) 0.1 0.45 | 0.45 | 0.45
Rpz (rad/sec) 0.2 03 D1 0.1
xy, (m) 0.1 0.91 0.91 0.91
v, (m/sec) 0.2 0.61 0.61 0.61
6, (rad) 0.1 0.44 0.44 0.44
a 0.1 0.05 0.15 0.1
asy 0.1 0.05 0.15 0.1
azz 0.1 0.05 0.15 0.1
a, 0.2 1.2 12 0.8

b) The lateral filter

Step input: a., = 1g,3g and $C==0.2 rad/sec

y
case NO. 1 2 3 4
parameters

Ry, (m/sec?) 0.2 0.2 0.2 0.2
Ry (rad/sec) 0.05 0.05 0.05 0.05
y, (m) 0.91 0.91 0.91 0.91
vy (m/sec) 4.8 4.8 4.8 4.8
¢;, (rad) 0.44 0.44 0.44 0.44
by 0.1 0.05 0.15 0.1
by, 0.1 0.05 0.15 0.1
bz 0.1 0.05 0.15 0.1
b, 1.2 il 1.2 0.8

C=3



c) The vertical filter

Step input: a., = 1g,3g
case NO. 1 2 3 4
parameters
Ri; (m/sec?) 1.57 | 1.962 | 1.57 | 1.57
c11 0.1 0.05 0.05 0.1
C22 0.1 0.05 0.05 0.1
c 0.9 0.6 0.9 0.9
o
vy, (m/sec) 0.61 0.61 0.61 0.72
zy, (m) 0.991 0.991 0:991 1072

C-4




APPENDIX D
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FORTRAN-VIID RO5-00.08

FORTRAN VIID:

BWN=ROUONNU S WN -

Pt bt ek et

15

POARABL
PABAB61

PAREA61
RPAIRA6]
PARAB61
BARABG1

Dopea6]

AP499C1
PPA9ESI
POAA341
BAAASH]
BH4AS81
APAAECIT
DIAAFA]
2P4B841
294B8CI
BRAAC201
PAPAC3CI
PPACH8]
PAACFBI
PAAD141
2B4D301
B24DCCI
P@ADESBI
POAEDA]

POAEALL

PPAEACI
POUAEBAI
APAEBCI
PYAECS]
POAEDOI
PPAEDSI
POAEEL]

APAEECI
PIAEFAI
PRAAEFEI
PIAFABI
PIAF281
POAF341
PIAFAR]

PIAFACI
PBAFBAL
PAAFSCI
PAAFB8I

LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-90413

% K v

’

17/62/83
SEE DOCUMENTATION PACKAGE,

€ THIS PROGRAM SIMULATES THE NONLINEAR OPTIMAL LONGITUDINAL 1
¢ WASHOUT FILTER. THIS PROGRAM WORKED SCCESSFULLY THE FIRST 2
C TIME ON THE MTM ON OCT.2#,1982,PM 2:140. 3
$HOLL 4
IMPLICIT REAL*8{(A-H,0-2) 8
DIMENSION A(3,3),B(3,2) ,Q(3,3),R(2,2),P{(3,3),F(2, »3), 6
*WA{3,3),WP{3,3),WQ(3,3),A1(15),X{(3),XD(3),WK2{4589) ¥y 7
/TT(SEZ),XO(S),XDDl(SﬂZ),XDDZ(GﬂZ).WORKA(S 8
COMMON/DOT1/F,PT,QT,RT,G 9
COMMON/DOT2/A1 ,DLX,DLV,DLT,FXA,DTHTA,T1 19
COMMON/DOT3/GW2,QW2 11
EXTERNAL SYS, AUX2 12

CALL PLOTS(1,2,8) 13

c 14
C READ IN THE SYSTEM MATRICES AND THE STABILIZING FEEDBACK MATRIX. 15
C 16
OPEN(UNIT=@85,FILE="LONDAT.DTA®) 17
OPEN{(UNIT=06,FILE="CON:"*) 18
WRITE(6,444) 19

DO 11 =:-1,3 2%

1 READ(5,*) (A(I,J).J =1,3) 21

Do 4 -To= 1,3 22

4 READ(5,*) (B(I,K),K = 1,2) 23

DO 311 =2 24

3 READ{(5,*) {(F(II,JK),JK= 1,3) 25
WRITE(6,108) 26
WRITE(6,101) 27
WRITE(6,102) {((A(1,J}),Jd=1,3),I1=1,3) 28
WRITE(6,118) 29
WRITE(6,103) 32
WRITE(6,104) ({(B{(I,J),Jd=1,2),1=1,3) 31
WRITE(6,110) 32
WRITE(6,111) 33
WRITE(6,182) ({(F(I1,J),J=1,3),1=1,2) 34
c******************!‘t****t**t**********t***iﬂ*i*tt**it**i*******ii***' 35
DO 15 JN = 1,4 36
c*t******************tt***************t********t*********i*t***t***t*** 37
IP = & 38

IS =2 39

T = 1.D-4 '¥)

NN = 3 41

MM= 2 42

N2 = 15 43

G = 9.8062 44

Cc EPS = 1.9E-6 45
NSIG = 5 46

ITMAX = 128 47

M = 600 48
WRITE(6,123) M 49

H= .92 59
AX=6.0 51
AY=4.8 52
ct*ki*********!*t******ﬁ**i***i****ti*i***tiﬁ'*******i*i***t**'ttﬁ***ti 53
READ(S5,*) DETL,DETN,XL,VL,THTL,QW,GW 54
WRITE(6,100) 55
WRITE(6,109) 56
WRITE(6,108) DETL,DETN,XL,VL,THTL,QW,GW 57

"

16:58:18

PAGE
P4-101M99.
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FORTRAN-VIID R@5-0€.90

FORTRAN VIID:
SHAFFAI
2250121
PASA3AT
2250561
BI5PT7R1
PA5A8AI
POSAAL]
2A50B61
a508C81
#o50DA1
PASIER]
PASPHECI
PO50F8I
PO51041
2A51181
209511C1
2A51281
PE51341
PA51461
2051521
PO515E1
RA517081
2851781
PO51A21
#2@51BCI
2051D81
2052741
2052901
PA52ACI
PA53481
2953641
PA53CCI
POS3E8I
2954881
AAS5AAA]
AA54DCI
PAS54AF8I
2955141
2P55861
PA55A01
2856121
PB562CI
0956381
PA56441
2056881
PBP56BCI
PA56C21
2@56C21
PF56CEI
POISEDAI
PIS6EL]
PA56EQ]
PPIS6ECI
PO56F8I
2A56F8I
pA57281

LICENSED RESTRICTED

21

13

20

RIGHTS AS STATED IN LICENSE CL-2£13

PT = DETN/{2.*XL**4)
QT = DETN/(2.*VL**4)
RT = DETN/{(2.*THTL**4)
DLX = DETL/{XL*XL)
DLV = DETL/{VL*VL)
DLT = DETL/{THTL*THTL)
GW2 = GW*GW
QVZ = QW*QW

(1,1} = DLX
Q(I,Z) = .0
Q(1,3) = .@
Q(2,1) = .9
Q(2,2) = DLV
Q(2,3) = .4
Q{3,1) = .@
a(3,2) = .4
Q(3,3) = DLT
R{1,1) = 1./GW2
R{1,2) = .9
R{2,1) = .9
R{2,2) = 1./QW2
po 2 II = 1,15
AL(II) = .@
WRITE(6,110)
WRITE{(6,105)

WRITE(6,102)
WRITE(6,118)
WRITE(6,106)
WRITE(6,104)
WRITE(6,118)
CALL RICATI(A,B,Q,R,P,F,3,2,NN,MM,IP,IS,T,W,WA,WP,WQ)
WRITE(6,1£87)
WRITE(6,102) 1,2)
WRITE{(6,110)

CALL ZSPOW(AUX2Z,
WRITE(6,112)

({Q¢{1,2),J = 1,3),I1=1,3)

({R(I1,J),J=1,2),1I=1,2)

({(F(1,J),9 = 1,3),1 =

NSIG,N2,ITMAX,PAR,Al,FNORM1,WK2,IER2)

(A1(JI1),01 = 1,7)

(A1{JI), JI = 8,15)

YA = 5.5

IF(JN.GT.2.AND.MOD{JN,2).NE.®) GO TO 21
IF(MOD(JN,2).EQ.2) GO TO 13

GO TO 20
CONTINUE

XA = 9.9

YA = 5.9

GO TO 20
CONTINUE

XA = #.

YA = -5.
CONTINUE

CALL PLOT{XA,YA,
CALL REGION

-3)

D-3

% % %

.

