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SAMENVATIING
In deze eenheid houden we ons bezig met hydrostatica: we bestuderen vloei­

stoffen of gassen waarvan de snelheid gelijk aan nul gesteld mag worden. We

zullen onderzoeken welke krachten er in een stilstaande vloeistof werken

en daaruit een formulering voor de drukverdeling afleiden.

Daarbij komt aan de orde wat de invloed van de dichtheid van de vloeistof

is op de drukverdeling. Bij de afleiding van een aantal grootheden wordt

gebruik gemaakt van de wet van behoud van massa. Aan deze wet wordt daarom

een aparte paragraaf gewijd.

In de eenheid worden tevens een aantal.begr-i.ppengeïntroduceerd, die nood­

zakelijk zijn om later te behandelen stromingssystemen (bijv. waterlopen,

waterleidingnet, riolering etc.) te beschrijven. Veel van wat in deze een­

heid voorkomt zal u bekend zijn: een aantal onderwerpen is reeds op de

middelbare school behandeld. Het is echter van groot belang te letten op

de manier waarop grootheden worden afgeleid, omdat in de volgende eenheden

een analoge werkwijze gevolgd wordt.

Voor de bestudering van deze eenheid is kennis van het oplossen van opper-

vlakte~ en volume-integralen en van (eenvoudige)differetiaalvergelijkingen

noodzakelijk (zie wiskunde Analyse en 2)

Vrijwel alle leerstof van de eenheid is in deze studiehandleiding opgenomen:

er wordt alleen (eenmaal) verzezen naar eenheid 1: "voorbereiding".
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DOELSTELLINGEN

1. Onderscheid kunnen maken tussen het Li.chaarnsmodeL en het vatmodel voor
" _'.

een hoeveelheid materie;

.:::,.

2. Onderscheid kunnen. maken .tussen vatonderdelen '~oals:

(vaste) wand, scheidingswand, toegang, grensvlak, bodem en(vloeistof-)

spiegel

en vatgrootheden zoals:
. 'l"!'

volumen, massa-voorraad, (gravitatie-)berging, elastische berging en

klokberging ;

3. Ondersche~~ kunnen maken tussen specLaje vaten zoals: ..
. ,

deelvat, kom of bekken, klok, communicerend vat ; (ideq~l) .atroomvoe rend

vat, leiding;

4. Een stroming~ssysteem) kunnen be~chrijven ,(schematiseren~·m.b~v. de
._.

begrippen en grootheden uit de doelstellingen 1, 2 en 3;"

5. Definities kennen van ~~ grootheden i di.ede materi,e-:-hoeve_slheiden/6f

materie-samenstelling l.neen vat vastleggen zoals: ,'.' -..'~'

volumen, massa(-voorraad), homogene samenstelling, gelijkmatige of

uniforme massa-:verdeJ,i~g,.kontinue maas a-ver-deLi.ng, (gemiddelde)
-' :';;" 'r. .

dichtheid. en plaatselijke dichtheid;

,. "

6. Voor een vat of kombinatie van vaten de onder doelstelling 5 gedefinieerde

grootheden kunnen berekenen en de onderlinge ver-banden.kunnen aangeven ; ,

7. Uit een (grafisch) gegeven 2- of 3-dimensionale dichtheidsverdeling de

plaatselijke dichtheden kunnen afleiden;

8. Definities kennen van de grootheden die de veranderingen van materie­

hoeveelheden of materie-samenstelling in een vat vastleggen zoals:

stromingswisselwerking, (totale) massa-stroom of massa-flux, massabalans

en (totale) debiet of volumenstroom (volumenflux);
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9. Voor een vat of kombinatie van vaten de onder doelstelling 8 gedefinieerde

grootheden kunnen ber-ekenen en de onderlinge verbanden kunnen aangeven;

10. Onderscheid kunnen maken tussen volumen- en oppervlakte interakties

(;....,krachten) in:v.Loeibar-een/of gasvormige materie;

11. De begrippen normaalspanning, schuifspanning, (isotrope) druk, stijg­

hoogte, (on-)samendrukbaarheid en kompressiemodulus k€nnen;

12. De wet van Pascal kunnen afleiden voor een stilstaande vloeistof (gas);

13. De drukverdeling in en de stijghoogte voor een stilstaande 'vloeistof

(gas-) kunnen berekenen;

14. Krachten kunnen berekenen op vlakken, wanden en lichamen die geheel of

gedeeLteLi.jkondergedompeld zijn in een stilstaan-de'vloeistof met een

konstante dichtheid;

15. De (gravitatie- )bergingsvergelijking kunnen afleiden en weten onde'r welke

voorwaarden de vergelijking geldt;

16. De drukverdeling kunnen berekenen in bekkens waarin de massavoorraad

of de aichtheid langzaam met de tijd verandert.

M.b.v. deze drukverdeling krachten op wanden en lichamen kunnen berekenen;

17. De elastische- en de klok bergingsvergelijking kunnen afleiden en 'weten

onder welke voorwaarden deze vergelijkingen gelden.
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.DIKTAATGEDEELTE, SUGGESTIES EN STUDIEVRAGEN

1. INLEIDI~

Eenheid 9 is de eerste van een viertál eenneden, te weten de eenheden 9, 10,

11 en 12, die tot onderwerp hebben de 8tr~ffingsmeohanika.
Onder stromingsrnechanikaw~rdt hier verstaan dat deel van de mechanika dat

zich bezig houdt met de bewegingen van en de krachten in en op stromende

vloeistoffen en gassen.

Vloeistoffen.en gassen hebben in hun mechanisch gedrag veel met elkaar gemeen.

Zij zijn onbeperktc-lferv-ormbaaren praktisch eindeloos verdeelbaar. De mechanika

van stromende vloeistoffen err-de mechanica van stromerldegassen vallen'dan ook

voor een belangrijk deel samen.

Opm.: De naam stromingsmeohanika is hier gekozen als alternatief voor vZoei­
stotmeohanika in de zin van wat in het Engels fluid meohanioa wordt ge­

noemçl.Het NederJ.andskent alleen de·termen vloeistof en gas, die over­

eenko~ep met ?iquid en gas in het Engels.

P1.uidis,in het Engels een verzamelnaam VOOr vloeistQffen en gassen. On­

der !Zuid meo~io8 valt dus te verstaan de mechanika zowel van vloei­

stoffen als van gassen, dus ongeveer i'/athier met,v Loeietofmeohanika of

stromingsmeahanika wordt bedoe'1.

In de civie.,letechniek krijgen we te maken,met stromingen zowel van vloeistof­

fen als van ga8~~p~ zoals uit enige voorbeelden moge blijken.

In de tot dUl?ver.gebruikte naam weg- en 1JaterbQU1.ûkunqevoor de civiele techBiek

komt reeds tot uitdrukking dat het watèr een belangrijk onderwerp van studie

voor de civiel-ingenieur is. Niet alleen in de waterbouwkunde en hydrologie,

maar ook in de gezóndheidstechniek wordt veel aandacht besteed aan de mechanika

van het stromende water. We treffen dit aan in kustwateren, rivieren, kanalen,

watervoerende grondlagen, waterleidingen en rioleringen, enz.

Het stromende water vormt een belangrijk transportmeehanisme voor milieufactoren

in de Vorm van opge.Loste en zwevende stoffen (zout, zuurstof, organismen), warm­

te (koelwarmt~ van centrales~) en dergelijke, als ook voor bodemmaterialen als

zand en slib.
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Daarnaast is ook de mechanica van stromend~ lucht voor de civiel-i~genieur

van belang. Hij krijgt hiermee te maken bij de ventilatie van gebouwen en

tunnels en ook b:j de windbelasting op hoge gebouwen.

Bij de voor de waterbouwkunde belangrijke waterbewegingen van stormvloeden

en windgolven, speelt de wisselwerking tussen lucht en water een essentiële

rol, waarbij dus de mechanika van beide ~trOmende media bestudeerd moet worden.

BEHANDELIN3 VAN DE STROMlf\K;SMECHANlKA IN DEZE KURSUS

HERLEES: PAR. 5 VAN EENHEID 1.

De in deze kurs~$ te behandelen stromingsmechanika vormt een inleiding tot

later uitvoeriger.te ):Jehandelengedeelten van de vloeistofmechanika. We zul­

len ons daarom in deze kursus twee belangrijke beperkingen opleggen.

In de eerste plaats richten we onze aandacht voornamelijk op een disk.rete

behandeling. De kontinutteit van de stromende materie komt daarom slechts

ter sprake in zove~re als dit voor een goed begrip van diskrete stromings­

systemen onmisbaar is.

In de tweede plaats kiezen we voor de beschrijving van de ~ewegingen de metho­

de die uitgaat van de diskreti8eI~ng van de ruimte. We gaan dus uit van het

begrip vat. Het lichaamsmodel komt alleen ter sprake voorzover dit voor een

goed begrip van het vatmodel nodig is.

Opm.: Bij de met hani.kavan de kontinue r aterLe onderscheid. men 'eveneens twee'

methoden, die van Lagrange en die van Euler. De methode van Lagrange

sluit aan op het lichaamsmodel en die van Euier sluit aan op het vatmo­

del. De in deze kursus te volgen behandeling van de stromingsmechanika

vormt dus een voorbereiding voor de Euler-methode in de vloeistofmecha­

nika.

Water als voorbeeld

De stromingsmecnanika vindt in de civiele techniek vooral toepassing bij aller­

lei problemen met betrekking tot water. Het ligt daarom voor de hand onze aan­

dacht voor-al op het stromende water te richten.

We ontwikkelen daarom een systematische behandeling van de stromingsmechanika

met water als voorbeeld van stromende materie. Dezelfde systematische behande­

ling kan echter ook worden toegepast op andere stromende stoffen, bv. olie of

lucht.

De systematische behandeling omvat ten eerste een nadere bepaling van het begrip

stT'oom en ten tweede het aangeven van de oorzaken voor het optreden van stro-
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mingen, d.w.z. het analyseren van krachten in onderling verband.'Voor een

nadere bepaling v in het begrip stroom kun-renwe heel wel aal.knepenbij.een'

korte beschouwing over waterhuishouding.

Waterhuishouding

Water van voldoende goede kwaliteit vormt één der belangrijkste grondstof­

fen waarvan het voortbestaan van een samenleving afhankelijk is.

De gebruiker die water uit de kraan laat lopen, betrekt dit water uit een

voorraad die..is opgeslagen in een watertoren, in opvangbekkens e sd,, die op

hun beurt weer !'fOrden aangevuld uit watervoerende grondlagen, rivieren; .1'8.-.­

genval enz. De civie),-ingenieurdLe voor de watervoorziening verantwoorde- -

lijk is, zal zich van de herkomst van het water terdege rekenschap moeten

geven. Hij zal zich daa~om bezig moeten houden met het kwantificeren van de

toe- en afname van watervoorraden en met de hoeveelheden water die van de

ene voorraad naar de andere overgaan.

Dit geldt niet al.leenvoor de waterhoeveelheden die aan de natuur onttrokken

worden t.b.v. huishoudelijk, agrarisch, industrieëel of ander maatschàppel.ijk

gebruik, maar ook voor d·ehoeveelheden die als afvalwater weer aan de natuur

worden teruggegeven. Immers, dit afvalwater kan, vooral in grote hoeveelheden,

ontoelaatbare schade aan het natuurlijke milieu toebrengen en bovendien, via

de kringloop van het water in de natuur, weer bij de bronnen van de watervoor­

ziening terugkeren en deze verontreinigen.

Bovendien krijgen we in de civiele techniek te maken met hoeveelheden water

uit de natuur, zoals zeewater, die door riviermonden, zeesluizen of als zoute

kwelstroming door de grond heen, in pOlqers en zoetwatermeren kunnen binnen­

dringen en daardoor de kwaliteit van.het zoete water kunnen aantasten.

Het water waar we voor de waterhuishouding in geïnteresseerd zijn, is feite­

lijk steeds in beweging. We kiezen om deze beweging te beschrijven, een opzet

die uitgaat van het onderscheiden van een aantal voorraadruimtes. Deze worden

behan~eld m.b.v. het vat~odet. De beweging van het water wordt dan beschreven

door de overdrachten van waterhoeveelheden in verloop van tijd tussen de ver­

schillende vaten.

In een globale b~schouwing kiezen we als vaten de'zichzelf daarvoor mln of meer

vanzelfsprekend aanbiedende voorraad ruimtes zoals meren, opslagbekkens, tanks

e.d. Voor een meer gedetailleerde beschrijving kunnen we die voorraad ruimtes

onderverdelen in een aantal kleinere vaten, bijvoorbeeld door het aanbrengen

van denkbeeldige vertikale of horizontale vlakken die de ruimtes in kompartimen­

ten verdelen.
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In de praktijk wordt een hoeveelheid water vaak als een vo~umen.bepaald en

dus b ,v , uitgedrukt in de eenhe.Id m3 .

In principe is het echter.beter om uit te gaan van de massa, omdat het vo­

lumen van een hoeveelheid water niet konstant is. Immers, h~t volumen kan

veranderen door uitzetting of inkrimping afhankelijk van de temperatuup en

door kompressie of ekspansie onder invloed van veranderingen in druk. Bo­

vendien kan water b.v. van de'vZ.oeibarefase in de dampfase overgaan of om­

gekeerd en daarbij verandert het volumen aanzienlijk. Bij al die volumen­

veranderingen behoudt de beschouwde hoeveelheid water steeds dezelfde massa.

We zullen dus uitgaan van de wet van behoud van massa en deze toepassen m.b.v.

het vat-model.
..

De toepasbaarheid van deze methode is niet beperkt tot waterhuishoudingspro-

blemen. Ook bijvoorbeeld bij de berekening van waterstand variaties door ge­

tijden en stqrmvloeden en de daarbij opt;redende stromingen kan de te behandelen

methode worden gebruikt, omdat deze in wezen op een zeer algemene grondge­

dachte berust.·

We werken nu eerst het vat-model nader uit en daarna gaan we verder in op de

wet van behoud van massa, zoals die op vaten kan,worde~ toegepast.
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"

Webeginnen met de eerder (in eenheid 1) ingevoerde begrippen lichaam 'en vat

nauwkeuriger te definiëren omde overeenkomsten en verschillen beter te, la­
ten uitkomen.

Definitie 9.1.: Een Liahaamis een ziahzeZf bLijvende, beperkte hoeveeLheid
materie .die E:llim dee1, van de fusisahe ruimte kan innemen

Toelichting: ','

:.:~

Bij het toepassen van het lichaamsmodel beschouwenwe een

hoeveelheid (b.v. va$te) materie die zijn identiteit behoUdt
b,v , doordat het steeds door dezelfde molekulen wordt ge-«
'\1ormd..De door de materie ingenomenI'uimte'kan echter met de
tijd ver-ander-en, De beweging van de materie',woI'dt baschneven

dooI' na te gaan hoe de door het lichaam ingenomenI'uimte met
de tijd verandert.

Definitie 9.2.: Efm'~ is een ziahzelf bUjvend, begrensd deel, van.de fysisahe,
ruimte, die een hoeveelheid materie kan bevatten.

Toelichting: Bij het toepassen van het vatmodel beschouwenwe een deel van .:
de fysische ruimte dat zijn identi tei t behoudt, ,b.,v. .door-dat
het steeds dezelfde begrenzing in de fysi.sche rui'lIlte heeft.
De door die ruimte bevat;.e materie kan echter met de tijd ver­
anderen. De bewegingvan de materie wordt beschreven door na
te gaan hoe de door het vat bevatte materie met de tijd veran­
dert.

Studievraag 9.1.: Iemand echenkt: water in een drinkglas. ,
Ga na hoe het drinkglas kan worden opgevat aZs een vat-model,
in/de zin van d, 9.2 en ga na op welke wijze m.b;», dit"'mode"l
iets gezegd kan worden over de beweging van het'water.

Wegaan nu n~der in op de aard van de begrenzing van een vat i.van, het al of
niet doorlaten van materie het vat in of uit.

Definitie 9.3.: Een (vaste) ~ van een vat is de, (door vaste mabeeie gevorm­
de) begrenBing of een gedeelte van de begrenzing van het vat,
uaardoopheen geen materie in of uit het vat kan stromen.

"
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"

Definitie 9.4-.:
, ,

Een toegang van een vat is de begrenzing of e~ gèdeelte van

de begrenzing 7Jl1'I. het vat.,toaardoonheen materie in of uit
het vat kan stromen.

Studievraag 9.2.: Ga na welke wand of wanden bij het drmkg.Zae van de vorige

studievpaag zijn te ondersaheiden en welke toegang of
toegangen.

Onder het volumen van het vat verstaan we de grootte van de ruimte die door

het begrenzende oppervlak wordt omsloten. Dit volumen is konstant indien de

wanden en toegangen ten opzichte van elkaar onveranderlijk van plaats zijn.

'In de praktijk zullen we zo veel mogelijk met dergelijke vaten werken, omdat

de berekeningen dan het eenvoudigst blijven.

De totale massa van de materie die zich in het vat bevindt. noemeh we de

ma8sa-voor1'<14d m van het vat. Deze kan in verloop van tijd veranderen, doordat

materie door een toegang heen het vat in - of uit kan str.omen.

De materie in een vat kan homogeen zijn~ d.w.z. de chemsche en/of fysische
samenstelling is konstant in de plaats.

I·

''". ,.'..

Voorbeeldén van homogene materie zijn enkelvoudige chemische stoffen, zuiver

water, of een homogeen mengsel van zulke stoffen zoals lucht (mengsel van stik­

stof, zuurstof, k~olzuur, waterdamp enz.),

In een vat kunnen twee of meer verschillende stoffen naast elkaar aanwezig

zijn in verschillende deien van de ruimte, b.v. zout en zoet water in een zee­
sluis.

Veelal hebben we te maken met water en lucht, waarbij gewoonlijk het water

zich onder invloed van de zwaarte onder in het vat bevindt en de lucht daarbo­

ven. Het grensvlak tussen lucht en water noemen we de waterspiegeZ.
,

In dergelijke gevallen kunnen we de ruimte in het vat door het vlak van de wa-

terspiegel in tWèe gedeelten verd~eld denken, die we als deelvaten kunnen op­

vatten. In het ene deelvat bevirid-tzich het water, in het andere de lucht.

Bij stijgen of dalen van de waterspiegel neemt het volumen van het ene deelvat

toe en die van het andere af.

'_
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°Plll. : De waterspiegel is vaak als een so',)rttussenwand ap te vatten. indien,
de transporten van water en lucht door de waterspiege'l'h~en'ver-waan-

laosd mogen worden. Dergelijke transporten zijn in feite wel aanwezig,

omdat het water'kan verdampen in de atmosfèer of daaruit kan kondense­

ren en omdat atLkatof , zuunstof enzv in het ,w8:terkunnen oplqssèn. Ook'

kan water b.v. in de branding tot nevel verstuiven en lucht als lucht­

belletjes in het water worden opgenomen. Indien-zulke verschijnselen

belangrijk zijn, dan ~oet de waterspiegel als een toegang voor lucht

of water worden opgevat.

Een met water en lucht gevuld vat, dat van boven toegankelijk is, zodat vrije

uitwisseling van:de lucht uit het vat met de atmosfeer mogelijk is, noemen we

een kom of l?ekksn. ,Meestal zijn we in dat geval all'eengeIntere!Sseërd Î'nde
. ., I

water-voOrraad van het bekken. '

We spreken van een k'tok. indien het vat van boven door een vaste wand (dak of

deksel) is 'afgesloten, zodat de lucht in het vat wordt omsloten'doÖr de wand

van boven en de waterspiegel van onderen. Op dit geval wordt in par. 6 nog
nader ingegaan.

Dichtheid

Naast de kenmerkende materie-eigenschappen zoals de eerder genoemde samenstel­

ling, kunnen we ook nog letten op de massa-verde'ting van de ma.àsa-voorraad in
een vat.

We beschouwen een homogene vloeistof of g~s met massa m, die geZijkmatig ver­

deeld is over de ruimte van een vat met volumen V. Onder de (gemiddelde) dicht­
heid p van de vloeistof of het gas in het vat verstaan we dan het katiënt:

mp= -V

Indien we.de dichtheid van de vloeistof of het gas en het volumen van het vat

kennen, dan is daaruit omgekeerd gemakkelijk de massa-voorraad van het vat te

berekenen met:

m = pV

Enkele rOnde getallen van dichtheden van homogene'stoffen onder normale omstan-
I

digheden van druk en temperatuur zijn:
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1000
-3zoet water kgm

zee water 1025 !I

olie 800 l!

lucht 1,3 !f

aardgas O~8 H

We zien hieruit dat een verhouding van 1 op 1000 tussen de dichtheden van gas­

sen en die van vloeistoffen niet ongewoon is. Dit is van belang om de invloeden

van lucht en water in één systeem met elkaar te kunnen vergelijken in gevallen,

dat de massa's een rol spelen.

De massa-verdeling van een vloeistof of gas in een vat behoeft in het algemeen

niet gelijkmatig Cof uniform) te zijn. Bij zo'n ongelijkmat;ige verdeling geeft

de (gemiddelde) dichtheid, zóals hierboven gedefinieerd, te weinig informatie

om de massa in deelvaten te kunnen bepalen. We zullen daarom de definitie van

de dichtheid wat moeten aanpassen. Dit gebeurt als volgt:

Verdeel de ruimte van het vat (of eventueel het ruirntedeei dat met vloeistof

of gas gevuld is) in een N-tal deelruimtes, genûmmerd met i = 1,2,.•••..N. Elk

zo'n deelruimte is op te vatten als een deelvatmet een volumen à'l.• De
~

som van deze volumens is gelijk aan het volumen V van het vat, dus

N
I

i=l
I1V. = V

:1

De maksimale waarde van de deelvolumens ziJ' ~V ,zodat I1V.< ~V voor elke i.. max ~ = max

Laat i.. de plaatsvektoX" zijn van een punt in het deelvat met nummer i. b.v. hetl.

middelpunt, en tom. de massa-voorraad van dat deelvat.
1.

Dan zal:

N
m ::: L ~m.

i=l :1

de massa-voorraad van het gehele vat zijn.

We nemen nu aan dat t.V. zo klein 185 dat we de massa ~m, als gelijkmatig ver-
1. :1

deeld Over> de ru~mte van dat deeLvar mogen beschouwen. We kunnen dan weer spre-

ken van de (gemiddelde) dichtheid p. van dat ie-deelvat~ nl. als het kotient,~
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verband bestaat tussen de zo gevonden Pi en de plaats ;'i'note­

dichtheid vaak als p, ::: p(i:.) :: p(x. ,y. ,z.). Als de massa voorr
~ ~ ~ ~ 1

de Lo..')pder tijd vez-ander-t , dus Am. ::: Am.(t), dan wordt de dicht-
- 1 - 1. -

-+funktie van de tijd t; we schrijven dan p. = p.(t) = p(r .•t) =
1 1 1 -

Daqr.er een

ren we deze

raad Am. in
1

held p. een
1

p(X.,y.,z.,t).
l. 1 1

We kunnen de verdeling gaan verfijnen door N te laten toenemen. Als we nu

de verdeling "net jes" houden (d.w.z. alle AV. "s ongeveer evengroot) dan gaai"
1

bij N -+ ~ de maksimale waarde'AV ~ 0.'Als we verder aannemen dat de massamax
geZijkmatig ook nog kontinu verdeeld is over de ruimte van zo'nÁm. behalve

1
ie-deelvat. dan gaat bij ÁV. -+ 0 ook de massa-voorraad Am. -+ o.

~ 1
Onder de boveng~noerndeveronderstellingen kunnen we uiteindelijk komen tot de

-+-
definitie van de diahtheid p ter plaatse r-in het vat. Deze dichtheid wordt

door de onderstaande limiet

p :::
lim ÁIl)i-U+O - 6.V.

).

vastgelegd.
-+- -
r :::(x.,y,z)
p(x,y ,z,t)

Uit dit limietproces volgt verder dat p als funktie van de plaats
-+-en van de tijd t te schrijven is; we noteren dan ook p = p(r,i;):::

Opm.: De aanname van k-::.1tinuiteitvan de materie in het vat is een idealise­

ring van de werkelijkheid, omdat de materie uit molekulen bestaat.

Daarom hebLen we eigenlijk niet me ...een echte limiet .naarmet een semi­

limiet te maken. Wat we daarmee bedoelen, is dat we bij een zekere mate

van verfijning zeer dicht naderen tot een regelmatige kontinue funktie

p(x,y,z) of p{xty,z.t). Bij te grote verfijning, zodanig dat de deel­

ruimtes ieder nog slechts een klein aantal molekulen omvatten, gaan we

echter onregelmatige verschillen van p tussen naburige deelruimtes vin­

den (invloed moluk~ul-bewegingen). Voor de rest van de kursus nemen we

aan dat de materie als kontinuebeschouwd mag worden.

Als vóorbeeld van zo'n kontinue dichtheidsfunktie p kunnen we denken aan een

brakwatergebied dat bij de mon-

ding van de rivier in zee aan­

wezig is.

In een vertikale doorsnede

langs de rivieras kunnen we

lijnen van gelijke dichtheden

aangeven (zie fig. 1).

Als we nu ter plaatse x=xo
de dichtheid als funktie Sig1_,
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is.

van de diepte gaan meten~

dan vinden we een grafiek

zoals in fig. 2. geschetst.

Een ander voorbeeld van

zo'n dichtheidsfunktie is

die van de lucht (zie 1e

jaars Kollegediktaat c-18:

Alg.Nat. blz. K-8)

e

Studievraag 9.3.: Van een vZoeistof in een gegeven vat V is in elk punt -;
de diahtheid p atB funktie Van de tijd t bekend.
Is de massa-voopraad m te berekenen?
Zo ja, hoe groot is deze m en wat is de afgeZeide m er­
van?
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• BEHOUD VAN. MASSA

Uit de fysika en de chemi~ weten we dat de massa van een bepaalde hoeveelheid

stof een kçns'tanrewaarde heeft, wat voor fys î.sche of chemdsche vez-anderdngen

die stof ook ondergaat.

Deze wet geldt zeer nauwkeurig, althans .zolangwe niet met relativi~tische

effekten te maken krijgen. Deze ef'f'ektrenzijn ver-waaz-Loosbaar- klein, tenzij.bij

zeer grote sne.Lhedendie vergelijkbaar zijn met die van de voortplanting van >. .'

het licht.

Omdat we binnen-ge technische,mechanika in de regel niet met zulke ekstreem

grote snelheden t~ maken hebben, nemen we hier aan dat de wet van behoud van
ma8sa alge~een geldig is.

We beschouwen nu een vat dat geheel wordt begrensd dool'wanden. In dit vat.be­

vindt zich materLe in de vorm van een vloeistof of gas t die een massa m,·heeft.

Door de wanden,lq~ngeen materie het vat in of uitstromen" Het vat blijft .dus

steeds dezelfde materie bevatten. Daar~m zal voor .dematerie in het vat de wet

van behoud van massa gelden, waaruit dan volgt dat de .má~savoorraad m in het

vat konstant moet zijn.

Dit zal niet alleen gelden voor een geheel door wanden omgeven vat, maar in.

het algemeen voor ieder vat waar. door wat voor oorzaken dan ook, geen materie

in of uit stroomt. (denk b.v , aan zo'n deelvat uit de vonLge paragraaf)

We kunnen dit als een voor vaten geldend aks.i.omaopvatten" dat we als volgt

formuleren:

De maeeauoorxaad Van een vat, waar geen materie in of uit stroomt, is
konstant.

We kunnen deze wet dus bijvoorbeeld toepassen op een spaarbekkens waarin verdam-
.>

ping en neerslag verwaarloosd mogen worden en dat niet gevoed wordt, evenmin

als voor watértoelevering wordt gebruikt. Het is duidelijk dat de watervoorraad

gedurende die omstandigheden konstant zal zijn.

Studievraag 9.4.: Is in een vat met een konstante massa-voorraad de .dichtheid
p ook konstant?
En ale de materie homogeen is?

Kommuniserende vaten

Zoals we in de inleiding zagen, hebben we gewoonlijk te maken met waterhoeveel­

heden die aan de ene voorraad onttrokken worden'en aan de andere worden tO,ege­

voegd. We beschouwen daarom vaten die met elkaar in verbinding staan, zodat

waterhoeveelheden kunnen worden uitgewisseld.
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vle .apreken dan van kanmenieerende vaten.
Een verbinding 'tusaen -;;;weevat en kan gevor-md worden door" een opening in een

schedd ingswend , of dool' een buis ~ een kanaal of een andere leiding. Zulke

leidingen vormen zg , eisoomooer-ende vaten; deze komen in eenheid 10 nader aan

de orde. Door zo t n ver-hf ndLng kan wat er van het ene vat in het andere over­

gaan. We idealiseren hier' nu de verbinding door- aan te nemen, dat iedere hoe­

veelheid water dit.! het ene va;t v8:rlaat, op hetzelfde ogenblik in het andere

vat aankomt. We lé1.tendus buiten beschouwing dat een waterhoeveelheid enige

tijd onderweg kan zijn van het ene naar het andere vat, bijvoorbeeld doordat

zulk een waterhoENeelheid enige tijd nodig heeft cm door een verbindingslei­

ding te stncmen;

Een opening in een scheidingswand tussen twee naast elkaar gelegen vaten, vormt

een verbinding die zeer dicht een ideale verbinding nabij komt.

Iedere waterhoeveelheid. die van het ene naar het andere vat overgaat. heeft

invloed op de watel'vool'raad van elk der ·vaten. Deze invloed zullen we een

8troomwi8seZ~erking tussen de vaten noernen. We beschouwen nu. om zo'n stroem­

~risselwerking nader· te cnder-zoeken , twee vaten V1 en V2 die met elkaar , doch

"1,,'P"f:; met nog .andel:"'evaten verbonden zijn (zie fig, 3).

De streomvlÎsselwerking geven aan dool" W(12)'

D~ze wisselwerking is werkzaam door het .

vlak AB heen, dat oen deel van de begren-

zing van Vl voors+elt en tevens van die

van V2' AB is dus een wederzijdse toeganc;

van V1 vanuit V2 en ook van V 2 vanuit Vi '
De watex'yoorraad in V. heeft de massa rol

.ol _

en die in V 2 de massa ID2• Beide voorraden

zullen met de tijd kunnen variëren; daar­

om schrijven we m1(t) en T!l2(t).

Elke waterhoeveelheid die èén van beide vaten verlaat, komt op hetzelfde egen-

blik aan in'hat.a-ndere vat. Daarom kun~en we V1 eI).V2 samen eok opvatten als

"een vat V. waarvan de massavcorraad m gevormd wordt doel' de massavoorraden

van Vi en V2 tesamen, dus
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Het vat V is een vat dat voldoet aan de omschrijving van het eerde~ geformu­

leerde aksioma. Immers, de vate~ Vi en V2 kommuniseren alleen met elkaar; dus

al het water dat van V1 naar V2 of omgekL~rd gaat ,.blijft bi.nnen V en 'er

stroomt dan ook geen water het vat V in of uit.

We moeten daarom stellen dat de
,.

massavoorraad m konstant blijft, dus'

Door differentiatie naar t vinden we hieruit:

ofwel

~i = - tfl2 (1)

Hieraan kunnen we de volgende interpretatie.geven:

Elke waterhoeveelheid die van het ene vat naar het andere stroomt, behoud daar­

bij z'n massa Am.'Op het moment dat die waterhoeveelheid het ene vat verlaat,

wordt de massavoorraad van dat vat met Am verminderd. Op datzelfde moment

komt de waterhoeveelheid met ma~sa 6m in het andere vat aan. Daardoor wordt op

dat moment de watervoorraad van,het andere vat met Am vermeerderd.

Noemen we nu ~1 de uitwerking van de stroomwisselwerking W(12) op vat Vi en m2
de uitwerking ervan op V2 ' dan kunnen we het gevonden resultaat ook aldus tot
uitdrukking brengen: '

De ui~erking van de tussen de vaten V1 en V2 werkzame st~ng8wi88ebve~

king W(12) op V2 1.:8 tieqenqeete Ld aan de uitwel'l<ingop VL'

Massastroom

We gaan nu nog wat,nader in op wat we hierboven de uitwerking van de stroomwis-
!

selwerking op ~én der vaten hebben genoemd.

We beschouwen de massavoorraad van Vi op twee tijdstippen t = ta en t = tb '

waarbij tb > t • Het tijdsinterval (t ,tb) heeft een duur At = t - ta a b a
In dit tijdsint~ val ver-ander-tde massavoorraad "van V1 met
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De 'gemiddelde verandering per eenheid van tijd is dan in dat interval:

Ät - t
ct

We laten nu tb naderen tct ta ' dus t.t ....O, en we nemen aan dat flmlvoldoen­

de groot is om de mo.Iuku.Iadr-e.fluktuaties te kunnen ver'waarlozen (zie opm.
bI 9· 13) d k - 1'" t .:\m1 b .lil .' , an unnen we de lm:Le van _ epaJ..en.

llt

We kunnen zo'n limietpr'ocesop elk willekeurig tydstip t uitvoeren en we komen

clantot de forrmileringvan de massas'f;ltoom of massafl.u:t: S12 van V2 naar VI' dus

Daar Àffil toegeschJ:Ievenkan worden aan de'stroomwisselwerking W(12) tussen V1 en

V2 J kunnen we S12(t) als de momentane uitwerking van die wisselwerking op Vl
beschouwen.

De bijdrage llm1 waarmee de massavoorraad van V1 in het tijdsinterval (ta ttb)

verandert. is te beschouwen als het netto bedrag van de watermassa die in dat

interval tussen V1 en V2 wordt uitgewisseld; met dien.verstande dat de massa

van water dat van V2 naar V. gaat, positief en de massa van water dat van V_.~ L
naar V2 gaat t ne$;ötiefin rekening wordt p'~br'acht.Dit betek~nt dat 512 kan

worden opgevat als de netto massadie per ':ijdseenheidvan V2 naar V1 gaat. De

massastroom S12 is positief als er een netto waterstroom van V2 naar Vi is en

812 is negatief als er een netto water'stroomvan V1 naar V2 is.
Met (1) en (2) valt af te leiden dat

(3)

Bij een stroom va~ V2 naar V1 is S12 > 0 en dan volgt uit (2) en (3) dat ml

toe- e~ m2 afneemt. Bij een stroom van_V1 naar V2 is 812 < 0 en dan volgt uit

(2) en (3) dat ml af- en m2 toeneemt. Dit vaï.talles ook direkt fysisch in te

zien. door te bedenken dat een stroom die van het ene naar het andere vat ge­

richt is, nOOdzakelijkerwijs de massavoorraad van het ene vat vermindert enI

die van het andere evenveel vermeerdert.

Formeel kunnen we evengoed de massavoorraad m2 van V2 als uitgangspunt nemen.
We definiëren dan:



als de massa stroom van V1 naar V.2, Uit (3) volgt dan dat:

ofwel

voor alle waarden van t.

De twee grootheden 512 en S21 zijn alleen formeel wiskundig verschillend. Zij

geven echter hetzelfde fysische verschijnsel weer, na'TIelij'kde stroomwissel­

werking tussen V1'en V2 ' die tegengestelde uitwerkingen heeft op de massa­

voorraden van VI en V2•

Studievraag ~9.S.:. Tussen de vaten V1 en V2
z~Jn ~ee Zeidingen (zie
fig. 4). In 1.B1.d1.nti A
8t~oomt er per tijdseenheid

een massa mAnaar V1 en in
t.eidingB strooomteroper
tijdseenheid een massa mB
naar'V2•
Bepaal, de massastroom oer
7,eiding.
BepaaL de maS8astroom 812 tussen V1 en V2 en ga na of er een
verob~~ bestaat tussen deze en de beide ma8SaBtromen in de
leidi1'1.gen.

Y1_ I ,A I V;,
'4t""
:

,!J_....
I

l .._

In de praktijk komen vaak vaten voor, die met meer dan &én ander vat kommu­

niseren (b.v. een kanaal tussen 2 bekkens).

Voor het eenvoudigste.geval, nl. een vat dat met 2 andere vaten., kcmmund.aeer-t ,
komen we na dezelfde idealiseringen als in de vor-,igesektie tot het hiernaast

getekende schem~ •.

We zien dat VI en V3 elk ~én toe­

gang met V2 hebben ,endat V2 behal­

ve die 2 toegangen eveneens geslo~

ten is.

We kunnen daarom voor het geheel

een massa balans optellen.
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hl' geldt:

Differentiatie naar de tijd geeft

Anderzijds hebben we'gezien dat voor vaten m~t één toegang,

dus hier V1 en V3 t de afgeleiden van hun massavoorraden gelijk zijn aan de
massastromen naar ,die vaten.

We kunnen dus schrijven

Met de vergelijkingen S12 + S21 = 0 en 532 + 823 = 0
volgt dan:

We noemen nu ~2(t) de totale maS8astl'oom 52 naar V2 en deze .isdus

d . " ,.AStu ~evraag ~::l : Waaraan ia de tobale maeeaetiroom Sl naar V1 gelijk?

BStudievraag 9.5 : Getdt voor het gevat van 3 vaten die e~k met de beide
andere kamunieexen, bovenstaande afZeiding?
Zo ,ja, wat aijn dan de uitdrukkingen voor s1 " S2 en
S ?
0'
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Debiet

De dichtheid van zuiver water hangt af van de temperatuur en de druk. Natuur­

lijk 'water bevat allerlei bijniengselen die de dichtheid beInvloeden. Een be-
I

langrijk voorbeeld is het zoutgehalte van zeewater, waaraan een vergroting

van de dichtheid met enkele procenten kan beantwoorden (zie tabel op blz. 9.12).

In geheel met water gevulde vaten kan de druk aanzienlijke waarden bereiken

en kan d'edichtheid dientengevolge praktisch merkbaar veranderen.

In open bekkèns wordt de druk voornamelijk bepaald door de druk van de damp­

kring en de zwaarte van het bovenliggende water (zie hiervoor par. 4). Bij

matig diepe bekkens blijft de druk zo beperkt, dat de invloed op de ddcht­

heid meestal practisch niet merkbaar is.

In vele gevallen is het toelaatbaar de dichtheid p van het water als konstant

de benaderen.

In die omstandigheden is het gebruikelijk niet de massa m zelf van een water­

voorraad als maat te gebruiken. maar de daarmee evenredige waarde !!I. • die het
p

door de watervoorraad ingenomen volumen voorstelt.

In overeenstemming hiermee wordt dan de stroomwisselwerking bepaald door de

grootheid:

s
Q = -p

en we noemen dit het debiet or de votumen stroom.

Studievraag 9.6.: Voor de materie in s.9.5. is de dichtheid p konetianti,
Vérdar geLden desetfde gegevens.

Bepaal: nu het debiet pel' leiding.Jhet debiet va:' ~J naar.
Va ~n ga na of el'eev verband tussen desB grootheden be-

"staat

02m.:, Vaak, met name als we over rivieren spreken, wordt Q de afvoer ge-

noemd. De S.L-eenheid van een debi~t is m3s-1• , .
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4. HYDRÖSTATIKA

In de vorige paragrafen zijn we vOOI'bijgegaanaan de çorzaken waarom vloei­

bare materie een vat in- of uit kan stromen.

Bij dat stromen spelen interakties een rol. Deze interakties zijn te verde­

len in interakties tussen de ~loeibare materiedelen onderling en in inter­

akties tussen de vloeibare materie en de omgeving van ons stromingssysteem

(b.v. de vatwanden, de zwaarte t.g.v. de aarde).

We zullen ons in deze paragraaf beperken tot de interakties (krachten) die

optreden in en op een stiLstaande (dus: niet-stromende) vloeistof in een

vat V. We zullen daarbij steeds water als voorbeeld gebruiken, hoewel de

teorie ook op andere vloeistoffen en ga$sen toepasbaar is.

Voor een stilstaande vloeistof zijn alle Vloeistofdeeltjes in rust en elk

vnlumendeeltje àVi bevat steeds dezelfde deeltjes.

De dichtheid Pi kan dan geen funktie van de tijd zijn en evenzo de dicht:..
heid p.

Studievraa_g9.7.: Kan p nog wet een funktie van de p'laate2ijn?

We gaan nu nader in op de interakties die in een stilstaande vloeistof kun­

nen voorkomen (verg. eventueel het statische geval van de drukstaaft de nor­

maalinter"a.ktieen:J't die in eenheid 4 bes_breven zijn) •

Beschouw hiertoe een willekeurig deelva.tV~ dat
u

~eheel in V ligt. De vloeistof in Vd ondervindt

dan twee soorten interakties:

1. vo~umeninteraktieaJ
dit zijn interakties die werken tussen de

vloeistof in V. en-de materie buiten Vd·ta .
die zich op e~n afstand van elkaar bevinden,

(zg. veldinterakties zie eenheid 49 § 2).
_/------to "

2. oppe~'akte inter-aktiesJ

dit zijn interakties_die werKen tussen de

vloeistof in'Vd en de vloeistof buiten Vd, die tegen elkaar aanliggen; zij

bevinden zich dus beide tegen het scheldi.ngevj.ak(z.g. kont.aktLnter-akt Les,

zie eveneens eenheid 4~ § 2).



Studievraë!& 9.8.: Bereken. de vo tUlneninte:t:>aktie(e j die op de v loeietof in
,

Vd_'/i)e.rkaaamt-t.t(sijn)" '_4tS het v~t V in een Z~kaat .z~...e-vetd
ie opgesteLd (aie fig. 5). Is (2ijn) de oppervLakte intér-

. .
a.'kt'ie(s) VOO1' dtèzetfde vZoeiarof te berekenen?

Uit het antwoord op studievraag 9.8 volg~ dat we de opp~vlakte interakties

nog nader-moeten onderzoeken,' ,

Beschouw een oppepvlákta-elementje AA van het oppervlak A van het deelvat Vd,

We geven de vloei3tof in VA aan met 1....
en de vloeistof buiten Vd met 2.

'De eenheidevêkt~r -;12 staat lood­

recht op áA in het middelpunt P

ervan en heeft de richting van 2

naar 1 (zie ~ig. 6),

A ®

De vloeistof in 1 ~enzend aa~ AA en de vloeistof in 2 gr.enzend aan ,AA oefenen

een opparvlakte-intel'aktie (lli12 ' t.t21) op'elkaar uit.

We hebben deze.interaktie geïdealiseerd door aan te nemen dat P het gemeen­

schappelijk aangrijpingspunt van I1F1....·en fJ.f'11is (zie eenheid 4, § 2) •
.t. s: ,

Aangezien we de materie als kontinu verdeeld beschouwen (zie § 2). mogen we

AA steeds kleine~ laten worden om p$ waarbij we ervoor zorgen dat è12 k~n­

stant blijf~~ en we krijgen dan in de limiet

lim ,~r12·
11"'2:; AA-+-O tr:

We noemen f12 de spannütgsvektor in P die hoort bij de richting ~12'

Studievraag 9.S.: I..igt de wel'kUir.,va;n112al.tiJd tange ";127

Studiev.ran 9.10.: GeUit Voor een punt: P in een oloeietof at.tijd dat
1: -+, _7."
J12 + 21 ~ u~~el.

Uit de antwoorden op de bovenstaande studi~vragen volgt dat we 112in qat
.. + halgemeen kunnen ontb1.ndenl.neen stuk langs e!\:2en een stuk looorec,t op

-+
e12t dus in AA g~legen •

....
De ontbondene langs de e12 is gelijk aan

en wordt.de no~Z8parming in P bij de richting ;12 genoemd.
-+De ontbondene loodrecht op e12 is gelijk aan



en .,.iordt de a-ahuifapannülg in P bi.j de r Icht ing '! ct:anoemd,'-12 b

'1001' "löeietoffen Î'ta.aFffiee j.>'e ons in deze kUl':~H1.Sbezig houden § zoals water,
+ .~

geldt dat in een toestand '<;ti!'i;tl rust dé schuirsp;Hming 1" gelijk aan 0 .is.

In de hydl"os.:tatika tZ't?:edtdan ook alleen maat.'.een normaal.spanning op.

in- P bij de
+:
e, ,)

_!..•..:;;~

'lêr'cnders·tellen dat dl::; dr-uk p steeds groter of gelijk aan nul is" (we gaan
.....oorbiî aan k-oheal.e-Vèl"schi-inselen) ._ : ;Jo

en dat daar-om
sektie zu.llen

Itl'El laten zien dat in d.e hydrostatika van gewcme vloei.stoffen (water' b.v.) de
druk cmafhank.elijk van de z:'ichting ie;.

Als el' in een punt P van een vloeistor cf gas de daan heersende' druk cnaf'hanke­
li.jk is van de stand van het cpper-vLak j e b.As dus: onafhankelijk V'M de richting

.+van 612 ~ dan ,zeggen He dat er in Peen ieott'ope ot aZ~·i;jd-;;(J13 dX't.1K ,heerst.
In' de a.nder-e geval '~en geDrû.).ken we wel de J.tdrukking: anieo: rope druk.

In de hydrostatika geldt 'lOOI' de tirukp de onderstaande û)18'(; van Pascal:

~<;1.!l_P_ascaA~. B-ij elke et'Hrj'l;aarlii;g ((!e~vone) !}l~::)ei8t.of heeret: i/J'P in eZk punt
van die vloeistof $6'1! isotrope druk,

'i-lekunnen deze wat op de !)nderstaanda manier aflaiden:

We nemen om een punt P'éen klein volu.men-

gebiedje ó.V.
Dit gebiedje is zo klein, dat we de dlaht­

heid p in llVals een konstante mogen be··

schouwen.

Verder' nemen ~\!et;.; in de vorm van een vier~

vlak (piramide) ~ m~t Gèn vlak M Lood>x
recht op de x-as. ~én vlak nA loodrechty
op de y-ast é'n Vlak AAz loodrecht op de

z-as en ê~n vlak ~A jie het viervlak af­
-+

sluit. De normaalvektor op t.\.Ais ei en Hijst

naaz- binnen (zie fig. "1}.
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Daar de vloeistof in: rust is t moet de .som van alle krachten die op"ó.Vwer­

ken (en het gevolg zijn van de optredende volumen- en oppervlakte-interakti~s)

steeds gelijk aan de nutvektop zijn.

Op AV werken de volgende 'krachten: "

De volumekracht G t.g.v. het lokale zwaarteveld (zie 5.9.8) en deze is
'~

De oppervlakte krachten t.g.v. de normaalspanningen en deze zijn

Fx

F '-+ 1 -+:: Py AA e ::-p Ilx 6z eyy y y 2 Y

-+ -+ l' -+
F :: Pz M e =-p Ax !J.y ez z z 2 z z

-+ -+
F = P !J.A e

Bovengenoemde krachten zijn alle krachten die op !J.Vwerken, zodat moet gel­

den

-+ -+ -+ -++ F + F + F :: 0y, -z

Uit deze vektorvergelijking volgen de 3 skalarvergelijkingen door hem inwen-
• d' id k -+ .... -+ •• W'dd~g met e eenhe sve toren e ,e en e te vermen~gvuld~gen. e VlO en voor" x y z

de richting:

-+ 1 + P M -+-+ 0e '2 Px ó.yàz e.e =x X-
,,~

-+- 1 +-+-
Öey '2 Py !J.x!J.z+ P !J.A e.e ::

y

-+ 1 -+- -+ 1e '2 Pz " AX-t:.y+ p 6A e.a - - pgAxIlyAz = 0z z 2

Uit de figuur voigt dat:

AA
' -+-+

:: - AA e.eX- x
-+-+-

AAiJ = - AA e.ey.

AA
+-+-:: - ó.Ae.ez z
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zodat we na substitutie en wegdelen van gemeenschappelijke faktoretlvinden

dat

+
e Px :: PX

0+-
e Py = PY

0+-
e Pz = :ç. + pgilzz

Als we nu het gebiedje ilV om P kleiner laten worden met behoud van vorm en
, ~

-+ ••stand. dan zal bz 0+- '0 gaan maar e konstant bll.Jven.

Verder kunnen we nu uit het bovenstaande limietproces konkluderen. dat in

een punt P de druk P onafhankelijk van de richting is.

Studievraag 9•.11.: Gel-dt: de !J)(:Jt; lian Paeoal: ook liOO.P een vat: met een stil.-
8taand gas erin?

~.!uSievr..aag9.12....:. Geldt: de 'Wet van Paeoal: ook tJOOX' een puntvPp het (J1!'ens­
vl.ak tussen een etiZstaaruW vZoeistof en een BtiZ8taand
gas?

Hyd:r.ostatis~chedrukverdeling

Vaak willen we vOJr een stilstaande vloeLtof de druk als fLnktie van de plaats

weten. Om deze dJ:'ukve1'deZing te kunnen bepalen, ,bekijken we nogmaals een klein
-I>volumengebiedje AV om éan willekeurig' punt P met plaats r ::(x.tYtz)~

We proberen nu vervolgens uit de evenwichtsvoorwaarde(n) van de op AV werkende

krachten een verband tussen de druk, plaats en dichtheid af te leiden.

We nemen het gebiedje !:"Vzo_kleint dat we de dicht

heid p in AV als een )Sonstantemogen beschouwen en

we nemen hiervoor de waarde die p in punt P heeft,

dus p = p = p (~ty,zJ.p
Verder nemen we eerst AV in de vorm van een hori-

z.ontaalbalkje, in de y-richting, d.w.z. de afme­

tingen in de y-richting zijn groot teo.v. die in .
I

de andere richtingen (zie fig. 8).

Daar de vloeistof in rust iSt moet el"in de y-rich­

ting een evenwicht van krachten zijn. We hebben '

hiervoor alleen ma~ rekening te houden met de op­

pervlaktekrachten van het linker- en rechter zij­
vlakje.

Ay

P----------------y
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Studievraag 9.13.: Ga na dat de opp81'vLaktekl'achten van het uoor-:... aohtiec-,
boven- en ondervlokde geen ontbondene in de ·y--Pi.chting
hebben en ga' ook na h. e de 1)OZ.~enkrapht genoht i:8.

. .
Daar de zijvlakjes erg klein zijn veronderstellen we. dat- de normaal.epanndng

over zo'n zijvlakje als een konstante beschouwd mag wor.denen we nemen hier­

voor de waarde die d6 druk in het middelpunt van zo'n Vlakje heeft.

Voor het linkervlakje vinden w~ dan a%s oppervlakte kracht

~n voor het rechtervlakje

. ~,

Uit de evenwichtsvoorwaarde FL + i\ ::'0 volgt dan.

