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3.02
SAMENVATTING

In deze eenheid houden we ons bezig met hydrostatica: we bestuderen vloei-

stoffen of gassen waarvan de snelheid gelijk aan nul gesteld mag worden. We
zullen onderzoeken welke krachten er in een stilstaande vléeistof werken

en daaruit cen formulering voor de drukverdeling afleiden.

Daarbij komt aan de orde wat de invloed van de dichtheid van de vloeistof
is op de drukverdeling. Bij de afleiding van een aantal grootheden wordt
gebruik gemaakt van de wet van behoud van massa. Aan deze wet wordt daarom
een aparte paragraaf gewijd.

In de eenheid worden tevens een aantal. begrippen gelntroduceerd, die nood-
zakelijk zijn om later te behandelen stromingssystemen (bijv. waterlopen,
waterleidingnet, riolering etc.) te beschrijven. Veel van wat in deze een-
heid voorkomt zal u bekend zijn: een aantal onderwerpen is reeds op de
middelbare school behandeld. Het is echter van groot belang te letten op
de manier waarop grootheden worden afgeleid, omdat in de volgende eenheden
een analoge werkwijze gevolgd wordt.

Voor de bestudering van deze eenheid is kennis van het oplossen van opper-
vlakte= en volume-integralen en van (eenvoudige)differetiaalvergelijkingen
noodzakelijk (zie wiskunde Analyse 1 en 2)

Vrijwel alle leerstof van de eenheid is in deze studiehandleiding opgencmen:

er wordt alleen (eenmaal) verzezen naar eenheid 1: "voorbereiding".
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DOELSTELLINGEN

Onderscheid kunnen\maken_tussen het lichaamsmodel en het vatmecdel voor

een hoeveelheid materie;

Oﬁderscheid kunnen maken tussen vatonderdelen zoals:

(vaste) wand, scheidingswand, toegang, grensvlak, bodem en(vloeistof-)
spiegel

en vatgrootheden zoalﬁ: ) -

volumen, maséa-voorraad, (gravitatie-)berging, elastische berging en

klokberging;

Onderscheid kunnen maken tussen speciale vaten zoals:
deelvat, kom of bekken, klok, communicerend vat, (ideaal) stroomvoerend

vat, leiding;

Een stroming(ssysteem) kunnen beschrijven (schematiseren) m.b.v. de

begrippeh en grootheden uit de doelstellingen 1, 2 en 3;"

Definities kennep.van de grootheden die de materie-hoeveelheid en/of
materie-samensteliing in een vat vasfleggen zoals:

volumen, massa(-voorraad), homogene samenstelling, gelijkmatige of
uniforme massa-verdeling,. kontinue massa-verdeling, (gemiddelde)

dichtheid en plaatselijke dichtheid;

Voor een vat of kombinatie van vaten de onder doelstelling 5 gedefinieerde

grootheden kunnen berekenen en de onderlinge verbanden.kunnen aangeven;

Uit een (grafisch) gegeven 2- of 3-dimensionale dichtheidsverdeling de

plaatselijke dichtheden kunnen afleiden;

Definities kennen van de grootheden die de veranderingen van materie-
hoeveelheden of materie-samenstelling in een vat vastleggen zoals:
stromingswisselwerking, (totale) massa-stroom of massa-flux, massabalans

en (totale) debiet of volumenstroom (volumenflux);
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Voor een vat of kombinatie van vaten de onder doelstelling 8 gedefinieerde

grootheden kunnen berekenen en de onderlinge verbanden kunnen aangeven;

Onderscheid kunnen maken tussen volumen- en oppervlakte interakties

(~krachten) in vloeibare en/cf gasvormige materie;

De begrippen normaalspanning, schuifspanning, (isotrope) druk, stijg-
hoogte, (on-)samendrukbaarheid en kompressiemodulus kennen;

De wet van Pascal kunnen afleiden voor een stilstaande vloeistof (gas);

De drukverdeling in en de stijghoogte voor een stilstaande vloeistof

(gas) kunnen berekenen;

Krachten kunnen berekenen op vlakken, wanden en lichamen die geheel of
gedeeltelijk ondergedompeld zijn in een stilstaande vlceistof met een

konstante dichtheid;

De (gravitatie-)bergingsvergelijking kunnen afleiden en weten onder welke

voorwaarden de vergelijking geldt;

De drukverdeling kunnen berekenen in bekkens waarin de massavoorraad
of de cuichtheid langzaam met de tijd verandert.

M.b.v., deze drukverdeling krachten op wanden en lichamen kunnen berekenen;

De elastische- en de klok bergingsvergelijking kunnen afleiden en weten

onder welke voorwaarden deze vergelijkingen gelden.
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DIKTAATGEDEELTE, SUGGESTIES EN STUDIEVRAGEN

INLEIDING

Eenheid ¢ is de eerste van een viertal eenheden, te weten de eenheden 9, 10,

11 en 12, die tot onderwerp hebben de stromingsmechanika.

Onder stromingsmechanika wordt hier verstaan dat deel van de mechanika dat

zich bezig houdt met de bewegingen van en de krachten in en op stromende
vloeistoffen en gassen.

Vlceistoffen en gassen hebben in hun mechanisch gedrag veel met elkaar gemeen.
Z2ij zijn Onbepgrkt'éervormbaar en praktisch eindeloos verdeelbaar. De mechanika
van stromende ?loeistoffen eri de mechanica van stromende gassen‘vallen dan ook

voor een belangrijk deel samen.

Opm.: De naam stromingsmechanika is hier gekozen als alternatief voor vloei-
8tofmechanika in de zin van wat in het Engels fluid mechanics wordt ge-
noemd. Het Nederlands kent alleen de termen vlcetstof en gas, die over~
eenkomen met liquid en gas in het Engels.

Fluid is in het Engels een verzamelnaam voor vloeistoffen en gassen. On-
der fluid mechanics valt dus te verstaan de mechanika zowel van vloei-
stoffen als van gassen, dus ongeveer wat hier met vloeiastofmechanika of
stromingsmechanika wordt bedoe 4.

In de civieie techniek krijgen we te maken met stromingen zowel van vloeistof-
fen als van gassen, zoals uit enige voorbeelden moge blijken.

In de tot dusver gebruikte naam weg- en waterbouwkunde voor de civiele technmiek
komt reeds tot uitdrukking dat het watér een belangrijk onderwerp van studie
voor de civiel-ingenieur is, Niet alleen in de waterbouwkunde en hydrologie,
maar ook in de gezdﬁdheidstechniek wordt veel aandacht besteed aan de mechanika
van het stromende water. We treffen dit aan in kustwateren, rivieren, kanalen,

watervoerende grondlagen, waterleidingen en rioleringen, enz.

Het stromende water vormt een belangrijk transportmechanisme voor milieufactoren

in de vorm van opgeloste en zwevende stoffen (zout, zuurstof, organismen), warm-
te (koelwarmté van centrales!) en dergelijke, als ook voor bodemmaterialen als

zand en slib.
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Daarnaast is ook de mechanica van stromende lucht voor de civiel-ingenieur
van belang. Hij krijgt hiermee te maken bij de ventilatie van gebouwen en
tunnels en ook b j de windbelasfing op hoge gebouwen,

Bij de voor de waterbouwkunde belangrijke waterbewegingen van stormvloeden
en windgolven, speelt de wisselwerking tussen lucht en water een essentiéle

rol, waarbij dus de mechanika van beide stromende media bestudeerd moet worden.
BEHANDELING VAN DE STROMINGSMECHANIKA IN DEZE KURSUS
HERLEES: PAR. 5 VAN EENHEID 1.

De in deze kursus te behandelen stromingsmechanika vormt een inleiding tot
'later uitvoeriger'te behandelen gedeelten van de vloeistofmechanika. We zul-
len ons daarom inideze kursus twee belangrijke beperkingen opleggen.

In de eerste plaats richten we onze aandacht voornamelijk op een diskrete
behandeling. De kontinufteit van de stromende materie komt daarom slechts

ter sprake in zoverre als dit voor een goed begrip van diskrete stromings-
systemen onmisbaar is. v

In de tweede plaats kiezen we voor de beschrijving van de bewegingen de metho-
de die uitgaat van de diskretisering van de ruimte. We gaan dus uit van het
begrip vat. Het lichaamsmodel komt alleen ter sprake voorzover dit voor een

goed begrip van het vatmodel nodig is.

Opm.: Bij de mechanika van de kontinue r aterie onderscheid . men'eveneens twee
methoden, die van Lagrange en die van Euler. De methode van Lagrange
sluit aan op het lichaamsmodel en die van Euler sluit aan op het vatmo-
del. De in deze kursus te volgen behandeling van de stromingsmechanika
vormt dus een voorbereiding voor de Euler-methode in de vloeistofmecha-

nika.

Water als voorbeeld

De stromingsmechanika vindt in de civiele techniek vooral toepassing bij aller-
lei pfoblemen met betrekking tot water., Het ligt daarom voor de hand onze aan-
dacht vooral op het stromende water te richten.

We ontwikkelen daarom een systematische behandeling van de stromingsmechanika
met water als voorbeeld van stromende materie. Dezelfde systemafischg behande-
ling kan echter ook worden toegepast op andere stromende stoffen, bv. olie of
lucht.

De systematische behandeling omvat ten eerste een nadere bepaling van het begrip

gtroom en ten tweede het aangeven van de oorzaken voor het optreden van stro-
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mingen, d.w.z. het analyseren van krachten in onderling verband. Voor een
nadere bepaling vin het begrip stroom kurien we heel wel aarknopen bij eem

korte beschouwing over waterhuishouding.

Waterhuishoudigg

Water van voldoende goede kwaliteit vormt &én der belangrijkste grondstof-

fen waarvan het voortbestaan van een samenleving afhankelijk is.

De gebruiker die water uit de kraan laat lopen, betrekt dit water uit een
voorraad die.is opgeslagen in een wateftoren, in opvangbekkens e.d., die op
hun beurt weer worden aangevuld uit watervoerende grondlagen, rivieren, ve-
genval enz. De ciyiel—ingenieur die voor de watervoorziening verantwoorde-~
lijk is, zal zich‘van de herkomst van het water terdege rekenschap moeten
geven. Hij zal zich daarom bezigvmoeten houden met het kwantificeren van de
toe- en afname van watervoorraden en met de hoeveelheden water die van de

ene voorraad naar de andere overgaan. .

Dit geldt niet alleen voor de waterhoeveelheden die aan de natuur onttrokken
worden t.b.v. huishoudelijk, agrarisch, industriedel of ander maatschappelijk
gebruik, maar ook voor de hoeveelheden die als afvalwater weer aan de natuur
worden teruggegeven. Immers, dit afvalwater kan, vooral in grote hoeveelheden,
ontoelaatbare schade aan het natuurlijke milieu toebrengen en bovendien, via
de kringloop van het water in de natuur, weer bij de bronnen van de watervoor-
ziening terugkeren en deze verontreinigen.

Bovendien krijgen we in de civiele‘techniek te maken met hoeveelheden water
uit de natuur, zoals zeewater, die door rivierménden, zeesluizen of als zoute
kwelstroming door de grond heen, in polders en zoetwatermeren kunnen binnen-
dringen en daardoor de kwaliteit van het zoete water kunnen aantasten.

Het water waar we voor de waterhuishouding in geinteresseerd zijn, is feite-
1ijk steeds in beweging. We kiezen om deze beweging te beschrijven, een opzet
die uitgaat van het onderscheiden van een aantal voorraadruimtes. Deze worden
behandeld m.b.v. het vat-model. De beweging van het water wordt dan beschreven
door de overdrachten van waterhoeveelheden in verloop van tijd tussen de ver-
schillende vaten.

In een globale bgschouwing kiezen we als vaten de zichzelf daarvoor min of meer
vanzelfsprekend aanbiedende voorraad ruimtes zoals meren, opslagbekkens, tanks
e.d. Voor een meer gedetailleerde beschrijving kunnen we die voorraad ruimtes
onderverdelen in een aantal kleinere vaten, bijvoorbeeld.door het aanbrengen
van denkbeeldige vertikale of horizontale vlakken die de ruimtes in kompartimen-

ten verdelen.
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In de praktijk wordt een hoeveelheid water vaak als een volumen, bepaald en
dus b.v. uitgedrukt in de eenheid mS.

In principe is het echtep,ﬁeter om uit te gaan van de massa, omdat het vo-
lumen van een hoeveelheid water niet konstant is. Immers, het volumen kan
veranderen door uttzetting of imkrimping afhankelijk van de temperatuur en
door kompressie of ekspansie onder invlced van veranderingen in druk. Bo-
vendien kan water b.v. van de vloeitbare fase in de dampfase overgaan of om-
gekeerd en daarbij verandert het volumen aanzienlijk. Bij al die volﬁmen-
veranderingen behoudt de beschouwde hoeveelheid water steeds dezelfde massa.
We zullen dus uitgaan van de wet van behoud van massa en deze toepassen m.b.v.
het vat-model.

De toepasbaarheid’van deze methode is niet beperkt tot waterhuishoudingspro-
blemen. Ook bijvoorbeeld Eij de berekening van waterstand variaties door ge-
tijden en stormvloeden en de daarbij optredende stromingen kan de te behandelen
methode worden gebruikt, omdat deze in wezen op een zeer algemene grondge-
dachte berust. |

We werken nu eerst het vat-model nader uit en daarna gaan we verder in op de

wet van behoud van massa, zoals die op vaten kan worden toegepast.
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We beginnen met de eerder (in eenheid 1) ingevoerde begrippen lichaam ‘en vat

nauwkeuriger te definiéren om de overeenkomsten en verschillen beter te la-

ten uitkomen.

Definitie 9.1.:

Een lichaam is een aichaelf blijvende, beperkte hoeveelheid

Toelichting:-

Definitie 9.2.:

materie,die een deel van de fysische ruimte kan innemen

'Bij het toepassen van het lichaamsmodel beschouwen we een

hoeveelheid (b.v. vaste) materie die zijn identiteit behoudt
b.v. doordat het steeds door dezelfde molekulen wordt ge-

vormd. De door de materie ingenomen ruimte kan echter met de
tijd veranderen, De beweging van de materie wordt beschreven
door na te gaan hoe de door het lichaam ingenomen ruimte met

de tijd verandert.

Een vat 18 een zichzelf blijvend, begrensd deel van de fysische

Toeliéhtigg:

Studievraagﬁg.l.:

ruimte, die een hoeveelheid materie kan bevatten.

Bij het toepassen van het vatmodel beschouwen we een deel van ..
de fysische ruimte dat zijn idgntiteit behoudt, b.v..doordat
het steeds dezelfde begrenzing in de fysische ruimte heeft.

Je door die ruimte bevat'.e materie kan echtar met de tijd ver-
anderen. De beweging van de materie wordt beschreven door na
te gaan hoe de door het vat bevatte materie met de tijd veran-
dert.

Iemand schenkt water in een drinkglas.

We gaan nu nader

Ga na hoe het drinkglas kan worden opgevat als een vat-model
in de ain van d. 9.2 en ga na op welke wijae m.b.v. dit model
iets gezegd kan worden over de beweging van het water.

in op de aard van de begrenzing van een vat i.v.m., het al of

niet doorlaten van materie het vat in of uit.

Definitie 9.3.:

Een (vaste) wand van een vat is de (door vaste materie gevorm-
de) begrenzing of een gedeelte van de begrenzing van het vat,
waardoorheen geen materie in of uit het vat kan stromen.



Definitie 9.4.: Een toegang van een vat ie de begrenzing of een gedeelte van

de begrenzing wmn het vat, waardoorheen materie in of uit
het vat kan stromen.

Studievraag 9.2.: Ga na welke wand of wanden bij het drtnkglas van de vorige

studievraag zijn te onderscheiden en welke toegang of

toegangen,

Onder het volumen van het vat verstaan we de grootte van de ruimte die door
het begrenzende oppervlak wordt omsloten. Dit volumen is konstant indien de
wanden en toegangen ten opzichte van elkaar onveranderlijk van plaats zijn.
In de praktijk %ullen we zo veel mogelijk met dergelijke vaten werken, omdat
de berekeningen dan het eenvoudigst blijven.

De totale massa van de materie die zich in het vat bevindt, noemen we de
magsa~voorragd m van het vat, Deze kan in verloop van tijd veranderen, doordat
materie door een toegang heen het vat in - of uit kan stromen.

De materie in een vat kan homogeen zijn, d.w.z. de chem;sche en/of fysische
samenstelling is konstant in de plaats.

Voorbeelden van homogene materie zijn enkelvoudige chemische'stoffen, zuiver
water, of een homogeen mengsel van zulke stoffen zoals lucht (mengsel van stik-
stof, zuurstof, koolzuur, waterdamp enz.).

In een vat kunnen twee of meer verschillende stoffen naast elkaar aanwezig
zijn in verschillende delen van de ruimte, b.v. zout en zoet water in een zee-
sluis.

Veelal hebben we te maken met water en lucht, waarbij gewoonlijk het water
zich onder invloed van de zwaarte onder in het vat bevindt en de lucht daarbo-
ven. Het grensvlak tussen lucht en water noemen we de waterspiegel.

In dergelijke éevalleﬁ kunnen we de ruimte in het vat door het vlak van de wa-
terspiegel in twee gedeelten verdeeld denken, die we als deelvaten kunnen op-
vatten. In het ene deelvat bevindt zich het water, in het andere de lucht.

Bij stijgen of dalen van de waterspiegel neemt het volumen van het ene deelvat

toe en die van het andere af.




Opm.: De waterspiegel is vaak als een soort tussenwand op te vatten, indien
o de transporten van water en lucht door de waterspiegel hgen'verwaar-
loosd mogen worden. Dergelijke transporten zijn in feite wel aanwezig,
omdat het water kan verdampen in de atmosfeéer of daaruit kan kéndense—
ren en omdat stikstof, zuurstof enz.. in het water kunnen oplossen. Ook
kan water b.v. in de branding tot nevel verstuiven en lucht als lucht-
belletjes in het water worden opgenomen. Indien -zulke verschijnselen
belangrijk zijn, dan moet de'watersPiegel als een toegang voor lucht
of water worden opgevaf.

Een met watér en lucht 3e§uld vat, dat van boven toegankelijk is, zodat vrije
uitwisseling van de lucht uit het vat met de atmosfeer mogelijk is, noemen we
-een kom of bekken. Meestal zijn we in dat geval alleen geinteresseerd in de
water-voorraad van het bekken.

We spreken van een klok, indien het vat van boven door een vaste wand (dak of
deksel) is afgesloten, zodat de lucht in het vat wordt omsloten doér de wand
van boven en de waterspiegel van onderen. Op dit geval wordt in par. 6 nog

nader ingegaan.

Dichtheid

Naast de kenmerkende materie~eigenschappen zoals de eerder genocemde samenstel-
~ling, kunnen we ook nog letten op de massa-verdeling van de madsa-voorraad in
een vat.,

We beschouwen een homogene vloeistof of g% met massa m, die gelijkmatig ver-
deeld is over de ruimte van een vat met volumen V. Onder de (gemiddelde) dicht-

hetd p van de vlceistof of het gas in het vat verstaan we dan het koti&nt:
= D
P=3

Indien we de dichtheid van de vloeistof of het gas en het volumen van het vat
kennen, dan is daaruit omgekeerd gemakkelijk de massa-voorraad van het vat te

berekenen met:
m = oV

Enkele ronde getallen van dichtheden van homogene’ stoffen onder normale omstan-
digheden van druk en temperatuur zijn:



zoet water
zee water
olie
lucht

aardgas

1000 kgm
1025 v .
goo
1,3
0,8 "

We zien hieruit dat een verhouding van 1 op 1000 tussen de dichtheden van gas-

sen en die van vloeistoffen niet ongewoon is. Dit is van belang om de invloeden

van lucht en water in &&n systeem met elkaar te kunnen vergelijken ia gevallen,

dat de massa's een rol spelen.

De massa-verdeling van een vloeistof of gas in een vat behoeft in het algemeen

niet gelijkmatig (of uniform) te zijn. Bij zo'n ongelijkmatige verdeling geeft

de (gemiddelde) dichtheid, zoals hierboven gedefinieerd, te weinig informatie

om de massa in deelvaten te kunnen bepalen. We zullen daarom de definitie van

de dichtheid wat moeten aanpassen. Dit gebeurt als volgt:

Verdeel de ruimte van het vat (of eventueel het ruimtedeel dat met vloeistof

of gas gevuld is) in een N-tal deeiruimtes, genimmerd met i = 1,2,......N. Elk

zo'n deelruimte is op te vatten als een deelvat met een volumen NVi. De

som van deze volumens is gelijk aan het volumen V van het vat, dus

De maksimale waarde van de deelvolumens zij Avmay s zodat AVi fmAVmax voor elke i.

* ! i g
Laat r. de plaatsvektor zijn van een

middelpunt, en Ami de massa=-voorraad

Dan zal:

de massa-voorraad van het gehele vat

We nemen nu aan dat AV, zo klein is,
L

deeld over de ruimte van dat deelvat

ken van de (gemiddelde) dichtheid p,

punt in het deelvat met nummer i, b.v. het

van c¢at deelvat.

zijn.
dat we de massa Ami als gelijkmatig ver-
mogen beschouwen. We kunnen dan weer spre-

van dat i®-deelvat, nl. als het kotient,
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Daar.er een verband bestaat tussen de zo gevonden p:.L en de plaats ;i’ note-
ren we deze dichtheid vaak als Py = p(;i) = p(xi,yi,zi). Als de massa voorr
raad Ami in de lecop der tijd verandert, cus Ami = Ami(t), din wordt de dicht-
heid P, een funktie van de tijd t; we schrijven dan Py = pi(t) = p(;i,t) =
D(xi,yi,%}t)‘ . )

We kunnen de verdeling geaan verfijnen door N te laten toenemen. Als we nu

de verdeling "netjes'" houden (d.w.z. alle AVi 's ongeveer evengroot) dan gaat
bij N -+ « de maksimale waarde'AVmax + 0., Als we verder aannemen dat de massa
Ami behalve gelijkmatig ock nog kontimu verdeeid is over de ruimte van zo'n
i®-deelvat, dan gaat bij AVi + 0 ook de massa~voorraad Ami + 0,

Onder de bovengenoemde veronderstellingen kunnen we uiteindelijk komen tot de
definitie van de dichtheid p ter plaatse T in het vat. Deze dichtheid wordt

door de onderstaaﬁde limiet

" Am,
_ lim "3
@ = w0 AV,

vastgelegd. Uit dit limietproces volgt verder dat p als funktie van de plaats
; = (%sys2) en van de tijd t te schrijven is; we noteren dan ook p = p(;,t) =

p(RsYs2Z,t)

QEE;L De aanname van koatinuiteit van de materie in het vat is een idealise-
ring van de werkelijkheid, omdat de materie uit molekulen bestaat.
Daarom hebuen we eigenliik niet me. een echte limiet maar met een semi-
limiet te maken. Wat we Jaarmee bedoelen, is dat we bij een zekere mate
van verfijning zeer dicht naderen tot een regelmatige kontinue funktie
p(x,y,2) of p(x,y,z,t). Bij te grote verfijning, zodanig dat de deel-
ruimtes ieder nog slechts een klein aantal molekulen omvatten, gaan we
echter onregelmatige verschillen van p tussen naburige deelruimtes vin-
den (invlced molukuul-bewegingen)., Voo? de rest van de kursus nemen we

aan dat de materie als kontinuebeschouwd mag worden.

Als voorbeeld van zo'n kontinue dichtheidsfunktie p kunnen we denken aan een
brakwatergebied dat bij de mon- ~
ding van de rivier in zee aan- Ii.A B .???b , €rout
wezig is. A

In een vertikale doorsnede
langs de rivieras kunnen we
lijnen van gelijke dichtheden

aangeven (zie fig, 1).

Als we nu ter plaatse x=xo
de dichtheid als funktie
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van de diepte gaan meten,
dan vinden we een grafiek
zoals in fig. 2. geschetst
is.

Een ander voorbeeld van
zo'n dichtheidsfunktie is
die van de lucht (zie le
jaars kollegediktaat c-~18:
Alg.Nat. blz. K-8)

.

“zpel

€

o~
f

Fi92

Studievraag 9.3.: Van een vloeistof in een gegeven vat V e in elk punt >
de dichtheid p ale funktie van de tijd t bekend.
' Is de massa-voorraad m te berekenen?

%o ja, hoe groot is deze m en wat is de afgeleide m er—

van?
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« BEHOUD VAN MASSA

Uit de fysika en de chemie weten we dat de massa van een bepaalde hoeveelheid
stof een konstante waarde heeft, wat voor fysische of chemische veranderingen
die stof ook ondergaat.

Deze wet geldt zeer nauwkeurig, althans zolang we niet met relativistische
effekten te maken krijgen. Deze effekten zijn verwaarloosbaar klein, tenzij bij
zeer grote snelheden die vergelijkbaar zijn met die van de voortplanting van
het licht.

Omdat we binnen-de technische mechanika in de regel niet met zulke ekstreem
grote snelheden te maken hebben, nemen we hier aan dat de wet van behoud van
magsa algemeen geldig is.

We beschouwen nu een vat dat geheel wordt begrensd door wanden. In dit vat be-
vindt zich materie in de vorm van een vloeistof of gas, die een massa m heeft.
Door de wanden kan geen materie het vat in of uitstromen. Het vat blijft dus
steeds dezelfde materie bevatten. Daarom zal voor de materie in het vat de wet
van behoud van massa gelden, waaruit dan volgt dat de md@ssavcorraad m in het
vat konstant moet zijn.

Dit zal niet alleen gelden voor een geheel door wanden omgeven vat, maar in
het algemeen voor ieder vat waar, door wat voor oorzaken dan ook, geen materie
in of uit stroomt. (denk b.v. aan zo'n deelvat uit de vorige paragraaf)

He kunnen dit als een voor vaten geldend aksioma opvatten, dat we als volgt

formuleren:

De massaoorraad van een vat, waar geen materie in of uit etroomt, is
konstant. |

We kunnen deze wet dus bijvoorbeeld toepassen op een spaarbekken, waarin verdam-
ping en neerslag verwaarloosd mogen worden en dat niet gevoed wordt, evenmin
als voor watertoelevering wordt gebruikt. Het is duidelijk dat de watervoorraad

gedurende die omstandigheden konstant zal zijn.

Studievraag 9.4.: Is in een vat met een konstante massa-voorraad de dichtheid
p ook konstant?
En ale de materie homogeen i8?

Kommuniserende vaten

Zoals we in de inleiding zagen, hebben we gewoonlijk te maken met waterhoeveel-
heden die aan de ene voorraad onttrokken worden en aan de andere worden toege-
voegd. We beschouwen daarom vaten die met elkaar in verbinding staan, zodat

waterhoeveelheden kunnen worden uitgewisseld.
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We'sfmeken dan van Komwmniserende vaten.
Een verbinding tussen cwee vaten kan gevormd worden door een opening in een
scheidingswand, of docr een buis, een kanaal of een andere leiding. Zulke
leidingen vormen zg. strodmvoerenée'vaten; deze komen in eenheid 10 nader aan
de orde. Door zo'm verbinding kan water van het ene vat in het andere over-
gaan. We idealiseren hier nu de verbinding dcor zan te nemen, dat iedere hoe?
veelheid water dic het ene var verlaat, op hetzelfde ogenblik in het andere

vat aankomt. We later dus buiten beschouwing dat een waterhoeveelheid enige
tijd onderweg kan ziin van het eane naar het andere vat, bijvoorbeeld doordat
zulk een waterhoeveelheid enige tijd nodig heeft om door een verbindingslei~-
ding te stromen. ‘

Een opening in een scheidingswand tussen twee naast elkaar gelegen vaten, vormt
een verbinding die zeer dicht een ideale verbinding nabij komt.

ledere waterhoeveelheid, die van het ene naar het andere vat overgaat, heeft
invloed op de watervoorraad van elk der vaten. Deze invlioed zullen we een
etroomotsselwerking tussen de vaten noemen. We beschouwen nu, om zo'n stroom-
wigselwerking nader te onderzoeken, twee vaten Vl en V2 die met elkaar, doch
»“et met nog andere vaten verbonden zijn (zie fig. 3).

De stroomwisselwerking geven aan door w(l2).
Deze wisselwerking is werkzaam door het
vlak AB heen, dat cen deel van de begren-
zing van Vl voors*elt en tevens van die

van V_. AB is dus een wederziidse toegang

2

van Vl vanuit V2 en ook van V2 vanuit Vl'
De watervoorraad in V. heeft de massa m

en die in V2 de massa mye Beide voorraden

zullen met de tijd kunnen varidren; daer-

2(1:), j:lg 5

Elke waterhoeveelheld c¢ie &én van beide vaten verlaat, komt op hetzelfde ogen-

om schrijven we m,(t) en m

blik aan in hat andere vat. Daarom kunnen we Vl en V2 samen ook cpvatten als

één vat V, waarvar de massavoorraad m gevormd wordt door de massavoarraden
van Vl en V2 tesamen, dus

m = ml(t) +'m2(t)
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Het vat V is een vat dat voldoet aan de omschrijving van het eerden geformu-
leerde a&ksioma. Immers, de vaten Vl en V2 kommuniseren alleen met elkaar; dus

al het water dat van Vl naar V2 of omgeke ard gaat, blijft binnen V en er
strocomt dan ook geen water het vat V in of uit.

We moeten daarom stellen dat de massavoorraad m konstant blijft, dus

m = ml(t) + m2(t) = konstant

*

Door differentiatie naar t vinden we hieruit:

e _° *
m = ml t‘mz =0

ofwel

fy = -
Hieraan kunnen we de volgende interpretatie geven:
Elke waterhoeveelheid die van het ene vat naar het andere stroomt, behoud daar-
bij z'n massa Am. Cp het moment dat die waterhceveelheid het ene vat verlaat,
wordt de massavoorraad van dat vat met Am verminderd. Op datzelfde moment
komt de waterhoeveelheid met massa Am in het andere vat aan. Daardoor wordt op
dat moment de watervoorraad van het andere vat met Am vermeerderd.
Noemen we nu ml de uitwerking van de stroomwisselwerking W(;Q) o§ vat V1 en ﬁz

de uitwerking ervan op V dan kunnen we het gevonden resultaat ook aldus tot

2 ]
uitdrukking brengen:

De uitwerking van de tussen de vaten vV, en Vé werkaame stromingswiseelwer—
king ”(12) op V, is tegengesteld aan de uttwerking op Vye

Massastroom

We gaan nu nog wat nader in op wat we hierboveq de uitwerking van de stroomwis=-
selwerking op één der vaten hebben genoemd.

We beschouwen de magsavoorraad van V1 op twee tijdstippen t = t, en t = ty

waarbiij tb >t . Het tijdsinterval (ta 3 tb) heeft een duur At = tb - ta .

In dit tijdsinter val verandert de massavoorraad van Vl met

Am, = m (t) - m,(t,)

(1)
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De gemiddelde verandering per eenheid van tijd is dan in dat interval:

1 _

Am ml(tb; - ml(ta)
At tb = ta

We laten nu tb naderen tect ta s dus At » 0, en we nemen aan dat Aml voldoen~
de groot is om de molukulaire.fluktuaties te kunnen verwaarlozen (zie opm.
blz 9.13), dan kunnen we de limiet van ffi bepalen,
At
We kunnen zo'n limietproces op elk willekeurig tydstip t uitvoeren en we komen

dan tot de formulering van de messastroom of massaflux 812 van V2 naar Vl’ dus

. . .

Daar Aml toegeschﬁeven kan worden aan dé stroomwisselwerking V(l2) tussen Vl en
V2 s kunnen we 812(t) als de momentane uitwerking van die wisselwerking op Vl
beschouwen, '

De bijdrage Aml waarmee de massavoorraad van Vl in het tijdsinterval (ta " tb)
verandert, is te beschouwen als het netto bedrag van de watermassa die in dat
interval tussen Vl en V2 wordt uitgewisseld; met dien verstande dat de masga
van water dat van V2 naar Vl gaat, positief en de massa van water dat van Vl
naar V2 gaat, negatief in rekening wordt gabracht. Dit betekent dat 512 kan
worden opgevat als de netto massa die per -ijdseenheid van V2 naar Vl gaat. De
massastroom 812 is positief als er een netto waterstroom van V2 naar Vl is en
S12 is negatief als er een netto waterstroom van V. naar V. is.

1 2
Met (1) en (2) valt af te leiden dat

S1,(t) = - f,(¢) ) (3)

’

1
< 0 -en dan volgt wuit

Bij een stroom van V, naar v, is 8,5 > 0 en dan volgt uit (2) en (3) dat m
toe- en m, afneemt. Bij een stroom van,Vl nasr V? is 812
(2) en (3) dat m, af- en m, toeneemt. Dit valt alles ook direkt fysisch in te
zien, door te bedenken dat een stroom die van het ene naar het andere vat ge-
richt is, noodzakelijkerwijs de massavoorraad van het ene vat vermindert en
die van het andere evenveel vermeerdert.

Formeel kunnen we evengced de massavoorraad m. van V2 als uitgangspunt nemen.

2
We definiéren dan:

s = 62(1)

g1 = S5 (1)



als de massastroom van Vl naar Vz. Uit (3) velgt dan dat:

S2l(t) = - Slz(t)

ofwel

812(t) + S l\t) =0

2

voor alle waarden van t.

De twee grootheden 812 en S21 zijn alleen formeel wiskundig verschillend. Zij

geven echter hetzelfde fysische verschijnsel weer, nameliik de stroomwissel-

werking tussen Vl'en V2 s

voorraden van Vl en V2.

die tegengestelde uitwerkingen heeft op de massa-

(4)

Studievraag 9.5.: Tussen de vaten V, en V,

‘ziin twee leidingen (zie - L A
. . A = V,

fig. 4). In leiding A H

gtroomt er per tijdseenheid

een masea m, naar V. en in -]
A 1 p—

letding B stroomt er per 1

tijdeeenheid een massa m

B
naar V.. _
2 ) -
Bepaal = de massastroom ver ;,g H
leiding.

Bepaal de massastroom S, tussen V. en Vy en ga na of er een

12 1
verband beetaat tussen deze en de beide massastromen in de

leidingen.

In de praktijk komeh vaak vaten voor, die met meer dan één ander vat kommu-
niseren (b.v. een kanaal tussen 2 bekkens).

Voor het eenvoudigste geval, nl. een vat dat met 2 andere watem, kommuniseert,
komen we na dezelfde idealiseringen als in de vorige sektie tot het hiernaast
getekende schema,

We zien dat Vl en V3 elk één toe-
gang met V2 hebben en dat V2 behal~
ve die 2 toegangen eveneens geslo-~
ten is.