17/92/83 16:58:18 PAGE

SEE DOCUMENTATION PACKAGE, @4-1@1M99.
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FORTRAN-VIID R@5-00.0%

16:58:18 PAGE

FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-@213 *x% SEE DOCUMENTATION PACKAGE, 24-1@1M99.
115 c PUT THE EXPLANATION IN THE GRAPH 115
116 C 1186
117 @957281 CALL SYMBOL({1.25,3.68,2.12,"NON-LINEAR OPTIMAL WASHOUT FILTER’,%., 117
118 /+33) 118
119 @A57BCI CALL SYMBOL{2.0,3.42,0.12,°{LONGITUDINAL)",@.,+14) 119
120 @@58381 CALL SYMBOL(1.56,3.25,0.07,2,0.,-1) 129
121 Q958A41 CALL SYMBOL(1.62,3.19,0.1,45,0.,-1) 121
122 @A59101 CALL NUMBER{999.,999.,0.1,3.0,0.,+1) 122
123 ©959801 CALL SYMBOL(999.,999.,#.1,°’G (INPUT)’,®.,+9) 123
124 @A59FCI CALL SYMBOL(1.56,3.9,0.07,5,9.,-1) 124
125 @A5A68I1 CALL SYMBOL(1.62,2.94,0.1,45,0.,-1) 125
126 @A5AD4I CALL NUMBER({999.,999.,0.1,1.9,0.,+1) 126
127 @A5B441 CALL SYMBOL({999.,999.,0.1,°'G (INPUT)’,@.,+9) 127
128 W@A5BCAI CALL SYMBOL(4.0,3.25,9.1,°PARAMETERS’,9.,+18) 128
129 @O5C3CI CALL SYMBOL(4.2,3.98,0.1,’DETL= ’,d.,+6) 129
139 @A5CBAI CALL NUMBER{999.,999.,0.1,DETL,®.,+3) 130
131 ©@@5D141 CALL SYMBOL(4.2,2.91,8.1,°’DETN= *,@.,+6) 131
132 @g5D881 CALL NUMBER(999.,999.,9.1,DETN,®.,+3) 132
133 QO5DECI CALL SYMBOL(4.2,2.74,0.1,°XL= ’,0.,+4) 133
134 Q@AS5E6AI CALL NUMBER(999.,999.,0.1,XL,d.,+3) 134
135 @AS5EC4I CALL SYMBOL(4.2,2.57,9.1,°'VL= ’,0.,+4) 135
136 QA5F38I CALL NUMBER({999.,999.,8.1,VL,d.,+3) 136
137 WO5F9CI CALL SYMBOL(4.2,2.4,8.1,°THTL= ’,0.,+6) 137
138 Q060191 CALL NUMBER(999.,999.,0.1,THTL,d.,+3) 138
139 0060741 CALL SYMBOL(4.2,2.23,0.1,°QW= ’,0.,+4) 139
149 RPR6GHESI - CALL NUMBER{999.,999.,9.1,QW,9.,+3) 142
141 @@614CI CALL SYMBOL(4.2,2.06,0.1,°’GW= ’,@.,+4) 141
142 p@61CHI CALL NUMBER({999.,999.,9.1,GW,9.,+3) 142
143 C 143
144 QP62241 DO 1# J = 1,2 144
145 00622CI X{1) = .9 145
146 0962381 X(2) = @ 146
147 P@62441 X{(3) = .# 147
148 0062501 TL = .# 148
149 @P625CI READ{5,*) FXA,DTHTA 149
1580 @9627CI FXA = 9.81*FXA M/SS 156
151 W@P628EI WRITE(6,116) FXA,DTHTA 151
152 QP62BA1 WRITE(6,118) 152
153 @p62CCI WRITE(6,117) 183
154 ©@P62EBI Do 11 JP = 1,M 154
155 @@62FCI CALL RKM{3,H,T1,X,X0,X01,XD,SYS) 155
156 @P63381 TT(JP) = Tl 156
1567 @9634CI IF(J.EQ.2) GO TO 22 157
158 0963621 XDD1(JP) = XD{2) 158
159 0063741 GO TO 12 1569
160 W@P637A1 22 XDD2(JP) = XD{(2) 169
161 @2638CI 12 IF{MOD(JP,20).EQ.9) WRITE{6,118) T1,XD{1),XD{(2),XD{3),X{1),X{(3) 161
162 WQP63ECI 11 CONTINUE 162
163 0064041 WRITE(6,100) 163
164 0864201 12 CONTINUE 164
165 @064361 CALL SCALE(TT,6.,M,2) 165
166 @P646CI CALL SCALE(XDD1,4.,M,2) 166
167 Q064A41 CALL SCALE(XDD2,4.,M,2) 167
168 ©@@64DCI WRITE(6,777) XDD1{M+1),XDD2{M+1),XDD1{(M+2) ,XDD2(M+2) 168
169 @0P65691 WRITE(6,108) 169
179 C 179
17X c SELECT THE COMMON SCALE FACTORS 171

D-4



FORTRAN-VIID RAS-@2.0% 17/92/83 16:58:18 PAGE 4/ 4

FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-2013 ***,  SEE DOCUMENTATION PACKAGE, @24-181M99.
¥72 € 172
173 @P657CI WORKA{1) = XDD1{M+1) : 173
174 9765991 WORKA(2) = XDD2{M+1) 174
175 @P65A21 WORKA(3) = XDDI1{M+1)+XDD1{M+2)*AY 175
176 9965CCI WORKA(4) = XDD2{M+1)+XDD2{M+2)*AY 176
177 R@P65F21 CALL SCALE(WORKA.4.,4,2) 177
178 0266301 XDD1{M+1) = WORKA(5) 178
179 9966441 XDD2{M+1) = WORKA(5) 179
189 @P6E561 XDD1{M+2) = WORKA(6) 189
181 Q@O666AI XDD2(M+2) = WORKA{6) 181
182 c 182
183 C  PRINT OUT THE SCALE FACTORS 183
184 c 184
185 A#667CI WRITE(6,555) M,XDD1{(M+1) ,XDD2{M+1),XDD1{M+2),XDD2{M+2 185
186 PQP67041 WRITE{(6,666) JP,WORKA{(5),WORKA{G) ‘ 186
187 @P672CI WRITE(6,100) 187
188 c 188
189 C CALLES FOR PLOTTING 189
199 c 199
191 Q@R67481 CALL AXIS{@.,0.,’TIME(SEC.)’,~10,AX,0.,TT{M+1),TT(M+2)) 191
192 @P67ECI CALL AXIS(#.,@.,°X ACCEL. {M/SEC.**2)’,+290,AY,90., 192
193 /XDD1{M+1),XDD1{M+2)) 193
194 @P68981 CALL LINE(TT,XDD1,M,2,8%,2) 194
195 @P68DCI CALL LINE(TT,XDD2,M,2,8%,5) 195
196 @P69201 15 CONTINUE 196
197 £9P69361 CALL PLOT(O.,#.,+999) 197
198 ©969781 188 FORMAT(1X,6@(1H*)) 198
139 pP69881 191 FORMAT(1X,6{1H*),2X, MATRIX A’,2X,6(1H*)) 199
209 PBPI69ACI 192 FORMAT(3(1X,F8.4,2X)) 200
281 RP69BEI 173 FORMAT(1IX,6(1H*),2X, MATRIX B’,2X,6{(1H*)) 281
202 PRE9E21 194 FORMAT(2{(1X,F8.4,2X)) 202
203 PP69FAI 185 FORMAT(1X,6(1H*),2X, MATRIX Q’,2X,6{1H*)) 203
204 PP6A18I 16 FORMAT{1X,6(1H*),2X, MATRIX R’,2X,6{(1H*)) 204
285 QP6A3CI 187 FORMAT(1X,6(1H*),2X, MATRIX F’,2X,6{(1H*)) 205
206 PE6AG01 198 FORMAT(1X,7(F7.4,2X)) 206
207 PE6A721 199 FORMAT(3X,’DETL’,5X,’DETN’,5X, XL’,8X, VL’ ,6X, THTL’,5X, QwW’*,7X, G 287
208 /W) 208
209 QPI6AAAI 112 FORMAT{1X,28{(1H*)) 209
219 R@A6GABAI 111 FORMAT(1X,6(1H*),2X, MATRIX F@’,2X,6{(1H*)) 219
211 WQA6AEQI 112 FORMAT{(1X,5(1H*),2X,’THE COEFFICIENTS’,2X,5{1H*)) 211
212 @@6BACI 113 FORMAT(6X,’Al’,12X,’A2*,12X, A3°,12X, A4’ 12X, 'A5°,12X, A6°,12X, A 212
213 /7)) 213
214 gP6B3EI 116 FORMAT(6X,'FXA = *,F7.4,2X,’DTHTA = *,F7.4) 214
215 PE6B621 117 FORMAT(4X,’T’,18X, XD1*,11X,°XD2*,11X, XD3’,10X, X1’,12X, *X3"*) 215
216 PE6B9MI 118 FORMAT(1X, F6.3,2X,5(E12.5,2X)) 216
217 PP6BASI 120 FORMAT(1X,7{(E12.5 ,2X)) 217
218 PP6BBCI 121 FORMAT(6X,’A8’,12X,*A9°,12X, A1#°,11X, A11°,11X, A12°,11X, 218
219 /°A13°,11X,’Al4' 11X, Al5") 219
228 BOU6BFAI 122 FORMAT(1X,8(E12.5,2X)) 220
221 PP6CHEI 123 FORMAT(1X,*THE ITERATIONS ARE’,1X,I4) 221
222 @pp6C391 A44 FORMAT(8(1H*),2X,*THE RESULTS OF THE LONGITUDINAL WASHOUT 222
223 JFILTER’,2X,8(1H*)) 223
224 pA6C8O1 555 FORMAT{1X,’'M=",14,2X, XDD1WL=",F7.4,2X, XDD2WL=",F7.4,2X, 224
225 /°XDD1WU=",F7.4,2X, XDD2WU=",F7.4) 225
226 @P6CCSI 666 FORMAT(1X,'JP=",14,2X, WORKAS=",F7.4,2X, WORKA6=",F7.4) 226
227 PA6CF6I 777 FORMAT(1X,’XDD1L=",F7.4,2X, XDD2L=",F7.4,2X, 'XDD1U=",F7.4, 227
228 /2X,*XDD2U=",F7.4) 228
D-5 |
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FORTRAN-VIID ROS-00.00
FORTRAN VIID: LICENSED RESTRICTED

