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Measuring Image Resolution in Ultrasound
Localization Microscopy

V. Hingot , A. Chavignon , B. Heiles , and O. Couture

Abstract— The resolution of an imaging system is usually
determined by the width of its point spread function and is
measured using the Rayleighcriterion.For most system, it is
in the order of the imaging wavelength.However, super reso-
lution techniques such as localization microscopy in optical
and ultrasound imaging can resolve features an order of
magnitude finer than the wavelength. The classical descrip-
tion of spatial resolution no longer applies and new methods
need to be developed. In optical localization microscopy,
the Fourier Ring Correlation has showed to be an effective
and practical way to estimate spatial resolution for Sin-
gle Molecule Localization Microscopy data. In this work,
we wish to investigate how this tool can provide a direct
and universal estimation of spatial resolution in Ultrasound
Localization Microscopy. Moreover, we discuss the concept
of spatial sampling in Ultrasound Localization Microscopy
and demonstrate how the Nyquist criterion for sampling
drives the spatial/temporal resolution tradeoff. We mea-
sured spatial resolution on five different datasets over
rodent’s brain, kidney and tumor finding values between
11µm and 34 µm for precision of localization between
11µm and 15 µm. Eventually, we discuss from those in vivo
datasets how spatial resolution in Ultrasound Localization
Microscopy depends on both the localization precision and
the total number of detected microbubbles. This study aims
to offer a practical and theoretical framework for image
resolution in Ultrasound Localization Microscopy.

Index Terms— Ultrasound localization microscopy,
Fourier ring correlation, temporal and spatial resolutions,
Nyquist criterion.

I. INTRODUCTION

THE classical definition of the resolution of an imaging
system is its ability to distinguish close objects and is

usually derived from the system’s Point Spread Function (PSF)
using the Rayleigh criterion [1]. Because of diffraction,
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the width of the PSF is usually limited to the order of the
imaging wavelength and the resolution as defined with the
Rayleigh criterion is limited to half the imaging wavelength.
Localization based methods like Single Molecule Localiza-
tion Microscopy (SMLM) in optics [2]–[4] and Ultrasound
Localization Microscopy (ULM) in ultrasound [5]–[10], differ
from conventional imaging, they rely on the subwavelength
localization of individual and punctual sources. This allows
a resolution improvement far beyond the PSF based resolu-
tion limits and creates a need for new methods to measure
resolution.

The precision at which microbubbles (MB) could be local-
ized was first used as an indicator of resolution. The first
studies primarily compared the distribution of the localizations
with the width of a tube with flowing MB to estimate this
localization precision [8], [11]–[13]. Other studies proposed a
maximum localization precision based on the uncertainty of
time of flights using the Cramer Rao lower bound [14] or by
estimating the mean error of the localization algorithms [15].
However, it was later demonstrated that the resolution of the
imaging system alone was insufficient to describe the resolu-
tion of images as motion artifacts [16]–[18] and acquisition
times [19], [20] were equally important in ULM.

Several methods were proposed directly on the final images,
to account for image resolution in the sense of finding the
smallest separable features. For instance, it was proposed to
analyze features directly on images, and define the resolution
using statistical considerations on a vessel profile [3] or the
separability at a bifurcation [21]. Although they are technically
adapted for in vivo imaging, they rely on a crucial step
of selection and segmentation which in itself can introduce
heavy biases which limit their application and generalization.
Moreover, the vasculature is usually complex and tortuous and
therefore misrepresented in 2D.

In this study, we wish to build on this previous characteri-
zation of the resolution and to provide both practical and the-
oretical tools to describe resolution in ULM. The first concept
we want to introduce is the Fourier Ring Correlation (FRC)
to measure the resolution derived from the consistency of
the spatial frequency content. The second is the notion of
spatial sampling and the necessity to acquire enough samples
to ensure adequate coverage of the image. Indeed, localization
microscopy is not a conventional imaging method but rather a
digital sampling and the issues of spatial resolution are tightly
associated with the Shannon/Nyquist theorem. With those two
notions, we propose two approaches to spatial resolution for
ULM, a practical measure based on the FRC, and a theoretical
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TABLE I
INJECTION AND IMAGING PARAMETERS FOR ULM IN THE DIFFERENT RODENT DATASETS

model based on both the localization precision and on a typical
sampling length. This length is the Nyquist dimension and
represents the quality of the spatial coverage by the detected
positions of the MB.