We kunnen daarom voor het geheel

een massa balans optellen.
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Er geldt:

m = ml(t) B m2(t) + ms(t) = konstant

Differentiatie naar de tijd geeft
& . ‘ '
0 = (t) +d(t) + ma(t)

Anderzijds hebben we -gezien dat voor vaten met één toegang,

dus hier Vl en Va

- massastromen naar die vaten.

s de afgeleiden van hun massavoorraden gelijk zijn aan de

We kunnen dus schrijven

— 3
0= 812 + mz(t) + 832

+ S = 0 en S + S =0

Met de vergelijkingen 512 21 32 23

volgt dan:

By(t) =5, + Soa

We noemen nu mz(t) de totale massastroom 82 naar V2 en deze is dus

S =8y * 8,

Studievra&g,Q«SA: Waaraan ie de totale maseastroom SI naay V: geligk?

Studievraag}g.sB: Geldt voor het geval van 3 vaten die elk met de beide
| andere komminiseren, bovenstaande afletiding?
Zo ja, wat atjn dan de uitdrukkingen voor Sl 5 32 en

?
SS.
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Debiet

De dichtheid van zuiver aatér hangt af van de températuur en de druk. Natuur-
1ijk water bevat allerlei bijmengselen die de dichtheid beinvloeden. Een be~
langrijk voorbeeld is het zoutgehalte van zeewater, waaraan een vergroting
van de dichtheid met enkele procenten kan beantwoorden (zie tabel op blz. 9.12).
In geheel met water gevulde vaten kan de druk aanzienlijke waarden bereiken
en kan de dichtheid dientengevolge praktisch merkbaar veranderen.

In open bekkens wordt de druk voornamelijk bepaald door de druk van de damp-
kring en de z#agrte van het bovenliggende water (zie hiervoor par. 4). Bij
hatig diepe bekkens blijft de druk zo beperkt, dat de invloed op de ddcht-
heid meestal prac%isch niet merkbaar is.

In vele gevallen is het toelaatbaar de dichtheid p van het water als konstantA
de benaderen. '

In die omsfandigheden is het gebruikelijk niet de massa m zelf van een water-
voorraad als maat te gebruiken, maar de daarmee evenredige waarde %-, die het
door de watervoorrzad ingenomen volumen voorstelt.

In overeenstemming hiermee wordt dan de stroomwisselwerking bepaald door de

grootheid:

_ S

Q=3
en we noemen dit het debiet of de volumen stroom.

Studievraag 9.6.: Voor de materie in 8.9.5. te de dichtheid p konstant.
Verder gelden dezelfde gegevens.

Bepaal nu het debiet per leiding, het debiet van v, naar

Vo en ga na of er eepn verband tuseen deze grootheden be-
stact

Opm.: Vaak, met name als we over rivieren spreken, wordt Q de afvoer ge-

noemd. De S.I.-eenheid van een debi=t is mss-l.
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4. HYDROSTATIKA

Spanning, normaa.- en schuifspanning

In de vorige paragrafen zijn we voarbijgegaan aan de corzaken waarom vlioei-
bare materie een vat in- of uit kan stromen.

Bij dat stromen spelen interakties een vol. Deze interakties zijn te verde-
len in interakties tussen de vloeibare materiedelen onderling en in inter-
akties tussen de vloeibare materie en de omgeving van ons stromingssysteem
(b.v. de vatwanden, de zwaarte t.g.v. de aarde).

We zullen ons in deze paragraaf beperken tot de interakties (krachten) die
optreden in en op een stilstaande (dus: niet-stromende) vlceistof in een
vat V. We zullen daarbij steeds water als voorbeeld gebruiken, hoewel de
teorie ook op andere vloeistoffen en gassen toepasbaar is.

Voor een stilstaande vloceistof zijn alle vloeistofdeeltjes in rust en elk
volumendeeltje AVi bevat steeds dezelfdé deeltjes. | _

De dichtheid oy kan dan geen funktie van de tijd zijn en evenzo de dicht-

heid p.

Studievraag 9.7.: Kan p nog wel een funktie van de plaate zijn?

We gaan nu nader in op de interakties die in een stilstaande vloeistof kun-
nen voorkomen (verg. eventueel het statische geval van de drukstaaf, de nor-

maalinteraktie en.., die in eenheid 4 bes.hreven zijn).

Beschouw hiertoe een willekeurig deelvat Vd dat a'a
geheel in V ligt. De vloeistof in Vd ondervindt A
dan twee soorten interakties: (:::E>
1. volumeninterakties, - Va

dit zijn interakties die werken tussen de T

vliceistof in Vd en-de materie buiten Vd'

die zich op een afstand van elkaar bevinden. Y

(zg. veldinterakties zie eenheid i, § 2).

2. oppewviakte interakties, = _93 5
dit ziin interakties.die werken tussen de .
vlioeistof in'Vd en de vloeistof buiten Vd’ die tegen elkaar aanliggen; zij
bevinden zich dus beide tegen het scheidingsvlak (z.g. kontaktinterakties,

zie eveneens eenheid 4, § 2).



Studievraag 9.8.: Bersken de volumeninterakiie(e) die op dez vicetstof in
v; werkaaan te(sijn), als het vat V in en lokaal swaarteveld
18 opgesteld (zie fig. 5). Is (2ijn} de opperviakte inter—

aktie(s) voor diezelfde éloeietof'te berekenen?

Uit het antwoord op studievraag 9.8 volgt dat we de opperviakte interakties
nog nader moeten onderzoeken.

Beschouw een oppervlakte-elementie AA van het oppervlak A van het deelvat Vd.
We geven de vlicelstsf in V, aan met 1

d
en de vloceistof buiten Vd met 2.
De eenheidsvektor 312 staat lood~

recht op AA in het middelpunt P
ervan en heeft de richting van 2
naar 1 (zie fig. 6).

De vlceistof in 1 grenzend aan AA en de vloeistof in 2 grenzend aan AA oefenen

een oppervlakte~interaktie (Aflz 5

%We hebben deze interaktie geidealiseerd door aan te nemen dat P het gemeen-

Ale) op elkaar uit,

schappelijk aangrijpingspunt van A?12~en A?zl is (zie eenheid 4, 8 2%
Aangezien we de materie als kontinu verdeeld beschouwen (zie § 2), mogen we

AA steeds kleiner laten worden om P, waarbij we ervoor zorgen dat 312 Kén-

stant blijft, en we krijgen dan in de limiet

oF

}' _ lim 12
2 T BA»0 AR

We noemen ?12 de epanmingsvektor in P die hoort bij de richting 312

studievraag 9.9.: Ligt de werklijn.van T, altijd lange ¢, ,2

Studievraag 9.10.: Geldt voor een punt P in een vloetstof alitijd dat
}32 + 91 = zAze?’

Uit de antwoorden op de bovenstaande studinvragen volgt dat we ? in het

algemeen kunnen ontbinden in een stuk langs e en een stuk loodrecht op

22

+12, dus in A& gelegen.

De ontbondene langs de a is gelijk aan

+ <+
Byo = (%12 » Fu) ¥

 en wordt de normaalspanntng in P bij de richting e 12 genocemd ,

De ontbondene loodrecht op e, is geliik aan

lfs

-5
Mi2

-{12 = §12 -
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en wordt de schuifapanming in P bij de richting e,, genoend.

Voor vioeistoffen waaermee we ons in deze kursus nezzg houden, zoals water,
geldt dat in een toestand van rust de schuifspanning T gelle aan O is.

In de nydrostatika treedt dan cak slleen maar een normaeaispanning op.

Meegtal schriiven we de normaslspanning a

‘- > . - . < & - 3 N f
waarin p de druk in P bij de richting e , wordt gencemd.
We mogen voor de vliceisteffen en gassen die we in deze Kursus tegenkomen,
reronderstellen dat de druk p steeds groter of geliik aap nul is. (we gaan

voorbi] aan kohesie-verschiinselen).

e
Uit de formule voor de normaalspannlng wvolgl aat p = f ¢ &4, €n dat daarocnm

p in het zigemeen een funktle van elﬁ kan zijn. In de volgende gsktie zullen

we laten zien dat in de hydrostatika van gewone vlceistoffen (water b.v.)}) de

<

druk onafhankelijk van de richting is.

Iaotrope druk

Als er in een punt ¥ van een vlcesistof of gas de daar heersende druk onafhanke~
1iik is van de stand van het opperviakje &4, dus onafhankeliijk van de richting
van 3&2 , dan zeggen we dat er in P een tsotrope of alaijdige druk heerst.

In de andere geval .en gebruiken we wel de itdrukking: antec: rope druk.

In de hydrostatika geldt voor de druk p de onderstaande wet wam Pasoeal:

Wat van Pascal: Bif elke gtilstaande (gewone) vloetetof heerst er in elk punt

van die viceistof een tsotrops druk.

We kunnen deze wet op de onderstaande manier afleiden:
We nemen om een punt F’een klein volumen- .
gebiedie AV, » 4
Dit gebiedje is zo klein, dat we de dicht-
heid p in AV als een konstante mcgen be-

schouwen.

Verder nemen we A¥ in de vorm van een vier-
vlak (piramide), met &én vliak B&_ lood-=
recht op de x-as, &&n vlak AAy loodrecht

op de y-as, &&n vlak AAZ loodrecht op de

z-as en 8&n vlak AA lie het viervlak af- t::\
.’,
sluit. De normaalvektor op #A 1s e en wijst

nagr binnen (zie fig. 7).
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Daar de vliceistof in rust is, moet de .som Qan alle krachten die op AV wer-
ken (en het gevolg zijn van de optredende volumen- en oppervlakte-interakties)
steeds gelijk aan de nulvektor zijn. ‘

Op AV werken de volgende krachten:

De volumekracht & t.g.v. het lokale zwaarteveld (zie 5.9.8) en deze is
+_- -)-____L B
G = p g AV e % 5 pgéxAyAz e,

De opper#lakte krachten t.g.v. de ncrmaalspanningen en deze zijn

A
F, = Py BBy ey

. Ay Az @
b3 2 px y ®x

F o= AA -: =L Ax Az Z

y py y v 2 py y
+ . + _1 >
P M, e, 2 Py éx by o,
? = p AA :

Bovengenocemde krachten zijn alle krachten die op AV werken, zodat moet gel-

den

8+F +F +F +7=3
X y: z

Uit deze vektorvergeliijking volgen de 3 skalarvergelijkingen door hem_inwen-

dig met de eenheidsvektoren gg 5 Z& en ;z te vermenigvuldigen. We vinden voor

de richting:
-+ 1 + o
e, 3 Py AyAz + p AL ese = 0
e Lo AxAz +paa Bt =0
Sy 2p zZ P e.ey—
’é & Axby + p MA Se2 - L pgAxayaz = 0
z > Pz y P .8, 2 PEg y -

Uit de figuur volgt dat:

AA = - AA See
X b 4
AA, = - AA eve
N y

> >
Asz— ~ AA eee,
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1

zodat we na substitutie en wegdelen van gemeenschappelijke faktoren vinden
dat

™+

. t P, =D
2 )
y Py TP
T s = o + ogh
e, t p, =T +pghz

Als we nu het gebiedje AV om P k%einer laten worden met behoud van vorm en
stand, dan zal Az + (0 gaan maar e kenstant blijven.,
Verder kunnen we nu uit het bovenstaande limietprcces konkluderen, dat in

een punt P de druk p cnafhankelijk van de richting is.

Studievraag 9,11.: Geldt de wet van Pascal ook voor een vat met een 8til-

etaand gas erin?

Studievraag 8,12.: Geldt de wet van Pascal ook voor eem puntupp het gwens=
vlak tussen een etilstaande vloeistof en een stilstaand
gas?

Hydrostatische drukverdeliqg

Vaak willen we vo .r een stilstaande vloei. .tof de druk als funktie van de plaats
weten, Om deze drukverdeling te kunnen bepalen, bekijken we nogmaals een klein
volumengebiedje AV om een willekeurig punt P met plaats T o= (3 o p2 s

We proberen nu vervolgens uit de evenwichtsvoorwaarde(n) van de op AV werkende
krachten een verband tussen de druk, plaats en dichtheid af te leiden.,

We nemen het gebiedje AV =o klein, dat we de dicht

heid p in AV als een kgnstante'mogen beschouwen en ?:3

we nemen hiervoor de waarde die p in punt P heeft, o

dus p = P 0 (k}y.Z).

Verder nemen we eerst AV in de vorm van een hori=

L]
N
.
.
N
‘\
.
L
'
¢

zontaal balkje, in de y=-richting, d.w.z. de afme- vi

tingen in de y-richting zijn groot t.o.v. die in
é
de andere richtingen (zie fig. 8),

Daar de vloeistof in rust is, moet er in de y-rich~

ting een evenwicht van krachten zijn. We hebben

X
hiervoor alleen maar rekening te houden met de op- ‘Fis ég
pervlaktekrachten van het linker- en rechter zij=-

vliakije.
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Studievraag 9,13,: Ga na dat de oppsrvlukiekrachten van het voor-, achter—,
boven~ en ondervlakje geen ontbondene in de y-richting
hebben on ga’oak na k e de volumenkrach: gericht is.

Daar de zijvlakjes erg klein zijn veronderstellen we dat-de normaalspanhing
over zo'n zijvlakje als een konstante beschouwd mag worden en we nemen hier-
voor de waarde die de druk in het middelpunt van zo'n vlakje heeft.,

Voor het linkervlakje vinden we dan a%s oppervlakte kracht
+ " . >
PL = p (x,y 5 Ay z) Axbz ey

en voor het rechfervlakje
-3 ; _ ‘ 1 -+
FR 2 = p (x,y + 3 Ay ,z) AxAz ey

+ - - L
Uit de evenwichtavcorwaarde ?L + PR =0 volgt dan
1 " 1 _

P(Rsy = 5 8y,2) - p(x,y + 5 &y,2) = 0

Met behulp van de Taylorreeksontwikkeling gaat deze vergelijking over in

1 z <2
oy aplax,yez) | (Z Ay)” 3 plx,v,z)
p(x,y,2) s by 5y + e 5y +
L 2 2 :
- L N 1.. 3(){ Z) A) 3 x Z) +.-¢..’uia}=0
P p(x.ysz) + 3 Ay 35——JXA-5 + £2L§¥—- E;EL—JXL—-

of na uitwerkan van de akkclades
b} 3 .3
p(x,y 23 Ay gg y
"'Ay gyx Z)—_( .A) ZV = Z) ~essesans = O

Delen door Ay en vervelgens Ay naar nul laten gaan geeft:

22:0
3y

Denzelfde berekening voor een balkje ih de x~richting geeft
9-2:0
ax%

We zien dat voor een stilstaande vloeistof de dpuk ih een horizontaal

vlak konstant is.

Voor de drukverdeling in een vertikaal vlak gebruiken we een balkje in de
z-richting. Bij het opstellen van de evenwichtsvoorwaarde voor de krachten
in de z-ﬁichting. moeten we naast de oppervliaktekrachten op het bovenvlakije
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o .
Fp = - p(x,y.z + 3 A%) Axdy e,

de oppervlaktekre :ht op het onderviakje

3 ;] - e
FO = p(x,y,z - E-Az) AxAy e,

ook ncg rekening houden met de volumen kracht t.g.v. het zwaarteveld

¢ = - ge(x,y.z) AxAyAz ;z

Uit de evenwichtsvoorwaarde fO + fB +8=70 volgt dan

1 2
P(x,y;2z -3 8z) - p(%,¥,2 + % Az) = gp(x,y,.,z) Az
Na uitwerken van de Taylorreeksontwikkelingen van de druktermen, delen door
Az en vervolgens Az naar nul laten gaah vinden we

3
== -pg

Ogﬂ.i 1. Met behulp van de nabla-operator

<> 3 > 3 > 3
e T 3 € e @ e

V= X ax yoy * "z 3z

kunnen e de bovenstaande 3 ver elijkingen samengevat schrijven als

2. In de bovenstaande berekeningen hebben we aangenomen dat de druk
een kontinue funktie is (kontinuiteit van de materie), zodat de 3e
en hogere oneven afgeleiden alle begrensd zijn.

De limieten’§oor Ax, Ay‘enTAz <+ 0 geven dan bovenstaande uitdruk-

kingen.,’

Studievraqg 3.14.: Toon voor een etilstaande vloetstof aan dat p en p alleen
. furktiee van z kunnen 3ijn.

4

Uit het antwoord op bovenstaande studievraag volgt voor de druk p in een wil-

lekeurig punt P met plaats T o= (x%,y,2) dat

3 d
3§'= dz = - ge(z)
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Integreren geeft

s
p(z) = - J go(z) dz +'P(ZR)“
™R

of

"

| ® |

p(z} = plzp) + go(z) dz

. Z

waarin p(zR) de-druk in het (horizontale referentie vlak ter hoogte z = Zp
is. De berekende uitdrukking voor p(z) voor een stilstaande vloeistof in

het lckale zwaarteveld noemen we de hydrostatische drukverdeling in die
vloeistof,

Studievraag 9.15.: I8 er ook so'n statische drukverdeling voor een stilstaand
 gas in het lokale maarteveld af te leiden?

Vaak hebben we in een vat zowel een stilstaande vlceistof als een stilstaand .
gas in het lokale zwaarteveld. |

Onder invlced van dat lokale zwaarteveld is er een stilstaand grensvlak (=
vlceistofspiegel) tussen het gas en de vloeistof.

Het is dan vaak h ndig deze spiegel als r ferentievlak te neaen.

Studievraag 9.16.: Bewije dat in het Lokale zwaarteveld de spiegel van een
sttlataande vliocetstof altijd horisontaal ie.

Stijghoog:e

In de prakfisghe vloeistofmechanika hebben we veelal te maken met water als
de vloeistof en lucht ‘als het gas.

Voor het water mogen vaak de dichtheid 5 als konstante beschouwen, als we ons
beperken tot matig diepe bekkens met homogeen water (zie par. 3, sektie de-

biet) of tot gevulde vaten waarin de samendrukbaarheid* van het water een ge-

ya
i
Z3

kenen van een bekken met water van een konstante , ) -

I3

ringe rol speelt (zie de volgende paragrafen).

We zullen nu de Mydrostatische drukverdeling bere-

dichtheid p. De druk van de atmosfeer ter hoogte
van het grensvlak ig P, (zie verder fig. 9).

We kiezen als referentievlak het grensvlak, die
bodem

op een hoogte z, ligt. De druk in een willekeurig“-—4$775777777777777777qup—b-

punt op een plaatshoogtae z (met 0 € z € z_) wordt . ‘
™ E;gg
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3
b -

* ~Z
a -} -
P=p, +t ZJ pgdz = p, teg (za z}
We kunnen deze vergelijking schrijven ales
P +oegz=p ¢ pgzZ,

Daar P, s P s Een z kohstant zijn, volgt uit de bovenstaande vergelijking
dat overal in de vloeistof de uitdrukking p + pgz konstant is.

We hebben dus de vergelijking

p + pgz = konstante

Als we nu links eh rechts een konstant Py aftrekken en vervolgens links en

rechts delen door de konstante pg dan houden we over

PP,
og

+ z = konstante

We noemen de uitdrukking in het linkerlid de stijghoogte h van de vloeistof
ter plaatse van z. In de volgende eenheid zal deze naam en tevens de namen

'pZaatshoogte z en drukhoogte p - p, nader verklaard worden.
. p g

Studievraag 9.17.: Bewtje dat voor etile ‘aand water (p = k-mstant) in het lo-
kale swaarteveld in een bekken geldt:

?ﬁ—?f’.:?ﬁ.:a
z ~ 3y oa

Studievraag 9.18.: Geldt voor water (p = :staﬂf) in een bekken altfjd dat
h konstani ie?
Zo nee, geef dan een voorbeeld.
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. GRAVITATIE BERGING

In de laatste sektie van de vorige paragraaf hebben we gezien, dat de stijg-

hoogte een funktie van de tijd kon zijn en dat deze iets te makeh had met

de stijging of dalint van het grensvlak bij bekkens (zie $.9.18).

In deze paragraaf zullen we dit verband nader onderzoeken aan de hand van een
bekken met &én toegang waardoor water in- of uit kan stromen.

#e nemen als bekken een van boven open

vat met overal dezelfde horizontale door- 4
nbds met oppervlakte A ;n één toegang : L

bij de bodem van het vat (zie fig. 10). 1 lula‘ lﬁ
Het vat is gedeeltelijk gevuld met wa- ' *
ter, zodanig dat de toegang geheel onder
ie waterspiegel ligt. Deze waterspiegel

is ontstaan onder de invloed van het

lokale zwaarteveld en ligt horizontaal.

We nemen aan dat het water als een homo-
gene, onsamendrwkbare vloeistof beschouwd
mag worden.

}
0

cmdat we water als hemogeen beschouwen,

verwaarlozen we d“chtheidsverschillen die

het gevolg zijn van verschil in samen-~ : >y

‘e

stelling (b.v. brak, zout en zoet waterh

Omdat we water als onsamendrukbaar be=: * -F’ﬁ "
schouwen, verwaarlozen we dichtheidsver-

schillen die het gevolg ziin van druk- en temperatuurveranderingen (zie volgen-
de paragraaf}. Als gevolg van deze veronderstellingen heeft het water een koq—
stante dichtheid p. Hé kunnen dan verder ook de stijghoogte h bepalen (zie vo-
‘rige paragraaf). .

Op een tijdstip t is de.massavoorraad'van het vat m(t) en we nemen aan dat alles
in rust is.

De stijghoogte is dan overal in het water gelijk aan

s

h(t) = zs(t)

aarin 2z (t) de plaats van de waterspiegel op het tijdstip t is.



We hrengen nu in het tijdsioterval (t, t + AtL) een hoevealheld water met
msssa Ar door de toegang het vat in, »n we veronderstellen dat na het tijd-
stip t + At ailes weer in rust is

De massavoorraad op het tijdstip t + At 33 dan gewerden
w(t + &t = w(7) + Am :

an e stijghcogte

tade

h(t + At) = g (¢ + Ak}

waarin z_ {t + At) de plaats van de waterspiegei op het tijdstip t + At is.
& - g :

We willen nu het verschil in stlighoogte in verband brengen met de toege-

voerds massa.,

Docr de massatoevoer van Am moet het volumep dat het water in het vat lnneemt,
Ani
o)

Leenemen met AV =

Studievraag 9.19.: Waarom <e AV gelijh aan

i

-{g

,,.a
o
-

we weten dat deze toename zish uit in een stijging van de waterspiegel en ¢

laavom AV ook geliik is aan

g

LV = A 2 (t +At) =& z(t) =4 dz

@
bl

We kuncen verder pagadn dat As = h{t + At) - h(t) = Ak, zodat we ulteindelijk

e vergelijking

krijgen., De' (gemiddelde) touename van ds stijghoogte per eenheid van tijd in
dat interval wordo dan

Al 1 Am

At Ap At

¢
Op dezeifde manier alu bll de bepaling van de massastroom (zie par. 3, sexktie

’

massastroom) lLatern we nu At - 0 gasan. We vinden dan

ki 5 5

o4

T oAp T Ao



s
)

(a4

o

(
Yoy
e

vervangen

waarin we B de gravitatie-berging noemen van het beschouwde vat. Deze herging
is gelijk zan het oprervlak A van de waterspisgel, dus gelijk aan het apper-
n

zontale doorsnede van het vat,

Studievraag 9.20.: Is het eigenlijk nodig dat de toegang steeds onder de wa-

terspiegel ligt?

Studievraag 9.21.: Is de berging van eer bekken altijd een komstante?

Zo nee, wanneer dan niet.

We kunnen nu het drukverleocop als fuuktie van de tijd berekener in eer wille-
keurig punt als het deblet Q = Q(t) bekend is.

Want na integratie van de bergings-vergelijking vinden we

1 t
h(t) = h(o) + B j Q(t)dt
o

en daarulit weer

+
p(t) = plo) + 9% J Q(t)dt

Studievraag 9.22.: Ga na onder welke voorwaarde bovenstaunde berekening uit-

gevoerd mag worden

Uit het antwoord op .9.22 blijkt dat niet voor alle vaten een (gravitatie-)
bergirngsvergelijking is op te stellen.

Voor bLekkens kunnen we onder de voorwaarde dat op elk mcment de stijghoogte
cveral ir het bekken dezelfde waarde n(t) heeft, de bovengenoemde vergelijking
gebriaiken.

Voor vaten waarin de luchtdruk nogal verandert door de stijging van de spiegel
of vocr vatefh die geheel gevuld ziin met een samendrukbare viceistef, is dit

zoender meer niet mogelijk., In de velgende sektie komen we daarcp terug.



6. KOMPRESSIBILITEIT

Kompressiemodulus

In de vorige paragraaf hebben we steeds aangenomen dat water een onsamen-
drukbare vloeistof was en dat daardoor de dichtheid van zuiver water niet
verandere als de druk toe~ of afnam.

We zullen nu nader op de samendrukbaarheid of kompressibiliteit van materie,

m.n. water en lucht, ingaan.

Beschouw een vat V met &én toegang, dat “WJ’

geheel gevuld is met een homogene ma-

terie die in rust is. . <+ Am
Sig?ii

Studievraag 9.23.: Is de druk p in V <sotroop?

Heejt de druk p in V overal dezelfde waarde?
Heeft de stijghoogte h in V overal dezelfde waarde?

Uit het antwoord op 8.9.23 blijkt dat de materie onder invloed van het lokale
zwaarteveld wordt samengeperst. Deze samenpersing is afhankelijk van de plaats
in het vat.

Vanwege de overzichtelijkheid zullen we eerst een geval bekijken waarin de
samenpersing onafhankelijk van de pla~ts in V is.

Neem daarom een vat V dat opgesteld is in een omgeving waar we de invloeden
van het lokale zwaarteveld kunnen verwaarlozen en we de opstelling dus kunnen
idealiseren tot een vat V dat geheel gevuld is met materie Waarop geen

gewichtskrachten werken.

Studievraag 9.24.: Ga na dat de druk p mu onafhankelijk van de plaate in V

" 18,

Uit het antwoord op £.9.24 volgt dat de druk p en de dichtheid p onafhankelijk
zijn van de plaats in V, ‘
Op een tijdstip t is de massavoorraad van het vat m(t) en we nemen aan dat al-~

les in rust is. De dichtheid p is dan

m{t
o(t) = BB

en de druk p is eveneens een funktie van de tijd: p = p(t)
We brengen nu in het tijdsinterval (t, t + At) een hoeveelheid materie Am door

de toegang het vat in en we veronderstellen dat na t + At alles weer in rust is.
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De dichtheid p is op het tijdstip t +.At dan geworden

oy - Mt + At) _om(t)  Am o
p(t + &) 5 ek s L o(t) + Ap

en de druk p op dat tijdstip
p(t.+ At) = p(t) + Ap

We noemen nu het koti&nt van de druktoename Ap en de relatieve dichtheids-
A y
toename —% de kompresstemodulus X, dus

K = = p

ol
g5

Het verband tussen de druktoename Ap en de dichtheidstoename Ap voor een

vlceistof of gas is dan

Ap =

o Ix

Ap

We kunnen de dichtheidstoename Ap behalve door een massatoename An in een

gtar vat, ook verkrijgen door een volumenafname AV van een konstante
massavoorraad. We kunnen de kompressiemodulus K dan ook schrijven als het

kotiént van de druktoename Ap en de relatieve volumenverandering - %} s dus

Studievraag 9.25.: Ga na dat beide uitdrukkingen dezelfde waarde voor K op~-

leveren.

Voorbeeld

De kompressiemodulus van water is bij kamertemperatuur ~ 2.109 Nm-Q.

Bij een druktoename Ap = 100 at. (~ 107 Nm-z) volgt een relatieve dichtheids-

toename van:

7
A A 10 -2
S By oy = 0,5.107° = 0,58

In de praktijk is de fout van 0,5% die we maken docor p konstant te nemen, te -
verwaarlozen t.o.v. andere fouten die optreden, zodat we mogen aannemen dat bij

een druktoename van 100 at toch de dichtheid van water niet verandert.
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Uit de hydrostatische druk verdeling volgt dat 100 at ongeveer‘overeen komt
met de druk in water ter plaatse van 1000 m onder de spiegel. We mogen in
opstelling waarbij de druk niet lager dan 100 at wordt, voortaan het water
als onsamendrukbaar beschouwen.-

De kompressiemodulus van lucht kunnen we m.b.v. de wet van Boyle voor een
ideaal gas afleiden. Lr geldt voor een hoeveelheid gas dat pV = konstant. Op

dezelfde wijze als bij s.9,25 vinden we dat

4 . _p
AV v
en na substitutie in de kompressie formule vinden we dan dat K = p is.
Voor lucht volgt na een druktoename van 100 at dat de relatieve dichtheids-

toename gelijk is aan
8p _ Ap _ 100 _ 100
P P 1

Als we nu p = konstant nemen, dan is de fout niet meer te verwaarlozen (~ 104%!)
Als we toestaan dat de fout die we maken door p konstant te nemen, 5% mag
zijn, dan kunnen we in opstellingen waarin de drukverschillen niet groter dan

5% at. worden, de lucht eveneens als onsamendrukbaar beschouwen (air-conditioning)

Opm.: (1) Ale we snelle drukwisselinren toestaan dan wcrdt de kompressie-

modulus iets groter, nl. K = p —2-“ 1,4 p
V
(isentropische samenpersing, zie kollegediktaat c18)

(2) Bij atmosferische drukschommeling in ons land blijft ~E-meestal
binnen de 5% (nl. p = 1000 + 50 mbar)

Elastische berging .

Uit de kompressieformule is eenvoudig de (gemiddelde) toename van de druk per

eenheid van tiid in het interval (t, t + At) te bepalen.

We vinden
Ap _ Kdp _ K Am
At T p At T pV At
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Op dezelfde manier als bij de bepaling van de massastroom (zie'par. 3) of

van de bergingsvergelijking (zie par. 5) laten we nu At + 0 gaan. We vinden

dan
s Ke K
PPy b ey ®

Vaak wordt het kotiént van Sphl en p de elastische berging Bel van het vat

V genoemd; deze is dus gelijk aan

Bel -

xi<

Deze berging treedt op bij massa toe-~ of afvoer in:

1. starre vaten die geheel gevuld zijn met samendrukbare materie;

2. elastische vaten die geheel gevuld zijn met onsamendrukbare materie en

3. elastische vaten die geheel gevuld zijn met samendrukbare materie.

In de laatste 2 gevallen is V dan al# funktie van de tijd te beschouwen.

In deze kursus zullen we ons voornamelijk bezig houden met starre vaten

die gehe:1 met water gevuld zijn en met vaten die zowél lucht als water be-~
vatten (z.g. bekkens en klokken).

Voor de gevulde vaten hebben we gezien dat we voor drukken tot ongeveer 100 at

het water als onsamendrukbaar mogen beschouwen,

Studievraag ‘.26.: Hoe groot ig dan le elastische berg ‘ng?

Studievraag 9.27.: Hoe groot is de gravitatie berging?

Als we nu een gevuld vat in het lokale zwaarteveld hebben, dan volgt uit s.9.26

en s8.9.27 dat de stijghoogte h overal in V dezelfde waarde heeft en dat

og

is en waarbij R = 3% # 0 kan zijn (denk aan een zuiger)

Voor "halfgevulde" vaten blijkt dat het water in de meeste gevallen wederom als
onsamendrukbaar beschouwd mag worden.

We zullen ervoor moeten zorgen dat de drukken.in water niet hoger dan 100 at
worden., We moeten dus oppassen dat er niet teveel water het vat ingevoerd
wordt, want anders kan het gebeuren dat de lucht boven het water éen druk van
meer dan 100 at heeft.

-Voor de stijghcogte h kunnen we nu een analoge afleiding maken als bij een open

bekken (zie par. 5).



Studievraag 9.28.: Is de druk ter plaatse van de spiegel komstant in de tijd?

Uit het antwoord op #£.9.28 en met de afleiding uit par. 5 volgt dan
Apl

Ah:A o ———
%s 0%

Delen door At en vervolgens At » @ latern gaan, geeft

Uit de wet van boyle volgt

?
R L
h = “s " og P1 v,

Daar het water onsamendrukbaar is volgt daaruit dat

en we vinden dan

p, A
s 874 Vl

Verder volgt eveneens uit de onsameidrukbaarheid dat

e . Q
“s T A

zodat we uiteindelijk vinden

ADp
=8¢, ., 22
A = {1+ 5V, }

We noemen soms het kotiént van Q en A de (gravitatie)-klokberging B, en

deze is dus

Vaak zullen we te maken hebben met vaten waarbij de Bk gelijk is aan B omdat

A p
1 1 ,
- =g t.o.v. 1 te verwaarlozen is.
e Vy



BEWERINGEN

Bewering 9.1

Bewering 9,2 :

Bewering 9.3 :

Bewering 9.4 :

Bewering 9.5 :

Bewering 9.6 :

Bewering 9.7 :

Bewering 9.8 :

Bewering 9.9 :

Bewering 9.10

49.39

De val van.een regendruppel, die geen massa verliest
door verdamping of massa wint door kondensatie, is met
het lichaamsmodel niet te beschrijven.

Zen vat kan niet alleen maar uit toegangen bestaan.

De beweging van water kan alleen maar door een vatmodel

beschreven worden.

Ale een materie in een vat homogeen is, dan geldt voor
een materiaaleigenschap E, dat deae onafhankelijk van de
plaats in dat vat is, dus %% S 0

De ijsloag op een meer is geen spiegel en daarom ts dat
meer dan geen bekken.

Een vat V ig geheel gevuld met zuiver water (massa m).
De dichtheid p heeft overal in het vat de waarde p =ﬂv
De massavoorraad van een vat is konstant, wamneer er geen

materie in stroomt.

V1 en V2 aijn alleen met elkaar verbonden.

Als de massavocrraad in V, varteert, dus m7(t) # 0, dan
moet de massavoorraad in V, ook variéren en wel zodanig
dat my(t) = - m,(t) voor elk tijdstip.

De stroomsisseluerking N(?Z) 18 velledig bepaald door Sge

: De stroomwisselwerking V”g) 18 volledig bepacld door @
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Bewering S.11 : In een vloetstof kunmen alleen maar volumen inter—

akties opireden, als deze vloeistof zich in een graqvi-

tatie-veld bevindt.

- - € . + +
Bewering 9.12 :  Ale er in water een schuifspanming T # 0 optreedt, dan

18 dese vloeistof niet in rust.

