
Continuous state and action Q-learning
framework applied to quadrotor UAV control

A.E. Naruta
September 8, 2017

Fa
cu

lt
y

of
A

er
os

pa
ce

E
ng

in
ee

ri
ng

Continuous state and action Q-learning
framework applied to quadrotor UAV control

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

A.E. Naruta

September 8, 2017

Faculty of Aerospace Engineering · Delft University of Technology

Delft University of Technology

Copyright © A.E. Naruta
All rights reserved.

Delft University Of Technology
Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “Continuous state and action Q-learning
framework applied to quadrotor UAV control” by A.E. Naruta in partial fulfillment of the
requirements for the degree of Master of Science.

Dated: September 8, 2017

Readers:
Dr ir E. van Kampen

T. Mannucci

Dr ir Q.P. Chu

Dr ir B.F. Santos

Contents

1 Introduction 1

2 Paper 7

3 Reinforcement learning 27
3-1 Optimal Behavior Models . 28
3-2 Learning Performance Measurement . 29
3-3 Reinforcement learning methodologies . 29
3-4 Delayed reward . 30
3-5 Markov decision process . 31
3-6 Policy search using a model . 31
3-7 Value iteration . 32
3-8 Q-learning . 32
3-9 Sarsa . 33
3-10 Dyna-Q learning . 34
3-11 Double Q-learning . 34
3-12 Advantage Learning . 35
3-13 Discussion . 36

4 Continuous state and action Q-learning 37
4-1 Neural Networks . 38

4-1-1 Linear regression training . 39
4-2 CMAC coding . 43
4-3 Discretised generalisation and continuous state sampling 48
4-4 State scaling . 50
4-5 Encoded RBF-based neural net . 51
4-6 Discussion . 53

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

vi Contents

5 Optimization methods 55
5-1 Particle Swarm Optimisation . 56
5-2 Value function optimization using root-finding 58

5-2-1 Polynomial fit . 58
5-2-2 RBF fit . 60

5-3 Discussion . 61

6 UAV dynamics and control scheme 63
6-1 Model identification . 63
6-2 Modelling methods . 65
6-3 Quad-copter modelling and control . 66
6-4 Dynamic model of a quadrotor . 67

6-4-1 Translational dynamics . 69
6-4-2 Rotational dynamics . 69
6-4-3 Rotor dynamics . 70

6-5 Active set control allocation . 72
6-6 Drone control scheme . 75
6-7 Discussion . 76

7 Reinforcement-learning based control of the UAV 77
7-1 Controller layout . 77
7-2 Reduced model and dynamics inversion control 79
7-3 Controller design . 82
7-4 Policy training . 84
7-5 Controller policy design . 84
7-6 Controller performance . 85

7-6-1 PID controller . 85
7-6-2 RL-based controller . 86

8 Conclusions 91
8-1 Summary . 91
8-2 Future Directions . 93

A Experiment Software 95

B UAV simulation 99
B-0-1 State overview . 99
B-0-2 Dynamics simulation . 99

Bibliography 105

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 1

Introduction

Reinforcement Learning(RL) is a field that has its roots in Artificial Intelligence(AI) commu-
nity, which had emerged in the decades during and following the World War 2. RL methods
aim to solve complex optimization and control tasks in an interactive manner. Reinforcement
learning is a very attractive tool for identification and control of dynamical systems because
it can deal with the nonlinearities that occur in most real-life systems. As such, it had been
studied and applied to a wide range of problems in a variety of different fields. In reinforce-
ment learning the system consists of an agent, acting in some environment. For example, an
agent could be an autonomous vehicle, while the environment is the world in which it acts.
The learning process itself consists of the agent taking different actions to explore the system
and to exploit it by using the knowledge that it already has. If successful, the agent receives a
reinforcement for its performance. This reward takes the shape of a certain reward function,
determined beforehand. In autonomous vehicle context, the rewards could be defined by
smooth movements, quick response, the safety of the operation, etc. The purpose of an agent
is to maximize this reward by taking optimal actions. By acting in a certain way, the agent
follows a policy, which represents the mapping from perceived states of the environment to
actions to be taken (Sutton & Barto, 1998). While reward function determines the actions of
an agent in a short run, influencing the policy taken, a value function is used to specify it’s
total reward over the long term.

A subset of reinforcement learning types is active learning. It describes the learning where
learning systems not only passively collect and interpret data but in which they have at least
some control over the inputs on which it trains. Active learning has advantages over purely
passive learning that deals with randomly generated examples (Cohn, Atlas, & Ladner, 1994).
The reasons for that is the quality of information that system input-output relations hold.
For example, when exploring a given domain, it is more informative to survey the regions
of higher uncertainty, to get a complete picture, as opposed to querying the area for which
the information is already present. Although active learning has an established application
domain in various fields of engineering, there is a lack of efficient methods designed to deal
with nonlinear system identification based on automated probing (Bongard & Lipson, 2007),
especially when applied to safety-critical physical processes.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

2 Introduction

Applications of RL in Unmanned Aerial Systems

Until recently the use of Unmanned Aerial Vehicles (UAV) was mostly limited to military
applications. The technological advancements of the previous decade made the field of UAVs
more accessible to private entrepreneurs and to the scientific community, which spurred an en-
tirely new industry. Miniaturization of various electronics components combined with greater
availability and lower prices contributed to this growing demand for UAVs. Right now UAVs
are employed in numerous civilian applications, with new ones appearing every day.

While in the past only large multinationals such as Boeing, Airbus or Lockheed-Martin de-
veloped and sold sophisticated aerospace systems such as UAVs, lower technological barriers
allowed numerous small companies to enter the field. A fully functional aerial platform could
be designed and built in a short time span, using commercial off-the shelf components. It
can be equipped with a sophisticated autopilot such as Paparazzi or ArduPilot, which in
turn could be modified to perform any task or mission. And there is a continuously growing
demand for these types of systems.

These developments, however, come with certain challenges. Operation safety of the UAVs
constitutes one of the most paramount issues, particularly when UAVs operate in densely
populated areas or interfere with air traffic. Since the field of commercial UAV operations is
still relatively new, the legal framework that concerns the design, operation, and certification
of new aerial vehicles is still in its nascent stages, and there are few guidelines regarding
safety requirements. And in many countries, commercial operation of UAVs is not legal
altogether, while in others it is strictly regulated, with high entry barriers for the operators.
Another challenge is making these platforms more readily available to a wider audience of
designers and engineers. With growing number of applications, developing new vehicles to fit
a particular task still, requires experts who possess the necessary expertise and the know-how.
This presents some difficulties when implementing a promising conceptual design into a real
vehicle.

Recent interest in the field of unmanned vehicles had spawned numerous new applications
for these platforms. As there are increasingly more ways to apply these vehicles, two key
challenges arise: streamlining the development process while also making them safer.

The objective of this research is to develop an intelligent system capable of active learning for
real-time control of a nonlinear plant. The intended application of such a system is to control
a UAV. One of the key challenges in designing such a system is obtaining a desired degree
of autonomy while taking safety issues into consideration. To achieve the stated objectives
Reinforcement Learning methods can be applied.

Previous work

In the past couple of decades, there had been a growing interest in applying machine learning
principles to aerial vehicles. Reinforcement learning is often applied to problems of adaptive
control. In that case, if there is a change of plant configuration or environment configuration
the controller can detect it and adapt accordingly. (Valasek, Tandale, & Rong, 2005),(Valasek,
Doebbler, Tandale, & Meade, 2008) propose such an approach for control of Morphing Un-
manned Air Vehicles. The policy in his approach consists of finding an optimal vehicle shape

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

3

change, given a particular flight condition. Structured Adaptive Model Inversion (SAMI) is
used as a controller for tracking the trajectory, and a reinforcement learning module is used
to produce the optimal shape. He uses two different approaches to reinforcement learning:
Actor-Critic algorithm and Q-learning methods, which is a common temporal difference algo-
rithm. The latter was applied to improve the accuracy of the algorithm. His approach used
factors such as drag force and fuel consumption of the vehicle to calculate the cost of possible
actions.

In 1994 NASA performed a 4-year research to demonstrate a concept for identification of
aircraft stability and control derivatives using neural networks (Jorgensen, 1997). They have
successfully demonstrated the capability of the system but also identified some issues with
application of their method to real-time applications, e.g. high computational load that might
compromise robustness of the system. In the following years, they did more research into the
concepts, using it to develop an autoland system for the X-33 prototype aircraft (Cox, Step-
niewski, Jorgensen, Saeks, & Lewis, 1999). In 2003 NASA published a technical memorandum
titled Integration of Online Parameter Identification and Neural Network for In-Flight Adap-
tive Control(Hageman, Smith, & Stachowiak, 2003). There they have identified some of the
advantages of learning systems over a non-learning system. Namely, they have observed that
during the test maneuvers the system would immediately start to improve the response of
the aircraft and a fully ”learned” system showed excellent performance.

The concepts of reinforcement learning were also applied to rotorcraft control. (Bagnell &
Schneider, 2001) designed and demonstrated an autonomous helicopter controller for the
hover mode, designed using RL policy search methods. They validated their model using a
Yamaha R50 helicopter and demonstrated the viability of their approach.

Apart from adaptive control, reinforcement learning is often used in risk-sensitive applications.
The risk is used to denote constraints imposed upon parameters of the state-space. These are
defined as forbidden or error states of the system, e.g., dangerous flight maneuvers or physical
obstacles. There are two general approaches to evaluating these risks. One is a pessimistic
approach or worst case control, where the worst possible outcome is optimized (Simon et
al., 2011). This method, however, results in very constrained policies and might not be
practical for most applications. Another approach is to define an acceptable risk level (Geibel
& Wysotzki, 2005). An optimal policy is then defined as avoiding error states in general.

Multi-agent path planning for UAVs is one of the applications for risk-sensitive learning.
(Geramifard, Redding, & How, 2013) propose such an approach, which combines adaptive
modeling and reinforcement learning in the context of UAV mission planning to avoid the
risks of running out of fuel during the mission. The risk is analyzed using a model, and it is
defined as the probability of visiting any of the constrained states. Monte-Carlo simulation is
used to estimate the associated risk, by simulating the trajectory from the current state. It
is indicated that accuracy of the model has great influence on the optimality of the selected
action, as an inaccurate model may lead to suboptimal policies. Another approach to path
planning using RL methods is introduced in (Zhang, Mao, Liu, & Liu, 2013). This approach
uses a novel method called Geometric Reinforcement Learning, similar to Q-learning, and
it aims to solve the problem of limited information about possible risks by incorporating
observed data from multiple UAVs, to avoid threat objects. Other factors of risk include
safety distance between two UAVs. The optimal policy is defined as achieving the shortest
possible path, combined with the lowest amount of risk.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

4 Introduction

While risk-sensitive learning had been successfully applied to tasks such as path planning, it
is also applied to dynamical, nonlinear systems. Such an approach is described in (Geibel &
Wysotzki, 2005). It presents another variation of the Q-learning algorithm and it is applied
in a context of ensuring optimal operation of the distillation column. The risks are defined
by tank level and substance concentrations, which are required to stay within specified limits,
with a certain chance of constraining violation. High negative rewards are associated with
the system entering an error state. The optimal policy then avoids the error states, but this
approach also has some issues: it is unknown how large the risk of entering an error state is.
The fact that it is impossible to avoid error states entirely is tolerated to some extent, but
the risk is still constrained by some value selected beforehand. The approach does not use
a model, but the agent is assumed to have access to simulated or empirical data. Learning
is accomplished using empirical data obtained through interaction with a simulated or real
process, and neural networks are used to apply the algorithm to processes with continuous
state spaces. Preliminary experiments demonstrated in the paper shown that oscillations may
occur between different sensible policies. These effects, however, could be prevented by using
a discounted risk that leads to an underestimation of actual risk.

Overall, RL techniques for autonomous flight control show a lot of promise. There was a lot
of progress in creating and refining RL methods for intelligent and adaptive control. However,
to this day, RL techniques were only applied to solve very specific problems, like designing
a controller valid for just one particular segment of the flight envelope or performing just
one specific task (e.g., automatic landing, hover, etc.). And they mostly had been applied in
theoretical/simulation models, with limited practical tests to validate these models.

Reinforcement Learning based framework development

The purpose of this research is to investigate the feasibility of reinforcement learning combined
with safe exploration for the purpose of unmanned vehicle control and to develop a functional
algorithm framework that could be applied to control of a UAV. The main reasons for
designing such a controller are potential benefits with regard to unmanned vehicle safety, as
well as increased autonomy. The performance of the resulting controller could be measured by
it’s stability, capability of obtaining an optimal solution, speed of learning and adaptability.
This allows formulation of several research questions:

1. What is the current state of art research in the field of reinforcement learning and safe
exploration for UAV?

(a) What is the progress done in the field already?
(b) What methods are commonly used?
(c) What are the underlying issues that have to be dealt with when applying rein-

forcement learning to vehicle control?
(d) What are the common principles of applying reinforcement learning to practical

problems?

2. What are the candidate methods for intelligent policy improvement?

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

5

(a) Which methods had been applied already to control of UAVs?
(b) How developed are these methods, had they been applied in practice, or had they

only been hypothesized in theory?
(c) What are the individual merits and limitations of the methods under consideration?
(d) What are the qualities of these methods e.g., real-time performance, computational

requirements and convergence characteristics?
(e) Which methods are suitable for the purpose of this research?

3. What is the experimental set-up that could be used to evaluate the performance of the
resulting controller algorithm?

(a) Is the resulting controller capable of its intended function: vehicle control?
(b) How does the resulting controller compare against existing conventional con-

trollers?
(c) Is it practical to apply it to vehicle control?

To answer these questions, a Q-learning based controller is designed to steer the inner-loop
dynamics of the UAV. These include the UAV pitch, roll, and yaw. The main methodology
and the results are demonstrated in the paper, presented in Chapter 2. The paper describes
an implementation of a reinforcement learning-based framework applied to the control of
a multi-copter rotorcraft and discusses some of the results of algorithm evaluation using a
simulated environment.

Chapter 3 outlines various reinforcement learning methodologies and techniques. It gives
a brief introduction to the history of these methods and some of the core principles, given
providing the background of the current state-of-art research. Some of the most popular
methods such as the Q-learning and SARSA are discussed in detail. Chapter A outlines
the proposed experiment. The experiment consists of a simulated quadrotor UAV model,
controlled by an RL-based controller. Policy search is done offline, using a reduced order
plant model, approximated using RBF neural net. Model inversion is used to convert policy
actions into actuator inputs.

The states of the quadrotor are continuous, and the Q-learning methodology has to be adapted
to deal with continuous states. It is possible to adjust it by applying function generalization
to store the Q-function. Furthermore, various strategies can be used to extract a continu-
ous range action from the resulting generalized policy. These techniques are introduced in
chapter 4. Radial Basis Function (RBF) and CMAC networks are proposed as candidate
generalization methods. Their advantages and disadvantages are discussed. Some particular
phenomena such as the curse of dimensionality and effects of generalization on the resulting
Q-function approximation are discussed. Some techniques designed to optimize the gener-
alization are also introduced, including state pre-scaling and a hash-based RBF neural net
approach.

The proposed control scheme deals with continuous state inputs, and it also produces con-
tinuous actions. There are various ways to extract a continuous value from the generated
policy. Some of them are discussed in chapter 5. PSO method can deal with nonlinear func-
tion approximators such as CMAC. Another discussed method is based on sectioning of the

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

6 Introduction

generalized Q-function, taking a projected “slice” of it and then approximating it using a com-
bination of radial basis functions. Then the maximum is then approximated using Newton’s
root finding method.

The system dynamics are discussed in chapter 6. This includes an extended discussion on
the mathematical background behind quadrotor modeling and a description of a dynamics
model implementation in software. Additional specific discussed include the control allocation
methodology, designed to avoid conflicts between system inputs. A full drone control scheme
is proposed, including inner and outer loop controls. Virtual inputs are defined. And the
reduced model identification is discussed. This reduced model is also used to create a model
inversion-based controller, which is discussed in the chapter.

The resulting set of controllers is described and tested in chapter 7. The description is given
for controller learning parameters and the reward function. Several tests are performed, using
PID control scheme performance as a benchmark. The reinforcement learning controller is
found to show performance comparable with that of a PID and to exceed it. Overall, the
resulting control framework is demonstrated to apply to continuous state and action systems.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 2

Paper

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

Continuous state and action Q-learning framework
applied to quadrotor UAV control

Anton E. Naruta∗

This paper describes an implementation of a reinforcement learning-based framework
applied to the control of a multi-copter rotorcraft. The controller is based on continuous
state and action Q-learning. The policy is stored using a radial basis function neural
network. Distance-based neuron activation is used to optimize the generalization algorithm
for computational performance. The training proceeds off-line, using a reduced-order model
of the controlled system. The model is identified and stored in the form of a neural network.
The framework incorporates a dynamics inversion controller, based on the identified model.
Simulated flight tests confirm the controller’s ability to track the reference state signal and
outperform a conventional proportional-derivative(PD) controller. The contributions of
the developed framework are a computationally-efficient method to store a Q-function
generalization, continuous action selection based on local Q-function approximation and a
combination of model identification and offline learning for inner-loop control of a UAV
system.

I. Introduction

In the recent decades, a lot of advancements had taken place in the field of reinforcement learning (RL).1–3

In more general terms, reinforcement learning is a paradigm concerned with creating system controllers that
aim to maximize some numerical performance measure, designed to achieve some long-term objective.3 It is
suited for nonlinear problems, optimal control, and it allows to combine qualitative and quantitative data.

Reinforcement learning techniques are often applied for identification of static systems, such as pattern
recognition type problems.4 RL methods are also often combined with more conventional control techniques,
such as PID control, to optimize the controller parameters. More recently there had been an increased
interest in applying reinforcement learning techniques for identification and control of dynamic systems,
such as navigation of autonomous vehicles or robots.5–8

Control of unmanned vehicles, such as aerial drones, represents a challenging control problem. The
dynamics of such systems are nonlinear, high dimensional and they contain hidden couplings. There are
many types of unmanned aerial vehicles (UAVs), including lighter-than-air vehicles, fixed-wing aircraft,
helicopters, and multi-copters. Multicopters have rather complex dynamics, and they are considered to be
harder to control than fixed-wing aircraft.6 They are open-loop unstable and require a skilled operator
or a sophisticated autopilot to fly. Reinforcement learning can be applied to design an optimal, adaptive
controller for such vehicles.

Here we introduce a reinforcement learning framework for automatically synthesizing a controller for any
generic multi-copter UAV, using reinforcement learning methodology. The proposed framework consists of
a combination of model identification of the agent dynamics and off-line Q-learning. The identified model is
used to train the policy, and it is also used to create a dynamics inversion controller to translate the policy
actions into direct inputs to the vehicle. The policy is stored in the form of Radial Basis Function (RBF)
neural net, optimized for real-time performance. The resulting policy works with continuous agent states
and produces continuous actions. The controller is adaptive by design, and it is capable of dealing with
changes in agent behavior and adjusting itself online.

The performance of the controller is compared to the performance of a conventional, PID-based controller.
It is shown that the performance of the RL controller is comparable to that of conventional control schemes,
and exceeds it. Additionally, it is demonstrated that the RL controller is capable of adjusting its behavior
online if agent behavior deviates from the initial model used to train the policy.

∗Control & Simulation dept., Aerospace Engineering, TU Delft

1 of 19

American Institute of Aeronautics and Astronautics

II. Reinforcement learning

Reinforcement learning and intelligent control are used increasingly in various control applications. Re-
inforcement learning can deal with the nonlinearities that occur in most real-life systems, and it is highly
adaptable and adaptive. As such, it had been studied and applied to a wide range of problems in a variety
of different fields. In reinforcement learning the system consists of an agent, acting in some environment.
For example, an agent could be an autonomous vehicle, while the environment is the world in which it acts.
The learning process itself consists of the agent taking different actions to explore the system and to exploit
it by using the knowledge that it already has.

After each transition from agent state s to s′ the agent receives some reward r. If successful, the agent
receives a higher reward, and if the action leads to an undesirable state, then the magnitude of the reward
is lower. This reward takes the shape of a certain reward function, determined beforehand. In autonomous
vehicle context, the rewards could be defined by smooth movements, quick response, the safety of the
operation, etc. The purpose of an agent is to maximize this reward by taking optimal actions. By acting
in a certain way, the agent follows a policy π, which represents the mapping from perceived states of the
environment to actions to be taken.3 While the reward function r(s) determines the actions of an agent in
a short run, influencing the policy taken, a value function V (s) is used to specify it’s total reward, in the
long run, determining the agent’s behavior B. This behavior can be learned using a wide variety of different
algorithms. Formally, the reinforcement model consists of:

• a set of environment states, S, which can be discrete or continuous

• a set of actions A, which can be discrete or continuous

• a set of reinforcement signals r, which can be static or varying, depending on agent state

A. Markov decision process

In addition to immediate rewards, a reinforcement learning agent must be able to take future rewards into
account. Therefore it must be able to learn from delayed reinforcement. Typically the agent would progress
throughout it’s learning process, starting off with small rewards, and then receiving larger rewards as it gets
closer to its goal. And it must learn whichever actions are appropriate at any instance, based on rewards
that the agent will receive in the future. Delayed reinforcement learning problems can be modeled as Markov
decision processes(MDP).3 An MDP consists of

• a set of states S

• a set of actions A

• a reward function R : S ×A → R

• a state transition function T : S×A → Π(S), where Π maps the states to probabilities. The probability
of transition from state s to state s′ given action a.

The state transition function specifies the transition from one state to another, following an action was
taken by the agent. The agent receives an instant reward after performing an action. The model has Markov
property if the state transitions are independent of any previous environment states or agent actions.

B. Reward function

The rewards could be either positive or negative, which has an impact on agent behavior, at least during
initial learning stages. Assuming the Q-function is initialized at 0, updating it with a positive reinforcement
after each episode iteration results in a high value assigned to the action taken, compared to all other possible
actions that are assigned a zero value at initialization. As a result, the agent will tend to select actions that
it had applied previously for as long as the outcome of other actions is still uncertain. This heuristic is called
an optimistic approach. As a result of applying it, a strong negative evidence is needed to eliminate an action
from consideration.1 In negative approach only negative reinforcement takes place. As a consequence the
agent tends to explore more, eliminating actions that result in lower rewards and eventually settling on the

2 of 19

American Institute of Aeronautics and Astronautics

best policy. The negative reinforcement approach was selected. The chosen reward function is a combination
of the state offset from some desired state reference, current state value and state derivative value:

r = ṡ− sign(∆s) ∗
√
sign(∆s) ∗∆s, (1)

where ∆s represents the difference between controlled state s and the reference state ∆s = s− sref .

C. Q-learning

One of most important reinforcement learning algorithms available today is Q-learning.3 It is an off-policy
TD control algorithm. Off-policy means that it learns the action-values that are not necessarily on the
policy that it is following. The Q-learning is using a Q-function to learn the optimal policy. The expected
discounted reinforcement of taking action a at state s is represented as Q∗(s, a).

Q∗(s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)max
a′
Q∗(s′, a′) (2)

This function is related to value as V ∗(s) = maxaQ∗(s, a). Then the optimal policy is described as
π∗(s) argmaxaQ∗(s, a). One-step Q-learning is defined by the following value update rule:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(3)

In this equation, Q stands for action-value function, updated at every step at a learning rate α. The
update parameters are the reward r and the value of Q at the next step, corresponding to the maximum
possible cumulative reward for a certain action a, given that policy π is followed. Factor γ is the discount
rate; it represents the horizon over which the delayed reward is summed, and it makes the rewards earned
immediately more valuable than the ones received later.

There are numerous variations to Q-learning algorithm, aiming at improving convergence and optimality
characteristics, and trading off exploration and exploitation during the learning process.

SARSA algorithm is an on-policy variation of Q-learning.1 An action-value function has to be learned
rather than a state-value function. For an on-policy method Qπ(s, a) must be estimated. This can be done
using a nearly identical kind of update as in the general Q-learning. SARSA learning update rule is defined
as follows:

Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)] (4)
The difference with the Q-learning update, described earlier is that rather than the optimal Q-value

maxaQ(s′, a) the value of the action selected for the consecutive step Q(s′, a′) is used during the update.

III. Continuous state and action Q-learning

Q-learning algorithms are commonly applied to problems with discrete sets of states and action. In those,
the state-action spaces and rewards are encoded in tabular form, where each cell represents a combination of
state and action. In reality, however, control problems where the states and actions are continuous are also
very common.5 Adapting the “classical” Q-learning approach to deal with these types of problems presents
a challenge. A common approach is to discretize the state of the world by splitting the state domain into
discrete regions. This method, however, introduces some problems. If the state is coarsely discretized a
perceptual aliasing problem occurs.9 It is difficult to discretize the world states without losing information.
One of the solutions is to discretise the world more finely. This increase of the resolution, also increases the
amount of memory required, introducing the curse of dimensionality.10 Fine discretization may lead to an
enormous state-action space, which in turn may result in excessive memory requirements and difficulty in
exploring the entire state-space.