( 1 . ( ·1 )P x,y - Z AY$z) - P x,y + 2 Ay,z :;0

Met behulp van de Taylorreeksontwikkeling gaat deze vergelijking over in

é)p(X~YtZ) i 2 2
p(x,y.z) 1 (',.. Ay2.. i.~(XaYaZ) +- '2 ay +ay 2! ay

a..E(XtY~Z) 1 2 a2p(x,ysZ) + ....... , .•• } 0f ' 1 <2: AX) =- p(x,y,z) + 2' Ay +ay 'Ir ayz....
of na uitwe%'kenvan de akkolades

"J;

2':~(x ,x I.!.L - :: 0ay . .,* ••• • •

Delen door A.y en vervolgens l1y naar nul laten gaan geeft:

!l? :; 0
ay

Eenzelfde berekening voor een palkje in de x-richting geeft
-.1 ,

!a - 0dX -

We zien dat voor een stilstaande vloeistof de 4rUk in een horizontaal

vlak konstant is.

Voor de drukverdeling in een vertikaal vlak gebruiken we een balkje in de

z-richting. Btj h.etopstellen van de evenwichtsvoorwaarde VOOl:' de krachten

in de z-richting. moeten we naast de oppervlaktekrachten op het bovenvlakje
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de oppervlaktekr,~ht op het ondeI'vlakje

1 . -jo

- p(x,y,z - -2 Áz) ~x~y ez

ook nog rekening houden met de volumen kr-acht;t ,g .v . het zwaarteveld

Uit de evel)wicht~voorwaarde Po + tB + G -+= 0 'Tolgt:dan

Na uitwerken van de Taylorreeksontwikkelingen van de druktermen, delen door

Az en vervolgens Az naar nul laten gaan vinden we

Opm.: 1. Met behulp van de nabla-operator

-+ 3
e --y ay , + ae

Z dZ,

kunnen ,,-e de bovenstaande 3 verL,elijkingen aamengevat schrijven als

2. In de bovenstaande berekeningen hebben we aangenomen dat de druk

een kontinue funktie is (kontinuïteit van de materie), zodat de 3e

en hogere oneven afgeleiden alle begr.ensd zijn.~~ ..

De limieten voor Ax, /::"y ~ Az -+ 0 geven dan bovenstaande uitdruk-
kLngen-, '

Studievraag 9.14.:
; . Toon voor een stitetaande vloeistof aan dat p en palLeen

funkties van z kunnen zijn.

Uit het antwoord op bovenstaande studievraag volgt voor de druk p in een wil­_,.
lekeurig punt'p·~t plaats. I' = (x,y,z) dat

!E.-~=
8z - dz g p(z}
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Integreren geeft

of

J
~
, gp(z) dz

:lA

.~aarin p(zR) de' druk in het (horizontale referentie vlak ter hoogte z = zR

ie. Pe berekende.1.,litdrukkingvoor p(z.)voor een stilstaande vloeistof in

het lokale zwaarteveld noemen we de hytboostatische.·,dPukve:rdeUng in die

vloeistof.

S~udievraas 9.15.: Is er ook ao'n statisahe drukvePdeling voo:r een stilstaand
gas in het loka te a1.I1aèU'teveLd af te Zeiden?

Vaak hebben we ineen vat zowel een stilstaande vloeistof als een stilstaand

gas in het lokale 7~aarteveld.

Onder invloed van dat lokale zwaarteveld is er een stilstaand grensvlak (=

vloeistofspie~el) tussen het gas en de vloeistof.

Het is dan vaak h:ndig deze spiegel als r,.ferentievlak te ne-nen,

Studievraag 9.16.: Bewijs dat in het lokaLe 2Waa:rte1)e~de spiegel van een
stitBtaande vLoeistof aîtijd hori~ontaaZ ie.

Stijghoo(te

In de praktische vloeistofmechanika hebben we veelal te maken met water als

de vloeistof en lucht'~ls het gas.

Voor het water mÇ)genvaak de dichtheid p als konstante beschouwen, als we ons

beperken tot matig diepe bekkens met homogeen water (zie.par, 3~ sektie de­

biet) or tot gevulde vaten waarin de samendrukbaarhei van het water een ge-

r-Lngerol speelt (zie de volgende paragrafen). 2.
We zullen nu de :t\ydrostatischedrukveroeling bere- Za-+-----..-L.JLP-- -_._.,.­

kenen van een bekken met water van een konstante

dichtheid o . De druk van de atmpsfeer ter hoogte

van het grensvlak ie p (zie verder fig. 9).a
We kiezen als referentiavlak het grenavlak, die

op een hoogte z ligt. De druk in een willekeurig r

a" "
punt op een plaatshoogte z (met 0 ~ z ~ za) wordt



9.30

We kunnen deze vergelijking schrijven als

p + pg,z = p + pgza a

Daar Pa t P , g en za kons~ant zijn, volgt uit de bovenstaande vergelijking

dat overal in de vloeistof de uitdrukking p + pgz konstant is.

We hebben dus de vergelijking

p + pgz = ~onstante

Als we nu links en rechts een konstant Pa aftrekken en vervolgens links en

rechts delen door de konstante pg dan houden we over

p - p
______a + z = konstante

PS

We noemen de uitdrukking in het linkerlid de atijgiwogte h van de vloeistof

ter plaatse van_zo In de volgende eenheid zal de~e naam en tevens de namen

ptaat8hoogte z en dPukhoogte P - Pa nader verklaal~dworden.

PS

§_tudievraag 9.17. ~ Be'tJJijedat Voor eti 'lesaand uate» (p z: kcnetanti) in het Zo­
kate ~aarteveZd in een bekken geZdt:

Studievraag 9.18.: GeZdt voor water (p z: konstant) in een. bekken aZtijd dat
h konstant ie?
Zo nee~ geef dan e~ vool'bee~.



In de laatste sektie .van de vorige .paragraaf hebben we gezien, dat de s·tijg:..

hoogte een .funktie van de tijd kon zijn en dat deze iets te maken had met

de stijging of dalin7 van het grensvlak bij bekkens (zie ,.9.18).

In deze paragraaf zullen we di~ verband nader onderzoeken aan de hand van een

hekken met één toegar~ ~aardoor water in- of uit kan stromen.

I/a nemen als bekken een van ,boven open
vat met overal dezelfde horizontale dOQ:r-

j

,snede met oppervlakte A en ~én toegang

bij de bodem van het Vat (zie fig. 10).
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• GRAVITATIE BERGING

Het vat is gedeeltelijk gevuld met wa­

ter, zodanig dat de toegang geheel onder

:le waterspiegel l.igt,Deze watel."spiegel

ia ontstaan onder de invloed van het

lQkale zwaarteveld en ligt hOr'izontaal.

T'fenemen aan dat he t water als een homo-
.gene; onsamend.1t!W<bal"8 vloeistof beschouwd
mag worden.

Olndatwe water als homogeen beschouwen.

verwaarlozen we d~chtheidsverschillen die

het gevolg zijn van ver'schil in samen­

stelling (b ..v , brak, sout en zoet water)..

Omdat we water als onsamendi-ukbear- be~',

'Z.r. •... , .

.J-------i'" Y

schouwen, verwaarlozen we dichtheidsver­

schillen die het gevolg zijn van d_t.uk-en temperatuurveranderingen (zie volgen-

de paragraaf), Als gevolg van deze veronderstellingen heeft het water een kon-,,-
stante dichtheid p. We kunnen dan verd~ ook de stijghoogte h bepalen (zie·vo­
rige paragraaf)"

Op een tijdstip t is de massavoorraad van het vat m(t) en we nemen aan dat alles
in rust is.

De stijghoogte is dan overal in het water gelijk aan

aarin z (t) de plaats van de waterspiegel op het tijdstip t is.s



r;,( 1_ + llt \ .- ,iC t) 617'

h( t + !J.t) - (t+/\t)

\AJd .sr-Ln I- ,'1t ; ,..... ::> 10

'loerde massa.

!10i

P

firn 7

r

L,V - A z (t + t:, t ) '- f', ;~ (c.) z: !\ /j Zo <_,::; cs,)

/I.L; ,- ),\.t + À~> - net) - .6h, zodat '.-Je u it e i noeLi.j k
b

kr-i j gen , De (gemi:kielde) r,üenal'lC van c!'ê ,·ti·Îrhoogt-t: per eenheid van Lijr,] .in

dat :nt~rval wordc dan

:: 1
Af) tot

::
f\p !{'I



0,

l c=: '(;,_:, i -, · t" !i:":.bi~t C

Q = B f.

WCici!" i r. -/'Ie B de qraoi tat ie-berqi na n0('l11':::r, ':oil n-e t oesc houwd e va r . Dezf' ~,ergir:g

vl~k Vcin d~ ~orizcntale doorsnede var h~t v~t.

StudÎf~vr'aag 902(.,.: Is het eigenlijk nodig dat de toegang steeds onder de wa­
terspiegel ligt:

StudievI'aag 9.21.: Is de berqi nq van een bekken altijd een konstante'!
Zo nee~ taanneer dan niet.

We kunnen ~u he~ drukverloop als funktie v~n de tijd berekenpr in ec~ wille-

keurig punt als het debiet Q = Q(t) bekend is.

V/ant [Ja. integratie van de bevqi.nqe-verqel iitci.nq vinden \1e

het) = h(o) + ~ ft Q(t)dt
o

er: d aar-ui t weer

pet)
("'.,f

t
= p( 0) + pg

B
Q( t )dt

Studievraag 9.22.: Ga na onder ioel.ke vooreaarde bovenstaande benekeni.nq uit­

gevoerd mag worden

Uit he; entwoor-d oe .9.22 bl ij kr dat niet veer alle vaten eer, (gr-av:têltie-)

berging8vergelijking is op te stellen.

Voor Lekke ns kUJ111I?D we onder- de voorwaar-d e da+ op elk mement (Je stijghoogte

cvera.L ir: het bekken d ez eLf d e waerd", nï t ) ~leeit, de bov e ng e noernde ver-ge l i j k i ng

gebruikell.

Vor;r valer. waar-i n JC' l ..<'htdru!< nog':.L V-,,~a nder t door de stijging van -de s piegeI

of \lG(~r'vat en die Beheej_ gevuId zi j u met ,,~(ónsemendr-ukbar-e vLoe isto.f , is Ju
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6. KOMPRESSIBILITEIT

Kompressie~odul~~

In de vorige paragraaf hebben we steeds aangenomen dat water een onsamen­

dnukbane vloeistof was en dat daar-doen de dichtheid van zuiver water niet

verandere als de dr-uktoe:"of afnam.

We zullen nu nader op de eamendrukbaarhei d of kompress'i.b1:Uteit van materie,

m.n. water en lucht, ingaan.

Beschouw eep vat V met Sén toegang, dat

geheel gevuld is met een ho~ogene ma-

terie die in rust is.

Studi:e_vraaj_9.23.: Is de druk 1? in V isotroop?
Heeft de druk p in V overal dezeZfde waarde?

Heeft de stijghoogte h in V overal dezeZfde !Vaarde?

Uit het antwoord op 8.9.23 bHjkt dat de materie onder invloed van het lokale

zwaarteveld wordt samengeperst. Deze samenpersing is afhankelijk van de plaats

in het vat.

Vanwege de overzich'celijkheid zuLLen we eerst een geval bekijken waarin de

samenpersing nnafhankelijk van de pla:"ts in V is.

Neem daarom een vat V dat opgesteld is in een omgeving waan we de invloeden

van het lokale zwaa:l1tevel<ikunnen ver-waar-Lozen en we de opstelling dus kunnen

idealiseren tot een vat V da't geheel gevuld is met materi.ewaarop geen
gewichtskrachten werken •

.§.:!:udievr~~.L~:±'!..~.Ga na dat de druk p nu onafhankel ijk van de p'laate i'1'l V
is.

Uit het antwbord op 9.9.24 volgt dat de druk p en de dichtheid ponafhankelijk

zijn van de plaats in V.

Op een tijdstip t is de maas.avoor-raad van het vat m(t) en we nemen aan dat al­

les in rust is. De dichtheid p is dan

_ met)
PCt,' -- v

en de dr-uk p is eveneens een funktie van dl'! tijd: p ::pC t)
We brengen nu in het tijdsinterval (t, t + lIt)een hoeveelheid materie Am door

de toegang het vat in en He veronder'stel1en dat na t + At alles vleet' in rust is.
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De dichtheid p is op het tijdstip t + At dan geworden

_me t + At)p( t + 6-:-) =
V

met) I'm- -v- + --ij = pet) + lip

en de druk p op dat tijd.stip

p(t,+ At) ::pCt) + lip

We noemen nu het kotiënt van d.edruk-toename lip en de relatieve dichtheids­

toename ll.pde kompreeei.emodulue K, dusp

K = ~ - ~0?_ - P t:.p
P

Het verband tussen de druktoename Ap en de dichtheidstoename ll.pvoor een

vloeistof of gas is dan

Kll.p::- ll.pp

We kunnen de dichtheidstoename L\p behalve door- een massatoename 4n in een

stap vat, ook verkrijgen door een volumen afname L\Vvan een konstante

massavoorraad. We kunnen de kompressiemodulus K dan ook schrijven als het

kotiënt van de druktoename t:.pen de relatieve volumenverandering _ ~V , dus

:: _k.= - V ~
K ll.V ll.V

V

Studievraag 9.25.: Ga na dat beide uitdrukkingen dezeLfde waarde voor K op­

Zeveren.

Voorbeeld

. . . k . 2 109 N -2De kompressiemodulus van water a.sbl.] amertemperatuur tV. m.

Bij een druktoename t:.p::100 at. ('V 107 Nm-2) volgt een relatieve dichtheids-

toename van:

!:E.. _ ~ 'lI 107 ::
p - K - 2.109

--2
0,5.10 = 0,5%

In de praktijk is de fout van 0,5% die we maken dooz ..P konstant te nemen, te

verwaarloz~n t.o.v. andere fouten die optreden, zodat we mogen aannemen dat bij

een druktoename van 100 at toch de dichtheid van.water niet verandert.
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Uit de hydrostatische druk verdeling volgt dat 100 at ongeveer overeen komt

met de druk in water ter plaatse van 1000 m onder' de spJegel. We mogen in

opstelling waarbij de druk niet lager' dan 100 at wordt, voortaan het water

als onsamendrukbaar beachouwen e '

De kompx-essiemodulus van lucht kunnen we m.b.v. de wet van Boyle voor een

ideaal gas afleiden. Er geldt voor een hoeveelheid gas dat pV = konstant. Op

dezelfde wijze als bij 8.9.25 vinden we dat

en na substitutie in de kompressie formule vinden we dan dat K = pis.

Voor lucht volgt na een druktoename van 100 at dat de relatieve dichtheids­

toename gelijk is aan

~ ::: .è.E. = 100 :::
p p 1 100

Als we nu p ::: konstant nemen, dan is de fout niet meer te verwaarlozen ('V lO'+%!)

Als we toestaan dat de fout die we maken door p konstant te nemen, 5% mag

zijn, dan kunnen we in opstellingen waarin de drukverschillen niet groter dan
1

at. worden, de lucht eveneens als onsamendrukbaar beschouwen (air-conditioning)20

Opm. : Cl} AIR we snelle drukwisselic7en toestaan dan wcrdt de kompressie­
en

modulus iets groter, nl. K :::p ........~ 1,4 P
cv

(isentropische samenpersing, zie' kollegediktaat c18)

(2) Bij atmosferische drukschommeling in ons land blijft ~ meestal
p

binnen de 5% (nl. p = lOOD! 50 mbar)

Elastische bergini_

Uit de kompressieformule is eenvoudig de (gemiddelde) toename van de druk per

eenheid van tijd in het interval (t, t + ~t) te bepalen.

We vinden

K-pV
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Op dezelfde manier als bij de bepaling van de massastroom (zie par. 3) of

van de bergingsvergelijking ·(zie par. 5) laten we nu ~T + 0 gaan. We vindeQ

dan

~=...!.rt -!S• pV pV

Vaak wordt het kotiënt van Sp-l en p de eZastisohe berging Bel van het vat

V genoemd; deze is dus gelijk aan

V
B =­el K

Deze berging treedt op bij massa toe- of afvoer in:

1. starre vaten die geheel gevuld zijn met samendrukbare materie;

2. elastische vaten die geheel gevuld zijn met onsamendrukbare materie en

3. elastische vaten die geheel gevuld zijn met samendrukbare materie.

In de laatste 2 gevall.en is V .dan a~k funktie van de tijd te beschouwen.

In deze kursus zullen we ons,voornamelijk bezig houden met starre vaten

die gehe·;ü met water gevuld zijn en met vaten die zowel lucht als water be­

vatten (z.g. bekkens en klokken).

Voor de gevulde vaten hebben we gezien dat we voor drukken tot ongeveer 100 at

het water als onsamendr-ukbaar-mogen beschouwen,

~i evraas ('.26 • : Hoe groot is dan .ie e l-aeirieohe ber{j .nq?

Studievraag 9.27.: Hoe qroot: 1:8 de gl.'aVil;atie berging?

Al.s we nu een gevuld vat in het loka.le zwaarteveld hebben, dan volgt uit s.9.26

en 8,.9.27 dat de stijghoogte h overal in V dezelfde waa:r'deheeft en dat
p __. P

h = .a
pg "

11

is en waarbiJ' ~ = ~ t 0 kan ziin (denk aan een zuiger)pg -
Voor "halfgevulde" vaten blijkt dat het water in de meeste gevallen wederom als

onsamendrukbaar beschouwd mag worden. '

We zullen ervoor moeten zorgen dat de drukken·in water niet hoger dan 100 at
I

worden. We moeten dus oppassen dat er niet teveel water het vat ingevoerd

wordt, want anders kan het gebeuren dat de lucht boven het water een druk van

meer dan 100 at heeft •

.Voor de stijghoogte h kunnen we nu een analoge afleiding maken als bij een open

bekken (zie par. 5).
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Studievraag 9.28.: Es de druk ter pl.aabee Van de spiegel konstant in de tijd?

Uit het antwoord op s.9.28 en met de afleiding uit par. 5 volgt dan

lIPl
+~P't;,

6h = D.Zs

Delen door flt en ver-vo.Igens6.t -» e laten gaan, geeft

Uit de wet van boyle volgt

; • 1 ~= z - PS PIs V
I

Daar het water onsamendr'ukbaar is volgt daaruit dat

•• •V = - V = - A ~I w s

en we vinden dan

{ 1 + 1
pg

Ver'der volgt eveneens uit de onsameLdrukbaar'heid dat

zodat we uiteindelijk vinden

We noemen soms het kotiënt van Q en 11de (gr·avitatie)-k"lo'kh.erging Bk en
dêze is dus

Vaak zullen we te maken hebben met vaten waarbij de Bl<gelijk is aan Bomdat

A PI
~ t.o.v. 1 te verwaarlozen is.
1

1
pg



BEWERINGEN

Bewering 9.1

Bewering~

Bewering 9.3

Bewering 9.4

Bewering 9. 5

Bewering 9.6

Bewering 9.7

~.39

De vat van.een regendruppeZ~ die geen massa verliest

door verdamping ol massa wint door kondensatie~ is met

het l.iohaamemodel.niet te beschrijven.

Een vat kan niet alleen maar uit toegangen bestaan.

De beweging van water kan alleen maaT' door een vatmodeZ
besch~ven worden.

Als een materie in een vat

een materiaaleigenschap E~

plaats in dat vat is~ dus

homogeen is~ dan geldt voor

dat deze onafhan ke tijk van de
aE: _ aE _ aE _------0ax ay· ÖZ

De ijs Zaag op een meer is geen epieqe Z en daarom is dat
meer dan geen bekken.

Een vat V is qehee Z gevuld met zuivel' water (massa mJ.

De dichtheid p heeft overal in het vat de waarde p = ~

De maeeavoovraad van een vat is kone tonti, wanneer e1'geen
materie in et-roomt;

Bewering 9. B V1 en V2 zijn al-leen met e lkaa» verbonden.

Als de maeeauoor-raad in V} vax-ieerti,dus :n7 (t) :; 0" dan

moet de mas8avoorl'aad in V2 ook variëren en wel zodanig

dat m2(t) = - m1(t) voor elk tijdstip.

Bewering 9.9 De Btl'oomwi8seZwe'l'king~(12) is volledig bepaald door 912.

Bewering 9.10 De e tiroomoieeelioertcinq W(72J is volledig bepaald door Q12'



Bewering 9.11

Bewering 9. 12

Bewering 9. 13

Bewering 9.14

Bewering 9.15

Bewering 9. 16

Bewering 9. 17

Beweri.ng 9.18

<3.40

In een oloeiet.of kunnen al/leen maal' volumen inter-
akt iee optreden, als deze vloeistof zich in een (1'1>av1:­
tatrie-veza bevindt.

-+ -+
Als Rl' in iJatel' een echui îepanninq 1" :j 0 opt.reedi, dan

is deze »loei.etor niet in. rust.

In een et.i letiaande vloeistof zoale iaate», tr-eedt al-leen
een normaalspanning op", die altijd ieotiroop is.

De hydrostatische drukvel'deZing geldt alleen voor de
stilstaande vloeistof die een konstante dichtheid heeft.

De water-spiegel staat in het lokale zwaar-teveld altijd
-+

Zoodrecht op g.

De stijghoogte van stilstaand watel' met een konstante
dichtheid in een bekken tel' plaatse .3 is altijd gelijk
aan:

V7 en V2 zijn twee identieke
vaten die van boven open zijn.
De bodem van V9 is Z m boven de

'"
bodem van V7 •
In V7 en V2 eteat:evenvee l water
(p z: kone tan t) •

De stijghoogte h7 van V1 is groter dan de stijghoogte

h2 van V2, Het zwaarteveld is ZokaaZ en de atmosferisahe

druk boven beide vaten is p •a

De gravitatie berginb van een vat dat steeds gevuld blijft;
is altijd nul.



Bewering 9. 19

Bewering 9.20

Beweringi9.21

Bewering 9.22

Bewering 9.23

V7· en V2 zijn twee vaten

die van bovén open zijn

en die een gelijke hoPi­

zontale doorsnee A hebben.

De beioging B1 van V1 is altijd gelijk aan de
82 van V2•

Hoe qrote» de kompressie modulus hoe qrote» de eamen+

persing bij een gegeven ~ukveY'schil.

De kompY'essie-modulua van een homogene materie is nul.

Al8 voor een vloeistof in een vat V de elastisohe berging

Bel = 0 is, dan is deze vloeistof niet samendrukbaar.

Voor een klok, die met water en luoht gevuld is, geldt

dat de gravitatiebeY'ging vOO1'het Water steeds gelijk i8

aan de elastisohe berging van de luoht.



VRAAGSTUKKEN

v 9.1 De' turbine van een waterkrachtcentrale wordt aangedreven door water

dat vanuit een hoger gelegen stuwmeer door een pijp naar beneden kan
stromen.

Het gebruikte water wordt door een kanaal in een meer geloosd.

De turbine is op te vatten als een vat, waarin een schoepenrad kan

ronddraaien. Geef een schematisering van dit stromingsprobleem en benoem

alle vaten b.v. klok, bekken enz. Geef verder aan wat de (vaste) wanden,

toegangen enz. zijn. Zijn er nog waterspiegels?

v 9.2 Hiernaast ,is een schematisering

van een bepaald stromingsprobleem

getekend.

Hoeveel elementaire vaten zijn er

te onderscheiden en van welk type

zijn ze?

Zijn er vaten die geheel bestaan

uit vaste wanden en zijn er die

helemaal geen vaste wanden hebbe. ,?

Hoeveel toegangen zijn er?

;'

Jj"- r i -
, / I /1

/

v 9.3 In een meer, dat we geschematiseerd

hebben tot een open vat (zie fig.IS

voor de afmetingen), is een kon­

stante hoeveelFeid stilstaand water

aanwezig.

De dichtheid p van het water is een

funktie van de h~ogte x boven de bodem Xo

(zie fig.16 )•
•Gevraagd:

a. De dichtheid in het gebied 0 ~x < ;x .
- ::::.. o '

b. De massa van het water in de onderste

helft van het meer;

./ .:

I ,-'

Sig d.4

0pp
---- A----P.-~HJJa__

~i~ ss

~I
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c. De dichtheid in het gebied ~x < x < x
0::. =. 0

d, De massa van het water in.de bovenste helft van het meer;

e. De gemiddelde dichtheid voor het hele meer;

f , Is de massa-verdeling gelijkmatig? Zo ja, waar?

g. Is het water in het meer homogeen? Zo ja, waar?

v 9.4 In een bepaald '.-latergebiedis een stilstaand mengsel van zoet en

zout water. We hebben voor een vertikale doorsnede van het gebied

de lijnen van gelijke dichtheid i.n een grafiek aangegeven t waarbij

we vanwege de overzichtelijkheid

steeds hetzelfde dichtheidsverschil

öp tussen 2 naast elkaar ligge.nde

lijnen hebben genomen (zie fiv..17)
De dichtheid van het zoete io/ater

is konstant en is gelijk aan Pl'

De dichtheid van het zoute water

is konstant en is gelijk aan P4'

Gevraagd:

a. De grafieken van p(z) ter plaatse van x = Al X = B, x = C en x = D;

b , Wat val,' over de afgeleide ~.~ .er plaatse van x. :- B te zeggen?

t----

A o

c. Teken de gemiddelde dichtheid als funktie van Xj

d , Verklaar Waarom voor de dichtheden in P, Q en P p-eldt dat

v 9.5 Een cylindrisch vat V heeft een

hoogte H en een straal R.
r'

Verder zijn bij A en B toeeanp,en

tot V. (zie fig. \8 )

Op het tijdstip t=O is V voor de

helft gevuld met zout water

(P2 = konstant). We willen het

zoute watér vervangen door zoet water (0, = konstant, 0, < 02) en

daarom laten we bij B het zoute water wegstromen met een konstante

massastroom S2' Verder willen wr; de waterstand in V niet veranderen

en we laten daarom bij A zoet water binnenstromen met een konstante

massastroom S1.



Gevraagd:

a. Bereken 5, , Ql en Q2 als funktie van de
b. Bereken het tijdstip t, waarop we bij B
c. Bereken de ~emiddelde dichtheid p in V;

vatgegevens, S2' Pl en P2;
zoet water hebben;

d. Wat gebeurt er als ~, = 52?

We veronderstellen dat de leidingen

AB en CD twee ideale verbindingen

vormen (zie blz. 9616).

v,9.6 Hiernaast is een schets van 2

met elkaàr communicerende vaten

V, en V2" Beide vaten zijn cilinder­

vormig (straal v, is 2R en straal

V2 is R) en hebben dezelfde hoogte

H.

3De pomp in leiding AB verpompt per sekonde I m water (p = konstant)
van V1 naar V2•

Op het tijdstip t = to staat er in V1 en V2 evenveel ~ater, waarbij
de waterstand in V2 gelijk is aan "H.
Gevraagd:

a. Bereken voor het tijdstip t - ... de massavorraden rolt m2 entdedwateV-- ... ~ an an 1;0
b. Stel ,de massabalans op voor V .

2'
c. Berekèn het'tijdstip t1 waarop het water ook door CB gaat stromen;
d. Bereken op het tijdstip t, de waterstand in V,.

1 3 -1Na het tijdstip t, gaat er door de leiding CD een debiet van ïö r m s
van D naar C.

Gevraagd:

e. Stel de massahalans op voor V,;

f. Bereken het tijdstip t2 waarop V, leeg is;



v,9.7 Hiernaast is een

hydraulische pers

geschetst. De

zuigers A en B zijn

cirkelvormig (straal

van A is R, straal van

B is SR).

De vloeistof tussen de zuigers is als onsamendrukbaar te be­

schouwen (p = konstant).
-+De versnelling van het lokale zwaarteveld is g. ..Via de zuigerstangen worden op de zuigers A en B krachten FA en

FB uitgeoefend (zie fig.).

Er geldt verder dat alles in rust is.

Gevraagd:

a. De druk in een willekeurig punt P (x,y,z);

b. Het verband tussen FA en FB;

c. De stijghoogte in een willekeurig punt P (x,y,z);

d. Het verband tussen FA en de stijghoogte.

v;9.8 Links van een vertikale sluis-

deur (breedte B) staat water

(p 1 = konstant) en rechts erv.m
eveneens water (P2 ::: konstant)

De versnelling van het lokale
-s-

zwaarteveld is g. De atmosfe-

rische dr-uk is p •a
Gevraagdt

a. De totá'ie kracht F op de sluisdeur';..
b , Het totale moment L om de snij lijn van de deur met bodem;o
c. Bepaal de verhoudinp: tussen de waterhoogtes en de dichtheden

.. -+
in het geval dat r ::::0 is;

-+ -+d. Is in geval (c) dan ook L = 0 ?
o



v.9.9 In een onen vat met een'kcnstantö

doorsnede A hebben we ee~ laag zoet

water (pl = konstant) boven een laag

zout water (p~ = konstant). De massa-L.
voorraad van het zoete water is m, en

I

de massavoorraad Van ·het zoute water

is m2• De versnelling van het lokale
• -+

zwaarteveld lS g en de atmosferische

druk is p (konstant).a
Alles is in rust.

o

Gevraagd:

a. De hoogtes va~ het wateroppervlak en van het zoet-zout grensvlak

boven de bodem;

b. De druk in een willekeurig punt P in de vloei~tof;

c, De stijghoogte in een willèkeurig punt P in de vloeistof.

v.9.l0 Een bol (straal R~ massa M)