Bewering 9.13 :  In een stilstaande viceistof zoals water, treedt alleen

een normaalspanning op, die altijd isotroop is.

Bewering S.14 :  De hydrostatische drukverdeling geldt alleen voor de
stiletaande vloeistof die een konstante dichtheid heeft.

Bewering 9.15 :  De waterspiegel staat in het lokale zwaarteveld altijd
loodrecht op 5.

Bewering 9.16 : De stijghoogte ven stilstaand water met een konstante
dichtheid in een bekken ter plaatse a is altijd gelijk

220,304

Bewering 9.17 : V7 en V? 2ijn twee identieke

vaten die van boven open zijgn.

Vi

De bodem vem V. is 2 m boven de

2 =

bodem van V7. . t
P4

In V7 en V2 staat evenveel water 1

(6 = konstant). Figd2

De stijghoogte h7 van V, is groter dan de stijghoogte
h2 van V. Het zwaarteveld is lokaal en de atmosferische
druk boven beide vaten is P,

Bewering 9.18 : De gravitatie berging van een vat dat steeds gevuld blijft,
18 altijd nul.
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y Vi Ve,
Bewering 9.19 : V7.en V2 atjn twee vaten ! { /

l - /

die van bovén open atin ‘___A‘___,‘ /‘____A___.,,/

/
_/

zontale doorenee A hebben. Tals

en die een gelijke hori-

De berging B, van V, is altijd gelijk aan de berging
62 van VZ'

Bewering 9.20 : Hoe groter de kompressie modulus hoe groter de samen-

persing bij een gegeven drukverschil.

Bewering '9.21 : De kompressie-modulus van een homogene materie is nul.

Bewering 9.22 : Ale voor een vloeistof in een vat V de elastische berging

Bez = 0 t8, dan 18 deze vloeistof niet samendrukbaar.

Bewering 8.23 : Voor een klok, die met water en lucht gevuld is, geldt

dat de gravitatieberging voor het water steeds gelijk is
aan de elastische berging van de lucht.
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VRAAGSTUKKEN

v 3.1 De turbine van een waterkrachtcentrale wordt aangedreven door water
dat vanuit een hoger gelegen stuwmeer door een pijp naar beneden kan
stromen.,
Het pebruikte water wordt door een kanaal in een meer geloosd.
De turbine is op te vatten als een vat, waarin een schoepenrad kan
ronddraaien, Geef een schematisering van dit stromingsprobleem en benoem
alle vaten b.v, klok, bekken enz. Geef verder aan wat de (vaste) wanden,

toegangen enz. zijn. Zijn er nog waterspiegels?

luchd

v 9,2 Hiernaast is een schematisering

van een bepaald stromingsprobleen

getekend.

Hoeveel elementaire vaten zijn er

te onderscheiden en van welk type
zijn ze?

Zijn er vaten die geheel bestaan

uit vaste wanden en zijn er die

helemaal geen vaste wanden hebbe. ? Eiﬂ 1Yy

Hoeveel toegangen zijn er?

»
D
I
¥

v 9.3 In een meer, dat we geschematiseerd 3
hebben tot een open vat (zie fig.|§ o liﬂl_ .
voor de afmetingen), is een kon- g

stante hoeveelheid stilstaand water

aanwezig.

o
De dichtheid p van het water is een
funktie van de hoogte x boven de bodem %o
(zie fig.16 ).
Gevraagd: . %Yo

a. De dichtheid in het gebied 0 & x ;=5x°;

b. De massa van het water in de onderste

wié

helft van het meer;
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c., De dichtheid in het gebied Ix < x < x_;
) C == = O
d. De massa van het water in de bovenste helft van het meer;
e. De gemiddelde dichtheid voor het hele meer;
f. Is de massa-verdeling gelijkmatig? Zo ja, waar?

g+ Is het water in het meer homogeen? Zo ja, waar?

v 9.4 In een bepaald watergebied is een stilstaand mengsel van zoet en
zout water. We hebben voor een vertikale doorsnede van het gebied
de lijnen van pelijke dichtheid in een grafiek aangegeven, waarbij

we vanwege de overzichteliikheid

steeds hetzelfde dichtheidsverschil . }’317-
Ap tussen 2 naast elkaar liggende t
lijnen hebben genomen (zie fi;n17) 4-~ » @l"deﬂAC-~Af-b o

De dichtheid van het zoete water
is konstant en is gelijk aan 0q- Q
De dichtheid van het zoute water P ;//// —_—y

is konstant en is gelijk aan Oy

Gevraagd:
a. De grafieken van p(z) ter plaatse van x = A, x = B, x = C en x = Ds
be Wat val: over de afgeleide g% ‘er plaatse van x : B te zeggen?

c. Teken de gemiddelde dichtheid als funktie van x;

d. Verklaar waarom voor de dichtheden in P, Q en R peldt dat

P ” Po > Pp - s
2 ; |z
v 9.5 Een cylindrisch vat V heeft een - {q H 3
hoogte H en een straal R, }
Verder zijn bij A en B toeganpgen - € h
tot V. (zie fipg.\8 ) T } {
-3 ' ©
" Op het tijdstip t=0 is V vcor de ? ?'; 133
| | !
helft gevuld met zout water _5;"3 i8 ‘ ' ‘ l\ <
(p2 = konstant). We willen het : \-h__f__,_,/) .

zZcute watér vervangen door zoet water (Q1 = konsrant, 01 < p2) en

daarom laten we bij B het zoute water wegstromen met een konstante
massastroom 82. Verder willen w2 de waterstand in V niet veranderen
en we laten daarom bij A zocet water binnenstromen met een konstante

massastroom S?‘
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~vormig (straal V

9. 44

Gevraagd:

a. Bereken S1, Q en Q als funktie van de vatgegevens, 82, Py oM P,
b. Bereken het tl]dstlp T, waarop we bij B zoet water hebben;

c. Bereken de gemiddelde dlChthEld p in V3

d. Wat gebeurt er als S} = 52?

Hiernaast is een schets van 2
met elkaar communicerende vaten

V1 en V2. Beide vaten zijn cilinder-

1 is 2R en straal

V2 is R) en hebben dezelfde hoogte
H.

We veronderstellen dat de leidingen

AB en CD twee ideale verbindingen 1
vormen (zie blz. 9.16), -g'”:] 3 .
De pomp in leiding AB verpompt per sekonde I m water (p = konstant)
van V1 naar V2.

Op het tijdstip t = t, staat er in V1 en V2 evenveel water, waarbij

de waterstond in V2 gelijk is aan _H.

Gevraagd:
a. Bereken voor het tijdstip t = t de maSSévorraden Mys M egtggdwgge\vﬂ-
b. Stel de massabalans op voor V2,

c. Bereken het tijdstip t1 waarop het water ook door CB gaat stromén;

de waterstand in V,_.

d. Bereken op het tijdstip t, 1

Na het tiijdstip t, gaat er door de leiding CD een debiet van ﬁ% I m39-1

van D naar C.

‘Gevraagd:

e, Stel de massabalans op voor V1;

f. Bereken het tijdstip t, waarop V1 leeg is;
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. zuigers A en B zijn E;

348

Hiernaast is een

hydraulische pers

T e c:o

cirkelvormig (straal

van A is R, straal van
B is 5R).

31299
De vloeistof tussen de zuigers is als onsamendrukbaar te be-

schouwen (p = konstant),

De versnelling van het lokale zwaarteveld is E

.Via de zuigerstangen worden cp de zuigers A en B krachten ? en

? uitgecefend (zie fig.).

Er geldt verder dat alles in rust is.
Gevraagd:

a. De druk in een willekeurig punt P (x,y,z){
b. Het verband tussen F en PE’
c. De stijghoogte in een willekeurig punt P (x,y,z);

d. Het verband tussen FA en de stijghoogte.

2 {
Links van een vertikale sluis- A ’
deur (breedte B) staat water b = /r l
(p, = konstant) en rechts erv.n 15 n 3
1 q l e f y
eveneens water (p, = konstant) _<-} | 7
: = . i/

De versnelling van het lokale H . ;;JFB
zwaarteveld is g. De atmosfe- sy ;
rische druk is p_. ‘27 {z ¢

a L

Gevraagd: _ (o] _?'.321

a. De totale kracht P cop de sluisdeur;
-+ LS ..
b. Het totale moment Lo om de snijlijn van de deur met bodem;
c. Bepaal de verhouding tussen de waterhoogtes en de dichtheden
N -+ -+
in het geval dat F = o i
?
A

~ - +
de Is in geval {(c) dan ook =0 ?

¥ 2
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ve2,.11

7 b
946
In een onen vat met een kenstante

doorsnede A hebben we een laag zoet

water (o1 = konstant) boven een laag

zout water (p2 = konstant). De massa-

voorraad van het zoete water is m. en
4

de massavocrraad van-het zoute water

is M. De versnelling van het lckale

- _’ .
zZwaarteveld is g en de atmosferische

druk is p_ (konstant). -
a =

Alles is in rust.

Gevraagd:

d. De hoogtes van het wateroppervlak en van het zoet~zout grensvlak
boven de bodem; 4

b. De druk in een willekeurig pﬁnt P in de vlceistof;

c. De stijghoogte in een willekeurig punt P in de vlceistof,.

y z

Een bol (straal R, massa M)

. o
bestaat uit een homogeen j;j

materiaal met een overal . . &
5.

dezelfde dichtheid. De bol

drijft op of zweeft in een

groot open vat met water

(p = konstant). Alles is in

rust, -

De versnelling van het lokale zwaarteveld is g en de atrmosferische

druk is P, (konstant).

Gevraagd: B

@« De druk in een willekeurig punt P in het water;

b. De kracht die door het water op de bol wordt uitgeoefend in het geval
dat de bol voor de helft boven de spiegel uitsteekt (kies O samenvalle
met middelpunt bol);

¢. De massa M van de bol als funktie van p in het geval dat de hol zweeft

met zijn middelpunt op de hoogte 3H boven de bodem (3H > R). . -
3 ‘Pn o ‘g
In een vierkante uitsnijding van 2 x 2 meter in de ? : 31'"
vertikale wand van een bak is een houten ecilinder / NI
aangebracht op de wijze als in de figuur geschetst L IL

is. De cilinder kan zonder wrijving om zijn hori-

zontale as draaien., De bak wordt met water gavuld

tot een hoogte van 2 metep boven de cilinderas, | gisih"
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v.3.13

VveId. 14

ve3.15

aH7

De dichtheid van water is 1000 kg m

De dichtheid van het hout is 700 kg m .

a. Bereken de cpwaartse kracht die de cilinder van het water ocndervindt;

b. Toon aan dat de cilinder niet als een perpetulm mobile om zijn as gaat
draailen

c. Bereken de totale kracht die de cilinder op zijn as uitoefent,

Zie opgave v.9.5 waarbii V een open vat is en Py =P, =p een konstante is
Gevraapd:-

e. De gravitatie berging van het vat;

f. De bergingsvergelijking;

g« De stijghoogte als funktie van de tijd.

Zie opgave v.9.6 waarbij V1 en V? open vaten zijn,

Gevraagd:

g. De gravitatie-bergingen van de vaten en de leidingen;

h. De bergingsvergelijkingen voor ’v'1 en V?§

i. Het verband tussen de stijghoogtes van \I1 en Vz als funktie van

de tijd.

Zie opgave v.9.7 waarbij E>: - ;; en zuiger B weg is,

Gevraagd:

e. De gravitatie-berging van de pers

f. De bergingsvergelijking als zuiger & met een konstante snelheid Vs
beweegt tot de verwijding |

g. De stijghoogte als funktie van de tijd in bovengenocemd geval.

Zie opgave.v.9.7, waarbij we nu asnnemen dat de vloeistof samendrukbaar

is en dat de invloed van het lokale zwaarteveld te verwaaplozen is, De

kompressie-modulus van de vlceistof is K = 2.169 Nmﬁz.

De groctte van FA is ﬂR2.102 N.
We willen nfu de zuiger A verplaatsen naar rechts, zonder dat B van

plaats verandert.
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Gevraagd:

a. Wat moet PA worden als we A over een afsténd van‘%s L naar rechts

willen verplaatsen?

b. Wat wordt de relatieve dichtheidsverandering daardoor?

C.

Wat is de elastische berging van de pers?

We veronderstellen nu dat we de zuiger met een konstante snelheid

L ms.1 naar zijn nieuwe stand bewegen en dat de vloeistof

1
Ya T 7000 Ta
een dichtheid p = 1000 kgm ~ heeft bij het begin.,
Gevraagd:
d. De elastische bergingsvergeliiking;

e,

We nemen veréolgens aan dat bij zuiger B een massastrcom van 1 kgs

de

De druk als funktie van de tijd,;

.pers binnenstroomt.

.

Verder neemt zuiger A de beginstand weer in en blijft deze behouden.

Gevraagd:

f.

De druk als funktie van de tijd;

g. De relatieve dichtheidsverandering per eenheid van tijd;

h.

In

De dichtheid als funktie van de tijd.

een cilinder (straal R, lengte L)

kan een zuiger A heen en weer bewepen,

Als de zuiger in z'n onderste stand is,

dan is de cilinder veoor de helft gevuld

met water van een dichtheid p = 1000 kgﬁa

en

| .
druk van 10~ Nm °.

Het water heeft een kompressiemodulus van

voor de andere-helft met lucht met een
2

9 «2

2.10° Nm <,

De

lokale zwaarteveld is 10 ms °.

grootte van de versnelling van het
2

4

Gevraagd:

ds

b.

De luchtdruk p als funktie van de
spiegelhoogte Zge

De spiegelhoogte Z waarbij de relatieve
‘dichtheidsverandering van het water gelijk

aan 1% is.

x)\s;

Waker

A

L L L ELL T LEL L LLLELLLEL..

~¥1E3 5
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Als we nu verder geven dat de zuiger A alleen maar beweegt in het
onderste kwart van de cilinder,(dus 0 < T iL} dan wordt gevraapd:
Ce Mag met een hanweurlghelu van 1% hen water als onsamendrukbasy

beschouwd worden?
d. Bereken de klokberging als funktie van Zye
e. Bereken de lengte L daarb i we met een nauwkeurigheid van 1%

de klokberglng mogen vervangen door de gravitatie-berging (bij de

gegeven beweging wan A )
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‘De beweging van het water kan dan be-

ANTWOORDEN OF AANWIJZINGEN BIJ DE STUDIEVRAGEN

Aanwijzingen bij een studievraag worden aangeduid door een accent-
teken bij het nummer van de vraag. Het antwoord staat dan enige blad-
zijden verder bij het onderdeel:

Antwoorden na aanwijzingen bij de studievragen.

De ruimte binnen het drinkglas, d.w.z.
alle ruimte onder de glasrand en tot
de glaswand, §oldoet aan de eigen-
schappen die een vat moet hebben

(zie d. 9.2)

schreven worden door de waterhoeveelheid

$ig36

Een eenvoudige maat hiervoor is de hoogte van het wateroppervlak boven

die in dat glas op elk moment aanwezig is.

de bodem van het glas. Je kunt verder over de beweging zeggen dat deze

iets te maken zal hebben met de mate waarop het wateroppervlak stijgt.

Over de beweging in de vloeistof ze!€ en in de waterstraal is verder

met dit model niets te zeggen.

Opm.: In het vat-model gaat het om de zichzelf blijvende, begrensde
ruimte. Als we het glas verplaatsen, b.v. een paar centimeters
naar rechts, zodat de waterstraal nog steeds in het glas eindigt,
dan is er eigenlijk voor een toeschouwer niets aan het probleem
veranderd«” Wel geldt dat het glas nu een ander stuk van de ruim;e
als vat definieert. We hebben zodoende toch een ander probleem
in onze vat-theorie !

We zien hieruit nopmaals (staat eigenliik ook in d 9.2) dat vaten
niet bewegen, d.w.z. niet bewegen t.o.v. ons referentiestelsel

in dg ruimte.
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S. 9.2 Het glas zelf is de vaste wand; we kunnen dit eventueel nog splitsen
in de opstaande wand en de bodem. De "eenvoudigste" toegang (het
eenvoudigst te beschrijven oppervlak) is de horizontale doorsnee
ter hoogte van de glasrand.
Formeel zou je ook het hier-
naast getekende oppervlak als
toegang kunnen beschouwen mits ./
dit oppervlak maar vastligt.

In de praktijk nemen we natuurlijk

;k;?]

de eenvoudigste toegang.

8. 9.3 Op dezelfde wijze als bij de bepaling van Py kunnen we nu zeggen

dat er bij elk volumendeeltie AVi een massa Ami hoort. We vinden

N N N
>
m = Z Ami — Z oy Avi = Z p(ri , t) Avi
i=1 i=1 =1

Na het "verfijningsproces'" gaat dit over in de volumenintegraal
] P £

m=[ff] o(F,t)av = [[f plx,v,2,t)av
v v
Voor de afgeleide kunnen we wederom eerst naar &én volumendeeltie
kijken

Am, = p. AV, = 2 p(®, 1) av,

Na sommeren en verfijnen vinden we dan

m = [{f 3% p(x,y,z,t)dv
Vv

Opm.: De, techniek om zo'n integraal te berekenen wordt voor deze
eenheid niet vereist en dus ock niet getest. De bedoeling
van deze studievraag was de aandacht vestigen op de mogelijk-
heid dat je de massa m ook kan berekenen, als je de dichtheid

als funktie van de plaats en de tijd kent.
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8. 9.5

s. 9.5

S. 9.5B

" Differentiatie geeft

9.52

Akons'tant betekent, dat p zowel in piaats als in tijd

Bedenk dat p
konstant is.

ap _3p _ 3p _ 8p .
Dus 3% "3y "3z -0 &0 3 =0

Door leiding A is een massastroom

S A =m

12 A

oo}

Door leiding B is een massastroom

De massastroom 512 is de nettomassa die per tijdseenheid van V2

naar V1 gaat, dus

S =m, - m

12°- A" Mg

We zien dan dat het volgende verband geldt:

. A _ B
S12 7 812 = Sp4
Daar SB =z - SB gaat ‘dit over in
21 12

' _ A
$12 ¥ 812 * 54,

S1 is de som van alle massastromen Slj s waarbij S1j de massastroom
van vat Vj naar vat V1 is. _
We zien uit fig. 3A, dat V1 alleen met V2 in verbinding staat, zodat

we krijgen

Sy =784,

We hebben hiernaast zo'n geval
getekend. Er geldt weer dat de
totale massa konstant blijft, dus

m = m1(t) + mz(t) + ma(t) = konstant

0 = 61(t) + éz(t) + éa(t)

~Fﬁ3i8
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Vanuit V.l bekeken is V2 en V3 te vervangen door een vat Vo dat
twee verbindingen met V, heeft (zie s. 9.5).
We weten verder dat de totale massastroom naar V1 gelijk is aan

m (t), zodat we komen tot (met s. 9.5 !)

AD BD

Als we nu verder bedenken dat S?g het gevolg is van de wissel-

. BD -
werking w(12) en 810 van w(13) dan kunnen we weer schrijven

Sy = S45 Sy,

Een analoge redenering voor V,

5 en V3 geeft

S2 = 521 + 823

S.. + S

SS 31 32

Verder volgt na optellen van deze 3 vergelijkingen dat
S1 + S2 +8;=0

want sm-rs =0, S + 8 =0 en S + S =0

Het debiet door leiding A is

A

Oyp =

Ta
o

Het debiet door leiding B is

B _'B
Q21 "o
Het debiet van V2 naar V1 is
0..--A" "™ _ " ™
12 ) T op P

en we zien dat

- of -
Q2 * Qa7

Meestal schrijven we Q12-als
- oA B _ A B
Q2 = Qp + Qg of ~Q=0" +Q

waarbij QB dan een negatief debiet is
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s. 9.7 Ja, b.v. brak water.

s. 9.8 Een volumendeeltje AVi uit Vd ter plaatse van q'heeft de massa
bm, = p(x- ) Av
Daar we in het lokale zwaarteveld zitten ondervindt.Amieen zwaarte-
kracht t.g.v. gravitatie interaktie met de aarde (de gravitatie inter-
aktie met de rest van de vloeistof mag verwaarloosd worden, zie eenheid u4}.

Voor het gehele gebied V, volgt (zie ook s. 9.3)

d
N -5
[ Z X Ami = mg
i=1 i=1 ,
waarin m_de totale massa van de vloeistof in Vd is.
De oppervliakte interakties zijn niet zonder meer te berekenen, ze hangen
af van de toestand van de vloeistof (zie ook kontakt-interaktie in eenheid 4).

. 9.9 Neen. De spanning(svektor) is wel afhankelijk van de e -richting,

12
maar hij hoeft niet evenwijdig aan die richting te zijn. Lees ook de

theorie over kontakt-interakties, eenheid 4, par. 2.

. 9.70 Mits e, +e, =0 is, zie obk s. 9.9.

127
'+ 9,11 Ja, Ga de afleiding maar na ! Nergens is gebruik gemaakt van een

_eigenschap die een vloeistof wel en een gas niet heeft of omgekeerd.

o 9012 Bewijs dat de druk in een punt vlak onder het grensvlak en de druk in
een punt vlak boven het grensvlak aan elkaar gelijk worden, als de afstand
tussen de punten naar nul gaat. »

. 9.13 Daar de vlceistof in rust is, zijn er geen échuifspanningen.
.Alle spanningen zijn normaal, zodat alle oppervlakte-krachten loodrecht
stazn op de "hijbehorende" opperviakjes.
De krécht op het voorvlak b.v. heeft de richting van -e enz.
De volumenkracht g = mg (zze s. 9.8) en g -g gz? dus G heeft de

richting van -ez .

. 9.1 Uit %2 0 voligt dat p geen funktie van x is.
Uit <2 By .
- Uit deze twee voorwaarden volgt dat p nog wel een funktie van z kan zijn.

11}

0 volgt dat p geen funktie van y is.
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We mogen i.p.v. ég dan verder schrijven %g .
Daar p = p(z) 1s, geldt voor de afgeleide Qg dat deze ook een
funktie van z is. Het rechterlid van de vergelijking —E = pg moet
dan ock een funktie van z zijn.
In het lckale zwaarteveld is g konstant, dus dan kan o alieen maar
een funktie van z zijn, dus p = p(z).

Opm.: p mag wel een konstante funktie van z zijn !

Ja. In de afleiding is nergens gebruik gemaakt van een eigenschap
die een vlceistcf wel en een gas niet heeft of omgekeerd.

(zie ook s. 9.11 en b.v. het kollepediktaat C-18 Al .Nat. blz - --)
£

Stel dat een stukje oppervlak
AA niet loodrecht op E staat. QQ\J
Kies dan 3 punten zocals in fig. a
Bewijs vervolgens dat Pa met P2
moet samenvallen. Houd daarbij
rekening met het feit dat de

druk in een stilstaand gas in

een vri’ groot pebied overal

hetzelfde is. 5}3 28

O

Cknlakgf
egel

S’\
In de hydrostatika van water (p = konstant) is de uitdrukking

Pg
een konstantg,door de hele vlceistof heen. De partidle afgeleide

+ 2

naar x, y en z zijn dan nul.

We kunnen dit ook berekenen:

h _ a{P‘P +z}_1_§p__.

E ™ “Pg B "0

gh 2 { Pat 2 k 1 9p

= = — = =0

By " By pg Ty

3h_3{ +z¥_1_§2 -

3z 5 "Pg BT170
3p . % . 3.

want T C By en T Pg

S. 9.18 Bedenk waaraan h geliijk is.
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. 9.19 De dichtheid p van het water is konstant, d.w.z. konstant zowel
in de plaats als in de tijd.
Gebruik nu de definitie voor de dichtheid (zie par. 2, sektie
dichtheid).

8. 9.20 Nee. Het gaat om de watervoorraad in het vat. Het enige belangrijke
is de rusttoestand van dat water in het vat. Bij een toegang boven
de spiegel moeten we "langer" wachten voordat alles weer in rust is.
Het limiet proces At ->0 is dan niet 2o goed mogelijk. ‘
Bij de limiet overgang van At —>0, zodat we h als funktie van 0 krijgen,
nemen Qe stilzwijgend aan dat op elk moment de stijghoogte door de gehele
vioeistof in het vat dezelfde waarde heeft.
We nemen dus aan dat de stroming in het vat te verwaarlozen is, zodat
we de berekening voor de stijghoogte mogen toepassen (zie par. 4,

sektie stijghoogte)

s. 9.21 Neen. Het oppefvlakte A van de waterspiegel kan veranderen met toe-
of afnemende waterhoogte b.v. een rivigr; eén meer.
In dergelijke gevalilen is A als een funktie van z, op te vatten.
In deze kursus zullen we ons alleen bezig houden met vaten waarin de.

waterspiggel een konstant oppervlak A heeft.

S. 8.22 Als de stroming in het vat te verwaarlczen is in een tijdsinterval (0,t)
dan volgt uit het geldipg zijn van de bergingsvergelijking d.m.v. integratie
direkt: t
h(t) = h(o) +% [ ott)at
o
Voor de druk p{t) geldt dan ter plaatse van z:
p(t) = pg hi(t) + z + pa(t)

en voor de druk p{o):

plo) = pg h(o) + z + p (o)

Hieruit yolgt ¢

plo) + £& [ q(tlar

o}

p(t)



s. 9.23

S. 9.24

q.57

als de atmospherische druk p, een konstante in de tijd is. Meestal
zijn de veranderingen in de atmospherische druk te verwaarlozen t.o.v.
de andere veranderingen.
Als de atmospherische druk ock verandert dan moeten we schrijven

.

p(t) = plo) +EE [ o(t)at + p,(t) = p_(o)
e]

Merk op dat in een bekken de druk ter plaatse van z kan veranderen

zonder dat er massa toe- of afgevoerd wordt.

De druk p is isctroop, want de materie is in rust (zie par. 4).
Verder geldt voor de druk p dat

p-d.._,

8z dz PE

zodat deze toeneemt bij toenemende diepte (druk bij bodem is groter

‘dan bij deksel; zie ook s. 9.14).

De stijghoogte h zou overal in V dezelfde waarde hebben, als p konstant
zou zijn, maar tengevolge van de druktoename bij toenemende diepte is
daar de materie meer samengeperst en wordt daar ook een hogere dichtheid
verkregen (ga na aan de hand var de def. van de di-htheid)

In het alpemeen geldt dus

%‘E =~g§: - plzlg

Voor de stiighocgte velgt dan

o dh PP g
3z ~ dz T _ 2 dz
. (S04
en dit is in het algemeen engeliik nul {want~§§ # 0), zodat we wederom

zien dat b alleen maar konstant is als p onafhankelijk van de plaats is.

Op dezelfde manier als bij de afleiding van de hydrostatische druk-~
verdelifpg kunnen we afleiden dat

_?.B:_Q.E:O

3x 3y

en nu ook dat

3p
az 0
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8.25

9.26

9.27

g.28

9.58

want de volumenkracht pg AV valt nu weg !

Uit bovenstaande 3 vergelijkingen volgt dan dat p overal in V

dezelfde waarde heeft. A

Voor de materie is nu geen‘enkele reden, makroskopisch gezien, om

in het ene gebied meer samengeperst te worden dan in het andere gebied
en in afwezigheid van uitwendige volumenkrachten, zullen de molekulen
zich zo bewegen (molekulaire warmtebeweging), dat de dichtheid overal
in V dezelfde waarde heeft (zie ook het diktaat Alg.Nat. voor Civielen,

kin. gastheorie).

We nemen een vat V dat elastisch is. De massavoorraad in V blijift

konstant. Dus er geldt op het tijdstip t

m = p(t) V(t)
en op het tijdstip t + At

m=p(t + At) V(t + At) = (p + Ap}(V + AV)
Uit deze vergelijkingen wolgt

0 =V 4p + pAV

daar we ApAV t.o.v. de beide andere termen mogen verwaarlozen.

We zien dat

PR
n Y

en na substitutie volgt vanzelf het gevraagde.

Opm.: AV <0 als 4p > o !

Byy 4 5= 06,5.10°° vy moN !
2.10
In de praktijk- is dit gelijk aar nul te stelien. Stel Bel =0

en we maken dan pas een fout van 0,05 als V de waarde
108 m3 heeft.

Bedenk dat er geen spiegel kan zijn !

Nee. Want op het tijdstip t is de druk van de lucht boven het water
gelijk aan pl(t) en neemt de lucht een volume in Vl(t). Op het tijdstip
t+ At is Vo (t + At) = v (t) - A8z geworden en met de wet van Boyle
vinden we dan voor de druk op dat tijdstip
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9.60.

ANTHOORDEN NA AANWIJZINGEN BIJ DE STUDIEVRAGEN

Hoewel de massavoorraad kenstant is (dus m = 0) hoeft Ami niet
gelijk aan nul te zijn.
Uit het antwoord op s. 9.2 blijkt alleen dat de som

N
Z Ami
i=1

of de integraal

111

vV st av

nul moet zijn.
Uit de laatste formule is wel te zien dat voor p = konstant in de
tijd de massavoorraad eveneens konstant blijft, maar dan mag nog steeds

p een funktie van de plaats zijn.

Als de materie homogeen is, dan hoeft de materie niet gelijkmatig over

de ruimte verdeeld te zijn en bovendien kan deze verdeling ook nog van

de tijd afhangen. ;

De niet gelijkmatige verdeling kan veroorzaakt worden door druk- en

temperatuursverschillen.

Opm.: Vaak wordt onder een homogene materie een stof verstaan, waarvoor
alle eigenschappen onafhankeliik van de plaats zijn, b.v. dat dan
ook de dichtheid konstant is.

In deze kursus zullen we onder een homogene materie een stof
verstaan waarvan de samenstelling door de hele ruimte hetzelfde is
Een enkelvoudige stof zoals zuiver water, is dus altijd homogeen
Andere stoffen zoals lucht of zout water kunnen homogeen van samer

stelling ziijn.

Hiernaast een vergroting van een

»
stukje van het grensvlak (spiegel) ; L
: L Ad
met de beide punten P1 en P2 aan * ! P I
weerszijden. Over een klein gebiedie ' I jrmaﬂ
A
AA mag het grensvlak als een plat viak E _Fi l

beschouwd worden. De stand van het ""ﬂ' AS - .9'330
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vlakie AA t.o.v. E is voorlopigvniet
belangrijk, wel weten we daf deze niet
verandert in de loop der tijd (hydro-
statika). )

We ki%zen een AV in de vorm van een
kubus met een ribbe Ad, terwijl AA

samenvalt met de middendoorsnede van

" deze kubus (zie fig.30)

Daar alles in rust is, moet weer de
som van alle volumen- en opperviakte-
krachten die op AV werken, gelijk aan
de nulvektoé zijn.

Voor de ;12-richting vinden we {(zie ook
de afleiding van de wet van Pascal),
omdat ;12~L-AA staat, dat moet gelden

- oy +0,) BA 1 8A(RE,,) - p, BA + p, 8A = 0

12

of
+ 3 )
-i(p, + py(g.e.,)8d - p, + Py = 0

We laten nu } Ad ~> 0 gaan en we zien dat P; = p, wordt en dat bovendien
de punten P1 en P2 samenvallen in het punt P van het grensvlak.
Verder zijn de drukken in P1 en P2 tijdens het limietproces steeds

isotroop, zodat we mogen konkluderen dat de druk in P ook isotroop is.

Met behulp van s. 9.12 en de eigenschap van de hydrestatische drukverdeling
voor een stilstaande viceistof volgt, dat de drukken P, en p, aan elkaar
gelijk zijn. v
Eveneens volgt uit de hydrostatische drukverdeling dat .
: z

3
= p(za} + ! g p{zldz

29

Py =

ot
o~
5]
[ 2
St
i

Daar Py = p(zT) = p{za) (eipenschap van een gas over een klein volume-~
gebied bekeken) volgt

Z_
S
P, = Py * [ g o(z}dz

%2
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oy

Daar Py = P, (liggen in hetzelfde horizontale vlak) volgt dat

z z

3 5 |
‘f Cge(z)az =g J elz)as =0
% %2

Dit is nul als p(z) = 0 of als 2, = z, (22 en z, waren willekeurig !).

We zien af van de le mogelijkheid en we moeten dus konkluderen dat

2, = Z, en dat het grensvlak steeds loodrecht op E staét.

Opm.: Het grensvlak kan wel "schgef" staan als de vloeistof stroomt,
dus niet hydrostatisch is. .

' 9.18 Als het water in rust'is dan geldt dat de stijghoogte h gelijk aan z, is.
Als de vloceistofspiegel "langzaam" stijgt, zodanig dat we de vloeistof in
"kwasi~rust" mogen beschouwen, dan is wederom h gelijk aan Z, Daar de
spiegel stijpgt is 2, = za(t), zodat dan h ook een funktie van de tijd is.
We zien dat de stijghoogte van water (of een andere vlceistof) een funktie
van de tijd kamn zijn. We komen daar in de volgende paragraf;n en eenheden
op terug. ’

« 9.19 Er geldt op het tijdstip t dat

o =%§.§§ of  m(t) = p V()

en bp het tijdstip t + At dat

- m{t + At) _ m{t) + Am
TV(t + Aat) T V(ty + AV
of ook

p V(t) + pAV = m(t) + Am

Met de le Qergelijking velgt uit de laatste de gevraagde uitdrukking

- 9.27 B = 0, want er is geen spiegel, zodat er niets kan dalen of stijgen.

'



Do

D«

D o

3.2

9.3

2.4

9.5

9.6

9.63

KOMMENTAAR OP DE BEWERINGEN

Onjuist. De valbeweging van zo'n druppel is juist het eenvoudigst met

het lichaamsmodel te beschrijven, n.l. door de beweping van het massa-
middelpunt (de rotatie en/of vervormingen van zo'n druppel is (zijn) te
verwaarlozen). Deze beweging volgt uit de val van een puntmassa die dezelfde
massa als de druppel heeft (zie eenheid 5). Een vatbeschrijving levert geen
informatie over de plaats, snelheid en versnelling van zo'n regendruppel.

Je weet alleen dat die druppel op een gegeven moment wel of niet in het

vat is, dit volgt direkt als je het vat gelijk neemt aan de aardatmosfeer

met pe aardé als bodem.

Onjuist. Lees definitie 9.4 nog maar eens. Denk verder aan de deelvaten

(kompartimenten) in een viceistof, waardcorheen de vloeistof kan stromen.

Onjuist. Het vatmodel is &&n van de beschouwingswijzen om de beweging van

water te beschrijven (zie par. 1, waterhuishouding).