These issues could be solved by using generalization e.g., using experience with a limited subset of the
state-space to produce an approximation over a larger subset.3 Generalization allows applying the experience
gained from previously visited states to the ones that hadn’t been visited yet.

One type of generalization is function approximation, which in turn is an example of supervised learning.
Most supervised learning methods seek to minimize the mean-squared-error (MSE) over a distribution of
inputs P (s).

3 of 19

American Institute of Aeronautics and Astronautics

There are various methodologies available to approximate a continuousQ-function. Neural Networks (NN)
can be used to model and control very complex systems with sufficient accuracy without complete knowl-
edge of its inner composition. Neural networks themselves can be divided into two types: multilayer neural
networks and recurrent networks. Despite some differences, they could be viewed in a unified fashion as part
of a broader discipline .4 Another way to approximate a continuous function is using coarse coding. This is
a technique where the state-space region is separated into overlapping regions, each representing a feature.
In the binary case, if the state is situated inside of a feature then the corresponding feature has a value of 1
and is said to be present, otherwise, this feature is 0 and it is said to be absent.3 The parameters that affect
the discretization accuracy of this method are the size of the regions and number of overlapping regions.

A. Neural Networks

Warren McCulloch and Walter Pitts proposed the concept of neural networks first. They came up with a
model of an artificial neuron, later dubbed perceptron.11,12 The basic building unit of a neural network is an
artificial neuron. It consists of a weighted summer, the function of which is to combine one or several inputs.
Each input is multiplied by some weight, which can be pre-determined, or adjusted as the learning process
goes on. The combined and weighted inputs then pass through some nonlinear activation function. Various
types of activation functions exist. A simple threshold function produces a unit output when some input
threshold is passed. A bell-curve shaped radial-basis function gradually increases or decreases, depending on
the input value proximity to the center of the neuron. A tangent-sigmoidal activation function acts similar
to a threshold function but produces smooth, varying output.

Multiple neurons can be combined in layers, and layers themselves could be combined as well. A typical
neural network would have one hidden layer, that consists of several non-linear neurons, and one output layer
that often consists of a simple summator of weighted hidden layer outputs. The layout of a basic neural net
is shown in Figure 1.

Figure 1. Neural net layout

One of the popular choices for neuron activation function
is the Gaussian Radial Basis Function (RBF). Each neuron in
the hidden layer of an RBF net has the following activation
function:

ϕj(νj) = ak · exp(νj) (5)

The coefficients ak are the output weights of the network, and it
controls the amplitude of the RBF. The input of the activation
function is the distance between the location of the input data
point and the center of each neuron:

νj = −
∑
i

w2
ij(xi − cij)

2 (6)

The value wi,j corresponds to the width of the RBF, while ci,j
corresponds to the center of the activation function at each
neuron. There are various ways to initialize all the outlined parameters. The neurons themselves could be
either placed randomly, or they could also be organized in a grid. There are a variety of training methods
that apply to NN, e.g. linear regression methods, and gradient descent methods such as back-propagation,4
Levenberg-Marquardt,13 and others.

NN can be relatively expensive to implement computationally. The overhead can be reduced by only
considering the neurons activated at a time and approximating the exponential function using a polynomial
or a lookup table with pre-calculated values.

B. State pre-scaling

The network inputs can be pre-scaled before performing a forward pass. This allows specifying a focus region
for the network with higher resolution, which can be beneficial to the application because it allows saving
on the number of weights. Equation (7) shows a case of using a root function to encode an input variable.
There, the input variable x ∈ [a, b] is scaled as xs ∈ [0, 1]

4 of 19

American Institute of Aeronautics and Astronautics

xs =

1
2

(
1− r

√
h−x
h−a

)
if x < h

1
2

(
1 + r

√
x−h
b−h

)
if x >= h

(7)

The variable xs denotes a scaled version of a variable x. The offset factor h denotes the “focus” of the
scaling, e.g. the values for which the scaling results in a grid that is finer. This sets the region around which
the scaling gradient is the steepest. The variable r denotes the scaling power. When it’s set to one, the
scaling is purely linear.

C. Encoded RBF-based neural net

Tile coding is a form of coarse coding in which the receptive fields of features are grouped into an exhaustive
partition of the input space. These groups are referred to as tilings, and each element is called a tile. This
idea is an integral part of Cerebral Model Articulation Controller (CMAC) method .14 The feature values
are stored in a weight vector table where each cell has it’s association cell that indicates binary membership
degree of each possible state input vectors. The activated weights of a fully trained CMAC mapping are
summed across to calculate the resulting output. Since the only algebraic operation that takes place is
the addition, CMAC is a very computationally efficient method. The number of tilings determines the
computational effort: denser distributions require more calculations and are more computationally intensive.

The CMAC has an advantage over a “pure” implementation of radial basis function neural network,
where all weights are activated with each forward pass and all weights are updated at each backward pass.
In the CMAC only the local weights, situated close to the state, are activated and updated, and finding it’s
output is as simple as summing the weights without any need for using an activation function. Nevertheless,
the nature of the activation function used in an RBF net makes it possible to optimize it for computational
performance using a hashing methodology similar to CMAC.

Equation 5 describes a typical Gaussian Radial Basis Function (RBF). RBF is based on the principle
that its output value gradually drops as the input state moves further away from the neuron center. This
property also means that at a certain distance from the neuron center the neuron output contribution is
negligible, compared to the neurons activated closer to the state value. Therefore, the neurons situated
further away from the activated region can be neglected, since they have little influence on the output of the
neural net in that area. By limiting the number of activated neurons the size and resolution of the network
can be decoupled from real-time performance. If only a limited number of neurons is activated, it does not
matter anymore how many neurons there are in total. If the neurons are evenly spaced throughout the state
range, selecting the neurons that have to be activated becomes relatively straightforward.

Figure 2. Neuron activation scheme

In order to encode continuous state values into neuron coor-
dinates first define index i. Discrete index i corresponds to tile
coordinate of the neuron closest to the input. Given a variable
x, the floor operator ⌊x⌋ is defined as:

⌊x⌋ = max{n ∈ Z | n ≤ x} (8)

In equation (8) the value of ⌊x⌋ can take negative or positive
values. But the neuron index i has to be compatible with
positive-only indexing systems {i ∈ Z | 0 ≤ i ≤ M}. Fur-
thermore, given M − 1 neurons per variable dimension on the
interval [a, b] = {x | a ≤ x ≤ b} the variable has to be scaled
This scaling can be done in a variety of ways, depending on the
application. The neuron index i can be calculated given a continuous variable value x on the interval [a, b],
using the scaling method described by 7:

i = ⌊M × xs + 0.5⌋ (9)

The index variable i stands for the index of the neuron nearest to the scaled input xs. As Figure 2
illustrates, it is possible to activate only the neurons situated within some maximum radius rlattice. The
distribution of the activated neurons always follows the same type of circular lattice pattern, offset from the

5 of 19

American Institute of Aeronautics and Astronautics

coordinate of the current input state. This pattern can be calculated previously to network initialization,
stored and re-used. These patterns are stored as an offset from the neuron, situated the closest to the input
state, denoted as c̄i,j,...,n, where n denotes the network input dimensionality.

The following encoding principle can be illustrated for a single-input coded neural network with activation
radius rlattice with N hidden neurons uniformly spread through the range [a, b], where a ≤ x ≤ b. The lattice
offset coordinates for such a network can be represented as

clattice = [−R, . . . , 0, . . . R] (10)
R = ⌊rlattice⌋ (11)

Given an input x, the coordinate of the nearest neuron i can be found using 9. Then the activated neuron
coordinates and the neuron input offsets ∆i = x− ci become:

cneur = i+ [−R, . . . , 0, . . . , R] (12)
∆ = (xs − i) + [−R, . . . , 0, . . . , R] (13)

The entire procedure is quite simple and allows to calculate the neuron coordinates as well as inputs
for each neuron simultaneously and efficiently. This methodology could also be easily extended to higher
input dimensions by generating multi-dimensional neuron offset lattices. With each additional dimension,
the number of required neurons grows. The indexing methodology can be extended to facilitate encoding of
multi-dimensional values of x̄ = [x1, x2, . . . , xn−1, xn], with n-dimensions.

Table 1 shows the number of activated neurons for a value of rlattice = 2.4 and the percentage of the
total neurons in the network for an encoding that consists of 8 neurons per-dimension.

Na activated neurons (% total)
Ninputs Nneurons r = 1.0 r = 1.5 r = 2.0 r = 2.4

1 8 3 (37.5 %) 3 (37.5 %) 5 (62.5 %) 5 (62.5 %)
2 64 5 (7.81 %) 9 (14.0 %) 13 (20.3 %) 21 (32.8 %)
3 512 7 (1.37 %) 19 (3.71 %) 33 (6.44 %) 57 (11.13 %)
4 4096 9 (0.22 %) 33 (0.81 %) 89 (2.17 %) 137 (3.34 %)

Table 1. Number of activated neurons for selected dimensions

The number of activated neurons grows with increased radius and input dimensionality. For a single-
input neural net, the effect of neuron encoding is quite small, and the extra computational load might offset
any benefits. For a larger number of inputs, however, there is a drastic increase in efficiency. For a neural net
with three inputs, encoded with eight neurons per-dimension and activation radius r = 2.4 only 11.13 % of
all neurons have to be activated at any forward or backward pass. Increasing the resolution does not affect
the computational load since only a fixed number of neurons is activated and the effect is more pronounced
for a higher number of inputs.

D. Optimal action selection

The underlying principle of Q-learning requires a method that is capable of finding an optimal action,
optimizing the output value of the Q-function. Various methodologies can be applied, depending on the
type of generalization used to store the Q-function approximation. Given a continuous-state Q-learning
problem, there are two basic approaches to find the optimal action: using a discrete set or a continuous
range of actions. A schematic in Figure 3 illustrates these two methods.

In a discrete-action scenario the network used to generalize the Q-function produces several outputs for
any current state, each of them associated with a predetermined action value. Once these values become
available, the action that results in the highest output is selected as the optimal one. In a continuous
approach, the network inputs include both the state and the action. The output value is then optimized to
find the optimal action using some optimization algorithm. The discrete approach has an advantage over
a continuous one because when only one forward pass of the network is required, whereas the continuous
method typically requires several passes. A limited number of forward passes means it’s less demanding

6 of 19

American Institute of Aeronautics and Astronautics

(a) Discrete action

(b) Continuous action

Figure 3. Q-learning action selection approaches

computationally and easier to implement. It’s still possible to produce a continuous action when using a
discrete approach, using some interpolation technique.5 On the other hand, a continuous method allows to
select the action more precisely, and the actions themselves transition more smoothly. Smooth, continuous
inputs offer an advantage when controlling a sensitive system such as a quadrotor.

A continuous-action approach was selected for the designed RL framework. This section outlines some
optimization techniques applicable to action selection. Consider a function y(x) in the form

y(x) = g(x)θ (14)

where g(x) represents a set of hidden layer neuron outputs, as described in A, for a given input value x

g(x) =
[
ϕ0(x) ϕ1(x) . . . ϕN (x)

]
, (15)

ϕi(x) = exp(−(x− ci)
2), (16)

and θ is the parameter vector that contains network output weights θ = [w0, w1, . . . , wN]. This function can
be used to describe a local action-value distribution for a given state. The activation function described by
16 can be differentiated twice with respect to input x:

ϕ̇i(x) = −2(x− ci)ϕi(x) (17)
ϕ̈i(x) = −2(1− 2(x− ci)

2)ϕi(x) (18)

This allows to express the derivatives of functions 17 and 18:

ġ(x) = −2
[
(x− c0) (x− c1) . . . (x− cN)

]
× g(x) (19)

g̈(x) = −2
[
1− 2(x− c0)

2 1− 2(x− c1)
2 . . . 1− 2(x− cN)2

]
× g(x) (20)

Note that the exponential component in 16 and the offsets (x−c) can be re-used when finding the derivatives
of the activation function, which means that the computational load can be reduced when implementing these
calculations in software.

For the function in 14 to reach it’s minumum/maximum the output function derivative must reach zero:

ġ(x)θ = 0, (21)

This condition does not have an analytical solution. Here, Newton’s iteration method can be applied.
Newton’s iteration is a numerical method designed to find roots(zeros) of differentiable equations in the form

f(x) = 0 (22)

7 of 19

American Institute of Aeronautics and Astronautics

Provided an initial guess x0, the successive update formula for this method is

xk+1 = xk −
ḟ(xk)

f(xk)
, k = 0, 1, . . . (23)

Typically with each consecutive update, the output of the function f(xk) converges closer to its nearest
zero value. This mechanism, however, is only capable of finding the nearest root, one at a time. Therefore,
for a function with several possible zeros, several guess values must be supplied.

When applied to the problem of finding the argmaxaQ(s, a) the Newton’s iteration procedure can be
applied as follows: First, the Q-function is interpolated at state s. The original Q-function approximator
would typically have several state inputs and one action input. At a given state all inputs other than the
action are fixed and only the action input can be varied. Therefore it is possible to take a 1-dimensional
“slice” of the Q-function, by sampling the Q-function output with different actions ā =

[
a0, a1, . . . , aM

]
.

Outputs of the Q-function are recorded in Ȳ = [Q(s, a0),Q(s, a1), . . . ,Q(s, aM)]. The parameter vector θ̄
can be calculated using linear regression:

θ̄ = (A(x̄)TA(x̄))−1AT Ȳ , (24)

where each row i ofA contains the inner-layer outputs of the interpolant neural net
[
ϕ0(ai), ϕ1(ai), . . . , ϕn(ai)

]
for the supplied action value ai. The first and the second derivatives of the approximation function
ȳ(a) = g(a)θ̄ are:

˙̄y(a) = ġ(a) · θ̄ (25)
¨̄y(a) = g̈(a) · θ̄ (26)

Newton’s update rule to find the zeros of ẏ(a):

ak+1 = ak −
ÿ(ak)

ẏ(ak)
, k = 0, 1, . . . (27)

After evaluating several starting points the action value a several potential minima/maxima of the optimized
function. Then the action value that results in the maximum/minimum output of the function Q(s, a) can
be found by comparing the outputs of ȳ(a) and finding the maximum value.

IV. UAV dynamics and control scheme

The Quadrotor concept had been known since the early days of aeronautics. One of the earliest examples
of such aircraft is the Breguet-Richet Quadrotor helicopter Gyroplane No.1, built in 1907. A quadrotor is
a vehicle that has four propeller rotors, arranged in pairs. The two pairs (1,3) and (2,4) turn in opposing
directions and variation of the thrust of each rotor is used to steer the vehicle pitch, roll, yaw, and altitude.
This section introduces some modeling methods that can be used to simulate a quadrotor vehicle and presents
a general mathematical model of quadrotor dynamics.

A. Quad-copter modelling and control

The control scheme of a conventional aerial quadrotor vehicle consists four principal parts: pitch and roll
controls, collective thrust and yaw control. Quadrotors have six degrees of freedom: three translational
and three rotational, and they can be controlled along each of them. Rotational and translational motions
are coupled: tilting along any axis results in vehicle movement in the direction perpendicular to the tilt
angle. Extra couplings exist between individual rotors and the aircraft body. For example to rotate along
the vertical axis while maintaining altitude the distribution of thrust has to change in such manner that
some of the rotors spinning in one direction spin slower, while the rotors that are turning in the direction
of intended rotation are moving faster. These various couplings result in a challenging problem: in practice,
it ’s hard to control a quadrotor purely manually. In addition to the difficulty of control, there is also a
question of stability of multi-copter craft. Multi-copters are not inherently stable; it is necessary to apply
active damping. Electronics are used to stabilize it and distribute the thrust across the rotors.

8 of 19

American Institute of Aeronautics and Astronautics

B. Dynamic model of a quadrotor

Figure 4. Quadrotorotor con-
figuration schematic, body fixed
frame B and inertial frame E.

This section will describe modelling of a quad-copter using a purely white-
box approach. Schematic of a quadrotor body and inertial frames is shown
in Figure 4.

The craft dynamics can be modeled using Lagrangian method.15,16

The vector containing generalized coordinates of the quadrotor can be
defined as q = (x, y, z, ϕ, θ, ψ) ∈ R6. It can be split into two components,
for translational and rotational motion. The translational motion of the
craft can be described using equations 28-30. The rotational motion is
described using equations 31-33. System inputs are defined by equations
34 - 38. Multicopter actuators can be modelled as DC motors.15 The
motor dynamics are described in equation 39.

ẍ =
s(ϕ)s(θ)s(ψ) + s(ϕ)s(ψ

m
)U1 (28)

ÿ =
s(ϕ)s(θ)s(ψ) + s(ϕ)s(ψ

m
)U1 (29)

z̈ = −g + s(ϕ)s(θ

m
)U1 (30)

ϕ̈ = θ̇ψ̇

(
Iy − Iz
Ix

)
− Jp
Ix
θ̇Ω+

l

Ix
U2 (31)

θ̈ = ϕ̇ψ̇

(
Iz − Ix
Iy

)
+
Jp
Iy
ϕ̇Ω+

l

Iy
U3 (32)

ψ̈ = ϕ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
U4 (33)

U1 = CT (Ω
2
1 +Ω2

2 +Ω2
3 +Ω2

4) (34)
U2 = CT (Ω

2
4 − Ω2

2) (35)
U3 = CT (Ω

2
3 − Ω2

1) (36)
U4 = CT (Ω

2
1 +Ω2

3 − Ω2
2 − Ω2

4) (37)
Ω = Ω2 +Ω4 − Ω1 − Ω3 (38)

ω̇ =
Ke

RJt
u− K2

e

RJt
ω − d

Jt
ω2 (39)

where:

State Unit Description
x [m] x-coordinate
y [m] y-coordinate
z [m] z-coordinate
ϕ [rad] Roll angle
θ [rad] Pitch angle
ψ [rad] Yaw angle
Ω [rad/s] Rotor speed
ω [rad/s] Motor angular speed
u [V] Supplied motor voltage

Constant Value Unit Description
m 1.2 [m] Drone mass
Ix 8.5e-3 [kg·m2] Moment of inertia x-axis
Iy 8.5e-3 [kg·m2] Moment of inertia y-axis
Iz 15.8e-3 [kg·m2] Moment of inertia z-axis
CT 2.4e-5 [-] Thrust factor
CD 1.1e-7 [-] Drag constant
R 2.0 [Ω] Motor resistance
Jr 1.5e-5 [kg·m2] Rotor inertia
Jm 0.5e-5 [kg·m2] Motor inertia
l 2.4e-1 [m] Motor arm length

Ke 1.5e-2 [-] Motor constant

Table 2. UAV system states and relevant constants

Table 2 shows the set of parameters used for the simulation. These values were selected to achieve a
realistic behavior of the model.

The full drone controller consists two parts: the inner loop, the and outer loop control. Lower-level inner
loop controller is designed to track reference pitch, roll, yaw and altitude signals. The actuator delay due
to motor dynamics influences the UAV response behavior. Higher-level outer loop controller is designed to
track a position reference, such as x and y coordinates of the vehicle, and perform maneuvers. The external

9 of 19

American Institute of Aeronautics and Astronautics

loop controllers pass on reference signals to the inner loop, and they are set up in a cascaded fashion. Figure
5 shows an example of a basic drone control scheme layout.

There are four inner-loop controllers in place: roll, pitch, yaw and altitude control. There are also
two outer loop position controllers, for states x and y. The operator interacts with the controller via an
interface. Reference signals for pitch and roll φref , θref can be either set directly through the interface,
or as a command from higher-level x and y controllers. Yaw angle and altitude reference signals ψref and
zref are set directly. It is also possible to add an additional layer of controllers, that combine flight heading
and yaw control or performs some set of maneuvers, for example. The four inner-loop controllers produce
scaled control inputs vb (altitude), v02 (pitch controller), v13 (roll controller), and v0213. Inner-loop controller
inputs and outputs are defined as:

Controller Inputs Virtual control states
Altitude zref , z, ż, c(ϕ)c(θ) vb = v20 + v21 + v22 + v23
Roll ϕref , ϕ, ϕ̇, θ̇ × ψ̇ v13 = v21 − v23
Pitch θref , θ, θ̇, ϕ̇× ψ̇ v02 = v20 − v22
Yaw ϕref , ϕ, ϕ̇, θ × ψ v0213 = v20 + v22 − v21 − v23

Note that the virtual control inputs still have to be processed to produce usable motor voltage inputs
v0 . . . v3. Each voltage is limited, and different controllers might be in conflict with one another. This conflict
between actuators makes it necessary to include a control allocation module, to interpret the resulting voltage
differentials as motor inputs.

For a typical UAV, several controllers must be implemented, governing the pitch, roll, yaw and vertical
motion dynamics. Figure 5 illustrates a schematic of how these controllers are combined to achieve full
control of the UAV.

Figure 5. Drone control scheme

V. Reinforcement-learning based control of the UAV

Two controllers are designed to control the UAV: a conventional PD and a reinforcement learning-based
approach. The PD controller performance serves as a benchmark for the RL-based solution, and it is used
to validate the results. The PD gains are optimized using the PSO algorithm.17–19 The RL-based controller
is based on Q-learning, described in II. Both controllers incorporate an adaptive model-based inversion
dynamics inversion scheme to generate actuator inputs, as described in IV. This section describes both the
conventional and the reinforcement learning based approaches.

10 of 19

American Institute of Aeronautics and Astronautics

A. Controller layout

The layout of the control scheme consists of two parts: the inner and the outer control loops. Two types
of controllers are developed to fill the role of inner-loop control of the UAV: a conventional PD and a
reinforcement learning approaches.

(a) PID control scheme (b) RL control scheme

Figure 6. Conventional and RL-based control aproaches

Figure 6A illustrates a conventional feedback PID controller. It processes the signal reference offset
e(t) = x− xref . The absolute value of this offset is multiplied with the proportional gain Kp, the integral of
this error is multiplied with Ki and the rate of change of this error is multiplied with gain Kp. The output of
the PID controller is the desired acceleration ẍd. The model inversion module is then tasked with generating
a suitable virtual input to achieve this desired acceleration.

PID controllers are relatively easy to implement and are sufficient for most real-world control applications.
It can serve as a validation for reinforcement learning-based controller behavior.

The proposed Q-learning controller is a lot more complex than the PID one. The reinforcement learning
controller consists of policy, stored in the form of encoded RBF neural net, as described in A. Like with the
PD controller, x, ẋ and ẍref are used as inputs. The difference comes from how the desired control inputs
are produced: in a reinforcement learning controller the actions are generated by maximizing the output
value of the network.

The policy is stored in the form of an RBF neural net that accepts at least three inputs: the offset
between the current and the reference states ∆x = x− xref , current state derivative ẋ and the desired state
acceleration ẍd. The variable ẍ defines the action that can be taken by the agent. When states ∆x and
ẋ are sampled at some point in time the action variable ẍd becomes the only unconstrained input of the
generalized Q-function. Therefore it becomes possible to make an instantaneous “slice” of the Q-function,
which can be described as a one-dimensional RBF-based curve. In order to do this, the output of the neural
net that describes the Q-function is sampled at variable action values [xd,0, xd,1, . . . , xd,N]. The outputs
Y = [Q0, Q1, . . . , QN] are stored and used to generate a one-dimensional RBF-based function, using the
procedure, described in Section ??.

B. Reduced model and dynamics inversion control

The complete UAV dynamics, outlined int the previous section, consists of six states describing drone position
and attitude(x, y, z, ϕ, θ, ψ), four rotor speeds (ω0, ω1, ω2, ω3) and four virtual inputs (vb, v02, v13, v0213)
that can be translated into direct motor voltage inputs (v0, v1, v2, v3). All motions that the UAV goes
through, along or about the x-axis, y-axis or z-axis are cross-coupled with other motions of the aircraft.
Pitch, roll and yaw dynamics are all inter-connected, while the translational motions are connected to the
current aircraft tilt offset from the vertical z-axis. This relatively complex model can be reduced into a
more simple one. It could serve two functions: to enable inversion-based control and to be used for off-line
reinforcement learning.

11 of 19

American Institute of Aeronautics and Astronautics

Figure 7. Inversion controller

Some of the dynamics only play a marginal role in the over-
all performance of the controller. These dynamics include the
response delay of the actuators(rotors) and the cross-coupling
modes. The delay between the change of voltage supplied to
the rotors, and the reaction of the system is very brief. This
delay can be disregarded for a large enough time step. The
cross-coupling effects, in turn, should largely be overshadowed
by the contribution of control actuators during moderate flight
maneuvers. More aggressive maneuvering might result in a
larger deviation.

Any cross-couplings, present in the pitch roll and yaw
modes, are assumed to have no influence, and applying a virtual
input to the system results in an immediate change of state,
without any delay. The full dynamics model is split into four
simpler sub-models, describing pitch, roll, yaw and altitude
motion. An RBF-net is trained to model these dynamics. Each RBF net maps the relationship between
virtual inputs and output acceleration of the vehicle. This relationship is nearly linear for a sufficiently large
step-size. The model structure is demonstrated in figure 7. An example of the model output is shown in
Figure 8, for various dynamics.