229 - @@6D321
239 Q@@6D3Al

STOP
END

'NO ERRORS:F7D RO5-00.89 MAINPROG

STATEMENT BUFFER:

28 LINES/1321 BYTES

RIGHTS AS STATED IN LICENSE CL-9913

<MAIN 17/92/83
STACK SPACE: |

SINGLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTI
DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTI

. FORTRAN-VIID RO5-09.00

FORTRAN VIIDs LICENSED RESTRICTED RIGHT

oReAAN 1
PB00TAL
PARA1D]
P9001C1
PoPR3C1
0009791
2000981
ROARCCI
292108C1
9A12C1
2091321

—~RNWONOU & WN ~-

s

SUBROUTINE REGION
XR = 6.9

YR =
CALL
CALL
CALL
CALL
CALL
CALL

4.9
NEWPEN(3)
PLOT(XR,®.,2)

S AS STATED IN LIC

PLOT(XR,YR,2)

PLOT(®.,YR,2)
PLOT(#.,9.,2)
NEWPEN{(1)

RETURN

END

NO ERRORS:F7D RO5-g0.09 SUBROUTINE REGION 17/82/83

STATEMENT BUFFER:

29 LINES/1321 BYTES

STACK SPACE:

16:158:42 TABLE SPACE:
57 WORDS
ON
ON

ENSE CL-2213

16:158:43 TABLE SPACE:
52 WORDS

SINGLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

D-6

9 KB

1

KB

17/92/83

17/02/83

16:58:18

229
239

16:58:18

231
232
233
234
235
236
237
238
239
249
241

PAGE

Wx%, SEE DOCUMENTATION PACKAGE, 94-121M99.

PAGE

**‘. SEE DOCUMENTATION PACKAGE, #4-191M99,
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FORTRAN-VIID RO5-27.08 17/82/83 16:58:18 PAGE

FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-2@13 *%x% SEE DOCUMENTATION PACKAGE, 24-1@1M99.
1 gQEeonsl SUBROUTINE AUX2(A1,K,PAR) 242
2 QEP8OAl IMPLICIT REAL*8{A-H,0-Z) ‘ 243
3 QeesRsl DIMENSION A1(15),PAR{1),F(2,3),WK2(452),FT(15) 244
4 QIARBAT COMMON/DOT1/F,PT,QT,RT,G 245
5 c G0 17O (1,2,3,4,5,6,7,8,9,19,11,12,13,14,15),K 246
6 OARRAAL FT{1)= F{1,1)*A1{11)+F(2,1)*A1(2)-PT 247
7 C RETURN 248
8 Q@PPECS8I FT(2) = AL(13)-4.*F(1,2)*A1(15)-F(2,2)*A1{14)+RT 249
9 c RETURN 258
12 RPROF@A61 FT(3) = (G+F{1,3))*Al{6)+4.*F(2,3)*A1(7)-QT 251
11 C RETURN 252
12 PRAF3EI FT(4)= A4.*A1{1)~-2.*F{1,1)*A1{12)-F(1,2)*A1(11)-F{(2,1)*A1(3)-F(2,2) 2563
13 /*A1(2) 254
14 C RETURN 255
15 QOQPFAAI FT(5)= 3.*A1{2)=2.*F(1,1)*A1(10)-(F(1,2)+F{2,3))*A1{3)-2.*(G+F(1,3 256
16 JYI*AL(12)-2.%F{2,1)*A1{4)-2.*F(2,2)*A1{9) 257
17 c RETURN - 258
18 PO10321 FT{(6)= 2.*A1{(3)-3.*F(1,1)*A1(14)-2.*F(1,2)*A1(18)~-3.*{G+F(1,3))*Al 259
19 /{13)=2.*%F{2,1)*A1(5)-2.*%F{2,2)*A1{4)-F(2,3)*A1(18) 268
20 ¢ RETURN 261
21 R@A19D61 FT(7)= Al{4)={2.*F(1,2)+2.*%F{2,3))*A1(5)-3.*(G+F(1,3))*A1(14)-3.*F 262
22 /{(2,2)*A1(6) 263
23 c RETURN 264
24 PA11401 FT(8)= A1{8)-{F{1,2)+3.*F{2,3))*A1{6)-2.*(G+F(1,3))*A1(5)-4.*F(2,2 265
25 /)Y*A1L7) 266
26 C RETURN 267
27 @@11A21 FT{(9)= 2.*A1{8)-2.*F(1,1)*A1{(5)-{F{1,2)+2.*F(2,3))*A1(4)-2.*(G+F (1 268
28 /,3))*A1{12)-3.*F{2,1)*A1{6)-3.*F(2,2)*Al1(8) 269
29 C RETURN 278
39 @P123Al1 FTU1@)=A1(1@)-{3.*%F{1,2)+F{2,3))*A1(14)-4.*(G+F{1,3))*A1{15)-2.*F( 271
31 /2,2)Y*A1(5) 272
32 c RETURN 273
33 @@129CI FT(11)=3.*A1{11)=-3.*F(1,1)*A1{13)-2.*F(1,2)*A1(12)~-F{(2,1)*A1(1@)~F 274
34 /(2,2)*A1(3) 275
35 c RETURN 276
36 QO13041 FT(12)=2.*A1(12)-4.*F(1,1)*A1{15)~-3.*F{(1,2)*A1(13)~-F(2,1)*A1{(14)-F 277
37 /(2,2)*A1(19) 278
38 c RETURN 279
39 @AR136CI FT(13)=F(1,1}*A1{3)+{G+F{1,3))*A1(11)+2.*F(2,1)*A1{9)+F(2,3)*A1(2) 280
Ag c RETURN 281
41 P@A13C21 FT(14)=F{1,1)*A1{4)+{G+F{1,3))*A1(3)+3.*F{2,1)*A1(8)+2.*F(2,3)*Al{ 282
42 /9) 283
43 c RETURN 284
44 PI141EI] FT(15)=F{1,1)*A1{6)+{G+F{1,3))*A1{4)+4.*F(2,1)*A1(7)+3.*F{(2,3)*Al( 285
45 /8) 286
46 QO147A1 RETURN 287
47 QR14801 END 288

wARNING # 9 Ve v v v e T % e ok Y o o v v gk v v v vie M v e vk gk vie ke v e v vie e e e v e Y Y e vie e e ol gk e o v e ol o Yk e ol e ok e e YR ok ok vl ke e ok e o vie ke ok v ok e ok

>>> VARIABLE NOT INITIALIZED IN PROGRAM <L
WK2
NO ERRORS:F7D R@5-90.0@ SUBROUTINE AUX2 17/92/83 16:58:51 TABLE SPACE: 2 KB

STATEMENT BUFFER:
DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

2@ LINES/1321 BYTES STACK SPACE: 154 WORDS
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FORTRAN=-VIID ROS5-09.09 '17/92/83 16:58:18 PAGE
FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-92013 www SEE DOCUMENTATION PACKAGE, @24-191M99.
1 0080001 SUBROUTINE RKM{N,H,X,Y,YO0,YO1,YP,SYS) 289
2 0008941 IMPLICIT REAL*B(A-H.O-Z) 299
3 0080041 DIMENSION Y(N).YO(N).YOI(N).YP(N).GI(S).Al(IS).F(Z.s) 291
4 QRAOROAI COMMON/DOT1/F,PT,QT,RT,G 292
5 QogPAAl COMMON/DOTZIAI DLX DLV DLT,FXA,DTHTA,T1 293
6 QOAPRBAI COMMON/DOT3/GV2 sz 294
7 0Q0200AI1 GI{1) = .5 295
8 0OPP661 GI(2) = .5 296
9 PEeR701 GI(3) = 1. 297
190 989F7A1 GI(4) = 1. 298
11 99p0841 GI(5) = .5 299
12 POPPBE] X0 = X 300
13 Q20@9Al PO 1 1I = 1,N 391
14 POAIAE] YO(I) = Y(I) 302
15 popeD6I1 YO1(I) = Y(I) 393
16 gopll6l DO 2 J = 1,4 304
17 WPRAPLIE]L CALL SYS(N,X,YOl,YP) 395
18 POP168I1 X = XO+GI(J)"H 306
19 2pg1861 DO 2 I = 1,N 397
29 POF19A1 YO1(I) = YO(I)+GI(J)®*H*YP(I) 308
21 QPPIESI Y(I) = Y(I)+GI{J+1)*H*YP(I)/3.8 309
22 QRP26CI RETURN 312
23 QRP2721 END 311
NO ERRORS:F7D ROS-#2.99 SUBROUTINE RKM 17/92/83 16:58:52 TABLE SPACE: 2 KB
TATEMENT BUFFER: 29 LINES/1321 BYTES STACK SPACE: 158 WORDS
DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION
FORTRAN-VIID ROS-05.00 17/92/83 16:58:18 PAGE -
FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-£913 wRw SEE DOCUMENTATION PACKAGE, O4-101M99,
1 gpe8RE91 SUBROUTINE SYS(N,T,X, XD) 312
2 P0P0O4Al IMPLICIT REAL*B(A H Z) 313
3 0090041 DIMENSION X(3).XD(3).F(2.3).A1(15) 314
4 PPOPIAl COMMON/DOT1/F,PT,QT,RT,G 315
5 0BPOAl COMMON/DOT2/A1,DLX,DLV,DLT,FXA,.DTHTA,TIL 316
6 PORPRAT COMMON/DOT3/GW2,QW2 317
7 PORBRAL DXLV = AL{(3I*X{1)*X(1)*X{3)+A1(4)*X{1)*X(3)*X(3)+2,"AL1(5)*X(3)*X(3 , 318
8 FI*XC2)+AL{B) *X{3I*X (3 *X(3)+2. . ®A1{1Z)*X{(1)*X{2)*X(3)+A1(11)*X(1)*X 319
9 ZOLI*XL1)+2. % A1C12)*X (1) *X (1) *X{2)+3. *A1{13)*X{1)*X{2)*X{(2)+3.*A1(1 329
i9 F4)*X(3)I*X(2)*X(2)+4. . *A1({15)*X(2)*X(2)*X(2) 321
11 92081881 DXLT = AlL{2)*X(1)*X{1)*X{1)+A1{3)*X{1)*X(1)*X(2)+2,.*A1(4)*X{1)*X(2 322
12 FI*X{3)+2.*AL{5))*X(2)*X{(2)*X(3)+3 . *A1(6)*X{2)*X{3)*X{3)+4.*A1(7)*X( 323
13 Z3)*XL3I*X{3)+3.*AT(BI*X (1) *XI3)I*X(3)+2.*A1{9)*X(1)*X{1)*X(3)+Al1(19 324
14 : ZI*XCLI)*X(2)%K(2)+A1014)*X(2)*X(2)*X(2? 325
15 @PP35CI XD(1) = X(2) 326
16 9993791 XD(2) = =F{1,1)2"X{1)=F(1,2)*X{2)={F(1,3)+G)*X{3)-DXLV*GW2+FXA 327
17 /+G*DTHTA*T1 328
18 P@P3E4] XD(3) = =F(2.1X*X{1)=F(2.2)*X(2)~F{2.3)*X{(3)-DXLT*QW2+DTHTA 329
19 PPP43EI] RETURN 339
20 QPPA441 END 331
NO ERRORS:F7D RPS5=-20.0% SUBROVUTINE SY3 17/92/83 16:58:54 TABLE SPACE: 2 K2