bestaat uit een homogeen

materiaal met een overal

dezelfde dichtheid. De bol

drijft op of zweeft in een

groot open vat met water

(p = konstant). Alles is in ç;g
~~~""~~""~~~~23 /-

rust.
....De versnelling van het lokale zwaarteveld is g en de atmosferische

druk is p (konstant) ..a
Gevraagd~ ,-

a, De druk in een willekeurig punt P in het water;

b , De kracht dié door het water op de bol wordt uitgeoefend in het geval

dat de bol voor de helft boven de spiegel uitsteekt (kies 0 samenval.Ls
met middelpunt bol);

c, De massa r~ van de bol als funktie van p in het geval dat de bol Zweert,
met zijn middelpunt op de hoogte ;H boven de bodem (;H:> R).

ir._
v.9.11 In een vi.er-kerrte uitsnij ding van 2 x 2 meter- in de

vertikale wand van een bak is een houten cilinder

a~~gebracht op de wijze als in de figuur geschetst

Ls , De cilinder kan zonder wrij ving om zijn hori­

zontale as draaien. De bak wordt met ~.;atergevuld

tot een hoogte van 2 meter bov'ellde cilinderas.

--



9.41
-1.

De dichtheid van water is ,1000 kg m
De dichtheid het hout is 700 kg -3van TIl

a. Ber-eken de opwaartse kracht di.e de cilinder van het water ondervindt;

b , Toen aan dat de cilinder niet als een per-petuûm mobile om zijn as gaat
dr-aa i.en ;

c , Bereken de totale kr'acht die de cilinder op zijn as ui toe ferrt ,

'1.9.12 Zie opgave '1.9.5 waarbij Veen open vat is en (.)1 - P2 :: P een konstante is
Gev:raagd: ..

e. De gravitatie berging van het vat;

f. De bergingsver'geHj k ing ;

g. De stijghoogte als funk tie van de tijd.

V & 9. 13 Zie opgave v. 9" 6 waarbij V1 en V2 open vaten zijn e

Gevraagd:

g~ De gravitatie-bergingen van de vaten en de leidingen;

h ~ De bergingsvergelijkingen voor V1 en V2;

i. Het verhand tussen de stijg~oogte,'3 van V1 en V2 als funktie van
de tij d ,

--v.9~14 Zie opgave '1.9.7 waarbij g = -g en zuiger B weg rs ,
Gevraagd!

e. De gravi tat ie~berging van de pers

f. De bergingsvergelijking als zuiger P. met een konstante snelheid vA

beweegt tot de ve~~ijding

g , De stijghoogte als f'unktLe van de tijd in bovengenoemd geval.

v , 9.15 Zie opgave. v , 9.7, waarbij \-!e nu aannemen dat de vloeistof s amendr-ukbaar­

'is en dat de invloed van het lokale zwaarteveld te verwaarlozen is. De
9 -2kompressie-modulus van de vloeistof is K = 2.10 Nm -.

2 2De groette van FA is rrR. 10 N.

Wewillen rru de zuiger A verplaatsen naar rechts, zonder dat B van

plaa~s verandert.



Gevraagd:
1a. Wat moet FA worden als we A over een afstand van Tö L naar rechts

willen verplaatsen?

b. Wat wordt de relatieve dichthei~~verandering daardoor?

c. Wat is de elastische berging van de pers?

We veronderstellen nu dat we de zuiger met een konstante snelheid
1 -1

VA = 1000 L ms naar zijn nieuwe stand bewegen en dat de vloeistof

een dichtheid p = 1000 kgm-3 heeft bij het begin.

Gevraagd:

d. De elastische bergingsvergelijking;

e. De druk als funktie van de ti j d, "

-1kgsWe nemen vervolgens aan dat bij zuiger Been massastroom van

de .pers binnenstroomt.

Verder neemt zuiger A de beginstand weer in en blijft deze behouden.

Gevraagd:

f. De druk als funktie van de tijd;

g , De relatieve df.cb the Ldsver-enderdng per eenheid van tijd;

h. De dichtheid als funktie va~ de tijd.

v.9.16 In een cilinder (s tz-aaf R, lengte L)

kan een zuiger A heen en weer bewegen.

Als de zuiger in z'n onderste stand iSt

dan is de cilinder voor de helft gevuld
". ~3met water van een dichthaLd o = 1000 kgm

en voor de ander~-helft met lucht met een
5 -2druk van 10 Nm •

Het water' heef-t een kompree si.emodu.Lusvan A
, 9 -2
2.10 Nm •

De grootte van de versnelling van het

k • 'lO -210 ale zwaarteveld lS .. _'ms •

Gevraagd:

a. De luchtdruk p als funktie van de

spiegelhoogte zs'
b , De spiegelhoogte Zs waarbij de r-eLat ieve

>dichtheidsverandering van het water gelijk

aan 1% is.

r - .
.;\:~u·~ J

~~. ~~ ~
, - - .>_ ~ < - ~ - -- . ----..........r---- Ylabe,....-~.-

i
" __'.LI

0
I

/
V
~ c



Als we nu verder geven dat de zuiger 11alleen maar beweegt in het

onderste Kwart van de cilinder!(dus 0 :.. ZA .:: aL} dan 'wordt gevraagd:
c , Mag met een nàu\>ikeurighei~ van 1t het 'flater als onsélmendrukbaàr

belschouHd '.-lorden?

d , Bereken de klokberging als .funktie van zA.

e , Ber-ekende lengte L .'~laal'bij we met een nauwkeurigheid van 1%

de klokherging mogen ver-vangen door' de gravitatie-berging (bij de
gegeven beweging van A ~;}
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ANn/OORDEN OF AANWIJZINGEN BIJ DE STUDIEVRAGEN

Aanwijzingen bij een studievraag worden aangeduid door een accent­

teken bij het nummer van de vraag. Het antwoord staat dan enige blad­
zijden verder bij het onderdeel:

Antwoo~den na aanwijzingen bij de 8tudiev~agen.

i. 9.1 De ruimte binnen het drinkglas~ d.w.z.

alle ruimte onder de glasrand en tot

de glaswand, voldoet aan de eigen­

schappen die een vat moet hebben

(zie d. 9.2)

.De beweging van het water kan dan be-

schreven worden door de waterhoeveelheid

die in dat glas op elk moment aanwezig is.

Een eenvoudige maat hiervoor is de hoogte van het wateroppervlak boven

de bodem van het glas. Je kunt verder over de beweging zeggen dat deze

iets te maken zal hebben met de mate waarop het wateroppervlak stijgt.

Over de beweging in de vloeistof ze~fen in de waterstraal is verder
met dit model niets te zeggen.

~pm.: In het vat-model gaat het om de zichzelf blijvende, begrensde

ruimte. Als we het glas verplaatsen, b.v. een paar centimeters

naar re chta s zodat de waterstraal nog steeds in het glas eindigt,

dan is er eigenlijk voor een toeschOU\-lerniets aan het probleem

veranderd,·~Wel geldt dat het glas nu een ander stuk van de ruim~e

als vat definieert. We hebben zodoende toch een ander probleem
in onze vat-theorie

We zien hieruit nogmaals (staat eigenlijk ook in d 9.2) dat vaten

niet bewegen, d.w.z. niet bewegen t.o.v. ons referentiestelsel
in d~ ruimte.
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s , 9.2 Het glas zelf is de vaste wand; we kunnen dit eventueel nog splitsen

in de opstaande wand en de bodem. De "eenvoud i.gs'te ' toegang (het

eenvoudigst te beschrijven oppervlak) is de horizontale doorsnee

ter hoogte van de glasroand.

Formeel zou je ook het hier-

naast getekende oppervlak als

toegan~ kunnen beschouwen mits

dit oppe rvlak maar vast ligt.

In de praktijk nemen we natuurlijk

de eenvoudigste toegang.

s. 9.3 Op dezelfde wijze als bij de bepaling van p. kunnen we nu zeggen
1

dat er bij elk volumen deelt je IN. een massa óm1,hoort. We vinden
1

N N N

I L l ~
t)m :.: 6m. e p. i», :.: p(r. t AV.1 1 1 ~ 1

i=1 i::1 i=1

Na het "verfijningsproceslt gaat dit over in de volumenintegraal

m :: JU
IJ

-+­
p(r,t)dV ::JJJ p(x,y,z,t)dV

Vv
Voor de afgeleide kunnen we wederom eerst naar één volumen deelt je

kijken

ts«. =
1.

:: aat:
~

P (r'st) AV.
1. ].

Na sommeren en verfijnen vinden we dan

a
m ::JJJ ät p(x,y,z,t)dV

V

Opm.: De,techniek om zo'n integraal te berekenen wordt voor deze

eenheid niet vereist en dus ook niet getest. De bedoeling

van deze studievraag was cle aandacht vestigen op de mogelijk­

heid dat je de massa m ook kan berekenen, als je de dichtheid

als funktie van de plaats en de tijd kent.



'Se 9.4 Bedenk dat p = konstant betekent, dat p zowel in plaats als in tijd
konstant is.

- al) 3p al)
Dus Ti = -äY = äZ = 0 en 3p = 0at-

s. 9.5 D90r leiding A i~ een massastroom

A
5'2 = mA

Door leiding B is een massastroom
. B
521 = mB

De massastroom 5'2 is de nettomassa die per tijdseenheid van V2
naar V, gaat, dus

S'2 = mA - mB

We zien dan dat het volgende verband geldt:

A B
S12 = S12 - S21

Daar gaat dit over in

A
S. 9.5 S, is de som van alle massastromen S'j , waarbij S'j de rnassastroom

van vat Vj naar vat V, is.

We zien uit fig. 3A, dat V, alleen met V2 in verbinding staat, zodat
we krijgen

Si ='-'$'2

s. 9.5B We hebben hiernaast zo'n geval

getekend. Er geldt weer dat de

totale massa konstant blijft, dus

m = m,(t) + m2(t) + m3(t) = konstant

Differentiatie geeft

o = tiJ,(t) + ~2(t) + ~3(t)



Vanuit V, bekeken is V2 en V3 te vervangen Goor een vat Vo dat'

twee verbindingen met V1 heeft (zie s~ 9.5).

We weten verder dat de totalé massastroom naar V, gelijk is aan

~, (t), zodat we komen' tot (met s, 9.5 !)

• AD BD
S, = m,(t) = SlO '+ SlO

ADAls we nu verder bedenken dat SlO het gevolg is van de wissel-

werking W(12) en s~gvan W(13) dan kunnen we weer schrijven

S, = 512 + S13

Een analoge redenering voor- V2 en V3 geeft

S2 = S21 + 823

S3 = 831 + 532

Verder volgt na optellen van deze 3 vergelijkingen dat

s. 9.6 Het debiet door leiding A is
A mA

°12 =-o
Het debiet door leiding B is

B mB
Q21 =-p

,

Het debiet van V2 naar V, is

m - mB mA mB
Q12 = A = - -P r p

en we zien dat

Q12
1 A B- Q - Q21- 12

Meestal schrijven we Q'2'cüs

waarbij QB dan een negatief debiet is
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s. 9.7 Jat b.v. brak water.

s. 9.a ....Een volumendeeltje hVi uit Vd·ter plaatse ·van ~ heeft de massa
. .... ..

Ml. :: p(r.} AV .•
). .1.1

Daar we in het lokale zwaarteveld zitten ondervindt Am. een zwaarte-
. 1. .

kracht t.g.v. gravitati'einteraktie met de aarde (de gravitatie .inter.-

aktie met de rest van de vloeistof mag verwa~rloosd worden, zie ~enheid 4).
Voor het gehel~ gebied Vd volgt (zie ook s. 9.3)

N N
G - r llm. g :: g L Am, :: mg

1. 1i=l i=l

waarin m de totale massa van de vloeistof in Vdis.

De oppervlakte interakties zijn niet zonder meer te berekenen. ze hangen

af van de toestand van de vloeistof (zie ook kontakt-interaktie in eenheid q 5.

s, 9:.9 Neen. De spanning(svektor) is wel afhankelijk van de ~12-richting,

maar hij hoeft niet evenwijdig aan die richting te zijn. Lees ook de

theorie over kontakt-interakt ies, eenheid 4. par. 2.

is. zie ook s. 9.9.

I. 9. 11 Ja, Ga de ·afleiclingmaar na ! Nergens is gebruik gemaakt van een

.eigenschap die een·vloeistof wel en een gas niet heeft of omgekeerd.

I. 9',12 Bewijs dat de druk in een punt vlak onder het grensvlak en de druk in

een punt vlak boven het grensvlak aan elkaar gelijk worden, als de afstand

tussen de punten naar nul gaat.

,. 9.13 Daal"de vloeistof in rust is, zijn er geen schuifspanningen •

.Alle spanningen zijn normaal. zodat alle oppervlakte-krachten loodrecht

staan op de "bijbehorende" opper-vl akj es, ..
De kracht op het voorvlak b.v. heeft de ric~ting van -e enZ.

-r ..jo ( , ) -+ ..jo EtGh ft·dDe vo.Iumenkz-acht G ::: mg zLe s , 9.8 en g ::: -g e , dus .l ee e
z·...

richting van -ez

:. 9.14 Uit .!2 :::0 volgt dat p geen funktie van x is.

u.~t-ÎÊ = 0 volgt dat p geen funktie van y is.oy
. Uit deze twee voorwaarden volgt dat p nog wel een funktie van z kan zijn.
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is,
~,remogen i.p. v. 1? dan verder s chr i j ven * .

geLdr voor de af'ze Lei.de ~
c:» dz

Daar p = p (z)

funktie van z
dat deze ook een

18. dn _Het rechterlid van de vergelijking ~ _ pg moet
dan ook een funktie van z zijn.

In het lokale zwaaFt:eveld is g konstant) dus, dan kan p alleen maar

een funktie van z zijn, dus p::: o (z ) ,

Opm.: p mag wel een konstante funktie van z zijn

'S .. g. 15 Ja. In de afleiding is nergens gebruik gemaakt van een eigenschap

die een vloeistof wel en een gas niet heeft of omgekeerd.

(zie ook s. 9.11 en b.v. het kollege diktaat C-18 Alg.Nat. blz '" )

·s. 9.16 Stel dat een stukje oppervlak
~AA niet loodrecht op g staat.

Kies dan 3 punten zoals in fig.

Bewijs vervolgens dat P3 met P2

moet samenvallen. Houd daarbij

r-ekening met het feit dat de

druk in een s ti Is taand gas in

een -nrij groot gebied overal

hetzelfde is.

s • g. 17 In de hydrostatika van 'Water (IJ ._ Konstant) is de uitdrukking

p - p
h:: a+z- Pg

een kons tarrta door de hele vloeistof heen. De partiële afgeleide
"

naar xt Y en z zijn dan nul.

We kunrren dit ook berekenen:

ah Cl iP - Pa
z 1= ~+ 0ay ::: Ty' :::rg Pg dy

i)h Cl {P - Pa +
z I::: ~ 11Z :: az + = 0Og Pg dZ

want ~ -~ ::; 0 en ~ ::: - PgdX - ay óz

ts•9.18 Bedenk waaraan h gelijk is.

:::0



tso 9.19 De dichtheid p van het water is konstant~ d.w.z. konstant zowel

in de plaats als in de tijd.

Gebruik nu de defin itLe voor de dichtheid (zie par. 2t sektie

dichtheid).

s. 9.20 Nee. Het gaat om de watervoorraad in het vat. Het enige belan~rijke

is de rusttoestand van dat water in het vat. Bij een toegang boven

de spiegel moeten we "Langen" wachten voordat alles weer in rust is.
Het limiet proces 6t ->0 is dan niet zo goed mogelijk..Bij de limiet overgang van fit-!>O, zodat we hals funktie van Q krijgen,

nemen we stilzwijgend aan dat op elk moment de stijghoogte door de gehele

vloeistof in het vat dezelfde waarde heeft.

We nemen dus aan dat de stroming in het vat te verwaarlozen is, zodat

we d~ berekening voor de stijghoogte mogen toepassen (zie par. 4,

sektie stijghoogte)

s. 9.21 Neen. Het oppervlakte A van de waterspiegel kan veranderen met toe-
of afnemende waterhoogte b.v. een rivier, een meer.

In dergelijke gevallen is A als een funktie van z. op te vatten., s
In deze kursus zullen we ons alleen bezig houden met vaten waarin de,

waterspiegel een konstant oppervlak A heeft.

s. 9.22 Als de stroming in het vat te verwaarlozen is :ineen tijdsinterval (O,t)

dan volgt uit het geldig zijn van de bergingsvergelijking d.m.v. integratie

direkt:

het) 1
- h(o) t B

t

f Q(t )dt

o
Voor de druk p(t) geldt dan ter plaatse van z:

pet) = Pg h(t) t z t p (t)a
en voor de druk p(o):

p(o) = Pg h(o) + z t P (0)a
Hieruit volgt

tJ-..
Jp(t) :: p(o} +~ Q(t)dtB
0



als de atmospherische druk p een konstante in de tijd is. Meestala
zijn de veranderingen in de atmospherische druk te verwaarlozen t.o.v.

de andere veranderingen.

Als de atmospherische druk ook verandert dan moeten we schrijven

t

pet) :::p(o) + E.,g
B f Q(t)dt T p (t)- p_(o)

a_ ct

o

Merk op dat in een bekken de druk ter plaatse van z kan veranderen

zonder- dat er massa toe- of afgevoerd wordt.

s. 9.23 De druk p is isotroop, want de materie is in rust (zie par. 4).

Verder geldt voor de druk p dat

112 :: ~ :: _ p'_!!,oZ dz '.~

zodat deze toeneemt bij toenemende diepte (druk bij bodem is groter

dan bij deksel; zie ook s. 9.14).

De stij ghoogte h zou overal in V dezelfde waarde hebben t als p konstant

zou zijn, maar tengevolge van de druktoename bij toenemende diepte is

daar de materie meer samenr,eperst en wordt daar ook een hogere dichtheid

verkregen (ga na aan de hand van de def. van de dichtheid)

In het algemeen geldt dus

-~ ::
dZ -~ -dz - p(z)g

Voor' de stijghoogte volgt dan

ah dh P - Pa do:::
dz

::: - ----az 2 dzp g

en dit .is in het algemeen ongelijk nul (want .~~ f- 0), zodat we wederom

zien dat h alleen maar konstant is als o onafha.nkelijk van de plaats is.

s , 9.24 Op dezelfde manier als bij de afJ.td.dingvan de hydrostatische druk­

verdelit'lgkunnen we afJeiden dat

lE-2E-oax - 'dy -

en nu ook dat

iE = 0dZ



want de volumenkracht (lgI1V valt nu weg,-

Uit bovenstaande l vergelijkingen volgt dan dat p overal in V

dezelfde waarde ·heeft.

Veor de materie is nu geen enkele reden) makroskopisch gezien, om

in het ene gebied meer samengeperst te worden dan in het andere gebied

en in afwezigheid van uitwendige volumenkrachten , zullen de molekulen

zich zo bewegen (molekulaire warrntebel.,eging),dat de dichtheid overal

in V dezelfde waarde heeft (zie ook het diktaat Alg.Nat. voor Civielen~

kin. gastheorie),

s. 9.25 We nemen .een vat V dat elastisch is. De massavoorraad in V blijft

konstant. Dus er geldt cp het tijdstip t

m = p(t) V(t)

en op het tijdstip t + l1t

m :: p(t 't At) Vet t I1t) :; (p t I1p)(V + AV)

uit deze vergelijkingen volgt

o = V IJ.p + p!J.V

daal'we öpll.V t.o.v. de beide andere termen mogen verwaarlozen.

We zien dat
= - V

en na substitutie volgt vanzelf het gevraagde •

.9..2!!!:..: 6V < 0 als /lp > 0 !

v -9= 0,5.10 Vs , 9.26
Bel?: 2.109

In de praktijk~ is dit gelijk aan nul te stellen. Stel Bel = 0

en we maken dan pas een fout van O~05 als V de waarde

108 m3 heeft.

Is. 9.27 Bedenk dat er geen spiegel kan zijn

s. 9.28 Nee. Want cp het tijdstip t is de druk van de lucht boven het water

gelij·k aan Pl(t) en neemt de lucht een volume in V1(t). Op het tijdstip

t + ~t is Vl{t + ~t) = V1(t) - AàZs geworden en met de wet van Boyle

vinden we dan voor de druk op dat tijdstip
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ANn/OORDEN NA AANWIJZINGEN BIJ DE STUDIEVRAGEN

s. 9.4 Hoe~el de massavoorraad konstant is (dus rn : 0) hoeft Am. niet
~

gelijk aan nul te zijn«

Uit het antwoord op s. 9.3 blijkt ~llee~ dat de som

N .
Am.
l.

of de integraal

JIJ ap
V -;;:- dVctt

nul moet zijn.

Uit de laatste formule is wel te zien 'datvoor o = konstant in de

tijd de massavoorraad eveneens konstant blijft, maar dan mag nog steèds

p een funktie van de plaats zijn.

Als de materie homogeen is, dan hoeft de materie niet gelijkmatig over

de ruimte verdeeld te zijn en bovendien kan deze verdeling ook nog van
de tiJd afhangen.

De niet gelijkmatige verdeling kan veroorzaakt worden door dr-uk-en
temperatuursverschillen.

PEm.: Vaak wordt onder een homogene materie een stof verstaan, waarvoor

alle eigenschappen onafhankelijk van de plaats zijn, b.v. dat dan
ook de dichtheid konstant is.

In deze kursus zullen we onder een homogene materie een stof
"verstaan waarvan de samenstelling door de hele ruimte hetzelfde i~

E~n enkelvoudige stof ,zoalszuiver water, is dus altijd homogeen

Andere stoffen zoals lucht of zout water kunnen homogeen van samer.
stelling zijn.

s. 9.12 Hiernaast een vergroting van een

stukje v&, het grensvlak (spiegel)

met de beide punten Pl en P2 aan

weerszijden. Over een klein gebiedje

bA mag het grensvlak als een plat vlak

beschouwd worden. De stand van het

1l~- .--._-~
Ad!e· ,

I~

'9
~~

Pz 4.l1
••

I... ~r,.AS-I SiS30



(j.61.

k ' ~ .vla Je 6A t.o.v. g ~s voorlopig niet

belangrijk, wel weten we dat deze niet

verandert in de loop der tij d (hydr-o­

statika).,
We kiezen een tV in de vorm van een

kubus met een r'1.bbe Mf t€l"'o'lijlM

samenvalt met de middendoorsnede van
, deze kubus (zie tig. bO )

Daar alles in rust is, moet weer de

som van alle volurnen-en oppervlakte­

krachten die op AVwerken t gelijk aan

de ruü.vekton zijn.

d + icht i C' kVoor e ei2-r~c t~ng vlnden we .z~e 00

de afleiding ven de wet van' Pascal) s

omdat:12.1 AAstaat, dat moet gelden

of

-1(p1 + P2)(i.:'2}6d - P, + p~ :::0

We laten nu ~ M '-i> 0 gaan en we zien dat P1 :::P2 wordt en dat bovendien

de punten P1 en P2 samenva.l Len in het punt P van het g!'ensvlak.
Verder zijn de drukken in p1 en P2 tij dens het limietproces steeds
Lsotroop , zcdat; ""emogenkonk.l.udenen dat de druk in P ook isotroop is.

s . 9.16 Met behulp van e , 9.12 en de eigenschap van de hydrostatische dl"'ukverdeling

voor- een st,ilstajYlde vloeistof volgt, dat de drukken Pl en P2 aan elkaar
gelijk zijn.

Eveneens volgt uit de hydrostatische drukverdeHng dat,
z3

P2 = P(z2) - P(z3) + J g p(z)dz
z2

Daar Pl = P(zl) ::;;P(z3) (eigenschap van een gas o....er een klein volume­
gebied bekeken) volgt

z~v

P2 ::: P1 + f g p(z}dz
z2



.- ..,:

Daar P1 = P2 (liggen in hetzelfde horizontale vlak) volgt'dat

g p(z)dz :: g "Cz)dz = 0

Dit is nul als p(z) = 0 pf als z2 = 23 (Z2 en z3 waren willekeurig !).

We zien af van de le mogelijkheid en we moeten dus konkluderen dat
- - ....

22 = Z3 en dat het grensvl,ak steeds loodrecht op g staat.

Opm.: Het, grensvlak kan wel "achee f" staan als de vloeistof stroomt,
dus niet hydrostatisch is.

:. 9.18 Als het water in rust is dan geldt dat de stijghoogte h gelijk aan z is.
a

Als de vloeis-tofspiegel "langzaam" stijgt ~ zodanig dat -we de vloeistof in
ukwasi-rust" mogen b.eschouwen , dan is wederom h gelijk aan z • Daar de- a
spiegel stijgt is z = z (t), zodat dan h ook een funktie van de tijd is.a a
We zien dat de stijghoogte van 'da-ter (of een andere Vloeistof) een funktie

van de tijd kan zijn. We komen daar in de yolgende paragrafen en eenheden
op terug •

• 9.19 Er gel~t op het tijdstip t dat

_ met)
p - vet) cf m(t} ~ p VetO

en op het tijdstip t + At dat

met + fit)
p :: V( t + t.t) = met} t Ám

v(d + i:J

of ook _-,
I) VCt) + pllV = met) + f..m

Met de 1e vergelijking volgt uit de laatste de gevraagde uitdrukking

• 9.27 8 = 0, want er is geen spiegel, zodat er niets kan dalen of ~tijgen.

,;



KOMMENTAAR OP DE B[w~RINGEN

b , 9.1 Onjuist. De valbeweging van zo'n druppel is juist het eenvoudigst met

het licha~s~odel te beschrijven, n.l. door de beweging van het massa­

middelpunt (de rotatie en/of vervormingen van zo'n druppel is (zijn) te

verwaarlozen). Deze bevegi.ngvolgt uit de val van een puntmassa die dezelfde
massa als de druppel heeft (zie eenheid 5). Een vatbeschrijving levert geen

informatie over de plaats. snelheid en versnelling van zo'n regendruppel.

Je weet·a+leen dat die druppel op een gegeven moment wel of niet in het

vat iSt dit volgt direkt als je het vat gelijk neemt aan de aardatmosfeer

met de aarde als bodem •.
b. 9.2 Onjuist. Lees definitie 9.4 nog maal'eens. Denk verder aan de deelvaten

(kompartimenten) in een vloeistoft waardoorheen de vloeistof kan stromen.

). 9.3 Onjuist. Het vatmodel is één van de beschouwingswijzen om de beweging van

water te beschrijven (:Üe par. 1s waterhuis·houding).

). 9.~ Onjuist. Het woord homogeen heeft alleen betrekking op de chemische en/of

fysische samenstelling. Op verschillende plaatsen kan· de materie wel dezelfde

samenstelli.lg hebben ~ maar de fys Lsche omstandigheden (zoals druk. tempe­

ratuur enz , ) kunnen verschillen. Denk bijvoorbeeld aan lucht. De samen­

stelling ervan is op zeeniveau hetzelfde als die op een kilometer boven

dat niveau. maar de dichtheid is anders (zie eok kollegediktaat C -18 blz.
K-8) •

). 9.5 Juist. Bevroren ?,fateris geen v.loedbaar- water en juist het scheidingsvlak

tussen vloeibaar water en lucht is de spiegel. Verder staat het water onder

de ijslaag niet in vrije verbinding met de atmosfeer. De ijslaag is een

vaste wand van het vat dat gevormd wordt .door de meerbodem en ijslaag.

I. 9.6 Onjuist. Ondanks het feit dat zuiver water homogeen is, heeft de dichtheid

neg niet konstant in de plaats "te zijn. (zie ook b , 9.4).

I. 9.7 Onjuist. Er kan nog altijd materie uitstromen.

9.8 Juist. Zie par. 3. sektie kommunicerende vaten.



b. 9.9 Juist. 521 is niet nodig) want die volgt di~ekt uit de vergelijking

S'2 ;. S21 :: 0 die voor de wisselwerking Wtc 12) geldt.

b. 9.10 Onjuist. Alleen als p konstant is (zie par. 3, sektie debiet).

b.9.11 Onjuist. De vloeisto.f in. deelvat V1

en die in deelvat V2 oefenen op elkaar

een gr-avitar ie interakt ie G( 12) uit
(zie ook eenheid 4) en daar beide deel-

v...----....--- . __ ---- -

I
.fis 31

hebben, moet deze interaktie ("op afstand! ti) een volumen-interaktie

vaten geen gemeenschappelijk oppervlak

zijn.

<2.E.,I1';.!_: Als het vat V in een lokaal. Zl<Jaarteveld is opgesteld, dan is

de gravitatie interaktie 0(10) tussen 'i/, en aarde vele malen

groter dan die tussen V1 en V2' Op deze Lf'dewijze als in eenheid 4

mogen we als eni8~ volumen-interaktie de interaktie tussen de vloei­
stof en de aarde nemen. (We verwaarlozen voortaan de onderlinge
volumen-interaktiesl1l! )

b , 9. 12 Juist.

0Em.: Bij "niet-gewone" vloeistoffen, zoals verf. teer, glas

kunnen wel schuifspanningen optreden, terwijl ze toch in rust
zijn.

In deze kursus beperken we ons tot gewone (z.g. Newtonse) vloei­
stoffen.

b. 9.13 Onjuist. De normaalspanning is een vektor en daarom is normaalspanning

afhankelijk van de richting. De grootte -van de normaalspanning (t.w.
de druk !) is ,'lel isotroop in een stilstaande vloeistof.

b. 9.11{ Onjuist. Zie par. 4, sektie hydrostatische drukverdeling, met name
s. 9.14 en s. 9.15.

b. 9.15 Onjuist. Zie s. 9.16.



b.9.16

s.ss

Onjuist. Is afhankelijk.van de keuze van je assenstelsel.

Kies b.v. de positieve z-as vertikaal naar beneden dan moet
h gelijk zijn aan

p - p
h = __ --=a- z

Pg

De plaats van de oorsprong is niet belangrijk (ga dat na).

b. 9.17 .Juist. Kies de positieve z-as vertikaal omhoog zodat we vinden. .

b. 9.19

b , 9.19

b , 9.20

b. 9.21

b. 9.22

voor fte stijghoogte van V1

p - P p(z,) - Pa
h =' a + z = + z1 ·Pg Pg 1

en voor de stijghoogte van V2

P - Pa p(z) - Pah· = + z = + z2= z22 Pg Dg

Daar z2 > z, is volgt dat de bewering juist is.

Juist. Er kan geen stijging van de waterspiegel optreden.

Juist. Want B, = A en B2 = A.

Bij de afleiding van de berging ging het om het horizontale opper­

vlak van de spiegel. Het is dus onbelangrijk hoe de wanden verlopen

bij toe- of afnemende waterstand.

Onjuist. Uit de definitie voor K volgt voor de samenpersing (-6V)
dat

We zien dat hoe groter K hoe kleiner·het rechterlid wordt bij een
gegeven drukverschil 6p.

Onjuist. Een homogene materie is best samendrukbaar. Zie voorbeeld
I

in par. 6, sektie kompressiemodulus.

Juist. Bel = 0 ~ k :: 6p ::: 0



b , 9.23 -1Onjuist. Er geldt dat de elastische berging 'Vanlucht Bel = 'Vl{P1)
waarin V1 het volumen van de lucht boven i.n de klok is.
Wekunnen dit als volgt Lnzf.en~

Stel op t + ~t is de spiegel Azs
gestegen. Beschouw~et dan ontstane

volumen als het vat waarin de lucht
in Öt wordt geperst. Daar verder de
zwaartekracht geen invloed heeft op

de luchtdruk ~ mogen'tIe de afle.iding
voor de,elastische berging uit het

diktaat volgen. We vinden dan de eerder genoemdeuitdrukking als we

cns r~aliseren dat voor lucht K = PI is.

Als t.,e nu verder naar de gevonden uitdrukking voor de klokberging

Bk van het water kijkent dan zien we dat Bel daarin is te substitueren.
We vinden

A
At +-,_

pg B 1e

In het algemeen



UITWERKING VAN OE VRAAGSTUKKEN

v.9.1 De lucht boven het st~~meer staat in direkte verbinding met de

atmosfeer en daarom is dit stuwmeer als een van boven open vat ofwel

bekken (kom) op te vatten.

Voor het kanaal en het meer geldt hetzelfde.
In

De aanvoerpijp is geheel gesloten op de 2 toegangen na en het

algemeen geheel gevuld met water uit het stuwmeer. De pijp is op te
-

vatten als een geheel gevuld vat ofwel stroomvoerend vat.

De turbine is een stroomvoer·endvat waarin een schoepenrad (of rotor)

aangedreven wordt door het·water.

We kernenaldus tot de volgende schematisering

-E· ----- --------i
r
1

-----~.
v.-,!:)



g.68,
v, ::: meer :=: bekken of kom
V2 ::: kanaal ::: ti 11 It

V3 ::: turbine - 8troomvoer-end vat

Vl.j. z: pijp ::: !I !I I!

V :;: stuwmeer .. bekken of kom5

De vaste wanden zijn aangegeven door de dik getrokken lijnen; alle

andere wanden door de stippellijnen.

Als toegangen kunnen optreden de wanden bij E, F en G en de scheidings­

wanden bij A, Bt C en D. In het algemeen worden de toegangen bij Et F en

G noo it zo gencemd , omdat alleen in b î.j zonder-e gevallen door- deze wahden

vloeistof gaat (b.v. regen). We spr~ken dan ook vaak van een bekken met

één toegang (hier b ,v, het stuwmeer) of van een bekken met 2 toegangen
(hier- b.v. het kanaal).

De waterspiegels treden op in Vl' V2 en V5i ze zijn aangegeven met een

dunne getrokken lijn. We zouden V, en V2 bij elkaar als een vat V kunnen

beschouwen (een bekken) en zodoende zowel V, als V')_als deelvaten van V

kunnen beschouwen. Hetzelfde kunnen we voor V," en V,. doen.
" "t-

Uiteindelijk zouden we V1 t/m V5 als één vat kunnen beschom/en f maar dan

verliezen viS een hoop informatie over de waterbewegingen •

0Rm.,: In de praktijk nemen we de vat en zodanig, dat in elk vat ongeveer

dezelfde stroming (vloeistofvel'plaatsing) optreedt. Het blijkt dat

in V1 en V5 het water ongeveer stilstaat en dat de s tromdngen in

v2s V3 en V~ duidelijk van elkaar te onderscheiden zijn (zie hiervoor'
eenheid 10 en 11).

'11'.9.2 We hebben het schema hiernaast

nogmaals getekend, maar nu hebben

we de vaten genummerd en de schei­

,dingswanden ertussen gestippeld

V1 :: klok

V2 :: stroomvoerend vat

V3 :: bekken

V4 ::: stroomvoerend vat
Vs :: stroomvoerend vat
V6 = bekken

------- C



Afgezien van V5 zijn de namen voor V1 tlm V6 op dezelfde manie'r als

in som 1 gegeven. Voor V5 hebben we het oppervlak van de straal als

wand genomen en daarom is V5 geheel gevuld met vloeistof en dus een

stroomvoerend vat. AlS we voo!'_VS een v:olumen hadden genomen dat groter

was d~ de straal, dan zouden we Vs een bekken moeten noemen (vergelijkbaar

met het kanaal in de vorige som).

Op dezelfde wijze als in v 9.1 zijn de vaste wanden, scheidingswanden en

spiegels aangegeven.

Er is geen enkel vat dat geheel uit vaste wanden bestaat CV, heeft één
toegang 1).
Er is een vat dat helemaal geen vaste wand heeft, n sL, VS.

De toegangen .treden op bij de scheidingswanden A, B, D. E en G.

Opm.: (1) We nemen aan dat de spiegel in V6 Zo langzaam stijgt, dat we G

als toegang kunnen beschouwen. Als dat niet opgaat dan moeten

we V~ laten lopen van E tot F en de doorsnijding daar ter plaatse
-J

als toegang nemen.

(2) De wanden C en F zijn formeel wel als toegang te beschouwen,

maar meestal doen we dat niet (zie ook v.9.l)

.9.3 a. Uit graHek volgt dat de dichtheid p voor 0 <: x. < ~ x konstant is. dus
..",_=. 0

P .= PI :: p + ; xo 0

b , Omdat de dichtheid in de onderste helft konstant is (zie a , ) volgt

~pxA+tA
" 0 0 '

xo
2

c. Uit grafiek volgt dat de dichtheid t:l voor- ~ X <: X <: x te bepalen is
0= ~ 0

uit
,.-

p{x) - Po
:: -1x - x

0

wa.t geeft

c = p(x) ::: Po + (x - x)
0

d. Met s~9.3 volgt voor de massavoorraad m van de bovenste helft

m ::: A A {p x­o =

::: ~ p x A + -8'A x 2
000



e e De gehele mes s.avoor-r-aad volgt ui t (b) en (d) en deze is.

3 2m:::pxA+-Axo 0 8 0

Het' totale voIumen is V :::Ax en de gemiddelde dichtheid p­o

~Opm.: We hadden ook direkt: het gemiddelde van de ftmktie IJ (x) over

het interval (0, x ) kunnen nemen. Volgens de analyse is dato

1
P - X--O

o

xc

f p{x}dx

o
m.b.v. Ca) en (c) wordt dat

ro x
JO(p lx )dx 1

{ + (x -x)} dxp
__ .

+ +- ::X- C L 0 X
~x

Po 00 0 0
0

fx::;xo x:::x
0

(p x + 1X x) 1 {p x Hx _x)2}::: - +- ::X 0 ~ 0

!x=o
x 0 00 0

x:::~xI
0

f. De massa-verdeling is gelijkmatig in het: gebied waar de dichtheid

kon stant is, dus in de onderste helft.

g , Het is zonder meer niet te zeggen of het water ergens homogeen is.

Als we aannemen dat het water onsamendrukbaar is (zie par. 3, debiet)

dan is wederom in de onderste helft het water homogeen (een homogeen

mengsel van water en zout).

,
"1.9.4 a. We moeten in de gegeven figuur de lijnen x=-At )(:::8,x=C en x::D trekken.

Vervolgens moet:en we de z-koördinaten bepalen van de snijpunten van

deze lijnen met de z.g. dichtheidslijnen P1' P2 = P1 + f1pr, P3 == 0, + 2fl.p
en P4 = Pl + 3 6p.

We vinden dan de volgende grafieken



S.li
"

ti

e..
Opm.: De "s chudne" stukken van grafiek B en C hoeven geen rechte

te zijn. Ze zijn een rechte (dus p neemt lineair af) als alle

di-chtheidslijnen evenwijdig aan elkaar zijn.

< o

. "
Uit het verloop van de dich<theidsli]"nen bliJ'kt dat op toeneemt (dus. dZ
mf.ndez-negatief wordt) bij toenemende z , De kromme gaat dus vlakker
lopen.

c. Net de ui tkomst (e) van de vorige som is de gemiddelde dichtheid ter
plaatse van x gelijk aan

z
p(x) :: -~- I ~(Z,X)dZz

0
0

Direkt is in te den dat voor x ;;. xA de gemiddelde dichtheid gelijk is
aan p1 en voor x >, xn aan p •.. Lr
Hoe het verloop daartussen in is, is analyti.sch niet te berekenen

(het verloop van de dichtheidslijnen is geschetst) maar zou eventueel
met een numeriek proces 'O'lelte berekenen zijns Wevinden globaal

e,

--~'I-----~----~-~------~~x'i .:cp
In gevallen dat de dichtheidslijnen niet zo mooi verlopen (meer

",--,.-
"l') ,;'"(t!..._._"'....·_._-- _

'1/ , /1
/1
/ ,

,/

bochten !)als in onze opgave, kunnen de gestippelde krommes optreden.



v 9 ..5 a , Beide \olatersoorten zijn onsamendrukbaar (p ::::konstant) zodat

voor het konstant blijven

dat het instromènd debiet

debiet Q ::: S2
2 P"1

van cts waterstand nodig en

O 1 - .• ,. 1-,

1 ::: -, ge.lllK 1.8 aan lietp. " ~
I

voldoende is

uitstromend

Er moet dus ge Lden r

S s.,
Q,

1 4.
Q::: ::: ::

P1 (>2 2
3 -1m s

en hieruit volgen de gevraagde grootheden:

S2 kg -1s

3 -1m s

3 -1m s

°l S2
:: _'

P2
CC

Q2
°2

::-p2

b , Het volumen op het begintij dstip t door het zoute water ingenomeno
is gelijk aan

V (t ) :::~.,Hw R22 0
:3m

Delen door het (konstante) debi.e t Q2 ge.eft dan de benodigde tijd
At voor het 2.eegstr-omen.

~'levinden
V? Ct )

!J.t:::,~­
Q2

_ ~ H 7f R2
= ...-,,-,---:-;

S2 P2
s

012m.: Als 52 ::: S2(t) dan volgt met het verband tU,ssen het volume

V'2 en het ui ts t r omend dehiet Q} t) dat

,V2Ct) = V2(to} - f Q2(t)dt

+
"0

ytaarljit het eindtij dstip t 1 te berekenen is door de onder-

staande vergelijking op te lossen

'_ [) - V .•) (t )
L 0

t4

.r

f I ,
Q,.,(tJdt

s:

to



Bovenstaande integraalvergelijking is niet zo eenvoudig op te lossen

(er zijn kolleges voor- het oploss.en van integraalvergelijkingen, zowel
analytisch als numeriek !); in het geval dat Q2(t) = Q2 ::konstant
dan volgt. weer,

of

llt ._

c. Op een willekeurig tijdstip t tussen het begintijdstip t en het
. 0

eindtijdstip t1 is de massavoorraad m1 van het zoete water gelijk aan

t

f P,
t Sl(t)dt + m1(t } ::- (t-t ) S
o 0 P2 0 2

en de massavoorraad 1U2 van het zoute water

t

J
to

-= P2 V2(to) - (t-to)S2

De totale massavoorraad m is gelijk aan

Daar de waterstand niet verander-i~ vinden we voor de(gemiddelde)
dichtheid dat deze gelijk is aan

(t-t )o

Opm.: (1) Als

(2) Als

t=to
t::t

1

dan volgt p(t,)



Cj,7'-1

d , Als S1 :: S ~~I clen
L (dus Ql )- Q2 !)

op een tijdstip t'

De waterspiegel zal dus stijgen t we vinden voor de plaats z daarvan
s

z {tl = Z (t ) +s s 0

t
f
to

Q. - Qr.
t L dt :::

..9J2m.: Bovenstaande formule geldt alleen als Zs (t) < H en t < t1 zijn

(met als grensgeval z (t1) ::::H)
Sits I

Als voor t = t2 < t1 geldt,dat zs(t2} ~ H~worden dan ~

daarna gelden Q, ::: Q2 (onsamendrukbaarheid van het 'Natel')

en dus kar! S, niet meer gelijk aan 82 blij'Jen.

Als voor- t ::::t2 > t, geldt ,dat Zs (t2) -c H.dan 'volgt uit S1 ::::S2

dat Ql ::::Q2 moet zijn~want al het zoute ~ater is weg.

En omdat Q1 :::Q2 is t zal de w(l:terspiegel niet meer veranderen

Voor het grensgeval t :::t2 ::::tl èn zs(t2) ::: H volgt dat op

het vat net vol is.

v,,9.6 a.•

de i-1aterstand in V is op dat tLjdst î.p t
1 0

Z. (t )
( 0

ml
::-,_

2p '!f4R

b , formeel geldt (zie s.9.5~ s+9.SÁ en s.9.SB)

Daar het \-la'rer een kons tante dichtheid hee ft , mag je ook s chr-i.j veu
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Als de waterstfu,d in V2 hoger of gelijk is a~, zn dan vinden we

waarin OCDeen negatief getal is .1. ·21

c , De massavo.orraad moet dan gelijk zijn aan

Analoog de vorige som geldt

b.
m2(t,) :: TIl2(t) + t.. f ~2 dt -

ti

en we vinden hieruit

2'Tl'p HR
:::t + Ic . p

2
(- - ~)3

d. Voor V, geldt tot en met t, de massabalans
•
ml = - p 1

en dus

en de waterstand wordt dan
.1 2

-"3 "'p HR 1
z,(t,): =-H

1Tp 4 R2 12

• 1 9e. m, :: - pI + Tö p 1 = - -pI10
,

9 rrf. 0 = m,(t,) - lö p (t2 t 1)

of
= t1 __2Q__ 1.1rPHR2t2 + 9 fr 3 \

2915 HR2= to + 541

101THR2= t1 + 271

Opm. : 1Voor t ~.•t2 ver-pompt;de pompeen debiet van 10 I; V1 bH j ft leeg en
V2 blijft net vol.



'1'$9.7 a. Alles is in rus t , dus over-al- heerst de hydros tat Lschs drukverdeling.

Vanwege he~ gege~n assenstelsel v:nden we

0'
p(y) ::::p(o) + f ogdy ::; pCo ) - pg'''1

y
waarbij voor het st~k AOgeldt dat jy! < R en voor het st~~ OB dat

I y 1 .::. SR meet zijn.

b , De oppervlaktekracht op de zuiger' kunnen w-e op de volgende wij ze
afleiden:

Bekijk een vertikaal oppervlak in

de vloeistof ter plaatse van C.

Dan wordt de normaalspanning van

vloeistof 2 op vloeistof 1 in een

punt (x!Y tZ) van C gegeven dool'

'Bekijk nu vlak evanuit 2 naar 1.

De kracht op een oppervlakte elementje

ter plaat se (Y.z) î.s dan

+t.,',
12

De totale kracht wordt dan verkregen door de oppervlakte-integraal

f12 ::;IJ dF12 = -~x IJ p(y)dydz
opp 0EP
('

Deze integraal is het: eenvoudigst met behulp van de poolkoördinaten

(rt~) te ber-ekenan (stel y z: !'cos($)~ Z ::: l"sin(q:} dan moet een opp.

elementje dydz vervangen worden door rdrd~~ zie analyse I & IJ tI)
We vinden'

R
-)- .,..

f f {p(o) pgrcos ( 4ï) J
,., ~e rdr - dq)t12 ~, -x

0 0

R
.;.- f 2itp(o Ir-dr- 2 .;.-::: -€I' - - 1rR p(o) ex x0



Als we nu C naar links la~en gaan. zodanig dat C samenvalt met.. .
rechteroppervlak van zuiger A dan nebben we 'de kracht r op de zuf.ger-

door- de vloeistof uitgeoefetl~. Daar- alles in ru.st is moet voor- de

zuige_r gelden

en hieruit volgt

2:: 'll'R p(o)

Analoog vinden we

IFBI tr(5R)2 p(o) 2fB :: :: :: 25 'lTR p(o)

We zien dat FB ::25 FA

0Em.: Omdat de (hydrostatische) drukverdeling een lineaire funktie

van de vloeistofhoogte (hier dus van y) is, geldt voor elk vlak
dat gewoon of gespiegeld symmetrisch is t.o.v. een horizontale

lijn in dat vlak, dat de oppervlaktekracht gelijk is aan het

produkt: van het oppervlak en de druk ter pla.atse van die hori­

zontale lijn. Ga zelf na als zuiger A geen cirkel maar eer,

vierkantje of een zoute drop is (zie onderstaande figuren).

1'1

J

gespiegeld
symmetrisch
t.o.v~ z-as

gewoon
symrnetrisch
t.o •.v.. z-as

I



c , uit: (a) voLgt dat

p(y} + pgy :: p(o) + pgo : p(c)

De stijghoogte wordt dan

p(y) + pgy - Pa p(y} - Pa. peo) - Pah :: :::-~.-4- Y - _ .....".
Pg pg pg

We zien dat de stij ghoogte overal in de vlO(~istof dezelfde waar-de

heeft (zie ook b.,~'~î6)

d. Met (b) en Cc) volgt

h :::
FA-_._- .... --.."...
.2TigRpg

2.J?m.: Als FA :: FA(t), maal" zodanig dat de vloeistof steeds als

in rust te beschouwen is (b4v. door-dat FB:: rE(t) :: 25f'(t»

dan hebben we hiermee een 'Voorbeeld waar-i.n de stijghoogte

aLa funktie van de tijd Ü3 te beschouwen ~ te!"'"lij 1 toch de

bc::'gingsver'gelijking niet ,;eldig is (zie ook s.9.18).

v.9~8 a. Af.Les in rust; dus in de vloeistoffen heerst een hydrostatische

dl"l.lkverdeling.

He hebben links in de vLoei s to F

P .(Z) = D + p,g(H1 - zlf • a . VOor o « z -< H..-""= '1

en rechts

p,,(z) _.
L . voor o < z=. < H"= L

Op dezelfde wijze als bij v.9.7.b vinden 'we dat de vloeis~of links

op de deur een kracht
. -+ ~ B .F, ~ ex J :1Z f P1(zjdy:::

o 0

-+
EO
X

en rechts (analoog)



9.79

Nu hebben we rechts nog een kracht van de atmosfeer n.l. over het

stuk deur van H2 tot Hl. Daar de dtmosfeerdruk overal Pa is, volgt

dan voor deze kracht

, '± -+ )
t· = -e B Pa<H, - H3 x 2

De knacrrten op stuk Hl' tot H van de deur van de atmosfeer zijn gelijk

maar tegengesteld (hoeven we verder niet te berekenen).

We krijgen als to~ale kracht F:
2 2-F = F, '+ F2 + 1'3 :: :x BOPlg H - 1P gH )1 2 2

b , De kracht op een oppervlakte elementj e 4z met breedte B van de deur

ter plaatse z in de linker vloeistof is gelijk aan-

l!.F = ...
1 ex B P1(zMz

Het moment ~tl van deze kracht om 0 wordt

At - ... ... -+Z e x e B p1(z)l!.z = ey B Pi(Z)Zl!.Z, - Z x

Het totale moment op de deur t ;o,v . de linkervloeistcf wordt

~ ... Hfl ... 2 1 3
L, = €y 0 B P1(z)zdz = ey BCIPa"l +] P1g Hl)

Zoals bij (a) vinden we nu ook

en

Zodat het totale moment om 0 wordt

c.



9..80

v.9~9 a. Dewaterspiegel is horizontaal (zie s , .9.16).

Op dezelfde wijze kun je ook beTN'ijzen dat het zoet-zout grensvlak
horizontaal moet zijn.

We kunnen daarom eenvoud~g met de massavool"raadt de dichtheid en het

oppervlak van de doorsnede de gevr-aagde hoogtes berekenen ~

We vinden voor de hoogte van de spiegel

en voor de hoogte van het zoet-zout grens vlak

b , Voor een punt P in de zoete laag (dus H2 ,;;,Z :;., Hl) geldt

Voor een punt P in de zoute laag (dus 0 < z <= .,...

deze laatste vergelijking is nog te herschrijven met de 1e, want daaruit
volgt

zodat na substitutie volgt

c" Voor een punt P in de zoete laag volgt

p, - Pa In, m21hi ::: + Z :: H :: =- (-' +- )P1g 1 A P, P2

Voor een punt P in de zoute laag dat

P2 - Pa 1)1 = ]. (ml + m" )h2 (H, H ) H2 L:;:: + z ~_. - +P2g °2 I 2 A .
P2
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Opm.: We zien dat over·al in een laag de stijghoogte dezelfde waarde

heeft, maar dat dit:ni~t geldt voor overal in de vloeistof;

want op het zoet-zout grens vlak treedt een sprong op

1.'.9.10 a. p(z) ::p - pgz met -H < Z < 0a = =
""Oettk aCIN h.e<ll-~ VQn ~b OJs$ell:.bló;>.!$el !

...
y

b. We volgen hetzelfde proces als bij v.9.7.b

De kracht op een oppervlakte elementje AA.

in de vloeistof ter plaatse (x,y,z) is dan

6F :: -jo.

- p(z)AA en
..... ..

waarin e ::e (xsy,z) de eenheidsnormaalvektor op het oppervlakn n
van de bol in punt: (x,y"z) is (zie fig. 41).
De totale kracht door de vloeistof op de bol is dan

F = - IJ p(z)~ ciAn
natte
opp.

Deze integraal is het eenvoudigst met: de bolkoördinaten Rt 41, e
(zie fig. 41 ) cp te lossen. We vinden dan met
x .. Rsin(e )co~( Ijl )

J { e ::: s In(e )cos (~)nx
y :: Rs in ( e ) s in ( l' ) en dus e :: sin{e)sin( $)ny
z :: Rcos(6) e ;:: cas(S)nz

dat de integraal overgaat in (zie ook analyse I & IJ n
2'ff

de J {Pa - pgRcas(8)}
o

~ R2sin (e )d~n ..en deze gaat op zijn beurt na uitschr·ijven van e weer over inn
'It 2'1l'

F - - f de f {Pa - pgRcosC eH R2sin2(6)coS(~)d~x
~'It 0

7f 211
F ::: -f d.e J {Pa ..pgRcos(9)} R2sin2(e)sin(~)dty

~1T 0

lf

r :::- f
Z h pgRcos(e)} R2sin(G)cosCe)dt



Na integreren over r.p houdten 'iJe ave!'

F = 0x
F - 0 1(y,
F :: - 271' rz .I

~TT

{p - pgRcos(B)} R2 sin(S)cos(S)dBa

He kunnen dit: Laats t e sCÎîr'ij ven als

TI'

Fz ~ ~2~p R2 f sin(e}d {sin(e)}
a ~7l'

7r

21rpgR3 f cos2(e)d { cos<&)l =­
~1l'

I

'lt
233
3 rrpgR cos (8) !

~it

::

De kracht door het water op de bol uitgeoefend is dus

+ 2 23-+F :: (rrR p + - 1rR pg)ea 3 z

0Ern..: ·Als we de bol wegdenken en we verv-olgens de oppervlaktekrachten

berekenen op zo'n halve waterbo L, dan hebben als kracht op het

s pi.ege Ioppe r-vl ek

Fs
-!>
ez

en als kracht op de rest van het oppervlak (analooB bovenstaande
bez-eken Lng )

+ 2 2 3 +
F :: (~R Pa + 3 r.Rpg)ez

De totale oppervlaktekracht is

-+ 2 3 +r :: - rrR'pQ: eop. 3 ..~ z

Daar alles in rust iSJ moet deze gesommeerd met de totale

volumenkracht

-1-.+ +
G ::::rog = - rog e z



..
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iVll
waarrm de massa van de ~alve waterbol is en dus hier gelijk aan

m = pVC !waterbol) 2 3:: "3 'lrR pg- _,. ....de nulvektor opleveren, dus G + F = O.

Omdat de totale oppe~vlaktekrachtO~p de halve waterbol tegen de

invloed van het lokale zwaarteveld op zijn plaats houdt. noemen we

deze.kracht ook wel de OphlaaPt88 k~achtcp die halve waterhol.

We hebben hiermee de wet van A~himede8 aangetoond, n.l. een lichaam

dat geheel of gedeeltelijk in een vloeistof is onderdompeld, ondervindt

een opwaaetse kracht die gelijk in grootte maar tegengesteld in richting

is aan de volumenkracht van de verplaatste vloeistof.

c, De bol is geheel ondergedompeld, dus de opwaar-tse kracht is gelijk aan

Deze kracht moet evenwicht maken met de ge"Iichtsk1'8chtop de bol, dus

r' +GbJ<op o.r

en we vinden hieruit

2~m.: 'Ne zien hieruit dat de bol overal kan zweven als hij dez.elfde

dichtheid als het wat.er-heeft.

De wei.:van Archimedes is een belangrijk hulpmiddel voor een

heleboel berekeningen tI

9.11 a. F :: '!I';104op

b. Alle krachten ÖF die door het water op de oppervlakte elementjes ~A

van de cilinder worden uitgeoefendt staan,loodrecht op die oppervlakjes

Newton

(isotropê druk 1) en zij gaan derhalve alle door de draaiingsas. Er is

dus geen moment. t.o.v. die as en de cilinder zal daarom niet gaan draaien.

c. De kracht ~ as

T :: 8. 101+ ~
. as x

is



,OEn!·: De horizontale komponent in ev-n bepaalde richting (hier b , v.•....
ex-richting) van de oppervlaktekracht op een willekeurige wand

(hier b.v. de "cilinder-wandlt) is altijd gelijk aan de oppervlakte

kracht op de vertikale '<landdie de projektie is val') de oorspronkelijke

wand in de gevraagde horizontale richting~ Dus hier voor de ~x-richting
.is fig. te vervangen dool" .fig. Ga dat na l

-

v.9.12 e. De gravitatieberging B is gelijk aan het oppervlak van de horizontale

doorsnede van V, dus B z: A

f , Formeel is de bergingsvergelijking
.<