0 200 400
-10

-5

0

5

10

15

(a) Vertical motion dynamics

-100 -50 0 50 100
-200

-100

0

100

200

(b) Roll dynamics

-100 -50 0 50 100
-200

-100

0

100

200

(c) Pitch dynamics

-200 -100 0 100 200
-1

-0.5

0

0.5

1

1.5

(d) Yaw dynamics

Figure 8. Reduced dynamics models and curve interpolation

This model can be inverted by using polynomial interpolation of the RBF net output and then solving it
for the desired acceleration output. An array of virtual input samples [v0, v1, . . . , vN] is supplied as input to
the system and the acceleration outputs ȳ = [ẍm,0, ẍm,1, . . . , ẍm,N] are recorded. A local polynomial curve
approximation is generated every time a new virtual control input is requested, based on supplied target ẍd.
This curve can be expressed as

¨̄x(v) = g(v) · θ, (40)

where the parameter vector θ describes the interpolated polynomial that follows the shape of the neural
net. In essence, the model itself represents the trim state voltage input for any given virtual input value,
denoted by vinput. The parameter vector θ is modified by adding the desired acceleration ẍd to its first term,
which describes the polynomial bias to reverse this model. Given a parameter vector θ that approximates
the reduced model

θ =
[
p0 p1 . . . pN

]T
, (41)

the adjusted parameter vector θ∗ becomes

θ∗ =
[
p0 + ẍd p1 . . . pN

]T
. (42)

The roots of the resulting system are found by calculating the eigenvalues of the companion matrix A∗

12 of 19

American Institute of Aeronautics and Astronautics

A∗ =

− p1

p0+ẍd
− p2

p0+ẍd
. . . − pN

p0+ẍd

0 1 . . . 0
...

...
0 0 · · · 1

 (43)

v̄ = eig(A∗) (44)

These roots v̄ correspond to trim state values of the virtual inputs for a given desired target acceleration
ẍd. Due to additional dynamics taking place if this value was applied directly, the system might start moving
towards the desired reference, but it might reach a local equilibrium before it reaches the goal. In other
words, the controller would have a severe undershoot. To account for this discrepancy a small proportional
gain is applied. The bottom part of Figure 7 illustrates the full inversion controller scheme. Figure 9 shows
the resulting performance of the inverse model state controller is for various dynamic modes. Note that the
transitions happen very quickly relative to the timescale, so for the reduced dynamics it’s safe to assume
that these changes take place instantaneously, given a large enough time step.

0 5 10 15 20
-10

-5

0

5

10

15

(a) Vertical motion dynamics

0 5 10 15 20
-150

-100

-50

0

50

100

150

200

(b) Roll dynamics

0 5 10 15 20
-200

-150

-100

-50

0

50

100

150

(c) Pitch dynamics

0 5 10 15 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(d) Yaw dynamics

Figure 9. Dynamics inversion controller reference tracking

VI. Controller parameters

The controller has several initialization parameters that have to be set in advance: neural net generaliza-
tion function parameters, such as the input states, the number of neurons per-dimension, and any auxiliary
states that might have an effect on the dynamics that have to be controlled. Also, there are Q-learning trial
and value function parameters: duration of one episode, value function update rate α, discount parameter
γ, trace decay rate λ, and the period during which the selected action is applied.

The trial length, discount rate, and action duration length are the parameters that have a major effect on
the resulting policy: control dynamics such as pitch and roll have a much shorter response time, compared
to yaw control for example. This difference in response time means that the time horizon over which an
episode is executed should be shorter, and the inputs have to be adjusted more rapidly.

Another learning parameter that has to be set in advance is the reward function. There are two basic
ways to do it: one is to assign a fixed penalty at each time step, until the goal is reached and terminal
reward is awarded. This method is difficult to apply if the goal is not just some threshold to be reached, but
a reference to be tracked over a period. A continuous state system may never reach the goal state exactly;
there is always some small error present. Therefore, assigning an actual goal condition is difficult. Another
way is to use a reward function that changes depending on the current system state. There are various ways
to define it. The way it is assigned can influence the learning process during the exploration stage, as well
as the overall behavior of learned policy. For example: if the reward is always positive, then the controller
might give preference to actions that had been explored previously, despite the possibility that some of the
un-tried actions might lead to higher value. Likewise, assigning negative rewards results in preference given
to actions that had not been explored previously, despite the fact that the optimum action already had been
tried. In effect, this works the same as pre-setting the value function. Another factor when designing a
reward function where several states are combined is the maintenance of balance between different states.

13 of 19

American Institute of Aeronautics and Astronautics

For example, a reward function that assigns a lower penalty for smaller state error but does not take state
derivative into account might result in high overshoot. On the other hand, a reward function that assigns
a high penalty for converging “too fast” might also lead to a controller that has slower response time or
unsatisfactory steady-state performance.

A. Policy training

It had been shown that the computation time for an RL algorithm could grow exponentially20 depending
on the number of states. However, it was also demonstrated that using more efficient exploration techniques
this time could be reduced to rise polynomially,21 so exploiting efficient exploration techniques is paramount
when dealing with a highly complex model.

The training procedure begins with the preliminary generation of several potential policy solutions. The
policies are initialized with the weights of the neural net used to store the Q-function initialized to 0.
Several training episodes are executed. The training progresses for as long as consecutive updates produce
an improvement in evaluation score. The policies are evaluated by performing a test run using the simplified
model while the controller is enabled and recording the average cumulative reward. The test signal consists of
a mix of step and sinusoidal inputs. Step input allows evaluating steady state performance of the controller,
while the sinusoidal signal is designed to evaluate the response of the controller to a moving reference signal.

There are three training methods used to train the policy: random state sweep, grid-based state sweep
and variable signal response. In a random state sweep, the initial state is placed randomly, close to the
final goal state. As the learning progresses, the initial state is placed further and further from the goal.
This approach allows to generate a policy valid near the goal region quickly and then refine it by moving
the initial position further away. During the grid-based search, the initial starting points sweep the entire
state-space of the controlled system. This strategy is designed to cover the entire state-space and to cover
the states that might not have been visited during a randomized search. Variable signal training is done by
letting the simulation run continuously and varying the reference signal(goal). Continuously adjusting the
goal state allows simulating the actual conditions of the system in operation. During the training stage, the
strategy is selected at random.

After generating several fully trained policies, the best one is selected. There is a considerable spread
between various policy scores. The policy quality starts to decrease after a few initial test runs. Therefore it
is important to be able to detect it and prevent it from getting worse as the learning continues on the best
policy.

VII. Simulation results

To evaluate the performance of the trained system and compare it against the PD two types of signals are
used: a variable step input and a sinusoidal pseudo-random input. The controllers are evaluated in isolation
- e.g., only one controller is activated at the time for each dynamic mode.

A PD controller is implemented to serve as a benchmark for the Q-learning controller performance. The
PD gains are tuned using PSO optimization. Time response of the resulting controller is shown in figures
10 - 11 for various dynamic modes.

0 20 40 60
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(a) Vertical motion controller

0 20 40 60
-10

-5

0

5

10

(b) Roll controller

0 20 40 60
-8

-6

-4

-2

0

2

4

6

8

(c) Pitch controller

0 20 40 60
-10

-5

0

5

10

(d) Yaw controller

Figure 10. PID controller square wave signal response

14 of 19

American Institute of Aeronautics and Astronautics

0 20 40 60
-0.1

-0.05

0

0.05

0.1

0.15

(a) Vertical motion controller

0 20 40 60
-4

-2

0

2

4

(b) Roll controller

0 20 40 60
-4

-2

0

2

4

(c) Pitch controller

0 20 40 60
-4

-2

0

2

4

(d) Yaw controller

Figure 11. PID controller sine wave signal response

The PID controller performance is scored by calculating the average of all rewards received through the
test trial. During these trials the full model of the process is used(with motor dynamics included). The
resulting score allows to make an objective comparison against the performance of a reinforcement learning
based approach.

The Q-learning controller is trained for four dynamic modes: altitude, pitch, roll, and yaw control. The
resulting trained value functions and the action maps are shown in Figures 12 and 13.

(a) Altitude controller (b) Roll controller (c) Pitch controller (d) Yaw controller

Figure 12. RL controller value function

(a) Altitude controller (b) Roll controller (c) Pitch controller (d) Yaw controller

Figure 13. RL controller action map

The approximated value function plot shows that the value is much higher near the goal state, and it
diminishes further away from the goal. This behaviour is expected of Q-learning. The pitch, roll and yaw
controller value functions are symmetrical, whereas the altitude controller value function exhibits some bias
depending on whether the drone is moving upwards or downwards. This bias can be attributed to the fact
that the actuation limits are not symmetrical: the lower limit of the climb rate cannot exceed gravitational
acceleration(free fall), while the upper limit is capped by the available thrust power.

15 of 19

American Institute of Aeronautics and Astronautics

Another interesting feature is the behaviour of the Yaw controller. The action map looks like a sequence
of bands. This nonlinearity can be explained by the fact that the yaw controller has the least actuation
power, reacting very slowly and the states themselves are cyclic, meaning that as the aircraft rotates, it can
flip from negative to positive reference offset. So for certain combinations of high offset from the reference
state and high yaw rate, the controller tends to flip the direction of the applied control, anticipating future
state. The altitude and yaw controllers react very sharply compared to pitch and roll controllers. This
effect can also be attributed to the actuation power available to different controllers. The roll and the pitch
controllers tend to “feather” the applied virtual input, whereas the altitude and yaw controllers quickly
switch between the minimum and the maximum available actuation forces.

Due to nature of the algorithm there are two possible ways to evaluate the resulting policy: using the
reduced model of the vehicle that neglects some dynamic aspects or a full model that introduces some delay
in response and fits the system more closely. Time series of these responses are shown in Figures 14-15 for
the reduced and the full model.

0 20 40 60
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60
-10

-5

0

5

10

0 20 40 60
-8

-6

-4

-2

0

2

4

6

8

0 20 40 60
-10

-5

0

5

10

0 20 40 60
-0.1

-0.05

0

0.05

0.1

0.15

(e) Altitude controller

0 20 40 60
-4

-2

0

2

4

(f) Roll controller

0 20 40 60
-4

-2

0

2

4

(g) Pitch controller

0 20 40 60
-4

-2

0

2

4

(h) Yaw controller

Figure 14. RL controller time response, reduced model

16 of 19

American Institute of Aeronautics and Astronautics

0 20 40 60
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60
-10

-5

0

5

10

0 20 40 60
-8

-6

-4

-2

0

2

4

6

8

0 20 40 60
-10

-5

0

5

10

0 20 40 60
-0.1

-0.05

0

0.05

0.1

0.15

(e) Altitude controller

0 20 40 60
-4

-2

0

2

4

(f) Roll controller

0 20 40 60
-4

-2

0

2

4

(g) Pitch controller

0 20 40 60
-4

-2

0

2

4

(h) Yaw controller

Figure 15. RL controller time response, full model

There is a difference between reduced and full models of the system. The full model exhibits a higher
overshoot and some steady-state error, compared to the reduced model. As a consequence, the average trial
score is lower for the full model, compared to reduced model in most cases. A complete list of test run scores
in shown in tables 3 - 6.

Score full test run Score square input Score sinusoidal input
RL controller, reduced model -0.194 -0.198 -0.184

RL controller, full model -0.086 -0.083 -0.092
PID controller -0.104 -0.109 -0.101

Table 3. Test run score comparison, Altitude control

Score full test run Score square input Score sinusoidal input
RL controller, reduced model -0.030 -0.031 -0.026

RL controller, full model -0.054 -0.064 -0.046
PID controller -0.079 -0.090 -0.062

Table 4. Test run score comparison, Roll control

Score full test run Score square input Score sinusoidal input
RL controller, reduced model -0.026 -0.024 -0.027

RL controller, full model -0.064 -0.079 -0.051
PID controller -0.078 -0.095 -0.061

Table 5. Test run score comparison, Pitch control

The reinforcement learning controller score is higher than the score of PID controller, optimized for the
same objective function. This indicates that reinforcement-learning controller performance is on par with
the PID controller, even slightly better, given comparison based on objective function alone.

17 of 19

American Institute of Aeronautics and Astronautics

Score full test run Score square input Score sinusoidal input
RL controller, reduced model -0.074 -0.105 -0.041

RL controller, full model -0.079 -0.113 -0.045
PID controller -0.130 -0.160 -0.105

Table 6. Test run score comparison, Yaw control

VIII. Conclusions

A practical continuous state, continuous action Q-learning controller framework has been described and
tested using a model of a multicopter. This work demonstrates that RL methodology can be applied to
inner-loop control of UAVs. The described approach combines model identification and offline learning using
a reduced order model of the plant. The model can be adjusted online to achieve a more accurate estimation
of the plant dynamics. An optimized hashed neural network algorithm used to store the Q-function values
allows to optimize the computational load of the algorithm, making it suitable for online applications. The
performance of the algorithm was validated and compared against that of a conventional proportional-
derivative controller and was found to exceed it. The direction of future research would include testing the
resulting algorithm in experimental setting that involves a physical system(a multicopter drone), extending
the control scheme to include outer loop control or applying the developed methodology to other classes of
robotic systems with continuous states and actions.

References
1Kaelbling, L. P., Littman, M. L., and Moore, A. W., “Reinforcement Learning : A Survey,” Journal of Artificial Intelli-

gence Research, Vol. 4, 1996, pp. 237–285.
2Szepesvári, C., “Algorithms for Reinforcement Learning,” Synthesis Lectures on Artificial Intelligence and Machine

Learning, Vol. 4, No. 1, 2010, pp. 1–103.
3Sutton, R. S. and Barto, A. G., “Reinforcement learning: an introduction.” IEEE transactions on neural networks / a

publication of the IEEE Neural Networks Council, Vol. 9, 1998, pp. 1054.
4Narendra, K. S. and Parthasarathy, K., “Identification and control of dynamical systems using neural networks,” IEEE

Transactions on Neural Networks, Vol. 1, No. 1, 1990, pp. 4–27.
5Gaskett, C., Wettergreen, D., and Zelinsky, A., “Q-learning in continuous state and action spaces,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 1747,
Springer Verlag, 1999, pp. 417–428.

6Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., and Liang, E., “Autonomous inverted
helicopter flight via reinforcement earning,” Springer Tracts in Advanced Robotics, Vol. 21, 2006, pp. 363–372.

7Bagnell, J. and Schneider, J., “Autonomous helicopter control using reinforcement learning policy search methods,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Vol. 2, 2001,
pp. 1615–1620.

8Zhang, B., Mao, Z., Liu, W., and Liu, J., “Geometric Reinforcement Learning for Path Planning of UAVs,” Journal of
Intelligent and Robotic Systems: Theory and Applications, 2013, pp. 1–19.

9Gaskett, C., “Q-learning for robot control,” Dspace.Anu.Edu.Au, Vol. 1, 2008.
10Sutton, R., “Generalization in reinforcement learning: Successful examples using sparse coarse coding,” Advances in

neural information processing systems, 1996, pp. 1038–1044.
11McCulloch, W. S. and Pitts, W., “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathe-

matical Biophysics, Vol. 5, No. 4, 1943, pp. 115–133.
12Pitts, W. and McCulloch, W. S., “How we know universals the perception of auditory and visual forms,” The Bulletin

of Mathematical Biophysics, Vol. 9, 1947, pp. 127–147.
13Hagan, M. T. and Menhaj, M. B., “Training feedforward networks with the Marquardt algorithm,” IEEE Transactions

on Neural Networks, Vol. 5, No. 6, 1994, pp. 989–993.
14Albus, J. S., “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC),” Journal

of Dynamic Systems, Measurement, and Control, Vol. 97, No. 3, 1975, pp. 220.
15Bouabdallah, S., Noth, A., Siegwart, R., and Siegwan, R., “PID vs LQ control techniques applied to an indoor micro

quadrotor,” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
Vol. 3, 2004, pp. 2451–2456.

16Mohammadi, M., Shahri, A. M., and Boroujeni, Z., “Modeling and Adaptive Tracking Control of a Quadrotor UAV,”
International Journal of Intelligent Mechatronics and Robotics, Vol. 2, No. 4, jan 2012, pp. 58–81.

17Nagaraj, B. and Murugananth, N., “A comparative study of PID controller tuning using GA, EP, PSO and ACO,”
Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on, 2010, pp. 305–313.

18 of 19

American Institute of Aeronautics and Astronautics

18Gaing, Z.-L. L., “A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System,”
IEEE Transactions on Energy Conversion, Vol. 19, No. 2, 2004, pp. 384–391.

19Chao, O. and Weixing, L., “Comparison between PSO and GA for parameters optimization of PID controller,” 2006
IEEE International Conference on Mechatronics and Automation, ICMA 2006, Vol. 2006, 2006, pp. 2471–2475.

20Whitehead, S. D., “A Complexity Analysis of Cooperative Mechanisms in Reinforcement Learning,” AAAI-91 Proceed-
ings, 1991, pp. 607–613.

21Carroll, J., Peterson, T., and Owens, N., “Memory-guided exploration in reinforcement learning,” IJCNN’01. Interna-
tional Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222), Vol. 2, No. January, 2001, pp. 1–44.

19 of 19

American Institute of Aeronautics and Astronautics

Chapter 3

Reinforcement learning

Reinforcement learning and intelligent control are used increasingly in various control appli-
cations. One of the issues associated with it is how to apply those controllers in safety-critical
situations. In this case, the system must be taught to behave safely.

The main challenge is how to recognize potentially unsafe situations in advance, with some
degree of certainty. If that’s the case, using a model of the plant allows achieving some
forecasting capability for the system. With more training data, however, it is possible to
build a control logic that would avoid such situations altogether, only making decisions that
are guaranteed to be safe.

Reinforcement learning can deal with the nonlinearities that occur in most real-life systems,
and it is highly adaptable and adaptive. As such, it had been studied and applied to a wide
range of problems in a variety of different fields. In reinforcement learning the system consists
of an agent, acting in some environment. For example, an agent could be an autonomous
vehicle, while the environment is the world in which it acts. The learning process itself
consists of the actor taking different actions to explore the system and to exploit it by using
the knowledge that it already has.

After each transition from agent state s to s′ the agent receives some reward r. If successful,
the agent receives a higher reward, and if the action leads to an undesirable state, then the
magnitude of the reward is lower. This reinforcement takes the shape of a certain reward
function, determined beforehand. In autonomous vehicle context, the rewards could be de-
fined by smooth movements, quick response, the safety of the operation, etc. The purpose
of an agent is to maximize this reward by taking optimal actions. By acting in a certain
way, the actor follows a policy π, which represents the mapping from perceived states of the
environment to actions to be taken (Sutton & Barto, 1998). While the reward function r
determines the actions of an agent in a short run, influencing the adopted policy, a value
function V (s) is used to specify it’s total reward, in the long term, determining the agent’s
behavior B. This behavior can be learned using a wide variety of different algorithms. This
chapter introduces some of these algorithms and the underlying theory behind them.

Formally, the reinforcement model consists of:

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

28 Reinforcement learning

• a set of environment states, S, which can be discrete or continuous

• a set of actions A, which can be discrete or continuous

• a set of reinforcement signals r, which can be static or varying, depending on agent
state

3-1 Optimal Behavior Models

One of the specific attributes of using Reinforcement Learning techniques for control is that
the agent can perceive some expected future rewards, depending on the state it’s in and
the course of actions that it follows. There are three basic models to represent this kind of
behavior.

In the finite-horizon model the agent strives to optimize its expected cumulative reward r
over h steps (Kaelbling, Littman, & Moore, 1996):

E

(
h∑

t=0

rt

)
(3-1)

The rt in this expression represents the reward, received at time t. There are two ways to
use this reinforcement: one is to have a non-stationary policy, that would change over time.
At the first step, the agent would take an h-step optimal action, the best action, given that
there are h steps remaining for the actor to act. At the next step, it takes (h − 1)-optimal
action, until it finally takes 1-step optimal action and terminates. Another approach is to
use receding-horizon control, in which the agent always takes h-step optimal actions. In real
applications, the finite horizon approach is not always practical. Often it is not known, exactly
how long will it take the agent to accomplish the task or for how long will it remain active.

The infinite-horizon model takes the long-run reward into account, but rewards received in
the future are discounted, according to some discount factor γ (0 ≤ γ < 1).

E

(
h∑

t=0

γtrt

)
(3-2)

With the discount factor γ set to zero, the agent only learns a 1-step optimal policy, as it
only considers the immediate reward. With the discount factor set to 1, the agent takes into
account the cumulative reinforcement received over its entire lifetime. Mathematically, setting
the discount factor γ to 1 can lead to divergence of expected reward sum, if an appropriate
termination condition is not specified. The high value of γ can also slow down learning since
the possible return of all future actions is considered. The long-run expected rewards might
overshadow the most immediate reward. So it’s hard to distinguish a policy which gains a
significant amount of reinforcement initially, and the lower amount over the long run from a
policy that generates a moderate amount of rewards throughout.

Another approach to optimality is the average-reward model. Using this criterion, the agent
takes actions aimed to maximize the average reward over the long run.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

3-2 Learning Performance Measurement 29

lim
h→∞

E

(
1

h

h∑
t=0

rt

)
(3-3)

This policy is referred to as a gain optimal policy. It is similar to the infinite-horizon model,
as the discount factor γ is approaching 1, and suffers from the same issues, considering the
balance between the short term and the long term rewards. It is possible to avoid that by
using a bias optimal model, where both the initial reinforcement and the long term average
are taken into account.

3-2 Learning Performance Measurement

There are various criteria to evaluate learning and policy performance. Measuring it is im-
portant to select the right approach for the task. The two most important criteria are the
optimality of learned policy and the speed of convergence. There are some algorithms that
are proven to converge to an optimal policy eventually, but sometimes it is not practical
because it might take a lot of time to converge. Other, faster algorithms, might reach the
plateau performance more quickly, but the resulting performance might be sub-optimal.

A good online reinforcement learning algorithm must satisfy two requirements. First of all, it
must be capable of finding an optimal control solution quickly by exploring the environment.
Second, as the solution is refined, it must converge to an optimum solution, while avoiding
being stuck in a local optimum (Busoniu, Babuška, De Schutter, & Ernst, 2010).

3-3 Reinforcement learning methodologies

Broadly speaking, the reinforcement learning methods can be classified into two categories:
model-based and model-free. In a purely model-based approach, it is assumed that an agent
has an explicit model of the environment and that its state can be fully observed. In a strictly
model-free approach, the agent learns only from experience, without a model or knowledge
of the environment dynamics.

Dynamic Programming (DP) algorithms belong to the class of model-based ap-
proaches (Cybenko, 1998). DP methods operate on two principles: policy iteration and
value iteration. Policy iteration means typically iterative computation of the value function
for a given policy. Value iteration involves calculation of an improved policy, based on value
function. Classic DP methods operate by performing sweeps through the state set, performing
a backup operation in each state and updating corresponding values.

DP methods have several significant drawbacks that make them unsuitable for real-world
applications. They require sweeps of an entire state set, which can be prohibitively expensive
if the state is too large. They are also computationally expensive. Some of it can be mitigated
by using asynchronous DP algorithms, which update the values with whatever values are
available at the time and don’t require exhaustive sweeps. These are preferred for problems
with large state spaces. They also make it easier to mix computation and real-time data. A

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

30 Reinforcement learning

DP algorithm can be run at the same time as the agent acts. Nevertheless, it always requires
a model to assign the rewards correctly.

Other methods are less explicitly dependent on an existing model, and that can learn from
experience, on-line or simulated. Monte-Carlo methods can utilize this principle (Sutton &
Barto, 1998). In Monte Carlo methods the experience is divided into episodes. Once the
episode is completed, the value estimates and policies are changed. It is different from DP in
a sense that the estimates for each state are independent of all the other states. This gives
Monte Carlo an advantage of reduced computational expense and makes it more attractive
when values of only a subset of the states are required. If a model is available, the state values
alone are sufficient to design a policy. If it isn’t, however, the value must be estimated. This
estimation can be done by averaging the returns as the number of visits to each state-action
pair reaches infinity. Monte Carlo methods also have some issues, such as the requirement
to maintain sufficient exploration. It is not enough to take optimal actions. There could be
better alternative actions, but unless they are visited, they remain unknown.

Temporal Difference (TD) learning can learn directly from experience like in case with Monte
Carlo methods. In both cases, the value estimate is updated based on the outcome from
visiting some nonterminal state. But unlike the case with Monte Carlo, it is not necessary to
wait until an episode is complete to update the value function. TD methods can immediately
form a new target. As such, TD methods can be naturally implemented in an on-line fashion
which gives them an advantage. Another advantage is that TD performs faster than Monte
Carlo methods. And unlike the case of DP, this can be done without any knowledge of the
model. Q-learning and Actor-Critic methods are subsets of TD, where the former is more
suitable for discrete systems and the latter is designed to deal with continuous models. Q-
learning has an advantage over actor-critic method because it is exploration-insensitive, i.e.,
it can learn without following the current policy. However, it has to be adapted to deal with
continuous states and continuous inputs, which constitute integral elements of most real-world
applications. This presents some difficulty in applying Q-learning to problems with smoothly
varying states and smoothly varying actions (Gaskett, 2008).