STATEMENT BUFFER:

29 LINES/132]1 BYTES STACK SPACE: 146 WORDS

DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

D-8

1/

1/



FORTRAN-VIID RA5-09.90 17/82/83 16:58:18 PAGE 1/ 19
FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-£013 **x SEE DOCUMENTATION PACKAGE, 24-1@1M39.
1 29901 SUBROUTINE RICATI{A,B,Q.R,P,F,N,M,NN,MM,IP,IS,T ,W,WA,WP,WQ) POFALERY 332
2 C SUBROUTINE RICATI(A,B,Q,R.P,F,N,M,NN,MM,IP,IS,T,W,WA,WP,WQ) ROBALAGE 333
3 C BOBALATE 334
4 C SOLVES g = AP + PA + Q - PB(R.INV.)B’P POGAL4ABE 33%
S C BOBALASY 336
6 C {A-B*F) HAS THE DESIRED SPECTRUM UPON RETURN AAGALSHL 337
7 Cc CALLS SUBROUTINES MAT AND LYAFUN FORALS1L 338
8 c IP IS PRINT CONTROL = #,1,2 2 GIVES FULL PRINTOUT AOF4162L 339
9 c IS ¢+ = 1 (A) IS ASSUMED STABLE , = 2 (A-BF) IS ASSUMED STABLE 2RBA1532 348
19 c IS IS UNCHANGED FOR SUCCESS , SET = @& FOR NON-CONVERGENCE PABALISAY 341
11 C SET NEGATIVE FOR NON-CONVERGENCE IN S/R LYAPUN (INSTABILITY) @0041550 342
12 & WORKING STORAGE : (W) , (WA) , (WP) , (WQ) PRFA156L 343
13 C DIMENSIN OF F CHANGED FROM F(NN,N) TO F(M,N). DATE:30/08/1973 Q0041570 344
14 C STABILITY IS IN THE SENSE THAT THE SYSTEM IS ASYMPTOTICALLY STABLE.@@841571 345
15 C . ‘ PAB41580 346
16 c PEBA1599 347
17 RARFRAL IMPLICIT REAL*8(A-H,0-Z) pOPALELR 348
18 QO0ERAI DIMENSION A{NN,N),B{NN,M),P{NN,N),Q(NN,N),R{MM,M),F{M,N) BOFALE3L 348
19 Q0PAAAl DIMENSION W(NN,N),WA{NN,N),WP{NN,N) ,WQ{NN,6N) PRBALE6AL 350
20 PAROAAL ABS{X)=DABS(X) pRdALIE620 351
21 QOPAEA] LIT=3# POIAL650 352
22 PARAEEI ERR=1.E-8 PIFALI66H 353
23 PRARAFAI ZERQO=1.E-11 PROALET L 354
24 POR1A6] JS=9 AIFALE68Y 355
25 QAAM1PEI] TRO=1.E+5#¢ PRGALE9L 356
26 PARARL1AI IF(IP.GE.1) WRITE(6,9081) POGALTRR 357
27 QR1AAL IF(IP.LE.1) GO TO 19 POGALT LA 358
28 QPOA15A1 WRITE(6,902) POFALT720 359
29 PAR1741 DO 13 I=1.N pADALT730 360
30 Pem188I 13 WRITE(6,910)(A{I,J),d=1,N} PABALT AR 361
31 QeP2381 WRITE(6,911) PRFALT750 362
32 QeA2541 DO 14 I=1,N PABALTER 363
33 pee2681 14 WRITE(6,918){(B(I,J),J=1,M) POPALTT R 364
34 POR318I1 WRITE(6,911) POPLLT78H 365
35 @PP3341 po 15 1I=1,N PRPALT790 366
36 POR3481 15 WRITE(6,918)(Q{I,J},J=1,N) 20041800 367
37 REP3F8I WRITE(6,911) ANPL1818 368
38 0OR414A1 DO 16 I=1,M peRALB2ZH 369
39 QP@4281 16 WRITE(6,91@){R{(I,J),J=1,M) POAALB3L 378
A QPERADBI WRITE(6,911) 29041840 371
41 c INVERT {(R) 29541858 372
42 QABAFAL 19 DO 29 I=1,M 20541868 373
A3 Q9E5981 DO 2/ J=1,M oPe4aAL1B872 374
44 PEB51CI 28 P(1,J)=R{I,J)} 2PP4A188L 375
45 Q@OR5941 CALL MAT{(P,P,M,M,NN,ZERO,DET,K) APPALBIL 376
46 PAPASECI IF(IS.LT.2) GO TO 399 ROBALO0E 377
47 € GIVEN (A - B*F) STABLE , FIND P# BY SOLVING PoGAL91H 378
48 (5 (A - BF)'P + P(A - BF) + (F'RF + Q) = @ PEP41920 3739
49 QER6R21 WRITE(6,912) : PaB41937 388
50 00961CI IF(IP.LE.1) GO TO 148 OABAL949 381
51 0996321 DO 135 I=1,M PPBAL950 382
52 Q006461 135 WRITE(6,918)(F{I,J),Jd=1,N) PPFA1960 383
53 QPP6FAI WRITE(6,911) POBA1978 384
54 0007181 149 DO 68 I=1,N POFA1980 385
55 Q007241 DO 64 J=1,M PPFA1998 386
56 QO@7381 S=g. POFAZABY 387
57 Q0R7441 DO 57 K=1,M PAFAZALE 388




FORTRAN~-VIID ROS5-00.88

FORTRAN VIID:

58 Q@@7581 50 S=S+F{K,I)*R(K,dJ)

59 QRP7CAI 68 W(I,J)=S

60 BIPB81EI DO 84 I=1.N

61 Qge8321 DO 898 J=1.N

62 AEE8461 S=g.

63 QAEA8521 SS=0.

64 QRP85EI DO 79 K=1,M

65 g@P8721 S=S+B{I,K)*F{K,J)

66 Q2P8C6I 78 SS=SS+W(I,K)}*F(K,J)

67 Q899321 wQ(I1,J)=0(1,J)+SS

68 @AE98H1 89 WA(I1,J)=A(1,J)-S

69 QLA9FEI CALL LYAPUN{WA,WQ,WP,W,N,NN,T)
79 RADATAIL 99 CONTINUE

71 C F = (R.INV)(B*)
72 RRBATAL DO 248 1=1,M

73 RPOPA8SI DO 248 J=1,N

74 POBASCI S=7.

75 POBAABI DO 23% K=1,M

76 QOOBABCI 230 S=S+P(I,K)*B{(J,K)

77 POPB28I 249 F(1,Jd)=S

78 Q@AB82I DO 268 I=1,N

79 QPRAABI96I DO 268 J=1,N

80 WQROBAAI IFCIS.LT.2) WP{I,Jd)=0.

81 Q@OBEAI S=4.

82 WOPBFOI 0O 25@ K=1,M

83 QPOCHAI 258 S=S+B(I,K)*F{K,J)

84 QRAC7AI - 268 P{I,J)=8

85 c

86 WQPPCCAI 398 DO 708 IT=1,LIT

87 c W = (B{(R.INV)B’P)