Onjuist. Het woord homogeen heeft alleen betrekking op de chemische en/of

fysische samenstelling. Op verschillende plaatsen kan.de materie wel dezelfde

samenstelliug hebben, maar de fysische omstandigheden (zoals druk, tempe-

ratuur enz.) kunnen verschillen. Denk bijvoorbeeld aan lucht. De samen-~
stelling ervan is op zeeniveau hetzelfde als die op een kilometer boven
dat niveau, maar de dichtheid is anders (zie cok kollepgediktaat C =18 blz.
K-s)-

Juist. Bevroren water is geen vloeibaar water en juist het scheidingsvlak

tussen vloeibaar water en lucht is de spiegel. Verder staat het water onder

de ijslaag niet in vrije verbinding met de atmosfeer. De ijslaag is een

vaste wand van het vat dat gevormd wordt door de meerbodem en ijslaag.

Onjuist. Ondanks het feit dat zuiver water Homogeen is, hoeft de dichtheid

nog niet konstant in de plaats te zijn. (zie ook b. 9.4).
Onjuist. Er kan nog altiid materie uitstromen.

Juist. Zie par. 3. sektie kommunicerende vaten.
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b. 8.8 Juist. 827 is niet nodig, want die volgt direkt uit de vergelxjklng

S?Q + 821 = 0 die voor de wisseliwerking “(32) geldt.

b. 9.10 Onjuist. Alleer als p konstant is {(zie par. 3, sektie debiet).

b. 9.71 Onjuist. De vloeistof in deelvat v, V

en die in deelvat V, ocefenen op elkaar

2
een pravitatie interaktie G(T?) uit @ @

(zie ook eenheid 4} en daar beide deel-

vaten peen pemeenschappeliik oppervlak 5353"

hebben, moet deze interaktie ("op afstand!™) een volumen-intepaktie

zijn.

Opm.: Als het vat V in een lokaal zwaarteveld is opgesteld, dan is
de gravitatie interaktie G(TO) tussen V1 en aarde vele malen
groter dan die tussen V1 en V2. Op dezelfde wijze als in eenheid 4
mogen we als enige volumen-interaktie de interaktie tussen de vloei-
stof en de aarde nemen. (We verwaarlozen voortaan de onderlinge
volumen-interakties®!)

b. 9.12 Juist.
Opm.: Bij "niet-gewone" vloeistoffen, zoals verf.:teer, glas
kunnen wel schuifspanningen optreden, terwijl ze toch in rust
zijn. _
In deze kursus beperken we ons tot gewone {(z.g. Newtonse) vlcei-
stoffen.

b. 8.13 Onjuist. De normaalspannlng is een vektor en daarom is normaalspanning
afhankelijk van de richting. De grootte wan de normaalspanning (tow.

de druk !) is wel isotroop in een stilstaande vlceistof.

b. 9.14% Onjuist. Zie par. 4, sektie hydrostatische drukverdeling, met name
8, 9.14 en s. 9.15.

2

b. 8.15 Onjuist. Zie s. 9.16.



b. 9.16

b. 9.17

b. 9.18

b. 9.19

be 9.20

b. 9.21

b. 8.22

3.5

Onjuist. Is afhankelijk van de keuze van je assenstelsel.
Kies b.v. de positieve z-as vertikaal naar beneden dan moet
h gelijk zijn aan
N PP,
pg

- 2

De plaats van de oorsprong is niet belangrijk (ga dat na).

- Juist. Kies de positieve z-as vertikaal omhoog zodat we vinden

voor de stijghoogte van V1

P-P p(z.) - p
- 3 a - 1 a -
h1 --——;E—— + 2z = o8 — 4+ 21 = 21
en voor de stijghoogte van V2
P-p plz,)) - p
A R’ | .2 "a -
h2 * =g + 2z = oF + 2, = 2z,

Daar z, > z, is volgt dat de bewering juist is.
Juist. Er kan geen stijging van de waterspiegel optreden.

Juist. Want By=A enB, =4,
Bij de afleiding van de berging ging het om het horizontale opper-
vlak van de spiegel. Het is dus cnbelangrijk hoe de wanden verlopen

bij toe~ of afnemende waterstand.

Onjuist. Uit de definitie voor K volgt veor de samenpersing (-AV)

dat -1
=&V = K 'V 4p

We zien dat hoe groter K hoe kleiner het rechterlid wordt bij een

‘gegeven drukverschil Ap.

Onjuist. Een homogene materie is best samendrukbaar. Zie voorbeeld

4
in par. 6, sektie kompressiemodulus.

Juist. Be =0 > k = ®—p Ap =0
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b. 9.23 Onjuist. Er geldt dat de elastische berging wvan lucht'Bel ?-“Vl(pl)-'1

waarin Vl het volumen van de lucht boven in de klck is.

We kunnen dit als volgt inzien:

Stel op t + At is de spiegel Azs

gestegen. Beschouw het dan ontstane

volumen als het vat waarin de lucht ‘ \
in At wordt geperst. Daar verder de |

zwaayrtekracht geen invlced heeft op

de luchtdruk, mogen we de afleiding S'ES 29

voor de. elastische berging uit het

diktaat volgen. We vinden dan de eerder gencemde uitdrukking als we
ons realiseren dat voor lucht K = Py is.

Als we nu verder naar de gevonden uitdrukking voor de klokberging

Bk van het water kijken, dan zien we dat Bel daarin is te substitueren.

We vinden
_ A
R
pg B

el

3 $!
In het algemeen is Bk # Bel s
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UITWERKING VAN DE VRAAGSTUKKEN

De lucht boven het stuwmeer staat in direkte verbinding met de
atmosfeer en daarom is dit stuwmeer als een van boven open vat ofwel
bekken (kom)} op te vatten.

Voor het kanaal en het meer geldt hetzelfde. i
De aanvoerpijp is geheel gesloten op de 2 toegangen na en"het
algemeen geheel gevuld met water uit het stuwmeer. De pijp is op te
vatten als een geheel gevuld vat ofwel stroomvoerend vat.

De turbine is een stroomvoerend vat waarin eeﬁ schoepenrad (of rotor)
aangedreven wordt door het water.

We komen aldus tot de volgende schematisering

et rfee

- . -

A
3,

-!>ovenaanz:}:h&‘ 5 i A8



.dingswanden ertussen gestippeld

9.£8.

V1 = meer = bekken of kom

Vo, = kanaal = " ® :

V3 = turbine = stroomvoerend vat
- g = t t B

Vu pilp

VS = stuwmeer = bekken of kom

De vaste wanden ziin aaﬁgegeven door de dik getrokken lijnen; alle

andere wanden door de stippellijnen,

Als toégangen kunnen optreden de wanden bij E, F en € en de scheidiﬁgss

wanden bij A, B, C en D. In het algemeen worden de toegangen bij E, F en

G nocit zo gencemd, omdat alleen in bijzondere gevallen door deze wanden

vlceistof gaat (b.v. regen}. We spreken dan ook vaak van een bekken met

één toegang (hier b.v. het stuwmeer) of van een bekken met 2 toegangen

(hier b.v. het kanaal).

De waterspiegels treden op in VT‘ V2 en'VS; ze zijn aangegeven met een

dunne getrokken lijn. We zcuden V1 en Vz bij elkaar als een vat V kunnen

beschouwen {een bekken) en zodoende zowel V1 als V2 als deelvaten_van v

kunnen beschouwen, Hetzelfde kunnen we voor V3 en Vq doen.

Uiteindelijk zouden we V1 t/m V5 als &&n vat kunnen beschouwen, maar dan

verliezen we een hoop informatie over de waterbewegingen.,

Opm.: In de praktijk nemen we de vaten zodanig, dat in elk vat ongeveer
dezelfde stroming (vloeistofverplaatsing) optreedt. Het blijkt dat

in V1 en VS het water ongeveer stilstaat en dat de stromingen in

V2, V3 en V14 duidelijk van elkaar te onderscheiden zijn (zie hierwvoor

eenheid 10 en 11).

We hebben het schema hiernaast
nogmaals getekend, maar nu hebben

we de vaten genummerd en de schei-

= klok
= stroomvoerend vat
bekkeh

< <
N

1

= stroomvoerend vat

= stroomvoerend wvat

= bekken IR lé{;”’______*__’“:?:
', 7/ /77 ,:I,{///// 2B 7777
G

< o< o= <
D v Fow
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‘Afgezien van Vs zijn de namen vcor V1‘t/m Vs op dezelfde manier als
in som 1 gegeven. Voor VS hebben we het oppervlak van de straal als
wand genomen en daarom is VS geheel gevuld met vlceistof en dus een
stroomvoerend vat. Als we_voor'vs een volumen hadden genomen dat groter
was dan de straal, dan zouden we V5 een bekken moeten noemen (vergelijkbaar
met het kanaal in de vorige som),
Op dezelfde wijze als in v 9.1 zijn de vaste wanden, scheidingswanden en
spiegels aangegeven.
Er is geen enkel vat dat geheel-uit vaste wanden bestaat (V1 heeft &&n
toegang !).
Er is een vat dat helemaal geen vaste wand heeft, n.l. VS'
De toegangen .treden op bij de scheidingswanden A, B, D, E en G.
Opm.: (1) We nemen aan dat de spiegel in Vs zo langzaam stijgt, dat we G
als toegang kunnen beschouwen. Als dat niet opgaat dan moeten
we V5 laten lopen van E tot F en de doorsniiding daar ter plaatse
als toegang nemen. B
(2) De wanden C en F zijn formeel wel als toegang te beschouwen,

maar meestal doen we dat niet (zie ook v.92.1)

.9.83 a. Uit grafiek volgt dat de dichtheidp wvoor 0 < x < } x, konstant is, dus
- . ==

p =0, = +}x

b. Omdat de dichtheid in de onderste helft konstant is (zie a.) volgt

= - 2
mE p, 3 A %, = 3 goon + 1A %

c. Uit grafiek volgt dat de dichtheid p wvoor 3% # < X _te bepalen is

< <
0 == - O

uit
p(x) = p_ .

X"Xo

d. Met s.9.3 volgt voor de massavoorraad m van de bovenste helft
A=K

X
A jop(x)dx = A {p x - Mx ~x)2} -
3}( (] o

x=§xo

m

2

1
1 PX At F A X,
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e. De gehele massavoorraad velgt uit (b) en (d) en deze is.

_ 3 2
A AN A A
Het: totale volumen is V = Axo en de gemiddelde dichtheid p

wordt

il -
PEg = e,%3 o

Opm.: We hadden ook direkt het gemiddelde van de funktie p(x) over

het interval (0, xo) kunnen nemen. Volgens de analyse is dat

X
G

§ 2 f p{x}dx
(=

(o]

ﬁ.b.v. (a) en (c) wordt dat

X
o °
— 1 1 [
By s I P - =
P = (po + ‘xe)dx o {pO + (xo x)} dx
o o© o ix .
o
X=X
ix=ix <)
=l (p x + Ix x) ’ + = o x - (= -x)°} =
X Po %5 X, P %%
x=0 x=ix
B p 4o g
TP TE %

f. De massa;verdeling is gelijkmatig in het gebied waar de dichtheid

konstant is, dus in de onderste helft.

g. Het is zonder meer niet te zeggen of het water ergens homogeen is,
Als we aannemen dat het waterp onsamendrukbaar is {zie par. 3, debiet)
dan is wedercm in de onderste helft het water homogeen (een homogeen

mengsel van water en zout),

H
d. We moeten in de gegeven fipuur de liinen x=A, %=B, x=C en x=D trekken.
Vervoigens moeten we de z-kodrdinaten bepaien van de snijpunten van
deze lijnen met de z.g. dichtheidsliinen Pys P, = b, + Ap Py TPyt 240

en p, = p,. + 3 Ap,

S 1
We vinder den de volpende grafieken
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D
.
\e)

oo

WV

e. :(b }'.355

Opm.: De "schuine" stukken van grafiek B en C hoeven geen rechte
te zijn. Ze zijn een rechte (dus ¢ neemt lineair af) als alle

dichtheidslijnen evenwijdig aan elkaar zijn.

_32g..A_9.< 0

Uit het verloop van de dichtheidslijnen blijkt dat;%g toeneemt (dus
minder negatief wordt) bij toenemende z. De kromme gaat dus vlakker

lopen.

Met de uitkomst (e) van de vorige som is de gemiddelde dichtheid ter
plaatse van x gelijk aan

2;-..

- 1 °
p(x} = [ plz,x}dz
o

(o]
Direkt is in te zien dat voor x 3% de gemiddelde dichtheid gelijk is

dan p, en voor x > X. aan Py

D
Hoe het verloop daartussen in is, is analytisch niet te berekenen
(het verloop van de dichtheidsliinen is geschetst) maar zou eventueel
met een numeriek proces wel te berekenen zijn. We vinden globaal

s C T
Cw

-4

S—ig L1 : :‘ "

. —
Iq <

D
Opm.: In gevallen dat de dichtheidslijnen niet zo mooi verlopen (meer

bochten !) als in onze opgave, kunnen de gestippelde krommes optreden.
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a. Beide watersoorten zijn onsamendrukbaar (p =

9.72

4

voor het konstant bliiven wvan dg

—

dat het instromend debiet 01 =
debiet 9 4.52
2 oy

©
e

Er moet dus geldent

B, &,
Q - e M‘-— =~ Q'
L 2

en hieruit

w

(1]
o! ©
N —

72

i 2] 'of (%
NN N

N
©
N

konstant) zodat

waterstand nodig en voldoende is

gelijk is aan het uitstromend

volgen de pevraagde grootheden:

Het volumen op het begintiidstip t door het zoute water ingenomen
- 5

is gelijk aan

V,ito 4

9 J= iH R

Delen door het {konstante)} debiet QQ geeft dan de bencdigde tijd

At voor het leegstromen,

We vinden
) VQ(tc) Cimm g2

At = 5 T ok
2 S

= i

1
2 Py

QEm.: Als 82 =

t

Y &
,JQ(t)
t
o

waaruyit het eindtijdstip t,

v2(ro} - f Q?(t)dt

§,(t) dan volgt met het verband tussen het volume

V? en het wvitstromend debiet 0,(t) dat

te berekenen iz door de ondep~

staande verpelijking op te lossen

V2(t1} =0 s

o

t
. s
¥

2,(t)dt
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Bovenstaande integraalvgrgelijking is niet zo eenvoudig‘op.te lossen
(er zijn kolleges voor Het oplossen van integraalvergelijkingén, zowel
analytisch als numeriek !): in het geval dat Qz(t) s Q2 = konstant

dan volgt weer

v (t b I (t - to)Q2 = Q2 At
of 2
v (to) P, HR

S
2 2

Op een willekeurig tijdstip t tussen het beglntljdstlp t en het

elndtljdstlp t, is de massavoorraad m, van het zoete water gelijk aan

r+

o]
m.(t) = f S.(t)dt + m (t ) = — (-t ) 8
1 to 1 1" o Py o" "2

en de massavocrraad mQ van het zoute water

;-
“

- :
mplty) = ¢ Syt

it

mz(t)

i

0y V2(to) - (t~t0)82

De totale massavoorrsad m is geliik aan

by =P

m(t) = m1(t) + mz(t) = p, V2(to) + (t-to)82

3

Daar de waterstand niet verandert, vinden we voor de(gemlddelde}
dichtheid dat deze gelijk is aan

m{t) ey = Py

S2
VQZtOS = pQ 4 92 (t“to) VZZtos

p(t) =

Cpm.: (1) Als t=t_ dan volgt o(to) =z

s
V() V2(t )
(2) Als t=t. en dus t.-t = At = =z
4 1 1 o G S
2 2
dan volgt p(t1) =p, + 0, =0,y
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)
2
= ; - J— 3 0 §
ds Als 8, §, dan Q, 3 Q2 (dus Q, » 0, 8
De waterspiegel zal dus stijgen, we vinden voor de plaats z, daarvan

cp een tijdstip t

t'Q‘,~Q Py ™ P
zs(t)rzs(t0)+{ '22&‘334«-—?«-%&—”@,“
o n R T p. R ©

Opm.: Bovenstaande forﬁule geldt alleen als zs(t) <H en t < t, ziin
(mgt als grensgeval zs(tT) = H) rﬁiL

Als voor t = t, < ty geldt,dat z (t,) = H{géworden dan moet
daarna gelden Q1 = 02 {onsamendrukbaarheid van het water)

en dus kan S1 niet meer geliik aan 82 blijven. _
Als voor t = t, > t, geldtdat zs(t2) < H dan volgt uwit S1 =8,
dat 01 = Q2 moet zijn,want al het zoute water is weg.

En omdat Q1 = 02 is, zal de waterspiegel niet meer veranderen

Voor het grensgeval t = t, =t, en Zs(tQ) = H wolgt dat op

2
it p, HRQ
i 1 2Lt

t
2 Py = P, [+

het vat net vol is.

g, my =m, = pil w KE° = Imp HR

de waterstand in V. is op dat tijdstip t,

m 2
7o HR T
z,(to) = : p ® L3 3 :‘é H
’ , o MuUR 4 wp R
) . A . B
b. Formeel geldt {(zie s.,9.5, 5.2.5 en s.9.5°)
. AB .CDh
My = S5 T Syy + 5y

Daar het water een konstante dichtheid heeft, mag je ook schyiiven

. LB
- = 0
m, f QQ p Q5

Bl

+6 0

£

RO



9,75

Zolang de waterstand in V

5 lager is dan 2, ;dan is Qg? = 0{ we vinden dan

m2=§’I

Als de waterstand in V2 hoger of gelijk is aan 2y dan vinden we

. 3 eD
my eIt POy

waarin Og? een negatief getal is

c. De massavoorraad moet dan gelijk ziin aan

2

HnR"™ = 2

e HR

Wi

- 2
m2(t1) = D'*3-'

Analoog de vorige som geldt

mz(‘cj) = mz(to) +e[ m, dt =z mz(to) +pI(t1 - to)
a
en we winden hieruit
e e my(tyd = my(t ) . +WDHR2 2 -1
17 Yo p I o pI '3 ?

9
% HR
o * %61

d. Voor V1 geldt tot en met tl de massahalans

m1 =« plI
en dus
_ 1 2
ml(t1) = m1(to) pI (t1 to) =3 "pHR
en de waterstand wordt dan
% 1rf:aHR2 1
Z,;(t.’) = 3 =-:l-2-H
i o4 R
. 1 __ .9
€. m1- oI +‘7)-b-DI- .}OOI
fO:m(t):—?—pI(t-t)
¢ Pt 10 2 1
of 2
~ 10 1 2 _ 10 # HR
ty Tt tgpr FVCHR =ty ¢+ —s
N 294 HR?
T o 541

Opm,: Voor t 3 %, verpompt de pomp een debiet van e I V1 blijft leeg en

2 70 3
V, blijft net vol.
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v.8.7 a. Alles is in rust, dus overal heerst de hydrostatische drukverdellng.
Vanwege het gegeven assenstelsel v.nden we
o- »
ply) = plo)} + [ pgdy = p(o) - pa'y
: Y
waarbij voor het stuk A0 geldt dat fyf < R en voor het stuk OB dat

Iyl < 5R moet zijn.

b. De opperviaktekracht op de zuiger kunnen we op de volgende wijze
afleiden:

Bekijk een vertikaal oppervlak in

@ de viceistof ter plaatse van C.
— /i !O
/

Dan wordt de normaalspanning van

Ci vloelstcf 2 op vlceistof 1 in een
S"ﬁ 37 punt (x,y,z) van C gegeven door

s -+ -

Ny = plyde, = - plyle,

Bekijk nu viak € vanuit 2 naar 1.
Y De kracht op een oppervlakte elementie

ter plaatse (y,z) is dan

~ i | -+ -+ ' -
& B - = wmy
\\U ;&33@ L7, = m,, bybz = -1 (y)bytz .

De totale kracht wordt dan verkregen door de oppervlakte-integraal

?12 = !f dFTQ = _Zx ff ply}dydz
opp ORP
Deze integraag is het eenvoudigst met behulp van de poolkodirdinaten
(ry$) te berekenen (stel y = rcos{g), z = rsin(4) dan moet een opp.
elementie dydz vervangen worden door rdrdé, zie analyse I & TII 1t)

We wvinden:

K 2n
?12 = ~gx f vdr [ {plo) - sgreos’s)} de =
Q ]
R

i

f 2npl{o}rdr = - nRzp(o) gx
(o}
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Als we nu C naar links laten gaan, zodanig dat C samenvalt met
rechteroppervlak van zuiger A dan nebben we de kracht P op de zﬁiger
door de vloeistof uitgeoefenq. Dzar alles in rust is moet voor de
zuiger gelden

-+ -+ -+
FA+F-D

en hieruit volgt

= n(5R)’ ple) = 25 R plo)

Opm.: Omdat de (hydrostatische) drukverdeling een lineaire funktie
van de vloeistofhoogte (hier dus van y) is, geldt voor elk viak
dat gewocon of gespiegeld symmetrisch is t.o.v. een horizontale
lijn in dat vlak, dat de oppervlaktekracht gelijk is aan het
produkt van het oppervlak en de druk ter plaatse van die hori-
zontale lijn. Ga zelf na als zuiger A geen cirel maar een

vierkantje of een zoute drop is (zie onderstaande figuren).

Y | Ly 'V

|
(

gespiegeld gewoon
symmetrisch symmetrisch
‘ t.O.V. Z2=as t.o‘v‘ Z=-3s

5’ I'S ; 3 }.'3 4o Fig 4l
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)
€

c. Uit (a) wolgt dat

ply} + ogy = plo) + pgo = p(o)

De stijghoogte wordt dan

ply) + ey ~p,  ply) - p, ple) - p_

+ =
(534 pe Y PE

h

We zien dat de stijghoogte overal in de viceistof dezelfde waarde
heeft (zie ook b.S.16)

d. Met (b) en (e} volgt

L
h = ﬂPQ i - FA L -Ij-a-
g ngk’  PE

Opm.: Als F, = FA(t), maar zodanig dat de vlceistof steeds als
in rust te beschouwen is (b.v. doordat ?B = FB(t) = QSF(t))
dar: hebben we hiermee een voorbeeld waarin de stijghoogte
als funktie van de tijd is te beschouwen, terwiil toch de

becgingsvergelijking niet jeldig is (zie ook s.9,.18).

v.9.8 a. Alles in rust; dus in de vlceistoffen heerst een hydrostatische
drukverdeling.

Ye hebben links in de viceistof

pT(z) = p, + p;g{HI -~z voor 0 <z < H,E
en rechts
py{z) = p_+ poglH, - 2) veor 0 <z < H,

Cp dezelfde wijze &ls bij v.%.7.b vinden we dat de viceistof links

cp de deur een kracht

Hy B

-+ . -+ Z
2 4 = iy = {p } |

?1 ®x { 4 g pT(z}Cy “x B“paHT * }p}gﬁ1)

en rechts (analocog)

z _ 2
F2 = e, B(pa}{2 + %ogg Hg)
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Nu hebben we rechts nog een kracht van de atmosfeer n.l. over het
stuk deur van H2 tot H?' Daar de atmosfeerdruk overal P, is, volgt

dan voor deze kracht

s -+
¥ = ~e, Bp(H -H

3 )

2

De krachten op stuk HT'tot H van de deur van de atmosfeer zijn gelijk

maar tegengesteld (hoeven we verder niet te berekenen).

We krijgen als totale kracht F:

_ , o+ 2 2
? = ?1 + ?2 + ?3 = 8 B(}pTg H? - §p2gH2)

De kracht op een opperviakte elementie Az met breedte B van de deur

ter plaatse z in de linker vloeistof is gelijk aan

>
Af1 e B p,(z)az

Het moment Az1 van deze kracht om 0 wordt
-+ > +
631 =ze xe B p1(z)Az =8 B p,(z)zhz
Het totale moment op de deur t.o.v. de linkervlceistcf wordt
I > HT + 2 1 K|
. L £ B p,(z)zdz = eyB(ZpaH1 * P8 HI)
Zoals bij (a) vinden we nu ook

1, 3

+ 2 1
o ¥ =&, BU pHy + & 0,eH,

en

4

-+ 2 2
- 1 -
3% B(; p, (H] H2)}

Zodat het totale moment om 0 wordt

i T, =2 bl pogn’ - L o gl
E—F}+Z2+L3»8y3(691gﬂ1 = p,eH,)

BV
H, Py



d,

Ye9:9 a.

b
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L= g& B-% P, & Hg { g%-*,?}

De waterspiegel is horizontaal (zie s. 9.16),

Op dezelfde wijze kun je ock bewijzen dat het zoet-zout grensvlak
horizontaal moet ziin,

We kunnen daarom eenvoudig met de massavoerraad, de dichtheid en het
oppervlak van de doorsnede de gevraagde hoogtes berekenen.

We vinden voor de hoogte van de spiegel

m il
1 1 2
H, = = (e ¢ 2}
1 A e, 5

Voor een punt P in de zoete laag (dus H2 < z é=Hl) geldt

p}(ZJ o A p1g(H1 - 2z}
Voor een punt P in de zoute laag (dus 0 < z < HQ) geldt
p2{z) = p(HQ) to, g(H2 ~ z)

deze laatste vergeliiking is nog te herschrijven met de le, want daaruit

volgt

p(HQ) Ep ¥ p?g(H1 - H.)

2
zodat na substitutie vwolgt

pylz) = Pyt pyg (Hy - H)) + pe(H, ~ z)
Voor een punt P in de zcete laag voigt

m

Py = P 7 Ty
h, B e & 7 @ H, =-§ o 4wl
o,g Q1 QQ
Voor een punt P in de zoute laag dat
Py ™ Py P 1™t
h2 = T e (H1 - HQ) A HQ '-"E .
ng 02 02



ve9.10 a. p(z) = p, = pgz met -H<z <0 "

Opm.: We zien dat overal in een laag de stijghoogte dezelfde wéarde
heeft, maar dat dit niet geldt voor overal in de vloeistof}

want op het zoet-zout grensviak treedt een sprong op

m m
_ R i
a0 h"’-"(‘ﬁ "2) =

Denk aan hevze van hek assenskelsel !

b, We volgen hetzelfde proces als bij v.9.7.b

De kracht op een opperviakte elementje AA-

in de vloeistof ter plaatse (x,y,z) is dan

AF = - p(z}AA 3} .

: Sig4l
-3
e
n
van de bol in punt (x,y,z) is (zie figoéﬂ).

waarin ;n = (x,y,2) de eenheidsnormaalvektor op het oppervlak

De totale kracht door de vloeistof op de bol is dan

Fzo ff p(2)é aa
patte
OpP s

Deze integraal is het eenvoudigst met de bolkoSrdinaten R, ¢, B

(zie fig. 4% ) cp te lossen. We vinden dan met

® = Rsin(8)cos(¢) ( &y = sin(8leos(¢)
y = Rsin(@)sin(4) en dus 1- e . sin{@)sin{(¢)
z = Recos(8) e, = cos(8)

dat de integraal overgaat in (zie ook analyse I & II !)

- pgReos(8)} ;5 stin(a)d¢

A

]
2%
F=nyf aof ip
i o
3 - - ‘ -
en deze gaat op ziin beurt na uitschrijven van e weer over in
L§ 2u ,
2_ .2 \
== a8 f {p, - pgReos(8)} R°sin“(8)cos(4)dé
n o

~ry
LH

T on

F de [ fp_ = pgReos(9)} R2sin’(0)sin(4)d¢
o]

it

s |
(1]

a8 f {pa - pgﬁcos(e)} RQSin(B)cos(e)d¢
o

-3{
1 2%
_3£
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Ra integreren over ¢ houden we over

)
t
[en]

Lt ™
it
v

1

(1]

i

1%

= .
E R

{pa - pgReos(8)} R° sin(8)cos{8)dn

We kunnen dit laatste schrijven als

¥ "
2 ; Artne gh g 2 |
F, = =2wp_R f =in(e)d {sin(8)} - 2mpgR [ cos“(e)a ¢ cos(8)} =
: L iw
ﬂ %
= -y paRQSinQ(S) —-% ﬂpgR3c033(ﬁ) =
in ‘ tm

1]

2 2 .3

R P, *3 7R pg

De kracht door het water op de bol uitgecefend is dus
. 2 Y R

F o= (R P, t3 R pg)ez

Opm.: "Als we de bol wegdenken en we vervolgens de opvervlaktekrachten
berekenen op ze'n halve waterbol, dan hebben als kracht op het
spiegaelioppervliak

Fox . ﬁR?p e

s “a =z

en als kracht op de rest van het oppervlak (analoog bovenstaande

berekening )

2 2 .2
& - 7R
F = (ar p, +3 "R pg)ez

De totale opperviaktekracht is

s
ﬂRspg e

-5
F =
op

wirna

Z

Daar alles in rust is, moet deze gesommeerd met de totale

volumenkpacht

+ -+ >
G =mg =z~ mge

Z
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n '
waarr# de massa van de halve waterbol is en dus hier gelijk aan

N

= pV( iyatérbol) =3 Rapg

de nulvekter opleveren, dus G + F = 0.

Omdat de totale oppervlaktekracht %L de halve waterbol tegen de

invloed van het lokale zwaarteveld op zijn plaats houdt, noemen we

deze kracht ock wel de opwaartse kracht cp die halve waterbol.

We hebben hiermee de wet van Archimedes aangetoend, n.l. een lichaam

dat geheel of gedeeltelijk in een vloeistof is onderdcmpeld, ondervindt
een opwaartse kracht die gelijk in grootte maar tegengesteld in richting

is aan de volumenkracht van de verplaatste vlceistof,

De bol is geheel ondergedompeld, dus de opwaartse kracht is gelijk aan

ok 3 +>
op = 3 TR™ pg e,

Deze kracht moet evenwicht maken met de gewichtskracht op de bol, dus

e
3 0

= 3
+ & % (3 7R

.
op bol pg - Mgle, =

en we virden hieruit
M= % szp
Opm.: We zien hieruit dat de bol overal kan zweven als hij dezelfde
dichtheid als het water heeft,
De wet van Archimedes is een belangrijk hulpmiddel voor een

heleboel berekeningen !

F = 1r.'10q Newton
op

Alle krachten AF die door het water op de oppervliakte elementies AA
van de cilinder worden uitgeoefend, staan.loodrecht op die oppervlakijes
(isotropé druk !) en zij gaan derhalve allie door de draaiingsas, Er is

dus geen moment t.c.v., die as en de cilinder zal daarom niet gaan draaien,

De kracht op as is

¥ = a.10" e, - 4,10°

"as



Opm.: De horizontale komponent in een bepaalde richtins (hier b,v.
zx—richting) van de opperviaktekracht op een willekeurige wapd
(hier b.v, de "cilinder-wand") is altijd geliik aan de cpperviakte
kracht op de vertikale wand die de projektie is van de oorspronkeliike
wand in de gevraagde horizontale richting. Dus hier voor de ;x-richting

is fig. te vervangen door fip. Ga dat na!

Pa-

RR,

o
Wi

ig - .j?{g

v.9.12 e. De gravitatieberging B is geliik aan het cpperviak van de horizontale

doorsnede van V, dus B = A

f. Formeel is de bergingsvergelijking
Q=Bh

waarbij Q het instromend debiet van V en h de stijghoogte van de
vliceistof in ¥V is. Dus in deze som geldt dat Q = QT - Q2

We wvinden dus

»

Q -0, =4Ah

&

g. Er geidt, dat Q? = 02’ dus h =z 0

En hieruit: volgt

h{t) = h{o) = H

Opme: Ailes onder de verondersielling dat de stroming in het vat

te verwaarlozen is (zie ook &, 2,221,
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v.9,13 g. De bergingen voor de 1deale verbindingen (de stroomvoerende vaten,
leidingen AB en CD) ziin nul,

De bergingen voor V! en V2 zijn

B1 = 4nR
B2

1]
=
ol

h. Tot het tijdstip t=t_  geldt als bergingsvergelijking voor V. dat

1 1

~I= M1R2ﬁ1

en voor V2 dat

S
I = =R h2

Voor het tijdsinterval (t,, t, ) krijgen we de vergelijkingen

quzﬁ1

f
= )
et

2.
7R h2

—
3l
(=)

Voor het tijdsinterval (tg,fﬂ) krijgen we de vergelijkingen

(o]
1]

unRQ 51

- opl T
6 = R h2

i. Uit alle 3 de gevallen volgt dat

hy==-ih,

Integreren geeft

h,(t) - h (o) = = a{h (t) = h ,(e)}

s

Uit de gegevens en de uitkomst van v.9, 6(a)volgt dat h (o) = %

en h (0) = ;Ho

We v1nden

hz(t) = H - uh1(t)



v.9.14

v.9.15

| Wy
e¢. Berging B is l3 ,
B = 5t R e
£, De vlceistot is onsamendrukbaar; L
het debiet G dat de "wijde bak™
instroomt vanwege de zuigerbe~ [ pq i
weging is gelijk aan O

. 2 \/ 5:‘ =
0= 7RV, A iq H5
De beréingsvergelijking in het tijdsinterval (0,-éL ) wordk
: A
&
"R%Y, = saRrh
A
of

ge h(t) = h(o) +~% vt voor 0 < t

waarin h(o) de stijghoogte op het tijdstip t=0 is

Opm. : Als de zuiger heen en weer heweegt b.v. 2, = Zcos(wt), dan volgt
daaruit dat

h{(t} = h(o) +-% Leos{wt)

Alles onder de veronderstelling dat de stroming in het vat

vervaarloosbazar klein is.

a. Uit v.9.7.b volgt dat de druk in de vlceistof gelijk is aan’

P = 5 = 10 Nm

Het volumen was

2

V. 3 wR°L + n(sR)ZL = 26wR%L
en werdt
V. = wR? =% L + n(5R2)L = 25,9 7RL

1 10
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Hieruit volgt voor de druktoename Ap

2 %
PPN R SRR s TP I
°© Yo 26 wR°L ~
De APA die daarbij hoort is
oF, = nR% ap = R”.8.10° N
De nieuwe PA moet dus worden
y
!t =
FA 8.10 FA
A A 8 106 -3
28 ='1§ = = g B 4,10 = 0,4 %
4 2.10 ‘
\'
. O _ -8 2
By = ¢ = 1,3.107° mR°L
pe LS. _10°
Be1 P q3mR%L

De zuiger beweegt 100 s voordat hij zijn nieuwe plaats heeft bereikt,

Het volumen in het tijdsinterval (0,100) is gelijk aan

2

_ 2. _ mR°L
V(t) = 26 7R°L 000" °
Er geldt verder
. K o v
P=-%5 V= - —
N Bel
en dus
’ 6
p(t) = plo) - vit) - V(o) _ 442, 107
Bel 13

Zie (d). We vinden met S = 1 dat

106

.
P = ——p—
137R2L,

Nm



g

h.

v.9.16 a.

b.