In a sense, the methods described are not mutually exclusive, but they provide a set of tools
that can be applied to solve a particular problem. Monte Carlo and Temporal Difference
methods are of most interest when considering the objective of designing an intelligent UAV
controller that can act with minimum knowledge about the model and learn in real time.
They are less computationally intensive than DP do not require a complete model that is
known a priori. They do, however, require some knowledge of system dynamics that can be
found by building a model.

3-4 Delayed reward

In addition to immediate rewards, a reinforcement learning agent must be able to take fu-
ture rewards into account. Therefore it must be able to learn from delayed reinforcement.
Typically the agent would progress throughout it’s learning process, starting off with small
rewards, and then receiving larger rewards as it gets closer to its goal. And it must learn
whichever actions are appropriate at any instance, based on reinforcement that can be received
at any time in the future.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

3-5 Markov decision process 31

3-5 Markov decision process

Delayed reinforcement learning problems can be modeled as Markov decision processes(MDP).
An MDP consists of

• a set of states S

• a set of actions A

• a reward function R : S ×A → R

• a state transition function T : S ×A → Π(S), where Π maps the states to probabilities.
The probability of transition from state s to state s′ given action a.

The state transition function specifies the transition from one state to another, following
an action that was taken by the agent. The instant reward received following an action.
The model has Markov property if the state transitions are independent of any previous
environment states or agent actions.

3-6 Policy search using a model

For an infinite-horizon discounted model there exists an optimal deterministic stationary
policy. The optimal value is the expected infinite discounted sum of reward at any given
state. The value is described as

V ∗(s) = max
π

E

(∞∑
t=0

γtrt

)
(3-4)

Here π represents the decision policy. The value is unique, and it can be described as the
solution to the simultaneous equations

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
,∀s ∈ S (3-5)

This value includes the expected instantaneous reward R and the expected discounted value
over the long run, when using the best available actions a, following the policy π:

π∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

)
(3-6)

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

32 Reinforcement learning

3-7 Value iteration

In order to predict the outcome of a Markov chain, an incremental form of value iteration
could be used:

V (s)← (1− α)V (s) + α(r + γV (s′)) (3-7)

This basic operation is used in most temporal difference algorithms. For the problem of
prediction on a deterministic Markov chain, the goal can be defined as satisfying the Bellman
Equation, where each transition from state s to state ′s yields an immediate reward r:

V (s) = (r + γV (s′)) (3-8)

For a given value function V the Bellman residual is defined as the difference between two
sides of the Bellman equation. The mean squared Bellman residual for an MDP is defined as:

E =
1

n

∑
s

[(r + γV (s′))− V (s)]2 (3-9)

Where n represents the number of states.

3-8 Q-learning

One of the most important reinforcement learning algorithms available today is Q-
learning(Sutton & Barto, 1998). It is an off-policy TD control algorithm. Off-policy means
that it learns the action-values that are not necessarily on the policy that it is following.
The Q-learning is using a Q function to learn the optimal policy. The expected discounted
reinforcement of taking action a at state s is represented as Q∗(s, a).

Q∗(s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)max
a′
Q∗(s′, a′) (3-10)

This function is related to value as V ∗(s) = maxaQ∗(s, a). Then the optimal policy is
described as π∗(s) argmaxaQ∗(s, a). One-step Q-learning is defined by the following value
update rule:

Q(s, a)← Q(s, a) + α(r + γmax
a′
Q(s′, a′)−Q(s, a)) (3-11)

In this equation, Q stands for action-value function, updated at every step at a learning rate α.
The update parameters are the reward r and the value of Q at the next step, corresponding
to the maximum possible reward for a certain action a. Factor γ is the discount rate; it
represents the eligibility of the value for a change. It makes rewards earned earlier more
valuable than the ones received later. For state s at a discrete time k eligibility trace is
denoted as ek(s) ∈ R+. At each time step in a trial, the eligibility traces e decays by a factor

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

3-9 Sarsa 33

γλ, where λ is the trace-decay parameter(Sutton & Barto, 1998). The eligibility trace for a
state that just had been visited can be incremented by 1.

ek(s) =

{
γλek−1(s) if s ̸= sk

γλek−q(s) + 1 if s = sk
(3-12)

This method is referred to as accumulating traces. Anoter method of updating traces is
follows:

ek(s) =

{
γλek−1(s) if s ̸= sk

1 if s = sk
(3-13)

This method is called replacing traces. The accumulating traces is known to suffer from
convergence issues, replacing traces method is thus mostly used.
The general procedure for Q-learning is shown as follows:

Data: Initialize Q(s, a) arbitrarily
for each episode do

Initialize s
for each step do

Choose action a from s using policy derived from Q
take action a, observe reward r, new state s′
Q(sk, ak)← Q(sk, ak) + α[rk+1 + γmaxaQ(sk+1, a)−Q(sk, ak)]
s← s′

if goal is reached then
break

end
end

end

3-9 Sarsa

There are numerous variations to Q-learning algorithm, aiming at improving convergence and
optimality characteristics, and trading off exploration and exploitation during the learning
process. Some of them will be discussed in this section.
Sarsa algorithm is an on-policy variation of Q-learning (Kaelbling et al., 1996). An action-
value function has to be learned rather than an state-value function. For an on-policy method
Qπ(s, a) must be estimated. This can be done using a nearly identical kind of update as in
the general Q-learning. Sarsa learning update rule is defined as follows:

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (3-14)

The difference with the Q-learning update, described earlier is that rather than the optimal
Q-value maxa′ Q(s′, a′) the value of the action taken Q(s′, a′) is used during the update. The
full update algorithm is shown as follows:

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

34 Reinforcement learning

Data: Initialize Q(s, a) arbitrarily
for each episode do

Initialize s
Choose action a from s using policy derived from Q (e.g. ε-greedy)
for each step do

Choose action a from s using policy derived from Q (e.g. ε-greedy)
take action a, observe reward r, new state s′
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′

if goal is reached then
break

end
end

end

3-10 Dyna-Q learning

In Dyna approach, the agent experience is used to build a model, while simultaneously using
this model to learn (Neumann, 2005). The idea behind Dyna is to preserve the state transition
experience tuples ⟨s, a, s′, r⟩ and use these to update models R̂(s, a) and T̂ (s, a). The policy
updates are then performed as follows, for each experience tuple:

• The model is updated using the information about transition from s to s′, following an
action a.

• The policy is updated, according to value-iteration rule for the Q-values:

Q(s, a)← R̂(s, a) + γ
∑
s′

T̂ (s, a, s′)max
a′
Q(s′, a′) (3-15)

• Additional k updates are performed, after choosing k state-action pairs at random

Q(sk, ak)← R̂(sk, ak) + γ
∑
s′

T̂ (sk, ak, s
′)max

a′
Q(s′, a′) (3-16)

Dyna algorithm increases computational complexity of the updates, requiring k further itera-
tions of the update rule per each update step. However, it also tends to converge after fewer
update steps, compared to traditional Q-learning, requiring fewer experience steps.

3-11 Double Q-learning

In some environmentsQ-learning is performing poorly, due to overestimations of action values,
that results from a positive bias that is introduced because Q-learning uses maximum action
value as an approximation for the maximum expected action value. Double Q-learning algo-
rithm (Hasselt, Group, & Wiskunde, 2010) is designed to mitigate these effects. In essence,

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

3-12 Advantage Learning 35

Q-learning is using a single estimator to estimate the value of the next state: maxaQt(s
′, a)

is an estimate for E{maxaQt(s
′, a)}, which in turn approximates maxaE{Qt(s

′, a)}. This
expectation is averaging over all possible runs of the same experiment, and not as the ex-
pectation over the next state. The value of maxaQt(s

′, a) is an unbiased sample with mean
E{maxaQt(s

′, a)}. Because of this Q-learning can suffer from large overestimations.
In double Q-learning two Q-functions are stored: QA and QB. Each is updated with the
value from another Q-function for each step of the learning process. So, instead of using
the value QA(s′, a∗) = maxaQA(s′, a) to update the function QA, estimate QB(s′, a∗) is
used instead. Since each of these functions is updated on the same problem, but with a
different set of experience samples, this produces an unbiased estimate of the value of the
action. The same logic is applied when updating the value of QB, using QA. In general,
E{QB(s′, a∗)} ≤ maxaE{QA(s′, a∗)}. The full algorithm is shown as follows:

Data: Initialize QA(s, a), QB(s, a) arbitrarily
for each episode do

Initialize s
for each step do

Choose action a from s using policy derived from QA and QB

take action a, observe reward r, new state s′
Choose (e.g. random) either UPDATE(A) or UPDATE(B)
if UPDATE(A) then

Define a∗ = argmaxaQA(s′, a)
QA(s, a)← QA(s, a) + α[r + γQB(s′, a∗)−QA(s, a)]

end
else if UPDATE(B) then

Define b∗ = argmaxaQB(s′, a)
QB(s, a)← QB(s, a) + α[r + γQB(s′, b∗)−QB(s, a)]

end
s← s′

if goal is reached then
break

end
end

end

3-12 Advantage Learning

Advantage learning is a reinforcement learning algorithm in which two types of information
are stored. For each state s the value V (s), representing the estimate of the total discounted
return at that state, and the value A(s, a), representing the amount by which the total
discounted reinforcement could be increased by performing the action a (Harmon & Baird
III, 1996). The optimal value function V ∗(s) represents the actual value of each state, while
the optimal advantage function A∗(s, a) is converging towards 0 for optimal actions a, and
remains negative if action a is sub-optimal. Advantage learning tends to learn faster than
Q-learning, especially for continuous-time problems.
The optimal advantage function A∗(s, a) and the value function are related as:

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

36 Reinforcement learning

V ∗(s) = max
a
A∗(s, a)

Where the advantage for each state s and action a is defined as:

A∗(s, a) = V ∗(s) +
r + γ∆tV ∗(s′)− V ∗(s)

∆tK

The following update rule for the advantage learning can be derived, similar to Q-learning
update:

A(s, a)← A(s, a) + α

((
r + γmax

a
A(s′, a)

) 1

∆tK
+

(
1− 1

∆tK

)
max
a

A(s, a)−A(s, a)
)

(3-17)

For continuous state and time types of problems, Advantage learning is found to converge to
acceptable performance more often than pure Q-learning (Gaskett, 2008).

3-13 Discussion

This chapter presented the main principles behind the reinforcement learning. Several RL
methods were described and compared. Q-learning algorithm was described. Q-learning is
an attractive temporal difference method that could be used to train a value function online,
as well as from a training data set. Several variations of Q-learning were discussed as well. In
principle, Q-learning was designed to solve discrete state and action problems. However, it
can be adapted to deal with continues states and actions by using function approximation.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 4

Continuous state and action
Q-learning

Q-learning algorithms are commonly applied to problems with discrete sets of states and
action. In those, the state-action spaces and rewards are encoded in tabular form, where each
cell represents a combination of state and action. In reality, however, control problems where
the states and actions are continuous are also widespread (Gaskett, Wettergreen, & Zelinsky,
1999). This presents a challenge in adapting the “classical” Q-learning approach to deal with
these types of problems. A common approach is to discretize the state of the world by splitting
the state domain into discrete regions. This discretization approach, however, introduces
some problems. For example if the state is coarsely discretized a perceptual aliasing problem
occurs (Gaskett, 2008). It’s hard to discretize world states without losing information. One
of the solutions is to discretise the world more finely. This approach, however, increases the
amount of memory required, introducing the curse of dimensionality. Fine discretization leads
to an enormous state-action space.
These issues could be reduced by using generalization, e.g., using experience with a limited
subset of the state space to produce an approximation over a larger subset (Sutton & Barto,
1998). This approach allows generalizing from previously experienced states to ones that
hadn’t been visited yet.
One type of generalization is function approximation, which in turn is an example of super-
vised learning. Most supervised learning methods seek to minimise the mean-squared-error
(MSE) over distribution of inputs P (s). Given target function value V π the MSE for an
approximation Vt using parameter θ̄t becomes -

MSE(θ̄t) =
∑
s∈S

P (s)[V π(s)− Vt(s)]2 (4-1)

A good strategy for estimating the parameter vector is to minimize this value on the observed
examples by adjusting the parameter vector by a small amount at each data point, in the
direction that would reduce the error.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

38 Continuous state and action Q-learning

θ̄t+1 = θ̄t −
1

2
α∇θ̄t [V

π(st)− Vt(st)]2 = θ̄t + α[V π(st)− Vt(st)]∇θ̇t
(4-2)

Where α is the step-size parameter and ∇θ̄f (θ̄t) is the derivative vector that represents the
gradient of f with respect to θ̄t

(
δf (θ̄t)

δθt(1)
,
δf (θ̄t)

δθt(2)
. . .

δf (θ̄t)

δθt(n)

)T

(4-3)

This gradient represents the direction in which the error falls most rapidly. Eventually the
gradient-descent method converges to a local optimum. The general gradient-descent method
for state-value approximation thus becomes:

θ̄t+1 = θ̄t + α[vt − Vt(st)]∇θ̄tVt(st) (4-4)

With vt being an unbiased estimate E{vt} = V π(st) then θ̄t is guaranteed to converge to
some local optimim.

A special case of gradient-descent approximation is in which the approximate function Vt is
a linear function of the parameter vector, θ̄t (Sutton & Barto, 1998). In that case, there is
some vector of features ϕ̄s such that

Vt(s) = θ̄Tt ϕ̄s =
n∑
1

θt(i)ϕs(i) (4-5)

Linear learning methods could be very efficient approximators. When using them, the appro-
priate way to represent the state-space using features must be found.

Neural Networks (NN) can be used to model and control very complex systems with sufficient
accuracy without complete knowledge of its inner composition. Neural networks themselves
can be divided into two types: multilayer neural networks and recurrent networks. Despite
some differences, they could be viewed in a unified fashion as part of a broader discipline
(Narendra & Parthasarathy, 1990).

Another way to approximate a continuous function is using coarse coding. This is a technique
where the state-space region is separated into overlapping regions, each representing a feature.
In the binary case, if the state is situated inside of a feature, then the corresponding feature
has a value of 1 and is said to be present. Otherwise, this feature is 0 and it is said to be
absent (Sutton & Barto, 1998). The parameters that affect the discretization accuracy of this
method are the size of the regions and number of overlapping regions.

4-1 Neural Networks

Neural Networks can be used to model and control very complex systems with sufficient
accuracy without complete knowledge of its inner composition. Neural networks themselves
can be divided into two types: multilayer neural networks and recurrent networks. Despite

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-1 Neural Networks 39

some differences, they could be viewed in a unified fashion as part of a broader discipline
(Narendra & Parthasarathy, 1990).
The concept of Neural Networks was first proposed by Warren McCulloch and Walter Pitts,
who came up with a model of an artificial neuron, later dubbed perceptron (McCulloch &
Pitts, 1943; Pitts & McCulloch, 1947).Their ideas were then criticized as being too limited
in 1969, when a book ’Perceptrons’ was published by authors Marvin Minsky and Seymour
Papert (Nievergelt, 1969). One of their main critiques was that it was that it was impossible
to simulate some logic gate functions with them. This had led to a decrease of interest in NN
among the scientific community. However, before that, a Russian scientist Kolmogorov had
demonstrated that these limitations could be overcome by using multilayer networks that
in theory could be taught to approximate any function. In the following years, there was
less research done regarding reinforcement learning. The situation had changed in the late
80s. Increasing ubiquity of personal computers and their growing power made reinforcement
learning, in general, an attractive tool with many potential applications. In the following
decades and up until now this research field was very active and, it is still growing and evolving.
One of the fundamental problems in system identification when using NN is finding a suitable
structure for the model, while parameter estimation in itself is a relatively straightforward
process (Sjöberg et al., 1995).
The basic building unit of a neural network is an artificial neuron. The basic neuron consists
of a weighted summer, the function of which is to combine one or several inputs. Each input is
multiplied by some weight, which can be pre-determined, or adjusted as the learning process
goes on. The combined and weighted inputs then pass through some nonlinear activation
function. Various types of activation functions exist. It could be a simple threshold function,
producing a unit output when some input threshold is passed. A radial-basis function that
gradually increases or decreases, depending on the input value proximity to the center of
the neuron. Ir a tangent-sigmoidal activation function, similar to a threshold function, but
producing a smooth, varying output. Multiple neurons can be combined in layers, and layers
themselves could be combined as well. A typical neural network would have one hidden layer,
that consists of several nonlinear neurons and one output layer that often consists of a simple
summation of weighted hidden layer outputs. The layouts of Radial Basis Function(RBF)
and Feed-Forward(FF) neural nets are shown in figure 4-1.
The activation function ϕ(v) can take various forms, depending on the intended application
and desired characteristics of the neural net. Some of the typical ones are shown in figure
4-2.
There are a variety of training methods that apply to neural networks, e.g. linear regression
methods, and gradient descent methods such as back-propagation, Levenberg-Marquardt, and
others.

4-1-1 Linear regression training

Linear regression training is often applied to RBF neural networks. It is simple to use and
computationally inexpensive. A typical linear regression model intended to train an RBF
network can be defined as follows:

Y = A(x) · θ + ϵ (4-6)

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

40 Continuous state and action Q-learning

(a) RBF neural net layout (b) Feed-Forward neural net layout

Figure 4-1: Typical Neural Network layouts

In this equation Y denotes the recorded measurement vector Y = [y1t , y
2
t , · · · yNt]T , containing

N datapoints, A(x) is the regression matrix, containing hidden layer outputs for each recorded
input xk and θ is the vector, containing output layer weights θ = [wo,1, wo,2, · · · , wo,n] for each
of n neurons in the hidden layer.

νj(xi) =

q∑
i=1

wh,i,j(xi − ci,j)2 (4-7)

ϕj(νj) = e−νi (4-8)

A(ϕ) =

ϕ1(ν

1
1) ϕ2(ν

1
2) · · · ϕn(ν

n
n)

ϕ1(ν
2
1) ϕ2(ν

2
2) · · · ϕn(ν

2
n)

...
...

ϕ1(ν
N
1) ϕ2(ν

N
2) · · · ϕn(ν

N
n)

 (4-9)

where
q number of input dimensions
n number of hidden layer neurons
N size of training data set
ϕi(vi) RBF activation function
ci,j neuron centers
wh hidden layer input weights
wo output weights

In order to find an optimum set of parameters θ̂, the model error η has to be minimised:

η = Y −A(x) · θ (4-10)

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-1 Neural Networks 41

ν

φ
(ν

)

-1

0

1

Linear function

ν

φ
(ν

)

-1

0

1

Step function

ν

φ
(ν

)

-1

0

1

Ramp function

ν

φ
(ν

)

0

1

Sigmoid function

ν

φ
(ν

)

-1

0

1

Tangent-Sigmoid function

ν

φ
(ν

)

0

1

Radial Basis function

Figure 4-2: NN activation functions

In order to do so, a cost function J has to be defined. Then the optimal parameter vector θ̂
becomes:

θ̂ = argmin J(Y −A(x) · θ) (4-11)

Typically a quadratic error cost function is used, in order to avoid negative errors canceling
out the positive ones. This function can be expressed as follows:

J(x, θ) = (Y −A(x) · θ)T (Y −A(x) · θ) (4-12)

In order to minimise function J(x, θ) it is differentiated with respect to parameter vector θ:

δ

δθ
J(x, θ) =

δ

δθ
(Y −A(x) · θ)T (Y −A(x) · θ) (4-13)

The function can be differentiated using partial derivatives. Cost function is minimised when
this derivative is zero.

δ

δθ
J(x, θ) = −2(Y −A(x) · θ)TA(x) = 0 (4-14)

Opening the brackets and re-arranging this equation leads to the following expression:

AT (x)A(x) · θ̂ = A(x)TY (4-15)

The parameter vector value θ̂ is the value that minimised the quadratic cost function J(x, θ).
Thus, re-arranging equation (4-15):

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

42 Continuous state and action Q-learning

θ̂OLS = (AT (x)A(x))−1AT (x)Y (4-16)

This concludes the derivation of ordinary least squares method for updating of RBF network
output weights. Note that only output weights are updated, while the input weights remain
unchanged.

RBF neural net training demonstration

A simple two-dimensional function, shown in (4-17), was approximated to demonstrate the
application of an RBF neural network. Figure 4-4(a) illustrates the output of the function.

f(x̄) = sin(2πx1) cos(2πx2) (4-17)

The output of the function is shown in figure 4-4(a). Identification and validation data sets
were generating calculating the function output value for 500 randomly generated inputs to
the function. Then several neural net configurations were created and trained using linear
regression. Since only output weights were updated in this case, special care had to be taken
when initiating input weights and neuron centers. There are various ways to initialise these:
for example, they could be placed randomly or on a grid. In this case all network centers were
put on a uniform grid within the state vector domain x1[0, 1], x2[0, 1]. The inputs weights
were initialized as a function of the spacing between nearest center points on the grid ∆c,i

along i-direction:

winit
h,i,j = 1/∆c,i (4-18)

This type of initialization allows covering the entire function domain uniformly.

The RMSE of the trained RBF neural net is shown in Figure 4-3, for various neural net
configurations. It is evident that the identification error drops as the number of neurons
increases, while the validation error levels off at some point. The outputs of some select
networks are shown in Figure 4-4, along with the plot of the original function.

The plot shows that a network with 12 neurons is insufficient for approximating function
features, as it demonstrates heavy aliasing. The network with 20 neurons already approxi-
mates the original function well, while a network with 110 neurons produces a surface nearly
identical to original function with very low error levels.

Note that neural nets are relatively expensive to implement computationally. A network
with q inputs and n hidden layer neurons requires equations (4-7) to be evaluated q × n
times, and (4-8) to be assessed n times for each forward pass. This can be computationally
taxing, especially considering that equation (4-8) is an exponential function, and exponential
functions are much slower to execute than simple operations such as addition or multiplication.
This computational overhead can be reduced by only considering the neurons activated at a
time and approximating the exponential function using a polynomial or a lookup table with
pre-calculated values.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-2 CMAC coding 43

n
neurons

20 40 60 80 100 120 140 160 180 200 220 240

R
M

S
E

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

RMSE
RMSEval

Figure 4-3: RMSE and memory size of various RBF neural net configurations

4-2 CMAC coding

Tile coding is a form of coarse coding in which the receptive fields of features are grouped
into exhaustive partition of the input space. These groups are referred to as tilings, and each
element is called a tile. This idea is an integral part of Cerebral Model Articulation Controller
(CMAC) method (Albus, 1975). The feature values are stored in a weight vector table where
each cell has its association cell that indicates binary membership degree of each possible
state input vectors. The activated weights of a fully trained CMAC mapping are summed
across to calculate the resulting output. Since the only algebraic operation that takes place is
the addition, CMAC is a very computationally efficient method. The computational effort is
determined by the number of resulting tilings: denser distributions require more calculations
and are more computationally intensive. Action-value Q-functions can be stored in this
manner.

In order to encode continuous state values into tiles first define two indices i and j. Discrete
index i corresponds to tile coordinate within one tiling. Given a variable x that needs to be
discretised in one-dimensional space, the floor operator ⌊x⌋ is defined as:

⌊x⌋ = max{n ∈ Z | n ≤ x} (4-19)

In equation (4-19) the value of ⌊x⌋ can take negative or positive values. But the tile index i
has to be compatible with positive-only indexing systems {i ∈ Z | 0 ≤ i ≤M}. Furthermore,
given M − 1 discretisation regions per tiling on the interval [a, b] = {x | a ≤ x ≤ b} the
variable has to be scaled using some scaling function ϕ(x). This scaling can be done in a
variety of ways, depending on the application. The most simple way is to have a uniform,
linear scaling factor as shown in (4-20). Although non-linear scaling functions can also be

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

44 Continuous state and action Q-learning

(a) Original function (b) 12 neurons

(c) 20 neurons (d) 110 neurons1

Figure 4-4: Trained RBF neural nets

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-2 CMAC coding 45

applied, for example in order to achieve finer discretisation for certain values of x. The tile
index ip can be calculated given a continuous variable value xp on the interval [a, b]:

ϕ(x) =
x− a
b− a

(4-20)

ip = ⌊M × ϕ(xp)⌋ (4-21)

This gives the most simple way to implement discretisation in one-dimensional space. Several
discretisations can then be combined in order to achieve generalization between them. Assume
that there are N tilings, where j stands for tiling index {j ∈ Z | 0 ≤ j ≤ N − 1}. Then each
tiling could be offset by some value ∆j :

∆j =
1

N
(4-22)

ipj = ⌊M × ϕ(xp) + j ×∆j⌋ (4-23)

This methodology can be extended further to facilitate encoding of multi-dimensional values
of x̄ = [x1, x2, . . . , xn−1, xn], with n-dimensions. Recursion is applied in order to create a
one-dimensional index īpj from a multi-dimensional vector value x̄p, as follows:

ipj,q = ⌊Mq × ϕ(xpq) + j ×∆j⌋ (4-24)

īpj =

n∑
q=2

ipj,q + ipj,q−1 ×Mq (4-25)

Now that an indexing scheme had been outlined, the resulting tiling can be used to store a
generalized approximation of any arbitrary function. A multidimensional array of weights w
is allocated to store this generalization. Summing up the weights, located at indices derived
using equation (4-25), allows to calculate the output of the approximated function:

y(x̄p) =
N∑
j=1

wīpj
(4-26)

The CMAC can be updated by comparing the output of the function y(x̄p) with the desired
output value ypt and using the resulting error to update the weights.