88 WPPPCDEI DO 428 I=1,N

89 QOAPCF21 DO 42/ J=1,N

90 QPADA6I S=g.

91 @epD121 DO 41@ K=1,N

92 W@esD261 41/ S=S+P{I,K)*WP{K,J)

93 @@AD921 429 W(I1,J)=S

94 C WA = {(A-B{(R.INV)B’P)
95 @BPDECI DO 468 I=1,N

96 QIPELMAI DO 468 J=1,N
97 QOQE14] S=g.
98 QOPE291 DO 430 K=1,N

99 PPPE341 439 S=S+WP{I,K)*W(K,J)

100 QROEAR] wa(I,Jd)=S+Q(I,J)

141 POPEEEI 460 WA(I,J)=A(I,J)-W(I,J)

192 c SOLVE @ = (WA)’{WP) + (WP)}{(WA) + (WQ)
103 PAPFBAI CALL LYAPUN{(WA,WQ,WP,W,N,NN,T)

104 PO18081 TRN=9.

195 @@180CI DO 518 I=1,N

126 0@10201 518 TRN=TRN+WP(I,I)

TEST CONVERGENCE BY TRACE(P)
IF(IP.EQ.1) WRITE(6,905) IT,TRN
CRIT=ABS{TRN-TRO)}/TRO
IF(CRIT.LE.ERR) GO TO 515

108 PO1068I1
199 PO199CI
119 @R18CEI

111 PAP1PE6I IF(IP.LE.1) GO TO 61#@

112 P#O10FCI 515 IF(IP.NE.1) WRITE(6,905) IT,TRN
113 9011301 DO 524 I=1,N

114 pO11441 520 WRITE(6,918)(WP(I,J),J=1,N)

LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-2013

P = (B{(R.INV)B’)

* % %k

wWQ = (Q + PB(R.INV)B’P)

17/82/83
SEE DOCUMENTATION PACKAGE,

CERA2AZE 383
BROAZE3E 397
BABARTLE 391
BIFAZHLE 392
BATAZECH 293
RABAZDTE 394
QGA208T 395
POGA205 296
PRPA2108 397
PATA211E 398
PaBA2128 3389
ARRA2138 409
BABA21AD 491
pop42150 Ap2
POLA2168 493
2RGA2178 AQ4
PBOAZ2188 405
PRF42198 406
DRRAZ280 AR7
o0FA2210 498
PRFA2228 499
PRBA2230 419
PABA2Z2A8 411
DRAA2259 412
DABA2260 413
PRAA2278 414
BABA228L 415
POPA22980 416
oRBA2300 417
oROA2310 418
PO0A23282 4189
POOA2338 429
POPA23A0 421
PRAA2350 422
DRFA236H 423
PABA2378 424
PABA2388 425
PAAA239. 426
RORAZ2ARG 427
RPOBA241Q2 428
DROA2A28 429
DIBA2A3L 430
AADA2440 431
POFAZASH 432
RAGA2460 433
PODA2ATR 434
ARBA2480 435
PARAZA9D 436
POBA2500 437
DIBA2510 438
PIBA2520 439
POFA2530 449
PEBA2540 441
PBP42550 442
PABA2560 443
DRBAZRT7H 444
PEBA258H 445

L 3 L]

16:58:18 PAGE

LA-191M99.
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FORTRAN-VIID RE5-02.00 : 17/82/83 16:58:18 PAGE 3/ 12
FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-9913 **x, SEE DOCUMENTATION PACKAGE. §4-101M99.
115 0F11F41 619 IF(CRIT.LE.ERR) G0 TO 8% £EBAZ592 415
116 @7120CI IF(TRN.GE.1.E+69) GO TO 1418 EAOAZERD 447
117 £012241 TRO=TRR AGFA2610 44¢
118 2212301 709 CONTINUE 942620 449
119 8912481 1S=9 99942635 459
128 9912501 WRITE(6,907) 1T 0842640 451
121 00127901 80% DO 828 I=1.M 99042650 452
122 9012841 DO 828 J=1,N 90042660 453
123 9012981 S=9. BR042670 454
124 0812A41 DO 81# K=1,N 99942680 455
125 Q212881 818 S=S+F(I,K)*WP(K,J) 9942690 456
126 9913241 820 W(I,9)=S #9042700 457
127 @P137EI DO 849 I=1,N gI042710 458
128 9013921 DO 839 J=1,N 0I0A2720 459
129 9F13A6I1 838 P(1,J)=WP{I,J) 20042730 467
130 0914061 DO 84% J=1,M 09042748 461
131  @9141A1 848 F(J,1)=W(J,1) 99042758 462
132 9914921 IF(IP.LE.1) GO TO 777 08042768 463
133 @014A81 WRITE(6,911) 20042770 464
134 9014C41 DO 858 I=1,M 99042780 465
135 9914081 85# WRITE(6,918)(F{I,Jd),J=1,N) 09042790 466
136 0015881 G0 TO 777 29042800 467
137 @O158EI 1919 1S=-1S 98042810 468
138 @0159CI WRITE(6,908) IT 29042820 469
139 9O158CI 777 IF(IP.GE.1) WRITE{6,906) IT,TRN 09942830 478
140 QO15FO1 RETURN 0H042840 471
141 QP15F6I 991 FORMAT(/,1X,1208(1H*),//,20X,17HSUBROUTINE RICATI //) 99942850 472
142 9016201 992 FORMAT(30X,38HRICCATI PROBLEM MATRICES A / B / Q / R ,/) 99042860 473
143 9016541 945 FORMAT(/,10X,16HRICATI ITERATION,I4,10X,4HCOST,1PE20.6,/) 99042878 474
144 9916821 906 FORMAT(//.20X,22HEXIT FROM RICATI AFTER ,I3,12H ITERATIONS ,18X, #9042880 475
145 1 6HCOST =,1PE2#.6,/,1X,120(1H*),//) 29042890 476
146 9916021 997 FORMAT(///,28X,28HNO CONVERGENCE AFTER,I14,12H ITERATIONS ,//)  @@042900 477
147 9917981 908 FORMAT(///,28X,18HSYSTEM UNSTABLE AT ,14,13H-TH ITERATION  ,//) %004 1 478
148 @0173CI 910 FORMAT{(5X,1P18E12.3) 479
149 AP174E] 911 FORMAT{/,18X,20(1H-),/) 29042930 488
150 0017601 912 FORMAT{(/,18X,26HSTABILIZATION IS INDICATED ) 99042940 481
151 9917881 END 29042959 482
wARNING # 3”1 o e % de o v Je e v e v e ok e ok ok v ke o vl ok vl ke gk ok vk 3 dke ok e v S de 3k ke e S ve o ok e v dk Y Yk o ok o gk ok ok ok o 7 S S ok ok e e v v ok o o ve v o v e ot ok

>>> UNREFERENCED LABEL <<

300
NO ERRORS:F7D R#5-00.00 SUBROUTINE RICATI 17/92/83 16:59:08 TABLE SPACE: 6 KB

STATEMENT BUFFER: 29 LINES/1321 BYTES STACK SPACE: 186 WORDS
DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

D-11




FORTRAN-VIID R@5-292.29
FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-2£13

WOANNJ & WN -

BRORAN1

PARABAL
ARRBBAT
PORIRAIL
DOBHBAT
P9H3CCI
PRA3D61
BRAP3DEI
RARF3EGI
PRB3EE]
PII3FAI
pRA4A181
APRA42C1
DOGAAR]
AOP4B8I
PARACCI

PRFADAL -

RPOISHI1
PAF509CI
PAB52A1
POF53E]
PAASAAL
PFAS5E]
AAB5721
BABSAAL
BOASF8I
PRG6AAL
POBE101
PPP63A1
PAA6541
20066CI
PON6841
2eR6961
PARBACI
PIP6B8I
PAPBE2]
PRAEFAI
PAB70R1
RAB7121
RAF73CI
BAP7541
PAP7621
RAR7921
Pa@7BCI
RARFTCEI
PRG7EM]
POATFAI
PaP80A8I

OO00O0O00O0

19

33

34

SUBROUTINE MAT (B,A,M,N,ND,ZERO,D,IRANK)
DETEPMINANT AND INVERSE
METHOD IS DOUBLE PIVOTTED GAUSSIAN ELIMINATION.

CALCULATES RANK,

* % %k

17/82/83

SEE DOCUMENTATION PACKAGE,

2A831158
2e31168
BOR3L17E

B IS A M BY N MATRIX STORED IN ND BY N MATRIX IN CALLING ROUTINE. 20831188

IRANK IS RETURNED AS RANK(B)

D IS RETURNED AS DET{(B) j

IF M=N A IS RETURNED AS (B.INVERSE)
ZERO IS USED TO TEST RELATIVE PIVOT SIZE.

A IS USED AS WKG/STOR.

20031197
DOF3120%
PRB3121%
pRO3122%

IF S/R USED BY RECURSIVE ROUTINE SET IPRNT=@ TO SUPPRESS PRINTING.Q@03123f

REVERSE THE FOLLOWING 2 CARDS TO OBTAIN
IMPLICIT REAL*8(A-H,0-Z)

DIMENSION A(ND,N)

DIMENSION ISWCH (180).JSWCH(109)

ABS{Q)=DABS(Q)
NSW=108

IPRNT=1

IPRNT=#

IRANK=#&

D=1.