The localization error is the average precision δLoc at which
MB can be localized on the images. It depends on many factors
including signal to noise ratio, efficiency of clutter filters and
precision of the localization algorithms. As the dimensions
of the PSF for our acquisitions is similar in both directions,
we consider axial and lateral localization error to be similar
and combine them in a single average error. It is an ultimate
limit for the resolution.

Although it is still debated whether the refreshing rate of
MB can be described as a deterministic process based on
microvascular flow [19] or a probabilistic process described
by a Poisson’s distribution [20], [22], [23], it is consensual
that a large number of samples is required to reach super
resolution. This is best described with the Nyquist/Shannon
sampling theorem stating that structures finer than twice the
Nyquist dimension δNyq defined in (1) can’t be appropri-
ately reconstructed [24], [25]. It is the maximum resolution
obtainable when the whole vascular space is explored by MB.
Seeing that a pixel is considered complete when a MB has
been localized in it, we can consider that the size of a pixel,
otherwise seen as the distance between two neighboring pixels,
depends on the expected localized MB density ρ. Similarly to
Nyquist sampling theory, we can consider that the maximum
resolution attainable spatial frequency is half the normalized
density ρ1/κ , where κ = 1, 2, 3 the dimension in space. It is
measured on the whole image.

δNyq = 2

ρ1/κ
(1)

Spatial resolution R can then be modeled as the root mean
square of the localization error and the Nyquist dimension (2).

R =
√

δ2
Loc + δ2

Nyq (2)

Nonetheless, this definition allows for a synthetic character-
ization of the tradeoff between the spatial and acquisition time
as the Nyquist dimension is a direct function of MB detection
and therefore of the acquisition time.

A crucial question for image reconstruction is the choice of
the finest grid size that allows a meaningful representation of
MB localizations density map. We propose that this choice can
be motivated by the calculation of both the FRC curve and the
theoretical estimation of the resolution. We foresee that these
considerations on the resolution could help researchers better

understand their data and represent their images in richer and
more relevant ways.

II. MATERIAL AND METHODS

A. Animal Experimentation

In order to cover different imaging situations, we performed
this study on five different datasets. The first dataset for
ULM is the rat’s brain after craniotomy BrainInfusion [19]
that we chose to use here for general reference as it was
already published and is available upon request. During the
acquisition, MB were injected at a constant and slow rate
to ensure low and steady MB concentration. For comparison,
a second rat brain BrainBolus was imaged with MB injected
in a unique bolus. Acquisitions were also performed over a
mouse subcutaneous tumor and a rat’s kidney to produce a
third and fourth datasets Tumor and KidneyBolus. A fifth
dataset was produced from the rat’s kidney by applying motion
compensations strategies KidneyMoCo.

All experimental procedures were performed in accor-
dance with the European Community Council Directive and
approved by the institutional committee C2EA-59:” Comité
d’éthique en matière d’experimentation animale Paris Centre
et Sud” under the protocols 2015-23 and APAFIS # 16874-
2017122914243628 v9, and by the institutional committee
34 under the protocol APAFIS #25169-202008071746473.

Experimental procedures were thoroughly described
in [6], [19], [21]. Animals were anesthetized and a catheter
placed in the jugular vein. For the rat’s brain experiments,
a cranial window was carved to expose the naked brain which
was immediately covered with saline and acoustic gel. For
the rat’s kidney, a small incision was performed on the side
of the animal so as to allow the stabilization of the organ and
limit respiratory motions to the minimum.

B. ULM Acquisition Sequence and Processing

All the datasets were acquired on a Supersonic Imagine
ultrafast system using a 15 MHz probe (128 elements, 0.1 mm
pitch). Acquisitions sequences consist of sending a set of
compounded plane waves (PW) that are then beamformed
using a Delay and Sum method and saved every second. All
imaging parameters are summed up in Table I. No contrast
specific sequence was used. Frame rates are given after com-
pounding. Although they were not directly measured, the MI
of these acquisition are sufficiently low to no burst MB, and
should therefore be within FDA standards. On the beamformed
data, a combination of Singular Value Decomposition (SVD)
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Fig. 1. (a) ULM over the rat’s brain with bolus of MB reconstructed from BrainBolus. (b) ULM over the rat’s brain with infusion of MB reconstructed
from BrainInfusion. (c) ULM over the rat’s kidney with MB bolus injection reconstructed from KidneyBolus. (d) ULM over the rat’s kidney with bolus
injection and motion correction reconstructed from KidneyMoCo. (e) ULM over a mouse tumor with MB bolus injection reconstructed from Tumor.
Scale bar 1 mm.

filters (removing of the 10 first singular values per bloc
of 800 frames) and temporal Butterworth high MB signals
from surrounding tissue signal.