∆w = ypt − y(x̄p) (4-27)
wīpj

← wīpj
+ α∆w, (4-28)

where α denotes the learning rate. The total required memory size for this type of array is
N ×

∏n
q=1Mq. This size increases linearly with the increasing number of layers, polynomially

with the number of discretizations, and exponentially with the number of variable dimensions.
It can grow quite large, and some trade-off has to be made about function approximation
power, generalization characteristics and the required memory size. Furthermore, networks
with a lot of weights can take longer to train, since ideally, each weight in the network has to
be updated at some point.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

46 Continuous state and action Q-learning

CMAC training demonstration

A simple two-dimensional function was trained to demonstrate the approximation power of a
CMAC net. The function used is shown in (4-29). Figure 4-6(a) illustrates the output of the
function.

f(x̄) = sin(2πx1) cos(2πx2) (4-29)

The output of the function is shown in Figure 4-6(a). This function was approximated
using several CMAC configurations. Identification and validation data sets were generating
calculating the function output value for 500 randomly generated inputs.
The smallest dimension that the function can discern is inversely related to product of the
number of tilings and the number of discretisations ∆w ∼ 1/(N ×M). So this product was
kept constant, with ∆w = 1/32. The results of estimating the function (4-29) are shown in
Figure 4-5. Trained CMAC outputs are shown in figures 4-6(b)- 4-6(d).

Discretisations
1 2 4 8 16 32

M
em

or
y

100

200

300

400

500

600

700

800

900

1000

1100

Layers
32 16 8 4 2 1

R
M

S
E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RMSEid

RMSEval

Memory

Figure 4-5: RMSE and memory size of various CMAC net configurations

Figure 4-5 shows that as the number of discretizations grows while decreasing the number of
layers, the required memory size grows as well. Furthermore, at some point the validation
set RMSE starts to increase with increasing number of discretizations, indicating that an
optimal configuration is reached at four layers, and eight discretizations per layer. Figure
4-6(b) shows output of a CMAC with just one discretization and 32 layers. Due to insuffi-
cient resolution of the CMAC net, in this case, heavy aliasing occurs, making it impossible

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-2 CMAC coding 47

(a) Original function (b) N = 1, M = 32

(c) N = 4, M = 8 (d) N = 32, M = 1

Figure 4-6: Trained CMAC nets

to distinguish the features, present in the original function. Figure 4-6(d) shows a purely
discretized approximation with only one layer. The gaps in the approximation are present
due to limited generalization capacity of this configuration: insufficient identification data
leads to an approximation with a very high validation error. Figure 4-6(c) shows the optimal
CMAC configuration, which evidently approximates the original function rather well, but less
so than an RBF neural net. Nevertheless, when making a forward pass with a CMAC net,
the only arithmetic operations are addition and multiplication. Furthermore, the computa-
tional complexity depends only on the number of layers used. High fidelity can be achieved
by increasing the number of discretizations at no computational cost, with the negative side-
effects being that the network would require more allocated memory and might need more
identification data to train.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

48 Continuous state and action Q-learning

(a) Discrete state transitions (b) Sampled continuous state
transitions

Figure 4-7: One-step state transitions for discrete and continuous state cases

4-3 Discretised generalisation and continuous state sampling

CMAC generalization offers similar performance and mechanics to continuous state function
approximation methods such as Neural Networks. In practice, however, when applying it
to Q-learning problems some adjustments have to be made to it. The problem stems from
the core mechanics of the Q-learning algorithm: it relies on the difference of Q-values of
different state-action pairs, after a state transition took place. However, when a discretised
generalisation is used, continuous state transition may not register unless the system actually
passed the boundary between one discrete region and another. This problem will be illustrated
by means of an example.
Given a one-dimensional state problem, a continuous state can be discretised with a finite
number of regions. If the system state transitions are discrete in nature, a transition of
state would always result in a change of its discretised approximation. However, if the state
is continuous, it may take several sampled state transitions to move from one discretised
region into another. Figure 4-7 shows an example, comparing these effects for a discrete-state
system and a continuous-state system sampled at regular intervals, when performing 1-step
Q-learning update.
In discrete case, transitioning from state s1 to state s2 results in a change of discrete Q-
function approximation value. This is illustrated by figure 4-7(a). When performing update
of Q-value for state transition s1 → s2 the following equation can be used:

Q(s1, a1)← Q(s1, a1) + α[r(s2) + γmax
a
Q(s2, a)−Q(s1, a1)] (4-30)

As a result, after several iterations the Q-value Q1 = Q(s1, a1) converges to:

Q1 → γQ2 + r2, (4-31)

where Q1 = Q(s1, a1), Q2 = maxaQ(s2, a) and r2 = r(s2). When the state transition is
continuous, however, several state transitions may happen within the same discrete region,
as illustrated by figure 4-7(b). In that case, if equation 4-30 is applied, it actually results in
two distinct outcomes for the updated Q-value:

Q(s1, a1)← Q(s1, a1) + α[r(s2) + γmax
a
Q(s2, a)−Q(s1, a)] (4-32)

Q(s2, a2)← Q(s2, a2) + α[r(s3) + γmax
a
Q(s3, a)−Q(s2, a2)] (4-33)

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-3 Discretised generalisation and continuous state sampling 49

However, the values of Q(s1, a1) and Q(s2, a2) are equal in discrete domain, Q(s1, a1) =
Q(s2, a2) = Q1. As a result, there are two conflicting Q-values that the approximation may
converge to:

Q1 → γQ1 + r2 (4-34)

Q1 → γQ2 + r3 (4-35)

This may lead to a problem: note how the update resulting from transition between states
s1 and s2 only takes the reward into account and ignores the Q-value of the adjacent state.
This can be shown by re-arranging equation 4-34:

Q1 →
r2

1− γ
(4-36)

This result is incompatible with Q-learning 1-step update algorithm. As a solution, an ad-
ditional condition that accounts for these effects must be added: an update may only be
performed when a state transition results in transition between two discretised state approxi-
mations, otherwise the Q-function approximation will fail to converge. In the context of using
CMAC, a Q-value function update may only be performed when two consecutive continuous
state samples have distinct tile hashings, as illustrated by the following algorithm:

Data: Initialize Q(s, a) arbitrarily
for each episode do

Initialize s
for each step do

Choose action a from s using policy derived from Q
while discretised state S(s) == S(s′) do

take action a, observe new state s′
end
observe reward r,
Q(sk, ak)← Q(sk, ak) + α[rk+1 + γmaxaQ(sk+1, a)−Q(sk, ak)]
s← s′

if goal is reached then
break

end
end

end

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

50 Continuous state and action Q-learning

(a) CMAC with cubic scaling:N=8, M=4, r=3 (b) CMAC with log-sig scaling:N=8, M=4, k=2

Figure 4-8: CMAC networks trained with inputs scaling

4-4 State scaling

The network inputs can be pre-scaled before performing a forward pass. This allows specifying
a focus region for the network with higher resolution, which can be beneficial to the application
because it allows saving on the number of weights. Equation (4-37) shows a case of using a
root function to encode an input variable. There, the input variable x ∈ [a, b] is scaled as
xs ∈ [0, 1]

xs =

1
2

(
1− r

√
h−x
h−a

)
if x < h

1
2

(
1 + r

√
x−h
b−h

)
if x >= h

(4-37)

The variable xs denotes a scaled version of a variable x. The offset factor h denotes the
“focus” of the scaling, e.g. the values for which the scaling results in a grid that is finer.
This sets the region around which the scaling gradient is the steepest. The variable r denotes
the scaling power. When it’s set to one, the scaling is purely linear. The same function
used previously was trained using cubic scaling, with r = 3 to demonstrate the effect. The
resulting fully trained CMAC output is shown on Figure 4-8(a). The focused area was set at
xf = [0.25, 0.75].

Another way to scale the variable x is to apply a sigmoid function, such as the log-sigmoid,
shown in equation (4-38). Sigmoid scaling allows more flexibility than only using a scaling
power factor. In particular, it allows to set up the tiling “gradient” in the focused region.
This gradient is set using the tangent-sigmoid function derivative, shown in equation (4-39).

g(xs) =
1

1 + e−4k(xs−h)
(4-38)

g′(xs) =
4 k e4 k (h−x)(
e4 k (h−x) + 1

)2 (4-39)

g′(h) = k (4-40)

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-5 Encoded RBF-based neural net 51

Equation (4-40) shows the maximum gradient of the log-sigmoid function, achieved when
xs = h. This gradient can be set manually, depending on how much “zoom” is desirable at
the region of interest. The output of a function, trained with xf = [0.25, 0.75] and k = 2.5 is
shown in Figure 4-8(b).

This example shows that application of scaling allows achieving a much finer discretization
at the specified region of interest while generalizing the states further from the focus area.

4-5 Encoded RBF-based neural net

The CMAC has an advantage over a “pure” implementation of radial basis function neural
network, where all weights are activated with each forward pass and all weights are updated
at each backward pass. In the CMAC only the local weights, situated close to the state, are
activated and updated, and finding it’s output is as simple as summing the weights without
any need for using an activation function. Nevertheless, the nature of the activation function
used in an RBF net makes it possible to optimize it for computational performance, even
surpassing CMAC in some ways.

A typical Gaussian radial basis function is based on the principle that its output value di-
minishes as its input moves further away from the neuron center. This property also means
that at a certain distance from the neuron center the neuron output contribution is negligible,
compared to the neurons activated near the input. Therefore, the neurons situated further
away from the activated region can be safely neglected, since they have little influence on the
output of the neural net in that region. By limiting the number of activated neurons the size
and resolution of the network can be decoupled from real-time performance. If only a limited
number of neurons is activated, it does not matter anymore how many neurons there are in
total. This situation still poses a problem, however, since it must be necessary to be able to
determine which neurons are in fact the closest to the activated region. When the neurons are
irregularly spread throughout the state-space region, this might be difficult, since the distance
to each neuron must be calculated to determine whether it has to be activated or not. On
the other hand, if the neurons are evenly spaced throughout the state range, selecting the
neurons that have to be activated becomes very easy. The activated neurons are known to
be situated on a regular grid, therefore to determine which ones must be activated a simple
encoding scheme can be applied, similar to the one described in the previous section dealing
with the CMAC. This principle is illustrated in figure 4-9.

On figure 4-9 only the neurons situated within some maximum radius rlattice are activated.
The distribution of the activated neurons always follows the same type of circular lattice
pattern, offset from the coordinate of the current input state. This pattern can be calculated
befre network initialization, stored and reused. These patterns are stored as an offset from
the neuron, situated the closest to the input state, denoted as c̄i,j,...,n, where n denotes the
network input dimensionality. The network input can be converted to a positive-only index,
using methodology described in section 4-2. One difference, however, is that whereas for
the CMAC encoding a floor operator ⌊x⌋ is used, in neural encoding a rounding operator
rpi(x) = ⌊x+ 1

2⌋ is used instead to find the coordinates of the closest neuron rather than tile
coordinate. The following encoding principle can be illustrated the easiest for a single-input
coded neural network with activation radius rlattice. The lattice offset coordinates for such a

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

52 Continuous state and action Q-learning

Figure 4-9: Neuron activation scheme

network can be represented as

clattice = [−R, . . . , 0, . . . R] (4-41)
R = ⌊r⌋ (4-42)

Given an input x, the coordinate of the nearest neuron c̄ is found:

c̄ = rpi(x) (4-43)

Then the activated neuron coordinates and the neuron input offsets ∆i = x− ci become:

cneur = c̄+ [−R, . . . , 0, . . . , R] (4-44)
∆ = (x− c̄) + [−R, . . . , 0, . . . , R] (4-45)

The entire procedure is quite simple and allows to calculate the neuron coordinates as well as
inputs for each neuron simultaneously and efficiently. This methodology could also be easily
extended to higher input dimensions by generating multi-dimensional neuron offset lattices.
With each additional dimension, the number of required neurons grows. Table 4-1 shows the
number of activated neurons for a value of r = 2.4 and the percentage of the total neurons in
the network for an encoding that consists of 8 neurons per-dimension.

Na activated neurons (% total)
Ninputs Nneurons r = 1.0 r = 1.5 r = 2.0 r = 2.4

1 8 3 (37.5 %) 3 (37.5 %) 5 (62.5 %) 5 (62.5 %)
2 64 5 (7.81 %) 9 (14.0 %) 13 (20.3 %) 21 (32.8 %)
3 512 7 (1.37 %) 19 (3.71 %) 33 (6.44 %) 57 (11.13 %)
4 4096 9 (0.22 %) 33 (0.81 %) 89 (2.17 %) 137 (3.34 %)

Table 4-1: Number of activated neurons for selected dimensions

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

4-6 Discussion 53

The number of activated neurons grows with increased radius and input dimensionality. For
a single-input neural net, the effect of neuron encoding is quite small, and the extra compu-
tational load might offset any benefits. For a larger number of inputs, however, there is a
drastic increase in efficiency. For a neural net with three inputs, encoded with eight neurons
per-dimension and activation radius r = 2.4 only 11.13 % of all neurons have to be activated
at any forward or backward pass. Increasing the resolution or the number of dimensions
would result in an even more drastic increase of efficiency.

4-6 Discussion

This chapter described a methodology that could be used to apply Q-learning to problems
with continuous states and actions, using function approximation to store the value func-
tion. Two algorithms were described: neural networks and CMAC tile coding. Both were
demonstrated to be capable of the task, and their distinct advantages and disadvantages
were discussed. While RBF neural nets show superior approximation power, CMAC is less
demanding computationally. An approach that combines the efficiency of state encoding
with the approximation power of a neural network was demonstrated as well. It was shown
that defining activation regions for neurons inside of a neural network can result in drastic
improvement of efficiency, especially for multidimensional input states and networks defined
by a large number of neurons within the hidden layer.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

54 Continuous state and action Q-learning

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 5

Optimization methods

The underlying principle of Q-learning requires a method that is capable of finding an action
that results in the optimal value of the Q-function. Various methodologies can be applied,
depending on the type of generalization function used to store the Q-function approximation.
This chapter outlines some selected approaches to this problem.
Given a continuous-state Q-learning problem, there are two methods to find the optimal
action: using a discrete set or a continuous range of actions. A schematic, shown in figure
5-1 illustrates these two approaches.

(a) Discrete action

(b) Continuous action

Figure 5-1: Q-learning action selection approaches

In a discrete-action approach, the network, used to generalize the Q-function, produces several
Q-value outputs for any given state, each of them associated with a predetermined action.
Once these values become available, the action that results in the highest output is selected
as the optimal one. In a continuous approach, both the state and the action are used as
inputs for the network. The output value is then optimized to find the optimal action. The
discrete approach has an advantage over continuous approach because when using it only one
forward pass of the network is required, whereas the continuous method typically requires
several passes. This means less computational load when implemented, and it also makes

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

56 Optimization methods

the whole method easier to implement. On the other hand, a continuous approach allows to
select a more precise action, and typically the actions themselves transition more smoothly.
This offers an advantage when controlling a sensitive system such as a Quadrotor.

To calculate the action that results in an optimal Q-value when using continuous actions,
some function optimization technique has to be applied. Optimization techniques play an
important part in the engineering process. Many real-world systems are highly uncertain and
non-linear, so finding an optimal solution to a given problem using purely analytical means is
not always possible. Therefore, a variety of tools is applied to solve these types of problems:
linear programming, integer programming and heuristic methods, among many others. Meta-
heuristics is a recently developed family of optimization methods. These methods provide a
general structure and strategy guidelines to find a general solution for a particular kind of
problem (Hillier, Lieberman, & Newton, 2015). One of such methods is the Particle Swarm
Optimisation (PSO) algorithm, described in this chapter. It applies to many types of systems,
and what makes it interesting is that it is capable of dealing with most functions, even if they
are not continuous or non-differentiable, such as CMAC networks. Another method discussed
is optimization based on local function approximation of the Q-value.

5-1 Particle Swarm Optimisation

The Particle Swarm Optimisation (PSO) is a stochastic, population-based optimization tech-
nique, in which several candidate solutions coexist and collaborate. PSO draws its inspiration
from biological systems. The particle swarm concept is based on flocks of birds shoals of fish,
colonies of bees and ants (Poli, 2007).

Due to its simplicity and ease of implementation and adaptation, PSO is widely employed
in the areas of engineering, statistics, management, biology, etc (Poli, 2008). PSO has some
advantages over similar meta-heuristic techniques, such as Genetic Algorithm(GA). It is well
suited for problems that involve continuous states, although discrete variations of it also exist.
It is relatively inexpensive to implement, computationally (Mukherjee & Ghoshal, 2007), and
thus suitable for online applications (Iruthayarajan & Baskar, 2009). Overall, PSO performs
well when applied to unconstrained nonlinear optimization problems with continuous design
variables (Hassan & Cohanim, 2005).

The main principle behind it is the simulation of the social behavior. Each solution
is called a “particle”, and it is represented as a member of a multi-dimensional vector
aj = (aj,1, aj,2, . . . , aj,g) in the g-dimensional space. Each particle has several components: it’s
location within the solution search space, rate of position change (velocity) and inertia weight.
In addition, each particle has a “memory”. The particle coordinate corresponding to the best
solution previously encountered by the particle is preserved in another multi-dimensional
vector a∗j = (a∗j,1, a

∗
j,2, . . . , a

∗
j,g). Furthermore, the particle coordinate that corresponds to

the best solution previously encountered by any particle within a swarm is represented by
asw = (asw1 , asw2 , . . . , aswg).The velocity of each particle is adjusted at every update step, de-
pending on the position of the most fit particle in the group, as well as the location of the
best previously encountered solution for each particle (Gaing, 2004). Each particle travels
through the pre-determined search space with some velocity vj , which is represented as a
vector in g-dimensional space: vj = (vj,1, vj,2, . . . , vj,g). The initial values for particles aj

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

5-1 Particle Swarm Optimisation 57

and velocities vj can be initialised randomly, within some feasible range. Velocity vj of each
particle is updated at each algorithm iteration, based on the coordinate of the best particle of
the swarm asw, and the coordinate of the best solution previously encountered by the current
particle a∗j . The particles coordinates aj are then updated, based on new particle velocity vj :

vk+1
j,g ← w · vkj,g + c1r1(a

∗
j,g − akj,g) + c2r2(a

sw
g − akj,g) (5-1)

ak+1
j,g ← akj,g + vk+1

j,g (5-2)
j = 1, 2, . . . , n

g = 1, 2, . . . ,m

Where
n number of particles in the swarm
m number of particle dimensions
k current iteration number
pkj coordinates of jth particle in the search space at iteration k

p∗j best solution previously encountered by the particle
psw best solution from the entire swarm
vkj velocity of jth particle at iteration k

w inertia weighting factor w = 1− k
kmax

c1, cw acceleration constants set in the range [0, 1]
r1, r2 random numbers in the range [0, 1]

Collectively the particles move towards the better solution, while also covering the search
domain. The components c1 and c2 in equation (5-1) weight the stochastic acceleration terms
towards either a∗j,g or aswg . These determine how far the particles are allowed to venture
in search of a solution, before losing their momentum and returning to the initial location.
Lower values allow the particles to roam further. The inertia factor w allows to control the
impact of the previous trajectory of the particle, influencing the exploration pattern, Larger
inertia facilitates a more global search scope, while less inertia serves to fine-tune the locally
optimum solution. The factor is usually varied throughout the exploration process. The
velocity of each particle is generally bound within some limit V min

g ≤ vkj,g ≤ V max
g . If this

limit is too high, the particle might miss the good solutions, if it is too small, it might not
explore sufficiently beyond its current location.
After each particle velocity and coordinate update, new solution values evaluated using some
objective function g(a) that needs to be optimised. The value of J(aj) corresponds to the
output of the optimization function, with the coordinates of particle aj as the input. Then
the values of J∗ = (J(a∗1), J(a

∗
2), . . . , J(a

∗
n)) and Jsw = max(J∗) can be updated, using new

particle coordinates a:

J∗
j ← max(J∗

j , J(a
k+1
j)) (5-3)

Jsw ← max(J∗
j , J

sw) (5-4)

If the current particle output J(ak+1
j) is higher than the best previously encountered output

J∗
j then this value is updated, and the particle coordinates are preserved as a∗j ← ak+1

j .

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

58 Optimization methods

Likewise, if output J(ak+1
j) is higher than that of the entire swarm Jsw then the value of Jsw

is updated and coordinates of the particle are preserved asw ← ak+1
j .

PSO can be applied to multi-dimensional problems, and it can also be implemented with
non-differentiable and nonlinear functions, such as the CMAC optimization. It can be in-
corporated into value function-based reinforcement learning process, as illustrated by the
following algorithm:
Data: Initialize ai, vi arbitrarily
Define a∗ = argmaxaQ(s, a)
Define V (s) = Q(s, a∗)
while current iteration < iteration limit do

for each particle aj do
Update particle velocity vk+1

j using (5-1)
Update particle coordinate ak+1

j using (5-2)
Evaluate the Q-function Q(s, aj), where particle aj represents the selected action a
if Q(s, aj) > Q∗

j then
Update current particle optimum value and particle coordinate
Q∗

j ← Q(s, aj)
a∗j ← aj

end
if Q(s, aj) > Qsw then

Update swarm optimum value and particle coordinate
Qsw ← Q(s, aj)
asw ← aj

end
if solution converged then

break
end

end
end
return a∗ = asw, V (s) = Qsw

This algorithm allows calculating the optimal action a∗ at any given state s, as well as value
function output V (s). It can work with any number of action states and should converge to
a global optimum, given enough particles.

5-2 Value function optimization using root-finding

The use of exponential-based Radial Basis Function in neural networks offers a significant
advantage over the use of CMAC: the RBF activation function is twice-differentiable, and as
such there are some efficient optimization methods available to maximize its value.

5-2-1 Polynomial fit

One of the methods to find the maximum of any function is to use polynomial curve fitting.
Consider a function in the form

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

5-2 Value function optimization using root-finding 59

Y = A(x) · θ, (5-5)
where A(x) is a matrix where each row represents a polynomial in the form

a(x) =
[
1 x . . . xN

]
(5-6)

for an Nth-degree polynomial, and θ contains the polynomial coefficients

θ =
[
p0 p1 . . . pN

]T (5-7)

The first derivative of this polynomial can be described as

Ẏ = Ȧ · θ (5-8)

where each row of Ȧ(x) is defined as

ȧ(x) =
[
0 1 . . . NxN−1

]
(5-9)

The maxima/minima of the function, described in 5-5 are reached where the values of it’s
derivative ȧ(x) reach zero, e.g. at it’s roots r. This can be done by calculating the roots of
function Ẏ , by finding eigenvalues of the companion matrix Ȧ∗

Ȧ∗ =

−2p2

p1
−3p3

p1
. . . −N pN

p1
1

. . .
1

 (5-10)

r = eig(Ȧ∗) (5-11)

Each of the resulting polynomial roots in r could indicate either the maximum or the minimum
of the function. So the function 5-5 must be re-evaluated at each root found in r to determine
the maximum value.
This methodology could be extended beyond finding extremes of a simple polynomial. Us-
ing least-square approximation a polynomial function approximation can be fitted to any
set of data or a function. Consider a function f(x). In order to approximate it with
a polynomial of degree N it must be sampled at values x̄ =

[
x0, x1, . . . , xM

]
, where

each sample represents function input xm and the outputs of the function are denoted by
Ȳ = [f(x0), f(x1), . . . , f(xM)]. There must be at least as many samples as there are degrees
of freedom in θ, N ≤M . With that, the parameter vector θ̄ can be calculated by solving the
system using linear regression

θ̄ = (A(x̄)TA(x̄))−1AT Ȳ (5-12)

With the parameters of the approximation polynomial determined, the procedure outlined
previously can be used to approximate the local maxima/minima of the function f(x). The
accuracy of such an approximation relies heavily on the quality of fit of the polynomial. For
a function that behaves more “polynomial-like,” this results in a highly accurate estimate,
whereas for functions that behave differently this may lead to errors.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

60 Optimization methods

5-2-2 RBF fit

A function optimization methodology, similar to the one outlined previously, can in principle
be used with any sort of approximation function besides a polynomial, for as long as the
function is differentiable. In fact, it is beneficial to use an approximator that mimics the
approximated function more closely, since it gives more accurate results due to a better fit.
Using polynomial curve fitting has its advantages: it’s a computationally cheap way to com-
pute the maximum, and it can be solved analytically. Whereas not every fitted approximation
function would have a purely analytical solution. Nevertheless, there are other methodologies
to deal with it, such as Newton’s iteration method.