IF{(M.NE.N) D=g.
DO 14 I1=1,M

DO 18 I2=1,N
A(Il1,I2)=B(I1,12)
DO 1 I=1,NSW
ISWCH(I)=g¢
JSWCH{I1)=#¢

MM=M

IF{(N.LT.M) MM=N
DO 2 I=1,MM
AMAX=0 .0

DO 3 11=1,M
DO 4 I2=1,N
IFCISWCH(I1
IF (ABS{A(I
IPIVOT=I1
JPIVOT=12
ABIG=A(I1,1I2)
AMAX=ABS{ABIG)
CONTINUE
CONTINUE
D=D*ABIG

IF{I.NE.1) GO TO 33

BMAX=AMAX

IF({AMAX.LE.ZERO).AND.{M.EQ.N)) GO TO 999
IF{AMAX.LE.ZERO) GO TO 99

GO TO 34
CMAX=AMAX/BMAX

IF({CMAX.LE.ZERO).AND.{M.EQ.N)) GO TO 999
IF{CMAX.LE.ZERO) GO TO 99

IRANK=TRANK+1

APIVOT=1.8/A(IPIVOT,JPIVOT)
A(IPIVOT,JPIVOT)=APIVOT
ISWCHUIPIVOT)=JPIVOT
JSWCH{(JPIVOT)=IPIVOT

DO 5 Il=1,M
DO 6 I2=1,N

IF{I1.EQ.IPIVOT.OR.I2.EQ.JPIVOT)

).NE.#.OR.JISWCH{I2).NE.P) GO TO 4
1,12)).LE.AMAX) GO TO 4

THE REAL*4 VERSION.

oPR3124L
2OH31254
oRe31278
PRF31288
PIA3126%
oIpa31298
vOA31308
gO031318
ABA31328
PRF3133L
POB3134L
29031350
ARE31360
PIA31378
PeP3138L
oRF31392
PRF31ADL
POP31410
PRB3LA2H
oER31434
POO31440
PAB31458
PIA31460
RAN3L479
20F31488
POF31498
20B31508
2931518
oee3152%
PAB31534
PIB31548
eF31550
6RA31568
PRA31578
PAY31580
PAR3159%
021602
PRB3161E
PRR31628
PIA31634
LRA3164AR
PAB3L65L
AIB31668
0AB31679
PAF3I168L
o2AB31697
0RB31708%
PRF31T71#

16:58:18 PAGE

4382
484
485
486
A87
488
489
A9F
491
492
493
494
495
496
497
498
499
Sg
501
502
503
504
585
506
507
508
509
510
511
512
513
514
515
516
517
518
519
528
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

FA-121M99,

1/




FORTRAN-VIID RE5-99.09

FORTRAN VIID:

101
192
193
194
105
196
187

PEE2321
2ZE2CAI
PRRCEZ]
SAM3FAL
AAGIGE]
2AEI261
oBBI741
27@98CI
ZARIALR]
22p9B8l
BABAGE ]
22OA261
ROAA3E]L
LIBABAT
AeAA981
PARAACI
PIFACAI
BRABADCI
DARAF Q1
POOB1AL
2OAB621
2eAB8CI
POGBAAL
ARZBB6I
ARGBCEL
PAPFBEST
PEGBEAI
AFFBFCI
RAEAC1A1
BAABC2E]
PERCAR]
PABCSAI
BARCTE]
gapCcCel
PRARCFAI
2a0DA8I
PROD1AI
29AD321
AoPDAAT
2APDABI
PRADEAI
2eeD66 1
RABD721
BOIDALI

PIBEGAL

RORETA]
PAPET6]

LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-92013
ACTL,I2)=A(I1,I2}-ACIPIVOT,I2)*A(I1,JPIVOT)*APIVOT

6
5

179

175
99

11

88

77
12

44

55
771
999

901

124HFIRST AND LAST PIVOTS
21PE13.3)

209 FORMAT(5X,7HRANK OF,I3,3H BY,I3,1@8H MATRIX IS,I3,5X,
124HFIRST AND LAST PIVOTS --,1PE19.3,1PE14.3,5X,15H ** SINGULAR **)0@@3219¢

CONTINUE

CONTINUE

Do 179 11=1,M
IF{I1.EQ.IPIVOT) GO TO 17#

A{I1,JPIVOT)=A{I1,JPIVOT)*APIVOT

CONTINUE
DO 175 J1=1,N
IF{(J1.EQ.JPIVOT) GO TO 175

A(IPIVOT,J1)=-A{IPIVOT,J1)*APIVOT

CONTINUE
CONTINUE

IF(IPRNT.EQ.1) WRITE(6,901)M,N, IRANK,BMAX,AMAX,D

IF{M.NE.N) GO TO 771

Do 77 I1=1,M .
IF{ISWCH(I1).EQ.I1) GO TO 77
K=ISWCH(I1l)

DO 88 J=1,M

TEMP=A(I11,J)

A(I1,d)=A{K,dJ)

A{K,Jd)=TEMP

CONTINUE

ITEMP=ISWCH(Il)
ISWCH{I1)=ISWCH{K)
ISWCH{(K)=ITEMP

GO TO 11
CONTINUE

DO 55 1I=1,
IF (JSWCH(I
K=JSWCH(I)
DO 44 J=1,M
TEMP=A(J,1)
A(J,I1)=A(J,K)
A(J,K)=TEMP
CONTINUE
ITEMP=JSWCH(I)
JSWCH{1)=JSWCH{K)
JSWCH{K)=ITEMP

GO TO 12

CONTINUE

RETURN

D=#4.

M.
).EQ.I) GO TO 55

WRITE(6,208) M,N, IRANK,BMAX,AMAX
FORMAT(5X,7HRANK OF,I3,3H BY,I3,18H MATRIX IS,I3,5X,
--,1PE19.3,1PE14.3,5X, 14HDETERMINANT --, 0003216%

RETURN
END

NO ERRORS:F7D R@5-@0.08 SUBROUTINE MAT
STATEMENT BUFFER:

2@ LINES/1321 BYTES
DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

17/82/83
STACK SPACE:

D-13

183 WORDS

% X %

’

TABLE SPACE:

17/82/83

SEE DOCUMENTATION PACKAGE,

0oE3I172%
gL
BAZANTAL
2@03175&
AER3LT6E
AR 7L
BAR3LTBE
209831728
£oa31808
oRB2181L
29@31828
20@3183%
SOA318442
oAB3185%
20931868
2AA31872
02031887
20F31898
oRA3190E
PPF3191%
pRR31929
PEA3193L
PeR31948
AEA3195L
AEA31968
PoR31978
PRII198L
PRA31994
DIR3209%
PIA32818
PER3I2028
POR3IZ2A3L
PRB3I2HAHL
PARI2959
LRA320648
pRB3I20T7 Y
RABIZABL
BOBI2N9%
PBR3219%
PAB32118
2PA32128
PAA32134
PRR321AKL
ABA32158

nAR32178
oPR32188

DoR3220%0
pRB2219

3 KB
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548
541
542
543
544
545
546
547
548
542
568
551
552
553
554
555
556
557
558
559
568
561
562
563
564
565
566
567
568
569
574
571
572
873
574
575
576
577
578
079
584
581
582
583
584
585
586
587
588
589
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FORTRAN-VIID REZ5-00.02%9
FORTRAN VIID:

W00 NOUT & W N =

PROERA]

PRRBAAT
PANABAL

PARFAAIL
PORBAAL
PRYRAAIL
BOFIACIT
PAF1141
geg11Cl
2091261
20851321
POF13E]
2EA1461
2AB15A1
PAP16E]
PeA1C8I
oap1DCI

PAR21E] -

PoP2301
29082481
PRP25CI
002781
B8OF27CI
DoR2981
PoB30821
PAPI3BEI
PAP3A21
PRI3B6I
RAPAB8I
PAF49CI
PARABA]
29051C1
PAF5B8I
PeR61a1
PAB6241
PIP6381
2006441
POI6581
PAA6CAI
PPB71E]
ROF7321
POFTAAL
PABTFAL
22983CI
POF8BAI

. Bag8C21

2998D81
PRABECI
PRA9RA1

LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-2#413 ***x SEE DOCUMENTATION PACKAGE,
SUBROUTINE LYAPUN (A,C,Q,WS1,N,NDIM,T) SRAINLOE 532
C 2OR3ENTE 591
C SOLVES THE LYAPUNOV EQUATION : A’Q + QA + C = @ PAAELEE 592
c ZepAX19 593
c CALLS S/R MAT FOR MATRIX INVERSION PEAIG2RE 594
c TYPICAL STEP-SIZE = 1.E-4, 1.E-7 FOR WIDE SPREAD OF EIGENVALUES@Q@3221f 595
c : oaA3E22% 596
IMPLICIT REAL*8{A-H,0-Z) ARA3IF23L 597
DIMENSION A{NDIM,N), Q{(NDIM,N),C{NDIM,N),WSL{NDIM,N) P0P3228K 598
c-1 JMUS{DNR=)YMUS{BIO3F26L 599
c-1 YX(ELBD=)X{BORG3L27¢ 6ay
DOUBLE PRECISION SUM ROR3X29% 601
LOGICAL FLAG PIA3N3ICL 602
DUB{X)=X gOR3F24% 6083
RD(SUM}=SUM POA3F25Y 64
FLAG=.FALSE. PPO3H3LL 695
MAXIT=40 PROINI2L 606
ZERO=1.E-12 RRB3H3I3L 697
ERR=1.E-12 POF3AIAL 608
KK=-1 PRFIFISL 689
5 DO 1# I=1,N PAB3DI6L 614
po 1# J=1,N ARB3IFITA 611
19 WS1(I1,J0)=0.0 POG3A3IBL 612
DO 11 I=1,N PEB3N3Y 613
11 WSi(I,I)=1.@ ROFITAAE 614
Ti=@g.5*T POO3AALY 615
T2=T1*T/6.8 POY3NA2H 616
DO 2@ I=1,N POR3AA3L 617
DO 2/ K=1,N POBILALY 618
SUM=9.0D% PAB3LASL 619
DO 15 J=1,N POB3A6L 620
15 SUM=SUM+T2*A(I,J)*A{J,K) POR3VATE 621
2@ WS1{(I,K)=WS1{I,K)+RD{SUM) 20937488 622
DO 21 I=1,N PIBIGAL 623
DO 21 J=1,N PANIHERY 624
21 A{(I,J)=RD{DUBI{TI1)*DUB(A(I,Jd))) AOB3AS1L 625
DO 24 I=1,N PAAINE28 626
DO 24 J=1,N PIB3B53L 627
Q{I,Jd)=WS1(I,Jd)-A(I,J) PORF5AL 628
24 WS1(I1,J)=WS1(I1,J)+A(I,J) PRI3IN55L 629
CALL MAT(Q,Q,N,N,NDIM,ZERO,DET, IRANK) PIA3AS6H 634
DO 28 I=1,N POB3IASTH 631
DO 28 J=1,N 2a03A5847 632
SUM=9. PRR3IFSY 633
DO 26 K=1,N PAR3IVCRA 634
26 SUM=SUM + Q{I,K)*WS1(K,J) pAA3LELA 635
28 A{I,J)=SUM NIB3E6e2H 636
DO 397 I=1,N AOB3IF63H 637
po 39 J=I,N PAA3DGAL 638
C{I,J)=RD{DUB{T)*DUB{(C(I,J))/3.) POI3A658 639
Q{I,J)=C(I,J) PIB3B66L 640