Individual MB were localized using a radial symmetry-
based algorithm and tracked using the simpletracker code
adapted from the Kuhn-Munkres algorithm for assign-
ment, which was developed for single particle tracking
(https://github.com/tinevez/simpletracker). MB whose track
was shorter than 20 points were discarded.

KidneyMoCo is similar to KidneyBolus except that motion
was compensated in a two steps frame to frame method using
affine registration on tissue low pass filtered as described
in [16]. For each bloc of 800 compounded frames, all the
frames were registered on the central frame of the bloc.
A second step consists in registering all the central reference
frames to allow the adequate registration for all the frames.

All tracks were interpolated to a 1 μm distance between
consecutive points and binned on 1 μm × 1 μm pixel grid as
showed on Fig. 1. The evaluation of the Nyquist dimension
was performed on the raw detection prior to this interpolation
step.

C. Fourier Ring Correlation to Measure the Resolution

The FRC is a method that can be directly computed from
the images, which makes it applicable to both in vitro and in
vivo situations. It provides a correlation criterion on the spatial
frequency content of the dataset to estimate the resolution.
It was first introduced in cryo-microscopy and proved to
be robust, independent of the imaging conditions and have
since then become a standard method in optical nanoscopy
and SMLM [26], [27]. FRC codes were adapted to ULM

data from https://github.com/bionanoimaging/cellSTORM-
MATLAB/. The original list of tracks is randomly split in
two form two sub-images Im1 and Im2. The correlation of
the spatial frequency content is calculated as the normalized
correlation of the two spectrum F1 and F2 along iso-spatial
frequency rings r (3).

FRC(r) =
∑

ring F1(r)F2(r)∗√∑
ring |F1(r)|2 ∑

ring |F2(r)|2
(3)

This creates a curve that starts at 1 for low spatial frequen-
cies that are evenly distributed in the dataset, before decreasing
and eventually tending to 0 for high spatial frequencies that
do not contribute more than noise with consistent information
on the final image.

To calculate the FRC curve as in (3), the list of tracks is
randomly split in two as in Fig. 2(a). The random assignation
is performed by taking odd and even numbered tracks. As the
number of tracks is high, the randomization method does not
affect the FRC method. The variation between random assig-
nations is less than 1 μm. Then, two independent sub-images
can be reconstructed from those two subsets as illustrated in
Fig. 2(b). The 2D Fourier transforms of these sub-images can
be calculated as in Fig. 2(c). The FRC can then be calculated
as the correlation of these two Fourier transforms along iso-
frequency rings corresponding to the colored circles.

The resolution can be derived from this FRC curve using
various thresholding methods thus defining the resolution as
the inverse of the spatial frequency where the FRC drops below
the threshold. Fixed threshold at 0.5 and 1/7 have been used
but more advanced methods seem to have taken their place in
SMLM.
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Fig. 2. FRC calculation for ULM (a). Reconstruction of all MB tracks
and separation in two equally filled subsets. (b) Reconstruction of the
two corresponding sub-images. (c) Calculation of the two 2D Fourier
spectrums. (d) Calculation of the FRC along iso-frequency rings and
measure of resolution as the intersection with the 2-σ curve.

The σ threshold curve computes the maximum spatial
frequency that allows a correlation higher than the noise
equivalent. The bit-based curves which computes the highest
spatial frequency that allows the collection of information
required to fill a half bit with signal [28], [29]. Images can
be decomposed into signal and noise. In the calculation of
the FRC for such a decomposition is a noise correlation term
which depends on the number of pixels N in the ring. Both
threshold curves depend on the number of pixels within the
iso frequency ring. It is common to use threshold curves
proportional to these curves, and we will focus here on the and
the 2σ and 1/2 bit threshold curves corresponding respectively
to a correlation higher than twice the equivalent noise level and
the information required to fill a half bit. The 2-σ (in green)
and 1/2 bit (in red) curves are displayed on Fig. 2(d) and
iresolution is determined as the intersection with the FRC
curve. A smoothing window of 10 points was used on the
FRC curve prior to resolution determination. In case two or

Fig. 3. FRC curve with the 2-σ and the 1/2 bits threshold curves
for the four datasets: (a) BrainBolus, (b) Tumor, (c) KidneyBolus, and
(d) KidneyMoCo.