Q ::;B h

waarbi.j Q het Lnst romend debiet van V en h de stijgboogte van de

vloeistof in V is. Dus in deze som geldt dat Q: Ql - Q2

Vlevinden dus

g. Er geldt, da.t Q ::: Q2' dus h = 01
En hi.er-u i ti volgt

h(t) ::: h(o) H

O_ElJh: Alles onder de veronderstelling dat de s tromf.ng in het vat

te verwaarLoz en is (zie ook s , 9 e, 22).
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v;9. 13 g. De ber'gd.ngen voor de ideale vel'bindingen (de stroomvoerende vaten,
leidingen ABen' CD)zijn nul.
De bergingen voor V1 en V2 zijn

h. Tot het tijdstip t=t, geldt als bergingsvergelijking voor V1 dat

en Voor V2 dat

Voorhet tijdsinterval (t1t t2) krijgen we de vergelijkingen

9 2-- - I :: 4r.R h110

9 I 2'
Tö :: 1fR h ...

L

Voor het tij dsinterval (1:2 ~~) h'ijgen we de vér'gelijkingen

I.! R2 •0 :: .'11' h,

'lTR~ •0 ::: h2

i. Uit a.lle 3 de gevallen voIgt dat

tntégreren geeft

Uit de gegevens en de uitkomst van v.9.&(a)volgt dat h1(o) = ~ H
en h2(o) :: ~H.
We vinden



"'. :: trT,2V'..' •. 1'. A

2B =: Sr. R z

A-~il-. 0

v.9~14 e. Berging B is

f , De, v.Loei sto f is onsamendrukbaar;

het debiet Q dat de "wij de bak"

ins troomt vanwege de, Zuigerbe­
"1eging is gelijk aan

L IDe bergingsvergelijking in het tij dsinterval (0, ) ....or-.:ft
VA

R2V c:; R2h·i1' A=./Ir

of
"VA ::5h

Lvoor 0 < t -<­"'" =v·A

waarin h(o) de stijghoogte op het tijdstip t=O is

0Em.: Als de zuiger heen en weer beweegt b , v , zA:: Lcos (wt) ~ dan volgt

daaruit dat
_ih(t) :: h(o} ~ - Lcos(wt)

5

Alles onder de veronderstelling dat de stroming in het vat

verwaarloosbaar klein is.

v.9.15 a. Uit v.9.7.b volgt dat de druk in de vloeistof gelijk is aan

FA 2
P =.~:: 10

'lfR
N -2m

Het volumen was

en wordt
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Hieruit volgt voor de druktoename 6p

9.2.10

De 6FA die daarbij hoort is

2266FA = nR 6p = nR .8.10 N

De nieuwe FA moet dus worqen

F' = 8.104A

V
-8 nR2LBel

0c. -K = 1,3.10

d. S 106
SP - Bel - =p 13nR2L

..~. ."
6 -2

<:! 8.10 Nm

.,

e. De zuiger beweegt 100 s voordat hij zijn nieuwe plaats heeft bereikt.

Het volumen in het tijdsinterval (0,100) is gelijk aan

_ 2 nR2L
V(t~ ~ 26 nR L - 1000 .t

Er geldt verder
.

K V V
P = =V Bel

en dus

pet) = p(o) _ vet) - V(o)
Bel

f. Zie (d)• We vinden met S = 1 dat

• 106
P =

13nR2L

~
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en hieruit volgt

pet) p(o) + 106
102 + .106= t = t

131TR2L 131TR2L

p
= f 10-3

g. =p 261TR2L

h , Daar d~ {ln(p)} = % is, volgt na integreren van (g)

ln {p(t)} - ln{p (o)} = pet) - p(o)
K

We vinden

pet) = p(o) exp ( pet) ~ p(o) )

Met (f) en de gegeven waarden voor p(o) en K volgt

pet) = 103
. 3 2 -1exp {(26.10 1TR L) t}

v.9016 a. Het volumen van de lucht is

3m

Als de zuiger in de onderste stand is, dan wordt z
s = ~L. We vinden

voor de konstante uit de wet van Boyle

Nm

Met diezelfde wet volgt nu

-2Nm

b. Zie par. 6, sektie kompressiemodulus

b.p _ b.p
p - K

waarbij we even aannemen dat de invloed van het zwaarteveld te verwaar­

lozen is (dus druk in lucht is gelijk aan druk in water).
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Mêt (a) en de gegevens vöigt

en hieruit volgt met (a)
. .i

L
L - z

-, s:

en dus

zs
= 200,5 L

201,0

c. Ja. Als we aannemen dat het water onsamendrukbaar is, dan volgt dat

de spiegelhoogte voldoet aan

< 200,5 L
201,0

d, iie'par. 6, Sektie· eLas'ti.sche berging

1TR2B = ...:....._---------_;;"--..;_ ...<: met (à) _
k

""

2·1+ ,1TR····

103,~10

-1= 1TR2 {1 + 5 _ ___;L=--_}
2(L - z )s

Daar het water als onsamendrukbaar genomen mag worden, geldt ook

We vinden

e. De gravitatieberging B is 1TR2

2m
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Om binnen de 1% nauwkeurigheid te blijven bij de gevraagde vervanging

moet dus

<

zijn voor het interval 0 S zA ~ ~L.

Het maximum van het rechterlid wordt bereikt voor zA = aL, dus

we moeten de L zodanig nemen dat

L5---
(~L)2

of

m

Opm.: In principe is een meer, ,kanaal enz. op aarde een klok als ,we de

aardatmosfeer meenemen.

We zien uit bovenstaande uitkomst dat -w.etoch steeds voor derge­

lijke open vaten de gravitatieberging kunnen ge~ruiken (Ga na

wat de veronderstellingen waren bij de gravitatieberging en merk

vervolgens op dat een spiegelverhoging van 2000 meter wel erg

extreem is !)
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ADVIEZEN TOETS 9

Waarschijnlijk beheers je de stof niet voldoende die vastgelegd wordt in

de onderstaande adviezen tabel.

In de tabel is tevens aangegeven welk gedeelte van de tekst, studievragen,

beweringen en vraagstukken je nogmaals moet bestuderen.

,a V1eS-[ doelstellingen i,
!~

4

bewering
, 9

. vraagstukpar
nr.

+--- -- - -- - - -----+------~-+------!
i (1 ) ,2,3 I 9. 1, 9.2 I 9. 1 t Im 9.3, 9.5 9. 1, 9.2

'r--;::;--r---;::-~;_:::__----4-i __ ~: .._. _j_ -----+--;:-~~";7"""""--r-
2,3 9.3, 9.4 : 9.4 9.6 9.7 9.3, 9.4

r-~~~~~~--------~-- :(2), 3 i 9.-5-iJm 9.6 l 9.8 t/m 9.10 9.5, 9.6
;.,---+-:-:---:------;---:-+---4 . s. 7 -t-I-m-9-.Ün--9 • '-1-t-/m-9-.-1-7--i;-(,-9-.-7-t-l..,..m---:"9-.-:-1-:-1)~
r-~~~--------------~----~~ ------~~---~-~77-t

4 (9.7 t/m 9:Ü3~T9~'1' t/m 9.17) 9.7 t/m 9.11
-...---~ ---------!------:----::---::---'t

9.19 t/m 9.22 9.18, 9.19 9.12 t/m 9.14
.----.----.-.- --------.---J-----------+
9.23 t/m 9.28 9.20 t/m 9.23 9.15,9.16

t/m 4
2 5 t/m 7

:! . (6),8, 9
:., 10 t/m 12,(13)

5 13, 14

6 15, 16

7 ( 11) , 17

5

6
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- oppervlak dwarsdoorsnede.
. 2

·[m 1
A. - dwarsdoorsnede.
l.

a - constante.

B
-+- .'
e - eenheidsvector.

- gravitatieberging van een vat. 2- [m ]

-+­
F,F

g

h.
l.

H.
l.

llH

.2.

m

M.
-+-
p

Pa
p

Q
p

s

S.•
1J
t
-+­v
v

krachtvector, component [N]

- [1i1/s2]

- [m}

[m]
- [ro]

- [m]

- [kg]

_ [521m2]

- [Ns}

- [}11m2]

- gravitatieversnelling

- stijghoogte in dwarsdoorsnede

stuw hoogte

A.
l.

A.
1

leiding

11 11

- stu,whoogteverschil over

- lengte

- massa

- traagheid

- impulsvectoI"

- atmosferische druk

- druk, impulscomponent

- deb.iet, volumenstroom

- dichtheid van een vloeistof

- gekromde coördinaat

- massastroom naar vat i uit vat j
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[kgIs]
- [s]

- [mIs]
[m3l- volume

v.
1

(XtY,z)- coördinaat-assen
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'.x' ~I ,z'.> - coördinaat-assen

VEREISTE VOORKENNIS

Wiskunde Ie jaar.

Stàtistiek 2e jaar.

Natuurkunde Ie jaar.

Eenheid 9.
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SAMEN\! ATT I NG

In deze eenheid beschouwen we stromende vloeistoffen door leidingen. (stroom­

voerende vaten).

Onder de aanname van constante dichtheid worden voor deze leidingen massa- en

volumenbalansen opgesteld. Hierna introducereri .we het begrip vloeistofsnelheid

en vloeistofdeeltjes, welke in een aanhangsel vanuit de statische mechanica

wordt gedefinieerd.

Naast de wet van behoud van massa geldt voor een vloeistofstroming de wet van

behoud van impuls.

Alvorens deze behoudswet toe te passen idealiseren we de vloeistof door weer

te veronderstellen dat de dichtheid ervan een constante is en verder dat de

schuifspanning ook in de bewegende vloeistof nul is, hetgeen-leidt tot het mo­

del van de ideale vloeistof.

Voor een dergelij ke vloeistof wor-dt; voor leidingen met verscheidene geometri­

sche vormen de impuls balansvergelijking opgesteld, hetgeen aanleiding geeft

tot het introduceren van het kwantitatieve beg:r·iptraagheid.

Tenslotte leggen we verband tussen de in eenheid 9 behandelde bergende vaten

en de in deze eenheid behandelde leidingen en gaan de koppeling daartussen na.
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DOELSTELLI~EN

1. De begrippen massastrooms volumenstroom (debiet) s stroomyoerendedwarsdoor-
".s'n~e·' e~ '~troo~snelheid .met elkaar in verband kunnen.brengen.

De massà~ en ~ol~menbalansvergelijking van een leiding. kunnen opstelleD4
Voor een·onsamendrukbarevloeistof het debiet:van een, starre buis kunnen
bepal.en•

3.

.. '
2. De idealiseringen van de onsamendrukbar-e, de volmaakte en' de ideale V'loei-

.stof kennen.

De begrippen impuls. en impÏllsov~rdracht in een stronû.ng kennen.' De impuls-' •
balans vergelijking voor e~~~~ vloeistof in een rechte buis kunnen op­
stellen. H~t begrip stuwhoogte kennen in onderscheid .met de stijghoogte~
... ~~... .

Voor eenYideä1e v Ioedstof , ,in enke-Le h"'ave.!llMin-de ve~eiijking vart E~eX'-
-Bernoulli kunne? a~.l:eiden.en toeipassén.' ", ,':';.__

... .'.. . . '~Qm(),gene .,
gij nié~,:"stationaire' stroming van ~e vloeistof in enkele·,p~isv~merL,

"<de traagheid van de buis ktiilnen :bepai~~, als~:~e de relatie met het stuw.:­
'ho6gte :;/érschil en het debiet k~~~en.

4.

5. vàil gebogen en nauwer of wijder wordende.buizen, opeo::yaten en kanalen de '.;~ , =1' : .:.~. .1~.!... ....

traagheden en bergin.s~n kunnen b~.pÇJ.~,:m.en enig inzicht hebben in -de daarbij
toelaatbare verwaarlozingen •

.... "

'" ','t ...

,..
"",.

,..

:.',
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1. INLEIDII\G

In deze eenheid behandelen we de mechanica van:'stromende ~ vloeibare of gasvor-

mäge , materie.

Vloeibare en gasvormige materie onderscheiden zich van vaste materie, doordat

vloeistoffen en gassen kunnen vervormen, zonder dàt daarbij de samenhang in de

materie wordt verbroken.

In een vast lich.:lamworden de bouwstenen door sterke krachten t.O.v. elkaar in

een min of meer strakke structuur op hun plaats gehouden, zodat grote kra~hten

nodig zijn om deze structuur te wijzigen en het lichaam te ·vervormen.

Bij vloeistoffen en gassen is dit andèr s , Als we bij voorbeeld een vinger in wa­

ter steken, dan wijkt dit onmiddellijk. Dagelijks bevinden we ons in de gasvor­

mige materie van de dampkring, zonder dat we er meestal moeite mee hebben er ons

doorheen te bewegen.

Deze grote mate van verv~mbaarheid heeft ten gevolge, dat de vorm van vloeibare

of gasvormige materie bepaald wordt door het vat waarin deze zich bevindt, een

tank, buis, kanaal, meer, etc ••

Door het grote aanpassingsvermogen van een vloeistof of gas ten aanzien van zijn

vorm, kan 'een vloeistof of gas van het ene vat in een ander gebracht worden, ook

al is de vorm van het:tweede vat anders dan die van het eerste.

Het overbrengen van vloeistof of gas van het ene naar het andere vat geschiedt

vaak door middel van een verbindend tussenvat, waar de vloeistof of het gas door­

heen stroomt. Ook dit vermogen om door te stromen is het gevolg :van het aanpas­

singsvermogen ten aanzien van de vorm.ln eenheid 9 zijn we ingegaan op de gevolgen

van het toenemen of afnemen van de voorraad vloeistof of gas in een vat. Als ken­

merkende grootheid daarbij hebben we de berging ingevoerd.

In deze en de volgende eenheid gaan we in op het door een vat heeri stromen van

vloeistof of gas. Als kenmerkende grootheden zullen we daarbij traagheid en weer­

stand van een vat invoeren.

Het ontbreken van een eigen vorm bij vloeistoffen en gassen, bemoeilijkt de visuele

waarneming van de beweging van de stromende materie.

Door zijn min of meer onveranderlijke vor-m is een vast lichaam gemakkelijk te her­

kennen en dat geldt ook voor zijn onderdelen. Vaste lichamen worden vaak geinden­

tificeerd door er een naam.aan te geven: een bal, een wagen, een wiel, de Aula,

enz.

In een homogene vloeistof is het moeilijk, zo al niet onmogelijk, om op het gezicht

delen te herkennen. In plaats van de vloeistofhoeveelheden zelf te indentificeren

en namen te geven, doen we dat daarom vaak met de ruimte {het vat) waarin zich een
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vloeistof (of gas) kan bevinden: een glas, ee~ meer, de rivier de Rijn, enz ••

Beweging van een vast lichaam is vaak gemakk~lijk visueel vast te stellen,

kwalitatief en kwantitatief, doordat we het lichaam steeds blijven herkennen.

We zien met ~~n oogopslag of een voertuig rijdt of stilstaat. of het snel of

langzaam rijdt.

Bewegingen van vloeistoffen of gassen zijn vaak moeilijk of niet direct visueel

vast te stellen. Meestal leiden we het bewegen van een vloeistof of gas op in­

directe wijze af, b.v. doordat we meegesleepte voorwerpen zien bewegen of door­

d~t we een vloeistof voorraad zien aangroeien of afnemen, b.v. doordat de water­

spiegel stijgt of daalt.

Dit brengt een andere beschrijvingswijze van de bewegingstoestand onder invloed

van de erop werkende krachten van de niet-vaste materie met zich mee.

In deze eenheid zullen we hierop nader ingaan.
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MASSA- EN VOLUMEN BALANS EN

In eenheid 9 is de massabalansvergelijking voor een vloeistof in een vat opge­

steld. De balansvergelijking is toegepast op enige voorbeelden van vaten met

~én toegang.

In deze eenheid houden we ons hoofdzakelijk bezig ,met de stroming door een vat

heen. We richten ons op vaten met elk twee toegangen. Vaak zal een van die toe­

gangen de ingang en de andere de uitgang kunnen worden genoemd. We noemen zo'n

vat een ,leiding.

Ter inleiding beschouwen we de massahuishouding van het stelsel bestaandê uit

twee meertjes A en B, die onderling verbonden zijn door een kanaal C, waardoor

water van het ene naar het andere meertje kan stromen.

c

InÀit stelsel zijn A en B bergende vaten en is C een leiding. Stel dat er op

tijdstip t vloeis~of van A door C naar B stroomt, bijvoorbeeld doordat de ge­

middelde waterhoogte in meertje A hoger is dan in meertje B.

Als we veronderstellen, dat er geen vloeistof uit het ste~sel verdwijnt of er

aan wordt toegevoegd (b.v. regen, verdamping, grondwater, etc.) dan geldt er

voor het stelsel een behoudswet van massa. Het stelsel is immers dan te beschou­

wen als één vat zonder toegang. We zullen aannemen, dat de dichtheid van de

vloeistof een constante waarde heeft (homogeen en incompressibel), zodat we be­

houd van massa ook mogen berekenen als behoud van volumen. In deze eenheid ver­

staan we onder een homogene vloeistof, een vloeistof waarvan de dichtheid homo­

geen is, d.w.z. op elke plaats in de vloeistof gelijk'is.

Behoud van massa betekent, dat de massavoorraad van het stelsel op elk tijdstip

gelijk is.

Op een tijdstip t is de massavoorraad van het stelsel
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De massavoorraad van e wordt bepaald tussen de dwarsdoorsnedes Al en A2' die

op vaste plaatsen zijn gekozen.

In een tijdsinterval (tt t + fit)volgend op t stroomt er vloeistof van A naar

B, zodat de massavoorraad van het stelsel op tijdstip (t + fit)gelijk is aan:

met + At) = mA (t + At) + mB (t + At) + me (t ,+ At).

Nu zegt de wet van behoud van massa, dat m(t) = met + At), dus geldt:

In het beschouwde tijdsinterval veranderd de massavoorraad van de léiding e

dus volgens

Per tijdseenheid wordt dit, als we At klein laten worden:

.'
(1)

Nu is in eenheid 9 voor' een vat met één toegang aangetoond, dat de massavoor­

raads-verandering ervan gelijk is aan de massastroom naar het vat.

Daar A,naast een toegang van leiding C ook de toegang tot vat A is, geldt dus
d mA

dat ~ = SAC ' waarbij SAe de massastroom naar het vat uit leiding Cis.

Evenzo geldt dat:

Substitutie in (1)geeft:

(2)

Daar de massastroom van SAC van C naar A gelijk is aan de negatieve waarde van

de massastroom van A naar C (SCA) volgt uit (2), dat:

(3)

In woorden: De massavoorraadsverandering per tijdseenheid van de leiding C is

gelijk aan de massastromen uit A en B naar e.

We noemen (3) de massabalans voor het balansgebied e tussen de dwarsdoorsnedes

Al en A2,
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Studievraag 10.1: A te de vloeietof niet:...homogeen en oneamendrukbaar is in het

etieleel:van fig. 1., hoe luidt dan de vergelijking (3)?
(Onder een niet-homogene vloeistof verstaan we een vloeistof

w~ de diahtheid van plaats tot plaats ve~sahilt b.v.

zout en zoet water),

Studievraag 10.2: AlB de vloeistof homogeen is en samendrukbaar hoe luidt (3)

dan?
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Massabalans voor stromingen van vloeistoffen met constante dichtheid" door

buizen met starre wanden.

In hoofdstuk 6 van eenheid 9 is voor een geheel met vloeistof gevuld vat met

~~n toegang het elastische bergingsbegrip ingevo~d. Er bleek, dat' de massa­

voorraadsverandering per tijdseenheid in het vat té schrijven was als:

1Tl( t) = B ~(t) (4)

waarin A(t) de stijghoogteverandering per tijdseenheid voorstelt en Been

maat is voor de elastische eigenschappen.van de wanden van het vat en de

compressibiliteit van de vloeistof. In geval van een incompressibele vloeistof
..

en een vat met starr.e wanden volgde voor een niet stromende vloeistof dat de,
berging B nul was. Oftewel voor het vat·geldt dan, dat ~(t) = O.

We beschouwen nu het balansgebied van

een buis met starre wanden, geheel ge­

vuld met water, (fig. 2) tussen de

loodrecht op de buis-as staande dwars­

doorsnedes Al en A2"
Zien we nog even af van stroming van

Á.a.·,

de vloeistof, dan geldt in het geval

van incompressibiliteit volgens (4) dat met) van het balansgebied nul is.

Stroomt de vloeistof e'chteJ',dan kan de massavoorraad van het balansgebied wel

veranderen als er b.v. door Al een vloeistof met een andere dichtheid b~nnen­

stroomt, dan er door A2 uitstroomt (b.v. zout water in zoet water uit).

De massavoorraadsverandering per tijdseenheid van een. stromende vl~ei~tof in

bovenbeschreven vat zal nul zijn, indien de vloeistof ook nog homogeen is (zie

eenheid 9).

Noemen we Vl het balansgebied, V2 het gebied links van Al en V3 het gebied

rechts van A2 (zie fig. 2), dan geldt volgens (3) dat in het algemeen geldt,

dat

Voor een starre buis, waardoor een homogeen incompressibele vloeistof stroomt,

geldt dan, dat:



Hetgeen ook te.schrijven is, als:

(5)

In woorden: De massastroom van V2 nam· VI is gelijk aan de massastroom van Vi

naar V3,

Daar de plaatsen van de dwarsdoorsnedes Al en A2 langs de x-as willekeurig ge­

kozen zijn, kunnen we concluderen, dat de massastroom in elke dwarsdoorsnede

gelijk is, m.a.w. de massastroom S is onafhankelijk van de plaatscoördinaat ~

van de buis.

Studievraag 10.3: Geldt vgl. (5) voor een kanaal., uaardoor een vloeistof met:'

constante dichtheid stroomt?

Studievraag 10.4: Maak aannemelijk, dat vgl. (5) niet hoeft op te gaan, als

de ~anden van de buis eLastisch zijn.
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Il. Voltunenbalansen van stromingen van homogene incompressibele vloeistoffen door

buiz.en ..met starre wanden.

In eenheid 9 hebben we het debiet (de vOlumenstroom) Q door een dw~sdoorsne­

de ged8finieerd .als:

Q(t) = §. (t )
P

(6)

Er geldt dan volgens (5), dat voor een volle starre buis s waardoor een vloei­

stof stroomt waarvan de dichtheid een constante is, het. debiet Q ·ook alleen

een funktie van de :.:ti1d is en niet van de plaats.

Studievraag ·10.5: Kunnen we uit bovenstaande ooncluderen dat door elk diaare-:

profiel, van de buis op een tijdstip t hetzelfde debiet

stroomt?

Studievraag 10.6: Hoe luidt de eonelusie uit (6) als de diehtheid afhankelijk

van de pl.aatieis? (Beeehouu de buis tussen tsaee vaten); De .

vloeistof is ineompressibel.

Studievraag 10.7: Ga na of de massastroom S of het debiet Q door een kanaal,

waarvan de vo~ en de hoogte van de 1Uate~spiegel niet van

de tijd afhanqti, onafhankel.i-ikis van de plaats in het ka­
naal. De diehtheid van de stromende vloeistof is een CJon­

stante.

Studievraag 10.8; Hoe luidt de voZumenba~ voop de in II.I behandelde buis?
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I VLOEISTOFSNELHEID (VERPLI CHTE LEESSTOF)

Tot dusver hebben we de beweging van een vloeistof trachten te beschrijven

door na te gaan hoe de vloeistof (massa, volumen)-voorraad in verloop van

tijd in een onveranderlijk gebied V1 variëert. Zo zijn we er toe gekomen

de begrippen, massa- en volumenstroom in te voeren.

We willen nu vervolgens ingaan op de snelheid waarmee een vloeistof beweegt.

Van een mens of dier, een voertuig of een ander vast lichaam dat beweegt,

krijgt men vaak al met een oogopslag een indruk van de snelheid waarmee het

lichaam beweegt. Van een vloeistof, is het meestal veel m0eilijker een indruk

van de snelheid te krijgen.

Soms is een vrij goede indruk mogelijk van de snelheid van stromend water, door­

dat het water kleine lichamen meevoert, b.v. een drijvend stukje hout, een

schuimvlok, luchtbellen of iets dergelijks.

Als we mogen aannemen dat het meegevoerde lichaam ongeveer de snelheid aanneemt

van het omringende stromende water, dan is de snelheid van het lichaam een min

of meer bruikbare maat voor de snelheid van het water in zijn omgeving. Op dézelf­

de wijze kunnen door de wind opdwarreldende bladeren, stukken papier e.d., ee~

indruk geven van de snelheid van stromende lucht.

Echter vaak is een eerste indruk van de snelheid van stromend water misleidend.

Zo bijvoorbeeld wanneer zich op het water door de wind óf, door een andere oor­

zaak golfjes vormen. We zien de golven zich voortpla~tenmet een zekere snelheid

en dit suggereert een beweging van het water met die snelheid. Dat de snelheid

van het water niet die van de golven is, blijkt bijvoorbeeld wanneer op het wa­

ter een stukje hout drijft. Dit beweegt wat op en neer en heen'en ,wee~ maar ver­

plaatst zich verder nauwelijks. Dit vormt een aanwijzing dat de voo~tgaande be­

weging die we zien in de voortplanting van de golven, niet als een snelheid van

het water mag worden uitgelegd.

Een ander voorbeeld is een dun waterstraaltje fig. 4, dat uit een kraan in een

glas komt. Het straaltje maakt de indruk.

van een stilstaand doorzichtig kolommetje

materie, dat naar beneden toe dunner

wordt. Uit het feit, dat het glas zich

langzaam met water vult blijkt, dat het

water in het straaltje niet stilstaat,

maar in een stromende beweging moet

zijn.
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Het laatste voorbeeld wijst erop dat we de snelheid van een vloeistof in ver-

band moeten kunnen brengen met massastromen.

We willen dit nagaan door een stroming te

beschouwen in een leiding met een constant

dwarsprofiel A., met oppervlak A, b.v. een
1

cilindpische buis (fig. 5).

We veronderstellen, dat de dichtheid van

de st~omende vloeistof constant is (in

plaats 'en tijd)

We denken de vloeistof opgebouwd uit deeltjes, waarbij we voorlopig nog in het

midden laten wat we onde~ die vloeistofdeeltjes moeten verstaan.

Als we nu eens bij wijze van gedachteexperiment aannemen, dat de vloeistofdeeltjes
-+

in de leiding alle eenzelfde constante snelheid in de asrichting e van de buisx

,
I
I
I

P- I
'T \

\

"

• b.'~ .; 4 i~. 5'

hebben, dus v = v = constant.x
Beschouw nu een dwarsdoorsnede Al loodrecht op de as van de buis. We willen na-

gaan hoeveel vloeistof in een tijdsinterval (tl' t2) door de doorsnede Al stroomt.

Een willekeurig vloeistofdeeltje dat zich in dat tijdsinterval door AI'heen bé­

weegt, zal b.v. in dat tijdsinterval een verplaatsing PIP2 ondergaan en daarbij

in het punt P door Al heen gaan. De afstand van P1 naar P2 is dan AX = vAt,

met At = t1 - t2 (At > 0).

Alle deeltjes, die in het tijdsinterval (tl't2) door Al heen gaan, zullen zich

op t = t2 bevinden in een ruimtelijk gebied dat we als volgt kunnen bepalen.

Ieder deeltje dat zich op t = t1 juist in de doorsnede Al bevindt en dat dus op

t = t1 door deze doorsnede heengaat~ zàl zich op t = t2 bevinden in een do~sne­

de A2 op een afstand Óx = vót van Al gelegen. Alle dé~ltjes die'op het,tijdstip

t = t2 door de doorsnede Al heen gaan, bevinden zich op dat tijdstip t = t2 in

Al' Alle deeltjes, die op tijdstippen tI < t ~ t2 door Al heen gaan zullen zich

op het tijdstip t = t2 e~gens tussen Al en A2 in bevinden.

De vloeistof, die in (t1,t2) door Al heen gaat, bevindt zich dus op het tijdstip

t = t2 in het door Al en A2 be~ensde deel van de buis.

Het volumen van dat deel van de buis is AV = A Ax = A vAt, waari~e ~ootte van

de dwarsdoorsnede van de buis is. De massa van de vloeistof in het beschouwde

deel van de buis is Am = P.ÓV.

We vinden dus dat in de tijd At door Al heen een hoeveelheid vloeistof met massa

Am is gestroomd, waaruit we kunnen afleiden, dat:

PAL v.lltlim Am
S = At+O fit = lim

.6.t+O At



" r

-1015-

de maasaatr-oom door A. heen is.
1

Hieruit volgt dat we de snelheid van de vloeistofdeeltjes uit de massastroom

S of het debiet 0 s= p kunnen afleiden, door

toe te passen.

v is dus een soort gemiddelde snelheid loodrecht op Al

Studievraag 10.9: In het gevat van fig. 4 vinden l.Vedat de iaatiervoorraadin

het glas in 1 minuut met 84 gram toeneemt. De dikte van het

onderste deel van de straal wordt qeechat: op 1 mmo
Bepaa~ daaruit de (gemiddelde) stroomsnelheid onder in de
straal.

In het voorgaande (zie fig. 5) is het geval behandeld dat de dwarsdoorsnede Al

en de snelheid van de vloeistofdeeltjes loodrecht op elkaar staan.'In fig. 6 "

schuin door de dwarsdoorsne-beschouwen we nu het geval dat de vloeistofdeeltjes
*. -+ A'*de Al heen gaan. De richtingsvector e I

* --~ .. ~--------~~----~~--loodrecht op de schuine doorsnede A,
is dan niet evenwijdig met de snel­

-+heidsvector v van de vloeistofdeeltjes~

....
V

\
\

doch maakt daarmee een hoek ~.

*Het oppervlak A van de schuine door-

snede is groter dan het oppervlak A

van *de dwarsdoorsnede Al loodrecht op de x-as en wel A = A/cosa.

volumen van de vloeistof die in een tijdsinterval öt = t2 - tIHet
Ic

door ,lil heen
*'is gegaan, is dat van een schuin cilindrisch gebied met een grondvlak A en een

hoogte h~ die we vinden door van de verplaatsingsvector ~.öt de ontbondene in

de richting ~ t'e nemen, dus h = ~.~öt.·
* *-+ -+We vinden dus voor het volumen AV = A h = A e.vAt en dus is öm = pöV en

S = "0 = p.AV
• t'" öt

*-+ -+= p A e.v

Hier uit volgt dat

s =pA* ~=A
v cosa (8)
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.Hierin&t~nent .vande snelpeidi loodrecht op ~
+e voor.

Dit is oök als volgt in te zien~

in.de richting

..
In het gebied V1 is er geen massaverandering ,
dus

* ..p A v = p A v

."
+'V

A= -v..,,*
A

= V cose.
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.1 Vloeistofdeeltje

In het voorgaande is het begrip "vloeistofdeeltje" gebruikt zonder dat daar­

bij was aangegeven wat daarmee bedoeld werd. Het is nodig om hier nog wel bij..
stil te staan, omdat het begrip "deeltje" een ver~chillende betekenis kan heb-

ben afhankelijk van het gebruikte model van de materie.

In de fysica verstaat men onder een "deeltje" een elementaire bouwsteen, bij-.. .
voorbeeld een molekuul. Formaliseringen hiervan zijn het puntmassamodel (zie

eenheid 5) en het starr~,liçhaamsmodel (zie eenheid 8).
. f 1. . /' ' .

.In~de technische'mechaniqa, met name in de vloeistofmechan~ca, wordt gewoon-

lijk gewerkt met een continu model van de;rtlàterie".DH .modeï, sluit beter aan

bij de materie zoals die zich aan ons voordoet.

Onder een vloeistofdeeltje kunnen we een pakketje vloeistof verstaan, dat ten­

miste zo groot is, dat de warmte- beweging van dat pakketje (Brownse beweging) te
. 10

verwaarlozen is. Het pakketje bevat dan b.v. zoiets als 10 molekulen.

Dit geeft dus min of meer een ondergrens aan het begrip vloeistofdeeltje.

De samenstelling van een pakketje vloeistof zal in verloop van tijd verandere~.

Sommige molukulen zullen door hun warmtebeweging zover van de groep afdwalen, dat

ze na enige tijd niet meer tot het pakketje gerekend kunnen worden, Andere mole­

kulen zullen zich inmiddels van elders bij de groep gevoegd hebben.

De onregelmatige bewegingen van een vloeistofpakketje (of van een lichaampje in

de stroom) kunnen blijkens de ervaring vaak aanzienlijk sterker zijn dan wat als

warmtebeweging verklaard kan worden. Die sterke onregelmatige bewegingen noemt

men turbulentie.
Stromingen met deze verschijnselen noemt men turbulent, die er zonder noemt men

laminair.
De meeste stromingen, waarmee de civiel-ingenieur te maken krijgt in open water

als zeeën, rivieren, beken, kanalen en in buizen, enz, zijn turbulent. Luchtstro­

mingen (wind, ventilatiestroming) zijn vaak eveneens turbulent. Grondwaterstro­

mingen zijn in de regel laminair. Op het herkennen van turbulente.en laminaire

stromingen wordt nader ingegaan in eenheid 11.
De beschrijving van bovengenoemde onregelmatige beweging (turbulentie) geeft een

bovengrens aan de omvang van het vloeistofdeeltje.

~tudievraag 10.10: In hoeverre voldoet een vloeiatofdeeZtje aan de definitie
van een liahaam?
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In een appendix (H.VI) wordt vanuit de statistis.nè mechanica:dieper ingegaan op

het bepalen van de ondergrens van het pakketje.

Beweging van een vloeistofdeeltje

We kunnen de beweging van een vloeistofdeeltje be~chrijven~ door de beweging

van zijn centrum na te gaan. Onder de ~ van het ·vloeistofdeeltje verstaan

we dan de baan van dat centrum. Door van een groot aantal vloeistofdeeltjes

de beweging als funktie van de tijd na te gaan, komen we tot de beschrijvings­

wijze van Lagpange van de vloeistof. We volgen dan dus elk vloeistofdeeltje

in de tijd.

Een andere beschrijvingswijze van de vloeistofbeweging is de volgende. We kie­

zen nu een willekeurig vast punt P in de fysische ruimte. Op een tijdstip tl

kunnen we een pakketje vloeistof beschouwen, dat op dat moment zijn centrum
+juist in P heeft. Laat v (tl) de snelheid van het centrum op dat moment zijn.p

Dan noemen we ~P(tl) de stroomsnelheid in P op het tijdstip tI' Het beschouwde

pakketje kunnen we bijvoorbeeld z6 kiezen, dat het juist de molekulen omvat~

voor P op ieder tijdstip teen
-+

waarde van de snelheid v bepa-
+ -+ p

len, dus v = v (t).p p
Nemen we (t2 - tI) heel klein, dan zal zich of t = t2 in G nog een deel van de

molekulen kunnen bevinden, de er ook opt = tI in waren. We mogen verwachten dat

; (t2) dan weinig van -; (tl) zal verschillen. We zullen daarom als benadering
p + p

aannemen, dat v Ct) een continu met t verlopende funktie is.
p

Op dezelfde wijze als in P kunnen we in een willekeurig ander punt Q de stroom-
-+snelheid vQ(t) bepalen.

z

die zich bevinden in een klein ruimtelijk gebied

straal om P heen~

Even later, op tijdstip t2 vatten

we de molekulen die zich dan in

G bevinden als een pakketje op.

Laat dit dan de snelheid ;pCt2)

hebben. Op die wijze kunnen we

x

In ieder punt van de met vloeistof gevulde ruimte vinden we zo een stroomsnel­

heid. De stroomsnelheid is daarom te schrijven als een funktie van de plaats-
-+ + .

coördinaten en de tijd~ dus v = v(x,y,z,t).
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We nemen nu de snelheid op hetzelfde tijdstip in twee naburige punten, dus,
-+ ') -+ ) •b.v. vp(t1 en VQ(t1 • Wanneer P en Q heel d~c~t bij elkaar genomen worden,

dan kan het vloeistofdeeltje om Q heen gedeeltelijk dezelfde molekulen omvat-
-+ -+

ten als de vloeistof om P heen. We mogen verwachten dat VpCt1) en VQ(t1) dan

weinig van elkander verschillen. We zullen daarom,bij benadering veronderstel­

len, dat 'v(x~y,z,t) een continu met x,y en z ver-Lopende i funktIe is.

Deze beS~hrijvingswijze,waari~k punt van een vast ruimtelijk gebied$ het

snelheidsverloop in de tijd wordt bepaald~ noemen we de beschrijvingswijze

van Euler van de vloeistofbeweging.
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Stationaire en niet-stationaire vloeistofstromen

In deze eenheid zullen we hoofdzakelijk gebruik maken van de Eulerse beschrij­

vingswijze van een vloeistofstroming. D.w.z. dat we in een ruimtelijk gebied .

in elk punt de stroomsnelheid als funktie van de tijd bepalen. Zodat voor dat

gebied de stroomsnelheid t een funktie van x,y,z e~ t is.
+

Geldt nu voor een vloeistofstroming, dat de stroomsnelheid v uitsluitend van

x,y,z en niet van t afhangt, dan noemen we deze stroming stationair.

Studievraag 10.11: ALs de stroomsnelheid niet van x~y,z en t afhangt~ is de
stroming dan stationair?

+
In het geval, dat de stroomsnelheid v op één of meer plaatsen

de tijd tjspreken we van een niet-stationaire stroming.

verandert in

Studievraag 10.12:
. +

ALs V geen funktie van t is~ is de stroming dan niet-sta-

tionair?

Resumerend kunnen we zeggen, dat een stroming stationair is als in elk punt

van de beschouwde ruimte, de vloeistofsnelheid niet van de tijd afhangt. De

snelheid kan dus wel van plaats tot plaats verschillen.

In het geval dat in elk punt van de beschouwde ruimte v in de tijd verandert,

spreken we van een niet-stationaire stroming.

Studievraag 10.13: Beweegt een deeltje in een stationaire stroming éénparig?

-,
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BEHOUD EN BALANS VAN IMPULS

In de~e paragraaf richten we ons op de behandeling van de wet van behoud van

impuls voor een bewegende vloeistof. Daarbij idealiseren we in deze eenheid

het gedrag van de vloeistof in twee opzichten.

1. We verwaarlozen de compressibiliteit van de vloeistof. We nemen dus aan

dat de vloeistof. als incompressibel behandeld mag worden. Bovendien zullen

we aannemen dat, de,vloeistof i1omogeen is in die zin, dat de dichtheid p

overal in de vloeistof telkens dezelfde waarde heeft. Lv Im. de incompres­

sibiliteit verandert deze waarde ook niet in de tijd.

2. We verwaarlozen de schuifspanningen die ten gevolge van de bewegingen in

de vloeistof optreden. Een denkbeeldige vloeistof, waarin de schuifspan­

ningen nul zouden zijn, ook als de vloeistof in beweging is, noemen we

een volmaakte v.loeistof.

In eenheid' 9 is aangetoond, dat voor een stilstaande vloeistof dan in elk

punt een isotrope druk heerst (wet van Pascal) (zie pag. S.24 e.v.). Voor

een bewegende volmaakte vloeistof kan eenzelfde bewijs worden geleverd.
'b' •• d A Clv AV élv, ken i dDaar ~J moet an nog met een extra term um ät·= pu ät re en~ng wor en ge-

houden t.g.v. de versnelling van de vloeistof. Deze gaat echter naar nul

als llVnaar nul gaat, op analoge wijze als de term pg/J.V(zie 9.26). M.a.w.

de wet van Pascal geldt ook voor een bewegende volmaakte vloeistof.

Studievraag 10.14: Is de drukverdeling in een volmaakte vloeistof hydro­

statisch?

Een vloeistof, die zowel incompressibel als volmaakt is, wordt een ideale

vloeistof genoemd. In deze eenheid zullen we homogene ideale vloeistoffen

behandelen, dus vloeistoffen waarvan de dichtheid een constante is. We zul­

len nu nader ingaan op de beweging van een homogene ideale vloeistof in een

locaal zwaarteveld •

.r De impuls van een stromende vloeistof

We beschouwen een cilindrische buis met sta~re wanden en lengte t tussen de

dwarsdoorsnedes Al en A2' die loodrecht staan op de as (x-as) van de buis. (zie

fig. 7).
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In de buis stroomt een homogene ideale vloeistof met een constante snelheid
-+ -+
v = v e , d.w.z. de grootte en de richting van de snelheid van elk vloeistof­x
deeltje is tijdstip gelijk.

De massavoorraad m van de buis is dan

m = p ~V = P A.t, waarin A het oppervlak van de dwarsdoorsnedes is.

Onder de impuls van de vloeistof, die zich in de buis bevindt verstaan we

dan:

-+ -+ -+ -+
p = m v = p ÀV v = P ÀV vex (9 )

Dit is dus impuls die werkzaam is in de as richting van de buis.

In H. 111 (8) vonden we voor de snelheid van de vloeistof,' dat

Substitutie in (9) geeft dan

-+S.ÀV e-+ xp=---A
-+= S• .t.e x (10)

In woorden: de grootte van de impuls van de vloeistof in de cilindrische buis

is gelijk aan de massastroom keer de lengte van de buis, oftewel de impuls per

lengteeenheid is gelijk aan de massastroom.

Voor het geval de stroming niet-stationair is en de snelheid verandert met de

tijd, wordt (9)

-+ -+
p(t) = pÀV.v{t)

en blijft (lD) gelden waarin de massastroom S dan een funktie van de tijd is.

We beschouwen vervolgens een taps toelopende buis met cirkelvormige dwarsdoor­

snede waarin een homogene ideale vloeistof stationair stroomt tussen de twee
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vaste dwarsprofielen Al en A2,

De snelheid van de vloeistof­

deeltjes zal in dit geval niet

meer loodrecht op de dwarsdoor­

snede staan.

",,
I

- ......._
..... ::---.... ,..........._-

Echter als de buis zodanig ge­

leidelijk dunner wordt, dat de

hoek die de wand met de buisas maakt klein is, kunnen we bij benadering aannemen,

dat de x-componenten van de snelheden van de vloeistofdeeltjes over de dwarsdoor­

snede gelijk zijn.

We kunnen nu niet zonder,meer de impUls-voorraad van de buis bepalen, aangezien

zowel de snelheidscomponent vals het oppervlak A van de dwarsdoorsnede funktiesx
van x zijn,

Echter het produkt v (~),A(X.) stelt het debiet door de buis in de x-richting voorx '_
en deze is voor de door ons beschouwde vloeistof constant langs de buisas (zie

H ILII).

dm = p A ()() dx

Beschouwen we een mootje d~ op afstand
_',

x in de buis, en noemen we het opper­

vlak ter plaatse van ~ AC~), dan is de

massavoorraad van het mootje

De snelheid ter plaatse van )(zij v (X), dan is de impuls van het mootje inx
de richting

Nu geldt dat Q = A()() v x (X) = constant ~ dus

dp = pQdx = S d)(
x

Oftewel de impuls van de gehele buis is:

f tdx =
,oJ

S dx

Dus de grootte van de inpulsvoorraad in de x-richting is:

= s.t. (13)
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Het is dus hetzelfde resultaat als dat afgeleid is voor een cilindrische buis.

Studievraag la .15: Ga na hoe tz) verandert als de stroming in de tapse buie

niet-stationair ia.

Studievraag 10.16: Bepaal de impuls in de :x:-riah'tingvan een homogene i-deale
vloeistof in een aiZindrische buis met behuZp van de vol­

gende gegevens:

PVL = 10" [kg/m"] , Q = 0, 2t [m"/s],

2= 0,5 [m ].thuis = 20 [m] , A

Studievraag 10.17: Van een tapse buis, is de lengte 40 [mlo De diameter van de

toegang is 0,5 Cm] en die van de uitgang 0,4 Cm]. Door de

buis stroomt stationair een homogene ideale vloeistof met

" "PVL = 10 [kg/m].

In de toegang van de buis wordt een snelheid gemeten van

4 [mIs]. Bepaal de impuls Van de buis.

1. 1mpuls~lans voor een stromende vloeistof.

Duwen we tegen een vast lichaam of vegen we b,v , met een bezem in een plas wa­

ter~ dan is in beide gevallen het gevolg van de kracht die we uitoefenen een

beweging van de materie.

Door toepassing van de balansvergelijking van de impuls kunnen we een relatie

leggen tussen de uitgeoefende kracht en de beweging van de materie. .

Uitwerking van de behoudswet van impuls voor een bepaalde hoeveelheid materie

levert:

I.
..J.
p = 0, als er geen krachten op de materie werken.

de verandering van impuls per tijd~eenheid is gelijk aan de

som van de krachten, die op de materie werken.

Hl.

als twee hoeveelheden materie a en b alleen onderling een wis­

selwerking hebben, dan is de imp~lsverandering per tijdseen­

heid van de mat.erie a t .g.v. de '\olisselwerkingmet de mat enfe b

gelijk van grootte doch tegengesteld gericht als de impulsver­

andering per tijdseenheid van de mat.er-Let t .g,v , de materie at
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In de eenheden 4 en vooral 5 is dieper op de behoudswet van impuls ingegaan.

We behandelen nu eerst een niet-stationaire stroming van een homogene ideale

vloeistof door een cilindrische buis met starre wanden.

In hoofdstuk 11 van deze eenheid hebben we voor een dergelijke vorm de behouds­

wet van massa afgeleid voor een vast ruimtelijk g~bied hetgeen resulteerde in

een gelijke massastroom S(t) = p Q(t) voor elk tijdstip t door elke

snede. A I

Aangez~en het oppervlak A van de

dwarsdoorsnede voor elke ~ gelijk
\
\is zal de gemiddelde snelheid vol­

gend ui~ -~ = v(t) ook niet vanA

,

l( afhangen.

We kulmen dus ook .eggen dat op

elk tijdstip telkens de snelheid van de vloeistofdeeltjes in elke doorsnede ge­

lijk is.

We beschouwen nu de impulsverandering in de tijd van de bewegende vloe~stof i~

een balansgebied VI begrensd door de starre wanden van de buis en de vast geko~

zen dwarsdoorsnedes Al en A2 loodrecht op de asrichting van de fig. 10).

H A% !A~,~~~~~~~-
_. -
~

---+---te~~r;._"""--:I't-"""'-t--t>o)(

1'1,.,1---------------- ----,.l
I I lIJ

We kunnen nu niet zondermeer de tweede wet v-anNewton (p = EF) op het balansge­

bied VI toepassen, aangezien zich t.g.v. de stroming niet steeds dezelfde massa

in Vl bevindt.

In het tijdsinterval (t. t + t.t)is de gearceerde materie M (fig. 10 en 11) over

een afstandje- verplaatst, en deze bevat wel steeds dezelfde deeltjes, dus daarop

mogen we de tweede wet van Newton wel toepassen. We zoeken nu dus een relatie

tussen de impulsvenandering van VI en die van de gearceerde vloeistof M.
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•Op tijdstip t is de snelheid van de vloeistof (ftg. 10) in de gehele buis~. en
-+ -+dus ook in het balansgebied V1 gelijk aan vet) = vet) ex.

De impulsvoorraad van V1 is dan

(1·~)

Op tijdstip t + At (fig. 11) is de snelheid van de vloeistof in de gehele
• -+( ) ( -+bU1s V t + At = v t + At)e •x

De impulsvoorraad van VI is dan

(13) •

-+Noemen we de ~mpuls van de gearceerde vloeistof M op t + At: PM(t + At), de

impuls van de ~)oeistof, die dan wel in.Vl is, maar niet tot M behoort
-+ • .
p (t + At) en de 1mpuls van de vloeistof die wel tot M ~ehoort maar nieta
meer in VI is Pb(t + .Ü) (zie fig. 11)t dan kunnen we de impulsvoorraad van

VI op t + At schrijven als:

(140'

-+ .
Merk op dat PM(t + At) de impuls op t + At is van dezelfde vloeistofdeeltjes,

die zich op tijdstip t in het balansgebied VI bevonden.

De deeltjes zijn echter in het tijdsinterval (t,t + At) verplaatst met een ge­

middelde snelheid (als At klein is):

;Ct) + ~(t + At) = ~(t + aAt) = vet + aAtf·~
2 x met 0 < a < 1 (15)

zodat ze over een afstand Ax = vet + aAt).At verplaatst zijn.

• -+ -+
Voor de verander1ng Plet + At) - Plet) van de impulsvoorraad in het balansge-

bied V~ geldt dus:

. (16)

Oftewel deze is gelijk aan de impulsverandering van de gearceerde vloeistof

plus de impuls Pa minus de impuls Pb op t + At.

Met (15) volgt uit fig. 11 dat de impuls p (t + At) gelijk is aan:a
-+ -+ -+
p (t + At) = m vet + At) = P A Ax.v(t + At)a a

-+= p A vet + aót) vet + At) At (17 )
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-+
Hetzelfde geldt voor: Pb(t + ~t).

Teneinde hieraan een fysische betekenis te geven, beschouwen we de impuls
-+
PI2(t, t + ~t) van de door Al van V2 naar VI gestroomde materie in het tijds-

interval (t, t + ~t).

Deze hoeveelheid impuls is gelijk aan:

-+- -+- ...
~12(t, t + ~t) = m12(t, t + ~t) • vet, t + ~t)

:: p A vet + a.~t).~t. vet + 4.~t) •

...
Deze is dus niet precies gelijk aan p (zie fig. 17) want het verschil isa

-+ ... _v-élv 2 3
Pa - P12 ::p A (1 - Cl) v(t-)at (~t) + O(~t) •

Studievraag 10.18: Toondit aan door beide impulsen in een Taylor-reeks te
ontunkke Len,

Als we nu ~t erg klein nemen dan mogen we het verschil verwaarlozen, zodat ui~
... ...

(16) volgt (voor Pb en P3I geldt hetzelfde) dat de impulsverandering van het

balansgebied V1 gelijk is aan de impulsverandering van de gearceerde vloeistof

plus de ingestroomde impuls minus de uitgestroomde impuls.

Dus:

-+ ...
Nu geldt dat P12(t, t + ~t) ::P31(t, t + 8t), dus verandering van de impuls-

voorraad in het balansgebied is gelijk aan de impulsverandering van de gearceer­

de vloeistof.

Noot: In het geval van een variabel oppervlak van de dwarsdoorsnede langs de. ...
bUl.sas levert P12(t, t,+ ~t) - P3I(t, t + ~t) wel een bijdrage. zoals

in de volgende paragraaf zal blijken.

Nu hebben we reeds opgemerkt, dat we op de gearceerde vloeistof Newton 2 wel

mogen toepassen, dus voor de impulsverandering per tijdseenheid van VI geldt,

dat:

... ..;..
lim Plet + ~t) - Pl(t)
~H() ~t :: '\-rL . op V

s



-1028-

oftewel:

IFop V
s

(19)-dt
Aangezien we L\tzeer klein nemen, geldt bij benader.ing~ dat de krachten op Vs
dezelfde zijn als die op Vl' Op dezelfde wijze als bij de instroming kunnen

we aantonen, dat we tweede orde termen in L\tverwaarlozen nl.
+ . 2
Cp = F(t + L\t) L\t = F(t) L\t + ü(Ät) ), zodat we voor (19) kunnen schrijven:

(20)

De verandering per tijdseenheid van de irnpulsvoorraad in V1 is gelijk aan de