Consider a function in the form

Y = A(x)θ (5-13)

where each row in A represents a set of RBF neuron outputs

a(x) =
[
ϕ0(x) ϕ1(x) . . . ϕN (x)

]
, (5-14)

ϕi(x) = exp(−(x− ci)
2), (5-15)

and θ is the parameter vector that contains network output weights θ = [w0, w1, . . . , wN].
The activation function in 5-15 can be differentiated twice with respect to input x:

ϕ̇i(x) = −2(x− ci)ϕi(x) (5-16)
ϕ̈i(x) = −2(1− 2(x− ci)

2)ϕi(x) (5-17)

This allows to find the derivatives of the functions in 5-16 and 5-17:

ȧ(x) = −2
[
(x− c0) (x− c1) . . . (x− cN)

]
× a(x) (5-18)

ä(x) = −2
[
1− 2(x− c0)

2 1− 2(x− c1)
2 . . . 1− 2(x− cN)2

]
× a(x) (5-19)

Note that the exponential component in 5-15 and the offsets (x − c) can be reused when
finding the derivatives of the activation function, which means that the computational load
can be reduced when implementing these calculations in software.

Now the principle of finding the minima and the maxima of a function, expressed as an
RBF net, remains the same: the points where it’s derivative reaches zero must be identified.
However, an RBF net does not have an analytical solution such as a polynomial function.
Here, Newton’s iteration method could be used instead. Newton’s iteration is a numerical
method designed to find roots(zeros) of differentiable equations in the form

f(x) = 0 (5-20)

Provided an initial guess x0, the successive update formula for this method is

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

5-3 Discussion 61

xk+1 = xk −
ḟ(xk)

f(xk)
, k = 0, 1, . . . (5-21)

Typically with each consecutive update the output of the function f(xk) converges closer to
it’s nearest zero value. This means, however, that it is only capable of finding the nearest root,
one at a time. Therefore, for a function with several possible zeros several initial point must
be required. When applied to the problem of finding local maxima/minima the Newton’s
iteration procedure can be applied as follows:

First, several samples of the optimized function x̄ =
[
x0, x1, . . . , xM

]
must be gen-

erated throughout the search region. Outputs of the function are recorded in Ȳ =
[f(x0), f(x1), . . . , f(xM)]. The parameter vector θ̄ can be calculated using 5-12. Then the
first and the second derivatives of the approximated function f̄(x) = a(x)θ̄ are:

ḟ(x) = ȧ(x) · θ̄ (5-22)
f̈(x) = ä(x) · θ̄ (5-23)

Newton’s update can be modified to find the zeros of ḟ(x):

xk+1 = xk −
f̈(xk)

ḟ(xk)
, k = 0, 1, . . . (5-24)

After evaluating several starting points the value of x that results in maximum/minimum
output can be found. This approach is more computationally intensive than the previously
described polynomial curve approach because several function evaluations must be performed.
Nevertheless, it is more suited for optimization of neural network outputs, since an approxi-
mated model described using the same type of activation functions as the neural network can
approach the function being optimized much more closely.

5-3 Discussion

This chapter had outlined some optimization methods that can be applied to continuous-
state, continuous-action Q-learning. A meta-heuristic particle Swarm Optimization Method
was described. PSO is a highly effective method that can be applied to a wide array of
functions, but its implementation requires a large number of function evaluations, which
leads to difficulty in applying it to a real-time system. Two optimization techniques based on
function approximation were described as well: using polynomial function approximator and
an RBF neural net. The polynomial approach is highly efficient, computationally. Another
advantage of using a polynomial is that all global maxima/minima of the approximated
function can be found simultaneously. On the other hand, this methodology is only effective
when the optimized function behaves like a polynomial function. In the case of neural network
output optimization, it might be beneficial to use RBF-based function approximation instead,
since it approximates the network more closely.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

62 Optimization methods

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 6

UAV dynamics and control scheme

The Quadrotor concept had been known since the early days of aeronautics. One of the
earliest examples of such aircraft is the Breguet-Richet Quadrotor helicopter Gyroplane No.1,
built in 1907. A quadrotor can be described as a vehicle that has four propeller rotors,
arranged in pairs. The two pairs (1,3) and (2,4) turn in opposing directions, and by varying
the thrust of each individual rotor the vehicle pitch, roll, yaw and altitude can be changed.
This chapter introduces some modeling methods that can be used to simulate a quadrotor
vehicle, and introduces a general mathematical model of quadrotor dynamics.

6-1 Model identification

To build a viable model of the process, the parameters of the system under control have to be
identified. System identification process is aimed at describing properties of a given system
and how it responds to inputs. Typically as more information about system and it’s behavior
is gathered, the observed regularities can be formulated into a mathematical model. This
model can then be used for a wide variety of tasks: predicting system behavior and input
responses under certain conditions and gaining general insight into it’s physical characteristics
for the purposes of design and control. The general procedure for designing a model according
to Scientist rule is described as follows (Bohlin, 1994):

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

64 UAV dynamics and control scheme

Data: Initialize the root model structure(smallest conceivable set of components) and set
initial parameter values.

while falsified do
Specify tentative free parameter set and fit free parameters
while unfalsified do

Test the model against a set of alternative structures
if There are no more free parameters then

Expand the set of model components
end
Specify alternative free parameter set
Select parameter-free statistic
Evaluate test statistic
Appraise model
if A better model is found then

Return falsified
end

end
end

Creating a model is not a trivial task and it often takes a lot of time and effort. One of the
goals of this research is to design a procedure that can be used to do this autonomously, i.e.
an algorithm that allows to learn it by learning more about environment and it’s interaction
with the agent. In general, models themselves are divided in three categories:

• White-box models: there is an established physical relationship between model states,
the model is constructed entirely from prior knowledge and theory

• Grey-box model: Some of the system dynamics are known, while others aren’t. The
overall model is augmented with parameters estimated from data to increase accuracy,
compensating for missing parameters. Typically purely white box models are used for
relatively simple systems, while as complexity increases grey-box elements are intro-
duced. Since the augmentation part is built from observed data, a certain amount of
testing is required to build an accurate estimation.

• Black-box model: Little is known about the model. It is built entirely using observed
behavior data by analyzing it’s dynamics in response to the inputs. Typically a lot of
data describing the system behavior is required to build an accurate estimate.

The advantage of white box approach is that it allows for a relatively easy solution to a
problem. When applied to a simple dynamic system it provides a fairly straight-forward
solution, and it does not require a lot of computational power. Among disadvantages of such
an approach is that as the system dynamics become increasingly complex and non-linear,
it becomes more and more difficult to account for all of them. Furthermore, some of these
dynamics could be impossible to account for purely theoretically due to the lack of knowledge.

Grey-box approach offers a more flexible solution. While maintaining robustness and stability
of a white-box approach, it allows to capture the dynamics that are more difficult to model
analytically. As the knowledge of the system increases and the “gray” area of the model

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

6-2 Modelling methods 65

becomes more explored, the “white” component could be further developed and expanded,
improving the model. Advantage of a gray-box approach is that an accurate model could be
constructed with a relatively small amount of information about it. Among the disadvantages
is the fact that employing grey-box approach is more computationally intensive than a purely
white box one.

Black box approach allows to model highly complex systems with a high degree of accuracy.
It mostly neglects the actual physical dynamics of the system, basing the model purely on test
and simulation data. It is fit to describe stochastic nonlinear dynamics of almost any system.
The constraints come from the fact that a large set of training data is required to build a
model. Nevertheless, purely black box approach could be very computationally intensive.
Another factor to account for is that when a nonlinear process is concerned, the range of
possible models could be exceedingly large (Sjöberg et al., 1995) which adds extra difficulty.

In the context of the problem at hand, gray box approach is the most suitable one. In
principle, the system is intended to be used to control a physical vehicle. This already gives
some background to what the model should ”look” like. A typical vehicle like a multicopter
UAV or an AGV can have up to 6 degrees of freedom in it’s movement. Typical sensor data
that can be used to collect information about states of the vehicle consists of rotations and
translations along its x,y and z axes. In addition to that, parameters like vehicle mass and
dimensions could be used to estimate the kinematic dynamics of its movement. In principle
this already should be enough to construct a linear time-invariant white box model.

Nevertheless, in real world the behavior of such a plant would most certainly include some
non-linearities. These effects can be mitigated by more thorough examination of physical
phenomena behind model dynamics, but this process is often time consuming, and it can
not be generalized as each given vehicle configuration would exhibit some unique behavior. A
purely black box approach is not suitable either. Slow convergence of this method means that
more testing time would be required to build a model. Since the resulting model transparency
is limited, it also introduces a higher degree of uncertainty about it’s performance, which
makes it less suitable for the purposes of forecasting and control. Black box model is not
enough for all control purposes (Bohlin, 1991). A black box component can be used to
augment the white box model to account for nonlinearities, hidden states and so on, making
it a gray box approach.

6-2 Modelling methods

As discussed previously, gray box type of model is most suitable for the task at hand. It can
be constructed using a combination of approaches, described in this section.

Linear time-invariant (LTI) models are perhaps the most important and popular class of
models used in practice today. The theoretical body of knowledge behind them is very
extensive, they are computationally inexpensive and they can be applied to a wide variety of
tasks. LTI models describe the behavior of linear and time-invariant systems, but they can
also be applied to nonlinear systems when linearized around some condition. The linearity
characteristic of such models implies that the output response to a linear combination of
inputs is the same as response to each individual input. This requires some simplification in
most cases. Nevertheless, in many cases LTI models can produce very good results.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

66 UAV dynamics and control scheme

LTI models can be extended by identifying linearized models around relatively close oper-
ating points and then combining them into a linear parameter varying (LPV) model, re-
sulting in a gray-box approach. This method had been applied to control of Unmanned
Water Craft(UWC) in (Svendsen, Holck, Galeazzi, & Blanke, 2012). UWCs generally exhibit
very different maneuvering characteristics, depending on the running attitude of the vehicle.
Applying adaptive controller based on a gray-box approach was shown to guarantee both
robustness and stability of the closed loop in different operational conditions.

Neural Networks can be used to model and control very complex systems with sufficient
accuracy without complete knowledge of its inner composition. Neural networks themselves
can be divided into two types: multilayer neural networks and recurrent networks. Despite
some differences, they could be viewed in a unified fashion as part of a broader discipline
(Narendra & Parthasarathy, 1990).

When a system is very complex, creation of precise mathematical models can become quite
difficult. Principle of incompatibility asserts that complexity of a system is inversely pro-
portional to the precision with which it can be analyzed. To deal with these types of issues,
fuzzy models can be applied. They are based on imprecise descriptions of the relationships
between signals within the system, described in fuzzy, linguistic variables (L. Zadeh, 1975).
The premise of this approach is that the key elements in model or logic design are not repre-
sented by pure numbers but using fuzzy sets: classes of objects for which the transition from
membership to non-membership is gradual, rather than abrupt (L. a. Zadeh, 1973). This kind
of approach allows to generalize the problems and to approach highly complex or ill-defined
phenomena in a systematic manner. Fuzzy logic controllers are often applied to UAV control.
(Kurnaz, Cetin, & Kaynak, 2010) describe fuzzy logic controller applied to bank control of a
fixed-wing uav. The objective of the controller is to reach and hold the bank angle required
to reach a given heading. It was demonstrated that this controller demonstrates superior
performance. Nevertheless, some issues were also identified regarding stability of the learn-
ing algorithm. For some flight conditions instability of the flight algorithm may result in
instability of flight performance.

6-3 Quad-copter modelling and control

Control of a typical aerial quadrotor vehicle can be split into four principal parts: pitch and
roll controls, collective thrust and yaw control. Quadrotors have six degrees of freedom: three
translational and three rotational, and they can be controlled along each of them. Rotational
and translational motion are coupled. Tilting along any axis results in vehicle movement
in the direction perpendicular to the tilt angle. Extra couplings exist between individual
rotors and the aircraft body. For example to rotate along the vertical axis while maintaining
altitude the distribution of thrust has to be changed in such manner that some of the rotors
spinning in one direction are rotating more slowly, while the rotors spinning in the direction
of intended rotation are moving faster. This results in a challenging problem: in practice it is
very difficult to control a quadrotor purely manualy. In addition to difficulty of control, there
is also a question of stability of multicopter craft. Multicopters are not inherently stable and
damping has to be achieved actively. Electronics are used to stabilize it and distribute the
thrust across the rotors.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

6-4 Dynamic model of a quadrotor 67

Figure 6-1: Quadrotorotor configuration schematic, body fixed frame B and inertial frame E.

6-4 Dynamic model of a quadrotor

This section will describe modelling of a quad-copter using a purely white-box approach.
Schematic of a quadrotor body and inertial frames is shown in Figure 6-1.
The craft dynamics can be modeled using Lagrangian method (Bouabdallah, Noth, Siegwart,
& Siegwan, 2004; Mohammadi, Shahri, & Boroujeni, 2012). The following assumptions are
made when deriving the model:

• The quadrotor body structure is rigid

• The quadrotor body structure is symmetrical

• The center of mass of the quadrotor coincides with the origin of the body fixed reference
frame

• The propellers of the quadrotor are rigid

• The thrust and drag exerted by and acting upon the propellers are proportional to the
square of the propeller rotational speed

The vector containing generalized coordinates of the quadrotor can be defined as q =
(x, y, z, ϕ, θ, ψ) ∈ R6. It can be split into two components, for translational and rotational
motion. In the inertial frame the translational component of the current center of mass
of the quadrotor and the velocities thereof can be expressed as vectors ξ = (x, y, z)T and
ξ̇ = (ẋ, ẏ, ż)T . The roll angle ϕ, pitch angle θ and yaw angle ψ can be combined in a similar
manner, in the body frame: η = (ϕ, θ, ψ)T , with corresponding angular velocities η̇ = (ϕ̇, θ̇, ψ̇)

The transformation matrix R relating the inertial coordinates to body fixed coordinates can
be described as follows:,

R(η) =

c(ψ)c(θ) c(ψ)s(θ)s(ϕ)− s(ψ)c(ϕ) c(ψ)s(θ)c(ϕ) + s(ψ)s(ϕ)
s(ψ)c(θ) s(ψ)s(θ)s(ϕ)− c(ψ)c(ϕ) s(ψ)s(θ)s(ϕ) + s(ψ)c(ϕ)
−s(θ) c(θ)s(ϕ) c(θ)c(ϕ)

 (6-1)

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

68 UAV dynamics and control scheme

where, s and c stand for sin and cos operators. Any point of the airframe can be expressed
in the Earth fixed frame using -

r = R(η) · ξ (6-2)
The corresponding velocities can be obtained by differentiation, and the squared magnitude
of the velocity at any given point is:

v2 = v2X + v2y + v2Z (6-3)

The kinetic energy expression can be extracted from equation (6-3) as follows, assuming a
diagonal inertia matrix I:

T =
1

2
Ix(ϕ̇− ψ̇s(θ))2

+
1

2
Iy(θ̇c(ϕ) + ψ̇s(ϕ)c(θ))2

+
1

2
Iz(θ̇s(ϕ)− ψ̇c(ϕ)c(θ))2

(6-4)

Then the potential energy can be expressed as:

V =

∫
xdm(x)(−gs(θ))

+

∫
ydm(y)(gs(ϕ)c(θ))

+

∫
zdm(z)(gc(ϕ)c(θ))

(6-5)

The derived formulas (6-4) and (6-5) can then be combined, using the Langrangian:

L = T − V , Γi =
d

dt

(
δL

δq̇i

)
− δL

δqi
, (6-6)

where Γi stands for generalized forces. It can be split in two components, for translational
and rotational motion:

F =
d

dt

(
δL

δξ̇

)
− δL

δξ

τ =
d

dt

(
δL

δη̇

)
− δL

δη

(6-7)

The translational force F = R · F̂ depends on the total thrust f , and it has to be adjusted
from body-frame into inertial reference frame. The total thrust force F̄ is:

F̂ =

00
f

 =

0

0
4∑

i=1
fi

fi = CTΩ

2
i ; i = 1 . . . 4

(6-8)

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

6-4 Dynamic model of a quadrotor 69

6-4-1 Translational dynamics

Using formula in (6-7), and adding the effects of mass m of the quadrotor:

d

dt

(
δL

δξ̇

)
− δL

δξ
=

 0
0
−mg

 (6-9)

Combining it with the force derived in (6-8):

m

ẍÿ
z̈

 =

 0
0
−mg

+R(ϕ, θ, ψ)

0
0
4∑

i=1
fi

 (6-10)

Using formula in (6-10) gives the following translational dynamic equations of motion:

ẍ =
cosϕsinθcosψ + sinϕsinψ

m
U1

ÿ =
cosϕsinθsinψ + sinϕcosψ

m
U1

z̈ = − g + cosϕcosθ

m
U1

(6-11)

6-4-2 Rotational dynamics

The Lagrangian for the rotational multicopter dynamics can be written as:

d

dt

(
δL

δξ̇

)
− δL

δξ
= τ (6-12)

Where τ stands for the sum of forces due to inputs provided to the system and the gyroscopic
effect due to propeller rotation τ = τ in + τ ′. The inputs are translated into torques acting
upon quadcopter by varying thrust of each rotor. This is done by changing the rotor rotational
speed Ωi. These torques can be expressed as:

τ inx = CT l(Ω
2
4 − Ω2

2)

τ iny = CT l(Ω
2
3 − Ω2

1)

τ inz = CD(Ω
2
2 +Ω2

4 − Ω2
1 − Ω2

3)

(6-13)

Furthermore, there are additional gyroscopic effects that result from propeller rotation:

τ ′x = Jpωy(Ω1 +Ω3 − Ω2 − Ω4)

τ ′y = Jpωx(Ω2 +Ω4 − Ω1 − Ω3)
(6-14)

With these effects added, a full set of equations for rotational motion can be assembled:

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

70 UAV dynamics and control scheme

ϕ̈ = θ̇ψ̇

(
Iy − Iz
Ix

)
− Jp
Ix
θ̇Ω+

l

Ix
U2

θ̈ = ϕ̇ψ̇

(
Iz − Ix
Iy

)
+
Jp
Iy
ϕ̇Ω+

l

Iy
U3

ψ̈ = ϕ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
U4

(6-15)

where the system inputs U1, U2, U3, U4 and Ω are defined as:

U1 = CT (Ω
2
1 +Ω2

2 +Ω2
3 +Ω2

4)

U2 = CT (Ω
2
4 − Ω2

2)

U3 = CT (Ω
2
3 − Ω2

1)

U4 = CT (Ω
2
1 +Ω2

3 − Ω2
2 − Ω2

4)

Ω = Ω2 +Ω4 − Ω1 − Ω3

(6-16)

where:
R Rotation matrix
ϕ Roll angle
θ Pitch angle
ψ Yaw angle
Ωi Rotor speed

Ix,y,z Body inertia
Jp Propeller inertia
CT Thrust coefficient
CD Drag coefficient
l lever

The first input U1 corresponds to quad-copter throttle and used to increase/decrease altitude
by increasing or decreasing thrust of every rotor. Yaw of the vehicle is controlled by inputs U2

and U3 that vary the thrust across opposing rotors. U4 is used to shift the thrust distribution
across the rotors to achieve pitching/rolling motion. The quadrotor motion modes are shown
in figure 6-2.
There are a number of parameters needed to describe a quad-copter vehicle. It’s inertial
characteristics depend on moments of inertia Ixx, Iyy, Izz, rotor inertia Irotor and vehicle
mass m. While the mass of the UAV is pretty easy to measure, estimating moments of inertia
is less straight-forward and requires a special tool setup. Other relevant numerical values are
rotor thrust and drag coefficients CT and CD. These are characteristic to rotors used on the
UAV and might vary, depending on various factors such as aircraft velocity or rotation speed
of the rotor. Rotor arm length l is the distance from the rotor to aircraft centre of gravity
and can easily measured directly.

6-4-3 Rotor dynamics

Multicopter drones are typically powered by DC motors. The dynamics of such motors can
be described by the following equations:

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

6-4 Dynamic model of a quadrotor 71

Figure 6-2: Quadrotor motion description. Arrow width is proportional to propeller rotational
speed.

{
Ldi

dt = u−Ri− keωm

J = dωm
dt = τm − τd

(6-17)

Assuming a very low inductance value, the second order dynamics of a DC motors can be
approximated:

J
dωm

dt
= −k

2
m

R
ωm − τd +

km
R
u (6-18)

Furthermore, the propeller and the gearbox models can be introduced. Re-writing equation
(6-18):

{
ω̇m = − 1

τ ωm − d
ηr3Jt

ω3
m + 1

kmτ u
1
τ = k2m

RJt

(6-19)

The equation (6-19) can be linearised in the form ω̇m = −Aωm +Bu + C:

A =

(
1

τ
+

2dω0

ηgr3Jt

)
, B =

(
1

kmτt

)
, C =

CDω
2
0

ηgr3Jt
(6-20)

where
u Motor input
ke Back EMF constant
ωm Motor angular speed
τm Motor torque
τd Motor load
τt Motor time-constant
R Motor internal resistance
r Gear box reduction ratio

ηm Gear box efficiency

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

72 UAV dynamics and control scheme

6-5 Active set control allocation

Control allocation is a method that that is applied to distribute the control effort between
several controllers when the number of actuators exceeds the number of controlled variables
or when various actuators are in conflict with one another. There are a number of solutions
available to solve this problem, such as, direct control allocation (Durham, 1994), daisy
chainging (J. M. Buffington & Enns, 1996) or constrained linear programming(J. Buffington,
Chandler, & Pachter, 1999; Svendsen et al., 2012). In this work, active set control allocation
is used (Harkegard, 2002).

The purpose of a control allocator is to compute a set of actuator input commands u ∈ Rm

than result in an overal control effort, a virtual control v ∈ Rn, where m represents the
number of actuator inputs u, and n is the number of states to be controlled.

The virtual control typically represents the desirable pitch, roll and yaw angular accelerations
for conventional aircraft, with vertical acceleration being an additional factor in rotorcraft.

The generated virtual control is represented as Bu. Variable B represents the control effec-
tiveness matrix. The control vector u is typically bounded by upper and lower limits as

umin ≤ u ≤ umax (6-21)

In the proposed control scheme the input vector u represents the squared motor voltages

u = [v20, v
2
1, v

2
2, v

2
3] (6-22)

The bounding limits of these values are indicated in table B-1.

The purpose of control allocation is to find such u that satisfies the condition Bu = v, given
a virtual control command v. In case there are several possible solution, the optimal solution
must be selected. And if there is no solution, the value of u resulting in the best possible
approximation of Bu must be found.

For an optimum solution the following two conditions can be defined:

uS = argmin
u∈K
||Wu(u− up)|| (6-23)

K = arg min
umin≤u≤umax

||Wv(Bu− vp)|| (6-24)

In these equations, K stands for the set of feasible actuator inputs that minimize the value
of Bu− v (weighted by matrix Wv). A control setting minimizing the u− up must be picked.
The latter term represents the difference between the desired control input and the possible
one, weighted by matrix Wu. These two criteria can be combined to formulate a weighted
least squares problem:

uW = arg min
umin≤u≤umax

||Wu(u− up)||2 + γ||Wv(Bu− vp)||2, (6-25)

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

6-5 Active set control allocation 73

where γ is the weighting factor, emphasizing that the prime objective is to minimize the value
of Bu− v.

The least squares problem that is bounded and equality constrained can be defined as follows:

min
u
||Au− b|| (6-26)

Bu = v (6-27)
Cu > U (6-28)

where 6-28 is the constraint ensuring that the value of u stays within limits, as stated in
6-21. C is defined as C = I − I and U is defined as U = u − u. The goal of an active set
algorithm is to solve the posed problem by solving several equality constrained problems in a
sequence. During each algorithm step the inequality constrained are considered to be equality
constraints, constituting the working set W, while the rest of the inequality constraints are
taken out of the equation. The active set of the solution is the working set at the optimum.
Algorithm 1 illustrates the application of active set control allocation approach to the problem
of quadrotor control, as implemented in the software as state::control_alloc().

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

74 UAV dynamics and control scheme

Data: Initialize B, u0, umin, umax, v0

B =

1 1 1 1
0 −1 0 −1
1 0 −1 0
1 −1 1 −1

Initialize a feasible starting point u0 u0 =

[
0 0 0 0

]
Specify control limits umin and umax umin =

[
0 0 0 0

]
umax =

[
v20,max v21,max v22,max v23,max

]
Set the initial condition (desired control setting) for the virtual control input v0
v0 =

[
vb v02 v13 v0213

]
The quadratic cost function is specified as:
∥Wu(u− up)∥2 + γ∥Wv(Bu− vp)∥2 =∥∥∥∥∥∥∥∥∥
(
γWvB
Wu

)
︸ ︷︷ ︸

A

u−
(
γWvv
Wuup

)
︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥
Where Wv is the weighting matrix that can be used to allocate priority to certain virtual
inputs over others. Altitude control is given the highest priority, while yaw control is given
the lowest. The weighting matrix Wu can be set as identity matrix Wu = I.