9.88

en hieruit volgt

6 o e 6

p(t)=p(o)+—1—9—2t= 102+—%t
131R°L 131R°L
o _p. 107°
P K oerr2L

is, volgt na integreren van (g)

olo.

Daar ?dgf {In(p)} =

In {p(t)} - In{p (o)} = RELZ p(0)

We vinden

p(t) = p(o) exp ( (t) ; (O))

Met (f) en de gegeven waarden voor p(o) en K volgt

3

p(t) = 10° exp {(26.10°7R%L)”" ¢}

Het volumen van de lucht is

= TR2(L - o
vi(z) = "R(L - z) | | , | m

Als de zuiger in de onderste stand is, dan wordt z, = 3L. We vinden

voor de konstante uit de wet van Boyle

p,(3L) V(31 = 10°.3.7R%L | Nm

Met diezelfde wet volgt nu

L =2

_ 5
p,(z,) = 0,5.10°. r=g Nm

Zie par. 6, sektie kompressiemodulus

Bo
P

Lo
K

waarbij we even aannemen dat de invloed van het zwaarteveld te verwaar-

lozen is (dus druk in lucht is gelijk aan druk in water).
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Met (a) en de gegevens volgt

p(z)) - 10° = =1 . 2.10

en hieruit volgt met (a)

_ 7 5 _ 5 L
p(ZS) = 2,10 + 10T = 0,5.10 L—:—Z——
en dus
200,5
- 23
%s % 201,0 ©

c. Ja. Als we aannemen dat het water onsamendrukbaar is, dan volgt dat

de spiegelhoogte voldoet aan

200,
201,

w

3
3 <=1 <
QL ZS =7 L

L

<
=

o

d. Zie'par. 6, sektie elastische berging ' PLiL5

2 )

B, = =iz = . ‘= met (a) =’
X 2 p,(z_) R : :
1 ;TR 1l s

1+ 3
107,10 Vl(zs)
-1
=7R? {1+ 5—2L1

2
(L zs)
Daar het water als onsamendrukbaar genomen mag worden, geldt ock

2, =z, + iL

We vinden
-1
L
—_—

B, = ﬂRQ {1+ 5 5
(3L - zA)

k

e. De gravitatieberging B is TR2
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Om binnen de 1% nauwkeurigheid te blijven bij de gevraagde vervanging

moet dus

§ e & 07

2
1 -
(iL ZA)

zijn voor het interval 0 < z, < iL.

A
Het maximum van het rechterlid wordt bereikt voor z, = iL, dus

we moeten de L zodanig nemen dat

L =2

5 < 10
(11)2

of
L > 8.10 m

Opm.: In principe is een meer, kanaal enz. op aarde een klok als.we de
aardatmosfeer meenemen.
We zien uit bovenstaande nitkomst. dat we toch. steeds voor derge-
lijke open vaten de gravitatieberging kunnen gebruiken (Ga na
wat de veronderstellingen waren bij'de gravitatieberging en merk
vervelgens op dat een spiegelverhoging van 2000 meter wel erg

extreem is !



ADVIEZEN TOETS 9

2:91

Waarschijnlijk beheers je de stof niet voldoende die vastgelegd wordt in

de onderstaande adviezentabel.

In de tabel is tevens aangegeven welk gedeelte van de tekst, studievragen,

beweringen en vraagstukken je nogmaals moet bestuderen,

i

‘ad:ies-f doelstellingen | par studievraag
1 1 t/m 4 §(1),2,3§ 9.1, 9.2
2 St/m7 | 2,3 9.3, 6.
i (6),8, 9 T(2), 3 9.5 t/m 9.6 |
« 10 t/m 12,(13) | & | 8.7
5 13, 14 W (9.7 t/m 9.18)
6 15, 16 5
7 an, 17 6

bewering vraags tuk

, 9.1 t/m 9.3, 9.5 901’ 902
9.4 9.6 9.7 9.3, 9.4
9.8 t/m 9.10 9.5, 9.6

t/m 9.18 | 9,11 t/m 9.17

(9.7 t/m 9.11)

9,7 t/m 9.11

79.19 t/m 9.22 . 9.18, 9.19

9,12 t/m 9,14

9,23 t/m 9.28 | 9.20 t/m 9.23

ST -

3,15, 9.16
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SYMBOLENLIJST ;
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o - constante.
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?,F - krachtvector, component . - [N]
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Vi - balansgebied i . -

(x,¥,2)- codrdinaat-assen

(x',v',2",) - codrdinaat-assen

VEREISTE VOORKENNIS

Wiskunde le jaar.
Statistiek 2e jaar.
Natuurkunde le jaar.
Eenheid 9.
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SAMENVATT ING

In deze eenheid beschouwen we stromende vlceistoffen door leidingen. (stroom-
voerende vaten).

Onder de aanname van constante dichtheid worden voor deze leidingen massa- en
volumenbalansen opgesteld. Hierna introduceren we het begrip vloeistofsnelheid
en vlceistofdeeltjes, welke in een aanhangsel vanuit de statische mechanica
wordt gedefinieerd.

Naast de wet van behoud van massa geldt voor een vlceistofstroming de wet van
behoud van impuls. )
Alvorens deze behoudswet toe te passen idealiseren we de vloeistof door weer
te veronderstellen dét de dichtheid ervan een constante is en verder dat de
schuifspanning ook in de bewegende vloceistof nul is, hetgeen leidt tot het mo-
del van de ideale vloeistof. '
Voor een dergelijke vloeistof wordt voor leidingen met verscheidene geometri-
sche vormen de impuls balansvergelijking opgesteld, hetgeen aanleiding geeft
tot het introduceren van het kwantitatieve begrip traagheid.

Tenslotte leggen we verband tussen de in eenheid 9 behandelde bergénde va&en

en de in deze eenheid behandelde leidingen en gaan de koppeling daartussen'na,
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DOELSTELL INGEN

1.

‘hoogte verschil en het debiet kennen.

De begrlppen massastroom, volumenstroom (debiet), stroomvoerendedwarsdoor-
snede en stroomsnelheld met elkaar in verband kunnen brengen.

De massa- en volumenbalansvergelljklng van een leiding kunnen opstellen.
Voor een onsamendrukbare vloeistof het deblet ‘van een starre buis kunnen

bepalen.

De idealiseringen van de onsamendrukbére,_de volmaakte en de ideale vloei-

stof kennen.

De begrippen impuls en impnlsoverdracht in een stromlng kennen..De impuls-*

balans vergelijking voor eé%\&%%é&e vlceistof in een rechte buis kunnen op-
stellen. Het begrip stuwhoogte kennen in onderscheld met de stijghoogte.

homogene
Voor eéﬁy&ﬁ%sie vloeistof, .in enkele huilvornen de vergelijklng van Euler—
‘Bernoulli kunnen afleiden .en toepassen. ' S

homogene, - -
“ Bij niet- statlonalre stromlng van ;;BV{E_-ie vloelstof in enkele bulsvanmen

“de traagheld van de buls kunnen bepalen, alsmede de relatle met het stuw- __g

N

Van gebogen en nauwer of wijder wordende buizen, open.vaten en kanalen de
traagheden en berglqgen kunnen bepaien en enig inzicht hebben in de daarbiyj

toelaatbare verwaarlozlngen.
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INLEIDING

In deze eenheid behandelen we de mechanica van' stromende, vloeibare of gasvor-
mige, materie. .

Vloeibare en gasvormige materie onderscheiden zich van vaste materie, doordat
vloeistoffen en gassen kunnen vervormen, zonder dat daarbij de samenhang in de
materie wordt verbroken. '

In een vast lichaam worden de bouwstenen door sterke krachten t.o.v. elkaar in
een min of meer strakke structuur op hun plaats gehouden, zodat grote krachten
nodig zijn om deze structuur te wijzigen en het lichaam te vervormen. X
Bij vloeistoffen en gassen is dit anders. Als we bij voorbeeld een vinger in wa-
ter steken, dan wijkt dit onmiddellijk. Dagelijks bevinden we ons in de gasvor-
mige materie van de dampkring, zonder dat we er meestal moeite mee hebben er ons
doorheen te bewegen. ' v

Deze grote mate van vervormbaarheid heeft ten gevolge, dat de vorm van vloeibare
of gasvormige materie bepaald wordt door het vat waarin deze zich bevindt, een
tank, buis, kanaal, meer, etc.. _ )
Door het grote aanpassingsvermogen van een vloeistof of gas ten aanzien van zijn
vorm, kan ‘een vloeistof:of gas van het ene vat in een ander gebracht worden, ook
al is de vorm van het tweede vat anders dan die van het eerste.

Het overbrengen van vloeistof of gas van het ene naar het andere vat geschiedt
vaak door middel van een verbindend tussenvat, waar de vlceistof of het gas door-
heen stroomt. Ook dit vermogen om door te stromen is het gevolg van het éanpas—
singsvermogen ten aanzien van de vorm.In eenheid 9 zijn we ingegaan op de gevolgen
van het toenemen of afnemen van de voorraad vloeistof of gas in‘een vat. Als ken-
merkende grootheid daarbij.hebben we de berging ingevoerd.

In deze en de volgende eenheid gaan we in op het door een vat heen stromen van

vlceistof of gas. Als kenmerkende grootheden zullen we daarbij traagheid en weer-

stand van een vat invoeren.

Het ontbreken van een eigen vorm bij vloeistoffen en gassen, bemoeilijkt de visuele
waarneming van de beweging van de stromende materie.

Door zijn min of meer onveranderlijke vorm is een vast lichaam gemakkelijk te her-
kennen en dat geldt ook voor zijn onderdelen. Vaste lichamen worden vaak geinden-
tificeerd door er een naam.aan te geven: een bal, een wagen, een wiel, de Aula,
enz.

In een homogene vloeistof is het moeilijk, zo &l niet onmogelijk, om op het gezicht
delen te herkennen. In plaats van de vloeistofhoeveelheden zelf te indentificeren

en namen te geven, doen we dat daarom vaak met de ruimte (het vat) waarin zich een
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vloeistof (of gas) kan bevinden: een glas, een meer, de rivier de Rijn, enz..
Beweging van een vast lichaam is vaak gemakkelijk visueel vast te stellen,
kwalitatief en kwantitatief, doordat we het lichaam steeds blijven herkennen.
We zien met_één oogopslag of een voertuig rijdt of stilstaat of het smel of
langzaam riijdt. _

Bewegingen van vloeistoffen of gassen zijn vaak moéilijk of niet direct visueel
vast te stelien. Meestal leiden we het bewegen van een vloeistof of gas op in-
directe wijze af, b.v. doordat we meegesleepte voorwerpen zien bewegen of door-
dat we éen vloeistof voorraad zien aangroeien of afnemen, b.v. doordat de water-
spiegel stijgt.of daalt. '

Dit brengt een andere beschrijvingswijze van de béwegingstoestand onder invloed
van de erop werkende krachten van de niet-vaste materie met zich mee.

In deze eenheid zullen we hierop nader ingaan.
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MASSA- EN VOLUMENBALANSEN

In eenheid 9 is de massabalansvergelijking voor een vloeistof in een vat opge-
steld. De balansvergelljklng is toegepast op enlge voorbeelden van vaten met
één toegang.

In deze eenheid houden we ons hoofdzakelijk bezig met de stroming door een vat
heen. We richten ons op vaten met elk twee toegangen. Vaak zal een van die toe-

gangen de ingang en de andere de uitgang kunnen worden gencemd. We noemen zo'n
vat een leiding. .

Ter inleiding beschouwen we de massahuishouding van het stelsel bestaande uit
twee meertjes A en B, die onderling verbonden zijn door een kanaal C, waardoor *

water van het ene naar het andere meertje kan stromen.

Au | Az

A ¢ | B

fig. 1.

In-dit stelsel zijn A en B bergende vaten en is C een leiding. Stel dat er op
tijdstip t vloeistof van A door C naar B stroomt, bijvoo;beeld doordat de ge-
middelde waterhoogte in meertje A hoger is dan in meertje B.

Als we veronderstellen, dat er geen vloeistof uit het stelsel verdwljnt of er
aan wordt toegevoegd (b.v. regen, verdamplng, grondwater, etc.) dan geldt er

voor het stelsel een behoudswet van massa., Het stelsel is immers dan te beschou-

wen als éé&n vat zonder toegang. We zullen aannemen, dat de dichtheid van de
vloeistof een constante waarde heeft (homogeen en incompressibel), zodat we be-
houd van massa ock mogen berekenen als behoud van volumen. In deze eenheid ver-
staan we onder een homogene vloeistof, een vloeistof waarvan de dichtheid homo-
geen is, d.w.z. op elke plaats in de vloeistof gelijk is.

Behoud van massa betekent, dat de massavoorraad van het stelsel op elk tijdstip
gelijk is,

Op een tijdstip t is de massavoorraad van het stelsel

m(t) = mA(t) + mB(t) + mC(t)
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De massavoorraad van C wordt bepaald tussen de dwarsdoorsnedes A, en AQ, die

1
op vaste plaatsen zijn gekozen. .
In een tijdsinterval (t, t + At) volgend op t stroomt er vloeistof van A naar

B, zodat de massavoorraad van het stelsel op tijdstip (t + At) gelijk is aan:

m{(t + At) = m, (t + At) + my (t + At) + m_, (t -+ At).

c

Nu zegt de wet van behoud van massa, dat m(t) = m(t + At), dus geldt:
mA(t) + mB(t) + mc(t) = mA(tvf At) + mo(t + At) + mC(t.+ At).

In het beschouwde tijdsinterval veranderd de massavoorraad van de léiding C

dus volgens
mc(t + At) - mc(t) = - { mA(t + At) - m, (t) P- A mB(t + At) - mB(t) }
Per tijdseenheid wordt dit, als we At klein laten worden:

d mC . d mA ) d mB . (13
dt dt dt S

Nu is in eenheid 9 voor een vat met &én toegang aangetoond, dat de massavoor-
raads-verandering ervan gelijk is aan de massastroom naar het vat.

Daar A naast een toegang van leiding C ook de toegang tot vat A is, geldt dus

dm
A _ 2 " ¢ 2 %
dat e SAC » waarbij SAC de massastroom naar het vat uit leiding C is.
€ oy
Evenzo geldt dat: T SBc .

Substitutie in (1) geeft:

d mc

—==z-8§, -8

dt AC BC ° (2)

Daar de massastroom van SAC van C naar A gelijk is aan de negatieve waarde van

de massastroom van A naar C (SCA) volgt uit (2), dat:

dm

C _
3t -t Sea t SeB (3)

In woorden: De massavoorraadsverandering per tijdseenheid van de leiding C is
gelijk aan de massastromen uit A en B naar C.
We noemen (3) de massabalans voor het balansgebied C tussen de dwarsdoorsnedes

Al en A2.



Studievraag 10.1:

Studievraag 10,2:
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Als de vloeistof niet-homogeen en aﬁsame,ndrukbaar i8 in het
stelsel van fig. 1, hoe luidt dan de vergelijking (3)?
(Onder cen niet—homogene vloeistof verstaan we een vloeistof
waare de dichtheid van plaats tot plaats verschilt b.v.

‘gout en zoet water).

Als de vloeistof homogeen is en samendrukbaar hoe luidt (3)
dan?
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Massabalans voor stromingen van vlceistoffen met constante dichtheid:- door _

buizen met starre wanden,

In hoofdstuk 6 van eenheid 9 is voor een geheel met vloeistof gevuld vat met
één toegang het elastische bergingsbegrip ingevoerd. Er bleek, dat de massa-

voorraadsverandering per tijdseenheid in het vat té schrijven was als:
m(t) = B B(t) : (4)

waarin B(t) de stijghoogteverandering per tijdseenheid voorstelt en B een
maat is voor de elastische eigenschappen .van de wanden van het vat en de
compressibiliteit van de vloeistof. In geval van een incompressibele vloeistof
en een vat met starre wanden volgde voor een niet stromende vloeistof dat de

berging B nul was. Oftewel voor het vat geldt dam, dat m(t) = 0.

We beschouwen nu het balansgebied van ; A _ Ay
een buis met starre wanden, geheel ge- —

—————
vuld met water, (fig. 2) tussen de v < [ x
loodrecht op de buis-as staande dwars- 2 vy i"'.', ’
doorsnedes Al en A2. f““""ﬂ_f“‘--7__. )
Zien we nog even af van stroming van " _-ﬁl'g- 2.

de vloeistof, dan geldt in het geval
van incompressibiliteit volgens (4) dat m(t) van het baiénsgebied nul is.
Stroomt de vlaeistof ebhter, dan kan de massavoorraad van het balansgebied wel

veranderen als er b.v. door Al een vlceistof met een andere dichtheid binnen-

stroomt, dan er door A, uitstroomt (b.v. zout water in zoet water uit).

De massavoorraadsverangering per tijdseenheid van een stromende vloeistof in
bovenbeschreven vat zal nul zijn, indien de vloeistof ook nog homogeen is (zie
eenheid 9).

Noemen we Vl het balansgebied, V

het gebied links van Al en V. het gebied

2 3
rechts van A2 (zie fig. 2), dan geldt volgens (3) dat in het algemeen geldt,

dat

ﬁll(t) = Slz(t) + Sls(t)

Voor een starre buis, waardoor een homogeen incompressibele vloeistof stroomt,

seldt dan, dat:

Slz(t) + 513(t) =0
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Hetgeen ook te schrijven is, als:

Slg(t) = 83 (t) (5)

1

In woorden: De massastroom van V2 naar Vl is gelijk aan de massastroom van Vl

naar V3.

Daar de plaatsen van de dwarsdoorsnedes Al en A_ langs de x-as willekeurig ge-

2
kozen zijn, kunnen we concluderen, dat de massastroom in elke dwarsdoorsnede

gelijk is, m.a.w. de massastroom S is onafhankelijk van de plaatscodrdinaat X

van de buis.

Studievraggrio.a: Geldt vgl. (5) voor een kanaal, waardoor een vloeistof met

constante dichtheid stroomt?

Studievraag 10.4: Maak aannemelijk, dat vgl. (5) niet hoeft op te gaan, als

de wanden van de buis elastisch zijn.
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Volumenbalansen van stromingen van homogene incompressibele vloeistoffen door

buizen.met starre wanden.

In eenlieid 9 hebben we het debiet (de volumenstroom) Q door een dwarsdoorsne-
de gedefinieerd als:

(t)

Q(t) = (8)

ol

Er geldt dan volgens (5), dat voor een volle starre buis, waardoor een vloei-

stof stroomt waarvan de dichtheid een constante is, het debiet Q ook alleen

een funktie van deitigd is en niet van de plaats.

Studievraag 10.5: Xunnen we uit bovenstaande coneluderen dat door elk dwars-—
profiel van de buts op een tijdstip t hetzelfde debiet
stroomt? : '

Studiévraggﬁlo.sz Hoe lutdt de conclusie uit (6) als de dichthei& afhankelijk

van de plaate is? (Beschoww de buis tussen twee vaten):. De
vloeistof is incompressibel. _ -

Studievraag 10.7: Ga na of de massastroom S of het debiet @ door een kanaal,

waarvan de vorm en de hoogte van de waterspiegel niet van
de tijd afhangt, onafhankelijk is van de plaats in het ka—
naal. De dichtheid van de stromende vloeistof is een con—
stante. |

Studievraag 10.8: Hoe luidt de volumenbalans voor de in II.I behandelde buis?




VLOEISTOFSNELHEID  (VERPLICHTE LEESSTOF)

Tot dusver hebben we de beweging van een vloeistof trachten te beschrijven

door na te gaan hoe de vlceistof (massa, volumen)-voorraad in verloop van

tijd in een onveranderlijk gebied Vl variéert. Zo zijn we er toe gekomen

de begrippen, massa- en volumenstroom in te voer@Be

We willen nu vervolgens ingaan op de snelheid waarmee een vloeistof beweegt.

Van een means of dier, een voertuig of een ander vast lichaam dat beweegt,

krijgt men vaak al met &én oogopslag een indruk van de snelheid waarmee het
lichaam beweegt. Van een vlceistof, is het meestal veel moeilijker een indruk
van de snelheid te krijgen.

Soms is een vrij goede indruk mogelijk van de snelheid van stromend water, door-
dat het water kleine lichamen meevoert, b.v. een drijvend stukje hout, een
schuimvlok, luchtbellen of iets dergelijks.

Als we mogen aannemen dat het meegevoerde lichaam ongeveer de snelheid aaﬁneemt
van het omringende stromende water, dan is de snelheid van het lichaam een min
of meer bruikbare maat voor de snelheid van het water in zijn omgev1ng. Op dezelf-
de wijze kunnen door de wind opdwarreldende bladeren, stukken papier e.d., eeh
indruk geven van de snelheid van stromende lucht.

Echter vaak is een eerste indruk van de snelheid van stromend water misleidend.
Zo bijvoorbeeld wanneer zich op het water door de wind of door een andere oor-
zaak golfjes vormen. We zien de golven zich voortplabtgnmet een zekere snelheid
en dit suggereert een beweging van het water met die sne;heid. Daf de snelheid
van het water niet die van de golven is, blijkt bijvocorbeeld wanneer op het wa-
ter een stukje hout drijft. Dit beweegt wat op en neer en heen'en_ﬁeep maar ver-
plaatst zich verder nauwelijks. Dit vormt een aanwijzing dat de voortgaande be-
weging die we zien in de voortplanting van de golven, niet als een snelheid van
het water mag worden uitgelegd.

Een ander voorbeeld is een dun waterstraaltje fig. 4, dat uit een kraan in een
glas komt. Het straaltje maakt de indruk .
van een stilstaand doorzichtig kolommetije
materie, dat naar beneden toe dunner
wordt. Uit het feit, dat het glas zich
langzaam met water vult blijkt, dat het
water in het straaltje niet stilstaat,

maar in een stromende beweging moet

zijn.



Het laatste voorbeeld wijst erop dat we de snelheid van een vloeistof in ver-

band moeten kunnen brengen met massastromen. i, Az

We willen dit nagaan door een stroming te

’
/
beschouwen in een leiding met een constant { ] ’
dwarsprofiel A,, met oppervlak A, b.v. een . - == >
pr 1’ pp ] P. _r'—“‘--‘“ __‘P ‘
cilindrische buis (fig. 5). P 2 \
\ - o
We veronderstellen, dat de dichtheid van - !
de stromende vloeistof constant is (in AR ‘

’ ’ i
plaats ‘en tijd) 4 g';

We denken de vloeistof opgebouwd uit deeltjes, waarbij we voorlopig nog in het
midden laten wat we onder die vloeistofdeeltjes moeten verstaan.

Als we nu eens bij wijze van gedachteexperiment aannemen, dat de vloeistofdeeltjes
in de leiding alle eenzelfde constante snelheid in de asrichting Zg van de buis
hebben, dus ¥ BN = constant. _ '
Beschouw nu een dwarsdoorsnede A, loodrecht op de as van de buis. We willen na-

1

gaan hoeveel vloeistof in een tijdsinterval (tl, t2) door de doorsnede A, stroomt.

1

Een willekeurig vloceistofdeeltje dat zich in dat tijdsinterval door Al‘heen bé~

weegt, zal b.v. in dat tijdsinterval een verplaatsing P ondergaan en daarbij

P
12
in het punt P door Al heen gaan. De afstand van Pl naar P2 is dan A% = vAt ,

met At = tl - t2 (At > 0).

Alle deeltjes, die in het tijdsintervél (tl,tQ) door A. heen gaari, zullen zich

1

op t = t, bevinden in een ruimtelijk gebied dat we als volgt kunnen bepalen.

2

Ieder deeltje dat zich op t = tl juist in de doorsnede A, bevindt en dat dus op

1

t = t1 door deze dooranede heengaat, zal zich op t = t2 bevinden in een doorsne-

de A2 op een afstand Ax = vAt van Al gelegen. Alle deeltjes die'op_het\tijdstip
t = t2 door de doorsnede Al heen gaan, bevinden zich op dat tijdstip t = t2 in

Al' Alle deeltjes, die op tijdstippen tl <t ¢t2 door Al heen gaan zullen zich

op het tijdstip t = t2 ergens tussen Al en A2 in bevinden.

De vloeistof, die in (tl’t2) door Al heen gaat, bevindt zich dus op het tijdstip
t = t2 in het door Al en A2 begrensde deel van de buis.

Het volumen van dat deel van de buis is AV = A Ax = A vAt, waariﬁ%&; grootte van
de dwarsdoorsnede van de buis is. De massa van de vlceistof in het beschouwde
deel van de buis is Am = p.AV.

We vinden dus dat in de tijd At door Al heen een hoeveelheid vloeistof met massa
Am is gestroomd, waaruit we kunnen afleiden, dat:

1lin Am _ 1im PAp VAT

§ = Kt+0 BTt - At40 AT T PA V.
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de massastraqom door Ai heen is.

Hieruit volgt dat we de snelheid van de vloeistofdeeltjes uit de massastroom

=

S of het debiet Q = %-kunnen afleiden, door

-.5.9 :
v = A A | ¢7)

toe te passen.

v is dus een socort gemiddelde snelheid locdrecht op Al

Studievraag 10.9: In het geval van fig. 4 vinden we dat de watervoorraad in

het glas in 1 mimuut met 84 gram toeneemt. De dikte van het
onderste deel van de straal wordt geschat op 1 mm.
Bepaal daaruit de (gemiddelde) stroomsnelheid onder in de

straal.

In het voorgaande (zie fig. 5) is het geval behandeld dat de dwarsdoorsnede Al

en de snelheid van de vloeistofdeeltjes loodrecht op elkaar staan. In fig. 6 =

beschouwen we nu het geval dat de vloeistofdeeltjes schuin door de dwarsdoorsne-

de A: heen gaah. De richtingsvector P A? t . As
loodrecht op de schuine doorsnede At _.<¥*. z quf"\ ,€

is dan niet evenwijdig met de snel- v (;:>V'/“ L . : h "
heidsvector 3 van de vloeistofdeelties, . \ SxIﬁ v‘

doch maakt daarmee een hoek a. - k

Het oppervlak A* van de schuine door-

snede is groter dan het oppervlak A . 443'6_

van de dwarsdoorsnede Al loodrecht op de x-as en wel A* = A/cosa.

Het volumen van de vloeistof die in een tijdsinterval At = t2 - tl door Al heen

is gegaan, is dat van een schuin cilindrisch gebied met een grondvlak A en een
hoogte h, die we vinden door van de verplaatsingsvector v.At de ontbondene in
de richting s te nemen, dus h = VAL,

We vinden dus voor het volumen AV = A*h = A*;.ght en dus is Am = pAV en

AV Ay >
S = pQ = E—K¥ = p A e.v

Hier uit volgt dat

S:Qk:go:?].

SA* T A v cosa (8)
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>
e vVoor.

Dit is ook als volgt in te zient

N\ cos¢==‘§€/ . - ,
Hierin stel dg componént.van de snelheid v loodrecht op A in de richting

' *
In het gebied V1 is er geen massaverandering,
dus

Mm.a.wW.

»
=
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Viceistofdeeltie

In het voorgaande is het begrip "yloeistofdeeltje" gebruikt zonder dat daar-

bij was aangegeven wat daarmee bedoeld werd. Het is nodig om hier nog wel bij
stil te stéan, omdat het begrip "deeltje" een verschillende betekenis kan heb-
ben afhankelijk van het gebruikte model van de materie.

In de fygica verstaat men onder een "deeltje" een elementaire bouwsteen,'bij-
voorbeeld een molekuul. Formaliseringen hiervan zijn het puntmassamodel (zie
eenheid 5) en het starre lichaamsmodel (zie eenheid 8).

In‘de technlsche mechanica, met name in de vloelstofmechanlca, wordt gewoon- ¥
1lijk gewerkt met een continu model van de‘materle. Dit model sluit beter aan

bij de materie zoals die zich aan ons voordoet.

Onder een vloelstofdeelt]e kunnen we een pakketje vloeistof verstaan, dat ten-

miste zo groot is, dat de warmte- beweging van dat pakketje (Brownse beweging) te
verwaarlozén is. Hét pakketje bevat dan b.v. zoiets als 1010 molekulen.

Dit geeft dus min of meer een ondergrens aan het begrip vloeistofdeelfje.

De samenstelling van een pakketje vloeistof zal in verloop van tijd veranderen.
Sommige molukulen zullen door hun warmtebeweging zover vanvde groep afdwalen, dat
ze na enige tijd niet meer tot het pakketje gerekend kunnen worden, Andere mole~
kulen zullen zich inmiddels van elders bij de groep gevoegd hebben.

De onregelmatige bewegingen van een vloeistofpakketje (of van een lichaampje in
de stroom) kunnen blijkens de ervaring vaak aahzienlijk sterker zijn dan wat als
warmtebeweging verklaard kan worden. Die sterke onregelmatige bewegingen noemt
men turbulentie. '

Stromingen met deze verschijnselen noemt men turbulent, die er gzonder noemt men
laminair. ' -

De meeste stromingen, waarmee de civiel-ingenieur te maken krijgt in open water
als zeeén, rivieren, beken, kanalen en in buizen, enz, zijn turbulent. Luchtstro-
mingen (wind, ventilatiestroming) zijn vaak eveneens turbulent. Grondwaterstro-
mingen zijn in de regel laminair. Op het herkennen van turbulente. en laminaire
stromingen wordt nader ingegaan in eenheid 11.

De beschrijving van bovengenoemde onregelmatige beweging (turbulentie) geeft een

bovengrens aan de omvang van het vloceistofdeeltie.

Studievraag 10.10: In hoeverre voldoet een viceistofdeeltje aan de definitie

van een lichaam?
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In een appendix (H.VI) wordt vanuit de statistisene mecbanica~dieper'ingég§an op

het bepalen van de ondergrens van het pakketje.

Beweging van een vloeistofdeeltje

We kunnen de beweging van een vloeistofdeeltje beschrijven, door de beweging
van zijn centrum na te gaan. Onder de baan van het vloeistofdeeltje verstaan
we dan de baan van dat centrum, Door van een groot aantal vloeistofdeelties
de beweging als funktie van de tijd na te gaan, komen we tot de beschrijvings-
wijze van Lagzagge van de vloeistof. We volgen dan dus elk vlceistofdeeltie

in de tijd. '

Een andere beschrijvingswijze van de vloeistofbeweging is de volgende. We kie-
zen nu een willekeurig vast punt P in de fysische ruimte. Op een tijdstip tl
kunnen we een pakketje~vloeistof beschouwen, dat op dat moment zijn centrum
juist in P heeft Laat v (t ) de snelheid van het centrum op dat moment zijn.

Dan noemen we v (t ) de stroomsnelheld in P op het tijdstip tl. Het beschouwde

pakketje kunnen we bl]voorbeeld zb kiezen, dat het juist de molekulen omvat,

die zich bevinden in een klein ruimtelijk gebied G, b.v. een bol met kleine
-

straal om P heen, P VALY

¥ 2 A |
Even later, op tijdstip t2 vatten M -\7’({9

we de molekulen die zich dan in

G bevinden als een pakketje op. '
> §;5>‘“—#'W16é)
Laat dit dan de snelheid vp(t2) §
hebben., Op die wijze kunnen we o
voor P op ieder tijdstip t een J

waarde van de snelheid 3p bepa-
- =
len, dus v. = v_(t).
> 5 b )
Nemen we (t2 - tl) heel klein, dan zal zich of t = t_ in G nog een deel van de

2
molekulen kunnen bevinden, de er ook opt = t. in waren. We mogen verwachten dat

vp(t ) dan weinig van vp(t } zal VePSChLllED% We zullen daarom als benadering
aannemen, dat vp(t) een continu met t verlopende funktie is.

Op dezelfde wijze als in P kunnen we in een willekeurig ander punt Q de stroom-
snelheid 3Q(t) bepalen.

In ieder punt van de met vlceistof gevulde ruimte vinden we zo een stroomsnel-
heid. De stroomsnelheid is daarom te schrijven als een funktie van de plaats-

o - >
codrdinaten en de tijd, dus v = V{2t )
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We nemen nu de snelheid op hetzelfde tijdstip in twee naburige punten, dus.

b.ov. v (t.) en ¥
V. v en v
p 1 Q _ .
dan kan het vloeistofdeeltje om Q heen gedeeltelijk dezelfde molekulen omvat-

(tl). Wanneer P en Q heel dicht bij elkaar genomen worden,

ten als de vliceistof om P heen. We mogen verwachten dat 3p(tl) en VQ(tl) dan
weinig van elkander verschillen. We zullen daarom bij benadering veronderstel-
len, dat v(x,y,z,t) een continu met x,y €n z verlopende funktie is.

Deze besthijvingswijze,waariﬁ&gik punt van een vast ruimteliﬂk gebied, het
snelheidsverloop in de tijd wordt bepaald, noemen we de beschrijvingswijze

van Euler van de vloeistofbeweging.
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Stationaire en niet-stationaire vlceistofstromen

In deze eenheid zullen we hoofdzakelijk gebruik maken van de Eulerse beschrij-
vingswijze van een vloeistofstroming. D.w.z. dat we in een ruimtelijk gebied
in elk punt de stroomsnelheid als funktie van de tijd bepalen. Zodat voor dat
gebied de stroomsnelheid vV een funktie van X,¥,z en t is.

Geldt nu voor een vloceistofstroming, dat de stroomsnelheid v uitslﬁitend van

X,¥,2 en niet van t afhangt, dan noemen we deze stroming stationair.

Studievraag 10.11: Ald de stroomsnelheid niet van x,y,z en t afhangt, ie de
stroming dan stationair? '

e
In het geval, dat de stroomsnelheid v op één of meer plaatsen verandert in

de tijd t,spreken we van een niet-stationaire stroming.

Studievraag 10.12: Als D geen funktie van t is, is de stroming dan niet-sta-

tionair?

Resumerend kunnen we zeggen, dat een stroming stationair is a;s in elk punt
van de beschouwde ruimte, de vloeistofsnelheid niet van de tijd afhangt. De
snelheid kan dus wel van plaats tot plaats verschillen. _

In het geval dat in elk punt van de beschouwde ruimte v in de tijd verandert,

spreken we van een niet-stationaire stroming.

Studievraag 10.13: Beweegt een deeltje in een stationaire stroming éénparig?
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BEHOUD EN BALANS VAN IMPULS

In deze paragraaf richten we ons op de behandeling van de wet van behoud van
impuls voor een bewegende vloeistof. Daarbij idealiseren we in deze eenheid

het gedrag van de vloeistof in twee opzichten.