som van de krachten die op Vl werken.

Noot: In het geval dat de in- en uitgestroomde impuls niet gelijk zijn

luidt (20)

t{l,D .E Fop

t dus:

+ lim Pin V -Puit VV . 1 1
1 ~do : -At

Dit zullen we in de volgende paragraaf gebruiken.
De op Vi werkende krachten zijn: (zie ook eenheid 9).

1. In de begrenzingen van V1 werkt de inwendige spanning in de vorm van de

isotrope druk, die als oppervlaktekracht in rekening wordt gebracht.

2. Door de zwaar-tekr-acht; wordt impuls tussen de aarde en de materie in V1 over­

gedragen, die als volumenkracht in rekening wordt gebracht.

Daar we de impulsverandering per'tijdseenheid in de as-richting beschouwd

hebben, zijn ook alleen de krachtcompónenten in die richting van belang.

Overdracht van impuls door drukspanninge~

In ieder van de dwarsprofielen werkt een interaktie door de inwendige spanningen.

De spanning is isotroop (wet van Pasc:al) (zie inleiding IV), en dus volgt dat de

werklijn van die interaktie loodrecht staat op de dwarsdoorsnedes,
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In Al werkt "dan de kracht i\ = PI A ~x en in A2 de kracht F2 = - P2 A ~x' (21)

als P1 en P2 de drukken zijn in de doorsnedes Al resp. A2 van buitenaf (V2 en V3)

op de vloeistof binnen VI'

Overdracht van x-gerichte impuls door de zwa~tekr#cht,

Veronderstel dat de buisas en de richting

van de zwaartekracht een hoek a. met elkaar

maken (fig. 12). De gravitatie wisselwer­

king tussen de massa in het balansgebied

en de aarde geeft een kracht op de massa

Fg -met
-ê-

g =
,

'I.

van

De component in de x-richting is dan gelijk

aan:

-+- -+-= - pAt g Ce ~e ,)z x
( 22)

(De x I+as en de z-as staan niet Loodr-echt op eLkaar- ) •

Combinatie van (20), (21) en (22) geeft de impuls balansvergelijking voor VI

in de xi-richting:

(23 )

Nu volgt met (12) en (13), dat:

-+- + -+-
d P Plet + öt) - Plet)1 lim- - _::...-------- =.
dt - .it+O L:.t

Uitwerking van (23) geeft dan;

(24)

-+- +-,
Hierin is 9..( e .e I) nog te schrijven alsz x
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waarin' zl en .z2 de z-coördinaten van de middelpunten van de dwarsdoorsnedes

Al en A2 zijn.

Deling van (24) door p g A geeft tenslotte:

1i':.
g dt

P2
(- + z2) =pg

(25 )

Vergelijking (25) geeft dus aan dat er voor een cilindrische starre buis,

waardoor een homogene ideale vloeistof stroomt een relatie bestaat tussen de

stijghoogteverschillen over de buis en de impulsverandering per tijdseenheid

van de vloeistof in de buis.

Opmerkingen: In eenheid 9 is de stijghoogte voor een stilstaande vloeistof
'n,- 0
1:':. - a

in een open vat gedefinieerd als h = + z.pg
In vgl. (25) worden stijghoogteverschillen beschouwd dus vallen

Pa
de terrnen- weg (0 = atmosferische druk) .. pg ~a
Merk op dat de gemiddelde snelheid van de vloeistof in- en uit-

stz-omi.ng v( t + c.M) voor M+O naar v(t ) gaat.

Studiev~aag 10.19.: Bepaal in het geval van f~g. 12 de snelheid van de vloei­

stof na 3 seconden, als de vloeistof op t=O in rust was.
3Gegevens: Ol z: 7T16~ t z: 100 [mL. p = 1000 [kglm L A z: 0,1

[m2J.. PI z: P2 = Pa en g = 10 [m/s2].

V.III Vergelijking va.nBernoulli

Hebben we in het voorgaande een impulsbalans voor een cilindrische buis opge­

steld, nu gaan we hetzelfde doen voor een buis, waarvan de wanden weer star

zijn, maar het oppervlak van de dwarsdoorsnede langs de rechte buisas variërt.

In de buis bevindt zich een homogene ideale vloeistof en de stroming is niet-

stationair. Ook voor deze buisvorm is in
.A2.
!

I
-\h _.,

I

H.II afgeleid~ dat voor èlk tijdstip t de

massastroom dus ook het debiet door elke

dwarsdoorsnede van de buis gelijk is. We

beschouwen de impulsverandering in de tijd

in de as-richting van de buis van de bewe-
.1

.P'!_ I! gende vloeistof in het balansgebied Vl'

Nu geldt voor een tijdstip t~ dat het debiet in elke dwarsdoorsnede van de buis

gelijk is. Aangezien het opper-vLax van Ciedwar-sdoor-snedeA van de bu is een funktL
-'v-

van K is~ zal nu ook de snelheid v van de v.Loei stof van lC afhangen ..De snelheid



is tevéns een. funkt ie van t, daar de stroming niet-stationair is. Dus er geldt,
+ +dat v = v(x,t).

Als de buis geleidelijk dunner Hordt, dan kunnen we bij benaderling aannemen, dat
o

de x-componenten van de snelheden van de vloeistfdeeltjes over de dwarsdoorsnede

gelijk zijn.
--I- +

Dus er geldt, dat v = v(x,t)e over de dwarsdoorsnede gelijk is.
x

Daar de snelheid :t = vïx ,t ) ~x van de plaats x afhangt, kunnen we niet het gehele

gebied V1 beschouwen, maar-delen we het gebied op in balansgebiedjes met lengte

~ ter plaatse van elke x. Eén zo'n gebiedje is getekend in fig. 13.

14 afgebeeld op een grotere schaal voor x.
~~

Op tijdstip t (fig. 14) is de snelheid van de vloeistof in de dwarsdoorsnede

ter plaatse van X gelijk aan ,k)C JO t ) = v()C,t)~ . De snelheden in de doorsnedes
+ 1 + x 1

AL en AR zijn dan resp. vCX - 2 ~Xtt) en v(x + 2 Ax~t).

De Ircpu Lsvoor-raad in de x-r-Lcht.i.ng van het balansgebiedje VM gevormd door AL'

AR en de star-re I-!andenis dan:

(26)

In het tijdsinterval (t~ t + Llt) (bt klein) stroomt er door AL vloeistof in

het balansgebied met een gemiddelde snelheid van:

+ +
v(x - 1/2 Ax,t) + v()C - 1/2 Ax..t T l1t) =

2
+v{x - 1/2 àx s t + aAt)

O<a<l.

Evenzo stroomt er door AR vZoeistof uit het ~alansgebied met een gemiddelde snel­

heid van:



V-+,.._ . 1 A )
V'o + ':'2' ux,t + at

o < a < 1

De snelheden van in- en uitstroming zijn dus ongelijk en dientengevolge zullen

er links en rechts verschillende hoeveelheden impuls in en uit het balansge­

bied stromen. We noemen de impulsvoorraad van het balansgebied VM op t + At
-+
PICt + At), de in het tijdsinterval Ct, t +: At) in en uit gestroomde impuls
-+ -+
PLM resp. P~11 .

Nu hebben we in H.IV.II aangetoond, dat we de impulsbalans voor het balansge­

bied VM mogen opstellen, mits we rekening houden met de links en rechts inge­

stroomde impuls.

Uit (18)volgdedat (zie ook (20»:

+
Fop

Oftewel

-+
d PI l + lim_- F +
dt - op Vl L\.t+O

+ +
PLM(t,t +- fot) - PRM(t,t +- 6.t)

At (27 )

1Door de doorsnede AL waarin de gemiddelde snelheid v(le'- "2 fox,t + a6.t) heerst,
. 1

stroomt in het tijdsinterval (t, t + At) een hoeveelheid massa 6.m .= p A(~ - 2 ~).
+

heeft een impuls PLM(t,t + 6.t) = SLOv(X , t + aAt). At = 8L .At naar V • Deze massa, m
~(x - ~ me,t : a.ó.t)illt,

We noemen SL'v(x -"2 Ax,t +- aAt) de impulsst~oom door 'AL'

• . 4o( rt ) -+( 1 )Evenzo stroomt u~t VM via AR een ~mpuls PRM t~t + 8t = SR'v X + 2 ~,t + aAt .6.t

Substitutie in (27) geeft

lim ...... 1 + 1
+ At~O { SL v~ - 2 Ax,t + a6.t) - SR v(~ + 26.x,t + allt) l.

( 28)

Nu is in H.II aangetoond dat op een tijdstip t de massastroom van een homogene,
ideale vloeistof in elke doorsnede gelijk is, dus SL = SR = S. Zodat (28) te

schrijven is als:
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-+ -+ 1
F + S { v(~ - -2 l>x,t)
op Vi ( 29)~(.... + .t: 1l.xt \)}.... 2 • ,

Voor 1l.xzeer klein geldt tenslotte, dat

-+ -+
v(,lt- 1/2 flx,t) - v(X + 1/2 1l.x,t) =

llx

-+dV(X, t)
()x

zodat (29) met S ::: p ACx) v(x,t) te schrij-ven is ais:

(30)

Oftewel de verandering van de impulsvoorraad in het balansgebied VM is gelijk

aan de impulsverandering ten gevolge van de op de vloeistof werkende krachten

plus de som van de impulsstromen van de in- en uitgestroomde Yloeistof posi­

tief gerekend naar VM toe.

Veronderstellen we de doorsnede nu weer even constant, oftewel de snelheid on­

afhankelijk vanx, dan verkrijgen we weer het resultaat (20).

Overdracht van x-~erichte impuls door drukspanningen •.

Á.... A- --r-:-___ ~, R
/_---~
_'/ ,

.--

De Lnv..endige druk in de vloeistof is weer isotroop

(wet van Pascal).

Noemen we de druk in doorsnede X p(X) en bet oppervlak
,

van de dwar-sdoor-snede A(x') ~ dan geldt -in dwarsdoorsne­
- 1

è.e AL voor de dr-uk PL =: p(X - '2 Ax.) en voor het opper-

vl.ak A{:;t: - ; t:.x). Evenzo geldt in de dwarsdoorsnede ~
1 1

dat PR :: p(x 1- 2' Ax) en A(x 1- "2 llx).

In dwarsdoorsnede AL werkt dan de kracht:

Evenzo werkt in dwarsdoorsnede AR een kracht

-+ 1 1-+F =: - p~ + -2llx). A(~ 1- - Ax) e op VM •R 2 x _



Zodat de resulterende kracht op VM gelijk is aan

-+
F
P

= FL 1" FR = { p('X - ~ ~x) A(k - ~ tsx ) - p(x + ~ àx}, A(')C + ~ 6x) } -+ex

Aangezien t.K klein is volgt, dat

Fp = { - A(X) ~ ~ - p(x) ~~ t.x } ~x (31)

Daarmee zijn echter niet alle drukkrachtt -componenten in de x-richting op

het balansgebied beschouwd.

De buiswanden lopen namelijk niet evenwijdig aan de x-as en zullen daarom een

component in de x-richting leveren.

Daar de druk isotroop is~ oftewel in elk punt heerst in alle richtingen dezelf­

de druk en we alleen geïnteresseerd zijn in de x-component van de door de druk

geleverde kracht, beschouwen
Àt. A~

<4(;;;;;;~ ..

we de druk in de x~richting. (zie fig. 16).

Over de lengte ~ varieert de druk van
J 1 .

pUc - 2~)tot p(x + 2AK), zodat voor klei-

oe Ax de gemiddelde druk over de buis wand ge-
_ A (lC"ibJC) 1 1

I " ok . p(X - "'T !i:Jc) + poe + :z áx ) ,..;)
... X ~] l:S aan - 2 - -- = PIA

De kracht die deze druk op de vloeistof uit­

oefend is gelijk aan:

-+
ex

We zijn alleen gein·teresseerd in de kracht in

de x-richting. Aangezien de kracht gelijk is

aan de druk maal het oppervlak loodrecht op de

richting van de druk is,

A(x - 1t.x) - A(X' + l ~2 2
Hetgeen te schrijven is als:

en dit oppervlak loodrecht op de x-richting gelijk is aan
• • -+volgt bovenstaande u~tdrukk1ng voor F •

w

f = + p(;.e) ~ Ax ~w dX x (32)

Opmerking: Dit is ook te berekenen door de kracht te bepalen, die loodrecht op

de buiswanden staat en daarvan de x-component tè nemen.

Gezamenlijk leveren àe drukkrachten, àus (31) + (32)~
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(33)

Overdracht van x'-gerichte impuls door de zwaartekracht.

Veronderstel dat de buisas en de richting van de

zwa~~tekracht een hoek'a met elkaar maken. (Dus

de z-as staat niet loodrecht op de x'-as!). Dan

geeft de gravitatie wisselwerking met de aarde een

kracht op de massa in het balansgebied van (zie
, - _ l(I

~A fig. 17).

-..

z
t
!

-+
Fg

-ê-
::: p A (x t) IJ.X'.g

->-
g = -+- g ezmet

De component in de x'-richting is dan gelijk aan:

-+ -+F I ::: - p A(x'). roe I. g( e •e,)
X z x

Nu geldt dat:

-+ -+(e .e ,) = - eosaz x

Uit fig. 18 blijkt dat

Z -z
~.(~ I

1 z()('+ ~- !::.x')=L R - Z b.x') -
eosa ::: xi =x! IJ.x'

R L

dZ ( !::.x'klein) •::: - "äXï voor

Dus F ACx' ) Ä."lC I .g. -dZ= - P 3xl .
xt

(34)

De som van de krachten in de x'-richting op VM is dan (33), (34) :

IFop { - A(X ') ~IJ.' A()c' ) dZ -+
::: - p 1J.1C'g- ) e

V1 axl x ax' _ XI

Substitutie in de impulsbalans (30) geeft dan

dt
{ - A (X ') ~ ll.x I - P A( x ,) t"x! g ~ }

êx' ox' - o A(x I) IJ.x' v(x~t) aV(x~t)
ax'

-+ex
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Met dd:1 = p A(xi) àx ' av(~~t) volgt dan na delen door A(K') t1X' dat:

2a v (x ~t) }äXï { p + pgz T p 2 (35)

In (35) staat in het linkerlid de impuls per volumeneenheid, wat ook wel de

impulsdichtheid wordt genoemd.

In woorden luidt (35):

De impulsdichtheidsverandering per tijdseenheid van het balansgebied met leng­

te ~' is gelijk aan de negatieve waarde van de verandering over de lengte ~'

van,de som van invloeden van druk t zwaartekracht en impulsdichtheids,stromen.

Vergelijking (3:5) geldt voor een niet-stationaire stroming van een homogene

ideale vloeistof door een buis met starre wanden.

Veronderstellen we de stroming stationair oftewel de snelheid ~ is onafhanke­

lijk van de tijd. dan volgt uit (35), dat:

a v2
- ~ (p + pgz + p~ ) = 0

oftewel integratie geeft:

2v
p + cgz + P"2 constant (36)

Dit geldt in de lengterichting van de buis.

Vergelijking (36) is een bijzonder geval van de stelling van Berooulli, terwijl

(35) een bijzonder geval is van wat de vergelijking van Euler-Bernoulli genoemd

kan worden. We hebben hier-te maken. met bijzondere ge-vallen, aangezien we werken

met het model van de homogene ideale vloeistof. Voor een vloeistof, waaraan we

deze restricties niet stellen wor-den de vergelijkingen uitgebreider.

In eenheid 9 is de stijghoogte h gedefinieerd als:

h = + z

Daar p (de atmosferische druk) constant verondersteld is kan (35) geschrevena
worden als:

P dV(~~t)
at

2= _ pg a {h T v (xl!l }axr 2g (37)
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I
We definiëren nu.als stuwhoogte H ter plaatse van doorsnede X op tijdstip t

p('J('} - Pa + v2(x,'t):: - - z(x'} + ~...;.;._...._--
pg 2g

zodat (37) te schrijv~n is als:

av{x ~t) ::
P at

aH{X~t)- pg _
ox' (38)

en (36) als we te maken hebben met stationaire stroming: pg H(Kt) :: constant.;

in de langsrichting van de buis.

Daar pen, g constant zi-jnt kunnen we in geval van stationaire stroming ook zeg­

gen, dat de stuwhoogte in de langsrichting van de buis constant is.

Studievraag 10.20: Bepaal,de velat-ie tussen de vergelijkingen (25) en (35).

z,_ -1-~ ~....:i:._~!_:A...
Studievraag 10.21:

\
.. -=i- .... 1-··
Ol

)(..T ---._-"..

In bovenstaande starre buis stroomt een homogeneideale
vZoeistof 8tatiol~ir. In dbopsnede Al meten we een druk
p1 en in doorsnede A2 een druk. p2'
DX'Ukde enelheid in doorsnede A1 uit in het gemeten drukver­
schil. (Maakgebruik van de volumenbal-ansl),



Traagheid

Duwen we tegen een slede, die op het ijs staat, dan zal de slede bij het los­

laten ervan niet plotseling stoppen, echter nog geruime tijd verder bewegen

alvorens tot stilstand te komen.

Bij het aanduwen van een slingerende schommel hangt het van het moment van du­

wen af hoe groot de kracht is die we moeten uitoefenen. Als de schommel naar

ons toebeweegt, moeten we veel harder duwen om de schommel van richting om te

keren,dan wanneer we even gewacht zouden hebben.

We weten allemaal wat er gebeurt als we in een auto zitten, waarvan de bestuur­

der plotseling op de rem gaat staan.

Newton merkte reeds op bij de formulering van zijn wetten. dat een massa in zijn

beweging volhardt als er geen krachten op werken, en als we de snelheid van een

massa willen veranderen, moeten we er een kracht op uitoefenen.

In een vloeistorstroming doet zich hetzelfde verschijnsel voor. Een vloeistof,

die in een buis naar rechts stroomt$ waarop een kracht naar links werkt zal eerst

nog een tijdje naar rechts stromen. alvorens van richting om te ke~en.

We noemen dit verschijnsel de traagheid (inertie) van de materie. Deze tra?gheid

gaan we nu voor een vloeistofstroming kwantLfi.cer-en •

•1 Traagheid van een rechte buis

We beschouwen in dit hoofdstuk niet-stationaire stromingen.

In hoofdstuk IV.II is voor een homogene ideale vloeistof, die niet stationair

door een cilindrische buis met starre wanden stroomt, de balansvergelijking voor
'Zeen vast gebied afgeleid. (zie fig. 18),

(39)

.1('

Deze Lui.dt (25):

waarin Jl. de lengte van de buis
d"voorstelt, dt de snelheidsver-

andering van de vloeistof in het

vaste gebied en (hl - h2) het

stijghoogteverschil tussen de dwarsprofielen Al en A2, We willen de traagheden

van meerdere buisvormen bepalen en daarvoor vergelijkbare uitdrukkingen krijgen.
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In buizen met een variabele dwarsdoorsnede langs de buisas is de snelheid tevens

een funktie van x~ terwijl het debiet Q(t) er niet van afhankelijk is. Aangezien

Q(t} onafhankelijk van x voor elke buisvorm geldt, schrijven we balansvergelij­

king (39) voor de cilir~drische buis als:

_! dQ = h h
gA dt 1 - 2

(40)

waarin A het oppervlak van de dwarsdoorsnede is.

We schrijven nu (40) als:

M dQ = h - h2
dt 1

(41)

waarin M

noemd.

Merk op dat we (41) ook kunnen schrijven als

Jl,= -- de traagheid van de rechte starre cilindrische buis wordt ge-gA

(42)

waarin Hl - H2 het stuwhoogteverschil tussen Al en A2 is.

Studievraag 10.22: VepkZaar ü)aarom (42) in dit geval volgt uit (41).

Studievraag 10.23: VepondersteZ dat de buisas loodrecht op de piahting van de

suaart ekracht: staat. Zal de traagheid van de buis dan ve:r­

andepen?

Studievraag 10.24: Twee eiZindPisohe buizen hebben hetzelfde voZume. Welke aiZin­

dr-ieche buie heeft de qrootiet:e tiraaqheid, de dunne lange of

de korte dikke?

Studievraag 10.25: Hoe groot is de traagheid van een rechte ciZindrisohe buis in

het geval van een stationaire stroming?

Studievraag 10.26: Zal voor een kanaal met constante waterhoogte en duaredoorene­
de, iaaax-in. een homogene ideale ul.aeietiof stroomt vgL. (41)

ook geZden?



de buisas variëert. We denken ons de

We beschouw.en nU,een rechte buis, met lengte t. waarvan de dwarsdoorsnede langs
Z

buis nu opgedeeld in n mootjes met

lengte 6X'. In hoofdstuk IV.III is

voor één zo'n mootje de Euler-Ber­

noulli vergelijking afgeleid (35).

Vgl. (35) luidt ~oor het balansge­

biedje tussen AL en AR en de star-

re wanden (zie. fig. 19). +,~.'S
2

P av(x;t) dx' :::__a__.{+ + v (x;t) } dX'at ax' p pgz p 2

Hetgeen te schrijven is als:

3H(X;t) bx'
ax'

4-l
!

I
Af· (43 )

. (44)

Willen we nu de buis als geheel beschouwen tussen de dwarsdoorsnedes Al en A2?
dan moeten we de invloed van alle mootjes tussen Al en A2 sommeren.

Om de traagheden van meerdere buisvormen te kunnen vergelijken, schrijven we

(44) a.l s ;

hx'
gA (x: ' )

dQe t) :::
dt

Sommatie van alle gebiedjes tussen x

gehele buis:

(x'=b) (x'=b)
n t.xL_ dQ( 1:) n

3H(Jc ~t)~ ::: - I + ll.x!L 'JACX! ) dt dX' 1-i::' .0 1- i=1
(x' =a) (x'=a)

(45)

:: a (Al)en K - b (Ar) geeft dan voor·de
L

(xf=b)
n

= - 2 t,H. (x~~t) = .. { H{ b,t) - H( ,\t) }
i:::1 1. 1-

(x'=a)

(46)
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Voor Ax!.j.O' is het linkerlid te schrijven. als:
1.

ra dQ(t)
dt

1. dx'gA(X' )

Aangezien dQ~~) onafhankelijk van~t is, is (45) te schrijven als:

rgA(;') dx ", ~~ = H(a,t) - H(b,t)
a

. (47)

Stellen we de doorsnede langs de buisas onafhankelijk van x' ,dan volgt uit

(47) dat:

.t dQ _
gA (ft - H(a,t)- H(~t), hetgeen het

resultaat (42) voor een rechte cilindrische buis is.

Schrijven we nu (47) als

M. dQ~~) = H(a.t) - H(b,t) (48)

dan volgt voor de traagheid M van de rechte buis met variërend dwarsprofiel

langs de buisas, dat

M = ~ r
a

1
A(x') àx' ( 1+9)

Studievraag 10.27: Bewijs dat de traagheid M van een stuk buis in de vo~ van
een afgekr~tte kegeL (voor a kZein) bij benadering getijk

is aan

ft! = _1-:--n_
grrtg2a
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•11 Traagheid van gekromde buizen.

In het voorgaande hebben we ons gericht op de bepaling van de traagheden van

buizen, waarvan de buisas geen krommingen vertoonde. In de praktijk zijn ech­

ter in een buizenstelsel vaak gekrowde buisstukken aanwezig.

Teneinde de invloed van de kromming van een buis op de traagheid ervan na te

gaan, beschouwen we een bocbtstuk met kromtestraal R van een buis met starre

wanden en overal dezelfde dwarsdoorsnede. Door de buis.stroomt stationair een

homogene ideale vloeistof.

De plaatscoördinaat langs

de buisas noemen we s. We

denken het boch~tuk weer

opgedeeld in n mootjes

met lengte /ls.

We beschouwen weer het

bala~gebiedje tussen de

dwarsprofielen AL en AR

en de starre wanden. Al-

vorens op de traagheid van

de buis in te gaans volgen

we even de vloeistof Muit

het balansgebiedje in de

tijd.

We definiëren de eenheids-
-+ d'vector et langs e bu~sas

in de richting van de stro­

ming en de eenheidsvector
-è-
e loodrecht op de buisas
r

gericht naar het kromte-

middelpunt •

ij
{ k ro""t e rm'da.al pûn't

Op tijdstip t is de impuls van de massa in het baiansgebiedje(zie fig. 21)

-+ . -+ -+
ptt) = p.A.lls.v(t) = p A /lsv(s) et(t)

Op tijdstip t + Ót is de materie M in de buis een stukje opgeschoven.
-+

De irr.pulsis dan (de grootte van v is constant, want we hebben een stationaire

stroom)

-+ -+
pet + /lt) = p A As vet + At) = p A As v(s) : (t + At)t



De LrnpuLsver-ander-Lngvan de gevolgde massa is per tijdseenheid:

+Q(t + ~t) - pCt)
~t (50)

+
~e.e

I'

en txe = I~tI.a = 1
~s
R

In het limietgeval wordt(SO)dan

-ë-

A v(s):!E. lim Ils= pdt R IlNO ilt

Nu is lim ~s
ves}=6H'O llt

Dus volgens de tweede wet van Newton is de kracht op de lvoeistofmassa in het

balansgebiedje gelijk aan:

-+ v2(s)F=pA----.;..
R

-+e
I'

( 51-)

M.a.w. er werkt een kracht op de vlceistof loodrecht op de buisas in de richting

van het kromtemiddelpunt.

Deze kracht kan alleen geleverd worden door de wanden in de vorm van een'drukver­

schil. dus w'e kunnen concluderen dat de druk in de buitenbocht van de buis hoger

zal zijn dan in de binnenbocht.

(Voor'de mensen, die eenheid 5 reeds bestudeerd bebben is (51) de bekende centri­

petale kracht).

In de richting van de buisas treden dus geen k-rachten op t.g .v. de richting~ver­

andering van de stroming.

Beschouwen we nu een niet-stationaire stroming door de buis, dan kunnen we uit

bovens taande concluderen dat ir.de richtinjl van de buisas de Euler-Bernpulli ver­

gelijking die voor een rechte buis is afgeleid voor een mootje ook hier geldt.

Dus voor het balansgebiedje tussen de vaste dwarsprofielen AL en AR en de starre

wanden (zie fig. 20) geldt in de asrichting van de buis:

av(s,t) =
P at

a
as ( 52)
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We kûnnen dus conéluderen, dat indien de gemiddelde snelheid van de vlo~istof­

stroming in een dwarsdoorsnede steeds gericht blijft langs de buisas, de ver­

gelijking van Eul~-Bernoulli (52) blijft gelden voor een kromme buis.

Studievraag 10.28:" Doo~ een bochtstuk van een cilindrische buis waarvoor ~ = 10

stPOomt een homogene ideale vLoeistof met een debiet
3 3Q = l[m Isl. PVL = lOOO[kg/m ].

. 2
Als het oppervlak van de doorsnede A = O,5[m ] is, bepaal

dan het drukverschil over de doorsnede.

D is de diameter van de buis.

Studievraag 10.29: Als A een funktie is van s hoe luidt dan vgl. (52)

We concludêren, dus dat de traagheid van een licht gekromde buis weinig zal

afwijken van die van een rechte buis.

Studievraag 10.30: Bepaal de traagheid van een bochtstuk van een buie in·ge­

val van niet-stationaire stroming. Beschouw de gevallen

.van een constante dioaredoorenede en niet-constante duare­

doorsnede .

. 11 Combinaties van bergende vaten en leidingen.

In hoofdstuk 11 hebben we de massabalans van een leiding (kanaal) bepaald, die

gelegen was tussen twee bergende vaten (meertjes). Daarna hebben we ons beperkt

tot het beschouwen van leidingen waarî,n en waar-ui.t vloeistof stroomde zonder

ons af te vr-agen waar deze vloeistof vandaan kwam of waar deze bleef. We hebben

drukverschille~ over de leidingen verondersteld, zonder na te gaan hoe deze ont­

stonden.

Om nu dit onvolledige beeld van de Vloeistofstron:ing door een leiding te comple­

teren, beschouwen we een combinatie van het in eenheid 9 geïntroduceerde bergende

vat en een leiding.

De vloeistof in de configu­

ratie veronderstellen we

weer ideaals en de buis- en

vat, ..anden star. zodat het 'lat

alleen een gr-avitat.Leber-g ing



heeft. en de berging van de leiding nul is (zie eenheid 9). Boven het vrije

vloeistofoppervlak van het vat, hee:r:stde atmosferische druk p •a
We onderscheiden nu de volgende drie gebieden in de configuratie naar gelang de
bewegingstoestand van de vloeistof, die er zich bevindt.

Het vat '11 met uitzondering van het gebied dat de toegang vormt tot de buis.

In VI is de vloeistof min of mee:r:in rust.

- De buis V3 waarin de vloeistof stroomt.

- Een gebiedje V2, dat het overgangsgebied vormt tussen het vat VI en de buis

V3' De vloeistof hierin stroomt nog aanmer-ke.Li j k ,

We ver-ond er-steLleride buis relatief nauw t.o.v. het vat VI' d.w.z • dat het vo­

lumen per eenheid van lengte van de buis klein is t.O.V. die van het vat.

We beschouwen eerst het geval, dat er in de buis een stationaire stroming in

de x-richting plaats heeft, m.a.w. de snelheid in de cilindrische buis is con-

stant.

Meten He de snelheid in het gebied V2' .dan zal deze afnemen, naarmate we 0ns

verder van de toegang van V3 verwijderen, aangezien het stroomvoerend oppervlak

STeeds toeneemt. (De snelheid neemt snel af).

Op een gegeven plaats (b.v. grens V1 V2) is de gemeten snelheid verwaarloosbaar

klein d.w.z. dat we kunnen veronderstellen, dat de vloeistof in het gebied V1

nagenoeg in rust is.

Voor een der'gelijke situatie hebben we in eenheid 9 aangetoond, dat dan de stijg­

hoogte in het vat VI:

p - Pa
pgh - + Z constant is

DOOl" een verband te bepalen tussen de zakking van het vloeistofoppervlak t.h

per tijdseenheid t.t en de massastY'oom door het oppervlak volgde de relatie.

dhwaarin B het bergend opper·vlak van het vat voorstelt en dt de verandering van

de stijghoogte per tijdseenheid in het vat t.g.v , het uitgestroomde constante

debiet: Q.



Studievraag_ 10.3J.; A Le

vat
Q = 031 {m3/s] in het vat stpoomt,het oppepv7,akvan het
1000[m21 is, bepaal, dan de uerandeirinq van de stijghoogte

peP seconde.

We beschouwen nu een niet-stationaire stroming in de x-richting door de buis.

M.a.w. het debiet en de snelheid zijn een funktie van de tijd.

Voor een dergelij ke stroming is in deze eenheid afgeleid, (zie vgl. 41), dat het

stijghoogteverschil over de buis bepaald wordt door

áh M 2.,g,
buis = at (53 )

iMet M = gA de traagheid van de buis

Noemen we de stijghoogte t.p.v. de grens VI V2 h12, t,p.v. de grens V2 V3 h23 en

die aan het eind van de buis h3 dan is (53) te schrijven als

h = M aQ
3 at (54 )

Voor-het vat VI blijft dezelfde redenering t.a.v. de berging ervan gelden zoals

eerder opgezet~ ondanks het feit dat net debiet Q een funktie van de tijd is,

dus

dh12
B ""dt = Q(t) (55)

Echter nu het debiet ook Lr; het vat varieert in de tijd, zal ook het vat een

traagheid bezitten, Aangezien de traagheid M van een leiding gelijk is aan de

lengte dIk h d'en het stroomvoeren opperva' van et vat zeet'groot t.o,v. l.e
g.oppervlak

van de buis is de traagheid van het vat te verwaarlozen.

Eigenlijk volgt dit al uit de redenering t.a.v. de constante stijghoogte over

VI' want stel dat het vat een significeûte traagheid zou hebben, dan zouden er

ook stijghoogteverschillen over VI moeten bestaan.

M.a,w. we kunnen de redenering ook omdraaien en uit de kleine traagheid van het

vat concluderen, dat de stijghoogte in het vat op elk tijdstip overal in het vat

gelijk is en daaruit de bergingsvergelijking afleiden.

Om nu een relatie te leggen tussen het gebied VI en V3 beschouwen we het gebiéd

V2'
In dit gebied hebben we niet met een rusttoestand zoals in VI te maken en ook
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niet helemaa1 met,,een stromingstoestand zoals in V3·
In bet geval, dat de lengte van de buis V3 groot is t .o :v , het oppervlak van

de dwarsdoorsnede en deze klein is t.o.v. van het vat, kunnen we bij benade-

ring concluderen, (V,_ is dus op te vatten als een vrij kort stuk buis met va-

riërende diameter) dat'de traagheid van het gebied V 2 verwaarloosbaar is t vovv ,

die van V3 nl. M = f :~' en de lengte van V2 is klein t.o.v. die van V3, ter­

wijl het stroomvoerend oppervlak van V2 niet kleiner is dan die van VI' Daar V2

een vast gekozen gebied is heeft V2 geen bergende eigenschappen. Over V3 geldt:

M ~~ = - l\H.

We kunnen dus concluderen, dat het stuwhoogteverschil over'V2 bij benadering nul

zal zijn.

Opmerking: Als de instroomopening van Vi niet klein is t.o.v, het vat en de

lengte van V3 niet groot is t.O.V. zijn dwarsdoorsnede. dan mogen

we de traagheid van V2 niet verwaarlozen.

Resumerend kunnen we dus stellen dat voor het vat geldt

dH_2
B __L = Q(t)

dt (56 )

(de snelheid in het vat is ongeveer nul).

en voor de buis

dQ
:: N 'dt (57 )

In het-geval) dat ,de stuwhoogte in de rechter uitgang van de buis constant is

dan volgt door differentiatie van (56) en substitutitie in (57) dat voor het

debiet in de configuratie geldt
')_a"Q'

BM - Q(t) = J
a.t2

Op o.a. deze lineaire differen'ciaalvergelijking komen we in eenheid 13 terug.

Studievraag_lO.32: Zet zelf een redenering op voor het geval de buis geen con­

stante diamet-er dus A z: A(x), heeft.



• IV SLOT

In deze eenheid is steeds gewerkt met vloeistoffen, waar'van de inwendige schuif­

spanningen verwaarloosbaar zijn.

In vele praktische'problemen geeft dit geïdealiseerde model snel een globaal

inzicht in de stroming van een vloeistof.

Echter in het algemeen hebben vloeistoffen wel een inwendige wrijving en onder­

vinden ze v~ijvingskrachten van de wanden waar ze langs stromen.

Teneinde dus een kwantitatief beter beeld te'verkrijgen van de stroming en voor­

al stromingswijze ·(turbulent of laminair), zullen we rekening moeten houden met

de genoemde schuifspanningen.

Dit completere beeld van de vloeistofs~roming zullen we in eenheid 11 behandelen.
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APPEND'ix VLOEI STOFDEEL TJE. (AANBEVOLEN} WORDT NIET GETOETST).

In de eenheid hebben we het begrip vloeistofdeeltje nogal gevoelsmatig geintro­

duceerd. We verstonden er een pakketje vloeistof onder, waarvan de afmetingen

werden bepaald door de warmtebeweging van de molukulen en de beschrijving van

turbulentie in een stroming.

We willen hier nu nagaan hoe we zuLk een pakketj e kunnen bepalen, uitgaand e van

het meer gedetailleerde molekulair~ model.

Studieopgave: Teneinde "de volgende stof beter te begrijpen adv.iser-en wij U de

paragrafen over "statische mechanicall en ideaal gas" in deel Ir
van het collegedictaat algemene natuurkunde Cc-la) te herlezen.

De molekuien in een gas of vloeistof hebben ten gevolge van hun inwendige energie

(warmte) een onregelmatige beweging. We beschouwen nu alleen de x-cQmp6nent van

de beweging van de rnolekulen in een vloeistofstroming en stellen daarvan de kans­

dichtheidsfunktie op.

Deze funktie geeft aan met welke waarschijnlijkheid molukulen een snelheid,aanne­

men die ligt tussn v en v + dv '~'
X- x x

Deze waarschijnlijkheid is bij een ideaal gas en bij benadering voor een vloei~

stof normaal verdeeld, d.w.z. hij wordt voorgesteld door een kromme van Gauss.

Çlv~)(zie fig. 1) In formulevorm:
(v - jl)2

x
e

waarin ~ en crconstanten zijn,

waarvan de betekenis hieronder

blijkt

Uit deze verdeling bepalen we de verwachtingswaarde van de snelheid van een molu­

kuul in de x-richting. 'I-1evinden

~ = E {v } = lr+~v f(v )dv, (vaak gemiddelde snelheid genoemd).
x x x X-co •
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Vervolge'ns bepaLen we ook de standaardafwijking die bepaald wordt als positieve

wortel van:

E {v
x

= J+m (v
x

2u ) f(v )dv ,x x

Deze standaardafwijking hangt af van de temperatuur en is onafhankelijk van de

aggregatietoestand (vast, vloeibaar of gasvormig) en van de gemiddelde beweging,

Voor een ideaal gas (zie c-18) in rust geldt (de gemiddelde beweging II is nul),

dat

= 1:. E {v2} = R3 M,T

waarin R = PTV de algemene gasconstante vöor 1 kilomol (kilogrammolekuul) is

(R = 8314- Nm/kmol ok), M de molekulaire massa (in kg/kmol) en T de absolute tem­

peratuur (kelvin).

Voor een ideaal gas in r-ust geldt dus voor de standaardafwijking van de snelheids­

component in de x-richting

o = ( ~ •T)~

We houden dit ook voor een vloeistof en ook bij een gemiddelde snelheid ~~O aan.

Vraag-appendix 1: Hoe gpoót is (J voor water. bij een temperatuur van 10·graden
ceLsius.

We beschouwen nu een groep van n molekulen binnen de vloeistof en bepalen op

meer'dere tijdstippen de gemiddelde snelheid van deze gr'oep. De x-component van

die gemiddelde snelheid, v , zal de ene keer een wat andere waarde hebbenx ,gem
dan de andere keer. Soms zullen in de groep de molekulen met v > II (gemiddeldex
shelheid van de stroming) wat sterker vertegenwoordigd zijn dan die met v < ll,x
zodat v > ll. Op een ander tijdstip is het.juist omgekeerd~ zodat.danx ,gem
v . <1.1.x ,gem
De gemiddelde snelheid van de groep iride x-richting blijkt willekeurig met de

tijd te variëren en is dus een stochast ische variabele,

De kansverdeling van deze variabele is weer ongeveer een normale verdeling met

een verwachtingswaarde:
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cr = - ag n (zie fig. 2).

IJ. = "E" {v . .} = ]jg x çgem

en een standaardafwijking

bepaald door

We beschouwen nu een aaneenge-

sloten groep van molekuien en noemen dit een Eakketje vloeistof. Midden in de

groep kiezen we een punt, dat een snelheid heeft gelijk aan de gemiddelde snelheid

van alle molekulen van de groep. Dit punt noemen we het

Het centrum heeft een snelheid v". in de x-richting,... x ,gem ."
met de verwachtingswaarde Il, doch daar als gevolg van de warmte-energie op grilli-

centrum van 'het pakketje.

die gemiddeld overeenkomt

ge wijze om heen slingert.

Een maat voor de grootte van die afwijkingen wordt bepaald door de standaardafwij­

king 0g'

Bij een vloeistof, die geheel in rust is, is ~~ = ]j = O. Het centrum v~n het pak­

ketje vertoont dan alleen de grillige beweging als gevOlg van de warmte-energ~e.

Deze grillige beweging is analoog aan de Brownse beweging van vetbolletjes in

melk.

Opmerki~ Een pakketje vloeistof bestaat niet steeds uit dezelfde molekuien.

Sommige molekulen dwalen zover van de groep af, dat ze niet meer tot het pakketje

behoren. Andere molekuien van andere pakketjes hebben dan hun plaats ingenomen.

Ook de vorm van een pakketje is niet altijd gelijk.

In de tijd kan het zeer verschillende vormen aa.nnemen.

Vraag-aPEendix 2: Hoe g~oot moet temm:ste de massa zijn van een pakketje ~atep
.'

zijn in een st~oming met een-gp~dde~de 8ne~heid]j = 1[m/8]~

opdat de etiandaarddeiriatd:e van de' Broianee beweging van het pak-

ketje hoogstens 1% is "!Jan de ~:lerrridde~desnelheid V •
XIIgem

(ste Z de temperatuur van het toatierb.v. 100C) •



-1050-

Vervolge'i1Sbepalen we ook de standaardafwijking die bepaald wordt als positieve

wortel van:

02 = E {vx
(v
x

2u ) f(v )dv •x x

Deze standaardafwijking hangt af van de temperatu,ur en is onafhankelijk van de

aggregatietoestand (vast, vloeibaar of gasvormig) en van de gemiddelde beweging.

Voor een ideaal gas (zie c-18) in rust geldt (de gemiddelde beweging ~ is nul),

dat

waarin R = p~v de algemene gasconstante voor 1 kilomol (kilogrammolekuul) is

(R = 8314 Nmjkmol ok), M de molekulaire massa (in kg/kmol) en T de absolute tem­

peratuur (kelvin).

Voor een ideaal gas in rust geldt dus voor de standaardafwijking van de snelheids­

component in de x-richting

C1 = ( ~ •T)~

We houden dit ook voor een vloeistof en ook bij een gemiddelde snelheid J.l1Û aan.

Vraag-appendix 1: Hoe (/'Poot is 0 VOOl'toater bij een tiemperaiuur van 10 gzoaden
aelsiuB.

We beschouwen nu een groep van n molekulen binnen de vloeistof en bepalen op

meerdere tijdstippen de gemiddelde snelheid van deze groep. De x-component van

die gemiddelde snelheid, v , zal de ene keer een wat andere waarde hebbenx ,gem
dan de andere keer. Soms zullen in de groep de molekulen met v > ~ (gemiddeldex

vertegenwoordigd zijn dansnelheid van de stroming) wat sterker die met v < 1.I,x
> l.I. Op een ander tijdstip is het juist omgekeerd$ zodat.danzodat vx ,gem

v . < Il.x ,gem-·
De gemiddelde snelheid van de groep in de x-richting blijkt willekeurig met de

tijd te variëren en is dus een stochastische variabele.

De kansverdeling van deze variabele is weer ongeveer een normale verdeling met

een verwachtingswaarde:
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2 1 2cr = - crg n (zie fig. 2).

en een standaardafwijking

bepaald door

We beschouwen nu een aaneenge-

sloten groep van molekulen en noemen dit een pakketje vloeistof. Midden in de

groep kiezen we een punt, dat een snelheid heeft gelijk aan de gemiddelde snelheid

van alle mo.LekuLen van de groep. Dit punt noemen we het centrum van het pakketje.

Het centrum heeft een snelheid v'. in de x-richting, die gemiddeld overeenkomt.. x,gem ..."
met de.verwachtingswaarde il, doch daar als gevolg van de warmte-energie op grilli-

ge wijze om heen slingert.

Een maat voor de grootte van die afwijkingen wordt bepaald door de standaardafwij-

king 0g'
Bij een vloeistof, die geheel in rus~ is, is ~(?= il = O. Het centrum van het pak-

ketje vertoont dan alleen de grillige beweging als gevolg van de warmte-energ~e.

Deze grillige beweging is analoog aan de Brownse beweging van vetbolletjes in

melk.

Opmerkina: Een pakketje vloeistof bestaat niet steeds uit dezelfde molekuien.

Sommige mólekulen dwalen zover van de groep af, dat ze niet meer tot het pakketje

behoren. Andere rnolekulen van andere pakketjes hebben dan hun plaats ingenomen.

Ook de vorm van een pakketje is niet al~ijd gelijk.

In de tijd"kan het zeer verschillende vormen aa.nnemen.

Vraag~appendix 2: Hoe qroot: moet tenmiste de massa z'I,Jn van een pakketje taate»
gijn in een etirominq met een -gemiddelde snelheid 11 = 1[m/sl,
opdat: de et andaarddeviat ie Van de' Broumee beweging van het pak­
ketje hoogstens 1% is van de gemiddelde snelheid Vx~gem.
(Bbel: de tiemperatuur van het water b,», 10°C).
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Het antwoó~ op b?venstaande vraag geeft dus min of meer een ondergrens aan de

afmetingen van een waterdeeItje.

De bovengrens aan de afmetingen van een vloeistofpakketje wordt bepaald door de

beschrijvi~ van het verschijnsel turbulentie.

In een turbulente stroming bewegen de vloeistofpa~ketjes op min of meer wille­

keurige wijze door elkaar heen, zodat we dan een vloeistofpakketje een zodanige

afmeting moeten geven~ opdat we de statistische eigenschappen van zijn beweging

kunnen bepalen.

Nemen we deze afmeting te groot, dan middelen we over een te groot aantal mole­

kulen om nog inzicht te krijgen in de onderlinge willekeur~ge beweging van klei­

ner~ ~akketjes. De orde van grootte van de.hierdoor bepaalde bovengrens ligt on­

geveer een factor tien hoger dan de ondergrens.
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BEWERINGE~ "

Bewering 10.1: Voor een vloeistof, die door een rechte buis met starre wanden
stroomt, geLdt dat de massastPOomS in e~ke dWarsdoorsnedeop
een bepaald tijdstip gelijk is.

Bewering 10.2: VOOl' een homogeneincortTpres8ibeZevloeistof, die door een rechte
buis met starre ~mulen stroomt, geldt VOOl' het debiet Q, dat
Q = ~ (p de dichtheid van de vloeistof).

IJ

Bewering 10.3: Een homogeneideale Vloeistof stroomt door een rechte ai l.indri.eohe
buis met etaree wanden. Voor de snelheid in de as-richting geldt,
dat Vgem = f, toaar-in A .het: oppervlak van de dioareprof'i.el: lood­
:r>echtop de buisas voorstelt.

Be\'lering 10.4! Voor een ideale vloeistof geldt dat deze ook volmaakt is. Geldt
het omgekeerdook.

Bewering 10.5: De impuls. van een hom~ogeneideale vloeistof in een rechte buis met
star:r>ewanden en lengte ~ is:

-+p=S(t).~

Bewe!'ins 10.6: De impulsbalans van een homogeneideal-e vloeistof stromend in een
»eohi:e oil.indx-ieche buis met starre wanden luidt bij afWezigheid
van de zwaartekracht:

,waarin
p de dichtheid van de vloeistof.
i de tengte van de buis.

p1 - P 2 het drukuerechi.lover de buis.

Bewering 10.7: V001' een stationaire etmomi.nqvan een homogeneideale vl.oeietof
door een l.eidi:11{J(kanaal, of buis) met etiarre wandengeldt, dat
de etxaohooqte langs de Leidinç-ae constant is.
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Bewering 10.•8: foor een niet-stationaire stroming van een homogeneideaZe
vloeistof door een rechte buis met starre ~anden is de versnel­
Ling van.de vloeistof op een tijdatip t in een vast balaneqe-

. .
bied onafhankelijk van het stuwhoogteverschil over dat.gebied.

Bewering 10.9; Voor een homogenei.deale vloeietoi', die niet-stationair in een
rechte buis 8tro~~, geldt de Euler-BernOuilli vergeLijking zo­
wel in de stroomrichting als Loodreohi: daarop.

Bewering 10.10. Voor een etatnonair-e stroming van.een uloeietof door een cilin­
drische rechte buis met starre 'Wanden is de traagheid van de
buis M = g! ' 1.I)a(Wint de lengte van de buis is en A het opper­
vlak van de ~arsdoorsnede loodrecht op de buisas.

Bewering 10.11: De relatie tussen de etnaohooqte en het debiet van een homogene
ideale vloeistof die door een rechte buis met starTe Wanden is
Q = M aH

. àt

Bewering 10.12: Een niet-stationaire st.roming van een homogeneideale vloeistof
door een rechte buis met starre wandenbetekent dat er aUijd
een traagheid optreedt.

Bewering 10.13: Yoor een gekromdestarre ei.ld.ndx-ieche buis, waarvan de kromtestraal
groot is, geldt dat de traagheid ongeveer-gelijk is aan die van
een »eclite starre buis met dezelfde afmetingen ..

Be~·lering10.14: Het etnuohooqt-evereehd-l: over een kopt breed stuk buis is venMar­
loosbaar t.o.v. een Zar~ dun stuk buis.
De buizen hebben dezelfde volume.

Bewering 10.15: De vergelijking ~oor de configuratie van bergend st;a1}vat en
rechte cilindrische 8~re buis luidt in geval van stationaire

dh12s'{;roming(zie IV. III) Q = B --;rr-
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AANVULLENDE VRAAGSTUKKEN

1. De plaatselijke brandweer aebruikt brandslJken met een diameter van O.lO[m].

Op de slanien is een spuitstuk beves­

tigd. Dwarsdoorsnedes van de slang

en spuitstuk zijn cirkelvormig.

Het water, dat door de buis stroomt

is op te vatten als homogeen en in­

compressibel. terwijl de wanden van

de buis en spuitstuk star zijn. De

dichtheid van het water is lOOO[kg/m3].

Tijdens de oefening blijkt dat één

brandslang per minuut l50~[kgl water, le­

vert, terwijl de stroming stationair

'iD1

/'

----

is.

a. Bepaal de stroomsnelheid van het water in de slang.

b. Bepaal de diameter van het spuitstuk als het water eruit spuit met een snel­

heid van 25[m/s].

c. Hoe groot is de massastroom in de slang?

En in het spuitstuk?

2. In een rivier met rechthoekige

dwarsdoorsnede heerst tussen

,de dwarsdoorsnedes Al en A2 een

stationaire str·oming van water,

die als homogeen en Lncompr-ee+

sibe1 beschouwd mag worden. De

dichtheid is 1000 [kg/m3] •

De vloeistofhoogte t.p.v. Al blijkt op een bepaald tijdstip t lCm] te zijn, terwij

die t.p.v. A2 op datzelfde tijdstip O,S[m] is.

De afstand tussen de dwarsdoorsnedes is 100û[m]. De snelheid in doorsnede Al

blijkt l[m/s] te zijn bij een meting op he~,.tijds'tLp t.
De breedte van de rivier is steeds 20[m]. De afstand tussen de dwarsdoorsnedes

is 1000 [m]•
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a) Hoe groo;t is de snelheid in doorsnede A2?

b) Hoe luidt de massabalans voor het gebied tussen Al en A2?

c) Hoe luidt deze nadat de stroming op t = tI niet-stationair wordt?

d) Als in het tijdsinterval (tl' tI + 10) de vloeistofspiegel tussen Al en A2

gelijkmatig in zijn geheel OtOOI[m] stijgt, terwijl de snelheid in Al l[m/s]

blijft, hoe groot is dan de vloeistofsnelheid in A2?

(Beschouw steeds dezelfde hoogtes in Al en A2).

Een vat met breedte lO[m], lengte 100[m]

is gevuld met homogee~ ideaal water. De

waterhoogte is ZA = l[m] op tijdstip t = o •
Boven de waterspiegel heerst de atmosferi­

sche luchtdruk p = (1 atm) = l05[N/m2J.. a
In het vat staat een cilindrische starre

buis met lengte 6[m), oppervlak dwarsdoorsne­

de O,2[m2] waardoor we het water uit het

vat willen zuigen. De dichtheid van het wa­

ter is p = IOOO[kg/m3]. Op t = 0 is de buis

geheel gevuld met water,en het r...ater is overal in rust. De gravitatie versnelling
-+ 2g = - 10 e [mis J.z

3. .1-
'Z iIT

..,.

t I: I- I")

.~ ~!

'\;P",
l.J, , v

10 [/)tl ~.

a) Bepaal de stijghoogte in punt 1 van de buis op t = O.

We veronderstellent dat deze stijghoogte in punt 1 voor alle te beschouwen tijd­

stippen constant blijft.

Voor t ~ 0 heeft de vloeistof

z-richting.

dv 2 .
in de buis een versnelling ---d= O,5[m/s ] in det .

b) Bepaal de druk in punt 2 van de buis, opdat deze versnelling optreedt.

c) Hoeveel [kg] vloeistof stroomt er 'in de eerste 10[s] uit de buis.

d) Hoe groot is de impulsvoorraad in de buis op t = 1.

e} Hoe groot is de impulsstroom"in de buis op + :: 1....

f) Bepaal de stuwhoogte in 2 op t = 2.
.J. 2'

4. 1'4, Een homogene ideale vloeistof stroomt via

een kanaal van een h~lling met sinn = -l.;-10
De gravitatieversnelling is g = - la ~ • De. z

~I atmosferische druk is Pa = lo5[N/m2].