Solve
uW = argminu ∥Au− b∥
umin ≤ u ≤ umax

Specify d as d =

(
b−Au
b−Au

)
while Max number of iterations allows do

Use solver to find the solution to Afreepfree = d
Replace the values p← pfree
Update uopt ← uopt + pfree
Check that the limits(umin ≤ u ≤ umax) are satisfied and find the number of infeasible
solutions if not

if infeasible solutions present then
Find the lowest distance from the limit among the free variables and remove from
the pool

Denote the lowest distance as α and update the input vector
u←= u+ αp
Update d
d← d− αAfreepfree

end
else

return The optimal solution uopt
end

end
Algorithm 1: Active set control allocation application

The applied control allocation algorithm allows to resolve possible conflicts between various
controllers and to ensure that all inputs remain within specified limits, while prioritizing more
important control modes(altitude hold) over less important ones(yaw).

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

6-6 Drone control scheme 75

6-6 Drone control scheme

The full drone controller can be split into two parts: the inner loop, the and outer loop control.
Lower-level inner loop controller is designed to track reference pitch, roll, yaw and altitude
signals. These dynamics are basic double integrator-type systems, although the simulated
model also includes motor dynamics, that introduce some higher order dynamics in the form
of a simulated thrust response lag. Higher-level outer loop controller is designed to track a
position reference, such as x and y coordinates of the vehicle, and perform maneuvers. The
outer loop controllers pass on reference signals to the inner loop, and they are set up in a
cascaded fashion. An example of a basic drone control scheme layout is shown in Figure 6-3.
There are four inner-loop controllers in place: roll, pitch, yaw and altitude control. There

Figure 6-3: Drone control scheme

are also two outer loop position controllers, for states x and y. The operator interacts with
the controller via an interface. Reference signals for pitch and roll φref , θref can be either
set directly through the interface, or as a command from higher-level x and y controllers.
Yaw angle and altitude reference signals ψref and zref are set directly. It is also possible
to add an additional layer of controllers, that combine flight heading and yaw control or
performs some set of maneuvers, for example. The four inner-loop controllers produce scaled
control inputs vb (altitude), v02 (pitch controller), v13 (roll controller), and v0213. Inner-loop
controller inputs and outputs are defined as follows:

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

76 UAV dynamics and control scheme

Controller Inputs Outputs
Altitude zref , z, ż, c(ϕ)c(θ) vb = v20 + v20 + v20 + v20
Roll ϕref , ϕ, ϕ̇, θ̇ × ψ̇ v13 = v21 − v23
Pitch θref , θ, θ̇, ϕ̇× ψ̇ v02 = v20 − v22
Yaw ϕref , ϕ, ϕ̇, θ × ψ v0213 = v20 − v21 + v22 − v23

Note that reference outputs still have to be processed to produce usable motor voltage inputs
v0 . . . v3. Each voltage is limited, and different controllers might be in conflict with one
another. This makes it necessary to include a control allocation module, in order to interpret
the resulting voltage differentials as usable motor inputs.

6-7 Discussion

This chapter had dealt with dynamics and control methods of UAV drone. Various model
identification methodologies were described. Following, a description of a mathematical model
describing quadrotor dynamics was given, as well as methodology for implementing a com-
puter simulation of this model. Quadrotors can be controlled using a set of four actua-
tors(rotors), that are responsible for pitch, roll, yaw and altitude control. These controls can
be combined to add another set of control modes, such as positional (x-y axis) control. A full
control scheme dealing with all these modes was proposed. In addition, the control alloca-
tion problem was discussed. Drone controls are coupled with one another and are subject to
limitations. Active set control allocation method was described, designed to overcome these
issues. A model inversion-based controller based on RBF networks and polynomial curve
fitting was described as well.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 7

Reinforcement-learning based control
of the UAV

Previous chapters have outlined some topics and techniques, relevant to UAVs, control of such
vehicles, reinforcement learning, and other related topics. This chapter deals with design
and implementation of a full controller of a UAV, such as described in. Two techniques
are considered: a conventional PD and a reinforcement learning-based controllers. The PD
controller performance is used as a benchmark for RL-based approach, and it is used to
validate the resulting controller. The PD gains are optimized using the PSO algorithm,
described in 5-1. The RL-based controller is based on Q-learning, described in chapter 3.
Both controllers incorporate an adaptive model-based inversion dynamics inversion scheme to
generate actuator inputs. In this chapter, the design of both types of controllers is discussed,
and the control efficiencies are compared. Several controllers are designed, governing the
pitch, roll, yaw and vertical motion dynamics. A schematic of how these controllers are
combined to achieve full control of the UAV is shown in Figure 6-3

7-1 Controller layout

A general UAV control scheme was described in 6-6. The layout of the control scheme consists
of two parts: the inner and the outer control loops. Two types of controllers are developed to
fill the role of inner-loop control of the UAV: a conventional PID and a reinforcement learning
approaches.

Figure 7-1 illustrates a conventional feedback PID controller. It processes the signal reference
offset e(t) = x − xref . The absolute value of this offset is multiplied with the proportional
gain Kp, the integral of this error is multiplied with Ki and the rate of change of this error
is multiplied with gain Kp. The output of the PID controller is the desired acceleration ẍd.
The model inversion module is then tasked with generating a suitable virtual input to achieve
this desired acceleration.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

78 Reinforcement-learning based control of the UAV

Figure 7-1: PID control scheme

PID controllers are relatively easy to implement, and are sufficient for most real-world control
applications. It can serve as a validation for reinforcement learning-based controller behavior.

Figure 7-2: CMAC based RL control scheme

The proposed Q-learning controller is more complex than the PID one. Two approaches were
tested when designing the RL controller. One using the CMAC net, and another one using
the RBF neural net. The first approach used CMAC generalization to store the Q-function.
There is no analytical solution to CMAC generalization function, so in order to optimize
its output the PSO algorithm was used, as described in 5. However, this approach proved
not viable. The controller failed to learn the policy. One of the problems with it was the
phenomena that was described in 4-3. The policy typically failed to converge, and when it
did the behavior was unacceptable.

Another way to implement the policy is to store it in the form of encoded RBF neural net, as
described in 4-1. Like with the PD controller, x, ẋ and ẍref are used as inputs. The difference
comes from how the desired control inputs are produced: in a reinforcement learning controller
the actions are generated by maximizing the output value of the network.

The policy is stored in the form of an RBF neural net that accepts at least three inputs: the
offset between the current and the reference states ∆x = x− xref , current state derivative ẋ
and the desired state acceleration ẍd. The variable ẍ defines the action that can be taken by
the agent. When states ∆x and ẋ are sampled at some point in time the action variable ẍd

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

7-2 Reduced model and dynamics inversion control 79

Figure 7-3: RBF net based RL control scheme

becomes the only unconstrained input of the generalized Q-function. Therefore it becomes
possible to make an instantaneous “slice” of the Q-function, which can be described as a
one-dimensional RBF-based curve. In order to do this, the output of the neural net that
describes the Q-function is sampled at variable action values [xd,0, xd,1, . . . , xd,N]. The outputs
Y = [Q0, Q1, . . . , QN] are stored and used to generate a one-dimensional RBF-based function,
using the procedure, described in Section 5-2-2.

7-2 Reduced model and dynamics inversion control

The complete UAV dynamics, outlined int the previous section, consists of six states describing
drone position and attitude(x, y, z, ϕ, θ, ψ), four rotor speeds (ω0, ω1, ω2, ω3) and four virtual
inputs (vb, v02, v13, v0213) that can be translated into direct motor voltage inputs (v0, v1,
v2, v3). All motions that the UAV goes through, along or about the x-axis, y-axis or z-axis
are cross-coupled with other motions of the aircraft. Pitch, roll and yaw dynamics are all
inter-connected, while the translational motions are connected to the current aircraft tilt
offset from the vertical z-axis. This relatively complex model can be reduced into a more
simple one. This simplified model could serve a double purpose: one is to serve as an aide in
designing an inversion-based controller that is capable of generating virtual inputs, based on
the desired state, another one is to be used for off-line training of the reinforcement learning
algorithm.

Combining these two functions of the model allows to designate the desired state as the
policy action. This offers some advantages, compared to a policy that produces a virtual
input directly. The main advantage is that if the model used for off-line training deviates
from real-world dynamic behavior this has less of an impact on learned policy validity: the
policy does not have to be re-learned if the virtual inputs result in different accelerations using

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

80 Reinforcement-learning based control of the UAV

software in the loop(SIL) or hardware in the loop(HIL) training. Learned state transitions,
or a ”path” taken on the way to achieving the goal, should remain relatively unchanged
regardless. Only the reduced model itself would have to be adjusted to better match the
real-world dynamics. In essence, this would result in an adaptive controller, where the model
is dynamically updated to match the real-world dynamics.

Using a reduced model offers another important advantage: it allows to reduce the order of
the system, and this greatly simplifies the structure of the policy itself. Reducing the number
of inputs results in a smaller state-space, allowing the policy to be learned more quickly.
Additionally, generalizing a function that has many inputs requires more parameters to be
set, compared to a function with relatively few inputs. A simpler function can be evaluated
more efficiently, reducing the computational load.

This approach also presents some disadvantages, compared to training on-line or using a
model of the process that describes the dynamics more fully. The resulting policy would only
be valid for the reduced model of the process, and depending how closely this model matches
the process, it might result in an inviable control solution. Also, the resulting policy would
not take any of the complex relationships between different states into account. Of course, in
real operation these effects would take place and will have an effect on controller effectiveness.

Some of the dynamics only play a marginal role in the overall performance of the controller.
This includes the response delay of the actuators(rotors) and the cross-coupling modes. The
delay between the change of voltage, supplied to the rotors, and the response of the system
is very slight. It can safely be neglected for a large enough time step. While the cross-
coupling effects should largely be overshadowed by the contribution of control actuators during
moderate flight maneuvers. More aggressive maneuvering might result in a larger deviation.

Any cross-couplings, present in the pitch roll and yaw modes, are assumed to have no influence,
and applying a virtual input to the system results in an immediate change of state, without
any delay. The full dynamics model is split into four simpler sub-models, describing pitch,
roll, yaw and altitude motion. An RBF-net is used to store these dynamics. Each RBF
net maps the relationship between virtual inputs and output acceleration of the vehicle.
This relationship is nearly linear for a sufficiently large step-size. However, in reality the
steady-state response of the system is not linearly related to scaled inputs. Estimation of
the simplified model of the process is done by applying a range of inputs to the full model,
performing a prioritized state sweep, and recording it’s responses over a sufficiently large
time-step. The results are fitted using an RBF net. When using a real system the same
methodology can be applied, performing a prioritized sweep of the input-output state space
while isolating it from the cross-coupling dynamics. The model structure is demonstrated
in figure 7-4. An example of the model output is shown in Figure 7-5, for the pitch control
mode.

This model can be easily inversed by using polynomial approximation to the RBF net and
then finding it’s roots. An array of virtual input samples [v0, v1, . . . , vN] is supplied as input
to the model and the outputs Y = [ẍm,0, ẍm,1, . . . , ẍm,N] are recorded. A local polynomial
curve approximation is generated every time a new virtual control input is requested, based
on supplied desired second state derivative ẍd. This curve can be expressed as

Y = Aθ, (7-1)

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

7-2 Reduced model and dynamics inversion control 81

Figure 7-4: Inversion controller

-100 -50 0 50 100
-200

-100

0

100

200

Figure 7-5: Reduced dynamics model and inverse controller

similar to the procedure, described in 5-2-1. The parameter vector θ describes the polynomial
that follows the shape of the neural net that stores the model. In essence, the model itself

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

82 Reinforcement-learning based control of the UAV

describes the trim state voltage input for any given virtual input value, denoted by xinput.
In order to reverse this model, the parameter vector θ is modified by adding the desired
acceleration ẍd to it’s first term, that describes the polynomial bias. Given a parameter
vector θ that approximates the reduced model

θ =
[
p0 p1 . . . pN

]T
, (7-2)

the adjusted parameter vector θ∗ becomes

θ∗ =
[
p0 + ẍd p1 . . . pN

]T
. (7-3)

The roots of the resulting system are found by finding eigenvalues of the companion matrix
A∗

A∗ =

− p1

p0+ẍd
− p2

p0+ẍd
. . . −N pN

p0+ẍd

1
. . .

1

 (7-4)

r = eig(A∗) (7-5)

These roots r correspond to trim state values of the virtual inputs for a given value of xd.
Due to extra dynamics taking place if this value was applied directly, the system might start
moving towards the desired goal, but the equilibrium might be achieved before it actually
reaches it. In other words, the controller would have a severe undershoot. In order to account
for this discrepancy a small proportional gain is applied. The full inversion controller scheme
is illustrated in the bottom part of Figure 7-4. The resulting inverse model state controller
performance is illustrated in figure 7-6 for pitch-mode control.

Figure 7-6 shows that the inverse controller is capable of closely adjusting the motor input
differential v13 to match the reference acceleration θ̈ref . Note that the transitions happen
very quickly, so for the reduced dynamics these dynamics can be assumed to happen instan-
taneously with sufficiently large time step.

7-3 Controller design

The initialized controller has several parameters that have to be set in advance: neural net
generalization function parameters, such as the supplied states, the number of neurons per-
dimension, and any auxiliary states that might affect the dynamics that have to be controlled.
Also, there are Q-learning trial and value function parameters: duration of one episode, value
function update rate α, discount parameter γ, trace decay rate λ, and the duration of applied
trial action.

The trial length, discount rate, and action duration length are critical parameters: control
dynamics such as pitch and roll have a much shorter response time, compared to yaw control

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

7-3 Controller design 83

0 5 10 15 20
-200

-150

-100

-50

0

50

100

150

Figure 7-6: Time series of inverse controller test run

for example. This means that the time horizon over which an episode has to be run must be
shorter, and the inputs have to be adjusted more rapidly.

Another learning parameter that has to be set is the reward function. There are two basic
ways to do it: assigning a fixed penalty at each time step with the magnitude depending on
whether the goal is reached or not. This is hard to achieve with continuous states if the goal
is not just some threshold to be passed, but a reference to be tracked for a period of time.
Another way is to use a reward function, that changes depending on current system state.
There are various ways to set up this function. The way the reward is assigned can influence
the learning process during the exploration stage, as well as the overall behavior of learned
policy. For example: if the reward is always positive, then the controller might give preference
to actions that had been explored previously, despite the possibility that some of the un-tried
actions might lead to higher value. Likewise, assigning negative rewards results in preference
given to actions that had not been explored previously, despite the fact that the optimum
action already had been tried. In effect, this works the same as pre-setting the value function.
Another factor when designing a reward function where several states are combined is the
maintenance of balance between different states. For example, a reward function that assigns
a lower penalty for lower state error but does not take state derivative into account might
result in high overshoot. On the other hand, a reward function that assigns a high penalty
for converging “too fast” might also result in a controller that has slower response time or
poor steady-state performance.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

84 Reinforcement-learning based control of the UAV

7-4 Policy training

It had been shown that the computation time for an RL algorithm could grow exponen-
tially (Whitehead, 1991) depending on the number of states. However, it was also demon-
strated that using more efficient exploration techniques this time could be reduced to rise
polynomially (Carroll, Peterson, & Owens, 2001), so exploiting effective exploration tech-
niques is paramount when dealing with a highly complex model.
Policy learning process progresses in several stages. First, a conventional controller is applied
to a simplified model of the system. This controller is designed for optimal hysteresis control.
The model used does not contain any higher-order dynamics, such as the lag introduced
by motors. It is assumed that any inputs applied to the system act instantaneously. Several
simulated trials are executed, using initial randomized conditions and reference control states.
Time series data of system behavior in response to such a controller is used to train a prime
policy, that does not take into account any couplings between different control states. Using
this approach allows to approximate a near-optimal policy in a very short time.
After the first stage is completed, the conventional controller is disabled and a more complex
model of the process is used (e.g. one that includes rotor dynamics). The value function
generalization function is extended to include auxiliary states, to make it adaptive. More
simulated trials are executed. The learning progresses as follows: during initial trials, the
model states are initialized close to the goal. This way the first thing that the controller
“learns” is how to maintain trim state reference tracking. Once the desirable steady state
error falls below a pre-set threshold, the initial conditions are moved further away from the
goal, forcing the controller to find a policy that describes the transition from any given initial
state to a goal state. This process continues until the entire desired state-space range had been
covered, after which more trials are executed with initial conditions set randomly throughout
the search space.
In the third stage the controller is applied to real world, e.g. it is used as a primary means
of control in a UAV drone. Again, several training runs are executed, starting with the trim
state and exploring the search space. This is the stage that takes the longest time-wise, but it
also produces the most accurate results. Any discrepancies between the UAV flight dynamics
and the model used are evened out by using real world data to update the controller.

7-5 Controller policy design

The controller policy is stored as an RBF neural net. Each controller neural net is initialized
with varying inputs. Each state is defined by some parameters. These parameters include:

1. State id

2. State reference

3. Scaling function type

4. Resolution

5. State limits

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

7-6 Controller performance 85

State id stands for the location of the state in the state vector. The states could either be
raw values of the current system state, input magnitudes or a product of a combination of
states, defined as auxiliaries. The state reference specifies the way states are put into the net:
this reference could either be absolute, meaning the absolute value of the state, or it could
be defined as the magnitude of the difference between the current system state and system
reference set point. The resolution specifies the size and number of neurons per-state. The
scaling function type specifies the type of pre-scaling, applied to neural net inputs. This could
either be linear mapping, power or an exponential scaling. The state limits specify the region
in which the network approximator is active. The individual variable resolution parameter is
corresponding to the amount of generalization applied by the function approximator.

A policy consists of several grids added together. Additional policy parameters include:

1. Action state id

2. Reference state id

3. Reward function specifications

The action state is the used action state. The control state is the state being controlled. The
reward function specifies the reward that the agent gains, depending on its state transitions.
The reward could be defined in a variety of ways. It is typically higher when the agent state
is close to the reference state. The rewards could be either positive or negative, which has an
impact on agent behavior, at least during initial learning stages. Assuming the Q-function is
initialized at 0, updating it with a positive reinforcement after each episode iteration results
in a high value assigned to the action taken, compared to all other possible actions that
are assigned a zero value at initialization. As a result, the agent will tend to select actions
that it had applied previously for as long as the outcome of other actions is still uncertain.
This heuristic is called an optimistic approach. As a result of using it, a substantial negative
evidence is needed to eliminate an action from consideration (Kaelbling et al., 1996).

7-6 Controller performance

This section discusses the resulting controller performance and compares it to conven-
tional(PID) controller. The performance of each controller is evaluated using the following
reward function:

r = ṡ− sign(∆s) ∗
√
sign(∆s) ∗∆s (7-6)

Variable ∆s represents the difference between controlled state s and the reference state ∆s =
s− sref . The reward function is illustrated in figure 7-7 for the pitch controller.

7-6-1 PID controller

In order to make a fair comparison, the PID gains are tuned using PSO optimization. The
reward function is used to evaluate controller performance. The algorithm is shown in 2.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

86 Reinforcement-learning based control of the UAV

Data: Initialize P̄ , Ī, D̄ arbitrarily
Define objective function V =

∑N
step=0 r(s) for an evaluation episode spanning N steps.

while current iteration < iteration limit do
for each gain set Pi, Ii, Di do

Update particle velocity vk+1
j using (5-1)

Update particle coordinate [P, I,D]i using (5-2)
Substitute P , I, D gains to currently selecting ones
Run an episode supplying randomized inputs to calculate cumulative reward Vi
if Vi > Vimax then

Update current particle optimum value and particle coordinate
Vimax ← Vi
Pimax ← Pi

Iimax ← Ii
Dimax ← Di

end
if Vi > V ∗

imax then
Update current swarm global optimum value and particle coordinate
V ∗
max ← Vi
P ∗
max ← Pi

I∗max ← Ii
D∗

max ← Di

end
if solution converged then

break
end

end
end
return [P ∗

max, I
∗
max, D

∗
max]

Algorithm 2: PID optimization algorithm

7-6-2 RL-based controller

This section outlines the training procedure and specific configuration of the Q-learning con-
troller. The training process begins with the preliminary generation of several potential
policies. The training progresses for as long as the following updates generate an improve-
ment in evaluation score. The evaluation is done by performing a test run with the model
while the controller is enabled and recording the average cumulative reward. The test signal
consists of a mix of step and sinusoidal inputs. Step input allows evaluating steady state
performance of the controller, while the sinusoidal signal is designed to assess the response of
the controller to a moving reference.

Several policies are generated, and the best one is selected. The results of this preliminary
stage are illustrated in figure 7-8 for the pitch controller.

It is notable that there is a considerable spread between various policy scores. The policy
quality starts to decrease after a few initial test runs. Therefore it is important to be able to
detect it and prevent it from getting worse as the learning continues.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

7-6 Controller performance 87

Data: Initialize the policy
Define reward function r = ṡ− sign(∆s)

√
sign(∆s)∆s

while current iteration < iteration limit do
Reset policy approximation function weights
while new score > previous score do

switch rand() % 3 do
case 0 do

Run a randomized episode series
end
case 1 do

Run a state sweep episode series
end
case 2 do

Run a variable signal episode series
end

end
Calculate the new score
if Current score > best score then

Store current policy as the best one
end

end
end
Load the best scoring policy
while true do

switch rand() % 3 do
case 0 do

Run a randomized episode series
end
case 1 do

Run a state sweep episode series
end
case 2 do

Run a variable signal episode series
end

end
Calculate the new score
if Current score > best score then

Store current policy as the best one
end

end
Algorithm 3: Policy search algorithm

There are three training methods used to train the policy: random state sweep, grid-based
state sweep and variable signal response. In a random state sweep, the initial state is placed
randomly, close to the final goal state. As the learning progresses, the initial state is placed
further and further from the goal. This approach allows to quickly generate a policy valid
near the goal region and then refine it by moving the initial position further away. During the

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

88 Reinforcement-learning based control of the UAV

grid-based search, a sweep of the entire state-space is performed. This strategy is designed
to cover the entire state-space and to cover the states that might not have been visited
during a randomized search. Variable signal training is done by letting the simulation run
continuously and varying the reference set point(goal). This is designed to better simulate
the actual conditions of the system in operation. During the training stage, the strategy is
selected at random.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

7-6 Controller performance 89

-500 0 500

-150

-100

-50

0

50

100

150

-12 -10 -8 -6 -4 -2 0

Figure 7-7: Pitch controller reward function

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

90 Reinforcement-learning based control of the UAV

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
0

1

2

3

4

5

6

7

Figure 7-8: Score distribution of preliminary policy search

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Chapter 8

Conclusions

This thesis is a contribution towards applying reinforcement learning methodology to control
problems, that are typically approached using conventional techniques, e.g. PD control. A
continuous state and action reinforcement learning framework was applied to a simulated
quadrotor model. The performance of the resulting algorithm was compared to that of a
conventional controller. This chapter summarizes some of the background, describes the
framework and some of the results. It also suggests direction for further research.

8-1 Summary

Reinforcement learning methodology is being used in increasingly more fields, including aero-
nautics and UAV control. Chapter 3 outlined some of the current state of art research in
the field of reinforcement learning, the basic theory behind it and introduced the Q-learning
algorithm and a few of its derivatives. In the chapter A an experiment was proposed. The
experiment consists of a simulated multicopter drone, trained to follow a reference signal for
reference pitch, roll, yaw and altitude. The experiment chapter outlined the software and its
modules, and how they interact with one another. The software was implemented in C++.
Originally, Q-learning was designed to deal with discrete state systems. Whereas the real
world robotic systems have continuous states and actions. Therefore, the Q-learning algorithm
has to be adapted to the purpose. The Q-function must be generalized. Chapter 4 describes
some generalization methodologies: the neural networks and the CMAC net. Some advantages
and disadvantages of each method are discussed. A novel hashed neuron net algorithm is
proposed that combines the features of the radial basis function neural networks and CMAC
encoding to increase the computational efficiency of the algorithm, allowing it to function in
real time.
In order to calculate the optimum action, the learned Q-function must be optimized. Chap-
ter 5 introduced the Particle Swarm Optimization (PSO) method and an approach, based on
curve fitting with linear regression. The PSO method can work with any type of function,
but it is more computationally expensive, compared to curve fitting.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

92 Conclusions

Chapter 6 introduced a mathematical model of the drone. A brief overview of various modeling
methods were given, followed by a set of equations of motions of the UAV. This model was
used to train and test the reinforcement learning framework. Some notes were given on the
implementation of the model in the experiment software, e.g. the numerical solver procedure
used to run the simulation. The control scheme was described, with outer and inner loop
controllers acting to achieve full control of the drone. A control allocation scheme was outlined
as well. It is necessary to implement because otherwise the system control inputs might be
in conflict with each other because of actuator input over-saturation.

Since running the full model of the process might not be practical in reality, for example due to
some discrepancies between the mathematical model and the real dynamics, a reduced order
model is constructed from the primary one by using system. The reduced model consists of a
neural network, trained using flight trajectory data and system inputs. Using it is meant to
shorten the training time, and it can easily be adapted if the parameters of the real system
have changed. The same model is used to implement a dynamics inversion controller, capable
of calculating actuator input based on reference acceleration state.

Chapter 7 described the controller layout in more detail. It specified the inputs and the
outputs of the control scheme. And how they are processed and passed on to Q-function
optimization and the inverse model control to generate actuator inputs. Some of the learning
parameters and the reward function were discussed as well. A brief overview of experimental
results was given as a conclusion.