1. We verwaarlozen de compressibiliteit van de vloeistof. We nemen dus aan

dat de vloceistof als incompressibel behandeld mag worden. Bovendien zullen

we aannemen dat de vloeistof nomogeen is in die zin, dat de dichtheid p
overal in de vlioeistof telkens dezelfde waarde heeft, I.v.m. de incoﬁpres—

sibiliteit verandert deze waarde ook niet in detiijd.

2. We verwaarlozen de schuifspanningen die ten geveolge van de bewegingen in
de vlceistof optreden. Een denkbeeldige vloeistof, waarin de schuifspan-
ningen nul zouden zijn, ook als de vloeistof in beweging is, noemen we
een volmaakte vloeistof. ‘

In eenheid 9 is aangetoond, dat voor een stilstaande vloeistof dan in elk
punt een isotrope druk heerst (wet van Pascal) (zie pag. 9.24 e.vf). Voor

een bewegende volmaakte vloeistof kan eenzelfde bewijs worden geleverd.

Daarbij moet dan nog met een extra term Am %% = pAV %%irekening worden ge-

houden t.g.v. de versnelling van de vlioeistof. Deze gaat echter naar nul
als AV naar nul gaat, op analoge wijze als de term pgAV (zie 9.26). M.a.w.

de wet van Pascal geldt ook voor een bewegende volmaakte vloeistof.

Studievraag 10.14: Is de drukverdeling in een volmaakte vloeistof hydro—

statiech?

Een vloeistof, die zowel incompressibel als volmaakt is, wordt een ideale

vloeistof gencemd. In deze eenheid zullen we homogene ideale vloeistoffen
behandelen, dus vliceistoffen waarvan de dichtheid een constante is. We zul-
len nu nader ingaan op de beweging van een homogene ideale vloeistof in een

locaal zwaarteveld.

De impuls van een stromende vloeistof

We beschouwen een cilindrische buis met starre wanden en lengte 2 tussen de
dwarsdoorsnedes Al en A

fig., 7).

o9 die locdrecht staan op de as (x-as) van de buis. (zie
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In de buis stroomt een homogene ideale vloeistof met een constante snelheid
v=v ;x » d.w.2. de grootte en de richting van de snelheid van elk vloeistof-
deeltje is op elk tijdstip geliijk. '

Ay
(& (

AL P
/ f—— :
; - { %
1 [ 1
\
\ - _ X

$ig. 7

De massavoorraad m van de buis is dan

m=p AV = p A.%, waarin A het oppervlak van de dwarsdoorsnedes is.

Onder de impuls van de vloeistof, die zich in de buis bevindt verstaan we
dan:
; =mv = p AV v = p AV va (8)
Dit is dus impuls die werkzaam is in de as richting van de buis.
In H. IIT (8) vonden we voor de snelheid van de vloeistof, dat
-+ S »
v e

T pA X

Substitutie in (9) geeft dan

-
S.AV e : .
D= — = S.%.e ‘ (10)

X

In woorden: de grootte van de impuls van de vloceistof in de cilindrische buis
is gelijk aan de massastroom keer de lengte van de buis, oftewel de impuls per
lengteeenheid is gelijk aan de massastroom.

Voor het geval de stroming niet-stationair is en de snelheid verandert met de

tijd, wordt (9)
> -+
p(t) = pAV.v(t)
en blijft (10) gelden waarin de massastroom S dan een funktie van de tijd is.

We beschouwen vervolgens een taps toelopende buis met cirkelvormige dwarsdoor-

snede waarin een homogene ideale vloeistof stationair stroomt tussen de twee



-
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vaste dwarsprofielen Al en AQ.
De snelheid van de vloeistof-
deeltjes zal in dit geval niet
meer loodrecht op de dwarsdoor-

snede staan.

Echter als de buis zodanig ge-  aamms -
leidelijk dunner wordt, dat de 109-9

_y

hoek die de wand met de buisas maakt klein is, kunnen we bij benadering aannemen,
dat de x-componenten van de snelheden van de vloeistofdeeltjes over de dwarsdoor-
snede gelijk zijn. | - V .
We kunnen nu niet zonder meer de impuls-voorraad van de buis bepalen, aangezien
zowel de snelheidscomponent L als het oppervlak A van de dwarsdoorsnede funkties
van x zijn.

Echter het produkt vx(K).@ﬁﬁ) stelt het debiet door de buis in de x-richting vcor
en deze is voor de door ons beschouwde vlceistof constant langs de buisas (zie

H II.II). 4

7
Beschouwen we een mootje dy op afstand " » .
x in de buis, en noemen we het opper- H—p 3% -
k!
vlak ter plaatse van X A(X), dan is de .
massavoorraad van het mootje N
L
dm = p A(X) dx
$19- 9

De snelheid ter plaatse vam X zij vx(X), dan is de impuls van het mootje in

de richting
dp, = P ACX) v (29 dx
Nu geldt dat Q = A(X) Vx(x) = constant, dus

dp, = pQdx = s 4dX

Oftewel de impuls van de gehele buis is!?

2 3 (z
J dp, = I pQ dx = S dx
0 0

o

Dus de grootte van de inpulsvoorraad in de x-richting is:

Py = S.%. (13)
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Het 1s dus hetzelfde resultaat als dat afgeleid is voor een cilindrische buis.

Studievraag 10.15: Ga na hoe Q1) verandert als de stroming in de tapse buis

niet—-stationair is.

Studievraag 10.16: Bepaal de impuls in de z-richting van een homogene ideale
viceistof in een czlzndrtsche buts met behulp van de vol-
gende gegevens:

v = 10° [kg/m 1, @

0,2t [m°/sl,

2 =20 [m] ,A=0,5[m].

buis

Studievraag 10.17: Van een tapse buis is de lengte 40 [m). De diameter van de

toegang is 0,5 [m] en die van de uitgang 0,4 [m]. Door de

buts stroomt statzonatr een homogene ideale vZoetstof met
Pyr = ° Tkg/m1.

In de toegang van de buis wordt een snelheid gemeten van
4 [m/s]. Bepaal de impuls van de buis. ; -

Impulsbalans voor een stromende vloeistof.

Duwen we tegen een vast lichaam of Qegen we b.v., met eén bezem in een plas wa-
ter, dan is in beide gevallen het gevolg van de kracht die we uitoefenen een
beweging van de materie. |

Door toepassing van de balansvergelijking van de impuls kunnen we een‘relatie
leggen tussen de uitgeoefende kracht en de beweging van de materie.

Uitwerking van de behoudswet van impuls voor een bepaalde hoeveelheid materie

levert:
X
I. p=20, als er geen krachten op de materie werken.
3 ‘ . ;
II. p = ?, de verandering van impuls per tijdseenheid is gelijk aan de
,som van de krachten, die op de materie werken.
2 2

als twee hoeveelheden materie a en b alleen onderling een wis-
selwerking hebben, dan is de impulsverandering per tijdseen-

heid van de materie a t.g.v. de wisselwerking met de materie b
gelijk van grootte doch tegengesteld gericht als de impulsver-

andering per tljdseenheld van de materie ‘rt g.v. de materie &,
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In de eenheden 4 en vooral 5 is dieper op de behoudswet van impuls ingegaan.

We behandelen nu eerst een niet-stationaire stroming van een homogene ideale
vlceistof door een cilindrische buis met starré wanden.

In hoofdstuk II van deze eenheid hebben we voor een dergelijke vorm de behouds-
wet van massa afgeleid voor een vast ruimtelijk gebied hetgeen resulteerde in
een gelijke massastroom S(t) = p Q(t) voor elk tijdstip t door elke dwarsdoor-

A
snede. L 3

Aangezien het oppervlak A van de

dwarsdoorsnede voor elke X gelijk

is zal de gemiddelde snelheid vol-

gend uit Q£§1-= v(t) ook niet van

X afhangen.

We kunnen dus ook ﬁeggen dat op

elk tijdstip telkens de snelheid van de vlceistofdeeltjes in elke doorsnede ge-
lijk is, -

We beschouwen nu de impulsverandering in de tijd van de bewegende vloceistof in
een balansgebied V1 begrensd door de starre wanden van de buis en de vast geko-

zen dwarsdoorsnedes Al en A2 loodrecht op de asrichting van de buis (zie fig. 10).

' A'-\ ';1 Az Al

verrea i AT

VN " A

2 ‘fv/f ‘.-/ 7}'}// /;‘ ,“., o ,,-"" "’f ) ‘
:, : VI’ »;1/, J Yz Va // - Z Vs

~
<.

—SL e,
| | . " [Exat]
" bigote fig. n

We kunnen nu niet zondermeer de tweede wet van Newton‘(ﬁ = EF) op het balansge-

bied Vl toepassen, aangezien zith t.g.v. de stroming niet steeds dezelfde massa

in Vl bevindt.

In het tijdsinterval (t, t + At) is de gearceerde materie M (fig. 10 en 11) over
een afstandje verplaatst, en deze bevat wel steeds dezelfde deeltjes, dus daarop
mogen we de tweede wet van Newton wel toepassen. We zoeken nu dus een relatie

tussen de impulsvenandering van V. en die van de gearceerde vloeistof M.

1
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Op tijdstip t is de snelheid van de vlceistof (f;g. 10) in de gehele buis,. en
dus ock in het balansgebied Vl gelijk aan z(t) = v(t) ;x'

De impulsvoorraad van Vl is dan

B (t) = p A L V(1) 8 (= S(1).L &) ‘ | (12)

Op tijdstip t + At (fig. 11) is de snelheid van de vloeistof in de gehele
buis v (t + At) = v(t + At);; .

De impulsvoorraad van Vl is dan

31(t +At) = p A & v(t + At) 'éx (= S(t + At).2 Zx) - i (13) *

Noemen we de impuls van de gearceerde vloeistof M op t + At: Eh(t + At), de

impuls van de vYoeistof, die dan wel in V_ is, maar niet tot M behoort

1
;a (t + At) en de impuls van de vloeistof die wel tot M behoort maar niet

meer in V_ is E#(t + At) (zie fig. 11), dan kunnen we de impulsvoorraad van

1
Vl op t + At schrijven als:
B,(t + At) = Bé(t + At) + EH(t + At) - By(t + At) (14)

Merk op dat 3h(t + At)'de impuls op t + At is van dezelfde vioeistofdeeltjes,
die zich op tijdstip t in het balansgebied Vi bevonden.

De deeltjes zijn echter in het tijdsinterval (t,t + At) verplaatst met een ge-
middelde snelheid (als At klein is):

T(t) + v(t + At)
2

= 3(t + aldt) = v(t + aAt);Zg , Met 0 <a <1 (15)

zodat ze over een afstand 4x = v(t + aAt).At verplaatst zijn.

>
Voor de verandering pl(t + At) -~ El(t) van de impulsvoorraad in het balansge-
bied Vl geldt dus:

El(t + At) -.;1(t) = EM(t + At) - El(t) + ;;(t + At) - ;b(t + At) . (16)

Oftewel deze is gelijk aan de impulsverandering van de gearceerde vloeistof
plus de impuls ;; minus de impuls Eb op t + At.

Met (15) volgt uit fig, 11 dat de impuls ga(t + At) gelijk is aan:

E;(t + At) = m V(t + At) p A Ax.3(t + At)

p A v(t + aAt) V(t + At) At (17)
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Hetzelfde geldt voor: ;b(t + At).

Teneinde hieraan een fysische betekenis te geven, beschouwen we de impuls
312(t, t + At) van de door Al van V2 naar V1 géstroomde materie in het tijds-~
interval (t, t + At).

Deze hoeveelheid impuls is gelijk aan:

s > .9
plz(t, t + At) ml2(t, t + At) . v(t, t + At)

p Av(t + a.At).At, v(t + a.At).

Deze is dus niet precies gelijk aan Ea (zie fig. 17) want het verschil is

> - B _ V. 2 3
P, ~ Py =P A (1 -a) vity 5 (At)" + 0(AL)".

Studievraag 10.18: Toon dit aan door beide impulsen in een Taylor-reeks te
' ontwikkelen. ~

Als we nu At erg klein nemen dan mogen we het verschil verwaarlozen, zodat uit
(16) volgt (voor §£ en 331 geldt hetzelfde) dat de impulsverandering van het
balansgebied Vl gelijk is aan de impulsverandering van de gearceerde vloeistof
plus de ingestroomde impuls minus de uitgestroomde impuls.

Dus:

- > - e > -+
pl(t + At) - pl(t) = ps(t + At) - pl(t) + plz(t, t + At) - p3l(t, t + At) (18

Nu geldt dat 312(t, t + At) = ;al(t, t + At), dus verandering van de impuls~
voorraad in het balansgebied is gelijk aan de impulsverandering van de gearceer-

de vlceistof.

Noot: 1In het geval van een variabel oppervlak van de dwarsdoorsnede langs de
buisas levert ;lz(t, t:+ At) - psl(t, t + At) wel een bijdrage, zoals
in de volgende paragraaf zal blijken.

Nu hebben we reeds opgemerkt, dat we op de gearceerde vloeistof Newton 2 wel
mogen toepassen, dus voor de impulsverandering per tijdseenheid van Vl geldt,

dat:

> -+
1im Pp(t + 4t) - p (1) Sy

AtvO At - op V_
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oftewel: =

-
iﬁ%.:g‘*

dt (19)

op VS
Aangezien we At zeer klein nemen, geldt bij benadéning, dat de krachten op VS
dezelfde zijn als die op Vl. Op dezelfde wijze als bij de instroming kunnen
we aantonen, dat we tweede orde termen in At verwaarlozen nl.

(; = F(t + At) At = F(t) At + O(At)g), zodat we voor (19) kunnen schrijven:
—==JF : (20)

De verandering per tijdseenheid van de impulsvoorraad in V_ is gelijk aan de

1
som van de krachten die op Vl werken,

Noot: 1In het geval dat de in- en uitgestroomde impuls niet gelijk zijn.
luidt (20) , dus: ‘

d*‘ "9 .ﬁ --.
s‘%&- EF_+ 1im_Pin v "Puit v,
P Yy ardo . at i

Dit zullen we in de volgende paragraaf gebruiken.
De op Vl werkende krachten zijn: (zle ook eenheid 9).

1. In de begrenzingen van V_ werkt de inwendige spanning in de vorm van de

1 .
isotrope druk, die als opperviaktekracht in rekening wordt gebracht.

2. Door de zwaartekracht wordt impuls tussen de aarde en de materie in Vl over-

gedragen, die als volumenkracht in rekening wordt gebracht.

Daar we de impulsverandering per tijdseenheid in de as-richting beschouwd

hebben, zijn ook alleen de krachtcomponenten in die richting van belang.

Overdracht van impuls door drukspanningen

In ieder van de dwarsprofielen werkt een interaktie door de inwendige spanningen.
De spanning is isotroop (wet van Pascal) (zie inleiding IV), en dus volgt dat de

werklijn van die interaktie loodrecht staat op de dwarsdoorsnedes.
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" _ . > B _ > -
In Al werkt "dan de kracht ?l =Py A e en in A2 de kracht f2 =P, A e > (21)

als P, en D, de drukken zijn in de doorsnedes A resp. A2 van buitenaf (V_ en V3)

1

2

op de vloeistof binnen Vl'

Overdracht van x-gerichte impuls door de zwaartekracht.

Veronderstel dat de buisas en de richting
van de zwaartekracht een hcek o met elkaar
maken (fig. 12). De gravitatie wisselwer-
king tussen de massa in het balansgebied
en de aarde geeft een kracht op de massa
van

? = AL p met 2= -
g - [} g € g = g ey

De component in de x-richting is dan gelijk
aan: ftq. 12

-» > ’ N
F,=-pASLg (ez.ex,) (22)

xl

{De x'-as en de z-as staan niet loodrecht op elkaar).

Combinatie van (20}, (21) en (22) geeft de impuls balansvergelijking voor Vl

in de x'-richting:

= (P +F 4 E ) e, | ' (23)

Nu volgt met (12) en (13), dat:

> > &>
4Py _yap PUEFAD mR(D) o avs
dt - At40 it AR T S
Uitwerking van (23) geeft dan:
dv _ L sl
pARSE=(p, ~p)A-2ALg (e e,) (24)

e . s 3 &
Hierin 1s ﬁ(ez.ex,) nog te schrijven als

- o _ _ .
l(ez.ex,) = - & cosa = - (z, -z,
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waarin'zl en .z, de z-codrdinaten van de middelpunten van de dwarsdoorsnedes

Al en A2 zijn.

Deling van (24) door p g A geeft tenslotte:

P P
£ dv _ 1 B 2 _ _
=i - (pg + Zl) (EE-+ z,) = b h ) (25)

1 2
Vergelijking (25) geeft dus aan dat er voor een cilindrische starre buis,
waardoor een homogene ideale vloeistof stroomt een relatie bestaat tussen de
stijghoogteverschillen over de buis en de impulsverandering per tijdseenheid

van de vloeistof in de buis.

Opmerkingen: In eenheid g ig de stijghoogte vcor een stilstaande vloeistof
‘P~ D

in een open vat gedefinieerd als h = - 2 4 2.

In vgl. (25) worden stijghcogteverschillen beschouwd dus vallen

P
de termen Eg‘weg (pa = atmosferische druk).
Merk op dat de gemiddelde snelheid van de vloceistof in- en uit-

strowing v(t + @At) voor At¥0 naar v(t) gaat.

Studievraag 10.19.: Bepaal tn het geval van fig. 12 de snelheid van de vloei~

stof na 3 seconden, als de vloeistof op t=0 in rust was.

Gegevens: « = 1/6, & = 100 [m], o = 1000 [kg/m°], 4 = 0,1
2 > 2

[m°)s Py = py = p, en g = 10 [m/s7].

V.IIT Vergelijking van Bernoulli

Hebben we in het voorgaande een impuisbalans voor een cilindrische buis opge-
steld, nu gaan we hetzelfde doen voor een buis, waarvan de wanden weer star
zijn, maar het oppervlak van de dwarsdcorsnede langs de rechte buisas variért.

In de buis bevindt zich een homogene ideale vloeistof en de stroming is niet-

A, ax stationair. Ook voor deze buisvorm is in
"‘*““-~_‘_~:t::‘“~jiz H.IIL afgeleid, dat voor elk tijdstip t de
‘ | : ¥ massastrooem dus ook het debiet door elke
'V’-""i - M : i | Vg dwarsdoorsnede van-de buis gelijk is. We
' beschouwen de impulsverandering in de tijd
i ; .!: in de as-richting van de buis van de bewe~
;79.13 geade vloeistof in het balansgebied Vl.

Nu geldt veor een tijdstip t, dat net debiet in elke dwarsdoorsnede van de buis
gelijk is. Aangezien het oppervlak van de dwarsdcorsnece A van de buis een funkti

van Kk is, zal nu ook de snelheid ¥ van de vlceistof van X afhangen. De snelheid
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2’

is tevens een funktie van t, daar de stroming niet-stationair is. Dus er geldt,
dat v = v(x,t).

Als de buis geleidelijk dunner wordt, dan kunnen we bij benaderling aannemen, dat
de x-componenten van de snelheden van de vloeis'gfdeel‘cjes over de dwarsdocorsnede
gelijk zijn. _

Dus er geldt, dat v = v(x,t)zx over de dwarsdoorsnede gelijk is.

Daar de snelheid v = v(x st} —;x van de plaats x afhangt, kunnen we niet het gehele
gebied \7;L beschouwan, maar delen we het gebied op in balansgebiedjes met lengte
AX ter plaatse van elke X. Eén zo'n gebiedje is getekend in fig. 13.

Dit balansgebiedke VM is in fig. 14 afgebeeld op een grotere schaal voor X.

AL : .AR AL ) : AQ
_‘77/77-‘“ ; ;

vy
.é' "'///"’- //
Yo7 Vm T Ve x
1// s S
o
-_.___,-,___/ " '//
B X » i A‘
i | {%dsélpf r ’,egds(ip teat
.}o‘g. 1y ' }fcj. 1§

Op tijdstip t (fig. i4) is de snelheid van de vloeistof in de dwarsdoorsnede
ter plaatse van x gelijk aan —\?(x,t) = v(x,‘t)z‘(. De snelheden in de doorsnedes
AL en AR zijn dan resp. 3(3( - %’—Ax,t) en 3(7: + :2h '
De impulsvoorraad in de x-richting van het balansgebiedije VM gevormd door A

Ax,tke

L’
AR en de starre wanden is dan:

p,(t) = p M AGE) VO6,£) - (26)

In het tijdsinterval (t, t + At} (At klein) stroomt er door AL vloeistof in

het balansgebied met een gemiddelde snelheid van:

Vix - 1/2 Ax,t) + v0c - 1/2 Ax,t + At) _
2 ' -

vix - 1/2 Ax, t + adt)
0<a < 1.

Evenzo stroomt er door AR vioeistof uit het balansgebied met een gemiddelde snel-

heid van:
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A

3(:: t3 Ax,t + at)

0 <ac<l

De snelheden van in- en uitstroming zijn dus ongelijk en dientengevolge zullen
er links en rechts verschillende hoeveelheden impuls in en uit het balansge-

bied stromen. We noemen de impulsvoorraad van het balansgebied V op t + At

M
;l(t + At), de in het tijdsinterval (t, t + At) in en uit gestroomde impuls

> >
pLM resp. pn” .

Nu hebben we in H.IV.II aangetoond, dat we de impulsbalans voor het balansge-
bied VH mogen opstellen, mits we rekening houden met de links en rechts inge-

stroomde impuls.
Uit (18) volgdedat (zie ook (20)):

}im- 31(1: + At) - 'ﬁl(t) ) ~i§LM(t,t,+ At) - '§RM(t,t + At)

¥ " 1lim
AtY0 At - op V, = Atv0 W B L
Oftewel . =
-5 > > ; )
d Py i ): - . 1im pLM(t,t + At) - pRM(t,t + At) -
at op V, © At¥0 At

Door de doorsnede AL waarin de gemiddelde snelheid v(x - %-Ax, t + aAt) heerst,
stroomt in het tijdsinterval (t, t + At) een hoeveelheid massa Am = p A(x - l-ar).

SL.

vix, t + aAt).At = SL.At naar Vm. Deze massa heeft een impuls ;LH(t,t +.At)
‘!
vix - S Ax,t + 0At).At,

We noemen SL.z(x - %-Ax,t + aAt) de impulsstroom door'AL.

Evenzo stroomt uit VM via AR een impuls BRM(t,t + At) = SR';CK + %-Ax,t + aAt).At

Substitutie in (27) geeft

-
dp " '
I lin o g . L !
o z op Vl * ireo { SL vix 5 Ax,t + oAt) Sp vix + 5 Ax,t + adt) }.

(28)

Nu is in H.II aangetoond dat op een tijdstip t de massastroom van een homogene

ideale vlceistof in elke doorsnede gelijk is, dus SL = = S. Zodat (28) te

SR
schrijven is als:
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<>
dp

1 . > - -+ 1 e \

o ~§',Fopvl+b{v(:r 7 A%,t) - v+ 3 ax,t) 1, (29)

Voor Ax zeer klein geldt tenslotte, dat

Vix - 1/2 8x,t) - V(e + 1/2 8x,t) _ _ 39(%,1)
Ax T o3x

zodat (29) met S = p AQx¢) v(x,t) te schrijven is als:

-3
Py _ 3 V(x,t)
_E? = 2 ?OP VJ._. p Alx) Ax. vix,t) "-"‘5':“"‘—— (30)

Oftewel de verandering van de impulsvoorraad in het balansgebied VM is gelijk
aan de impulsverandering ten gevolge van de op de vloeistof werkende krachten
plus de som van de impulsstromen van de in- en uitgestroomde vloeistof posi-
tief gerekend naar VM toe. )
Veronderstellen we de doorsnede nu weer even constant, oftewel de snelheid on-.

afhankeliijk van x, dan verkrijgen we weer het resultaat (20},

Overdracht van x-gerichte impuls door drukspanningen.

Au

b\ik De inwendige druk in de vloeistof is weer isotroop
/ . {wet van Pascal), '
Noemen we de druk in doorsnede x p(x) eh het oppervlak
) B X van de dwarsdoorsnede A{), dan geldt 'in dwarsdoorsne-
: }ﬁ} - de A, voor de druk P = plx - %—Ax) en voor het opper-
//" : vliak Ale - %— &x). Evenzo geldt in de dwarsdoorsnede A.R
/Ax dat P =p(x+%&c)enA(x+%-Ax).

— 2, R

In dwarsdoorsnede A. werkt dan de kracht:
= - _l o — .l_ : ¥4
FL = p(x 5 Me). Afx 5 o) e op T

Evenzo werkt in dwarsdoorsnede A_ een kracht

R
% 1 1 -
FR = - p(x + > Ax). Al + > Ax} e, op VM .
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Zodat de resulterende kracht op VM gelijk is aan

>

_ o _ 1 -1 - S
FP-?L+FR-{p('x 2Ax)A(:c 2Ax) p(x +

1 -+
2Ax).A('n:+-—1_\:-:)}ex .

2

Aangezien Ak klein is volgt, dat

o= - 800 3 ax - p00) 2 ax ) 2 | (31)
Daarmee zijn echter niet alle drukkracht, -componenten in de x-richting op
het balansgebied beschouwd.
De buiswanden lopen namelijk niet evenwijdig'aan de x-as en zullen daarom een
component in de x-richting leveren.
Daar de druk isotroop is, oftewel in elk punt heerst in alle richtingen dezelf-
de druk en we alleen geinteresseerd zijn in de x-component van de door de druk
geleverde kracht, beschouwen we de druk in de x-richting. (zie fig. 18).

A" Ar Over de lengte Ax varieert de druk van '

‘_%:‘_ ple - %- i) tot p(x + -;-Ax), zodat voor klei-

re Ax de gemiddelde druk over de buiswand ge-

Alx Lok, A(x4i5K) 1 1
2 - E - .
& X 1ijk is aan R - 7 &) ;P(x t 7 Ax) (%)

De kracht die deze druk op de vloeistof uit-

oefend is gelijk aan:

R i > L 1
' Ax w F o= - p) { AGge- = Ax) - AGC + = Ax) } o
- x o W 2 - X
: We zijn alleen geinteresseerd in de kracht in
'q. 16 . N § can e
4‘5 de x-richting. Aangezien de kracht gelijk is

aan de druk maal het oppervlak loodrecht op de

richting van de druk is, en dit oppervlak loodrecht op de x-richting gelijk is aan

Alx ~ %-Ax) - A(x + %-A& volgt bovenstaande uitdrukking voor ?w'

Hetgeen te schrijven is als:
>
e

. (32)

B 3A
Fw =+ plx) = ax

Opmerking: Dit is ook te berekenen door de kracht te bepalen, die locdrecht op

de buiswanden staat en daarvan de x-component té nemen.

Gezamenlijk leveren de drukkrachtern, dus (31) + (32):
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-+
e

(33).
X

Overdracht van x'-gerichte impuls door de zwaartekracht.

;‘2
o
M
"‘ dy
"
X’
{ig. 13
-
4
(*2"2;)."—7?.‘ X
~

Veronderstel dat de buisas en de richting van de
zwaartekracht een hoek a met elkaar maken. (Dus

de z-as staat niet loodrecht op de x'-as!). Dan
geeft de gravitatie wisselwerking met de aarde een
kracht op de massa in het balansgebied van (zie

Fig. 17).

> 3 > >
Fg = p A(') Ax'.g met g=-g e,
De component in de x'-richting is dan gelijk aan:

- t ¥ * *
Foao=-0 Alx'). At g(ez.ex,)

Nu geldt dat:

(ez.e . ) = - coso

il = -ZR - z{x' - %-Ax') - z{3¢' +é Ax') =
'~ x; : Ax?
~ 2z s .
= - e {voor Ax' klein).
.82
ws F = - ¢ Vg, wme——
Dus Pt n Alx') Ax'.g A%’ (34)

De som van de krachten in de x'-richting op VM is dan (33), (34):

)

7

-

op Vl

= { -A(x')%ﬁ-,-m - p AlX') x'g

3z

-+
ax' ) Cx

Substitutie in de impulsbalans (30) geeft dan

d+
it
dt

=1

- A(X')

a¥v(x!t
ox'

3. axt - o Ax') Ax'g 2232, - 0 Alx") X VR VEx)

o
X



_4036-

+
dp, . ) 1
Met dtl = p A(x') Ax!' 23£§é£l-volgt dan na delen door A(x') Ax' dat:
delxit) _ 2 vioeit) o |
- =-aar {ptoegztp—72%1 (35)

In (35) staat in het linkerlid de impuls per volumeneenheid, wat ook wel de
impulsdichtheid wordt genoemd.

In woorden luidt (35): _

De impulsdichtheidsverandering per tijdseenheid van het balansgebied met leng-
te dx' is gelijk aan de negatieve waarde van de verandering over de lengté ax'
van de som van invlceden van druk, zwaartekracht en impulsdichtheidsstromen.
Vergelijking (35) geldt voor een niet-stationaire stroming van een homogene
ideale vloeistof door een buis met'starre wanden.

Veronderstellen we de stroming stationair oftewel de snelheid v is onafhanke-
1lijk van de tijd, dan volgt uit (35), dat:

o (p + + 33 ) =0
9% " P PgZ 91 -

oftewel integratie geeft:
2

P+ pgz + p%j constant (36)

Dit geldt in de lengterichting van de buis.

Vergelijking (36) is een bijzondér geval van de stelling van Bernoulli, terwijl

(35) een bijzonder geval is van wat de vergelijking van Euler-Bernoulli genoemd

kan worden. We hebben hier te maken met hijzondere gevallen, aangezien we werken
met het model van de homogene icdeale vloeistof. Voor een vloeisfof, waaraan we

deze restricties niet stellen worden de vergelijkingen uitgebreider.

In eenheid 9§ is de stijghoogte h gedefinieerd als:
P-D
h=—=y g
PE
Daar P, (de atmosferische druk) constant verondersteld is kan (35) geschreven

worden als:

2
av(x'it) 3 vi(x!it)
it ey - —— o L0 BT
P 37 Pg =7 {h+ 22 } (37)
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We defini&ren nu.als stuwhoogte H ter plaatse van doorsnede ‘x'op tijdstip t

2,0 ty oD 2
H(x)t) = hixit) + = g’g"t) = RX ;g Pa 4 a(x') + ____,____vzéx %)

zodat (37) te schrijven is als:

t 1
avgt,t> = - pg JHOT) (38)

ax’

en (36) als we te maken hebben met stationaire stroming: pg H(k') = constant .

in de langsrichting van de buis.
Daar p en g constant zijn, kunnen we in geval van stationaire stroming ock zeg-

gen, dat de stuwhoogte in de langsrichting van de buis constant is.

Studievraag 10.20: Bepaal de relatie tussen de vergelijkingen (25} en (35).

A
z;._..\‘.\ ¢; !A‘

S‘cudievrag& 10.21:

gl

\

v -t .
In bovenstaande starre buis stroomt een homogene ideale
vloetistof stationair. In doorsnede A ; meten we een druk

g een druk Py

Druk de snelheid in doorsnede A, uit in het gemeten drukver—

1
schil. (Maak gebruik van de volumenbalans !).

p, en in doorsnede A
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Traaghéid

Duwen we tegen een slede, die op het ijs staat, dan zal de slede bij het los-
laten ervan niet plotseling stoppen, echter nog geruime tijd verder bewegen
alvorens tot stilstand te komen.

Bij het aanduwen van een slingerende schommel'hangt het van het moment van du-
wen af hoe groot de kracht is die we moeten uitoefenen. Als de schommei naar

ons toebeweegt, moeten we veel harder duwen om de schommel van richting om te
keren,dan wanneer we even gewacht zouden hebben.

We weten allemaal wat er gebeurt als we in een auto zitten, waarvan de bestuur-
der plotseling op de rem gaat staan. '

Newton merkte reeds op bij de formulering van zijn wetten, dat een massa in zijn
beweging volhardt als er geen krachten op werken, en als we de snelheid van een
massa willen veranderen, moeten we er een kracht op uitoefenen.

In een vioeistofstroming doet zich hetzelfde verschijnsel voor. Een vloceistof,
die in een buis naar rechts stroomt, waarop een kracht naar links werkt zal eerst
nog een tijdje naar rechts stromen, alvorens van richting om te keren. )

We noemen dit verschijnsel de traagheid (inertie) van de materie. Deze traagheid

gaan we nu voor een vloeistofstroming kwantificeren.

Traagpeid van een rechte buis

We beschouwen in dit hoofdstuk niet-stationaire strcmingen. 7

In hoofdstuk IV.II is voor een homogene ideale vloeistcf, die niet stationair
door een cilindrische buis met starre wanden stroomt, de balénsvergelijking voor
een vast gebied afgeleid. (zie fig. 18). IT

Deze luidt (25):

|| e

dv _ _
5 ° hy = h,. {(39)

waarin % de lengte van de buis

dv .
voorstelt, — de snelheidsver-

dt . ' -
andering van de vlceistof in het \\\\:?>\\\\\q/
&fg.l?

vaste gebied en (hl - h2) het

stijghoogteverschil tussen de dwarsprofielen Al en AQ. We willen de traagheden

van meerdere buisvormen bepalen en daarvoor vergelijkbare uitdrukkingen krijgen.



- 3089~

In buizen met een variabele dwarsdoorsnede langs de buisas is de snelheid tevens
een funktie van x| terwijl het debiet Q(t) er niet van afhankelijk is. Aangezien
Q(t) cnafhankelijk van x voor elke buisvorm geidt, schrijven we balansvergelij-

king (38) voor de cilindrische buis als:

2dQ _ ., _ -
gAdr - "M (40)
waarin A het oppervlak van de dwarsdcorsnede is.

We schrijven nu (40) als:

dQ _ - ' ,
at - By " hy : (41)

waarin M = E%-de traagheid van de rechte starre cilindrische buis wordt ge-

noemd .

Merk op dat we (41) ook kunnen schrijven als

4Q _ . . |
MIT Hl h2 (42)

waarin Hl ~.H2 het stuwhoogteverschil tussen Al en A2 is.

Studievraag 10.22: Verklaar waarom (42) in dit geval volgt wit (41).

Studievraag 10.23: Veronderstel dat de buisas loodrecht op de richting van de

gwaartekracht etaat. Zal de traagheid van de buis dan ver—

anderen?

Studievraag 10.24: Twee cilindrische buizen hebben hetzelfde volume. Welke cilin—

drische buis heeft de grootste traagheid, de dunmne lange of
de korte dikke?

Studievraag 10.25: Hoe groot is de traagheid van een rechte cilindrische buis in

het geval van een stationaire stroming?

Studievraag 10.26: Zal voor een kanaal met constante waterhoogte en dwarsdoorene—

de, waarin een homogene ideale vloeisicf strcomt vgl. (41)

ook gelden?