3¢ Q(J,I1)=Q(I,J) POI3IVCTL 641 -

49 KK=KK+1 PIB3FEBY 642
IF (KK.EQ.@) GO TO 8# PRA3IN69M 643
DO 65 I=1,N PoA30708 644
DO 65 K=1,N PAR3AT 1A 645
SUM=0.0D0 pAB3IAT2H 646

17/82/83

16:58:18 PAGE

ZA-181M99.
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FORTRAN-VIID R@5-92.02

FORTRAN VIID: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-9913

58 Qpe@9ACI
59 Q299291
G#F ALe98CI
61 QEP2E6I]
62 QOAVIFAI
63 LALANEI]
64 QOBA86I
65 QOPAIAI
66 REPAAEI]
67 PEAABAI
68 QAEBACEI
69 Q2ZOB3AI
79 BEPBI4I
71 Q@ALBABI
72 QRABCHI
73 Q2ABCCI
74 QOABEAI
75 QORCACI
76 Q@RC78I
77 WPAPCSEI
78 @OACES8I
79 QAMCEE]
8¢ @ALAD3CI
81 QPPD6CI
82 PAYD7EIL
83 WQUADI96I
84 QOPDAAI
85 QOADC2I
86 QAEUAE3AI
87 QUREA2]
88 QRPEAGI
89 QOIPESAI
99 RAPPET21
91 @OPEDEI
92 PPPF561
93 WPABFBEI
94 QOAF88I
95 QPAFAS8I

64
65

79
82

90
95

128
737

195

110

129

139

149

250
77

96 QOAFAEI 8765
97 RAAPFERI 9308

98 QL1141

DO 64 J=1,N
SUM=SUM+A{T,J)*A(J,K)
WS1(I,K)=SUM

DO 78/ I=1.N

DO 74 J=1,N
A{1,J)=WS1(I,d)

00 95 I=1,N

DO 95 K=1.N

SUM=90.0D8

DO 94 J=1,N
SUM=SUM+Q(I,J)*A{J,K)
WS1(I,K)=SUM

DO 11# I=1,N

DO 11@ K=I,N

SUM=@.2D#

DO 19€ J=1,N
SUM=SUM+A{J,I)*WS1{J,K)
IF(DABS(SUM).GT.ERR) FLAG=.FALSE.
IF (KK.GT.#) GO TO 1@5
Q{I,K)=2.0*{(Q(I,K)+2.8*SUM)
GO TO 11#
Q{I,K)=Q(I,K)+SUM
CONTINUE

IF (FLAG) GO TO 13¢
IF{KK.GT.MAXIT) GO TO 139
DO 12¢ I=1,N

DO 120 J=I,N
Q{J,I1)=0(I1,d)

FLAG=.TRUE.

}=-C{(I1,J)
Q(J,1)=0 )
IF(KK.LE.MAXIT) GO TO 77
WRITE(6,9309)
WRITE(6,8765) KK
RETURN

% % v
’

FORMAT{ 43X,22HEXIT FROM LYAPUN AFTER ,I3, 11H ITERATIONS

FORMAT(/,10X,501H*),26H NO CONVERGENCE IN LYAPUN

END

»5(1H*),/)

.

17/82/83
SEE DOCUMENMTATION PACKAGE,
ORA3FT N 647
OOR3RTAL 648
OOA3LTRE 642
BRABLTIRE 558
Cagg77e 651
ooUA30788 652
PIRILTIR 653
AAAINEEL 654
29930814 655
POR3L82L 656
RAPIZFB3L 657
POO3LBAL 558
PAG3ILBEL 659
PIA3FBET 668
BoR3L87L 661
AIB3IN3BLY 662
PeA32894 663
2OR30L 664
RAA3A1Y 665
PAR3LI2H 666
RAB3IHI3L 667
PAF3IAIAY 668
PRAR3BISH 669
oBA3LI6L 678
PAY3INOTH 671
PAB3TIBL 672
20R39994 673
PRFINRAY 674
PIA31L1L 675
pAR31820 676
PIR31A38 677
POB31GAL 678
29031058 679
0210680 680
PAR31878 681
POF3108L 682
PRA31I9L 683
pOF31 104 684
PRF31118L 685
9oB31120 686
ARFILL 3L 687

/)

WARNING # 371 Ye Je v Yo e e e o ok B ke v ok vk ok e vl e ol e S o ol vl vl o o o ke ke o e ke e ok e Y e e ok v o de e o Vi ke o T Y Y ok o Sk i v ok vk Y ok dle e v ok ok e ok vl ok ke e ok

>>> UNREFERENCED LABEL e

5

737 250

NO ERRORS:F7D R@5-20.49 SUBROUTINE LYAPUN 17/#2/83 16:59:31

STATEMENT BUFFER:

2@ LINES/1321 BYTES

STACK SPACE:

214 WORDS

DOUBLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION

D-15

TABLE SPACE:

4

KB

<L

16:58:18 PAGE

FA-101M99.
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FORTRAN-VIID ROS5-99 .00

FORTRAN VIID:

WONOUT & WN -

20020801

2AAAN41
RARBAAL
PORORAL
DIOOBAL
BAGAIAL
2992561
PeP2781
PEA28E]
POF2A81
PIA2BCI
PIA36CI
PeP3881
PAIP39CI
DeR4AACI
PYAA4A5CI
004701
PODAAAT
PAGAC21

oeeADEI -

POPAEAT
2RA52C1
POG5401

ABASB8I
PIA5CCI

PPASEBI
PIASF41

2006601
PAR6761
POA6901
PRF6A41
PRI6D41
PAB7541
2097DCI

27985C1
POR8641
PO@86E]
20098821
PIRBAL]
PPABACI
PPP8BE]
2998D61
PPIABEE]

20892C1

LICENSED RESTRICTED RIGHTS AS. STATED IN LICENSE CL-9913
SUBROUTINE SETPOL(A,B,F,POLZ,N,M,ND,ZERO,JGUD,NSET,R,U,V)

OO0O00O0O00O0

C

19

191

c-2

c-2

c

195
187

119

--- CALCULATE FEEDBACK GAINS, CHOOSE THE LOWEST =---

POLE-ASSIGNMENT FOR PAIR(A,B) ...

RESTRICTION: ASSIGNMENT IS ALONG REAL AXIS ONLY.
CONTROLLABLE MODES ARE SET TO {(POLZ)
NSET POLES ARE ASSIGNED,
NSET .LT. @& PRODUCES DETAILED PRINTOUT
JGUD SET = 1 IF ASSIGNMENT IS SATISFACTORY

WORKING STORAGE IS R, U, V

DIMENSION A(ND,N),B{(ND,M),F{ND,N),POLZ(N)
DIMENSION VR{2#),VI{(20),IANA(29),VB(20),FM{20)

DIMENSION R{ND,N},V{(ND,N),U{(ND,N)
DOUBLE PRECISION VB,S
MSET=IABS{NSET)

WRITE(6,901) MSET,N

IF(NSET.GT.®) GO TO 5
WRITE(6,902)

po 3 I=1,N

WRITE(6,922) (A(I,J),Jd=1,N)
WRITE(6,966)

DO 4 I=1,N

WRITE(6,922) (B(I,J),d=1,M)
RYTMAX=POLZ{1)

DO 6 I=1,MSET
IF(POLZ{I).GT.RYTMAX) RYTMAX=POLZ(I)

CONTINUE

DO 14 I=1,N

Do 9 J=1,M

F{(J,1)=2.