TABLE II
RESOLUTION MEASURED BY THE FRC AND CALCULATED WITH

THE MODEL

more crossing can be observed, we always chose the one
corresponding to the lower resolution.

III. RESULTS

A. Resolution Measurements in Vivo

The FRC curves are presented in Fig. 3, start at 1 for
low frequencies and drop around zeros for higher frequencies.
Sharper looking images have FRC curves extending further
to the right, indicating that higher frequencies are present in
the dataset. The measured resolutions with the 2 threshold
criterions are presented in Table II.

An advantage of the FRC method is that it can also
be extended to its directional equivalent called the Fourier
Line Correlation (FLC). Instead of correlating the two spatial
spectrums on iso-frequency rings, it can be integrated along
a straight line orthogonal to a given wave vector as can be
seen on Fig. 4(a). This operation is repeated along all wave
vector of the 2D plane to reconstruct a complete FLC image
representing the consistency of the frequency content in a
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Fig. 4. Adaption of the FRC for directional resolution estimation for the
different datasets. (a) Principle of the Fourier Line Correlation calculation.
(b) Corresponding FLC representation in BrainInfusion, (c) BrainBolus,
(d) Tumor,(e) KidneyBolus, and (f) KidneyMoCo.

given direction as can be seen in Fig. 4(b) with the isolines.
The values of the FLC along the vertical and horizontal lines
enable the measurement of the axial and lateral resolutions as
for the final ULM image.

B. Localization Precision

The localization precision depends on multiple factors:
primarily on the accuracy of localization algorithm [15], [21],
the efficiency of the clutter filtering [30], but also on beam-
forming methods [31]–[33], and can also be heavily impacted
by the label density on each frame [19], [34] as it is funda-
mental that MB signals do not overlap.

Given that MB can be paired and tracked on sufficiently
long trajectories, we postulate that the localization precision
can be estimated as the average deviation of each MB along a
smoothed track. This smoothed track was obtained using the

Fig. 5. Estimation of the localization precision on in vivo data.
(a) Principle of track-based localization estimation in BrainInfusion.
(b) Localization precision estimated for all the datasets and represented
as a violin plot with the corresponding mean written on top.

smooth function from matlab which makes a sliding average
on 5 points, in axial and lateral coordinates. Indeed, we can
assume that the trajectories of microbubbles follow a relatively
smooth and straight trajectory of the blood flow, aside in
turbulent and heavily tortuous vascularization. MB tracks
that were shorter than 20 points were discarded in the
process.

This localization precision can be measured for all MB
tracks as described in Fig. 5(a) and the distribution of errors
can be represented as a violin plot as in Fig. 5(b). The
localization precision is then defined as the mean of this
distribution. Overall, the difference between datasets is only
of a few μm and seems to be convincingly in the order
of λ/10.

C. Temporal Sampling and Nyquist Dimension

A good spatial sampling is achieved with the acquisition
of enough MB to fill the whole image with fine enough
resolution.

Fig. 6(a) shows the instantaneous MB count, which should
be proportional to the intravascular MB concentration along
time. Fig. 6(b) displays the cumulative MB count representing
the total density of sample used to calculate the Nyquist
dimension. The total MB count is of several million of
detections for each acquisition. For all the data acquired as
boluses, the saturation curves in Fig. 6(c) show a more rapid
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Fig. 6. Temporal aspect of the different acquisitions in ULM. (a) Instan-
taneous MB count along time per bloc of 1s. (b) Cumulated MB count
in time. (c) Saturation curves corresponding to the total area covered
by MB detections on the image along time. (d) Corresponding Nyquist
dimension calculated as in (1).

growth but also quickly a plateau whereas the infusion has a
steadier and complete filling.

The Nyquist dimension is plotted for the different datasets
in Fig. 6(d). This Nyquist dimension is a direct representation
of the acquisition time as it is a direct function of MB
count, which is in itself a function of MB concentration and
acquisition time.

It is worth noting than in all the conditions, reaching the
10 μm mark took more than a full minute while it takes
longer and longer to reach for smaller Nyquist dimension.
Still, reaching small Nyquist dimension does not grant a high
resolution as the limiting factor is ultimately the localization
precision.