~-------- __ ~UL~_

De vloeistofhoogte is - 1 [m] • De breedte van het rechthoekig

kanaal is b = 10 lm]. De afstand tussen de dwarsprofielen is 1 = 100 [m] •



a) Bepaal 'd:è druk. in de vloeistof op diepte z I •

b) Bepaal de impulsbalansvergelijking in het (x' - z) stelsel voor het gebied

V1 tussen Al en A2·

c) Hoe groot is de versnelling van de vloeistof i~ VI

d) Hoe g~oot is het debiet op t = 5[s], als de snelheid van de vloeistof op

t = O/l[m/sl in de xl-richting is.

Een vat gevuld met water loopt leeg in een glas.

De hoogte van het straaltje is O,20[m]. De diameter

van het straaltje is in de bovenste doorsnede Al

twee keer die van de onderste doorsnede A2•
-+ -+ 2g = - 10 e [mis J.z
Neem aan dat het water als een homogene ideale

vloeistof mag worden beschouwd en dat de druk in

het straaltje overal gelijk mag worden gesteld .aan

die van de afmosfeer. De dwarsdoorsnede van het

straaltje is cirkelvormig.

e) Is een volmaakte vloeistof ideaal?

f) Is een ideale vloeistof onsamendrukbaar?

5.

--

a. Geldt voor dit stromingsprobleem in het straaltje

de vergelijking van Euler-Bernoulli en hoe luidt

deze in dit geval?

We veronderstellen de stroming stationair.

b) Hoe luidt vgl. a dan?

c) Bepaal de snelheid in de onderste doorsnede van het straaltje water.

6. Z
Ä

In een rechthoekig kanaal bevindt

zich een drempel met hoogte a = O,5[ml.
In het kanaal stroomt stationair water,

dat als homogene ideale vloeistof be­

schouwd mag worden. De dichtheid ervan

is p = lOOO[kg/m31. De gravitatiever-
. -+ 2

snelling g = - 10 e [mis ].z
In dwarsdoorsnede Al is de vloeistof-

hoogte zl = 2[m] en de stroomsnelheid



.... .. .
v1 = 1 e~[m/sl, .
De breedte van het kanaal is IO[m], De onderlinge afstanqen tussen de dwarsdoor-

snedes Al en Á2 is 20[m]·~Boven de vloeistof heerst de afmosferische druk Pa'

a) Is de vergelijking van Bernoulli op de stroming tussen Al en A2 van toepas­

sing?
Hoe luidt deze in dit geval? (Bereken de stijghoogtes in de dwarsdoorsnedes).

b} Probeer een relatie te vinden voor de'vloeistofsnelheid in doorsnede A2 waarin

deze is ui tg·edrukt in de snelheid v1 en de hoogte z1 in doorsnede Al' (Maak

gebruik van volumebalans),

7.

d,= ICwJ '&OE2e~

~__~==:=~==~~==============~=_=_~._=__~__~4=~=__=1=D_~='_~=-=-=-=_~__=_~__=. __~ ..~Q===i~'====~_
Je.

.r:; A
. -' '

...
I A,

Een betonnen duiker met vierkante dwarsdoorsnede, ribbe a = 2Cm]s en lengte

Á'Ll.~··-- 50/PtJ .._

50Cm] is onder een dijk door-geLegd en vormt de verbinding tussen een boezem

en de zeel, In de duiker bevindt zich ter plaatse van A een beweegbare schuif,

Op het t:.jdstip t = 0 is de waterhoogte in de boezem-3[m] en aan de zeezijde

2[ml. Op net tijdstip t :: 0 verander·stellen we dat de schuif r-azendeneû wordt
2 .

opgehaa Ic., De gravitatieversnelling g :: lO[ï:n/s ], Het water mag als homogene
. 3

ideale vioel s'tof beschouwd worden met een dichtheid p ;: 1000[kg/m ] "

F
b) Hoe groot is de versnelling van de vloeistoP~n de duiker, als de schuif net is

/

a) Hoe 'go: )ot. is de traagheid van de d.uiker?
V

opgehaald?
3

c) Als het boezempeil en zeepeil de eerste 10[s] niet veranderen. hoeveel [m ]

water stroomt er dan in dat tijdsinterval uit de boezem.

d) Geldt er voor de duiker, tussen Al en A2 dat

(Ql = debiet door Al

Q~, =
L

It
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Een cilindrische vat T met hoogte 2[m] en dia­

meter 4(m] is aan de onderzijde verbonden met

een cilindrische buis met diameter O~20[m] en

lengte lO[mJ.

We houden het vat steeds gevuld met water~ dat

als homogene incompressibele vloeistof beschouwd

mag worden, door een debiet Ql toe te voegen.

Het vat E heeft steeds dezelfde vloeistofhoogte,

doordat het overloopt. De vloeistofsnelheden in

de vaten T en E zijn verwaarloosbaar. De gravi­

tatieversnelling is g ='10[mfs2J.' De dichtheid

van het water is p = lOOO[kg/m3].

Op t = 0 veronderstellen we de vloeistof in rust,

waarna het watel' gaat bewegen. Aan de vloeistof­

spiegels heerst de atmosferische druk p •. a
a) Bepaal de traagheid van de buis

b) Bepaal de relatie tussen het debiet door de

buis en het stijghoogteverschil over de uit­

einden van de buis

c) Bepaal Q1 als funktie var" de tijd.

d ) Is de s tr-omi.ng in de buis stationair?

,,.
'2

A
I

~C).

---=-=::::-_,__~_ t J_~ _
T

I
1

I
......."1
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2Een groot 'meer met een oppervlak van 5000[m ] heeft op t = 0 overal de vloei-

stofhoogte:h [mlo Het meer is via een schuif T verbonden met een nauw kanaal,a .
waardoor het water vrij kan wegstromen. De schuif staat op t = 0 open en de

vloeistofhoogte in het kanaal is 2[m}.Voor t ~ 0 was het water overal in rust.

Het wát:er mag beschouwd worden als homogene incompressibele vloeistof:met een

.dichtheid p = 1000[kg/m3]. De vIoef.s tof'hoogte in het:kanaal is in het door ons

beschouwde tijdsinterval steeds 2[m]. De gravitatieversnelling g = + 10[m/s2].

De breedte van het kanaal is 5[m].

a) Hoe groot is de traagheid van het balansgebied in het kanaal tussen Al en A2.

b) Hoe groot is de versnelling van de vloeistof in het balansgebied 'op tijdstip

t = 0+'(0+ is het tijdstip direct volgend op t = 0).
, ,

c) Bepaal de relatie tussen de berging en de stijghoogte in het meer.

cl) Bepaal de vergelijking voor het debiet van de gehele configuratie.

We beschouwen een buis met cirkelvormige dwars­

doorsnede. De str'aal van de buis op plaats x is
-5 2gegeven door z = 10 x

In de buis stroomt een homogeen incompressibele

100 vloeistof met p = 500[kg/m3].

De gravitatieversnelling is

,0. A)

-+- 2g = - 10 e [mIs ].z

a) Bepaal de traagheid van het balansgebied tussen x = 10 en x = 100.

b) Hoe·groot is het drukverschil over het balansgebied uitgedrukt in de snelheid·

op x = 10û als de stroming staticnair is.

B) Beschouw de gekromde buismoot ~et constante

cirkelvormige dwarsdoorsnede met middelpunthoek

~ = O~5[rad) en R = 100(m].

Het oppervlak van de dwarsdoprsnede van de buis

O,5lm2]. De versnelling van de·zwaartekracht

is g = lO[m/s2].

c) Bepaal de traagheid van de moot.

d) Welk gegeven is hier vergeten?



5.10.1.

5.10.2.

ANTWOORDEN OF AANWIJZINGEN BIJ DE STIJDIEVRAGEN

Aanwijzingen worden gemérkt met (')~ de uitwerking volgt verderop in de eenheid.

In de afleiding van .formule (3) is nergens gebruik gemaakt van de eigenschappen

t.a.v. homogeniteit en onsamendrukbaarheids dus (3) geldt in principe voor alle

vloeistoffen$ waarvoor een behoudswet van massa geldt.

Er is echter een verschil in interpretatie van (3). In het geval van een homogene

onsamendrukbare vloeistof is de dichtheid van de vloeistof een constant~.

Voor de massa mC geldt, dat deze gelijk is aan p .V (V = volume van het balans-c c c-
gebied). Nu is p een constante, dus isc

dV:; c
dt m.a.w. de massaverandering in het gebied C wordt geheel veroorzaakt

door een volumeverandering in C, t.g.v. een vloeistofspiegelrijzing of däling. In

dit geval kunnen we dus ook de massavoorraadsverandering van C meten aan- de vloei­

stofspiegelverandering va~ C.

In het geval van een iet-homogene vloeistof geldt voor

dp cTt . Vc ,+ _Pc

M. a.w. de massaverandering in C heeft nu twee conzakene

Ie Doordat er'bv , links vloeistof met een andere dichtheid C bdnnens rr-oom'tdan et'

rechts uitstroomt.

2e Doordat de vloeistofspiegel van C stijgt of daalt t.g.v. links en rechts inge­

stroomde vloeistof. In dit geval kunnen vle de maasavoor-naadsver-ander-dng dus

niet meer uitsluitend aan de vloeistofspiegelverandering van C meten, maar moe­

Ten we er rekening mee houden, dat ook de àichtheid in C verandert is. De enige

bes'tz-ouwbar-emee'tmethode._i; 'in dit geval he~ wegen van ge yloeistof in C op

verschillende tijdstippen. (Dit is echter- meestal onmogelijk)

Formule (3) blijft gelden, zoals boven beschreven. We moeten de massavoorraadsver­

andering in C nu als volgt interpreteï.'en.

Links en rechts stromen er bepaalde volumina vloe_istof in en uit, waardoor de

vloeistofspiegel in C stijgt of daalt.

- Ten gavo.Lge van de samendrukking van de vloeistof in C verandert het volume en

daardoor ook de dichtheid in C.
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We moeten. dus'weer op verschillende tijdstippen de vloeistof in C wegen om

de massavoorraadsveranàering in C in de tijd te meten.

.10.3. In het algemene geval geldt vgl. (3)s

dme
Tt ::ScA +- SCB' • waarin C het

balansgebied (kanaal) voorstelt.

Aangezien we met een homogene incompressibele vloeistof te maken hebhén, kan de

massavoorraad in het kanaal alleen nog veranderen doordat het vloeistofniveau

variëert. (aanname: Het kanaal heeft een ondoorlatende bodem en wanden). Aange­

zien dit mogelijk is, geldt vgl. (5) dus niet.

,10.4. In het algemene geval, geldt formule (3),

d~~ = ScA + SeB ' w~arin C nu de buis (het balansgebied) voorstelt.

,

Als de wanden van de buis elastisch zijn kan de massavoorraad in de Duis in de

tijd var-Lêr-en, omdat het volume van C in de tijd kan variëI"en. (VeI"gelijk met ka-
-naaI met variabele hoogte van vloeistofspiegel), dus (5) geldt niet.

.10.5. We hebben gezien dat voor een starre buis! waardoor een homogene invompressibele

vloeistof stroomt, vergelijking (5) geldt.

Oftewel, dat de massastroom S op een tijdstip t in elke dwarsdoorsnede gelijk is.

Daar de dichtheid van een homogene incompressibele vloeistof een constante is,

geldt dus ook (zie 6) dat het debiet op een tijdstip t in elke dwarsdoorsnede van

de buis gelijk is.

.10.6. In het geval van een incoIDpressibele vloeistof door een buis met starre wanden, is

het volume van het balansgebied (de buis) constant in de tijd. Aangezien de vloei­

stof onsamendrukhaar is, zal het volume daarvan oo~ niet veranderen in de tijd.

Het is dus aannemelijk dat er voor het balansgebied een behoud van volumen geldt.

D.w.z. dat er links ev&nveel volumen per tijdseenheid moet instromen als er rechts

per tijdseenheid uitstroomt.

Oftewel QL(t) = QR(t) •

De eis van homogeniteit van

de vloeistof is dus niet

noodzakelijk voor het ge­

lijk zijn van het debdet in



elke dwarsdoorsnede.

N.B. De massavoorraad in de buis kan nog wel veranderens doordat er links en

rechts vloeistof met verschillende dichtheid in- en uitstroomt.

Deze studievraag heeft slec~ts een informatief karakter en wordt niet ge­

toetst.

S.10.7. In het algemene geval geld~:

s + S = dmc
cA cB dt

met C het balansgebied (kanaal).

Aangezien de waterhoogte constant is in de tijd, variëert het volumen in het

balansgebied niet. De vloeistof is homogeen incompressibel. dus de dichtheid is

een constante.

Er volgt~ dan met (5) en (6)~ dat zowel de massastroom Set) als het debiet Q(t)

op een tijdstip t in eLke dwar-sdoor-enede gelijk is.

S.10.8.
..

Voor een starre buis ~ waar-door- een homogene incompressibele vloeistof stroomt!

geldt dat de mas sastr-oomdie links de buis instroomt ~ gelijk is aan de massà­

stroom~ die op dat tijdstip rechts de buis uitstroomt (S).

Aangezien de dichtheid een

constante is~ geldt dus ook

p

S31(t)-.-p

---I S~~----------­
®i

I--t-----

dat

Het debiet naar'V1 toe op tijdstip t is gelijk aan het debiet uit V1 op tijdstip

t. Dit is ook te schrijven~ als:

Dit is dus de volumenbalans voot'de buis.

N.B. In het algemene geval luidt! deze

dV1
dt
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, dm10.9. Bedenk. Qat S =.- voor een vat.met: ~én toegang.. dt
Bovendien geldt. dat S = p.Q = p.A v .

1000[kg/m3].
gem

p =
I

10.10. Zie definitie "lichaam" g.l op pag. 9.09 van eenheid 9.

10.11. Onder een stationaire stroming verstaan we een stroming waarvan de stroomsnel­

heid niet van de tijd tafhangt. De str-ocmsneIhedd mag nog wel van de plaats­

coördinaten x~y en z afhangen. Is dit ook niet het geval dan noemen we de stro­

ming not steeds stationairt aangezien aan het criterium, dat de stroomsnelheid

onafhankelijk van de tijd iS5 voldaan wordt.

Noot: In een compressibele vloeistof wordt voor stationairiteit geëist, dat zo­

wel de stroomsnelheid van de vloeistof als de druk in de vloeistof in elk

punt onafhankelijk van de tijd. zijn. In principe moet deze eis tevens ge­

steld worden aan een Lmccmpr-es sfbeLe vloeistof, daar dit een limietgeval

is van een compressibele vloeistof.

10.12. In dit geval is de stroming stationair (zie 8.10.11.)

10.13. Een deeltje beweegt eenparig, als de snelheid ervan constant is naar gI'ootte en

richting.

In een stationaire stroming variëert de snelheid in het algemeen met x,y en z,

dus het deeltje beweegt niet éénparig.

10.14.

-_ ....>
-_._-_.,)..
_.._--.>

We beschouwen een stroming van een volmaakte vIoeLstof in een kanaal.

We nemen hieruit een mootje met afmetingen dx, dy en dz~ dat in rust is t.o.V.

Oxyz. Op dit mootje passen we de tweede ~et van Newton toe in de z-richting. In

de vloeistof geldt de wet van Pascal, oftewel dat de druk in een punt in alle

richtingen gelijk is.



In de z-rlchting werken de volgende krachten:

Op het ondervlak geeft de druk een kracht

-+pez + dz) dx dy ez
= { p(z) ap- äZ

F = p(z).dx dy ;o z

Op het bovenvlak geeft de druk een kracht

pe gravitatiewisselwerking geeft op de massa in het blokje een kracht:

rv -+= - pg dxdydz.e •z

Nu geldt volgens Newton 2:

Uitwerking geeft~ dat:

3p(z). + Pg =
dZ CA)

In eenheid 9 is de hydrostatische drukverdeling gedefiniëerd als:

p(z) = P(zR) t z f"R pg cl. (~ = referentiehoogte)

Aangezien in (A) de dichtheid nog van x,y,z en t afhangt (vloeistof niet homogeen

en compressibel) geeft integratie van (A) \

Dus opdat de drukverdeling hydrostatisch is, moet gelden, dat

J~p ~vz dz = 0
atz

Hierui t volgt, dat ex'moet gelden:

dV
P ~= 0dt
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Aangezien p = p(z) in het algemeen ongelijk ~an nul is, volgt dat

av zF= 0

oftewel de vloeistof mag geen versnelling:in de z-richting hebben.

Als dit het geval is, dan is er in de.vloeistof een hydrostatische drukverde­

ling.

lO.lS. In het geval van een niet-stationaire stroming, is in H.Il aangetoond, dat op

een tijdstip t de maasas tr-oom S(:t) in elke dwarsdoorsnede gelijk is.

Echter van tijdstip tot tijdstip kan dit variëren.

Dit betekent, dat (11) verandert in

pCt) = Set). i.x

M.a.w. de impulsvoorraad Ln de x-r-Lchttng op tijdstip t is gelijk aan de massa­

stroom door de buis op tijdstip t maal de lengte van de buis. De impulsvoorraad .

variëert dus met de tijd.

I
10.16. Pas de afleiding van S.10.15 toe.

I
10.17. Maak gebruik van het feit dat het debiet Q = v A in elke dwarsdoorsnede ge-

gem.
lijk is.

lO.lB. We vonden in (l7) voor de impuls op t + At~·p (t + ~t):, a

+ +p (t + At) = p A.v(t + a.~t). vCt + lt).&t.a

M~t f(t + t.t)

volgt voor de componenten

p (t + At) = p A { v2(t)t.t + (l + ~) vet). 3v . (~t)2 } + OCAt3)
a at

Evenzo volgt. voor P12(t, t -+ fit), dat:

Cl'"vet). l~ ~

d ...



Het verschil is dan

>.10.19. Voor een starre buis· in fig. 12 geldt voor een homogene imcompressibele vloeistof

vergelijking (25).

~ d PI P2_2=(_+z)-(-+z)
g dt pg 1 ~pg 2

Met de gegevens: PI = P2 = p ena eosa :: 100. 1/3' volgt -dat:
L

:: 50 .r-3

oftewel

dv ::5 n.­
dt

Integratie geeft:

vet) ::v(o) + 5 1:3 t

Op t = 0 was de vloeistof in rust, dus de snelheid van de vloeistof is na 3 se­

conden:

\T( 3) z: 5 13" 3:: 15 -r3 [mIs].

;.10.20. Vgl. (35) is afgeleiçi voor .een ~ta~re bû.~s!_waarv~~__-het op~_f:lrvla.k.vand-~,dwars­

doorsnede langs de,b,uis-'asval:'iëert.

Het debiet van een homogene incompressibele 'l?loeistcfdoor deze buis is a11een

een funktie van de tijd ei'! er geldt dat:

Q(t) ::A(x). v(x,t)

Als we het oppervlak A(x) constant veronderste11en langs de buis-as, dan volgt

dat:

Q(t) = A. v(x,t)

,
Oftewel de snelheid is ook alleen een f'unkt.i,evan de tijd.

Dit gesubs-citueerd in (35) levert dat:



-av
p - =at

a·_" ......_·ax ( p + ~gz)

Integratie langs de buisas geeft tenslotte:

Delen door pg geeft dan vgl. (25).

Conclusie~ (25) is een bijzonder geval van (35)

I
10.2l. l-faakgebruik van (36)

10.22. Aangezien het debiet Q(t) op een tijdstip t in elke dwarsdoorsnede gelijk is,

en het oppervlak van de dwarsdoorsnede in dit geval constant is. volgt hieruit

dat de gemiddelde snelheid in elke dwarsdoorsnede gelijk is.
Doordat we in (4.1)en,.(42) het verschil in hoogtes in'twee dwarsdoorsnedes

beschouwen vallen deze tOègen elkaar weg. M.a.w. (41) is identiek aan ("42)•

t~ !tJ.0$23. (~r I

ct·I
!-c .. --I

Er geldt in dit geval (39):

Nu is zl ::z2' daar de z-as il:oodrechtop'de buisas staat m.a.w •

.t dQ _ PI P2- -_ ....... -...-.-
gA dt pg 'PS

JI.Hierin is M = -- t dus d~ traagheid van de buis ve~andert niet.
gA

Ret stijghocgteverschil over de buis blijkt in dit geval vereenvoudigd te kunnen

worden tot drukverschillen.

c=----= - .. 0" -.0 -~-_ •. ----.---'t,O'J'!>· A..
t1~c ..f~
tA,.



- .o,~-
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Er geldt dat ti Al = 12 A2•

De·traagheden van de buizen verhouden zich q.ls:

A 2
.2-A 2
1

« 1.

M.a.w. de traagheid van de dunne lange buis is veel groter dan die van de korte

dikke.

,.10.25. Voor de rechte cilindrische buis geldt in het geval van een homogene ineompres­

sibele vloeistof dat

M ~ = (hl - h2)•. dt

Nu geldt in het geva1 van een stationaii:'estroming, dat het debiet Q constant is

in de tijd, m.a.w. we vinden, dat

h Id M k. bI" . 0: ft 1, l' [kDe traag el. -, gA a j rt: onar ianxe.i aj

van de str·omingstoestand dezelfde tiaarde -houden , echter in het geval van een

stationaire stroming is de Lnv.l.oed van de traagheid op het stijghoogteverschil

over de buis nihil •

•10.26. Tot nb toe hebben we meestal gewel'kt met r ecrrte cilindrische buizen als we het

over leidingen met een constant oppervlak langs de buis-as hadden.

Beschouwen we een kanaal met een con5tante rechthoekige doorsnede, waarin de

waterhoogte constant is 9 dan ver-ander-t de .a.fleidingvan de traagheid in principe

niet. Dus vgl. (41) zal blijveri gelden •

•10.27. Voor de traag:'eid van de buis geldt, dat;
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Jb.; 1 dx = l
~ .; a g A(x) g

1
::-g-1f-t-g""2cc-.. [!-i ]

De eis, dat a klein ~ zijn~ volgt uit:het feit, dat vgl. (49) is afgeleid

voor een buis~'waarvan het 6~pervlak langzaam variëert langs de buisas. Dan

geldt nl. dat de x-componenten van de snelheden van de vloeistofdeeltjes over

de dwarsdoorsnede ongeveer gelijk zijn•

I
10.29. Waarvoor is vgl. (52) afgeleid'1

..,,? !J

•10.28. 'Stel de impulsbalans op voor een

mootje als getekend in de figuur

en maak daarbij gebruik van (51).

,
10.30. Beschouw hiel"alleen lichte krommingen oftewel R groot.

lIh31:.. Voor de gravitatieberging B geldt in het geval van een homogene imcompressibele

vloeistof. dat B ::A (opp. vloeistofspiegel). Dus

10.32 Daar'we met stuwhoogteverschillen gewerkt hebben, verandert er niets'aan de af­

leidi.ng.

vr. apo 1: De standaardafwijking van de warmtebeweging is

a :: / !:.!I- /iiï4:283 =
M - 18 360[m/s]

vr.ap. 2: Er moet gelden dat de standaardafwijking van de groep gelijk is aan:

1
O'g:: Wo [mIs]. (A)

Voor de standaardafwijking "Vande groep geldt:

a :: fi .v.g n



De standaardafwijking van.1 molekuul is 360[m/s] (zie apo l).dus

het aantal molekulen waaruit een groep minstens moet bestaan, op­

dat aan A voldaan is, volgt uit

n ~ ~ = (360)2. 104 = 1,3 * 109 molekuien.og

Volgens Avogadro bestaat 1 gmol u~t ongeveer 6.1023 molekulen~ met
-3 ..

een massa van 18.10 [kg] voor "'later.

Dus de massa van het pakketje is

mp
9= 1,3.10

6.102~
-3 -17.18.10 ~ ~.10 (kg]



ANTWOORDEN NA AANWIJZINGEN BIJ DE STUDIEVR.AGEN

•0.9. We stellen, dat er zich op tijdstip t = O[s] in het glas m [kg] water bevond •
-3 0

Op t = 60[sJ is dit toegenomen tot m + 84.10 [kgJ.o
We nemen nu aan dat er per tijdseenheid steeds evenveel water in het glas

stroomde, zodat.

S = _m,;;.o_+_8_4~.~1_0-_3_-_m,;;.o= 84.10-3 [ ~ ]
60 60 s

(Eigenlijk is S een gemiddelde masaas tr-oom)•

Voor de massastroom S geldt, dat:

s = p.Q -+

Het debiet is

S -6 384.·10Q = - - [m Is].p 60

Met Q = A. vgem en

1T -6 2
4- • 10 [m )

volgt voor de gemiddelde stroomsnelheid onder in de straal

- 84 .I 10-6 '+ 6 1 8[ / 1vgem - 6ö ..• . ;.10- f\I , ms •

.0.10. In eenheid 9 is een lichaam gedefinieerd, als een .zichzelf blijfende beperkte

hoeveelheid materie, die een deel van de fysische ruimte kan innemen.

Een vloeistofdeeltje kan in de tijd van samenstelling veranderen, d.w.z. er ver­

dwijnen mClekulen, waarvoor andere van buiten in de plaats komen. Dus hier vol­

doet een vloeisto.feeltje niet aan de definitie van een lichaam. Verder zijn er

geen tegenspraken •

.0.16. Voor de grootte van de impulsvoor·raad in de as-richting op tijdstip t geldt voor

de buis, waarin een homogene ideale vloeistof str'comt, dat

p (t) = S(t)A.,.-­x

= p Q( t}. Jt 3= 10 • <1,2.t. 20
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(S'

,
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De homogene ideale vloeistof stroomt stationair in de buis.

In de toegang met oppervlak A = !.4 • (5.10-1)2 = 2!1f • lO-2[m2] meten we een snel

heid van 4[m/s]~ dus het debiet is:

-.2 3Q = v.A = 25w.10 [m]

Deze is in elke doorsnede gelijk.

De massastroom is dan:

S = p.Q = 2501T[kg/s].

Hieruit volgt vOOr de impulsvoorraad van de buis in de as-richting.

P = S.R,x
4= 10 •.1I"[kgm/s].

S .10.21. t;

-1-------
! --r------l_:

,;z

_-_-~ ..

-----+-----
We hebben te maken met een stationaire sTroming van een homogene ideale vloei­

stof door een starre buis.

Volgens de stelling van Bernoulli geldt, dat

2
p(x) + pgz(x) + p v (x)

2

constant is in de as-z-LchtLng van de buis •.

Dus er geldt, dat



oftewel~de snelheid in dwarsdoorsnede Al volgt uit:

2 .(P2- Pl) 2
vl(xl) = 2· p + v2(x2). (I)

Nu geldt bovendien'dat het debiet Q in de buis constant is.
• *Noemen we het oppervlak van de dwarsdoorsnedes Al en A2 resp. Al en A2 dan

geldt, dat:

Substitutie in (I) en uitwerking ervan geeft dan:

We hadden in de figuur aangenomen dat de vloeistof naar rechts stroomde •

•10.28. We beschouwen het neve~staande mootje.

Volgens {51} werkt op dit mootje een

kracht t.g.v. de richti~gsverandering

van de stroming, die gelijk is aan:

-+ v2(s}
F = p dy. D.As R

-+
er

$

Aangezien we de zwaartekracht buiten beschouwing hebben gelaten, moet deze

kracht door een drukverschil door de buiswanden geleverd ·worden. Noemen we

de druk in de buitenbocht Pbu en die in de binnenbocht Pbi' dan moet er bij

benadering gelden~ dat

-+ -+
Pb .dy,~s.e - Pb,·dy.As.eu r).. r

Uitwerking levert:
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Substi tUtie van de gegevens geeft:

2
Pbu - Pbi = 40[N/m ]

Dit drukverschil h~erst alleen in de middenlar:gsdoorsnede. In andere langsdoor­

snedes,is dit drukverschil kleiner aangezien de afstand tussen de buiswanden

daar kleiner is dan D.

S.10.29. Vgl.. (52) is afgeleid voor- een niet-stationaire stroming van een homogene ideale

vloeistof door een starre gekromde buis~ waarvan het oppervlak van de dwarsdoor­

snede constant is langs de buis-as.

De snelheid ~( s tt) ver-ander-dealleen van richting en niet van grootte.

In het geval van een variabel oppervlak langs de buis-as verandert tevens de

grootte van v(s,t).

M.a.w. vgl. (52) is ook van toepassing op een -buis met variabel oppervlak langs

de buisas.

__..5.10.30. We beschouwen een bochtstuk met

kPo~testraal R en middel punts­

hoek a. We veronderstellen de

dwarsdoorsnede cirkelvormig met

oppervlak A.

Uit (52) volgt dan voor de

traagheid van de buis: (zie ook 49)

R.a
gA

C(

t
In het geval het oppervlak A een funktie van s is volgt voor de traagheid

M = 1:. fR~.~_
g 0) A(s)
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COM-tENTÀAR OP DE BEWERI NGEN

Onjuist. Dit geldt uitsluitend als de vloeistof homogeen en incompressibel is •

Juist. Op deze wij~e is het debiet Q in eenheid 9 gedefinieerd. (pag. 9.21) •

In principe hoeft de vloeistof niet homogeen en,Lncompr-asa.LheI te zijn en de

buis niet recht en star.

Echter dan geldt Q(t) = Sit) ) , slechts in een bepaalde dwarsdoorsnede op een
p x,t

bepaald tijdstip t.

.IuIs't, Zo is de gemiddelde snelheid gedef i.ni.eer-d, (zie,7).

Een ideale vloeistof is een incompressibele volmaakte vloeistof. Dus de eerste

bewering is juist. Het omgekeerde echter niet.

Onjuist. De grootte van de impuls op tijdstip t is gelijk aan de massastroom op

t maal de lengte van de buis.

Juist. (zie (24».

Juist. In het geval van een stationaire stroming in het kanaal verandert de water­

hoogte erin niet in de tijd (anders zou de snelheid een funktie van de tiJd zijn

en de stroming dus niet-stationair) (zie aanv. vr. 2).

In dat geval is de vloeistofspiegel op te 'latten als een "vaste" wand en geldt de

vergelijking van Bernoulli, zoals deze voor de buis is afgeleid. (35).

Onjuist. Volgens (38) geldtt dat

dV(X,t) dH(x,~)
p = - pg--dt dX

M.a.w. d~ versnelling van de vloeistof àp tijdstip t in een vast balansgebiedje

met leng-te dx is afhankelijk van het stuwhoogteverschil over het mootje.

(Een groter balansgebied is op te vatten als een som van deze mootjes).

Onjuist. De Euler-Bernoulli vergelijking geldt alleen in de as-richting van de

buis. De buis moet bovendien starre wanden hebben •

•10.10. Onjuist. De vloeistof ~oet homogeen en ideaal zijn •

.10.11. Onjuist. Deze relatie luidt: 1

M = traa.gheid van de buis.



b.l0.l2. In principe is deze uitspraak juist,echter voor een stationaire stroming

is er ook altijd een traagheid. De bewering had beter geformuleerd kunnen

worden als: •...•....•.•betekent dat de traagheid een stuwhoogteverschil over

de buis veroorzaakt.

Bij een stationaire stroming is dit niet het geval.

b.lO .13. Juist. Eigenlijk kunnen we beter eisen dat de verhoudi.ngtussen de diameter

van de buis en de kromtestraal: * klein is (zie S.10.28).

b.10.14. Juist. In 8.10.24 hebben we gezien dat de traagheid van een kort .dik stuk buis

klein is t.o.v. van die van een lang dun stuk.

Daar het stuwhoogteverschil over een buis recht evenredig met de traagheid er­

van -is, volgt dus het gestelde.

b.lO.IS.

In het geval van een stationaire stroming van de homogene ideale vloeistof zijn

de stuwhoogteverschillen t.g.v. de t.r-aaghe i.dnul.

Daar de snelheid in het vat ongeveer nul is volgt dus~ dat de bewering juist is.



UITWERKIN:; AANVULL5'lDE VRAAGSTUKKEN

1. a) Per minuut levert de brandslang 150". [kg] water. Aangezien de stroming sta­

tionair is betekent dit, dat de massastroom in de brandslang gelijk is aan:

150".
S = ~ = 2,Sn[kg/s].

Het debiet is: Q = ~ -
p

-3 3 .
2,5.10 n[m Is].

Daar Q = v.A (A = opp. dwarsdoorsnede) volgt voor de stroomsnelheid in de

buis

lCm/sJ •

b) De di~meter van het spuitstuk volgt, uit de relatie

A=!i v

Daar het debiet in elke dwarsdoorsnede gelijk is, en de snelheid in het

spuitstuk 2S[m/s] is, volgt

-2
en voor de diameter Dl = 2.10 (m].

c) De massastroom is in elke dwarsdoorsnede steeds 2,S"'[kg/sJ, aangezien we met

een stationaire str-ondng van homogeen Lncompr-essIbej.water',door een starre

buis te maken hebben.

2a. In het geval, dat de stroming stationair' is, is de snelheid in de rivier overal

onafhankelijk van de tijd. Dit betekent, dat ook de vloeistofhoogte in de tijd

niet zal veranderen. Zcu dit namelijk wel het geval zijn, dan zou of wel de

snelheid of wel de druk in de vloeiSTof in de tijd veranderen en dus de vloeistof

niet meer stationair stromen. (zie ook.noot 8.10.11).

Vle kunnen de vloeistofspiegel dllsals een onveranderlijke wand opvatten en er

geldt dan, dat het debiet in elke dwarsdoorsnede gelijk en constant is. (stationair



stromende homogene incompressibele vloeis1:of).

De snelheid in An volgt dus uit:
'-

-'r V ::
2 1,25[m/s].

A,
b} In principe geldt steeds dat

___i ...._._. . .__.__

Daar we te maken hebben met een homogene incompressibele vloeistof en de

vloeistofhoogte in Vl niet vélI'ieertt.g.v. de stationaire stroming is de

massabalans te schrijven als

c) Voor een niet-stationaire stroming luidt de massabalans

In dit geval kan de vloeistofspiegel name Iij k wel stijgen en dalen.

d) De massavoorraad in VI ver-andert in het tijdsinterval (Tl' t1 + 10) met een
hoeveelheid van

~l(tl + 10) - ml(tl) = 1 * b * O~OOI * P

::1000 * 20 * 0,001 * p

::20.000[kg].

dml
Di t betekent ~ dat de masaavocr-r-aan per tijdseenheid ( dt) gelijk is aan

'";6°~2.103Ckg/s]
Nu geldt voor VI de massahalans

S
12 + S13 •
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S12 = p Q12';: 1000.1.1 20 = 20.000[kg/s]

M.a.w.

= 2.000 - 20.000 = -18.000[kg/s}.

Dus S31 (de massastroom van Vl naar V3)

S31 = + 18.000[kg/s}.

Nu volgt de snelheid uit

18000 = 1000 v.20.0s8

= 18ï6 = 1,12S[m/s].

3 a) De druk in de vloeistof (op t = 0 in rust) is hydrostatisch verdeeld.

Op diepte z is de dr~k dan:

p(z) = p + pg(z - z)
a ·a

o < z < za

Dus in punt 1 is de druk

P,(C) = p + pgz •
J.. a a

Hieruit vorgt , dat de stijghoogte in punt 1 gelijk is aan:

PlCo) - Pa - pg{o)
hl = pg - z [rola

= 1 [m].

Deze stijghoogte nemen we nu constant V~Jr t > O. Dit is om twee redenen

niet helemaal netjes, nl~ - de vloeistofspiegel zal zakken door het afzuigen.

Het vat is echter groot en voor de hier beschouwde 10[s] zal het bij bena­

dering juist zijn.

- Er t~eden tijdens dat afzuigen vertikale verscnellingen op, zodat de druk­

verdeling niet meer hydrostatische zal zijn (zie S.10.14).

Deze versnellingen veronderstellen we echter klein.
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b) Voor het wa·ter in de cilindrische starre buis geldt de impulsbalansvergelij­

king

t dv- - = h - h in de as (z)-rich-ting van de buis.g dt 1 2

Hieruit volgt dat

R. dv-- + hg dt 1

.Substitutie van de gegevens levert

h2 = O,70(m].

P2 - Pa
pgNu is h2 =

=> p = pg(h., - Q,) + p •2 L a

1+ 2= 4,70* 10 (Nim 1.

Het is aannemelijk dat P2 < Pat aangezien Ge vloeistof naar boven stroomt.

c) De snelheid in de buis voor t > 0 is gelijk aan:

dv
- dt =dt 0,5t + C.

Op t = ° was de vloeistof in rust~dus

v = 0, St.

Het debiet op tijdstip t is dan

Q(t) = A.vet) = 0,10t

Oftewel in de eerste 10[8] strcomt er een volume

0JI0
V = Q(t)dt = 5[m31

o



water uit d'ebuis.

Oe massa hiervan is p.V = 5000[kg].

d) De massastroom van de vloeistof op tijdstip t is:

SCt} = pQ(ti = p A vet) = lOOt (zie c)

M.a.w. de impuls in de buis op t = 1 is gelijk:

pCl) = S(l).i = 100.6 = 600[Ns).

e) De impulsstroom op t = 1 is gelijk

S(l).v(l) = 100.0,5 = SO[M}.

f) De stuwhoogte op tijdstip t = 2 in punt 2
2

v 2( 1)
h2 + 2g = 0,7 + 0,05 = O,75[m].

.'De snelheid is namelijk in deze starre cilindrische buis met het (h.i.) wa-

ter in elke doorsnede gelijk. 2.1
't". .-z..

'Z' . ..ht'

" ~
4. a. f liI,

..,.Ij .

6l I -__. I •. . _-_. ---;c l..__ 1C

We beschouwen een mootje met afmetingen dx' ~dy en lengte (a - Zl).

Op dit mootje werkt :inde z-richtïng de gravitatiewisselwerking met de aarde

ter grootte van

F = pgC'- - z ! ) dxf?y.
z ',~

Deze geeft een component in de zl-richting

F t = pg(a - z') cos~dx'dyt.
Z



- lo8!-

Aangez i'en we in de z ' richting geen versnellingen zijn, volgt uit de impuls­

balans voor het mootje:

p(ZI) dx'dy

oftewel

P(z') = P + pg(a - z') cos~a
(I)

Dus de laatste term is ~ pg(a - z')~

maal' de projectie van pg(a - z ") op de

z-as. (zie fig.)
. -"k'

(25) hier van toepassing is, dus:b) Eigenlijk is snel in te zien~ dat vgl.

t dv
hl h2

PI P2
:: - = ~+ :l - -- ~~g dt pg pg

.(II)

Dus geen z î ,

~
We zullen dit nogmaals aantonen. We stellen de impulsbalans op in de x'-rich-

Ting. De vloeisto~ lin~s van Al

oefent op bet balansgebied een

druk uit die verdeeld is~ zoals

in nevenstaande figuur is aan-

gegeven (zie a(I»).

Hetzelfde is het geval in door­

snede A2' dus de drukkrachten

elkaar op.

De v.loeLstofmat er-Le in het ba­

lansgebied ondervinèt t.g.v.
de gr-avLtatLevf.sseLwer-kd.ngin
de x'-richting de kracht

~ .+
F , = pg t b ia sine ex x'

Volgens de tweede wet van Newton geldt nu dat

-;.. :: m
Fx' c (m ::massabalansgebied)c
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oftewel

7 dv
pg t b a sina ex' = p t b a dt 7

e ,x

Nu is i s inc =

'Z

t .IJAI,
1
i
I .

-----4-.
z, ~ ~-. ~-:

A.z

Dus

2, dv _gdt - 1 sino

M.a.w.
, .~X'

Dit is dezelfde uitdrukking als b(II)~ want er geldt dat PI = P2'

N.B. zl en z2 worden gekozen waar Al en A2 de x'-as snijden. Meestal worden

de z-coörd-en van de snijpunten van de leiding-as en de beschouwde door­

snedes gekozen.

c) Substitutie van de gegeven waarden in

geeft

dvdt = g sin" = 1 _ 210'10 - 1 [mis ]

d) v = f
)

~dt
dt

(

= J dt - t: + C

Op t = 0 is v = 1 [m/sl-.;·

vet) = t + l[m/~).

Het debiet op t = 5 is dan dus

• 3 ,
Q(5) = A v(5) = 20.1 * 6 = 120(m /sJ.
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e) Een vQ~a.ak:te vloeistof is een vloeistof zonder schuifspanningen.

Een ideale vloeistof is een incompressibele volmaakte vloeistof.

Dus het antwoord luidt: nee

f) Ja (zie e.)

5. a) In het meest algemene geval luidt Euler-Bernoulli in dit probleem voor

een mootje dz.

1 dV(Z,t) =
g at

2.L. { ...E. + Z + '7 (z,t) }
3z pg 2g

Aangezien.de druk overal in het straaltje Pa (constant) is, volgt:

2L{z + v (z,t) }
3z .2.g

b) In het geval van een stationaire s"troming is de snelheid onafhankelijk Van

de tijd dus:

Lnt egr-at i.egeeh dat

2
v (z, t) -t Z = constant Jancs (I) het straal tJ'-e. (vergeliJ'king van Ber-nou.lLi.21i:( ...

,·t

c) Toepassing van b(I) geeft als we de hoogte in A2 22 noemen en de snelheid v2

en in Al resp. z1 en VI dat

V~(Zltt)

:tg

Aangezien z1 - z2 = O,20[m], volgt dat

(II )

Voor deze stroming geldt tevens dat het debiet in elke doorsnede gelijk is.

1'1.a.w.
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:11: :11:
Noemen we Al·'.en A2 de oppervlaktes van Al resp. A2 dan geldt er, dat

Oftewel vl

Gegeven is dat

Substitutie geeft

Sunstitutie in II geeft tenslotte

Oftewel:

N.B. We hadden in dit vraagdtuk ook de snelheid in Al kunnen geven om'daar­

mee de diameter in doorsnede A2 te bepalen. Doe het zelf maar eens.

Een vertikale waterstraal (naar beneden) snoer.t dus altijd in bij aan­

wezigheid van gravitatie).

6 a) Daar we te maken hebben met een stationaire stroming zal de vloeistofhoogte

in het kanaal i.1Îet veranderen in de tijd.

M.a.w. we kunnen de vloeistofspiegel als een "vaste" wand beschouwen.

Aangezien we met een homogene ideale vloeistof te maken hebben, zal de verge­

lijking van Bernoulli geldig zijn.

In een buis gebruikten we de buisas als referentie, echter in deze stromings­

vorm is moeilijk zo'n as aan te wijzen.

In deze stroming geldt echter dat de stijghoogte constant is over de dwars­

doorsnede. In dwarsdoorsnede Al is deze op hoogte Z

Pl(z) - Pa
hl = pg + Z (0 < Z < zl)

_ Pa + Pg ~z1 - z) ._!a + z =
PS



Dus de O~tijghoogte in dwarsdoorsnede Al is

Evenzo is de stijghoogte in doorsnede A2

Nu volgt uit Bernoulli (stationaire stroming) dat de stuwhoogte in elke

dwarsdoo~snede gelijk is:

M.a.wo.

(I)

Cln een buis geldt dit langs de buis-as.)

b) De volumebalansvergelijking voor het balansgebied luidt:

CU)

Oftewel

We willen nu v2 uitdrukken in vI en zl'

We lossen daartoe z2 uit (11) op en vinden:

vI
z2 ::: zi v2 -I'- a

Deze gelijkheid substituren we in (1). Hetgeen resulteert in:

Dus de r-e.l atLe is een 3de machtsvergelijking die we niet zo maar even kunnen

oplossen. Meestal gebeurt dit iteratief.

Substitutie van de gegeven 'Naarden geeft:

3v2 - 31 v2 + 40 :::0
ST
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7 a) De traagheid van de duiker met constante vierkante dwarsdoorsnede is:

2
5 [8 ]
4 2m

b) De verandering van het debiet wordt bepaald door:

(Hi = st~jghoogte in dwarsdoorsnede Ai)

Uitwerking levert, dat

5 dQ _
3 2 -oor

dQ _ 4--_ - dt -4 dt 5

Met Q = A. v(x,t) = A vet) volgt

ddt: A2::.=':±' dv 1 2~- = = 0,2 [mis ]dt 5 dt 5

c) Doordat de peilen de eerste 10[8] niet veranderen blijft het stuw (Stijg7)­

hoogteverschil over de'duiker aanwez i.g, Uit (b) vo.Igt :

dQ _ 4 Q() = .:±._ t
dt - '"E" -+ t =>

Dus het aantal [m3] water dat in (0,10) uit de boezem stroomt is:r rQ(t) dt 3. t2 3= =40[ml.I::

"0 0

d) Nee. zie b.

g a) De traagheid van de buis tussen de vaste dwa1:,sdoorsnedesAl en A2 is:

M = t _ 10 400
gA - 1f 2

lO'ï+(O,l) 1T

b) De relatie tussen het debiet en het stijghoogteverschil over het <,Tasteba­

lansgebied tussen Al en A2 is:

M~-h hdt - 1 - 2

(h. = stijghoogte in dwarsdoorsnede A.J.
1 1



c) Voor het debiet in de buis geldt

400.dQ = 10
-1T- dt (h . =

a
Pi - Pa
---;;,..+z.)

pg 1.

1T--+
40 Q(t)

'IT '$= 40 t. [m7s1 (1)

Daar het debiet in elke dwarsdoorsnede g~lijk moet zijn~ geldt dus ook dat

het debiet Ql welke aan vat T toegevoerd moet worden gelijk is aan

. 1T 3
Ql = 4ö t [m /$}

d) Aangezien Q(t) ::A(z) v(ztt) en de dwarsdoorsnede langs de buisas constant is

volgt dat

Q( t) :: A. v( t )

Met (1) volgt~ dat v(t) = ~ tt dus de vloeistof stroomt niet-stationair.

9 a) De traagheid van het balansgebied tussen Al en A2 is:

t 300 _ ~ 2 2
gA = 10.J.0 - ,j[sIm J.M =

b) De verandering van het debiet per>t i.jdaeenhe.id volgt uit de relatie

(h. = stijghoogte in dwar-sdoor-snedeA.).
l l

Met hl - h2 = ha -2 volgt dat

h - 2@ _ a
dt - ---::-3-

oftewel met Q = A,v(t} CA const ant ):

+;.iv ( 0 ) =
dt

Q _ h&- 2
A - 30

Dus de ver-sne lLing op tijdstip .t +:: 0 is
h - 2a'-"3ö-



• t ..

- '''S0-

Voor grotere t zal h afnemen dus ook de versnelling van het water.. a

c) Aangezien het volume van het meer groot is t.o.V. die van het kanaal, mogen

we veronderstellen dat de snelheid in het meer ongeveer nul is zodat er geldt

dat

dha
B Tt = Q met B = 5000(m2].

d) Voor het kanaal geldt bij benadering dat:

ha

:; h - 2a

Differentiatie naar de tijd en substitutie van c geeft

2
BM d Q(t) - Q(t) :;0

dt2 .

o a) De traagheid van de buis volgt uit

(
M = lJ ~g A(x) .~

omdat het oppervlak van de dwarsdoorsnede variëert langs de x-as.

Het oppervlak t~~ plaatse van x is:

A(x) -10 4-= n , 10 x.

Dus

M = 1010
lO.1T J

lOO
dx

la ){lT -
109 1 100

[ - ] -
7T 3x3 10

=

We zien hieruit, dat de traagheid vooral bepaald wordt door het nauwe buis­

gedeelte.

b) Voor het balansgebied, geldt:

M dQ = (H - H )
dt 1 2

Aangezien de stroming stet iona.sr-is geldt dat ~:;el:'
dt

0, dus

Hl = H2 (Hl is s tuwhoog't e cp x -- la)

(H~ !I I! op X :; IOC) •
L



Nu geldt dat zl ::: z2 en uit het feit dat Q ,constant is volgt dat

vi Al 10-6'11'
lOlt.-- -_ :::

v2 A2 10-21f

Het drukverschil over de buis is dan dus:

022
P P :::~ (v - vI)'1 - 2 2 2

250
2

108v~)PI -
~2 = (v2

~ - 250.108v~

Stel b ;v, lCm/sj -4v. ::: ~ v2 = 10 [mIs]
.L

c) De traagheid van de moot wordt bepaald door

J

S:::Ra
_ 1 ds _ 1

M - - -;;- - -IO.A Rel :::g s=O ."'l

50
5

d) Dat we te maken hebben met een homogene Ideale. . vloeistof •
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p
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S
R
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+v

v
gem gemiddeldesnelheid

(x, .'j_ z,) ".. .
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!Ia: heek
0 kleine hoogte - L"IIJ
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.R.

dichtheid - ~g/m3J\)
k.1nematischevl.scositeit _[m2 IJ

~ schl.lifspé,lmiJlg _[NIm21
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SAMENVATTING

In deze eenheid beschouwen we vloeistoffen, die nog wel onsamen­

drukbaar ~n homogeen zijn, echter waarv~n w~ de schuifsp~nningen

binnen de vloeistof niet meer verwaarlozen. '

'Er zal blijk~_,_dat afhankelijk van de viscositeit (co~fficient

van inwendige wrijving) en de snelheid van de vloeistof en de

geometrische vorm van de leiding waardoor de vloeistof stroomt,

twee s~romingswijzen van de vloeistof mogelijk zijn ~n wel

laminaire en torbulente stroming.

Voor bei,destromingswijzes worden bij stationaire stroming de

relaties bepaald tussen de stuwhoogte verschillen en het d~biet

in enkele geGmetrische configuraties, hetgeen resulteert .dn de
zgn. toestandsvergelijkingen, waaruit b sv, de weerstanden van de

geometrie volgen.

In laminaire stroming van een vloeistof blijkt de schuifspanning,

recht evenredig met de verandering van de snelheid over de door-

snede, terwijl in een turbulente stroming de schuifspanning even- '(\/

redig is met het kwadraat van die verandering.

Dit geeft reeds het vermoeden, dat de weerstandsverliezen in een

turbulente stroom groter zullen zijn, dan in een laminaire.

In de praktijk betekent dit, dat we turbulentie proberen te ver­

mijden door stroomlijning van een profiel in de stroomrichting.

Om de invloed van plotselinge veranderingen in een dwarsprofiel

op het weerstandsverlies in een geometrie te laten zien worden

de zgn. Carnot-verliezen bepaald.

Tenslotte worden de toestandsvergelijkingen voor een buis met niet-
~

s~.tionairdebiet Q Ct) afgeleid, waarbij we naast een weerstands-

effect bovendien een traagheidseffect in de buis in rekening

brengen.
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DOELSTELLINGEN

1. Het onderscheid kennen tussen laminaire en turbulente stromingen.

De betekenis kennen van het getal van ~eynolds voor het onderscheid

tussen laminaire en turbulente stroming.

Zelf in een probleem uit kunnen maken of de stroom laminair dan wel

turbulent is.

2. De wetten van Poiseuille en Dar<lykennen bij laminaire stromen.

De weerstand en de doorlating van een buis of kanaal of grond-··

lichaam kunnen.bepalen en.ihet verband daarvan met hoogtes en

volumestromen.

De samenstelling van weerstanden en doorlatingen .in serie en

parallel kennen.

3. De wetten van Chézy en Carnot kunnen toepassen bij turbulente

stromen voor het bepalen van weerstanden en doorlatingen en daar­

bij blijk geven van het inzicht dat het verband tussen hoogtes

en volumestromen niet-lineair is en verschillend kan zijn voor de

twee stroomrichtingen.

4. Het kunnen opstellen van vergelijkingen door stroomvoerende vaten

met traagheid en tevens weerstand en voor combinaties van vaten

met hetzij tI'aagheiddan wel weerstand.

5. Fysische dimensies kennen van de gebruikte grootheden.
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INLEIDING

In de eenheden 9 en 10 is steeds uitgegaan van de aanname dat

we te maken zouden hebben met vloeistoffen, waarin alleen isotrope

druk en geen schuifspanningen optreden.

In deze eenheid gaan we rekening houden met de schuifspanningen,

~aarbij we onderscheid maken tussen laminaire en turbulente

stroming van de vloeistof.
-+In eenheid 9 is voor de spanningsvector I in een punt in een

vloeistof afgeleid, dat:
-+- -+ -+f= p e -'! en t

De isotrope druk P is zo gedefinieerd, dat deze positief is

bij drukspanndrig, Dit in tegenstelling tot de definitie van

positieve spanning bij wisselwerkingen tussen puntmassa's.

Aangezien in een vloeistof bijna nooit trekspanningen kunnen

optreden (de uitzondering is cohesie), wordt hier druk positief

gekozen en er geldt dus altijd'"r ) O.

Het minteken voor'de schuifspanning T is een gevolg van de

gehanteerde teken convent ie in de Toegepaste Mechanica.

Zoals boven reeds is vermeld maken we onderscheid tussen laminaire

en turbulente stroming van de vloeistof.

Ter verduidelij king van deze stromingswij zes geven we het 'volgende

voorbeeld.

We beschouwen een stationaire stroming door een buis en meten

de snelheid in een vast punt P (zie figuur 1) met een daarvoor

geschikt instrument b.v. een klein meetschroefje, dat door de

waterstroom rond wordt gedraaid.
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Jp 1 1~.Vp
--7

"'Q I t

,Q (A)

t
fig. 1 (b) fig.2

We registreren de snelheid v in P als funktie van de tijd t ,

In een bepaald geval vinden we een registratie als aangegeven in

fig.2at d.w.z. een constante waardevp

noemen we dan laminair.

Op een andere plaats b.v. Q vinden we dan eveneens een constante
snelheid met een (andere) waarde

De stromingswijze in de buis

In een ander geval vinden we een registratie als aangegeven is

fig. 2b. De gemeten snelheid vertoont hier onregelmatige fluctuaties