DO 1@ J=1,N

R{J,I)=A(I,d)

SET POLES 1 MODE AT A TIME ---
DO 504 MO=1,MSET

WRITE(6,966)

GET EIGENVALUES AND LEFT EIGENVECTORS OF (A+B*F) ---

T1=24.
CALL EIGENP(N,ND,R,T1,VR,VI,V,U,IANA)
IF(NSET.GT.#) GO TO 107

WRITE(6,908)
DO 185 J=1,N

IF{IANA(J).EQ.@) WRITE(6,909)
WRITE(6,918) J,VR{J),VI(J),IANA(J)
WRITE(6,905) (POLZ(I), I=1,MSET)
WRITE(6,983)(VR{I),I=1,N)

--= FIND RIGHTMOST POLE ---
MM=1
RYT=VR(1)

DO 119 I=2,N
IF(VR{I).LT.RYT) GO TO 11#
MM=1

RYT=VR {MM)

CONTINUE

IF(RYT.LT.RYTMAX})} GO TO 311
WRITE(6,9300) MM,POLZ{(MO)

DO 21# J=1,M

D-16

RIGHTMOST FIRST

25/84/83 12:91:946 PAGE
*%*%, SEE DOCUMENTATION PACKAGE, @4-1@1M99.
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FORTRAN-VIID RO5-00.0¢2

FORTRAN VIID:

PONAAS]
Fa@3521
£R9661
QAAAL21
DOBANAT
200A161
REOAZAL
DORAT21
PAIATE]
2IRNABAI
PAIAD21
20PB641

LORB7CI
2AMBCEI
2AABDAI
aeeCc1ILl
298C7CI
PeHDACI
pEAD121
ABRDAAL
IRGDAAT
29@D6AI

POYDBAI
E@@OD7E]
2990921
PAZODOEI
929DB21
ROBE2AI
PEFESHI
PARFR8I
PEAF201

2ORF38I
RIGF541
CaRF68I
212181
2A102E]
2910431
AA1A5CI
AP110CI
P211141
2@112C1
BR11481

P@11541
AA11CHI
2312481
P@12C81
PP13481
213601
PA13741
P2139A1
P213B21
2@13CCI
2213021

LLICENSED RESTRICTED RIGHTS AS STATED IN LICENSE CL-£013

VB{J)=4.
DO 218 I=1,N
219 VB{(J)=VB(J)+V{I ,MM)*B(I,J)
JJi=1
VDB=#.
Do 2284 J=1,M
IF{DABS{VB{J)).LT.VDB) GO TO 22#
Jd=J
VDB=DABS{VB(JJ))
227 CONTINUE

IF{NSET.LT.@.) WRITE(6,917) (VB(J), J=1,M)

IF (VDB.LT.ZERO) GO TO 341
C =--- MODE MM IS CONTROLLABLE ---
FHAT={POLZ{MO)-VR{MM))/VB{(JJ)
DO 246 I=1,N
FM{I)Y=FHAT*V{I MM}
246 F(JJ,I1)=F(JJ,1)+FM{I)

IF(NSET.LT.#) WRITE(6,919) (FM{(I},I=1,N)

GO TO 459
391 WRITE{(6,9200) VRIMM)
GO TO 450
311 WRITE(6,9400)
GO TO 459
C =--- GET NEW {(A+B*F)TRANSPOSE ---
459 DO 455 I=1,N
DC 455 J=1,N
S=@.D&
DO 453 K=1,M
453 S=S+B(I,K)*F{K,J)
V{I1,J)=S+A(1,J)
455 R{J,I1)=V(I,J)
IF(RYT.LT.RYTMAX) GO TO 602
502 CONTINUE
C --- CHECK POLE ASSGINMENT ---
602 WRITE(6,912)
po 512 I1=1,M
512 WRITE(6,922) (F{I,J),Jd=1,N)
IF{NSET.GT.®) GO TO 514
WRITE(6,913)
DO 513 I=1,N
513 WRITE(6,922) (V{I,J),Jd=1,N)
514 JGUD=1
IF{(RYT.LT.RYTMAX) GO TO 625
WRITE(6,966)
Ti=24.
c-2
CALL EIGENP{N,ND,R,
WRITE(6,985) (FOLZ(
WRITE(6,903) (VR{I)
WRITE(6,904) (VI(I)
IF(MSET.LT.N) GO TO 62
Do 618 I=1,N
IF(VR(I).GT.RYTMAX*.9) GO TO 629
612 CONTINUE
625 WRITE(6,967)
RETURN
629 JGUD=4

T1, V,U, IANA)
I, ET)
’I=
1=

’
’

v
I
1
1
5

D-17

o v %

,

25/84/83 12:81:96 PAGE
SEE DOCUMENTATION PACKAGE, 24-101M99.
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FORTRAN-VIID R@5-99.00

FORTRAN VIID:

115

136
137
138

WARNING # 301

NO

AF13DAI
2@13DEI

2014681
PRU148E]
PA14B61
AP14DEI
015021
2315321
2015581
PA156EI
P2158E1
P@15B81
PA15E41
PO16QE]
PA16201
P0162CI
2016561
2216841
2@16ACI

PA16FAL

c

% vk v e e e vk ok ok ek vk vk o o vk 3 ok e o ok Sk gk ok ok ok D e ke gk o ok Sk SR 9k o o Sk Sk Tk 9k ok ok O e ok v o S 3 3k e S v v Y o e vl v ok e ok o Y o ok ok o v ok %k

GO TO 625

LICENSED RESTRICTED RIGHTS AS.STATED IN LICENSE CL-9#13

901 FORMAT(//,1X,125(°**), /20X ,'SETPOL :°’,18X, POLE-
*ASSIGNMENT OF*,’ CONTROLLABLE MODES °,//
*,30X,’SET’,13,’ MODES OF',I3,’-TH ORDER SYSTEM’,//)
FORMAT (20X, ’SYSTEM MATRICES :A AND B’,/)
FORMAT(2X, 'REAL PART OF SPECTRUM :’,18F9.3)
FORMAT(2X, ' IMAG PART OF SPECTRUM ':’,18F9.3)
FORMAT(/,5X,’DESIRED POLES :’,5X,10F9.3)
FORMAT{ 10X, ’EIGENVALUES : REAL AND IMAG. PARTS :’)
FORMAT(68X,1@(°**’), REAL PART NOT FOUND’)
FORMAT(15,5X,1P2E20.8,118@)

FORMAT(/,20X, 'FEEDBACK MATRIX F’,/)
FORMAT(//,28X,’CLOSED-LOOP MATRIX (A+B*F)’,/)
FORMAT(2X,’B-TILDA ROW :’,1P1@E11.3,/15X,1P1PE11.3

992
9083
904
905
908
999
914@
912
913
917
919
922
966
967

9308
9408

FORMAT(5X, *FEEDBACK
FORMAT{5X,1P1QE11.3)
FORMAT(//,1X)

:*,1P19E11.3,/,15X,1P1PE11.3)

FORMAT(//,28X, EXIT FROM SETPOL’,/,1X,125(’**),//)
9208 FORMAT(40X,28(’="), MODE UNCONTROLLABLE :’,F2@.4)
FORMAT(/,5X,*ASSIGNING MODE’,I3,°’TO’,F18.5, ' --~--=
FORMAT(/,2@X,*ALL POLES ARE LEFTWARD OF RIGHTMOST

*DESIRED. POLE*,/?)
END

>>> UNREFERENCED LABEL

ERRORS:F7D

191

STATEMENT BUFFER:
SINGLE PRECISION FLOATING PT SUPPORT REQUIRED FOR EXECUTION
DOUBLE PRECISION FLOATING FPT SUPPORT REQUIRED FOR EXECUTION

20 LINES/1321 BYTES

STACK SPACE: 186 WORDS

D-18

)

RO5-00.P% SUBROUTINE SETPOL 25/04/83 12:9§3:49 TABLE SPACE:

12:93:33
*%%, SEE DOCUMENTATION PACKAGE, @4-181M99.



TABLE 1.1 PERFORMANCE LIMITS [1]

Degree of Performance limits

freedom Position Velocity Acceleration

Horizontal x Forward 1.245 m +0.610m/sec +0.6g
Aft 1.219 m

Lateral y Left 1.219 m +0.610m/sec +0.69g
Right 1.219 m

Vertical z Up 0.991 m +0.610m/sec +0.6g
Down. 0.762 m

Yaw ¥ +32° +15 /sec +50 /sec

Pitch 6 +30° +15 /sec +50 /sec

-20°
Roll ¢ +22° +15 /sec +50 /sec




~

TABLE 6.1 Least relative negative overshoot of §C,§C,Ec

1) The linear washout filter

case NO. 1 2 3 4

-0.22 | -0.32]-0.46] -0.12

2) The adaptive washout filter

case NO. 1 2 3 4
channel a b a b a b a b
Longitudinal -0.347] -0.53 | -0.39| -0.64 | -0.33}| -0.46 | -0.28} -0.36
Lateral -0.6 -0.82 | -0.46| -0.63 | -0.35] -0.62 | -0.27| -0.45
Vertical -0.31 | -0.45| -0.37{ -0.31] -0.23} -0.25 | -0.29| -0.28

3) The nonlinear optimal washout filter

case NO. 1 2 3 4
ehanpel a b a b a b a b
Longitudinal -0.16| 0.0} -0.02}| -0.03} 0.0 0.0 0.0 0.0
Lateral -0.17] -0.2|-0.15| -0.17] -0.15 {-0.18] -0.17 | -0.2
Vertical -0.12| -0.2 | -0.11}| -0.2 | -0.1 |-0.19| -0.12 | -0.17
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Figure 3.1 DEFINITION OF COCKPIT-FIXED FRAME F.
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FIGURE 4.1 BLOCK DIAGRAM OF LINEAR WASHOUT FILTER [1]




|

INITIAL POINT
LOCAL MINIM

7S

" '
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