-4o040-

We beschouwen nu een rechte buis, met lengte &, waarvan de dwarsdcorsnede langs
de buisas varigert. We denken ons de |
buis nu opgedeeld in n mcotjes met
lengte Ax'. In hoofdstuk IV,.III is
voor &&n zo'n mootje de Euler-Ber-
noulli vergelijking afgeleid (35).
Vgl. (35) luidt woor het balansge-
biedje tussen A_ en A_ en de star-

L R
re wanden {zie. fig. 19).

2 1
dv(xit) 3 v o(xit) : 4
SoSDASL Mgt = w S b5 TP A '
P 3T Ax vy {p + pgz + 0 > } Ax o (43)
Hetgeen te schrijven is als:
i 1
1 vOcit) Ax' = - HGe;t) Ax' (uy)

g at ox'

Willen we nu de buis als geheel beschouwen tussen de dwarsdoorsnedes Al en A

22
dan moeten we de inviced van alle moctijes tussen Al en A2 sommeren.
Om de traagheden van meerdere buisvormen te kunnen vergelijken, schrijven we
(44) als:
Ax' _dQ(t) _ _ aH(xlt) .,
gAlc’) dt 3= L (45)

Sommatie van alle gebiedjes tussen x = a (AL) en k = b (A2) geeft dan veor de

gehele buis:

(x'=b) (x'=b)
n n
T Axp o dQ(r) _ g JHOeIt) 4.0
L . = - t ot %
i gAG:i) dt sop O
(x"=a) (x'=a)
(x'=b)
n
= -] BH.(x!,t) = - { H(pr) - H(ag) } (48)
i=1

(x'=a)
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Voor Ax£+0’is het linkerlid te schrijven, als:

b
dQ(t) 1 ]
J it gatx) &
a
Aangezien EQ%%} onafhankelijk vanx' is, is (46) te schrijven als:
b
__.-._1.'_-._ t gg.: = o~
aJ Zay x'- G T Hr) - H(b) - (87)

Stellen we de doorsnede langs de buisas onafhankelijk van x' , dan Qolgt uit
(47) dat:

2 dQ
S ar H(at) - H(bt), hetgeen het

resultaat (42) voor een rechte cilindrische buis is.

Schrijven we nu (47) als

M. 9%—?— = H(a,t) - H(b,t) (48)

dan volgt voor de traagheid M van de rechte buis met variérend dwarsprofiel

langs de buisas, dat

1 e 1 |
M :g J mdx' ) (49)
& .

Studievraag 10.27: Bewijs dat de traagheid M vun een stuk buis in de vorm van

een afgeknotte kegel (voor o klein) bij benadering gelijk

18 aan
1 11
e it (G~ F’
Ay
Ay /
o —_—
— 3 /G R
b
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Tra§ghéid van gekromde buizen.

In het voorgaande hebben we ons gericht op de bepaling van de traagheden van

buizen, waarvan de buisas geen krommingen vertoonde. In de praktijk zijn ech-
ter in een buizenstelsel vaak gekromde buisstukken aanwezig.

Teneinde de invloed van de kromming van een buis op de traagheid ervan na te

gaan, beschouwen we een bochtstuk met kromtestraal R van een buis met starre

wanden en overal dezelfde dwarsdoorsnede. Door de buis stroomt stationair een
homogene ideale vloceistof.
De plaatscodrdinaat langs

de buisas noemen we s. We

denken het bocg%tuk weer

opgedeeld in n mootjes
met lengte As.

We beschouwen weer het

baléggebiedje tussen de

dwarsprofielen AL en AR 9“ o {13.20. '
en de starre wanden. Al- £

vorens op de traagheid van i

de buis in te gaan, volgen Aikromtcm-'ddelpunf
we even de vloeistof M uit + ) trat

het balansgebiedje in de
tijd.

We definiéren de eenheids-
vector gt langs de buisas
in de richting van de stro-
Eing en de eenheidsvector ' Sﬁg.zg_
e, loodrecnt op de buisas - ~d

gericht naar het kromte-
middelpunt.

Op tijdstip t is de impuls van de massa in het balansgebiedje (zie fig. 21)

B(t) = p.A.A3.V(t) = p A As v(s) Zt(f,)

Op tijdstip t + At is de materie M in de buis een stukje opgeschoven.
- . s + . . .
De impuls is dan (de grootte van v is constant, want we hebben een stationalre

stroom)

-+
p(t + At) = p A As 3(t + At) = p A As v(s) Zt(t + At)
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De impulsverandering van de gevolgde massa is per tijdseenheid:

- e (t + At) - e (t)
p{t + At) - p(t) _ = S
e = p A As v(s) v (50)
e (t + At) - 2 (t)
Nu is t. - Ae.e
At r
- [T _ As : 2.8 '
en Ae = [et =1 . eg ‘5‘@.‘&2
/——\Q{ .
In het limietgeval wordt(50)dan ‘t&"'dt)

‘+ .
dp o A v(s) lim As
dt R Aty0 At

. 1lim As _ R
W3S arvo BE 0 V)
Dus volgens de tweede wet van Newton is de kracht op de lvoceistofmassa in het

balansgebiedje geliik aan:

2
% vi{s) =+ ;
E‘-pA-—-——-R e, (51)

M.a.w. er werkt een kracht op de vliceistof lcodrecht op de buisas in de richting

van het kromtemiddelpunt. _ "

Deze kracht kan alleen geleverd worden door de wanden in de vorm van een drukver-—
gchil, dus we kunnen cconcluderen dat de druk in de buitenbocht vanlde buis hoger

zal zijn dan in de binnenbocht. '

(Voor de mensen, die eenheld 5 reeds hestudeerd hebben is (51) de bekende centri-
petale kracht).

In de richting van de buisas treden dus geen krachten op t.g.v. de richtinggver-

ardering van de stroming. '

Beschouwen we nu een niet-stationaire stroming door de buis, dan kunnen we uit

bovenstaande ccncluderen dat in de richting van de buisas de Euler-Bernpulli ver-

gelijking die voor een rechte buis is afgeleid voor een moctje ook hier geldt.
Dus voor het balansgebiedje tussen de vaste dwarsprofielen AL en AR en de starre

wanden (zie fig. 20) geldt in de asrichting van de buis:

3v(s,t) 3 v2(s t) .
Pmiinii. T BTN, Bt 200
s 53 (p + pgz +p > ) (52)
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We kunnen dus conéluderen, dat indien de gemiddelde snelheid van de vloeistof-
stroming in een dwarsdocrsnede steeds gericht blijft langs de buisas, de ver-

gelijking van Euler-Bernoculli (52) blijft gelden voor een kromme buis.

Studievraag 10.28:' Door een bochtstuk van een cilindrische buts waarvoor %.: 10

stroomt een homogene ideale vloeistof met een debiet

@ = 10n’/s). by, = 1000Tkg/m’).

Als het oppervlak van de doorenede A = O,S[mZ] is, bepaal
dan het drukverschil over de doorsnede.

D 18 de diameter van de buis.

Studievraag 10.29: Als A een funktte is van 8 hoe luidt dan vgl. (52)

We concluderen, dus dat de traagheid van een licht gekromde buis weinig zal

afwijken van die van een rechte buis.

Studievraag 10.30: Bepaal de traagheid van een bochtstuk van een buis in-ge-

val van niet-stationaire stroming. Beschoww de gevallen
‘van een constante dwarsdooranede en niet-constante dwars—
doorsnede.

Combinaties van bergende vaten en leidingen.

In hcofdstuk II hebben we de masszbalans van een leiding (kanaal) bepaald, die
gelegen was tussen twee bergende vaten {meertjes). Daarna hebben we.oné beperkt
tot het beschouwen van leidingen waarin en waaruit vloeistof stroomde zonder
ons af te vragen waar deze vloeistof vandaan kwam of waar deze bleef. We hebben
drukverschillen over de leidingen verondersteld, zonder na te gaan hoe deze ont-
stonden.
Om nu dit onvolledige beeld van de vloeistofstroming door een leiding te comple-
teren, beschouwen we een combinatie van het in eenheid 9 geintroduceerde bergende
vat en een leiding. ZT Ta -
De Vvloeistof in de configu- : b ¥1§r§ b i l

) 7

i
ratie veronderstellen we

weer ideaal, en de buis- en V, "
13
- 3 - '4
vatwanden star, zcdat het vat L’,:’ )-])33 /u,
L
alleen een gravitatieberging of == S N e A -op X
]
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heeft, en de berging van de leiding nul is (zie eenheid 9). Boven het vrije
vlceistofoppervliak van het vat, heerst de atmosferische druk -
We onderscheiden nu de volgende drie gebieden in de configuratie naar gelang de

bewegingstoestand van de vloeistof, die er zich bevindt:

-~ Het vat Vl met uitzondering van het gebied dat de tocegang vormt tot de buis.

In Vl is de vloeistof min of meer in rust.

- De buis V3 waarin de vlceistof stroomt,

- Een gebiedje V_, dat het overgangsgebied vormt tussen het vat V. en de buis

- g 3

V3. De vloeistof hierin stroomt nog aanmerkelijk.
We veronderstellen de buis relatief nauw t.o.v, het vat Vl’ d.w.z. dat het vo-
lumen per eenheid van lengte van de buis klein is t.o.v. die van het vat.
We beschouwen eerst het geval, dat er in de buils een stationaire stroming in
de x-richting plaats heeft, m.a.w. de snelheid in de cilindrische buis is con-
stant. ‘
Meten we de snelheid in het gebied V2, dan zal deze afnemen, naarmate we ons -

verder van de tcegang van V_ verwijderen, aangezien het stroomvoerend oppervlak

steeds toeneemt. (De snelheid neemt snel af).
Op een gegeven plaats (b.v. grens Vl V2) is de gemeten snelheid verwaarloosbaar
klein d.w.z. dat we kunnen veronderstellen, da; de vloeistof in het gebied Vl
nagenoeg in rust is. .
Vpor een dergelijke situatie hebben we in eenheid 9 aangetoond, dat dan de stijg-
hoogte in het vat Vl: '

-

534

h = + z constant is
Door een verband te bepalen tussen de zakking van het vloeistofoppervlak Ah
per tijdseenheid At en de massastroom door het oppervlak volgde de relatie.

dh _
2 dat = Q

waarin B het bergend opperviak van het vat voorstelt en %% de verandering van

de stijghoogte per tijdseenheid in het vat t.g.v. het uitgestroomde constante
debiet Q.
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Studievraag. 10.31: 4ls @ = 0,1 {mg/b] in het vat stroomt,het oppervliak van het
' vat 1600 [m2] 18, bepaal dan de verandering van de stijghoogte
per seconde.

We beschouwen nu een niet-stationaire stroming in de x-richting door de buis.
M.a.w. het debiet en de snelheid zijn een funktie van de tijd.
Voor een dergelijke stroming is in deze eenheid afgeleid, (zie vgl. 41), dat het

stijghoogteverschil over de buis bepaald wordt door

SRR | O (53)
Met M = E%—de traagheid van de buis
Noemen we de stijghoogte t.p.v. de grens Vl V2 h12, t.p.v. de grens V2 V3 h23 en
die aan het eind van de buis h3 dan is (53) te schrijven als

hyy = hy = M -g—% : (54)

Voor het vat V1 blijft dezelfde redenering t.a.v. de berging ervan gelden zoals
eerder opgezet, ondanks het feit dat het debiet Q een funktie van de tijd is,
dus
dh
12 3

B —7— = Qt) (55)
Echter nu het debiet ook in het vat varieert in de tijd, zal ook het vat een
traagheid bezitten. Aangezien de traagheid M van een leiding gelijk is aan de

lengte
g.oppervliak

en het stroomvoerend cppervlak van het vat zeer gréot t.o.v. die
van de buis is de traagheid van het vat te verwaarlozen.

Eigenlijk volgt dit al uit de redenering t.a.v. de constante stijghoogte over
Vl’ want stel dat het vat een significente traagheid zou hebben, dan zouden er
cok stijghoogteverschillen over Vl moeten bestaan.

M.a.w. we kunnen de redenering cok omdraaien en uit de kleine traagheid van het
vat concluderen, dat de stijghoogte in het vat op elk tijdstip overal in het vat
gelijk is en daaruit de bergingsvergelijking afleiden.

Om nu een relatie te leggen tussen het gekied Vl en V
v, .

In dit gebied hebben we niet met een rusttoestand zoals in Vl te maken en ook

3 beschouwen we het gebiéd
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niet helemaal met -een stromingstoestand zoals in V3.

In het geval, dat de lengte van de buis V3 groot is t.o.v. het oppervliak van
de dwarsdoorsnede en deze klein is t.o.v. van het vat, kunnen we bij benade-
ring concluderen, {(V, is dus op te vatten als een vrij kort stuk buis met va-

riérende diameter) dat ?e traagheid van het gebied VQ verwaarloosbaar is t.o.v.
die van V8 nl. M = %%— en de lengte van V2 is klein t.o.v. die van V3, ter-
wijl het stroomvoerend oppervlak van V2 niet kleiner is dan die van Vl' Daar V2
eengast gekozen gebled is heeft V2 geen bergende eigenschappen. Over VS geldt:
M It = - AH.

We kunnen dus concluderen, dat het stuwhoogteverschil over'V2 bij benadering nul

zal zijn.

Opmerking: Als de instroomopening van V_ niet klein is t.o.v. het vat en de

1
lengte van V3 niet groot is t.o.v. zijn dwarsdoorsnede, dan mogen
we de traagheid van V,_ niet verwaarlozen.

2

Resumerend kunnen we dus stellen dat voor het vat geldt

dH
2 .
B —3— = Q%) . (56)
{de snelheid in het vat is ongeveer nul).

en voor de buis

- w GQ
H,-H, = M Er . (57)

In het geval, dat de stuwhoogte in de rechter uitgang van de buis constant is
dan volgt door dif;{erentiatie van (56) en substitutitie in (57) dat voor het
debiet in de configuratie geldt
2
By 22 . g(2) = 0
at<

Op c.a. deze lineaire differentiaalvergelijking komen we in eenheid 13 terug.

Studievraag 10.32: Zet zelf een redenering op voor het geval de buis geen con—

stante diameter dus A = A{z), heeft.
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SLOT

In deze eenheid is steeds gewerkt met vloeistoffen, waarvan de inwendige schuif-
spanningen verwaarlcosbaar zijn.

In vele praktische'problemen geeft dit gelidealiseerde model snel een globaal
inzicht in de stroming van een vloeistof.

Echter in het algemeen hebben vloeistoffen wel een inwendige wrijving en onder-
vinden ze wriivingskrachten van de wanden waar ze langs stromen.

Teneinde dus een kwantitatief beter beeld te verkrijgen van de stroming en voor-
al stromingswijze (turbulent cof laminair), zullen we rekening moeten houden met
de gencemde schuifspanningen. '

Dit completere beeld van de vloeistofstroming zullen we in eenheid 11 behandelen.



-104g-

5PPENDTX VLOEISTOFDEELTJE. (AANBEVOLEN, WORDT NIET GETOETST).

In de eenheid hebben we het begrip vloeistdfdeeltje nogal gevoelsmatig gelntro-
duceerd. We verstonden er een pakketje vloeistof onder, waarvan de afmetingen
werden bepaald door de warmtebeweging van de molukulen en de beschrijving van
turbulentie in een stroming.

We willen hier nu nagaan hoe we zulk een pakketje kunnen bepalen, uitgaande van

het meer gedetailleerde molekulaire model.

Studieopgave: Teneinde 'de volgende stof beter te begrijpen adviseren wij U de
paragrafen over '"statische mechanica" en ideaal gas" in deel II

van het collegedictaat algemene natuurkunde (c-18) te herlezen.

De molekulen in een gas of wloeistof hebben ten gevolge van hun inwendige energie
(warmte) een onregelmatige beweging. We beschouwen nu alleen de x-cémponent van
de beweging van de molekulen in een vloeistofstroming en stellen daarvan de kans-
dichtheidsfunktie op.

Deze funktie geeft aan met welke waarschijnlijkheid mo;ukulen een snelheid aanne-
men die ligt tussn veenv, + dvx#

Deze waarschijnlijkheid is bij =en ideaal gas en bij benadering voor een vloei-
stof normaal verdeeld, d.w.z. hij wordt voorgesteld door een kromme van Gauss.

(zie fig. 1) In formulevorm: ' FGQ:/,,——i

- 3132
(v, M)

j’(vx) = % e‘ 20 / o

oV 2n ’//////—
waarin § en o constanten zijn,

waarvan de betekenis hieronder - 800 P €oo e 9 ["‘
blijkt P figo 4

Uit deze verdeling bepalen we de verwachtingswaarde van de snelheid van een molu-

kuul in de x—bichting. We vinden

-

u = E {vx} = ] vxf(vx)dvx (vaak gemiddelde snelheid genoemd).
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Vervolgens bepalen we ook de standaardafwijking die bepaald wordt als positieve

wortel van:
+m
2 _ a2 _ 2
c“ = E {vx u}e = _,J (vx v f(vx)dvx.

Deze standaardafwijking hangt af van de temperatuur en is onafhankelijk van de
aggregatietoestand (vast, vlceibaar of gasvormig) en van de gemiddelde beweging.
Voor een ideaal gas (zie ¢-18) in rust geldt (de gemiddelde beweging u is mul),

dat

2 _ 2, _ 1 2 2, _1 _R
0° = E {vx} =3 E{ vt vy } = 3 E {v7} = 5T

waarin R = 2%! de algemene gasconstante voor 1 kilomol {kilogrammolekuul) is

(R = 8314 Nm/kmol Ok), M de molekulaire massa (in kg/kmol) en T de absolute tem-
peratuur (kelvin). ‘ '

Voor een ideaal gas in rust geldt dus voor de standaardafwijking van de snelheids-

component in de x-richting

)2

Q

"

~
=| o

We houden dit ook voor een vloeistof en ook bij een gemiddelde snelheid u#0 aan.

Vraag-appendix 1: Hoe groot is o voor water bij een temperatuur van 10 graden

celsius.

We beschouwen nu een groep van n molekulen binnen de vlceistof en bepalen op
meerdere tijdstippen de gemiddelde snelheid van deze groep. De x-component van
die gemiddelde snelheid, vx,gem s zal de ene keer een wat andere waarde hebben
dan de andere keer. Soms zullen in de groep de molekulen met Ve ¥ (gemiddelde
snelheid van de stroming) wat sterker vertegenwoordigd zijn dan die met Ve < M,
zodat Vx,gem > W. Op een ander tijdstip is het juist omgekeerd, zodat dan
vx,gem € B :

De gemiddelde snelheid van de groep in de x-richting blijkt willekeurig met de
tijd te variéren en is dus een stochastische variabele.

De kansverdeling van deze variabele is weer ongeveer een normale verdeling met

een verwachtingswaarde!
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4 X, gen

en een standaardafwijking

p_=E{v - } =1 T
|
|
|
|

bepaald door ¢
2 .1 2 . i S (- A . R =
Ug == (zie fig. 2). jﬁ vt.ﬁ‘V\
ftq.2

We beschouwen nu een aaneenge-
sloten groep van molekulen en noemen dit een pakketje vloeistof. Midden in de
groep kiezen we een punt, dat een snelheid heeft gelijk aan de gemiddelde snelheid
van alle molekulen van de groep. Dit punt noemen we het cehtrum van ‘het pakketje.
Het centrum heeft een snelheid v .

_ — - X,gem
met de verwachtingswaarde u, doch daar als gevolg van de warmte-energie op grilli-

in de x-richting, die gemiddeld overeenkomt

ge wijze om heen slingert.

Een maat voor de grootte van die afwijkingen wordt bepaald door de standaardafwij-
king og.

Bij een vloeistof, die geheel in rust is, is Hg.= ¥ = 0. Het centrum van het pak-
ketje vertoont dan alleen de grillige beweging als gevolg van de warmte-energie.
Deze grillige beweging is analoog aan de Brownse beweging van vetbolletjes in

melk.

Opmerking: Een pakketje vlioceistof bestaat niet steeds uit dezelfde molekulen.

Sommige molekulen dwalen zover van de groep af, dat ze niet meer tot het pakketje
beheren. Andere molekulen van andere pakketjes hebben dan hun plaats ingenomen.
Ook de vorm van een pakketje is niet altijd geliijk.

In de tijd kan het zeer verschillende vormen aannemen.

Vraag-appendix 2: Hoe groot mcet temmiste de massa zijn van een pakketje water

atjn in een stroming met een gemiddelde snelheid w = 1[m/e],
opdat de standaarddeviatie van de:Brounse beweging van het pak-
ketje hoogstene 1% 18 van de gemiddelde sneZheid'vx’gem.
(Stel de temperatuur van het water b.v. 10°C).
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Vervolgens bepalen we ook de standaardafwijking die bepaald wordt als positieve

wortel van:
+m
2 _ 12 _ _ 2
o = E {vx w}c = _QJ (vx B f(vx)dvx.

Deze standaardafwijking hangt af van de temperatuur en is onafhankelijk van de
aggregatietoestand (vast, vloeibaar of gasvormig) en van de gemiddelde beweging.
Voor een ideaal gas (zie c-18) in rust geldt (de gemiddelde beweging u is mul),
dat

2 _ 2, _ 1 2 . 2, _ 1 _R
¢ = E {vx} =3 E { vt e } = 3 E {v7} = 5T

waarin R = 2%! de algemene gasconstante voor 1 kilomol (kilogrammolekuul) is

(R = 8314 Nm/kmol ok), M de molekulaire massa (in kg/kmol) en T de absolute tem-
peratuur (kelvin). _ -

Voor een ideaal gas in rust geldt dus voor de standaardafwijking van de snelheids-

component in de x-richting

[N

o = ( % LT

We houden dit ook voor een vlceistof en ook bij een gemiddelde snelheid p#0 aan.

Vraag-appendix 1: Hoe groot is o voor water bij een temperatuur van 10 graden

celatus.

We beschouwen nu een groep van n molekulen binnen de vlceistof en bepalen op
meerdere tijdstippen de gemiddelde snelheid van deze groep. De x-component van
die gemiddelde snelheid, vx,gem s zal de ene keer een wat andere waarde hebben
dan de andere keer. Soms zullen in de groep de molekulen met v > (gemiddelde
snelheid van de stroming) wat sterker vertegenwoordigd zijn dan die met Ve < Ha
zodat Ve gem > 4. Op een ander tijdstip is het juist omgekeerd, zodat dan

E]
v <uo

X ;gem

De gemiddelde snelheid van de groep in de x-richting blijkt willekeurig met de
tijd te variéren en is dus een stochastische variabele.

De kansverdeling van deze variabele is weer ongeveer een normale verdeling met

een verwachtingswaarde!
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H_=E {v

g xvgem} - ¥ |

en een standaardafwijking

bepaald door b
2 1 2 . i S y
Ug ==0c (zie fig. 2). Ve, gem
fig.-2

We beschouwen nu een aaneenge-

sloten groep van molekulen en noemen dit een pakketje vloeistof. Midden in de
groep kiezen we een punt, dat een snelheid heeft gelijk aan de gemiddelde snelheid
van alle molekulen van de groep., Dit punt noemen we het cehtrum van ‘het pakketje.
Het centrum heeft een sne;bgég_v#’gem in de x-richting, die gemiddeld overeenkomt
met de verwachtingswaarde u, doch daar als gevolg van de warmte-energie op grilli-
ge wijze om heen slingert.

Een maat voor de grootte van die afwijkingen wordt bepaald door de standaardafwij-
king Oy ' |

Bij een vloeistof, die geheel in rust is, is ES.= ¥ = 0. Het centrum van het pak-
ketje vertoont dan alleen de grillige beweging als gevolg van de warmte-energie,

Deze grillige beweging is analoog aan de Brownse beweging van vetbolletjes in

melk.

Opmerking: Een pakketje vloceistof bestaat niet steeds uit dezelfde molekulen.

Sommige molekulen dwalen zover van de groep af, dat ze niet meer tot het pakketje
behoren. Andere molekulen van andere pakketjes hebben dan hun plaats ingenomen.
Dok de vorm van een pakketje is niet altijd gelifjk.

In de tijd kan het zeer verschillende vormen aannemen.

Vraag-appendix 2: Hoe groot moet tenmiste de massa zijn van een pakketje water

aijn in een stroming met een gemiddelde enelheid w = 1[m/8],
opdat de standaarddeviatie van de Brownse beweging van het pak-
ketje hoogetens 1% i8 van de gemiddelde 8neZheid'vx,gem.
{Stel de temperatuur van het water b.v. 10°¢).
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Het antwoord op bovenstaande vraag geeft dus min of meer een ondergrens aan de
afmetingen van een waterdeeltje.

De bovengrens aan de afmetingen van een vloeisfofpakketje wordt bepaald door de
beschrijviﬁg van het verschijnsel turbulentie.

In een turbulente stroming bewegen de vloeistofpakketjes op min of meer wille-
keurige wijze door elkaar heen, zodat we dan een vloeistofpakketje een zodanige
afmeting mceten geven, opdat we de statisﬂipche eigenschéppen van zijn beweging
kunnen bepalen. ' v

Nemen we deze afmeting te groot, dan middelen we over een te groot aantal mole-
kulen om nog inzicht te krijgen in de onderlinge willekeurige bewegiﬁg van klei-
nere pakketjes. De orde van grootte van de. hierdoor bepaalde bovengrens ligt on-

geveer een factor tien hoger dan de ondergrens.
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Voor een vloeistof, die door een rechte buis met starre wanden
stroomt, geldt dat de massastroom S in elke dwarsdoorsnede op
een bepaald tijdstip gelijk is.

Voor een homogene incompressibele vioetistof, die door een rechte
buis met starre wanden stroomt, geldt voor het debiet QL dat
Q= —-{p de dichtheid van de vloeistof).

Een homogene ideale vloeistof stroomt door een rechte et lindrigche
buie met starre wanden. Voor de snelheid in de as-richting geldt,
dat vgem :A§', waarin A het oppervlak van de dwarsprofiel lLood-
recht op de butsas voorstelt.

Voor een ideale vloeistof geldt duat dese ook volmaakt is. Geldt
het omgekeerd ook.

De impuls van een homogene tdeale vloeistof in een rechte buis met
starre wanden en lengte & i8:

De impulsbalans van een homogene ideale vioeistof etromend in een
rechte cilindrische buis met starre wanden luidt bij afweaigheid
van de zwaartekracht:

"E%:(P’J’pz)

SWaAUrin

p de dichthetd van de vloeigstef.

L de lengte van de buis.

P; = Py het drukversckil cver de buis.

Voor een stationaire stroming van een homogene ideale vloeistof
door een leiding (kanaal, of buis)met starre wanden geldt, dat
de stuwhoogte langs de letding-as constant is.
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Voor een niet-stationaire stroming van een homogene tdeale
vloetstof door een rechte buis met starre wanden 18 de versnel-
ling van de vloeistof op een tijdstip t in een vast balansge-
bied onafhankelijk van het stuwhoogteverschil over dat gebied.

Voor een homogene ideale vloeistaf‘,- die niet—stationair in een
rechte buis stroomt, geldt de Euler-Bernmouilli vergelijking zo-
wel in de stroomrichting ale loodrecht daarop.

Voor een stationaire stroming van een vloeistof door een cilin-
drische rechte buis met starre wanden is de traagheid van de
buis M = a%’- , waarin % de lengte van de buis i8 en A het opper-
vilak van de dwarsdoorsnede loodrecht op de buisas.

De relatie tussen de stuwhoogte en het debiet van een homogene
ideale vloetstof die door een rechte buis met starre wanden is

_ aH
Q—.M—a';

Een niet-stationaire stroming van een homogene ideale vloeistof
door een rechte buis met starre wanden betekent dat er altijd
een traagheid optreedt. '

Voor een gekromde starre cilindrigsche buis, waarvan de kromtestraal

groot ts, geldt dat de traagheid ongeveer gelijk is aan die van
een rechte starre buie met dezelfde afmetingen..

Het stuwhoogteverschil over een kort breed stuk buis i8 verwaar—
loosbaar t.o.v. een lang dun stuk buis.
De buizen hebben dezelfde volume.

De vergelijking voor de configuratie van bergend star vat en
rechte cilindrische starre buie luidt in geval van stationaire
» . 12
- -
stroming (ate IV.III) @ = B 5
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AANVULLENDE VRAAGSTUKKEN

De plaatselijke brandweer gebruikt brandsldfen met een diameter van 0,10[m].
Op de slangen is een spuitstuk beves-

tigd. Dwarsdoorsnedes van de siang

en spuitstuk zijn cirkelvormig. ‘ |

Het water, dat door de buis stroomt

is op te vatten als homogeen en in-
compressibel, terwijl de wanden van

de buis en spuitstuk star zijn. De
dichtheid van het water is lOOO[kg/mal.

Tijdens de oefening blijkt dat &én

brandslang per minuut 150n[kg] water le-

vert, terwijl de stroming stationair

is.

a. Bepaal de stroomsnelheid van het water in de slang.

b. Bepaal de diameter van het spuitstuk als het water eruit spuit met een snel-
heid van 25[m/s].

c. Hoe groot is de massastroom in de slang?

En in het spuitstuk?

In een rivier met rechthoekige

dwarsdocrsnede heerst tussen

A A
.de dwarsdoorsnedes Al en A2 een : .

\ )
stationaire stroming van water, = ‘L”?EE*“jh—*
i aln b . A ] [08(m]

ie als homogeen en incompres- R .
g ? L i

sibel beschouwd mag worden. De
dichtheid is lOOO[kg/m3].

De vlceistofhoogte t.p.v. A1 blijkt op een bepaalq tijdstip t 1[m] te zijn, terwij
die t.p.v. A2 op datzelfde tijdstip 0,8[m] is.

De afstand tussen de dwarsdoorsnedes is 1000[m]. De snelheid in docorsnede Al
blijkt 1[m/s] te zijn bij een meting op het tijdstip t.

De breedte van de rivier is steeds 20[m], De afstand tussen de dwarsdoorsnedes

is 1000({m].
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a) Hoe groot is de snelheid in doorsnede Ag?

b) Hoe luidt de massabalans voor het gebied tussen Al en A_?

2

c) Hoe luidt deze nadat de stroming op t = t, niet-stationair wordt?

d) Als in het tijdsinterval (tl, t, + 10) de vloeistofspiegel tussen A

1

1 en A2

gelijkmatig in zijn geheel 0,001[m] stijgt, terwijl de snelheid in Al 1[m/s]

~ blijft, hoe groot is dan de vloeistofsnelheid in A

(Beschouw steeds dezelfde hoogtes in A

I i
o
B R T

P ]
e
i -

L

Em 7

A

v
=

i

I 10 Im]

-

%

2?
, en A2).

Een vat met breedte 10[m], lengte 100[m]

is gevuld met homogeen ideaal wéter. De
waterhoogte is z, = 1[m] op tijdstip t = 0.
Boven de waterspiegel heerst de atmosferi-
sche luchtdruk P, = (1 atm) = IOS[N/mZI.

In het vat staat een cilindrische starre

buis met lengte 6[m], oppervlak dwarsdoorsne-
de 0,2[m2] waardoor we het water uit het

vat willen zuigen. De dichtheid van het wa-

ter is p = 1000[kg/m3]. Op t = 0 is de buis

geheel gevuld met water.en het water is overal in rust. De gravitatie versnelling

g = -10 Zz[m/szl.

a) Bépaal de stijghoogte in punt 1 van de buis op t = O..

We veronderstellen, dat deze stijghoogte in punt 1 voor alle te:beschouwen tijd-

stippen constant blijft.

Voor t 2 0 heeft de vloeistof in de buis een versnelling %% = O,5[m/s2] in de

z-richting.

b) Bepaal de druk in punt 2 van de buis, opdat deze versnelling optreedt.

c) Hoeveel [kg] vloeistof stroomt er:in de eerste 10[s] uit de buis.

d) Hoe groot is de impulsvoorraad in de buis op t = 1.

e) Hoe groot is de impulsstroom in de buis op t = 1.

f) Bepaal dea stuwhoogte in punt 2 0op t = 2.
92 L2

Een homogene ideale vloceistof stroomt via

een kanaal van een helling met sina ='I%'
- >
De gravitatieversnelling is g = - 10 Zz. De

4 atmosferische druk is B, ® lOS[N/m2].

De vlceistofhocgte is Steeds a'® 1 [m] . De breedte van het rechthoekig

kanaal is b = 10'[m] . De afstand tussen de dwarsprofielen is 1 = 100 Im] .



a)

b)

c)

d)

e)

f)
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Bepaal de druk in de vloeistof op diepte z'.

Bepaal de impulsbalansvergelijking in het (x! - z) stelsel voor het gebied

V1 tussen Al en AQ.

Hoe groot is de versnelling van de vloeistof in Vl

Hoe groot is het debiet op t = 5[s], als de snelheid van de vloeistof op

+ = 0/1[m/s] in de x'-richting is.
Is een volmaakte vloeistof ideaal?

Is een ideale vloeistof onsamendrukbaar?
!‘z Een vat gevuld met water loopt leeg in een glas.
De hoogte van het straaltje is 0,20[m). De diameter
van het straaltje is in de bovenste doorsnede Al
twee keer die van de onderste doorsnede A2.
> -> 2
g = - 10 ez[m/s 1.
Neem aan dat het water als een homogene ideale

vloeistof mag worden beschouwd en dat de druk in

het straaltje overal gelijk mag worden gesteld aan
! die van de afmosfeer. De dwarsdoorsﬁede van het

straaltije is cirkelvormig.

Ps ' . ;

\\xj I A, a. Geldt voor dit stromingsprobleem in het straaltje
A ’
\ = de vergelijking van Euler-Bernoulli en hoe luidt

deze in dit geval?

We veronderstellen de stroming stationair.

b) Hoe luidt vgl. a dan?

c) Bepaal de snelheid in de onderste docrsnede van het straaltje water.
‘f . In een rechthoekig kanaal bevindt
l.. zich een drempel met hoogte a = 0,5[m].
A % % k ¢
C li b Ay In het kanaal stroomt stationair water,
. |
—_—— T — ll dat als homogene ideale vloeistof be-

T)ﬁ. schouwd mag worden. De dichtheid ervan

is p = 1000[kg/m3]. De gravitatiever-
: i f?*qipgw“,’ snelling g = - 10 Zz[m/szl.

e 20 bnJ ~ In dwarsdoorsnede Al is de vloeistof-

hoogte 2y = 2[m] en de stroomsnelheid
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> > )
vy =S 1 ex[m/s}.