D. Fundamental Spatial/Temporal Resolution Tradeoff

To explore the link between the spatial resolution and
acquisition time, we can compute the resolution as measured
with the FRC calculated at different time points and represent
it as a function of the resolution we modeled in (2). Both the
resolutions measured with the 2σ (in green) and the 1/2 bit
(in red) thresholds are represented in Fig. 7. All the final
resolutions as measured and predicted can be found in Table II.
Globally, all curves are aligned around the first diagonal,
indicating an overall relevance for the modelisation, especially
for the two brain datasets in Fig. 7(a) and (b), where there is
no motion.

The resolution measured with the 1/2 bit threshold and the
2σ threshold seems to follow parallel temporal behaviors even

Fig. 7. Relation between FRC measurement of resolution and the
Nyquist dimension. (a) Theoretical representation of the resolution trade-
off with a curve following (2). (b)–(d), plotting of the FRC resolution for
different acquisition times represented as a function of the corresponding
Nyquist dimension in the different datasets. Points are separated by
2000 new detections.

though the 2σ is slightly but consistently smaller. In the other
datasets, the predicted resolution is strongly underestimated
as it does not account for motions. In the KidneyMoCo
dataset in Fig. 7(c), where motions were corrected, the pre-
diction is closer although still a little underestimated. For
the tumor in Fig. 7(d), the modeled resolution is slightly
underestimated.

All these examples demonstrate how the FRC and Nyquist
dimension can be used in practice to measure and predict the
resolution of an ULM acquisition.

IV. DISCUSSION

The FRC curve is a simple yet effective way to measure
spatial resolution in ULM. It provides a reading richer than the
localization precision or individual vessel segmentation as it
characterizes the final image in its globality. The FRC measure
does not depend on the imaging system, nor on the operator
but on the choice of the threshold. In optical nanoscopy,
the question of the threshold has long been debated and is
to this day still not consensual. The first studies proposed to
use fixed arbitrary thresholds at 0.5 or 0.2 although they have
been shown to overestimate the resolution [28]. The σ curves
and bit based methods where later introduced [28].

Nonetheless, the FRC is quite versatile and can be extended
in various ways. In particular, we showed that the FLC could
provide resolution estimated in all directions. It is important as
ultrasound imaging is often anisotropic. The FRC can also be
easily implemented in 3D by correlating along iso-frequency
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shells instead of rings, and is often refers to as Fourier Shell
Correlation (FSC).

Moreover, FRC is not really specific to ULM. For any
imaging modality that can produce two independent images
or two independent realization of a media/sample, the FRC
curve could be computed and should provide a resolution
measurement. In particular, it could be applied to ultrafast
Doppler or any imaging modality.

It is also important to keep in mind that the FRC is a tool
to estimate the resolution with advantages and drawbacks,
and in some conditions, it will underperform. For instance,
the measurement can easily be biased for very under-sampled
data or when strong and local artefacts appear. This can
create spurious correlations which may under or overestimate
the resolution reading. It can appear because of aliasing or
quantization errors, or because of some processing effects.
A good indicator of a clean measurement is to have a regular
FRC curve without strong and irregular peaks.

We also introduced a synthetic model for spatial resolution
that can be summarized with the localization precision and
the Nyquist dimension. It describes the resolution as the error
associated with the complete ULM process which is classically
the root mean square of all the sources of errors. Here,
we accounted for the localization error via the localization
precision, and a sampling error via the Nyquist dimension,
but the model could be extended to describe a motion-based
error, an aberration-based error, etc…

It should be noted than a hypothesis for the Nyquist
dimension is that the vasculature is considered homoge-
neous. If the vasculature is non-homogeneous, for instance
in the kidney, where the middle of the medullar area is
almost not vascularized, this can introduce an overestima-
tion of the Nyquist dimension and therefore of the modeled
resolution.

Still, this synthetic form allows for an expression of the
trade-off between spatial and temporal resolution in ULM as
the acquisition time is driving the Nyquist dimension.

V. CONCLUSION

In this study, we proposed a practical and theoretical
framework for the description spatial resolution in Ultrasound
Localization Microscopy. We adapted the Fourier Ring Corre-
lation to the field of ultrasound as a simple and general tool
to adapt the notion of resolution for localization microscopy
data, directly on in vivo images and independently of the
operator and imaging system. Because of its simplicity and
versatility, we foresee that the FRC can become a valuable
tool for ultrasound imaging in general as it can provide a
simple measure for image resolution not only for ULM but to
any imaging modality.

Moreover, the simplicity and generality of the model we
introduced can serve as a base for more advanced descriptions
of spatial and temporal resolution in ULM.
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