A practical continuous state, continuous action Q-learning controller framework has been
described and tested using a model of a multi-copter. This work demonstrates that RL
methodology can be applied to the inner-loop control of UAVs. The described approach
combines model identification and offline learning using a reduced order model of the plant.
An optimized hashed neural network algorithm used to store the Q-function values allows to
optimize the computational load of the algorithm, making it suitable for online applications.
The performance of the algorithm was validated and compared against that of a conventional
proportional-derivative controller and was found to exceed it.

The algorithm was found to be capable of generating a working policy, but the policy itself
is still inherently dependent on learning parameters, e.g. the reward function structure. It
is difficult to express the more subjective desirable performance characteristics (such as the
controller responsiveness or smoothness of action) as an objective numeric function. A lot of
parameter tuning was required to achieve desirable behavior from the controller. Selection of
an appropriate reward function was found to be crucial to correct behavior of the controller.

In addition, the algorithm has shown to be quite inconsistent in training optimal policies
for any given trial run: after a certain training period the policy could either converge to
a non-optimal solution or get over-written and deteriorate after reaching the near optimum.
Therefore several policies had to be generated simultaneously and evaluated to find the best
one. This problem is not unique to offline-based training methodologies. If the experiment
was carried out with a real drone this would introduce a lot of difficulty in training process,
since the progress would have to be reset every time and a new policy would have to be
learned. With an offline approach it’s not an issue because several learning trials could be
executed in parallel in a very short time.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

8-2 Future Directions 93

8-2 Future Directions

The direction of future research would include testing the resulting algorithm in an experi-
mental setting that involves a physical system(a multi-copter drone). For this the framework
would have to be adapted to communicate with the drone via a data link, receiving the flight
telemetry and transmitting the commands. The algorithm itself is computationally expensive
and might not be able to function on a typical embedded processing unit, installed on com-
mercial drones. It needs a dedicated processing unit with enough power. Nevertheless, since
the computers are getting smaller and cheaper, it can be adjusted to run on a single board
computer, such as Raspberry Pi.

In this work only the inner loop dynamics were considered. The control scheme can be
extended to incorporate the outer loop control as well, using the same methodology. The
model can also be adjusted online to achieve a more accurate estimation of the plant dynamics
and making it adaptive. Furthermore, the multicopter model used behaves like a linear
system. The developed algorithm could also be applied to highly non-linear systems, where
achieving the goal would require executing several actions in a sequence. These are the types
of systems for which the reinforcement learning shows the most promise. With the outer loop
implemented, it is possible to train the drone to perform complex maneuvers, which would
otherwise be impossible to achieve using only PD control scheme.

Furthermore, one of the objectives of this framework was to combine online and simulated
offline training methodologies. This approach allows to decrease the risks associated with
live testing of a robotic system and to decrease the amount of human supervision required.
Safety management is a crucial problem when performing live tests: the system needs a lot
of time to learn, the trials have to be run repeatedly, and in the early stages of the learning
process the agent might act unpredictably. The framework still requires at least some initial
data from the live tests, in order to build a reduced model of the process. An safety filter
may be implemented to guarantee that the system would avoid the unsafe situations during
the initial learning stages, and a filter could also be applied to the policy itself, resulting in a
system that not only acts optimally, but also actively avoids danger.

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

94 Conclusions

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Appendix A

Experiment Software

The experimental set-up of this research consists of the creation of a computer program, to
develop and test the intelligent control approach. The program has to be able to “learn”
control strategies, and it also has to be able to simulate a drone to apply them. In the
later stages of the project simulated environment would be replaced by a real vehicle. A
communication interface has to be implemented to integrate with the drone software and use
the learned policy. The general architecture of the program is shown in figure A-1.

The program consists of several components, implemented in C++ and using Qt framework for
the front-end output. The policy engine is the main module of the program. It is responsible
for taking user inputs and passing commands to the UAV using a wireless link. The inputs
themselves consist of joystick controls(stick position or buttons pressed) and policy search
parameters, derived from values supplied to GUI interface or from configuration files. The
policy engine executes several simulated learning process threads. Each of them contains an
instance of a learning algorithm, as described in chapter 3. All cases of the policy search
algorithm are using the same drone dynamics model, but each of them applies excitations to
different inputs(such as pitch/roll/yaw control, or supplying a goal state value to an already
learned controller). Also, each policy search process observes a different set of outputs,
depending on what the controller goal states are, and what vehicle dynamics are most affected
by the controller. The learned policy is then generalized and stored in the form of RBF Neural
Network.

The nature of the program requires it to be operable in real-time, with several tasks being
executed simultaneously. It is important to ensure that the communication between various
program modules does not lead to any conflicts, such as race conditions or read/write conflicts.
For this reason, a task management module and a thread-safe data access buffers have to be
implemented as well.

Model identification module observes input and sensor data on the board of the drone and
identifies the drone dynamics, producing an emergent model as the learning process progresses.
This model is used by the policy engine to run simulated episodes. In this way, the drone is not
required to try and execute any actions to learn a policy. It is done by the software, reducing

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

96 Experiment Software

Figure A-1: Software architecture for the intelligent controller

the risks of damage to the hardware. Simultaneously, raw input/output data streaming
from the drone is also used for on-line learning. This approach allows to update the flight
controller continuously policy even if a model is not yet available or it is inaccurate, while it
also mitigates adverse effects caused by inaccuracies, that might be present in the model, by
using real-world data.

The UML diagram of the resulting program is shown in figure A-2. Note that several utility
variables and routines had been omitted for the sake of brevity. The core software consists
of four principal parts: state management, simulation, the controller itself and the neural net
used as a function approximator.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

97

Figure A-2: The experiment software UML diagram

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

98 Experiment Software

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Appendix B

UAV simulation

??
UAV model used has a number of various dynamics that have to be simulated. This section
gives a brief overview of the procedure used when creating a computer program used to
simulate the drone.

B-0-1 State overview

The model is defined to have a total of 40 states. There are “base” states of the model, such
as pitch, roll or yaw angles or their derivatives, the input states and the auxiliary states,
defined as a combination of other states. Table B-1 gives an outline of all defined states,
implemented as part of the state class. The input states are listed in table B-2. Auxiliary
states are listed in table B-3. Using reinforcement learning as a mode of control allows
addition of any number of cross-coupled states, in order to achieve optimal control. For
example adding an additional auxiliary state cos(φ) cos(ϑ) in the altitude controller allows
it to include the relationship between the aircraft pitch and roll angles and the amount of
thrust required to maintain reference altitude, making it an adaptive controller that would
apply a different policy, depending on current state of the vehicle.

B-0-2 Dynamics simulation

A numerical solver has to be applied to the model in order to simulate motion of the UAV in
flight. There are a number of solver methods available, adaptive Dormand-Prince method for
solving of ordinary differential equation was selected(Dormand & Prince, 1980). It is a popular
method, used as the default solver algorithm in MATLAB. This method was implemented in
the software as part of the sim class. The function of a numerical solver is to solve a general
differential equation in the form of

y′ = f(x, t) (B-1)

y(t0) = y0 (B-2)

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

100 UAV simulation

State Name SW var. ID Min Max Unit Comment
x X-position x 0 -10.0 10.0 [m]
y Y-position y 1 -10.0 10.0 [m]
z Altitude z 2 -5.0 5.0 [m] Altitude controller state
ϕ Roll-angle phi 3 -180.0 180.0 [deg] Roll controller state
θ Pitch-angle the 4 -180.0 180.0 [deg] Pitch controller state
ψ Yaw-angle psi 5 -180.0 180.0 [deg] Yaw controller state
ω0 Rotor speed (0) w0 6 0.0 530.0 [rad/s]
ω1 Rotor speed (1) w1 7 0.0 530.0 [rad/s]
ω2 Rotor speed (2) w2 8 0.0 530.0 [rad/s]
ω3 Rotor speed (3) w3 9 0.0 530.0 [rad/s]
ẋ X-velocity xd 10 -20.0 20.0 [m/s]
ẏ Y-velocity yd 11 -20.0 20.0 [m/s]
ż Rate of climb zd 12 -20.0 20.0 [m/s]
p Roll-rate phid 13 -10.0 10.0 [rad/s]
q Pitch-rate thed 14 -10.0 10.0 [rad/s]
r Yaw-rate psid 15 -2.5 2.5 [rad/s]
ω̇0 Rotor accel. (0) wd0 16 - - [rad/s2]
ω̇1 Rotor accel. (1) wd1 17 - - [rad/s2]
ω̇2 Rotor accel. (2) wd2 18 - - [rad/s2]
ω̇3 Rotor accel. (3) wd3 19 - - [rad/s2]
ẍ X-accel. xdd 20 -10.0 10.0 [m/s2]
ÿ Y-accel. ydd 21 -10.0 10.0 [m/s2]
z̈ Z-accel. zdd 22 -32.0 12.0 [m/s2] Altitude controller action
ṗ Roll-accel. phidd 23 -160.0 160.0 [rad/s2] Roll controller action
q̇ Pitch-accel. thedd 24 -160.0 160.0 [rad/s2] Pitch controller action
ṙ Yaw-accel. psidd 25 -10.0 10.0 [rad/s2] Yaw controller action

Table B-1: Base system states

State Name SW var. ID Min Max Unit Comment
v0 Motor voltage (0) v0 26 0.0 12.0 [V]
v1 Motor voltage (1) v1 27 0.0 12.0 [V]
v2 Motor voltage (2) v2 28 0.0 12.0 [V]
v3 Motor voltage (3) v3 29 0.0 12.0 [V]
vb Base differential vb 30 0.0 512.0 [V2] vb = v20 + v21 + v22 + v23
v02 Pitch-actuation differential v02 31 -144.0 144.0 [V2] v02 = v20 − v22
v13 Roll-actuation differential v13 32 -144.0 144.0 [V2] v13 = v21 − v23
v0213 Yaw-actuation differential v0213 33 -288.0 288.0 [V2] v0213 = v20 − v21 + v22 − v23

Table B-2: Input states

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

101

State SW var. ID Min Max Unit Comment
c(ϕ)c(θ) cphicthe 34 -1.0 1.0 [-] cos(ϕ)cos(θ)

qr thedpsid 35 -1.0 1.0 [rad2/s]
pr phidpsid 36 -1.0 1.0 [rad2/s]
qp phidthed 37 -1.0 1.0 [rad2/s]
c(ϕ)s(θ)c(ψ) cphisthecpsi 38 -1.0 1.0 [-] cos(ϕ)sin(θ)cos(ψ)

c(ϕ)s(θ)s(ψ) cphisthespsi 39 -1.0 1.0 [-] cos(ϕ)sin(θ)sin(ψ)

s(ϕ)s(ψ) sphispsi 40 -1.0 1.0 [-] sin(ϕ)sin(ψ)

s(ϕ)c(ψ) sphicpsi 41 -1.0 1.0 [-] sin(ϕ)cos(ψ)

Table B-3: Auxiliary states

Coefficient Value Unit Description
m 1.2 [kg] Drone mass
Ix 8.5e-3 [kg·m2] Moment of inertia around x-axis
Iy 8.5e-3 [kg·m2] Moment of inertia around y-axis
Iz 15.8e-3 [kg·m2] Moment of intertia around z-axis
b 2.4e-5 [-] Thrust factor
d 1.1e-7 [-] Drag constant
R 2.0 [Ω] Motor resistance
Jr 1.5e-5 [kg·m2] Rotor inertia
Jm 0.5e-5 [kg·m2] Motor inertia
l 2.4e-1 [m] Motor arm length

Ke 1.5e-2 [-] Motor constant

Table B-4: Drone dynamics coefficients

These equations were described in 6-1 for the translational dynamics, 6-15 for the rotational
dynamics, and 6-19 for the motor dynamics. The coefficients used are shown in table B-4.

The one-step calculation of Dormand-Prince solver is done as follows:

k1 = hf(tk, yk) (B-3)

k2 = hf(tk +
1

5
h, yk +

1

5
k1) (B-4)

k3 = hf(tk +
3

10
h, yk +

3

40
k1 +

9

40
k2) (B-5)

k4 = hf(tk +
4

5
h, yk +

44

45
k1 −

56

15
k2 +

32

9
k3) (B-6)

k5 = hf(tk +
8

9
h, yk +

19372

6561
k1 −

25360

2187
k2 +

64448

6561
k3 −

212

729
k4) (B-7)

k6 = hf(tk + h, yk +
9017

3168
k1 −

355

33
k2 −

46732

5247
k3 +

49

176
k4 −

5103

18656
k5) (B-8)

k7 = hf(tk + h, yk +
35

384
k1 +

500

1113
k3 +

125

192
k4 −

2187

6784
k5 +

11

84
k6) (B-9)

The updated estimate yk+1 is then calculated as:

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

102 UAV simulation

yk+1 = yk +
35

384
k1 +

500

1113
k3 +

125

192
k4

2187

6784
k5 +

11

84
k6 (B-10)

This represents a single Runge-Kutta(4) step. In addition to this, another updated estimate
is calculated:

zk+1 = yk +
5179

57600
k1 +

7571

16695
k3 +

393

640
k4 −

92097

339200
k5 +

187

2100
k6 +

1

40
k7 (B-11)

This estimate represents a Runge-Kutta(5) step. Combining these two estimates allows to
calculate the estimated solver error |zk+1 − yk+1|

|zk+1 − yk+1| = |
71

57600
k1 −

71

16695
k3 +

71

1920
k4 −

17253

339200
k5 +

22

525
k6 −

1

40
k7| (B-12)

This error estimation can be used to adjust the solver step-size hopt, depending on the ac-
ceptable error tolerance value ϵ:

s =

(
ϵh

2|zk+1yk+1|

) 1
5

(B-13)

Then the updated optimum step-size becomes

hopt = hs (B-14)

The application procedure of Dormand-Prince solver is described by algorithm 4.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

103

Data: Initialize ϵ = 0.001, h = 0.001, t0 = 0
while t < tfin do

Calculate RK coefficients, using equations of motion described in 6-1, 6-15, and 6-19
k1 = hf(t0, y0)
. . .
k7 = hf(t0 + h, ...)
Calculate updated system state (RK4)
y1 = y0 +

35
384k1 + . . .

Calculate updated system state (RK5) and estimate the resulting error
z1 = y0 +

5179
57600k1 + . . .

err = |z1 − y1|
Calculate the optimal step interval for the next step

s =
(

ϵh0
2err

) 1
5

h1 = sh0
Clip the step interval h1 between hmin and hmax

if h1 < hmin then
h1 = hmin

end
if h1 > hmax then

h1 = hmax

end
Update the variables
t0 = t0 + h0
y0 = y1
h0 = h1

end
return The final system state y at tfin

Algorithm 4: Dormand-Prince solver application

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

104 UAV simulation

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Bibliography

Albus, J. S. (1975). A New Approach to Manipulator Control: The
Cerebellar Model Articulation Controller (CMAC). Journal of Dy-
namic Systems, Measurement, and Control, 97(3), 220. Available from
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1402197

Bagnell, J., & Schneider, J. (2001). Autonomous helicopter control using reinforcement
learning policy search methods. Proceedings 2001 ICRA. IEEE International Conference
on Robotics and Automation (Cat. No.01CH37164), 2.

Bohlin, T. (1991). Interactive system identification : Prospects and pitfalls (Vol. 54) (No. 3).
European Journal of Operational Research.

Bohlin, T. (1994). A case study of grey box identification. Automatica, 30(2), 307–318.
Bongard, J., & Lipson, H. (2007). Automated reverse engineering of nonlinear dynamical

systems. Proceedings of the National Academy of Sciences of the United States of
America, 104, 9943–9948.

Bouabdallah, S., Noth, A., Siegwart, R., & Siegwan, R. (2004). PID vs LQ control techniques
applied to an indoor micro quadrotor. 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 3, 2451–2456.

Buffington, J., Chandler, P., & Pachter, M. (1999). on-Line System Identification for Aircraft
With Distributed Control Effectorsr. International Journal of Robust and Nonlinear
Control, 1049, 1033–1049.

Buffington, J. M., & Enns, D. F. (1996, nov). Lyapunov stabil-
ity analysis of daisy chain control allocation. Journal of Guid-
ance, Control, and Dynamics, 19(6), 1226–1230. Available from
http://arc.aiaa.org/doi/abs/10.2514/3.21776%5Cnhttp://arc.aiaa.org/doi/10.2514/3.21776
http://arc.aiaa.org/doi/10.2514/3.21776

Busoniu, L., Babuška, R., De Schutter, B., & Ernst, D. (2010). Reinforcement Learning and
Dynamic Programming Using Function Approximators (1st ed.). Boca Raton, FL, USA:
CRC Press, Inc.

Carroll, J., Peterson, T., & Owens, N. (2001). Memory-guided exploration in re-
inforcement learning. IJCNN’01. International Joint Conference on Neural Net-

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

106 Bibliography

works. Proceedings (Cat. No.01CH37222), 2(January), 1–44. Available from
http://portal.acm.org/citation.cfm?id=865072

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning.
Machine Learning, 15(2), 201–221.

Cox, C., Stepniewski, S., Jorgensen, C., Saeks, R., & Lewis, C. (1999). On the design of
a neural network autolander. International Journal of Robust and Nonlinear Control,
9(14), 1071–1096.

Cybenko, G. (1998). Neuro-Dynamic Programming. IEEE Computational Science and
Engineering, 5(2), 101–102. Available from http://www.amazon.com/dp/1886529108
http://ieeexplore.ieee.org/document/683749/

Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge- Kutta formu-
lae. Journal of computational and applied mathematics, 6(1), 19–26. Available from
http://www.sciencedirect.com/science/article/pii/0771050X80900133

Durham, W. C. (1994, mar). Constrained control allocation - Three-moment prob-
lem. Journal of Guidance, Control, and Dynamics, 17(2), 330–336. Available from
http://arc.aiaa.org/doi/10.2514/3.21201

Gaing, Z.-L. L. (2004). A Particle Swarm Optimization Approach for
Optimum Design of PID Controller in AVR System. IEEE Trans-
actions on Energy Conversion, 19(2), 384–391. Available from
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1300705&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1300705

Gaskett, C. (2008). Q-learning for robot control. Dspace.Anu.Edu.Au, 1. Available from
http://dspace.anu.edu.au/handle/1885/47080%5Cnpapers2://publication/uuid/EE6874D9-54EC-4606-8EC8-CE0172078203

Gaskett, C., Wettergreen, D., & Zelinsky, A. (1999). Q-learning in continuous state and
action spaces. In Lecture notes in computer science (including subseries lecture notes
in artificial intelligence and lecture notes in bioinformatics) (Vol. 1747, pp. 417–428).
Available from http://www.springerlink.com/content/2178756r7k338683

Geibel, P., & Wysotzki, F. (2005). Risk-sensitive reinforcement learning applied to control
under constraints. Journal of Artificial Intelligence Research, 24, 81–108.

Geramifard, A., Redding, J., & How, J. P. (2013). Intelligent Cooperative Con-
trol Architecture: A Framework for Performance Improvement Using Safe Learn-
ing. Journal of Intelligent & Robotic Systems, 72(1), 83–103. Available from
http://link.springer.com/10.1007/s10846-013-9826-6

Hageman, J. J., Smith, M. S., & Stachowiak, S. (2003). Integration of Online Parameter
Identification and Neural Network for In-Flight Adaptive Control. Report Project-
NASA(October).

Harkegard, O. (2002). Efficient active set algorithms for solving constrained
least squares problems in aircraft control allocation. Decision and Con-
trol, 2002, Proceedings of the …, 2(December), 1295–1300. Available from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1184694

Harmon, M., & Baird III, L. (1996). Residual advantage learning applied to a differential
game. Neural Networks, 1996., IEEE International Conference on, 1(June), 329–334
vol.1.

Hassan, R., & Cohanim, B. (2005). A comparison of particle swarm optimization and the
genetic algorithm. 1st AIAA multidisciplinary design optimization specialist conference,
1–13. Available from http://arc.aiaa.org/doi/pdf/10.2514/6.2005-1897

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

Bibliography 107

Hasselt, H. V., Group, A. C., & Wiskunde, C. (2010). Double Q-learning. In Neural infor-
mation proceeding systems (pp. 1–9).

Hillier, F. S., Lieberman, G. J., & Newton, S. I. (2015). Introduction to opera-
tions research. In (pp. 1–14). New York, NY: McGraw-Hill. Available from
http://opac.inria.fr/record=b1082814

Iruthayarajan, M. W., & Baskar, S. (2009). Evolutionary algorithms based design of multi-
variable PID controller. Expert Systems with Applications, 36(5), 9159–9167. Available
from http://dx.doi.org/10.1016/j.eswa.2008.12.033

Jorgensen, C. C. (1997). Direct Adaptive Aircraft Control Using Dynamic Cell Structure
Neural Networks. Cell Structure Neural Networks”, NASA TM 112198(May).

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning : A
Survey. Journal of Artificial Intelligence Research, 4, 237–285.

Kurnaz, S., Cetin, O., & Kaynak, O. (2010). Adaptive neuro-fuzzy in-
ference system based autonomous flight control of unmanned air vehi-
cles. Expert Systems with Applications, 37(2), 1229–1234. Available from
http://dx.doi.org/10.1016/j.eswa.2009.06.009

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

Mohammadi, M., Shahri, A. M., & Boroujeni, Z. (2012, jan). Modeling
and Adaptive Tracking Control of a Quadrotor UAV. International Jour-
nal of Intelligent Mechatronics and Robotics, 2(4), 58–81. Available from
http://www.google.com/url?sa=t&rct=j&q=trajectory tracking control of
quadrotor uav&source=web&cd=6&ved=0CGoQFjAF&url=http://www.atlantis-press.com/php/download_paper.php?id=2722&ei=10ghUIfmAcuHqQGZ1ICIBg&usg=AFQjCNGaReOoEtrjxWks6zDCPxXbBN6d7g%5Cnpapers2://

Mukherjee, V., & Ghoshal, S. P. (2007). Comparison of intelligent fuzzy based AGC co-
ordinated PID controlled and PSS controlled AVR system. International Journal of
Electrical Power and Energy Systems, 29, 679–689.

Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks, 1(1), 4–27.

Neumann, G. (2005). The Reinforcement Learning Toolbox , Reinforcement Learning for
Optimal Control Tasks. Unpublished doctoral dissertation.

Nievergelt, J. (1969). R69-13 Perceptrons: An Introduction to Com-
putational Geometry. IEEE Transactions on Computers, C-18(6),
572–572. Available from http://cdsweb.cern.ch/record/114106
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1671311

Pitts, W., & McCulloch, W. S. (1947). How we know universals the perception of auditory
and visual forms. The Bulletin of Mathematical Biophysics, 9, 127–147.

Poli, R. (2007). An Analysis of Publications on Particle Swarm Optimisation Applications.
Journal of Artificial Evolution and Applications, 2008, 1–57.

Poli, R. (2008). Analysis of the Publications on the Applications of Particle Swarm Optimi-
sation. Journal of Artificial Evolution and Applications, 2008(2), 1–10.

Simon, S. L., Duncan, C. L., Horky, S. C., Nick, T. G., Castro, M. M., & Riekert,
K. a. (2011). Body satisfaction, nutritional adherence, and quality of life in youth
with cystic fibrosis. Pediatric Pulmonology, 46(11), 1085–1092. Available from
http://www.ncbi.nlm.nih.gov/pubmed/21626713

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., et al. (1995).

Continuous state and action Q-learning framework applied to quadrotor UAV control A.E. Naruta

108 Bibliography

Nonlinear black-box modeling in system identification: a unified overview (Vol. 31)
(No. 12).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. IEEE
transactions on neural networks / a publication of the IEEE Neural Networks Council,
9, 1054.

Svendsen, C. H., Holck, N. O., Galeazzi, R., & Blanke, M. (2012). L1 adaptive manoeuvring
control of unmanned high-speed water craft. In Proceedings of the 9th ifac conference on
manoeuvring and control of marine crafts (Vol. 9, pp. 144–151). Arenzano: International
Federation of Automatic Control.

Valasek, J., Doebbler, J., Tandale, M. D., & Meade, A. J. (2008). Improved adaptive-
reinforcement learning control for morphing unmanned air vehicles. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(4), 1014–1020.

Valasek, J., Tandale, M. D., & Rong, J. (2005). A Reinforcement Learning - Adaptive
Control Architecture for Morphing. Journal of Aerospace Computing, Information, and
Communication, 2(April), 174–195.

Whitehead, S. D. (1991). A Complexity Analysis of Cooperative Mechanisms in Reinforce-
ment Learning. AAAI-91 Proceedings, 607–613.

Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate
reasoning—II. Information Sciences, 8(4), 301–357.

Zadeh, L. a. (1973). Outline of a New Approach to the Analysis of Complex Systems and
Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1),
28–44.

Zhang, B., Mao, Z., Liu, W., & Liu, J. (2013). Geometric Reinforcement Learning for Path
Planning of UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications,
1–19.

A.E. Naruta Continuous state and action Q-learning framework applied to quadrotor UAV control