t.o.v. een constante gemiddelde waarde\'ir:..,· Dit wijst erop dat de
.~ -

stroming turbulent is.

De waarde v noemen we de 'snelheid van de hoofdstroming in P.p
De onregelmatige fluctuaties van '!I noemen we de turbulentie.p

Een andere wijze om het verschil tussen laminaire en turbulente

stroming te constateren is aangegeven in fig. 3.

p

Q

(A) (B)

fig. 3.
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In een buis of open kanaal wordt op een zeker tijdstip op een plaats P

een klein voorwerp (drijver) in de stroming gebracht. dat door de

vloeistof wordt meegevoerd.

In een laminaire stroming (fig.3a) zal de baan van de drijver een

gladde rechte (of kromme) lijn zijn.

In een turbulente stroming, vertoont de baan van de drijver onregel­

matige afwijkingen van een glad4etijn.

Opmerkingen:

1. de stroming, resp. de hoofdstroming was in de gegeven voorbeelden

stationair in de tijd.

Een laminaire stroming, resp. de hoofdstroming bij optreden van tur­

bulentie kunnen in het algemeen van de plaats en van de tijd afhangen.

2. Behalve het optreden van fluctuaties in de snelheid of de baan van

een drijver kunnen ook het optreden van onregelmatige druk of onregel­

matig veranderenàe oneffenheden in de vloeistofspiegel wijzen op

turbulentie. Niet alle onregelmatigheden zijn echter aan turbulentie

toe te schrijven.

3. De meting met een meetschroefje is een voorbeeld van een Euler-beschrij­

ving van de stroming; de bepaling van de baan van·een drijver is een

voorbeeld van een tagrange-beschrijving.

4. Praktische voorbeelden van laminaire en ~urbulente (~) stroming vindt

'u .ij. ·
het kielzog van een schip (~)

- een langzaam lopende waterkraan

(overgang laminair naar turbulent)

- een lucifer in waterstraal {~}

- de rook uit een schroosteen (~)

curnul~s-wolken die aan de horizon zichtbaar zijn (*)

Soms is turbulentie hoorbaar b.v, bij het ruisen van een beek.
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II. STROO~1WEERSTANDEN IN LAMINAIRE STROMEN

11.1. Viscositeit en laminaire stromen.

We beschouwen twee oneindig lange platen A en B

waar tussen zich een viskeuze vloeistof bevindt,

dwz. een vloeistof, die inwendige wrijving heeft.

Veronderstel dat we plaat A in rust houden t.o.v.

het inertiaalstelsel Oxy en dat plaat B met een
-+

constante snelheid 1'1)'- ex beweegt.

In het algemeen zal er bij een vloeistofstroming langs een wand een slip

optreden en zal de snelheid van de vloeistofdeeltjes niet gelijk zijn aan

, A fig.4

de snelheid van de wand. Deze slip is echter alleen bij zeer lage dicht­

heden van belang, zodat voor normale viskeuze vloeistoffen gesteld mag

worden, dat de vloeistof door adhesie aan de wand blijft "plakken"

d.w.z. de snelheid ervan t co ;v, de wand is nul.

De vloeistofdeeltjes~ die tegen plaat A aanliggen zullen dus in rUst

7ijn. terwijl de vloeistofdeeltjes, die tegen plaat B aanliggen de snelheid
-+

~ex zullen krijgen. We veronderstellen de stroming van de vloeistof

stationair.

Om deze stromingstoestand als die in fig.4 in stand te houden blijkt empi-

r-Lsch , dat op de beide platen krachten moeten worden. uitgeoefend.

~.... go.... - "'OQ""QiX'2""M - t::<i!"K Over een oppervlak A (zie fig. 5)

+ moet een kracht F ~ naar links opx
de onderste plaat werken·.i

'a,.

tDè ;: Ma hei

A

Deze krachten worden op de vloeistof

overgebracht.

Beschouwen we namelijk een doorsnede

op afstand y van de plaat A, dan

(fig.6) blijkt uit een evenwichts­

beschouwing in de x-richting van het

mootje met volumen Ay, dat in de

doorsnede een kracht moet werken,

aangezien de vloeistof niet versneld

wordt en er geen andere krachten op

het mootje werken.

(De drukkrachten links en rechts

heffen elkaar op )
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We maken hieruit op dat er in de vloeistof een schuifspanning T .; F/A heerst en

wel zodanig dat op ieder vlakje ~ A evenwijdig met de beide platen, door de
....vloeistof boven dat vlakje (fig.5)op de vloeistof daaronder een kracht t AAS
xnaar rechts wordt uitgeoefend en tevens (beginsel van aktie en reaktie) door ~

de onderste vloeistof op de bovenste vloeistof een kracht -T ~A:naar links. t. x
Bij veel stoffen b.v. water" olie, lucht etc. ge~dt bij laminaire stroming voor
de schuifspanning T de wet van Newton.

vx-.--
y

Hierin stelt n de dynamische viscositeit van de vloeistof voor.

T : n

Bij deze stoffen vinden we dan ook in het bovenstaande prObleem, daar T

constant is, dat:

ó··v=''[ = constant (2),_'.,x _.;...
d :}- Tt'

Daar v :: 0x
v =x

vinden we na integratie van

voor y = 0

voor y: = a

(2)

(zie.figuur 4) (3)

Oftewel het snelheidsv~rloop is lineair over de hoogte.

Uit (3) volgt tevens de grootte van de schuifspanning nl.

(3a)

Opmerkingen:

1. De dJnamische viscositeit n is vrijwel onafhankelijk van de

druk, echter wel afha~kelijk van de temperatuur.

2. Er zijn vele media, die niet aan de wet van Newton voldoen met n constant,

klei

pasta

zalf _ epiastics

zoals blijkt uit neven­

staande grafiek.

Bovendien geldt (1)

alleen voor laminaire

/ suspensies,colloidaleL/
/

/ ater, lucht, olie

oplossingen

stromen.

3. Vaak wordt n geschreven aï,s~v met de o de dichtheid envv de kinematische

viscositeit. De fysische dimensie van \)is nl. [ri /s)hetgeen een kinematische
grootheid is.
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tabel 1: Enkele gegevens over dichthe.ld en· viscositeit

Verschillende stoffen bij 20°C.

3 2 kSip (kg/m ) v(m Isec)
Tl lm.sec)

kwik 13600 -6
15,50.10 -40,114,10.

ether 720 -6 -40,316.10 . 2,275.10
benzol 880 0,75. 10-6 6,60 .10-4
water 1000 1,01. 10-6 10,1 .10-4
spiritus 850 1,51. 10-6 12,.8 .10-4

10-6 -4 .lucht (bij 760 mm hg) 1,2 14,9 • 0,179.10
glycerine 1250 850 . 10-6 10625 .10-4

De invloed van de temEeratuur op v

" "T OC v van water (m /secl v(gï~ lUC9to (m-/~eJ)p= mm g

0 1,80 .10-6 -613,0.10 ..
10 1,30 •10-6 -613,9.10 .
20 1,01. 10-6 -614,9.10
40 -6

17 .10-60,661.10
60 -6 -60,4B2.10· -19,2.10
80 -6 -60,368.10 21,7.10
100 -6 -60,296.10 24,5.10 .

Ge~evens voor atmosferische lucht volgens standaardatrnosfeer:.ARDC 1959

t Oe 3 2 (~hoogte , (kg/m ) v Cm /sec) Tl m.sec)

zeeniveau 15 -6 -41,225 14,6.10 0,1788.10
1000 m 8,5 1,111 -6 -4'15,8.10 0,1755.10
5000 m 17,47 0,735 -6 -4- 22,1.10 0.1624.10
10000 - 49,90 0,412 -6 -4m 35,3.10 0,1454.10
20000 m -56,5 0,088 -6 -4159,9.10 0,1407.10

= dichtheic,
v = kinematische viscositeit = 11 / ~
Tl = dynamische viscositeit

kg= kg massa.



-li10-

Met behulp van de wet van Newton zijn alle viskeuze schuifspann~ngen in
, '

een vloeistof te bepalen. d.w.z. alle schuifspanningen, die het gevolg zijn

van de inwendige wrijving van de vloeistof zijn met (1) te bepalen.

•~ : .- l

Bepaal de schuifspanning in water bij lami~air-e
stationaire stroming tussen twee platen. Gegeven,,·vb= 10-2
[mis] en a= 10-2[m] .: Voor qeqeuene van wa~r,.z:ie ,.tabeZ 1•

Studie vraag 11.1:

oT= 20 C.

Een in de praktijk veel. voorkomend str-oomvoerend vat is de'buis. ':. . ,......:->.:.-.:
Voor deze geometrie zullen we in eerste instantie het.snelheidsverloop over

de dwarsdoorsnede bepalen.

We beschouwen een stationaire stroming door een c î l.îndr-Lscherechte bud s
. . .. ".. ..'':!'..

met constante diameter d=2a. De v.Ioe istof'deeLtrjes bewegen evenwijdig met 'de

buisas, die we als x-as kiezen.

Zulk een stroming noemen we laminair. De vloeistof stroomt in de x~richtingJ

en is onsamendrukbaar~ en homogeen.

De vLoei.stofbeveg.ing in,de buis..is stationair d.w.z. dat de snelheid v .
de p.l.aats , dus ,v: v.(x,y,z).van de vloeistofdeeltjes een funktie is van

, 'dV
r , dus dtechter niet van de tijdparameter

"..
= 0

I....
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~mogenE3
Omdat we te maken hebben met e~endrukbare vloeistof is

het debiet Q door de buis onafhankelijk van x (zie eenheid 10).
2Daar de doorsnede A ::7T a onafhankelijk van x is, zal dus ook

de snelheid v onafhankelijk van x, moeten zijn.

Met andere woorden er geldt dat v = v (y ,z). -

We veronderstellen de stroming rotatiesymmetrisch, er volgt dan

dat v « v (r) met r2:: y-2 + z2.

Teneinde de snelheidsverdeling van de vloeistof over de

dwarsdoorsnede van de buis te bepalen, stellen we een impulsbalans

op. We kiezen e~n balansgebied GB, dat begrensd wordt door twee
I

dwarsprofielen 5, en 52 op afstand 1 van elkaar en verder door een

cilindermantel S3 met straal r < a: We stellen de balans op voor

de x,-gerichte impuls.

Voorlopig laten we de invloed van de zwaartekracht buiten beschouwing.

Gezien het s:ationair zijn van de vloeistofstroom betekent dit,

dat de druk p alleen nog van de xkan afhangen dus p=p (x)

Studievraag 11.2: Probeer aannemeLijk te maken, dat de druk p

nie t van Y en Z afhanke Zijl< is.

In de dwarsdoorsnedes S, resp. 5?_ werkt in de X -richting een drukkracht
-+ 2 -+ :t --1. -+
F1 = p, 1i r -ex resp. 1'2 =- P2'lT r ex

(P, is de druk op 51, P2 de druk op 52 De drukkracht van 53 op GB werkt

niet in de x-richting).

Daar we te maken hebben met een laminaire viskeuze stroom geldt langs de

cilinder S3 de wet van Newton.

Langs S3 werkt dus een schuifspanning T - Tl
dv
d~ •

Het min-teken ontstaat, doordat we nu niet zoals in fig. 6a vanuit

de wand meten, maar naar de wand toe (fig.7).

Aangezien de stroming rotatiesymmetrisch is, geldt dat:

r=a-y
zodat
T = Tl q va =n ~v,,:, dr

-'\ """ dyoY arJr· , ,
combinatie

fig. 6a en 7.
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Dit resulteert in een schuifkracht lang S3 ter grootte van
... .... ... dv + .
F3 =-~.oPP~.e : =- 't 2 '11' r Ie :: 2 "'IJ' r I I'ldr e
in de richting'X x x

Omdat de snelheid v alleen een funktie is van de straal r van

de buis en niet van de tijd, geldt voor- de impulsba·lansin de
x-richting, dat:... ...... ... ...
F ,t F2 + F3 :: ~t (p) :: 0

Oftewel:
1C . d .... .

tr r2 -t UT r...en _:!. } e ::Ödr x

Hier uit volgt, dat

2 dv
rdr :: - P~ -P_1

"ln (4)

De randvoorwaarde v=o op r::ageeft bij integratie van (2)

de snelheidsverdeling volgens Poiseuilie:

v (r) = P, -P"
4 fn (S)

Ook wel wet van Poiseuille genoemd.

De wet is tegelijkertijd door Hagen en door Poiseuille empiri;schop­

gesteld. Vaak wordt daarom ook wel van de wet van Hagen of van Hagen­
Poiseuille gesproken•

,.
.. !v
I

fig. B

snelheidsverdeling in de buis.

Opmerking: De stroming van het bloed in de aderen is b.v.
een Poiseuille stroming.
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In het voorgaande hebben we vooralsnog de invloed van de

zwaartekracht buiten beschouwing gelaten.

Teneinde de invloed ervan duidelijk te maken, plaatsen

~e de buis ~~rtikaal in een locaal gravitatieveld met versnelling
g = - g

-+ez

j
1~

L

c

We beschouwen daartoe de opstelling van fig. 9.

De waterstand in bak B wordt steeds op het niveau S; gehouden

door vloeistof in de bak bij te gieten (debiet Q).

Het vloeistofniveau C onderaan de buis is constant en staat

een niveau bboven de uitstroomopening van de buis.

De grootheid bveronderstellen we zeer klein.

We kunnen nu geen mootje uit de buis beschouwen aangezien

de schuifspanninglreen drukverloop in de buis geeft en daarom

nemen we een vloeistofmoot (cilindervormig) over de gehele

lengte :Q, van de buis.

De stroming in de buis veronderstellen we weer laminair en

stationair, en we verwaarlozen de invloed van de vloeistof­
hoogtes8 ( 6« t,).

De vloeistofspiegels B en C staan in direkt contact met de

buitenlucht , dus er heerst een atmosferische drukp
Cl

Bij het opstellen van de impulsbalans moeten we ook de
-+

volumekracht G van de vloeistofcilinder in rekening brengen.

De impulsbalans voor het gebied, begrensd door SI ,52 en de

cilindermantel S ~ levert dan:

G + F + F + r = iEd .... = ct
~ 82 s3 t

Oftewel!
e» 2~.-ra .trI' e +z

-,
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Hieruit volgt, dat:

- 2 dv
~ dl'

=+~
In

= + ~
Tl (6)

Integratie van (6) met randvoorwaarde 9=0 op r:- levert:

(7 )

Na deze introductie van de zwaartekracht bij een vertikale

buis gaan we terug naar de horizontale buiSt die nu _geplaatst

is in een loeaal gravitatieveld.

De vloeistof stroomt weer laminair en stationair en voldoet

aan de

5'14
~., ...:--------------- -+I- ~

idctOo> l(

wet van Newton •

..I,

I----------- +-fl _
fig. 10

De zwaartekracht, ~ie nu op de vloeistofmaterie wérkt geeft

een drukverloop over de dwarsdoorsnede van de buis.

Veronderstellen we de druk op de oppervlaktes van de dwarsdoor­

snedes S,. en -S2 resp. PI - en Pi:" dan is het drukverloop over S
(zie fig. 11a) en de drukverloop over S2 (zie fig. l1b)

De drukbijdrage van de zwaartekracht is dus in elk punt op hoogte -.Z

in.beide dwarsdoorsnedes gelijk en levert dus geen bijdrage aan de

impulsbalans voor een gebied begrensd door S, ,S, -en de cilinder­

mantel S~3
Uitwerking van de impulsbálans levert dus voor de snelheidsverdeling

over de dwarsdoorsnede (zie (5) )

., (r)= pi "'Pf
4- trI

2 2-
(a -r ) (8)
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Toon wiskundig aan, dat de BneZheids­
verdeling (8J juist iB.

~' Tenslotte beschouwen we een.buis, die onde~ een helling in een

~ loeaal gravitatieveld ligt.

:z

Sr
-~

De stroming veronderstellen we weer laminair

en stationair en de vloeistof voldoet aan de

wet van Newton.

De buisas maakt een hoek (11'-c( ) met de posi­

tieve x-as. De zwaartekraèhtsversne,lling is
~
g = - g. ez
De drukverdelingen in de dwarsdoorsnede ~ en

S 2 t.g.v. de (volume) zwaartekracht is weer

hydrostatisch.

Veronderstellen we de (oppervlakte)-druk in S 1 en S2 p~ resp. Pt . dan

levert een impulsbalans voor het gebied omsloten door S1. S? en S~.
rekening houdend met de vloeistofmaterie in de cilinder.

(hydrostatische verdelingen vallen tegen elkaar weg)
2 -+ -. 2-+ 2 -+. - dv.. ..P Irr oe I - P. 11're, + pg Ln r C.OSe( e I + nr-L -d e,:: 0I x l. x - x I' X

Uitwerking levert met de randvoorwaarde

v <::0 op r=a

2 2v(rr (a - r J
4 Q.n

{ (Pt -1>2 +fg lcosa } (g)

Nu geldt dat leos = z, -z2

met Z,. de plaatshoogte het middelpunt van ~ en z2 de plaatshoogte
van het middelpunt S2 .

Oftewel (9) is te schrijven, als

2 2v. (I'):: a..-r
•
{ P, + fp-Z,.) - (P2 + ~p:z2) } (10)

De stijghoogte was gedefinieerd als

?t hi = Pi + fgzi)'. dus de snelheidsverdeling in een buis, met laminaire,

stationaire stroming van een vloeistof~ die voldoet aan (1) is:
2 2ver) = pg (a-r) {h1-h2}

4 tn (11)
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Met de kennis van het verloop van de snelheid over de doorsnede

kunnen we de relatie bepalen tussen de volumenstroom Q en de

stijghoogte-verschil (h, - h.)
:1. ..

j
2"'t'(r=omtrek c-s opp. 2"1l-rdr.

Het debiet Q is gelijk aan

Q = ) V'dA , oftewel met (11)

Á
fig. 13

Q =5~·
o

~rdr 4= pS"" a
8 j~ ( h,' -~ ) (12)

"'!.....

Deze formule geldt strikt genomen met h, en h 2 in de middelpunten

van S 1 resp. S ~ echter de stijghoogte is ongeveer constant over

deze doorsnedes.

Studievraag 11.4: Maakaannemelijk, dat de stijghoogte al/leen afhangt
van y.) dus constant is over de duaredoorenede,

Vgl. (12) is ook te schrijven als

Q = K (~'-hi) ( 13)

We noemen K in (13) de doorlating van de buis en deze is:

K= r g:!!: a4 = ~g Ir d 4
B ..{ Il(. 128 Iîi (14)

Omgekeerd is ook te stellen, dat:

(h, ·h ,; :: R Q (15)

-1
met R= (K) de weerstand van de buis.

In het algemeen kan voor- een buis met constante, doch willekeurig

gevormde dwarsdoorsnede, de doorlating van de buis bepaald worden

met:

4
K= c~g d

Ei
Waarin 1 de lengte, d een kenmerkende dwarsafmeting en C een vorm­

coëfficient van de buis is. -,
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Voor een buis met elliptische dwarsdoorsnede geldt b.v.

Als we voor d , d 4~ d . 11'nemen: =\j' ~~~b2 an ~s c~4a +

met a,b de lange en korte halve as van de ellips

Voor een buis of open kanaal met rechthoekige dwarsdoorsnede

~
'-::"'dC-··~-n----:'-s---c-:---~-:-------)~I

Als d= voor een buis

De waarde van Ka voor

in onde~taand tabel

buis en ä =0 met een

verschillende waarden
b

( - =1 correspondeerta
spleet).

b
van ä worden gegeven

met een vierkante

TABEL II

b- I
.0a = 1.0 .9 .8 .7 .6 .5 .4 .3 2 .f .

kt) 28.44 25.73 23.22 21.09 19.17 17.49 16.04 14.80 13.73 12.81 12.0o

De beweging van een vloeistof in een open kanaal met lengte t en breedte a

en diepte D is dezelfde als in een helft van een rechthoekige buis met de

afmetingen ~,a,2D.

De doorlating van het kanaal is twee keer zo klein als die van de buis.

Voor een kanaal hebben we dus (als a ~ 2D) •

\4~a
d= V D-a

4c= -
](0

Met Ko bepaalt uit bovenstaande tabel als men 2D i.p.v. b kiest.
a a

Studievraag 11.5: Door een buis met straal, a=O~5 [m] wordt een
vloeistof gepompt, over een afstand van 1000[ rr:J
n vI = 0~5r~] en ,,= 900[*V

Bepaal de weerstand van de buis.
Aan welke eisen moet de stroming voldoen ?



Studie vraag 11.6:
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Bepaal de fYsisahe dimensies van R en K.

Met de snelheidsverdeling van Poiseuille hebben we de snelheid op

elk punt in de dwarsdoorsnede bepaald.

Een vaak gehanteerde snelheidsgrootte is de gemiddelde snelheid

over de dwarsdoorsnede gedefinieerd door

v
gem

Q = volumestroom

A= oppervlak dwarsdoorsnede

In eenheid 10 hebben we de gemiddelde snelheid gedefinieerd als
v S - _g
gem = fA - A

Studievraag 11.7:

Studièvraag 11~8:

Studievraag 11.9:

Opmerkingen

Bepaal de maximale snelheid in de PoiseuilZe

verdeling in de buis met cirkelvormige doors~ede

als deze horizontaal ligt. Bepaal. tev_ens de
gemiddelde snelheid.

Wat is het effect op de resultat~n van een snel­

heidsverdeling~ als een getdealiseerd tot ideale
vloeistof?

Bij welke waarden van Tl uereohi l.Lende resultaten

van de berekeningen minder dan bijv. 5Z van de
juiste waarden?

b
Verklaar de invloed van de verhouding ä op #tó in
tabel.II.

1. We hebben nog steeds te maken met laminaire stationaire stroming

van een vloeistoft die aan de wet van Newton voldoet.

2. Als we te maken hebben met stationaire stroming door een rechte buis
'.' . .

met variabel dwarsprofiel moet vgl. (13) geschreven worden als:

(15a)
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waarbij de snelheid in 5, en 52 in overeenkomstige punten b.v. de
middelpunten moet worden gekozen.

v 2 ')In (13) geldt namelijk dat _1_ in S, = ""'2 _ in S2"
2g 2fJ

De in (15agebruikte grootheid

H':i.= .1:t+ zi + '! t2 is de in
~g ~g

eenheid 10 geïntroduceerde stuwhoogte.

3. Op plaatsen waar buizen of andere stroomvoerende leidingen

overgaan in andere vaten, evenals in de nabijheid van vloeistof

spiegels van vertikàle buizen .is de Poiseuille verdeling niet
meer van toepassing.

Meestal wordt de afwijking van de Poiseuille-verdeling ver­

waarloosd. In het eerste geval speelt de ontwikkeling in de

grenslaag een rol, terwijl in het tweede geval de oppervlakte­
spanning een belangrijke rol speelt.

4. Een relatie tussen het (stuw-of stijg-) hoogte-verval en

het debiet kan als een toestandsvergelijking van de buis
worden opgevat.

Buizen in serie en parallel.

We beschouwen opnieuw laminaire. stationaire stroming.van een
vloeistof, die voldoet aan de wet van Newton.

Veronderstel dat twee buizen met verschillende dwarsdoorsnedes

gekoppèld zijn via een geleidelijke overgang, waarvan de

extra weerstand te verwaarlozen is ( zie fig. 14).
,S, $3

~--:---------~ ..

~I~ :1 opp. ~ I

fig. 14

Het debiet Q stroomt van links naar rechts.

Dan geldt er voor buis 1, dat het debiet Q van de vloeistof gelijk
is aan (l.S!)

(16)
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Met, (.H,- H,3)het verschil in .stuv hoogte in punt, en 3.

R, is de weerstand van buis 1.

Het debiet 0 door buis 1t gaat ook door buis 2 (behoud van volume),
dus voor buis 2 geldt, dat

(17)

R2 is de weerstand van buis 2.

Sommatie van de vlg (16) en (17) geeft:

Oftwewel voor twee buizen in serie (de een achter de ander) kunnen de

weerstanden van elk der buizen opgeteld worden in de toestandsvergelijking
Voor de totale stroomgeometrie.

Voor de doorlatingen is het verband ingewikkelder.

Dit geldt ook voor meer dan twee buizen.

Beschouwen we twee buizen t die paralleJ (naast elkaar )aan elkaar lopen..

met doorlatingen resp. Kl en K2' dan geIdt , dat het debiet 0 zich splitst

in twee debieten 0., en,O2 zodanig dat Q, + O2 = 0 (wet van behoud

~----------~
_/ ~!!iJ \._
:t. C ) • .2

.f.ig. ,_
Sommatie van (18) en (19) geeft

Q = (Kl + K2) (H H)1- 2'

van voLumen )

Voor-buis (Kl). geldt:
01 = K, (H1-H, )
Voor buis (K2),geldt:

O2= K2 (H -H )1 . 2

Dus voor twee (meer) parallelle buizen kunnen de doorlatingen

van elk der buizen worden opgeteld in de toestandsvergelijking voor

het gehele stelsel. Nu is het verband van de weerstanden de moeilijkere.

Studievraag 11.10: Q

R2

BepaaZ de toestandsveroge lijking voo~ de
. -1

aonfiguroatie van buizen met R. =(K.) i=7..2, 3, 4,5.
t: .1.

RS
bovenstaandB

(18)

(19)

2



-1121-

We zagen dat van buizen in serie de weerstanden van de buizen

gesommeerd mogen worden teneinde de weerstand van de gehele configuratie
te ?epalen.

Intuïtief voelen we aan dat vernauwingen (bottlenecks) in buizen

(of andere geometriën) een hogere weerstand zullen hebben dan wijde
delen van de buis

VOORBEELD

We beschouwen twee buizen met cirkelvormige dwarsdoorsnede, die'
onderling verbonden zijn.

,

~ !n, ;)
t, ><
De lengtes

lDI :!2.
e, ,.:.

We veronderstellen, dat de verbinding

tussen de buizen geen extra wrijving onder--'
oRlevert.

De a~ameter van buis 1 is D~ = 1 (m] ,
terwijl D2 = a,' [mJ
Cm)9.1~!2 zijn b s v , 50

Uit het feit, dat de buizen in serie liggen, volgt voor de

toestandsvergelijking voor de totale configuratie

(~1-W2)= (R,+R2) Q

: R2 (R, + 1) Q (20)
R2

Uit (14) en (15) volgt voor de weerstand

Substi tutie in (20) levert:

H -H :: 128 l2·n ( 1, D 4
+ ,)

, 2 2
Q4 4"g 1TD2 D, 12

Substitutie van de gegeven waarden in de verhouding

geeft:

-4(10 +1) Q.

Er blij kt uit dat de invloed van de weerstand Rl 10.000 keer kleiner is dan de

weerstand R2 en dus meestal te verwaarlozen.
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Stud'ièvraag 11.11: BepaaZ de verhouding t2 als we eisen dat de
weerstand Rl 5 P1'Ocen.ttJf minder is van de
weerstand R2 als D7=-1[nfJen D2 = O~7 [mJ.

OPMERKING:Steeds werd aangenomen dat de verbin~ing tussen de twee

buizen geen extra wrijving geeft.

Als de overgang geleidelijk is, kan men: dit binnen zekere grenzen

verdedigen, echter bij abrupte overgangen is dit zeker niet het

geval. Ook blijkt'f dat de weerstandsverliezen bij een versnellende

stroom (van grote naar kleine diameter) kleiner zijn dan bij een

vertragende stroom (omgekeerd).

11.11. Stroming door een poreus materiaal.

In een doorlatend, korrelig materiaal (bv. grond) vormen de poriën

kanaaltjes waar vloeistof-doorheen kan stromen (grondwaterstroming)

De stroming veronderstellen we laminair en stationair.

We beschouwen een vloeistof die voldoet aan de wet van Newton.

We beschouwen een blok materiaal met .Lengte t en constant dwarsprofiel A.z

hl i
> )(

!"'-'---- - , "/
Stel dat er door oppervlak A een debiet Q in de x-richting gaat.

We noemen dan ~ = q ~ = Q ~ het specifieke debiet (ook wel dex - x -
filtersnelheid (21) A

(een debiet per oppervlakte eenheid noemen we specifiek debiet met

fys'ische'dimensie rmis] , dus de dimensie van een snelheid).

Tussen het specifiekè debiet!l en het stijghoogteverschil (h,-h2)

bestaat een relatie

(22)
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Deze formule (22) wordt de wet van Darcx genoemd.

Hierin is k de doorlatendheid van de grond ••De doorlatendheid is

afhankelijk van de grootte van de korrels en de poriën tussen de

korrels en de soort vloeistof.

Soms schrij ft men de doorlatendheid dan ook a Is:
..s..:.g

k= v.d (23)

waarin ~ een coëfficient is voor de vorm van de korrels.

0: een maat is voor de afmetingen van de korrels

~: de kinematische viskositeit is van de vloeistof.

g. de grootte is van de zwaartekrachtsversnelling.

In tabel 111 is de k-waarde van enkele materialen opgenomen, als er

water door stroomt.

Met (21) en (22) is de toestandsvergelijking voor een poreus

materiaal te bepalen nl.
AQ= qA = ~ i (h 1-h2 )

Oftewel de doorlating K van het blok is

(24)

K= k !:.
t

Tabel In

materiaal k-waarde voor water door materiaal

grofzand 10-4 _10-3 [m/s1

fijnzand 10-5 -10-4 [mIs]
10-9 - -7

[m/sJveen 10

klei 10-11-'0-9 ~/~

Studievraag 11.12: BepaaZde doo~lating K van een g~on4lichaam bestaande
uit grofzand (k-wa~de· 10-3[mli}met lengte t=20[m]en
duare doorsnede A met oppervlok 70 [tnJin de lengte­
richting van het Zichaam.
De getransporteerde vZoeistof is water.

Studievraag 11. 13! Bepaal de fysische dimensies van k e4
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11.111. Criterium voor laminaire of turbulente stroming.

(Getal van Reynolds)

In het voorgaande hebben "e steeds verondersteld, dat de stroming

laminair was. In de civiele praktijk komt een ·zuiver laminaire stroming

weinig voor en hebben we meestal te maken met turbulente stroming.

De wijze waarop een vloeistof stroomt wordt vooral bepaald door de

grootte van het getal van Reynolds (Re)

Voor dit getal geldt:

R = fV~d (=e '--n-
v.d )
\)

(25)

waarbij

v: een kenmerkende snelheid van de stroom (meestal wordt hiervoor•
gekozen de gemiddelde snelheid over de dwarsdoorsnede)

d: een kenmerkende dwarsafmeting van de stroomvoerende configuratie

(bv. voor een cirkelVormige buis de diameter)

p: de dichtheid van de vloeistof.

n: de dynamische viscositeit van de vloeistof.

v: de kinematische viscositeit van de vloeistof.

Als we voor 'een cilindrische rechte buis de diameter ervan voor de

kenmerkende dwarsafmeting d kiezen, dan geldt dat de stroming

laminair is als Re <300 en turbulent als Re );2300 (proefondervindelijk

vastgesteld) •

Het cve rgengegeb fed ,300 (Re <2300, waarin beide stromings wijzen

naast elkaar voor kunnen komen wordt in deze eenheid niet beschouwd.

Voor een kanaal, waarvan de waterhoogte klein is t.o.v. de breedte

van het kanaal, geldt dat de stroming laminair is, als:

Re (1200

en turbulent als:

Re )9200.

Voor de kenmerkende dwarsafmeting wordt in dit geval de waterhoogte

gekozen.

U zult opgemerkt hebben. dat deze Re-waarden vier keer zo hoog

zijn dan in het geval van de buis.

Dit hangt samen met de andere snelheidsverdeling in het kanaal en

de vorm van de dwarsdoorsnede.
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Hierop gaan we echter niet in.

In het algemeen kunnen we stellen, dat -in een bepaalde leiding,

de kleinste dwarsafmeting de grootste invloed heeft op het

getal van Reynolds, aangezien de invloed van de wanden op de

stroming langs die dwarsafmeting het grootst -is ,

Studievraag 11.14: Van een ronde buis is de diameter OJ10 [m]
Het debiet is OJ 10 [m3ltU . Is de stroming
laminair of turbulent?
Wat kunt: Uzeggen van de viscositeit ale
de stroming l.aminai» is?

Studievraag 11.15: Door een kanaaZ met breedte 20 [~ en
diepte 3 [riJ stroomt taate»,
Het debiet is 9 lm3Is J.
De kinematische viscositeit van. 'ûJater
is v= 7JO 70~6 m2/s bij é.O°C.
Is de stroming turbulent of laminair?

111 Turbulente stroming in een kanaal of buis

Bij grote waarden van het getal van Reynolds wordt de stroming

steeds en overal in de dwarsdoorsne~e turbulent.

Laminaire stroming is dan alleen nog mogelijk zeer dicht langs

de wand, in de zgn. laminaire sublaa6'

Teneinde dit duidelijk te maken beschouwen we de sneIheLdsver-deHng
bij een turbulente stroming door een buis.

De hoofdstroming (zie inleiding) vertoont dan een verdeling als

,~ aangegeven in nevenstaand figuur.

De snelheidsverdeling van de hoofd-

• ~ stroming is vergeleken met de

Poiseuille verdeling bij laminaire

stromen, over een groot deel van

he~ dwarsprofiel gelijkmatiger,

doch nabij de wand (bodem) wordt de verandering van de snelheid

met de plaats (~~) ~eer groot.

Voor de hoofdstroming moet gerekend worden met impulstransporten

t.g.v. turbulente schuifspanningen, die men ook wel schuifspanning

van ReYEolGs noemt.

Naast deze turbulente schuifspanningen treden echter ook nog

viskeuze schuifspanningen op.
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In een stroming door een buis of een kanaal kunnen we nu drie

geb1eden onderscheiden.

S,.
V.

volledig
turbulent
gebied.

snelheidsverdeling in

een turbulente buisstroming.

. ,/
.7

wand .Y'

"".

y=afstand tot
de wand. ~.

laminaire
(viskeuze)sublaag 'l

fig. 17

1. Viskeuze (laminaire) sublaag- Hier zijn alleen viskeuze schuif­

spanningen werkzaam, omdat naar de wand toe de turbulente

fluctuaties steeds kleiner worden.

Deze laag is zeer dun.

2. Overgangsgebied waar turbulente en viskeuze schuifspänningen

van dezelfde orde van grootte zijn.

3. Volledig turbulente gebied waar de viskeuze schuifspanningen t.o.v.

de turbulente schuifspanningen verwaarloosbaar zijn.

De grootte van de drie onderscheiden gebieden is sterk afhankelijk

van de waarde van het getal van Reynolds. Hoe groter het getal van

Reynolds is, des te kleiner zijn de viskeuze sublaag en het

overgangsgebied.

fig.18 Volledig ontwikkelde snelheidsprofielen vo~r stromingen

doOT gladde buizen met cirkelvormige doorsneden.

0,8\
-i

o &,,-l,
/r

~'~

iO
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We zien in fig. 18 in dezelfde buis duidelijk het verschil tussen

de ~nelheidsprofielen Voor laminaire stroming en die Voor turbulente

stroming. Dit verschil wordt veroorzaakt door de grotere turbulente

schuifspanningen ten gevolge van de turbulente beweging van de
vloeistof.

Voor de drie onderscheiden gebieden zijn experimenteel of met

behulp van een theorie formules opgesteld waarmee de snelheids­

verdeling bepaald kan worden.

Voor"de viskeuze sublaag geldt de theorie die Voor een laminaire

stroming is afgeleid. (zie hoofdstuk Il van deze eenheid).

Voor het over~angsgebied en het volledig turbulente gebied zijn

de formules aanzienlijk ingewikkelder dan voor een laminaire
stroming.

De formulering van de snelheidsverdeling van de hoofdstroom valt buiten
het kader van b 8.

We vermelden enkele in de praktijk gebruikte weerstandsformules

zonder op de theoretische achtergrond in te gaan.

In .I Stromingsweerstand volgens Chêzy:

Z. 2['
: ti'
I , ~
I 0 e,,' ;\t' .. ~ Q.J .. .)0( .:.c. (.., >.,,,,-
o ~,

We beschouwen een kanaal met een verhangI;:sin«, diepte a en breedte

t'lekiezen twee inertiaal stelsels Oxz met? evenwijdig aan de
z.

~I

, , I
zwaartekracht en 0 x Z; met ...

e c- evenwij dig aan de bodem van hetXl
kanaal in de stroomrichting.

We veronderstellen,dat de stroming in het kanaal turbulent is

(Re ')9200) met stationaire hoofdstroming, oftewel dat het debiet

door elke dwarsdoorsnede gelijk isen constant.

Uit de veronderstelling van een constante dwarsdoorsnede volgt dan

dat de waterhoogte a overal gelijk is.

Daar we het kanaal breed verondersteld hebben laten we de invloed

van de oevers buiten beschouwing.

Uit de aanname, dat de hoofdstroming stationair is,in de xl-richting volgt dat de

gemiddelde druk over de hoogte verloopt volgens de hydrostatische
drukverdeling.
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Als we een impulsbalans opstellen voor een balansgebied bestaande

uit een kanaalgedeelte met lengte i tussen de twee dwarsprofielen

S, en S2 ' dan.v~lgt dat de schuifspanning toeneemt met de afstand

tot de bodem en volgt voor het debiet Q: ( zie aanvullend vraagstuk 1 )

Q = abC ral (26)

waarin: a: de waterhoogte

C: de constante van Chézy

b: de breedte van het kanaal

I: het verhang van h~t kanaal

Dit is de zgn. formule van Chézy. Chêzy heeft (26) uit empirische

gegevens afgeleid.

Studievraag 11.16: Ga de invZoed na van elk der parameters
a; b, c en I op het debiet: Q in (26).

Onder de aannames. t.a.v. gelijke snelheidsverdeling en gelijke

drukverdeling in heide dwarsdoorsnedes S, en S2 volgt voor het

stijghoogteverschil over een lengte t:

h - h :::H1 2 (n)

Substitutie van (26) door eliminatie van I geeft

(28)

Met Q =: Av
gem ( v

gem is de gemiddelde snelheid over de doorsnede,

A is he t oppervlak van de dwarsdoorsnede)

volgt:

= Q ( A = ab) (29)

De weerstand R van 'bet kanaa.L is dus:

R = (30 )
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Uit (30) zien wel dat de weerstand R snelheidsafhankelijk is, d.w.z.

als de gemiddelde snelheid toeneemt, ook de weerstand toeneemt in

tegenstelling tot ,wat we bij laminaire stroomweerstanden vonden (H.II,)

Studievraag 11.17: Ga de invloed na van eZk der faktoren in
het :r-echter'Zid van (30) op de weer'stand.

In de Nedérlandse praktijk wordt vaak de formule van Chëzy als
volgt gebruikt:

r------,
I ap(h1-h2)

v = C ?gem A-

ln plaats van de coëfficiënt C, dj:2 de dimensie m~s-1 heeft 9 wordt

vaak een dimensieloze coëfficiënt À - BC2/g ingevoerd, waarvan de
grootte te stellen is op:

. "

'"Ä co<.
50 à, ::: ::::8 g 1000, met een geschikte middel-

waarde van 200. 6
Dan is h~ verband met (30)

(31 )

Voor een rechte buis met: constante cirke,lvol'mige dwarsdoo:csnede vinden
we voor de weerstanp:

StudievI'aag 11.18: Bepaal de weerstand van een buie met cl x: 0~5 [mI
Q s: 7 [m3/ek C '" 50 en de Lenqt:e 103[mI ie:
De kÜ'temati8che vieooei te-it: van de vl.oeistof
• 70-6r 2,1
'Z,$ tm /sJ

Wat I':'.oude ZJeeY'stand zi,in ale de vloeistof
Laminai» 8tY'oomde?
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III.II -Grenslagen

In de inleiding van hoofdstuk 111 hebben we reeds een introductie

gegeven van het begrip grenslaag. Bij elke stroming van een

vloeistof of gas langs een wand (cever,bodem, buiswand, brugpijler,

scheepswand, enz) wordt de stromende materie afgremd, waardoor een

laminaire sublaag ontstaat. 4.rlM-J ~

Het invoeren van het concept van de grens lagen is daarom belangrijk,
omdat:

- ermee na is te gaan, hoe een stroming zich in 'de lengt~richting

van een buis of kanaal onti...LkkeLr •

- Het loslaten van grenslagen bij scherpe overgangen in een

dwarsdoorsnede in de lengterichting extra weerstanden geeft

en daarom vaak moet wor-den voorkomen (zie ook volgend hoof'ds tuk )

Hierin ligt ook de r>eden dat vele Iilitstroomopeningen en lichamen

die door een vloeistof of gas bewegen gestroomlijnd worden.

rrr .rrr Stroming bij ,~fielve:f'aDdeY'ing.

Bij min of meer' plotselinge ve:t"anderir.genvan het dwarsprofiel

van een buis of kanaal (verwij dingen, vernauwingen, drempels.

bochten, obstakels) kan een aanvankelijk matig turbulente of

laminaire stroming door het loslaten van de grenslaag plaatselijk•
een sterk met de tijd f'Lukt uez-ende stroming vormen (turbulentie).

De turbulentie neemt meestal toe als de gemiddelde snelheid

afneemt in de stroomr'ichting (vertraagde stroming) b;v. bij
een verw.ij ddng ,

Bij een vernauwing n-eemt de gemiddelde snelheid toe (versnelde

stroming)~ waardoor de turbulentie niet zo erg zal toenemen.

In een vertragingsgebied worden plaatselijk de snelheidsveran-

decIngen zeer groot, wat aanleiding geeft tot zeer grote

turbulente schu:i.fspanningenen dus ",'eerstand.
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Sf

?
Wrijvingsverlies1 volgens Carnot bij een stroomvertraging.

z ~~

~----~------~---!Webehandelen. weer stationaire turbu­
, lente hoofdstromen,

t Webeschouweneen stroming met debiet
'Q ( constant ) door een buis, die

zich plotseling verwijdt van een dwars­

pr'of'Le I met oppervlak Al naar één met
een oppervlak A2 { A2 '> Al ~.

De grenslaag in het nauwebuisgedeelte zal de plotselinge ver­
wijding niet kunnen volgen en ·loslaten. Het gev.olg is dat de

grenslaag zich kegelvormig turbulent ontwikkeld, Dientengevolge
ontstaat er rondomde buis bij de verwij ding een neer ( aangegeven
door ( ;') » •

Verderop in de buis wordt de hoofdstI'Oomweer meer gelijkmatig
( zonder neren ),

Teneinde de wrijvingverliezen t.g.v. de grenslaagloslating uit

te drukken in een weerstand gaan we de wet van_behoud van impuls
toepassen in de stroomrichting op een balansgebied begrensd door
S" S;, S2 en 53,

Empi.risch blijkt, dat de druk langs s; onge,,·eer overeenkomt met

de dru~ in S, en dat de schuifspanningen langs 53 te verwaarlozen
zijn t ;o .v , de grote turbulente schuifspanninglm in hel inwendige
van de buis,

Opstellen van de balansvergelijking levert dan: ( zie aanvullend
vr-aags tuk 2 )

1
2g (33)

N,B. Daal"de snelheden in de in de dwarsdoorsnedes 5, en $2 niet
meer gelijk zijn, moe-tenwe hi.er- werken met de stuwhoogtes in
plaats van met de stijghoogtes.

Formule (33) staat bekend als het !,tuwhoogteverlies volgens
Carnot bij stro?.~veT.'tl:'ag:Li~.
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St:udievraag 11.19: Bepaal zelf R en K aÜ3 gegeven is dat

Q = AiY7 = 1r2 .
"qem "qem

Studievraag 11.20: In een kanaal met vrije wate~8piegel loopt

de waterstand op ,als gevolg van een Ca~ot­

verlies in een,verwijding. ToolZ eNt Oan.

Carnotverlies in een versnellingsgebied.
o

s,
fig. 20

Bij omker-Ing van de stroomrichting zal zich een stroming ontwik­

kelen als aangegeven in fig. 8. De stroming "Legt " :..;ich tegen de

overgangswand aan 'en vertoont daar-door- bij het betreàen van het

nauwere buisgeàeelte een insnoering tot een stroomdoorsnede

llA, t.p.v. SC' Daarna verwi_jdt de stroming zich onder vorming

van een dissipatiegebied, tot er verderop weer een stationaire'

stroom ontstaat over het volle ~er beschikking staande profiel

Al in S,'

Tussen 82 en Sc is de stroming vrijwel stationaair. Daarommag

de stuwhoogte in Sc gelijk gestel~ worden aan die_in 52 ( ver­

waarlozing van wandwrij vingsverliezen ),

Tussen Sc en S, rekenen we dan met het Carnotverlies:

2
)2 Î-jl )2 2H2 H1 1 Q (- = ,- :: Vig lJAl A, 2g JlA, 'gem

(34 )

Wenoemen IJ de contractiecoëfficiënt •

Studievraag 11,21: Bepaal zelf R en K.

Een recente toepassing van de Carnot vez-L'iezen bij plotselinge

profielveranderengen vinden we bij de berekening van de weerstands­

verliezen bij de geplande stormstuwca.issondam in de Oostersehelde
( b.ijv. stapeling van stortsteen).
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IV. Bu;i.smet niet-stationaire volumenstroom Q.

buis met

ç"
~ét) --__".. -tal -*---

We beschouwen een variabele volumenstroomO(t) door een cilindrische

lengte 1 en een d,ofarsdoorsnedemet oppervlakte A.
Sö ç~

Welaten in eerste instantie de invloed van de zwaartkracht
buiten beschouwing en stellen de irnpu1sbalansvergelijking

(Newton2) op voor het gebied begrensd door 51" 52 en S3 in de x-'
richting.

In 5, rasp. S., werkt in de x··l"ich"ting een drukkracht :
<.

res.p,

Lan_gs53 werkt een schuifspanning
een schuifkracht:

-;.. -Jo.-Jo.
T = -r ew w x en dus

oT
F = - nIH e in de x-richting.3 x

Aangezien de volumenstroom Q{t) va,rieert met de tijd en A constant
is zal ook de gemiddelde snelheid van de stroom met de tijd
variëren. Toepassing van F = t geeft:

-Jo.dv= plA dt

Substitutie geeft:

( P ) ~ -m = 1" dQ1 - P2 r, - T" P dt
Oftewel

+
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Dit is te schrijven als:

P2 nDTl 1 dQ
Pg ::pgA ...Ag dt ( 35)

Nemen we de invloed van de zwaartekracht mee en realiseren we

ons dat uit het behoud van volumen volgt, dat op elk tijdstip

het snelheidsprofiel in elke doorsnede gelijk moet zijn ( vloei­

stof onsamendrukbaar) dan is (35) te schrijven als:

1 dQ+ -­gA dt (36 )

Tot nu toe hebben we ons, zoals U gemerkt zult hebben, nog

niet uitgesproken over de stromingswij ze van de vloeistoft··

laminair of turbulent ~ m ,a.w. vgL (36) geldt voor beide

stromingsw ij zes.

_L~minaire strom,ing:

Bij een constant debiet ( ~~ = 0 ) , vonden we in hoofdstuk Ir:

H, - H2 :: RQ (37)

d'v-n -- ), ar' .( Poisseuille-verdeling en T ::

met R :: 128 ln
4pgnD

Daarom stellen we (36) als volgt 'looi":

H - H :: '1 dQ
1 2 • dt + RQ (38 )

met de traagheid M ::iA (zie ook eenheid 10).·

Opmerking: Bij een nadere analyse blijken M en R iets groter

te zijn als gevolg van de wederkerige beïnvloeding van de

wrijving en de traagheid.
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Resultaat (38) is ook te bereiken door in gedachte twee buizen

in serie te nemen , waarhij we aan de ene uitsluitend een traag­

heid M en aan de andere uitsluitend een weerstand R toe _ kennen.

Er geldt dan dat

H - H - M ~1 M - dt

Opgeteld geeJt dit

+ RQ

dus vgl. (38).

In het geval, dat we met sen stationaire hoofdstroming t.e maken
hebben vondenwe dat met (30)

R :: 1 1v g,em !
aC2A

en _d_g = 0
.1 dt dat

H H-1 - 2- RQ

Beschouwenwe (36) dan wordt dit

(39)

Ook hier kunnen we in eerste benadering dezelfde traagheid M ::1-
gA

substitueren , waarbij we ons wel dienen te realiseren dat dit

eenvoudige beeld bij een nader-e analyse niet helemaal meer opgaat
echt er- bij benadering voldoet (39) mee!nal.
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Opmerking: Voor een turbu.lerrtestroming is moeilijk met serie­

en paralleltakken te werken, aangezien de. weerstand R snelheids­

afhankelijk is.

Studievraag 11.22: A28 het debiet Q van wate~ door een bui8
met een eeraal. O.. 07[m] en een lengte. 10[m]

. 1/1atZgegeven ie ale Q = Ce J:.'1l /8J .. bepaal
dan het etnaahooqtevereehi.l. ale funktie van
de tijd. C is zodanig, dat de 8t~O"ring
'1 • • • 70-3 [ka]taminai» "Z-s. Tl t = ....;sl...wa er me
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Stationaire stromen van homogene inccmpressibele vloeistoffen.

Laminair:

R ( Poisseuille) R ( Darcy )

Cilindrische

buis
_~n
. tt

pg'irD

C 9:~:d4)t1~:~
~--------------'---r--'----------------~~ ~

Rechthoekigb:_l _
f • -------------+ _
I

Br-eed kanaal met
konstante
dwarsdoorsnede

Turbulent:

R (Chézy)

1.
kA

.R (Carnot)

Cilindrische

buis
8 Ilv Igem +
D A C( c-: ,7) ...!. s ( .2. _ ...!. )2 (vertraagd)

2 g Al A2

Breed kanaal

A konstant)
l'v ~, gem!

cl C2 A 1.Q ( ...!._ _ ~ )2 (versneld)
2 g IlAl A2

Niet-stationaire stromen (Laminair en turbulent)

._---,,~~._j_,_r1
cri . buis zie boven I JA
---------f------·-·----~·---·-----i~--{.._--
Breed kanaal 11" ) ryÀ

I e-,------,_ ..,-~._~......_._..._-_._..._._"'-..._-..+-,._-----
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!ewering 11.2

Bewering 11.3

Bewering 11.4

Bewering 11.5

Bewering 11.6

Bewaring 11.7

Bewering 11.8
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BEWERINGEN

In een laminairoe stationaire' stroming van een
viBkeuae vloeistof door een rechte buis is as
schuif{lpanning in' de vloeistof recht evenredig
met' de. dynamische viskositeit en de sneihliidB-:-:"
verandering in de stroomrichting.

In een stationaire turbu'Lente st'l'oming geeft
• ",i

een snelheidsmeting in een vast punt een
constante w~.,

Voorwaarden van het RetjnoldBgetal groter.dan
300 is de stroming in een buis~ met constante
cirkelvormige duaredoorenede, tiurbulenti,

In een buie , met constante cirke'lvol'f'11igeduare­
doorsnede~ is de echuî:fspanning e.en Uneaire.
funktie van de eta-aal:van de buis.

De wet van Darcy betreft uit8luitend 8tationaire
'laminaire stromen.

Als twee buizen in serie staan~ dan mogen de
door'lati~gen van de ~ee buizen worden opgeteld
bij de bepaling van de toestandBvegelijking VOOr
de totale configuratie.

Een stroming is laminair Voor waarden van het
Reynoldsgetd'l die kleine» zijn dan 7200.

De weerstand van een kanaal bij stationaire
turbulentie stroming is recht evenridig met de
kinematische viscositeit.

I)



Bewering 11.9

Bewering 11.19:

Bewering 11.11:

Bewering 11. 12:

Bewering 11. 13:

Bewering 11.14:

Bewering 11. 15:
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De iaeeretiand, die optreedt bij een plotse Zinge wroncle,..il1;]

van het dWar>spr>ofielin een buis met een
aipkelvoPmige dwapsdoopsnede is onafhankeZijk van
de nahting van de etroninq,

Als het debiet in een buis niet vaPieer>t in
de tijd" dan is de tpaagheid van een buis nul ,

De fysische
viscositeit

dimensie van. [NS~7
1.S m2J'

de dyncurtisahe

In een kanaal is de ene lheideverde Zing lineair>
met de diepte als de stpoming lominai» is.

De iaaarde van de conezantie van Chézy is gemiddEld
45 [mJs/sJ

Voor toaarden van het ReynoZdsgetaZ kleinep dan
7200 is de stroming in een kanaal Zaminair>.

Voor>een Z~dnair>e str>omingvan Water geZdt
de wet van Newton.
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AANVULLENDE VRAAGSTUKKEN
z:,.

l

A IC\.
I
I

lt-ti'---' ---J~. !~- -I ~
4~---.e

1. In een kanaal, dat horizontaal ligt, stroomt stationair en laminair
water in de x-richting door een constante dwarsdoorsnede A.{a~} ,
( b » a ).

a) Bepaal de snelhe:i.dsverdel:i.ng in de dwar-sdoor-snede ,

b) Bepaal de maximale en de gemiddelde snelheid en 'de onderlinge
verhouding.

c ) Bepaal de weerstand van het kanaal over een lengte 1.

N.B. Boven het water heerst de atmosferische druk Pa"

2. Leid zelf de weerstandsformules van Carnot af door impulsbalansen
op te stellen voor de gegeven gebieden ( zie II1.!I ).

2 I~---t tof
/.~-- I' <, ---~._" --._ - --...."

4r ---- ,"'-'-I<, -~-~l-';'-, rjJ'----+-. ~'~~ " ._
- , I, ... _ ,l>

/~ I • -. a.,..[... i--T- -----------'~'--<::.:::... "" c.. ,. ,.---- ... x

3.

Door een cilindrische buis met diameter D = 0,2 fLiJ s tz-oomt stationair
een vloeist~')f met kin. viscositeit 'i) ::: 10-6[m2/sJ • Debuis maakt

een helling --U = 11'16 met een hor-i.aontaa L vlak. De lengte 1 van de
buis is 50 [ml.De constante van Chéz~r is bij turbulente stroming

C = 50[m~IsJ. Aanbeide uiteinden van de buis heer-s+ de atmosferische
•• -+ ['/2Jdruk p • De zwaartekrachtsversnelll.ng as g = -10 ems .

a z .

a) Bereken de gemiddelde snelheid in de buis.

b ) Is de stromingswij ze turbulent?
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c) Hoe groot is het debiet?

d) Hoe groot is de weerstand?

z

4.

Door een rechte cilindrische buis,{ D = O,5[rnJ ) stroomt stationair

vloeistof met een debiet van 1 [m3/s1. De lengte van de buis is

lo3Gn1. De waarde van de constante van Chêzy is C ~ 45fm~/s].

De zwaartekrachtsversnelling is g = -10 ët Cni 1s21 •
z

De ki . .. d . f' 10-6( 21 ]an , va.s cosatat-tvan e v.Loe Lsto l.S 'Ii = ms.

a) Bepaal de weerstand~an de buis.

b) Hoe groot is het stijghoogteverschil over de buIs?

c) Wat is de waarde van het getal van Reynolds?

SG'W~I" Ji AI..s. -=-- ..-
dl --.--

A lengtedoorsnede'k~aal
t . dwarsdoorsnede

Onder invloed van een konstant hoogteverschil dl -,d2 = 0 t 1rml

stroomt water stationair door een kanaal rechts vah de schuif.
I

Boven het vrije wateroppervlak~eerst de atmosferische druk p •
I a

De Chézyconstante is 50[mVs1- De vereneLlIng van de zwaarte-
.... .... 2 .

kracht is g = -10 e [mis 1. \1001' de verdere gegevens zie de
figuren. Links van d~ schuif is een groot meer. v(water)=lO-1m?~J
a) Bepaal de gemiddelde snelheid in het kanaal.

b) Is de stromingswijze turbule'nt?
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c) Bepaal de weerstand van het kanaal.

d) Hoe groot. mag (d, - .d2} zijn opdat de stroming laminair wordt
in het kanaal?

e) Hoe groot is dan de maximale snelheid en waar treedt deze op?

6.

l) .. x.

Door een cilindrische buis met diameter 1 t 0 [mJ stroomr water

niet- stationair met een debie~:

Q= 2.10-4 sin ( t; t)[m3/ J. De lengte van de buis is

De viscositeit v~ het w!ter is \)::10-6 [m2/s)' De

Chezy is C= 50[rn' /s1.
'00 [rn]

constante van

a) Bepaal de stromi.ngsw.ij ze van het water.

b} Bepaal de weerstand van de buis.

c) Bepaal de traagheid van de buis.

d) Bepaal het stuwhoogteverschil over de buis.

AI

7.
•

;
.r

. --

iD._ ,[.tnJ

f

Een buis met cirkelvormige dwarsdoorsnede verspringt twee keer

van profiel.

Door de buis stroomt stationair water onder invloed van een

drukverschil over de uiteinden. De zwaartekrachL wordt ver­

waarloosd. Gegeven VH20 :: 10-6 [m2 /s1 C:: 50 lm~/s].,
Q 1Im3/ J Co ,- ·'fof'·.. ti 0 7 V d. :: S '. . ntract~ecoe' _lC1.entr:: ,,. oor Ver ere gegevens,

zie de figuur.
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a) Bepaal de instroom weerstand.

b) Bepaal de weerstand van het dunne gedeelte.

c) Bepaal de uitstroomweerstand •

.d)_~epaal de totale weer.stand tussen Al en A2•

e) Bepaal de vereiste stijghoogte over de geometrie tussen

Al en A2•

z
j'"~ 1

eh b .2L I ~6:l .......,.tp,
--+ • • • Wa. t C .... IoC8. - ~-t--,

"$

Drie cilindrische buizen zijn zodanig gekoppeld, dat de ver­

bindineen geen extra weerstand opleveren.

De diameters van de dwarsdoorsnedes van de buizen zijn resp.

0, = D.l[m], D2= S.10-2[rrJ en D3 = 10-1rmJ.

De lengtes zijn I, = 1Oim], 12 = 20[mJ'~n 13 = 20[m1 ...·

Door de buizen stroomt laminair en stationair- water met \I

De zwaarte~rachtsversnelling is g = 10 ê [rn/s2J
z

a) ~epaal de weerstand van elk der buizen.

b~ Bepaal de totale .weerstand van de configuratie.

c) Hat is het maximale debiet Q opdat de stroming laminair blijft?

d) Wat is dan de gr~otst optr.edende snelheid?

9. Wat is de fysische dimensie van de

- doorlatendheid k?

- de tr~agheid M?

.~de weerstand R'?

- de dynamische viscositeit 11?
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10. ,,-.....__---- _.: -=:;;;: -t-'y
o.! II I
I' I.._--~ - ...- . + .~ ~

11: 1000 JinJ '

h:,-,çr------.. "._'--

k_ ... _~

Door een slootje met constante dwarsafmeting diepte a= 1[mJ en

breedte b= 5[m1.stroomt water stat ionair met een debiet van
-3 tm3 ]5 .. 10 Is ., 1

- 6 lm 2 1 - [m!.l ]. .\)H 0 = 10. IsJ.. Chezyconstante C = 50 Is'
2 . -+ -+rm21De zwaartekrachtsversnelllng g = 10 ez l Is . De lengte van

het kanaal is 1000 [ml •

a) Is de stroming laminair?

b) Bereken de maximale snelheid, die in de dwarsdoorsnede op~

treedt.

c ) Voor welk debiet ',..ordt de stroming volledig tUrbulent?

d) Wat is dan de weerstand van het kanaal?

Voor bevloeiing van een gebied met

water is een debiet vereist van

o ~5 [m3/51.

We hebben daartoe 10 cilindrische buizen met elk een diameter, .
van 10- fTri en een lengte van 50 [m1•
De afstand tussen vate:r...winplaats en het gebied is 200 Cm]. De

stroming in de buizen:,is stationair \)H20= 10-3 (m2/sJ) Constante

van Chezy is C = 50 [m;Is1 .
We leggen 4 buizen in serie vijf keer parallel naast elkaar.

Door elke buis stroomt evenveel water.

a) Is de stroming turbulent?

b) Hoe groot is de totale weerstand.
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c) Welk stijghoogteverschil is noodzakelijk om de stroming te
handhaven.

12. Onder invloed van een stijghoogteverschil' tussen de uiteinden

van een grondlichaam stroomt laminair en stationair water van
links naar rechts

De doorlatendheid van de grond is k

Veor verdere gegevens zie figuur.

a) Bepaal de weerstand van het grondlichaam.

b) Hat zal het debiet zijn als het stijghoogLeverschil
5[m] is ?

c) Bepaal ook het specifieke debiet '.

13. Door een cilindr·ische rechte buis (D ::; 0,4 [ml> stroomt water onder
invloed van een in de tijd

De lengte. van de buis is 1
variërende stijghoogteverschilAh: 2 sin ~tin].
::; Sfm1·, \)H20 = 10-6 Im2f J..

s.

a) Hoe groot is de traagheid van de buis?

b r Als we de weersta'nd van de buis verwaarlozen, welk debiet ont­
staat er dan?

c) Hoe luidt de toestandsvergelijking voor de buis als we p;een ver­
waarlozingen toepa~sen?

Uit welke vergelijking moet dan het debiet worden bepaald?



ANTWOORDEN OF AANWIJZINGEN BIJ DE STUDIEVRAGEN

S.11.1 Water is een vloeistof, die bij laminaire stroming voldoet

aan de wet van Newton, dus

't =

. A
Volgens (3 ) geldt, dan dat

T = l'l aangezien de stroming stationair is d.w.z.a
Vx is geen funktie van de

t = ~ = 10-3 rN/m~

tijd.
Dus

5.11.2 In de :rechte buis, verstond~n we onder laminaire stroming,

een stromings waarbij de vlceistofdeeltjes evenwijdig met

de.buis-as bewegen. M.a.w. er zijn geen snelheidscomponenten
in de y en z richting.

Veronderstellen we b;v, p een funktie van z en stellen we

een impulsbalans op in de z-richting, dan geldt volgens de
tweede axioma van Newton.

~ Z).1>Pdz .
'2;2

ot1 _
lil(. F(%}'J

verwaarloosd hebben.

Jv
dz = pdxdydz d~ J

aangezien we de zwaartekracht

Aangezien Vz = c volgt dat ~ - 0
C)z -

oftewel p is geen funktie van z.

Evenzo volgt uit een impulsbalans in de y-richting. dat p
geen funktie van y is.

s . i 1. 3 Bij de stroming dool" de buis hebben we te maken met naast

een uniforme drukverdeling t.g.v. oppervlakte krachten een

lil'leaü~edrukverdeling 1:.g. v , de zwaart (volume) kr'acht.-~-*-r'
/ j 1(4~til~tl'"-1.}. i .

i
f

Beschouwen we even alleen de

ver'deling t ..g,v , de zwaar-re-
kr-acht; t dan is op hoogte z de



Integratie van de lineaire

drukverdeling over de .cirkel­

vormige dwarsdoorsnede geeft

als kracht:

::

Beschouwen we eerst de tweede term van het rechterlid:

+a t»:» 0

2 fgz j:2_z2~z + a y' 2 2'J 2 ~gz \j a z dz::: J f 2 ~gza -z dz-a -a 0
-a (; 2 ~I a i 2 21:: -f 2 pp;z a -zLdz + f 2 egz a -z dz
0 0
a

~ a ..j 2 . ?':: -J 2 fgz Va -+z dz + f2 fgza -z-dz ::0
0 o.

De laatste stap is als volgt in te zien:
I 2 i.De funktie f (z) :: 2 ~gz V a -z as antimetrisch want

f (-z) ::- f (z). Dus substitutie van de integratie parameter

(-z) i.p.v. z in de eerste term geeft:

+a_ f .~ .
+2~gz VaL-z.c dz ,

o

M.a.w. F= J+o. 2
-a

;-;;-:;1
~ga V a~-z' dz.

Substitutie van z: :: ay geeft

F ::2 pga3 J+1 Qdy :: (symmetrisch):4 t>ga3 /'W dy
-1 0

~~ety ::: sin El 0<:9 <TI/2 volgt

3 //2 2 3 //2F :: 1+ ,ga cos ede ::4 pga 0 + ; cos 26) de~0 0

3 + I{ 'tga3'~ 2~
JIn

:: fglIa sil1
0



Dit resultaat vinden we aan beide dwarsdoorsnedes van de .buis.
!-1.a.w. de invloed van de zwaartekracht v.Çth eruit en dus is
resultaat (8) juist. (zie afleiding (~) ).

S.11.4

was aan
In studievraag 11.3 zagen we dat de druk op hoogte z gelijk

~t ~

p(z) = p,+rg (a-z)

Oftewel:

p(~)+ ~gz = p, + ,ga.~i
Links en rech.ts delen door ~g geeft

( ) Pl
~+Z=-+apg pg

Oftewel de stijghoogte op willekeurige hoogte z is
-fk

de constante waarde{pfR' \)gal/~t =
gelijk aan

5.11.5' Pas (1~) en (15) toe en realiseer Uonder welke voorwaarden
deze formules gelden.

1
S. 11.6 Maak gebr·uik van de betrekkingen:

hl - h2 :: RQ en. Q ::: K (h1- h2)

S.11.7 De snelheidsveràeling van Poiseuille luidt voor een horizontale
buis:

De maximale snelheid treedt op als
dV P, - P2
.........:: 0 oftewel (';"21") :: 0
q.. 4 2n

H.u.v. dat r = o.

Dus vmax:: 2
a ~ treedt op in het midden van de huis.
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De totale verdeling ziet er als volgt uit:

-~

De gemiddelde snelheid is op twee manieren te berekenen
(in principe dezelfde).

v.,g rr a4Namelijk: gem = A :(R-f\)-
8 in

({l~,~P.2-)
= 8

2a

De gemiddelde snelheid is ook te bepalen met

vgem = .1 ..·fV( r )dA A = opp. dwarsdoorsnedeA .
(In feiteAis J v(r)dA het debiet)

Ä

We zien uit een vergelijking van vgem en vmax dat in de
Poiseuille-verdeling geldt:
v vmax = 2 gem.

Dit is een belangrijk resultaat, aangezien we met kennis

van één van de tHee de ander kunnen bepalen.

Voor een niet horizontale buis volgt hetz&lfde, met dit

verschil dat er nu i.p.v. P, - P2 stijghoogteverschil
h1 - h2 in de uitdrukkingen komt.

8,11.8' In een ideale vloeistof treden geen schuifspanningen op,

dus laat in de viskeuze vloeistof de schuifspanningen naar

nul gaan en bedenk dan de gevolgen voor de stroom.

S.11.9 Des te groter de breedte a van de rechthoekige doorsnede des

te kleiner wordt kó eb constant verondersteld.).

Het gevolg van een ~rbreding is dat de invloed van de zij­

wanden op de stroming steeds kleiner wórden en dus de weer­

stand van de geometrie afneemt oftewel de doorlating toeneemt.
or:;

De Co waar.c".e is c :; ~: ~ dus, als kc afneemt neemt ft, en dus de

doorlating k toe, hetgeen în overeenstemrrdl1gis met de boven-

staar~deverwacht Ing,
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S;11.10·

We veronderstellen, dat de onderlinge verbindingen der

buizen geen extra weerstand geven.

De toestandsvergelijking voor bMis 1 is:

Evenzo voor buis 2:

Q2 :::K2 (H1 _ HA)

Combinatie geeft

0, + Q2 =(K1 + K2) (H1- HA)

o =(K1 + K2)(H1-,HA)+ H, - HA Q.
(A)

Voor buis 3 geldt:

R3Q = HA - HB

Combinatie met A geeft!

'\

+ R3 ~ Q::: Hl - HA + HA - HB ::: H, - HB
J

(B)

Voor de configuratie van buis 4 en S geldt:

- H - HB 2.

Combinatie met (B) geeft tenslotte:

Met andere woorden de toestandsvergelijking van de totale

geometrie is:

Hieruit volgt dat de totale weerstand van de configuratie

gelijk is aan
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Waarom zouden we voor de gekoppelde buizen de toestandsvergelijking

Hl - H2 ::R Q i.p.v. hl - h2 = R Q gebruiken?

We beschouwen daartoe de

,............_-;!---~
,

verbinding tussen de twee

rechte buizen met verschil-

lend oppervlak van dwars­

doorsnede.
De weerstand van een cilindrische buis is:

R :: 128 t~ waarin t de lengte van de buis is. (1)pgrrp4 '
Voor de buis tussen ~ en Al geldt de toestandsvergelijking (bij
stationaire str~ming):

(2 )

hR _ h2 ::R Q
2

Evenzo geldt voor de buismoot tussen AR en A2

(3) •

Door beide buizèn gaat nl. steeds hetzelfde debiet Q.

Als nu het verbindJngstuk tussen AL en AR klein is t.o.v~ de buizen

dan volgt uit (1) dat de weerstand ervan gering is. We kunnen dan

bij benadering Bernoulli toepassen ,_waaruit we concluderen dat HL:: HR'
oftewel de stuwhoogte is gelijk in beide doorsnedes.

Dus schrijven we (2) en (3) in stuwhoogterelaties dan,geeft sommatie
ervan :

hetgeen bij de stijghoogterela~ies niet het geval zou zijn, daar,
.hLT hR'

Oprn: Bij bet opstellen van de impulsbalansvergelijking voor een buis

met variabele dwarsdoorsnede, volgt op dezelfde wij ze als voor de

traagheid in eenheid 10 dat el"geldt dat HL- HF:::RQ j..•p.v.
h - l-. -R.QL .IR - .
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.11. We haddèn twee buizen in serie met v~schillende lengtes en diameters.

,
'J

Gegeven zijn de diameters: Dl = lCm] en D2 = O,l(m]. De eist is dat de weer­

stand Rl 5 procent of minder is van die R2,

OfteweI

I .

Daar we ons nog steeds bezighouden met stationaire laminaire stromen moet gel­

den dat

5
100

128 t2n

pg ïT D~

oftewel

.tI 5
- !(t .. 100
2

5 1-- 500
100 10-4 -

M.a.\.J'. buis 1 moet 500 keer Langer- zijn dan buis 2.

Ook kunnen we zeggen dat buis 2 maar' 1./500 van de lengte van buis ..l hoeft te

hebben om toch nog een 20 * zo grote t....eer-stand te leveren.

Hierui t blijkt dus de grote invloed van de diameter op de ~..eerstand van een

buis .

.12.

De toestandsvergelijking voor "het lichaam lu.idt bij laminaire stationaire stro­

ming:
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met

Dus de doorlating is K ::lO-3.~::: ~ 10-3

oftewel de weerstand is l::: 500.[s/m2J.
K

S.1;1.13. De fysische dimensie van de doorlatendheid is te bepalen met (22)

(h - h2)
O

:: k _,;;;;1 __
" • R.

oftewel [kj :: lsl_[Jl.l
[hl - h2]

:: lm/sJ [!!!l _ [ I" ](m] - ms.

De fysische dimensie van ciS volgt uit(2.3)

S.11.14.

De gemiddelde snelheid in de stroming is geiijk aan:

.9. :: 0,1 4.10-1 40v :: ::: . --2:::gem A *.(0,1)2 1r 10 'IT
[mis] •

r'
De waarde van het Reynoldsgetal is:

40v.D .0,1
::: ~~ ::: _1T ~

IJ
Re \l

We moet~o van de vloeistof, die door de buis dus nog de kinematische viscositeit

kennen teneinde de stromingswijze te kunnen bepalen.

In een buis is de stroming laminair als de R -waarde kleiner is dan 300e
M.a.w.

-!±. < 300
1T\l



oftewel

4 -3 2
v > 3GOn = 4,2 * 10 (m Is).

In vergelijking met water' \) :: lO-6[m2/s1 is de vereiste viscositeit veel

gr-o rer , d. w. z • we zullen met een zeep "stropige" vloeistof te maken hebben.

I

,.15. Is het nodig eerst de snelheidsve:r.deling in een kanaal te bepalen? Moeten we

daaru it de gemiddelde snelheid in de dwar-sdoor-snede bepalen?

.15. Het debiet (volurnenstroom) van een stationaire turbulente st:t:'omingdoor een

hellend kanaal met grote breedte-diepte verhouding is

Q :: abC I"'ä[." :: ara belT." [m3/s1.

variatie van de diepte a beeft een niet-lineaire variatie ara van het debiet
tot gevolg.

var,iatie van de br eedte b heeft een Lineat.ne variatie van Q tot gevolg.
- De constante van Cbèzy

c = a (in a 1).
X e: (A)

volgt uit de snelheidsverdeling van Prandtl-Von kanmarm, nl.,

CB)

De verdeling is in de handleiding niet behandeld omdat het erop ingaan te
veel inzicht en wiskunde zou vergen,

In (B) is v' de stroomsnelheid (gemiddeld) op afstand y' van de wand. k isx
de constante van Von Kar-niarmOe !:! 0,4).

E: is een maatt die afhangt Van de l"uwheid van de wand en de dikte van de la­

minaire sublaag. De" is de schuifspanning langs de bodem.

Formule (A) en (B) behoren niet tot de stof.

Door (B) te integreven over de doorsnede volgt het debiet Q.

De waarde van de constante van Chêzy var-Leecr-t- ..met de hoogte en de wandruw­
heid.

1
Meestal wordt een gemiddeldè waarde gekozen die ligt omstreeks 45[m2/s J •

- Variatie van de helling 1:: sina heeft een n.iet+I ine:air-e variatie nvan
het debiet tot gevolg.
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De meest voor de hand liggende wijze waarop .dus het debiet van een kanaal

bij turbulente stroming te vergroten is,· is verhoging van de waterstand .

•
S.11.17. Probeer op dezelfde wij ze als in S.11.16 de invloed van de factor~n op de

weerstand R na te gaan.

S.11.18.
/

De weerstand. van de buis is bij turbulente stationaire stroming:
4 i IV/ljem1 1R = aA C(C + 7,7)

Allereerst zullen we bekijken of de vloeistof laminair dan wel turbulent stroomt.

De waarde van het getal van ReynoJ.ds is:

v .D
Hlem
\)

Re =

vgem
(I Îf=~=-~R
A 11' e

Dus de stroming is zeker turbulent.

De weerstand van de buis is dus
I.j. 1.. !vgeml

3- 4
1 4.10 •

1TR =
C{C + 7,7) =

10-2 (SO{ 50
-aA -15.10 'Ir".25 +7,7»)

215.10
= ------~----~-------- =

125 10-3 (2500 + 385)

16.105

125.2885
= 16.105

5
3,5.10

=

In het geval de st-!'ominglaminair ZOIl zijn is de weerstand

onafhankelijk van de vloeistofsnelheid.
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1, 19. De Carnot vergelijking voor
2" . 1 Q

Hl - H2'= '2 g(
een verwijding bij stroomvertraging is

1 _!.)2A - A •
1 2

De relatie tussen de stu'tThoogteen het debiet luidt dus:

11.a,w. de weerstand van de verwijding is

Hierin kan Q nog geschreven worden als Q = A1,v1 = A~,v2 '
;', ~gem L ,gem' .

HeL blijkt, dus dat bij een ve!'wijding de weerstand, evenals bij Chèzy, snelheids-
afhankelijk is. De door'lating Je :: (R)-l

,,20. Schrijf de stuwhoogtevel'andering uit in deeltermen en toon het gestelde daarmee
aan. Maak voorlopig gebruik van (33) •

•21. Bij een plotselinge vernauwing in een buis is de weerstand te bepalen uit (34)
en deze is

We zien dus (vgl. 8,11.19), dat de Carnotweerstanden verschillend zijn, al naar

gelang we te maken hebben met een vernauwing dan wel een verwijding in de

st!'oomrichting. De door'lating k is gedefinieerd als (R)-l,

,22. We hebben te maken met laminaire st!'oming dus de \<leerstandvan de buis wo!'dt

bepaald uit de 'vet van Poiseuille en is:

-3R :: f,28 ~ = 12B.10.10
pg1tD J 04 • 610-8. 1fj_.

= lli 0102 =
161T

800-
7T

De traagheid van de buis is

M R- IO 104 2500::: -: = -::::gA 10t~1flO-4 4rr TI

De toestandsvergelijking voor de bui s bij niet-stationaire s t'r-omLng luidt:

Hl - H2 : R Q + M dQ
dt



ANTWOORDEN NA AANWIJZINGEN BIJ DE STUD IEVRAGEN.

r"\ 08.11.5. J)

ti
Tlvl.= 0.5 [~] H

[m]~ ms ~I 1
.'1

3 I,
P = 900 [kg/m 1,

).!

.... 1000 [m] _!iJ_
ft

De weerstand van de buis bij laminaire stationaire stroming van een

vloeistof, die yoldoet aan de wet van Newton is

R = 128 R,1')
4-og TI D

64- 103 64.40 '\.= = '\,' 32
TI. 625 1T. 25

De eisen t.a.v. i! vloeistofstT'oming zijn boven vermeld.
_e

s.l1. 6. De toestandsvergelijking:

h,
.J.

[m]h? :: RQ geeft [R 1 = -----"-::-'"_
- [rn3j)

s

:: (s"J
L­m

en

Q = K(h. - h2) geeft [KJ =.L [RJ-I

3.11.8. We vonden rekening houdend met de inwendige wrijving van de

vloeistof bij stationair·e stl'orningde Poiseuüle-verdeling in
de buis.

nl.

(A)

en voor de 1joleerstanct~

R :: .l2~:~n 4
Pg 'rr D (B)
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Over de buis staat een'stijghoogteverschil (h1-h2) bij een debiet Q,
z'odanig dat:

We veronderstellen nu~ dat we'het stijgnoogteverschil (h1-h2)'

over de huis kunnen handhaven, en We laten Tl(dynamische

viscositeit = coëfficient: van inwendige wrijving) in de tijd
naar nul gaan.

De vloeistof wordt dus volmaakt.

Het gevolg hiervan op de snelheidsverdeling is zo blijkt ~it

(A), dat als 11 naar nul gaat in de tijd, de vloeistofsnelheid

naar oneindig zou gaan. Echt.er- (A) geldt voor stationaire

s'troming en als de snelheid ver-andert in de tijd 'wordt de str.oming

niet-stationair. M.a.w. de theorie van stationaire laminaire

stromen gaat niet meer op. nltt-
In eenheid 10 hebben we gezien, dat er bijYstationaire

stromen een traagheidseffect in de vloeistof optreedt, waarvan

de toestandsvergelijking luidt) als de vloeistof volmaakt is:

s.
(M -, -A)'g. (C) ..

, '.
In de vloeistof, die wij beschouwen blijkt uit (B) dat de weer­
stand van de buis naar nul gaat.

Uit (C) blijkt dan dat de vloeistof zodanig ver-sne Ld gaat
stromen, dat de relatie (C) opgaat.

Denken we ncg even terug aan de puntm2ss~ waarop een kracht
wer·kt, dan volgt uit àe-m F

8- .. tweede wet van Newton

CD)

Vergelijken we CD) met (C), dan zien IVe dat het stijshoogte­

verschil t\h = ~ (e._ t z ) een maat van de "kr-acht." op het vloei­Pg
stoflichaam voorstelt en Q een T:iaatvan de lIsnelheidH van het
lichaam.

Tl'ei<kenwe deze analogie nog even dOOL'dan komen we tot de

conclusie dat de volmaakte vloe:~st0,fa Ll.een met' constante

snelbeiè kan stromen als de "kr-acht " 6.!1 nu.I is cftewel ~ = 0 -s- Q
is t::ons'tant.
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De studievraag zoals die geformuleerd is in 11.8, is dus

een zinloze vraagstelling) aangezien we in een stroming, waarin

wrijving optreedt te maken hebben met stationaire stroming en

in een stroming zonder wrijving met niet-stationaire stroming,

tenzij llh = O.

Resumerend kunnen we zeggen~ dat het,model van de volmaakte

vloeistof'bij stationaire st-.comin&_slechts dan opgaat als er

geen stijghoogteverschil over-de buis bestaat en dus het debiet

constant is. In het geval van niet-stationaire stroming is er

een toepassing bij snel wisselende stroomrichtingen~ waarop we

hier niet ingaan.

1.15. Voor een laminaire stroming is vereist~ dat de waarde van het

getal van Reynolds

vgem. d
< 1200 (4*300).

l-laarin d de diepte van het kanaal repr'esenteerd.

Voor 'tur'bu.l ent;e str-omi.ngmoet gelden:

v d
~--- > 9200 (4*2300)

\)

Aangezien we het debiet kennen, is het niet nodig de snelheids­

verdeling te bepalen.

Er geldt, dat:

vgem :: 0,15 (m'~/ ]
s

De waar-de van het getal van Reynolds is

Re =
vgem.

\i

d 0,15. 3
= 4,5*105 (> 9200)

M.a.w. de stromingswijze in het kanaal is tur·bulent. Vergelijk

hder-mee een schaalmodel van het kanaal waarin de stroming

Larai.nei.r- zou worden.

De mor-aal.: Te ster-ke schaalver'kLei.rri.ng is niet toelaatbaar,

want het model moet dezelfde s'tT'omingswijzehebben

aIs het protctype.
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s.11.17. De weer.stand R van het kanaal Ls .

Llv I t IV~eml
R = gem =

a C2 2 (2A a b

met ,...., .
~ a 1) (zie 8.11.16)C = k (9.n € -

(Deze formule wordt niet getoetst~ is gegeven ter infoPmatie).

- .variatie van de lengte van het kanaal waarover de weerstand

berekend wordt heeft een lil1eaire variatie van R tot gevolg.

- variatie van de gemiddelde snelheid heeft een lineaire variatie

van R tot gevolg.

- variatie van de diepte a heert een een niet-lineaire variatie
12 van R tot gevolg waarbij we eigenlijk r-eken i.ngmoet houden
a
met de invloed van .dediepte a op de constante van Cbe zy.

- variatie van de breedte b heeft een omgekeerd evenredige

variatie van R tot gevolg.

Om dus de weerstand van een kanaal te verkleinen is de meest

voor de hand liggende wijze. het vergroten van de diepte a.

(zie ook conclusie s.11.16).

S .11. 20. We nemen aan, dat de toestandsvergelijJ<ing (33) die voor een

buis geldt, ook bij benadering voor een kanaal geldt •.

= l Q2 (~
2 g Al

Pi

Pg

1 2
-)A .
2

Dan geldt dus:

• z..- 1

2v.
1 , gem.

t en Q = v A = v. A2·g 1, gem 1 2, gem. 2

volgt, dat.

2
~i, gem

2- v
2, geul = 2

1 (v - v )
2g i,gem 2,gem (I)



p,:arde,st.i:gt0ogte constant is in een dwarsdoorsnede geldt

in doorsnede 1:

Evenzo geldt in doorsnede 2:

;Substitutie in (I)geeft:

v1, v2. ,gem ,gem
g

(PA is atm. druk)

Aangezien v_ en v beiden positief zijn verondersteld,J.,gem 2,gem
volgt dat:

Oftewel de waterhoogte in doorsnede 2 is groter dan in doorsnede 1.
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COMMENTAAR OP DE 'BEWERINGEN.

b.ll.1.

b .11. 2.

b.l1.3.

b.ll.4.

b.ll.S.

In een stationah'e stroming door· een buis mer constante dwars­

doorsnede is de snelheidsverdeling in elke doorsnede gelijk.

Loodr'echt op de stroorru~ichtingis de snelheid wel afhankelijk

van de p1aats in de door>snede, dus levert de wet van Newton

T = - n ~; voor de schuifspanning wel een waarde. Dus de bewering
is onjuist.

In een stationaire turbulente stroming geeft een' snelheidsmeting

in een vast punt e~n met de tijd fluctuerende snelheid te zien.

De gemiddelde Haarde ever> een bepaalde tijd blijkt echter wel

constant te zijn. Dus de bewering is onjuist. Herlees ook de
inleiding.

I .
Voo~aarden van het getal van Reynolds beneden 300 is de stromingI

in een cirkelvormige buis laminair'.

Voor waarden gnot en dan 2300 turbulent.

Voor waaràen tussen 300 en 2300 komen beide stromingswijzers
V'OOl" (niet beschouwd).

Dus de bewering is onjuist.

We vonden voor de snelheidsverdeling over de dwarsdoorsnede bij
laminaire stl'oming

(hl - h2) Pg 2
ver) = (a _ r2)

4.h)

M.a.,.;,

T = dV'
11 a.., =

Ch1-h2) Pg

49..n . 2r

M.a.w. voor een stationaire laminaire stroming is het juist,
dus de bewering is onjuist.

N.B. In feite moet de vloeistof ook nog voldoe;:)aan de wet van

Newton, echter in deze e,enheid worden alleen v..i.oeistoffen,die
daaraan voldoen behandeld.

Deze bew2ring is juist.



b.l1.6.

b.11.7.

b.11.8.

b.11.9.

- If6~-

neze bewering is in principe alleen juist voor laminaire statio­

naire stromen. Voor niet-stationaire laminaire stromen geldt het

bij benadering. Voor turbulente stromen is het echter oppassen

geblazen~ want dan zijn de doorlatingen afhankelijk van de

gemiddelde snelheid in de buis, en als daar_veranderingen in

optreden, dan veranderen ook de doorlatingen.

Deze bewering is onjuist, daar dit uitsluitend geldt voor

vlpeistofdwarsdoorsneden, waarbij de diepte-breedte verhouding

klein is en bovendien een vrije vloeistofoppervl~k aanwezig is,
zoals bv. kanalen.

De weerstand "an een kanaal is volgens Chèzy, zie (30):

dus onafhankelijk van v, m.a.w. de bewering is onjuist.

Deze bewering is onjuist. Zie afleiding Carnotverliezen (33)
en (34).

b.l1.10. VOO!' een ni8t-stationaire atr-omäng door een buis met constante

dwarsdccr-snsns luidt de toestandsve~"gelijking:

Als Q 1 Q(t), dan wordt dit

M:a.w. de bijdrage van de traagheid aan het stuwhoogteverschil

is nul echter de traagheid zelf is n~et nul, dus de bewering is
onjuist.

b.11.11. De fysische dimensie van. Tl volgt uit de wet van Newton
êv

L = Tl CJy
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m.a.H.
[NI 2J

[nJ [T] _ re
r+-J [NS]= -- - = =

[\1sj 2[ aVJ m-/ mS3y

De bewering .is dus juist.

b ,11.12. Deze bevlering is onjuist. Zie aanvullende vr-aags-tuk1 .

b.11.13.
......2
\..,.

is gemiddeld 200 -+ C is gemiddeld L}5.g'

Dus de bewering is juist.

b .11.14. Deze be'l'leringis juist , mits voor de kenmerkende diameter de.

diepte van het kanaal gekozen. wordt.

b.11.15. Voor water geldt bij laminaire stroming de wet van Newton~ dus

de bewering is juist.

We beschouwen in het algemeen slechts die vloeistoffen,. die bij

Lami.na.ir-a stroming voldoen aan de wet van Newton.
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UITWERKING ftANVULLENDE VRAAGSTUKKEN

1
I •

A. ?.-later·is één der vloeistoffen, die bij laminaire s'tr-oratng voldoen

aan de wet van Newton.

We stellen nu de irnpulsbalans in de x-richting op voor

het vaste gearceerde gebied begrensd door Sl~S2 en de hori­

zontaal op willekeurige hoogte z (z<a).

Laten we de invloed van de zwaar-t.ekr-achtbuiten beschouwing

(links valt tegen r-echt s weg) en veronderstellen we in S1 een

druk PI en in 82 een druk P2' zodanig dat 1'1 > P2' dan werkt er
op SI een kracht:

F1 = 1>1(a-z).b. "tx' Op S2 I>lerkt:F2 = - P2(a.-z)b Ëtx

Op het ondervlak werkt de scbuifspanning bepaüld door de wet
ovx:van Newton·-r = n az

dus een kracht:

Aan de bovenkant wer-kt alleen de atmosferische druk. Pa loodrecht

op de x-richting, dus levert geen bijdrage. De invloed van de

zijwanden verwaarlozen we, daar de breedte groot is t.o.v. de
diepte.

Het water stroomt stationair d.w.z. daar de dwarsdoorsnede

constant is, is in. elke dooI'snede dezelfde snelheidsverdeling,

hetgeen tot twee conclusies leidt:

De door- S. binnengestroomde impuls is gelijk aan de door.L

82 uitgestroomde impuls.

- De impuls verandering van het gearceerde gebied is nul.

D ~ + +r +p = Tu.s 11 2 + 3 u



. Substitutie geeft:

dVx
1) Q, _. :: (r;. - P I Ca - a)

" r J. 2 'o

Integratie Lever-t:

Op de bodem geldt, dat v (o) :: O~ _'.

X

V (z\
PJ.-P2

(az 1 2:: - '2 z ).X J !/'lj

B. De maximale snelheid treedt op als

avx ::0 z = adZ

Dus

"''tT :: ----
max 2Q.ll

p_ -~2
1. 2a

De gemiddelde snelheid volgt uit:

1v ::
gem A f v(z) dA

A

1 a
= ~ I v( z) dz

o

v
3Dus~ maK - 2vgem

De weerstand van het kanaal volgt uit de r-eIa t i,e
- (].)

p~- Pt, Q

[mv/Het debiet Q A -'- L V. J (2)= v :: a Dgem. 3R-n s

Dan volgt: uit (1)en (2.) :

Pi !'J'" 3Ü1L
Q- -"T"".-pg Pg a "bo g



".!'I.a.w.

R = 3in
3a bpg

1~12
m

2.

We stellen de impulsbalalw op voor het vaste gebied _G begrensd
1

door SI' SI ' S3 en S2' dat het dissipatiegebied met de neren
insluit.

We werken roetde gemiddelde snelheden over de doorsnedes,

oftewel de snelheidsverdeling in SI en S2 is uniform, met

V ::Q
l,gem lÇ' en v =2,gem

We beschouwen de x-gerichte impuls en laten de zwaartekracht buiten
beschouwing.

-+In SI werkt een druk PI en daardoor een drukkracht p lAl ex

Deze draagt in een tijd dt een hoeveelheid PIAI ~x dt een .

x-gerichte ,impuls naar'G over.

Verder gaat in de tijd dt een volumen Qdt door SI heen naar G

met een impulsinhoud

..;-
pQdt v e

l,gem x

De totale toevoer van x-gerichte impuls naar G door SI in dt is:

-+
ex

-+
v~ eJ..,gem x dt.



Empirisch blijkt, da-tde druk langs S11 ongeveer overeenkomt met

de druk in SI' Door S11 wor-dt; in een tijd dt de hoeveelheid
1 -+ -+

dp e = p CA -A ) e dt aan x-gerichte impuls overgedragen.1 x 121 x
Door S2 heen gaat in dt een volumen Qdt uit G weg.

We brengen dit in rekening als - Qdt naar binnen

Er werkt een druk Pr' Als aangevoerde x-impuls brengen weL

-+ex
-+ -~= - P? A2 e dt - P -Qv2 e dt- x -,gem x

,in rekening.

De schuifspanningen langs S3 worden verwaarloosd (de grote

schuifspanningen in het gebied treden nier zozee.rlangs de wanden ~

maar in het inwendige op). We stellen dus
-+ -+

dP3 ex = 0, voor de door S3 heen naar G in dt overgedragen impuls.

Binnen het gebied G vertoont de impuls wel fluctuaties,

echtftrblijft gemiddeld constant (stationaire stroom), dus
.~ -+

dp e = 0g x
Opstellen van de balans levert dan na enig herleiden:

= p _g_ (v 1 -v ) = P V r ( V -v )
A2 .i.,gem2~gem L,gem l,gem 2,gem CA)

Aangezien VI :> v2 is> geldt dar;P? ;:. P.l' oftewel de druk,gem ,gem _
loopt in str·oomafwaartse l~ichting op.

Tot dusverre lieten we de zwai'trtekrachtbuiten beschouwing.

Nemen we deze invloed mee, dan verandert vgl. (A) in:

PI P2 Q
(~z1) (---t-z ) ::: - gA2 (v - v )pg - fg 2 1,gem 2,gem

Oftewel

h1-h2 = - -Q- (v -» )
gA2 ljgem 2~gem (B)

Nu geldt voor de stuwhoogte t.p.v. dwarsdoorsnede S. (i=1,2)
J.

Oftewel (B) is te schrijven als:

= - _g_ (v . -v ) +
gA2 1,gem 2,gem

'}
v -. I,gew

22:'"

2
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Hetgeen te"schrijven is als:

i. 1 1 2
Hl - H2 = 2 (~- A2 )

g 1
(z ie 33)
q.e.d. (quod est demonstrandum)

Draait de stroming van·richting om, dan hebben we te maken met onderstaand

stroombeeld.

opP. A. Opstellen van de impulsbalans voor

het gebied tussen Sc en S1 levert

(34 )

Toon dit zelf aan.

Opm. Tussen S2 en Sc is de stroming

vrijwel stationair en verlies-

vr-Lj , dus Bernoulli geldt bij benadering m.a.w. He % H2•..

Opm.: Deze afleidingen worden niet getoetst.

De toestandvergelijking voor de buis luidt~ i.v.m. de stationaire stroming

AH ::R.Q

In geval van laminair-e stroming is de weerstand

R = 128111.
4pg11'D

en volgt de gemiddelde snelheid uit

A.R Ah ~ v Ahv :: ::
gem gem R.A

Het stijghoogteverschil over de buis is,aangezien beide uiteinden in contact

staan met de.atmosferische druk,gelijk aan:

Ah = hl - h2 = R, sina :: -25 [m]•

Dus:

25v :: _..;;.;;;.._---::-
gem 1281.r. 1fD2

pg1TD4 4

c
10. 10'"

::--- - - [m/sJ
16.10 -4 ~- 16
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In geval va'nturbulente stroming is de weerstand

aAC(C+7,7)

en volgt de gemiddelde snelbeid uit

l.j. .2.. lV~emllIh= v A =>
a A C(C + 7,7) gem

:(v.- )~ 6h.a C(C + 7 ,7) 25 * 57,~= =gem 4.2.. 2

v ~ 27 [mis] •gem

b) Re = V&em,D :::27.2.10-1 = 54.105~~ 2300
10-6

J.q_mi~
In het geval van verondersteide~ming

\)

maken met turbulente stroming en de
is Re nog veel groter dus we hebben te

v 1\1 27[m/s).gem

c ) Het debiet Q -2 3
:::27,~.10 [m Is).

i) De weerstand van de buis wordt bepaald door:

R :::
4 t/v 1______g~e_m______~

aAC(C+7,7)

4.50.27

-----'---n--------2-------------- % 500
10 ~.~.4.10 (50)(50 + 7~7)

Alvorens de weerstand van de buis te bepalen zullen we moeten onder'zoeken of de
vloeistof laminair dan wel turbulent stroomt.

De gemiddelde snelheid volgt uit:

v
gem

= .9. = __ 1__ :::
A 1f -? ~51f- 25 10 - -4' •

LJ.OO :::16 [mis].
n

De waarde van het Re-getal is
v .D
gem, '­
\)

16 -1
;-.5.10 8 6
-~--::: ,-10

10-6 TI

Deze waar-de is veel groter dan 2300 ~ dus de stroming in de buis is turbulent.
a) De weerstand van de buis is

l' 164 t Iv I u.IOv,

R :::-----~----- ::: ~_·rr--.------~-- , ~,160
-1 11 -2 'va A C(C + 7~7) 2,5.10 -.2,5.10 45(45 + 7.7)J+



b) Het stijghoogteverschil wordt bepaald door

6.h ::R.Q ~ 160.v Agem

160. 16 '!T -2
~ 4' .25.10

11'

~ 160[m] •

.Aa:hgeÜen de buis horizontaal ligt kunnen we het drukverschil over de buis

bepalen uit

c) Voor de waarde van het Re-getal zie boven.

a) We nemen voorlopig aan, dat de stromingswijze in het kanaal turbulent is.

Laten zullen we dit controleren. Er geldt dan voor het balansgebied tussen

de dwarsdoorsnedes Al ~n A2' dat

,
(h. is stijghoogte in A.')
~ 1

met

Met Q ::A.v volgt uit (1) dat
gem

Subst itutie van de gegeven- waarden geeft

2v
gem

2:: Ot 1.3.52
1000

750 _:: ïööö - 0,75

en

v ~ O,86rm/s1gem I,; ':J"
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b) Voor het getai van Reynolds volgt dan dat:

v .3
_gem_6 ~ 2,5 * 105 » 9200
10

dus de aanname t ...a.'l)". de turbulente stroming \,,3S juist.
e) De weerstand van het kanaal i"'".., .

hl - h2
R 0.1

°sOO2[
s:: :: %Q 60.0,86 2m

d) Er moet dan gelden i dat:

v .dl
~--,::: 1200 ~ v

v ~ gem

,,-4[ ! _~ 6.1v mtsJ.

In het geval van een laminaire stX"oming is de weerstand van het kanaal:

(zie a. v , 1)

Substitutie van de gegeven waarden geeft

R = 3.1000.10-6
27.20.10

15
27

".... J
2m

(De weel'stand is dus veel kleiner dan in het geval van turbulente stroming).
Uit

h_
_

h2 = R.Q volgt dat-l.

hl - h2 s: .5 10-6 60 •0-4 [ •.. ~.~ ..~ rnJ

_0
~ 3,3 10 ~[m],

e) De maximale snelheid in de stroming tr'eedt op aan net oppervlak en deze Ls,
(zie A.v , lb).



v =max

6 a) Het maximale debiet~ dat in de buis optreedt is maximaal als

sin(~ t) maxim~al is.

Dit maximum is 1.

Dus het max. debiet is:

, -4 3
Q =·2.10 [m Is).

De gemiddelde srie'lheidbij dat debiet is:

-4
v - Q - 2.10 = 2,56 * lO-4[m/sJ.gem - A - 0,78

Het getal van Reynolds is dan:-I. 'v .D 2t56 * 10 .1,0
R = gem = = 256e v 10-6

Voor een buis is de stroming laminair als Re < 300, dus de,stromingswijze
is Laminair.

b) De weerstand van de buis is in dat'geval

R = 128!'l'l ;:
4pg1TD

128.100.10-6= .,;;;.;;-..;;...;;;..;;..;...;._
10.11'.1

-4 2
I\t 4.10 [slm]

c) De traagheid van de buis volgt uit

R. 10011=---=gA - IQ.!
4

d) Voor het,balansgebied tuss?n de dwarsdoorsnedes Al en A2 geldt:

met h. is stijghoogte in A .•
~ 1



-4 . 1T 3Hieruit volgt met Q :::2.10 Sl~ T.[m IsJ;

7 a) De stroming in de buis is turbulent want in d.e wijde buisgedeeltes geldt,
dat

Re
v .D"::_jlem L =

V

, (In de nauwere buis is R 2 keer zo groot).e

Volgens Carnot is dan het instroomweerstand bij de linkse profielverspringing:

R =1,9,
1 2 g

= 1 1 (l 1 )2-_ 5 [ I 21ïö --y; - 'fT 0,01 sm.
O~7'4 <+

2

Deze Vleerstand -treedt op tussen de dt'larsprofielenAl en A3'

b) De weerstand van de tussenbuis tussen de dl>-iarsprofielenA3 en A4 wordt bepaald
door C~y en is:

8R. Iv I 8.100. 4/IT
::: g. em = 2

R - :::~ O,45[s/m ]2 Dl,A. C(C + 7~7) 1T.
1.'4,50.57 ;1

c) De uitstroomweerstand in het vertr'agingsgebied tussen de dwarsprofielen A4
en A2 is

1 Q
R = --3 2 g

(~ _ ....:t._ )2
D2 ""D'2'2·71 1 "

= 1 1 ( 1+
2 10 'IT

1 )2 = 3 = O.045(s/m2J'
7f 201r 3

d) De beschouwàe buisgedeeltes stonden in serie: met: (Q is in elke doorsnede
gelijk)

Hl H3 = RIQ;

H3 H4 ::: R2Q

H4- - H2 ::: R Q +3

Hl - H2 ,- (Rl + R2 + R3)Q·



Dus de totale' 'weerstand is

d) Aangezien de dwarsduorsnedes Al en A2 hetzelfde oppervlak hebben, zullen

de gemiddelde sn~lheden daar gelijk zijn, zodat'

8 a) De stroming is laminair, dus de weerstand van de buizen. zijn:

128 tI n -3128.10.10
~ O,lt [51m2]Rl· :: ::

4- 4 -4Pg 11" Dl 10' 11" 10

128 R.2 n -3
R2

128.20.10 2
:: DZi :: -8 lt1 12,8[s/m ]Pg 11"

'042 .L 11" 625.10

2R3 = 2R1 ~ O,8[s/m ]

b) Voor de stuwhoogteverschillen geldt:

H - H = RIQ (1) H ]i :: R2Q1a ; b "b c
H H :: R3Q,..,

( 2) •
b c ' _L.

Met

Ql i' Q2 = Q.

(2) schrijven we nu als

Ql = K2 (Hb H )e

:: k3 (~
(3)

Q2 - H )
c +

Q :: 0<2 + k3) (Hb - H )
c

. met k2 :: (R )-1
2

k3 :: (R )-1
3

.
Dus er geldt: (~ - He) ::0,75.Q. (4)
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Met (1) volgt'dan dat

:: (0.4' + O,75)Q

:: 1,15 Q.

Dus'de totale 'l-leerstandvan de configuratie is

. , 2
R ::1,15[s/m ],tot

c) Het maximale debiet wordt bepaa.ld. door de waarde van de gemiddelde snelheid,
zodarrig dat

v .D
R ::_gem < 300
e v ' •

Nu is de gemiddelde snelheid in buis 1 max:.im2..al:

:300.\1 __ 0-3[ I )v . ~ 3.1. m.S •gem~l. Dl

De vraag is nu of de stroming i.nbuis 2 eó 3 ook laminair blijft.

Uit (4) volgt dat~ als het debiet Q maximaal is, dat:

::0,75 Q ~ -::!. '!T -2_.0,75 ..:l.10 '4,10

9 -5
:: 16 1f 10 [ro),

Uit (3) volgt dan; dat voor buis 2 geldt:

::k (Hb H ) 9 -5 9 -7 3Ql - :: O~08. ï6 '!T.I0 :: "2 'lf.lO . Cm Is].1 c

-. v
gem ,2

9/2 1f 10-7= =1T -Ij.
4,25.10

De toelaatbare maximale snelheid in buis 2 opdat de stroming laminair blijft
is

1 -6 '-3.v < 300. 0 ::6.10 lm/s].
gem,2 5.10-2



..

Dus in hllis 2..is.de stroming laminair.

Aangezien buis 3 dezelfde diameter heeft als buis 2 en Q2 =
zal de stroming in buis 3 ook laminair zijn.

3 -5 3
Dus ~ax = i+ lr.lO .[m /s l,

Q - Q < Q1

d) De grootst optredende snelheid treedt dus op in buis 1 en is (zie boven)

-3
. v 1 = 3.10 (m/s].gem.t

9 De doorlatendheid k is gedefiniëerd als

(h. - h2)
q = k L i voor een rechthoekig ·blok

met ei = t (specifiek debiet) [mis]

hl - h2 (stijghoogteverschil over het blok) Cm)

M.a.w. [kj

(lengte blok)

= [mIs]. [m] :: [mis].
(m]

[roJ.

- De traagheid M is gedefinieerd als

met Hl - H2 (stuwhoogteverschil over leiding) -[mJ

Q (debiet)

Dus: fMJ ::

- De weerstand R is gedefinieerd als

[Rl = [ml 2:: [slm 1
[m3/sJ~

- De dynamische viscositeit n levert de relatie tussen

dVr ::Tl­oy
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10 6) De stroming in een kanaal is Lam i na ir- als

Re
::

V, .<3.
gem < 1200
v

.Nu is de gemi.ddelde snelheid van het water>:

v
gem

= Q - 5.10-3 - 10-3[rr 's]A - 5 - 11.

Dus

Re
-310.• 1

10-5
1000 < 1200

H,a.,w, de stroming is laminair.

b) Voor' een laminair'8 stroming in een kanaal geldt dat

vmax 3:::
v 2-gem

(zie. A.V •. Lc)

Dus

3 -3v = ~.lO [m/ s },max L

Deze snelheid treedt op aan het oppervlak.

c) De stroming is volledig turbulent als:

v .a
R = gem > 9200
e \)

ofte\iel

9200.10-6 -3
vgCl11 > 1 =92.10 [m/sl.

Het debiet moet dus groter zijn dan
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d) De wèerstand van het kanaal wordt bepaald door de formule van Chezy. Voor

het gebied tussen de dwarsdoorsnedes Al en A2 geldt

R = 2. Ivgeml
2aC .A

-3= 100.0.9,2.10
1.2500.5

-4 . 2-
- 7,3.10 [slm J.

.11 a)·We leggen '+ identieke buizen in serie, m.a.w. de weerstand van de achter el-

kaar.liggende buizen is die van één buis met een lengte van 200[m] en een
-1diameter van 10 Cm] •

Van deze buizen liggen er vijf parallel aan elkaar.

\ra--- -

Er is voor bevloeiing een debiet vereist van O,5[m3/s]. Daar door elke buis

evenveel stroomt~ zal dit per huis een debiet van ü,1[m3/s] betekenen.

De gemiddelde snelheid in de buis wordt dan

vgem
:: g_ __ 021 =:

A - 11' 1,,-2- u4

40 [ I J- = 12.7 ms.
'lT

Het getal van Reynol.ds is bij deze waarde

Re
=: 12;7.10-1 =

10-6
12,7.105 > 2300

Dus de stroming in de buizen is turbulent.

b) De weerstand per buis wordt bepaald door:

H•. - HB = R Q.

8 R. Ivgeml
met R =

D.A. C(C + 757)



'..
Daar de huJ..zenparallel liggen moeten de doorlatingen worden opgeteld,

zodat

Dus de weerstand van de totale configuratie is:

R = 9000 2
5 = 1800[s/m ].

c) Het vereiste stijghoogtevel'schiJ is dan: (alle buizen hebben dezelfde diamete

-- HW - HB .- hw - hb)

h - h = R.Qw b

12
1+,

a) Voor het balansgebied tussen de dwarsdoorsnedes Al en A2 geldt bij laminaire
stroming:

!4et

.9. = q volgt datA



1
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)

(1)

dus de weerstand

t 2000 7 2
R - -- - = 2.10 [slm ].

- kA - 10-5.10

b) Uit (1) volgt dat

1 5 -7 3Q :: -R(hl - h2) = --7 = 2,5.10 [m Is]
2.10

c) Het spe,cifieke debiet is dan

-7
q = Q = 2,5.10 = 2,S.10-8[m/s].

A 10

13

a) We veronderstellen, dat

2 . 11' []Ah = hl - h2 = .s~n'3 t m .

De traagheid van de buis is onafhankelijk van de stromingstoestand:

i 5 2 2
M ::gA = ~ -2 = 4[s Im ]

10.4',16.10

met

. dQ
M dt :: Äh.

b) Bij verwaarlozing van de traagheid volgt het debiet in de buis uit:

M dQ = öh
dt

oftewel

dQ _ . 'lfdt' - 0 t 5 s i.n '3 t



Dus Q = ·1 5 11
~ cos t + cons tarrte ,

1l" 3

De constante wor-d-t bepaald m.b.v. beg Lnvoorwaar-den, (Hier niet gegeven).

c} DE~ toestandsvergelijking voor de buis voor het geva.l dat we de l'l1eerstand

niet verwaarlozen is: (zie (36»).

7TDT9~ iH - H = ..;_.;;;_..;:.;..~+ -
1 2 pgA gA

dQ
dt

, Dit is in ons geval (constante dwarsdoorsnede) te schrijven als

Afhankelijk of de stroming laminair dan ivel turbulent is vinden we verschil
lende ,..eer-s tanden voor de buis.

In het algemeen kunnen we (1) schrijven als

hl - h2 = R Q + M ~~

waarin R afhangt van de stromingswijze.

Het debiet Q wordt dus bepaald uit de vergelijking:

dQ 1T
R Q + 1+ - = 2 sin t ~.dt 3

Het oplossen van deze vergelijking gaat het kader van deze eenheld te boven



ADVIEZEN TOETS 11. (Lees ook de bijbehorende doelstelling~).

1. Bestudeer opnieuw hoofdstuk I (11) en (111), speciaal 11.111, de bij­

behorende studievragen~ de beweringen 11.1 t/m 11.3, 11.7 en 11.14 en

de aanvullende vraagstukken 3,4,5,6,10 en 11. Verander de gegevens en

verzin nieuwe sommen.

2. Bestudeer opnieuw hoofdstuk I en 11, de'bijbehorende srudievragen, de be­

weringen 11. 1+ t /ii1 11.6, 11.12 en 11.15 en de aanvullende vraagstukken, 1 t

8\10 oen.12. Maak zelf sommen door gegevens te veranderen.

3. Bestudeer opnieuw hoofdstuk 111, de bijbehorende studievragen, de beweringen

11.8, 11.@ en 11.13 en de aanvullende vraagstukken 2,3,4,5,6,7~lO en 11.

Verzin zelf sommen en probleempjes b.v. door gegevens te wijzigen.

4. Bestudeer opnieuw hoofdstuk IV, de bijbehorende studievragen, de beweringen

11.10 en de aanvullende vraagstukken 6,8 en 13. Bekijk nogmaals hOQfdstuk.V

van eenheid 10.

5. Ga de fysische dimensies na \7analle gebruikte grootheden. Kijk nog eens

naar bewering 11.9 en hQ.t aanvullende vraagstuk 9.