De breedte van het kanaal is 10[m]. De onderlinge afstanden tussen de dwarsdoor-

snedes A1 en A2 is 20[m]. Boven de vloeistof heerst de afmosferische druk P,-

a) Is de vergelijking van Bernoulli op de stroming tussen Al en A2 van toepas-
sing? '

Hoe luidt deze in dit geval? (Bereken de stijghoogtes in de dwarsdoorsnedes ).

b) Probeer een relatie te vinden voor de vloeistofsnelheid in doorsnede A2 waarin

deze is uitgedrukt in de snelheid v. en de hoogte z, in doorsnede Al. (Maak

1 1

gebruik van volumebalans).

7. " l? 2.

Pa LS
ZFE e lae 2 o ‘
o Se—, 4 — -.....-A-_-‘L_._ e S D._._._‘L_*______
- Aﬂmu— - sofm]

r
| ]
Een betonnen duiker met vierkante dwarsdcorsnede, ribbe a = 2[m}, en lengte

50[m] is onder een dijk doorgelegd en vormt de verbinding tussen een boezem

en de zee, In de duiker bevindt zich ter piaatse van A een beweegbare schuif.
Op het tijdstip t = C is de waterhoogte in de boezem 3[m] en aan de zeezijde
2[m]. Op net tijdstip t = O veronderstelleﬂ we dat de schuif razendsnel wordt
opgehaalc . De gravitatieversnelling g = lo[m/sz]. Het water mag als homogene

ideale v!oseistof beschouwd worden met een dichtheid p = 1000[kg/m3];
a) Hoe g\;ot is de traagheid van de duiker?

§
b) Hoe groot is de versnelling van de vloeist?ﬁﬁn de duiker, als de schuif net is

opgehaald?

c) Als het boezempeil en zeepeil de eerste 10[s] niet veranderen, hoeveel [m3]

water stroomt er dan in dat tijdsinterval uit de boezem.

d) Geldt er voor de duiker, tussen A, en A2 dat

1
M a8 . Q. - Q (Q, = debiet door A
dt - ‘1 2 1 1

= 1 "
Q, A,)
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Een cilindrische vat T met hoogte 2[m] en dia-
meter 4[m] is aan éde onderziijde Verbondén met
een cilindrische buis met diameter 0,20[m] en
lengte 10[m].

We houden het vat steeds gevuld met water, dat
als homogene ihcompressibele vloeistof beschouwd
mag wordgn, door een debiet Ql toe te voegen.
Het vat E heeft steeds dezelfde vloeistofhoogte,
doordat het cverloocpt. De vloeistofsnelheden in
de vaten T en E zijn vepwaarloosbaar. De gravi-
tatieversnelling is g = 10[mlszl.'De dichtheid
IOOO[kg/ms].

0 veronderstellen we de vloeistof in rust,

van het water is p =
Op t =

waarna het water gaat bewegen. Aan de vloeistof-

spiegels heerst de atmosferische druk D
a) Bepaal de traagheid van de buis

b) Bepaal de relatie tussen het debiet door de

-

buis en het stijghoogteverschil over de uit-~

einden van de buis

¢) Bepaal Q1 als funktie van de tiid.

d) 1Is de stroming in de buis staticnair?

A&
e S
q 3
e

‘-—--_—_ -
e\b‘
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Een groot meer met een oppervlak van 5000[m2] heeft op t = 0 overal de vloei-
stofhoogte:ha[m]. Het meer is via een schuif T verbonden met een nauw kanaal,
waardoor het water vrij kan wegstromen. De schuif staat op t = 0 open en de
vloeistofhoogte in het kanazal is 2[ml.Voor t & 0 was het water overal in rust.
Het wdter mag beschouwd worden als homogene incompressibele vloeistof met een
dichtheid p = 1ooo[kg/m3]. De vlceistofhoogte in het kanaal is in het door ons
beschouwde tijdsinterval steeds 2[m]. De gravitatieversnelling g = + lo[m/szl.

De breedte van het kanaal is 5[m].

a) Hoe groot is de traagheid van het balansgebied in het kanaal tussen Al en A2.

b) Hoe groot is de versnelling van de vloeistof in het balansgebied op tijdstip

t=o0" (0+Vis het tijdstip direct volgend op t = 0).
c¢) Bepaal de relatie tussen de berging en de stijghoogte in het meer.

d) Béﬁaai de vergelijking voor het debiet van de gehelévcbnfiguratie.
z
A) l; We beschouwen een buis met cirkelvormige dw;rs—
doorsnede. De straal van de buis op plaats x is

}_————‘fqr,FE' gegeven door z = 1070 %2, )
S | F\j cd 4

. ' In de buis stroomt een homogeen incompressibele

oo viceistof met p = Soo[kg/ma].
. De gravitatieversnelling is

g =-10 zz[m/s2];

a) Bepaal de traagheid van het balansgebied tussen x = 10 en x = 100,

b) Hoe groot is het drukverschil over het bzlansgebied uitgedrukt in de snelheid-

op x = 100 als de stroming staticnair is.

B) Beschouw de gekromde buismoot met constante

» cirkelvormige dwarsdoorsnede mét middelpunthoek
a = 0,5[rad] en R = 100[m].

Het oppervlak van de dwarsdoorsnede van de buis
O,S[mz]. De versnelling van de zwaartekracht

is g = 10{m/32}.

¢) Bepaal de traagheid van de moot.

\(§$>/ d) Welk gegeven is hier vergeten?
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ANTWOORDEN OF AANWIJZINGEN BIJ DE STUDIEVRAGEN

Aanwijzingen worden gemerkt fiet ('), de uitwerking volgt verderop in de eenheid.

In de afleiding van .formule (3) is nergens gebruik gemaakt van de eigenschappen
t.a.v. homogeniteit en onsamendrukbaarheid, dus‘(3) geldt in principe voor alle
vlceistoffen, waarvoor een behoudswet van massa geldt.

Er is echter een verschil in interpretatie van (3). In het geval van een homogene
onsamendrukbare vloeistof is de dichtheid van de vioceistof een constante.

Voor de massa Mo geldt, dat deze gelijk is aan pc.Vc (Vc_= volume van het balans-
gebied). Nu is p, een constante, dus is

dmc dV . § ; .

3% © Pe —a;- m.a.w. de massaverandering in het gebied C wordt geheel vercorzaakt
docr een volumeverandering in C, t.g.v. een vloeistofspiegelrijzing of daling. In
dit geval kunnen we dus ook de massavoorraadsverandering van C meten aan de vloei-
stofspiegelverandering Vdn Cis

In het geval van een iet-homogene vloeistof geldt voor

dp dv

dmec _ c o
at - at * et Pe I

M.a.w. de massaverandering in C heeft nu twee ocorzaken:
le Doordat er bv. links vloeistcf met een andere dichtheid C binnenstroomt dan er

rechts uitstroomt.

2e Doordat de vlceistofspiegel van C stijgt of daalt t.g.v. links en rechts inge-
stroomde vloeistof. In dit geval kunnen we de massavoorraadsverandering dus
niet meer uitsluitend aan de vlioeistofspiegelverandering van C meten, maar moe-
ten we er rekening mee houden, dat ock de dichtheid in C verandert is. De enige
bestrouwbare meetmethoda is in. dit geval het wegen van de vloeistof in C op

verschillende tljdst_ppen. (Dit is echter meestal onmogeliik)

Formule (3) blijft gelden, zoals boven beschreven. We moeter de massavoorraadsver-

andering in C nu als volgt interpreteren.

- Links en rechts stromen er bepaalde volumina vloeistof in en uit, waardoor de
vloceistofspiegel in C stijgt of daalt.

- Ten gevolge van de szmendrukking van de vlceistof in C verandert het volume en

daardoor ock de dichtheid in C.
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We moeten, dus weer op verschillende tijdstippen de vloeistof in C wegen om

de massavoorraadsverandering in C in de tijd te meten.
In het algemene geval geldt vgl. (3),

dm

c : A
—_ = -
i S _, S ge » waarin C het

balansgebied (kanaal) voorstelt.

Aangezien we met een homogene incompressibele vlceistof te maken hebben, kan de
massavoorraad in het kanaal alleen nog veranderen doordat het vlceistofniveau
variéert. (aanname: Het kanaal heeft een ondocorlatende bodem en Qanden). Aange-

zien dit mogelijk is, geldt vgl. (5) dus niet.
In het algemene geval, geldt formule.(s),

dme _ o X . ' " »
T ScA + ScB » waarin C nu de buis (het balansgebied) voorstelt.

Als de wanden van de buis elastisch zijn kan de massavoorraad in de buis in de
tijd variéren, omdat het volume van C in de tijd kan variéren. (Vergelijk met ka-

naal met variabele ﬁoogte van vloeistofspiegel), dus (5) geldt niet.

We hebben gezien dat voor een starre buis, waardoor een homogene invompressibele
vloceistof stroomt, vergelijking (5) geldt. '
Oftewel, dat de massastroom S op een tijdstip t in elke dwarsdoorsnede gelijk is.
Daar de dichtheid van een homogene incompressibele vlceistof éen constante is,
geldt dus ook (zie 6) dat het debiet op een tijdstip t in elke dwarsdoorsnede van

de buis gelijk is. b

In het geval van een incompressibele vlceistof door een buis met starre wanden, is
het volume van het balansgebied (de buis) constant in de tijd. Aangezien de vloei-
stof onsamendrukbaar is, zal het volume daarvan ook niet veranderen in de tijd.

Het is dus aannemelijk dat er vocr het balansgebied een behoud van volumen geldt.

- D.w.z. dat er links evenveel volumen per tiidseenheid moet instromen als er rechts

per tijdseenheid uitstroomt.
Oftewel QL(t) = QR(t) "

De eis van hcmogeniteit van

—
de vloeistof is dus niet 4;(_):;/_-“ g[t,

noodzakelijk voor het ga-

1ijk zijn van het debiet in
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elke dwarsdoorsnede.

N.B. De massavoorraad in de buis kan nog wel veranderen, doordat er links en
rechts vloeistof met verschillende dichtheid in- en uitstroomt.
Deze studievraag heeft slechts een informatief karakter en wordt niet ge-

toetst.

In het algemene geval geldt:

- dme
cA cB dt

met C het balansgebied (kanaal).

Aangezien de waterhoogte constant is in de tijd, variéert het volumen in het
balansgebied niet. De vloeistof is homogeen incompressibel, dus de dichtheid is
een constante.

Er volgt, dan met (5) en (6), dat zcwel de massastroom S{t) als het debiet Q(t)

op een tijdstip t in elke dwarsdcorsnede gelijk is.

Voor een starre buis, waardcor een homogene incompressibele vlceistof stroomt,
geldt dat de massastroom die links de buis instroomt, gelijk is aan de massa-

stroom, die op dat tijdstip rechts de buls uitstroomt (5).

SlZ(t) = 8g,(1)

- A | Az

Aangezien de dichtheid een
constante is, geldt dus ook
S =3
dat iy TR =
\{'
\ © ¥ ®
812(t) S5, (1) -

Oftewel: le(t) = Qal(t)

Het dehiet naar Vl toe op tijdstip t is gelijk aan het debiet uit Vl op tijdstip

t. Dit is ook te schrijven, als:

Q12(t) + Qla(t) =0

Dit is dus de volumenbalans voor de buis.

N.B. In het algemene geval luidt, deze

(a¥]
a1 =
o I

O Y o=
Qy (1) + Q)
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Bedenk.dat S = 57 voor een vat met &én toegang.

Bovendien gelgt. dat S = p.Q = p.A Vgem'

p = 1000[kg/m”].

Zie definitie "lichaam" g.1l op pag. 9.09 van eenheid 9.

Onder een stationaire stroming verstaan we een étroming waarvan de stroomsnel-

heid niet van de tijd t afhangt. De strocmsnelheid mag nog wel van de plaats-

codrdinaten X,y en z afhangen. Is dit ook niet het geval dan noemen we de strec-
ming not steeds stationair, aangezien aan het criterium, dat de stroomsnelheid
onafhankelijk van de tijd is, voldaan wordt.

Noot: In een compressibhele vloeistof wordt voor stationairiteit geéist, dat zo-
wel de stroomsnelheid van de vlceistof als de druk in de vloeistof in elk
punt onafhankelijk van de tijd zijn. In principe moet deze eis tevens ge-
steld worden aan een imcompressibele vlceistof, daar dit een limietgeval
is van een compressibele vlceistof. '

In dit geval is de stroming stationair (zie S.10.11.)
Een deeltje beweegt eenparig, als de snelheid ervan constant is naar grootte en
richting. )
In een stationaire stroming variéert de snelheid in het algemeen met x,y en z,
dus het deeltje beweegt niet &énparig.

zZ l -

4 t

—

. .
e > / !
—_—

We beschouwen een stroming van een volmzakte vlceistof in een kanaal.

We nemen hieruit een mootje met afmetingen dx, dy en dz, dat in rust is t.o.v.
Oxyz. Op dit mootje passen we de tweede wet van Newton toe in de z-richting. In
de vloeistof geldt de wet van Pascal, oftewel dat de druk in een punt in alle

richtingen gelijk is.
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In de z—f{chting~werken de volgende krachten: plzs 20
Op het ondervlak.geeft de druk een kracht

i

i

-
?o = p(z).dx dy e, A R iﬁf
il w_élj
Op het bovenvlak geeft de druk een kracht ’ i VN?)
+_._ . B E.E -+
Fy = - plz + dz) dx dy e, = { - p(z) 5o dz. } dx dy e, .

De gravitatiewisselwerking geeft op de massa in het blokje een kracht:

F o= ixdydz.e
¢ = ~ pg dxdydz.e .
Nu geldt Volgens Newton 2:

av

x* zZ >
?o + f£ + FV =p dxdy@z 3T 5 ¢

Uitwerking geeft, dat:

(2 | Lo, ok (a)
3z at

In eenheid 9 is de hydrostatische drukverdeling gedefiniferd als:
N r ;
p(z) = p(zR) + pg dz (zR = peferentiehoogte) .
Z

Aangezien in (A) de dichtheid nog van x%,y,z en t afhangt (vlceistof niet homogeen

en compressibel) geeft integratie van (&)

*r “ sz
p(z) = p(zR) + ] pg dz + J 65 - dz

Dus opdat de drukverdeling hydrostatisch is, moet gelden, dat

%R sz
pa—{—’dz=0
Hieruit volgt, dat er moet gelden:
avz
(-l

ot
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Aangezien p = p(z) in het algemeen ongelijk aan nul is, volgt dat
avz
3t -0

oftewel de vloeistof mag geen versnelling in de z-richting hebben.
Als dit het geval is, dan is er in de vloeistef een hydrostatische drukverde-

ling.

In het geval van een niet-stationaire stroming, is in H.II aangetoond, dat op
een tijdstip t de massastroom S(t) in elke dwarsdocrsnede gelijk is,

Echter van tijdstip tot tijdstip kan dit varigren.

Dit betekent, dat (11) verandert in

px(t) = S{t). %.

M.a.w. de impulsvoorraad in de x-richting op tijdstip t is gelijk aan de mé§§a—
stroom door de buis op tijdstip t maal de lengte van de buis. De impulsvoorraad

varigert dus met de tiid.
Pas de afleiding van S.10.15 toe.

Maak gebruik van het feit dat het debiet Q = vgem A in elke dwarsdoorsnede ge-

1lijk is.

We vonden in (17) voor de impuls op t + Ag:ga (t + At):
5 -+
pa(t + At) = p Auv(t + a.At), v(t + At).At,

2f  (at)” §3£

Mét f(t + At) = f(t) + At Tt ” +

L]

volgt voor de componenten

3v

2 3
o (At)° } + o(Aat™)

p(t+ At) = p A [ v2(£)AT + (1 + a) w(t).

Evenzo volgt voor p12(t’ t + At), dat:

) 1+ oat®)

[+ ] Es¥
32 8

plz(t,t + At) = p A { vz(t}.Af 4+ 2a v(£)..
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Het verschil ig dan
p_(t + At) - p . (ty, t +At) =p A (1 - a) v(t) s (At)2 +"O(At3)
a 12" 72 3t

3,10.19. Voor een starre buis:in fig. 12 geldt voor een homogene imcompressibele vloceistof

vergelijking (25).

g dv 1 P2
— — T nmmeaw - _—+r
g dt ( PE ! Zl) ("pg 52)
Met de gegevens: p. = p, = p_en z. -z, = % cose = 100. 3 Y 3 vdlgt'dat:
1 =2 a 1 2 C 2 _
&9.‘.’.:50;/3
g dt
oftewel
dv
T = 5¢ 3.

Integratie geeft:
v(t) = v(o) + 5V 3 t

Op t = 0 was de vloeistof in rust, dus de snelheid van de vloeigtof is na 3 se-

conden:
v(3) =5+/3 3=15V3 [m/s].

1.10.20. Vgl. (35) is afgeleid vaor een starre buis;;ﬁaarvap”het oppervlak van d= dwars-
doorsnede langs de buis-as varigert.
Het debiet van cen homecgene incompressibele vlceistcf door deze buis is alleen

een funktie van de tijd en er geldt dat:
Qlt) = A(x}. v(x,t)

Als we het oppervlak A(x) constant veronderstellen langs de buis-as, dan volgt

dat:
Q(t) = A, v(x,t)

Oftewel de snelheid is ook alleen een funktie van de tijd.

Dit gesubstitueerd in (35) levert dat:
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Tt (p +egz)

Integratie langs de buisas geeft tenslotte:
2% L= ‘ny T PBZ = - pPgz
P 3t *F T P(x=0) T PBZ(x=0) T P(x=g) ~ PB%(x=1)

Delen door pg geeft dan vgl. (25).

Conclusief? (25) is een bijzonder geval van (35)
Maak gebruik van (36)

Aangezien het debiet Q(t) op een tijdstip t in elke dwarsdoorsnede gelijk is,
en het oppervlak van de dwarsdoorsnede in dit geval constant is, volgt hieruit
dat de gemiddelde snelheid in elke dwarsdoorsnede gelijk is,

Doordat we in (41) en (42} het verschil in hoogtes in- twee dwarsdoorsnedes

beschouwen vallen deze tegen elkaar weg. M.a.w, (41) is identiek aan (42).

S ¢ N

b b
£ dv 1, 2
—— ——— - w—
g dt ‘ pE 1) - ¢ g | 2 &

Hierin is M = dus de traagheid van de buls verandert niet,

1
P
Het stijghocgteverschil over de buis blijkt in dit geval vereenvoudigd te kunnen

worden tot drukverschillen,

o A

p»rOTP-“a-
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Er geldt dat li Al = A, A

De traagheden van de buizen verhouden zich als:

M 21 gA2 L. A

L .12
M, 8 4, %4
Substitutie van Ll A1 = 22 A2 geeft
2
M1 A2
T:-_2-<<1'
2 Al

‘M.a.w. de traagheid van de dunne lange buis is veel groter dan die van de korte

dikke.

Voor de rechte cilindrische buis geldt in het geval van een homogene incompres=

sibele vloceistof dat

dQ _ ) 3
M at - (hl hz)-

Nu geldt in het geval van een stationaire stroming, dat het debiet Q constant is
in de tijd, m.a.w. we vinden, dat

h1 - h2 =0

De traagheid ¥ = E%-blijft onafhankelijk

van de stromingstoestand dezelfde waarde shouden, echter in het geval van een
stationaire stroming is de invloed van de traagheid op het stijghoogteverschil

over de buis nihil.

Tot nl} toe hebben we meestal gewerkt met wechte cilindrische buizen als we het
over leidingen met een constant oppervlak langs de buis-as hadden.

Beschouwen we een kanaal met een constante rechthoekige doorsnede, waarin de
waterhoogte constant is, dan verandert de afleiding van de traagheid in principe

niet. Dus vgl. (41) zal blijven gelden.

Voor de traagheid van de buis geldt, dat

~
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1
wha &

SO
o
=
Al
ot

i [P, iz
g Ttg%x x ], g mtgea a b
De eis, dat a klein moet zijn, volgt uit het feit, dat vgl. (49) is afgeleid
voor een buis, waarvan het dppervlak langzaam varidert langs de buisas. Dan
geldt nl. dat de x~componenten van de snelheden van de vloceistofdeeltjes over

de dwarsdoorsnede ongeveer geliijk zijn.

mootje als getekend in de Figuur

en maak daarbij gebruik van (51).

Waarvoor is vgl. (52) afgeleid?

Beschouw hier alleen Iichte kromminger oftewel R groot.

Voor de gravitatieberging B geidt in het geval van een homogene imcompressibele

vlceistof, dat B = A (epp. vlceistofspiegel). Dus

dh 00 L b
at - Tooo - 10 [m/s]

Daar we met stuwhoogteverschillen gewerkt hebben, verandert eﬁ niets aan de af-

leiding.

vr. ap. 1l: De standaardafwijking van de warmtebeweging is

'_’ Al
5 = /[RQT : /831;6283 = 360[n/s]

vr.ap. 2: Er moet gelden dat de standaardafwijking van de groep gelijk is aan:

.1 .
Gg ol v [m/s]. (A)

Voor de standaardafwijking van de groep geldt:



De standaardafwijking van 1 molekuul is 360[m/s] (zie ap. 1) dus
het aantal molekulen waaruit een groep minstens moet bestaan, op-

dat aan A voldaan is, volgt uit

2
- %ET = (360)2. 10" = 1,3 * “109 moiekulen.

Volgens Avogadro bestaat 1 gmol uit ongeveer ES.J.OZ3 molekulen, met
een massa van 18‘10‘3[kg] voor water.

Dus de massa van het pakketje is

-17

9 .
- 1.3.10 -3
mp s gfzayg— 168,10 T A 4,10 [kg]



.0.10+

.0.16.

- 1072~

ANTWOORDEN NA AANWIJZINGEN BIJ DE STUDIEVRAGEN

We stellen, dat er zich op tijdstip t = Olé] in het glas mo[kg] water bevond.
*(xal.

We nemen nu aan dat er per tijdseenheid steeds evenveel water in het glas

Op t = 60[s] is dit tcegenocmen tot m, + 84.10"

stroomde, zodat.

_3 _
. m_ + 84.10 M, gy.10 3 [ E&.]
- 60 T B0

(Eigenlijk is S een gemiddelde massastroom).

Vecor de massastroom S geldt, dat:

Het debiet is

-6
- S _ 84.10 3
Q_p- 60 [m /S]‘
Met Q =VA. v en
gem -
2 6, 2

" -
'E.lO [m~]

volgt voor de gemiddelde stroomsnelheid onder in de straal

84 ., -6 :

% ;:10—6 & 1,8[m/s].

In eenheid 9 is een lichaam gedefinieerd, als een zichzelf blijfende beperkte
hoeveelheid materie, die een deel van de fysische ruimte kan innemen.

Een vloeistofdeeltje kan in de tijd van samenstelling veranderen, d.w.z. er ver-
dwijnen mclekulen, waarvoor andere van buiten in de plaats komen. Dus hier vol-
doet een vloeistofeeltje niet aan de definitie van een lichaam. Verder zijn er

geen tegenspraken.

Voor de grcotte van de impulsvoorraad in de as-richting op tijdstip t geldt voor

de buis, waarin een homogene ideale vlceistof strcomt, dat

"

px(t) S(t).&n-

3 . 3,
p Q(t).2 = 16", ¥,2.t. 20 = 4,107t [kgm/s}.



-1073 -
§
$.10.17. R B
‘ “a
—tgpt e . >
N ' ®
- e =

De homogene ideale vlceistof stroomt staticnair in de buis.

In de toegang met oppervliak A = lh F (5.10“1)2 = 2§£ " 10‘2[m2] meten we een snel

heid van 4[m/s], dus het debiet is:

Q=v.A = 251.10’2[m3]

Deze is in elke doorsnede geliijk.

De massastroom is dan:
S = p.Q = 250w[kg/s]..
Hieruit volgt voor de impulsvoorraad van de buis in de as-richting.

P. = S.k = 10“.ﬂ[kgm/S]-

b3
£ ‘Z 14-
S.10,21. __J.i\_ 4 A2
= l 2 » X
| L
__-4——'/ ) .

We hebben te maken met een stationaire stroming wan een homogene ideale vloei-
stof door een starre buis.
Volgens de stelling van Bernculli geldt, dat

2
p(x) + pga(x) + p Y—-(?i‘l-

constant is in de as-richting van de buis. -
Dus er geldt, dat

2, . ' .
vi(x)) . vi(x,)
Py + PO+ p =S5 = p, + pR.O + pomty
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oftewel de snelheid in dwarsdoorsnede Al volgt uit:

* (P2 - Pl)

vix)) = + v3x,). | (1)

Nu geldt bovendien dat het debiet Q in de buis constant is.

* *
Noemen we het oppervlak van de dwarsdoorsnedes Al en A_ resp. A1 en A2 dan

2
geldt, dat:

*

A*" A* _Al
Vit T VR TRV, F Y,
Ay T

Substitutie in (I) en uitwerking ervan geeft dan:

\/ 2(p, - l) k
Vl-—-.
o1 - ( - = 7)
2

We hadden in de figuur aangenomen dat de vloeistof naar rechts stroomde.

We beschouwen het nevenstaande mootje.
Volgens (31} werkt op dit mootje een
kracht t.g.v. de richtipgsverandering

van de stroming, die gelijk is aan:

e o dv. p.ps LoL8) 2
‘p y- . R era

0

Aangezien we de zwaariékracht buiten beschouwing hebben gelaten, moet deze
kracht door een drukverschil door de buiswanden geleverd worden. Noemen we
de druk in de buitenbocht Py, &0 die in de binnenbocht Py d;n moet er bij
benadering gelden, dat ’

-
- "-9;2-
pbu.dy.As.er pbi,dy.As.er =9 ¥

Uitwerking levert:



S.10.28.

5.10.30.

~1o035- !

Substitutie van de gegevens geeft:

_ 2
Ppy ~ Ppy = HOIN/m7]
Dit drukverschil heerst alleen in de middenlangsdoorsnede. In andere langsdoor-
snedes is dit drukverschil kleiner aangezien de afstand tussen de buiswanden

daar kleiner is dan D.

Vgl. (52) is afgeleid voor een niet-stationaire stroming van een homogene ideale
vlioeistof door een starre gekromde buis, waarvan het oppervlak van de dwarsdoor-
snede constant is langs de buis-as. -

De snelheid ¢(s,t) veranderde alleen van richting en niet van groctte.

In het geval van een variabel oppervlak langs de buis-as verandert tevens de
grootte van v(s,t).

M.a.w. vgl. (52) is ook van toepassing op een-buis met vériabel oppervlak langs

de buisas.

We beschouwen een bochtstuk met
keromtestraal R en middelpunts-

hoek a. We veronderstelilen de

dwarsdoorsnede cirkelvormig met
oppervlak A. _ fk
Uit (52) volgt dan voor de A '

traagheid van de buis: (zie ook 49)

1 rm R X
.G ‘

M = — 48 = e g

gh gh [

In het geval het oppervlak A een funktie van s is volgt voor de traagheid

ds

Ret
L
g Als)

M =
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COMMENTAAR OP. DE BEWERINGEN

Onjuist. Dit geldt uitsluitend als de vloeistof homogeen en incompressibel is.

Juist. Op deze wijze is het debiet Q in eenheid 3 gedefinieerd. (pag. 9.21).
In principe hoeft de vloeistof niet homogeen en incompressibel te zijn en de

buis niet recht en star.
S{t)

Echter dan geldt Q(t) = ET;:¥7

, slechts in een bepaalde dwarsdoorsnede op een

bepaald tijdstip t.
Juist. Zo is de gemiddelde snelheid gedefinieerd. (zie 7).

Een ideale vloeistof is een incompressibele volmaakte vloeistof. Dus de eerste

bewering is juist. Het omgekeerde echter niet.

Onjuist. De grootte van de impuls op tijdstip t is gelijk aan de massastroom op

t maal de lengte van de buis.
Juist. (zie (24)}.

Juist. In het geval van een stationaire stroming in het kanaal verandert de water-
hoogte erin niet in de tijd (anders zou de snelheid een funktie van de tijd zijn
en de stroming dus niet-stationair) (zie aanv. vr. 2). '

In dat géval is de vloeistofspiegel op te watten als een "vaste" wand en geldt de

vergelijking van Bernoulli, zoals deze voor de buis is afgeleid. (35).

Onjuist. Volgens (38) geldt, dat
v(x,t) SH(x,t)

e

M.a.w. de versnelling van de vloeistof op tijdstip t in een vast balansgebiedje
met lengte dx is afhankelijk van het stuwhoogteverschil over het mootje.

(Een groter balansgebied is op te vatten als een som van deze mootjes).

Onjuist. De Euler-Bernoulli vergélijking geldt alleen in de as-richnting van de

buis. De buis moet bovendien starre wanden hebben.

Onjuist. De vloeistof moet homogeen en ideaal zijn.

Onjuist. Deze relatie luidt: 1 . 2
aQ _ _ _ - . -
M T AH = Hl Hz.

M = trasgheid van de buis.
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b.10.12. In principe is deze uitspraak juist, echter voor een stationaire stroming
is er ook altijd een traagheid. De bewering had beter geformuleerd kunnen

worden alS:............betekent dat de traagheid een stuwhoogteverschil over

de buis veroorzaakt.

Bij een staticnaire stroming is dit niet het geval.

b.10.13. Juist. Eigenlijk kunnen we beter eisen dat de verhouding tussen de diameter

van de buis en de kromtestraal: %-klein is (zie $.10.28).

b.10.14. Juilst. In S.10.24 hebben we gezien dat de traagheid van een kort dik stuk buis
klein is t.o.v. van die van een lang dun stuk.
Daar het stuwhoogteverschil over een buis recht evenredig met de traagheid er-

van-is; volgt dus het gestelde.

b.10.15,

In het geval van een stationaire stroming van de homogene ideale vloeistof zijn
de stuwhoocgteverschillen t.g.v. de traagheid nul.

Daar de snelheid in het vat ongeveer nul is volgt dus, dat de bewering juist is.
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UITWERKING AANVULLENDE VRAAGSTUKKEN

a) Per minuut levert de brandslang 1507 [kg] water. Aangezien de stroming sta-
tionair is betekent dit, dat de massastroom in de brandslang gelijk is aan:

1507w

S = =50

= 2,5n[kg/s].

Het debiet is: Q = §-= 2,5.10_3w[m3/sf.

Daar Q = v.A (A = opp. dwarsdcorsnede) volgt voor de stroomsnelheid in de
buis
2,5.10 2x
v :9:.—2—‘.—_—_: l[m/sl.
A T =2
E.lO

b) De diameter van het spuitstuk volgt, uit de relatie

Daar het debiet in elke dwarsdoorsnede gelijk is, en de snelheid in het

spuitstuk 25[m/s] is, volgt

-3
n . D2 - 2,5.10 "7
4 1 25
oftewel Di = 4.10_4

5 =5
en voor de diameter D1 = 2.10 “[m].
c) De massastrcom is in elke dwarsdcorsnede steeds 2,5w{kg/s], aangezien we met
een stationaire stroming van homogeer. incompressibel water, door een starre

buis te maken hebben.

In het geval, dat de stroming stationair is, is de snelheid in de rivier overal
onafhankelijk van de tijd. Dit betekernt, dat ook de vlceistofhoogte in de tijd
niet zal veranderen. Zcu dit namelijk wel het geval z1]n dan zou of wel de
snelheid of wel de druk in de vloceistof in de tijd veranderen en dus de vloeistof
niet meer stationair stromen. (zie ook .noot 5.10.11).

We kunnen de vloeistofspiegel dus als een onveranderliike w&nd opvatten en er

geldt dan, dat het debiet in elke dwarsdoorsnede gelijk en constant is. (stationair
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stromende homogene incompressibele vioceistof),

De snelheid in A2 volgt dus uit:

; = 1,25[m/s].
171 27772 2 :
A'!

Ay

b) In principe geldt steeds dat “——1“"‘"-~.________;_~
Vo '
M o Ve

‘dm
-~£ =8 + 8

dt 12 13
Daar we te maken hebben met een homogene incompressibele vlceistof en de

vloeistofhoogte in Vl niet varidert t.g.v. de stationaire stroming is de

massabalans te schrijven als

S =0

12 ¥ 513

c) Voor een niet-stationaire stroming luidt de massabalans

dm1
3t - Syp * S5 -

In dit geval kan de vloeistofspiegel namelijk wel stijgen en dalen.

d)} De massavoorraad in V1 verandert in het tijdsinterval (t + 10) met een

1* b
hoeveelheid van
ml(tl + 10) - ml(tl) = & * b % 0,001 * p
= 1000 * 20 % (6,001 * ol

= 20.000([kgl.
dm

Dit betekent, dat de massavoorraad per tijdseenheid ( —E%') gelijk is aan
&4

2.10° .

15 ° 2.10" {kg/s]

Nu geldt voor Vl de massahalans

dm
1 _
at - 512t Sy5 - :

2%}
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- i08p -

812 = 0 le‘: 1000,1.1 20 = 20.000[kg/s]
M.a.w.
dm1
S T r— - § = 2,000 - 20.000 = -18.000[kg/s].

18 © Tdt “12

Dus S31 (de massastroom van Vl naar VS)

831 = + 18.000[kz/s].

Nu volét de snelheid uit

P vA ob-hA

S,, =pPQ
31 o 5

31

18000 = 1000 v.20.0,8

_ 18 _
wy, =Tqgs 1,125[m/s].

De druk in de vloeistof {(op t = 0 in rust) is hydrostatisch verdeeld. )

Op diepte z is de dryk dan:
p(z) = p, * rglz, - z) 0<z<z
Dus in punt 1 is de druk
p,{c) = p_ + pgz_.
Hieruit volgt, dat de stijghcogte in puht 1 geliik is aan:

o pl(O) B pglo)
i - .
1 = PE

{14

za[m]
1 [m].

Deze stijghoogte nemen we nu constant voor t > 0., Dit is om twee redenen

niet helemaal netjes, nl. - de vloeistofspiegel zal zakken door het afzuigen.

Het vat is echter groot en voor de hier beschouwde 10[s] zal het bij bena-

dering juist zijn.

- Er treden tijdens dat afzuigen vertikale verscnellingen op, zodat de druk-
verdeling niet meer hydrostatische zal zijn (zie S.10.14).

Deze versnellingen veronderstellen we echter klein.
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b} Voor het water in de cilindrische starre buis geldt de impulsbkalansvergelij-

king

= hl - h2 in de as (z)-richting van de buis.

0q je
le
t)<

Hieruit volgt dat

dv
at T By

fod
1]
1
0Q f

‘Substitutie van de gegevens levert

+ 2
= pg(h2 - 2) + P, -

10%(0,7 - &) + 10.10"

o
N
i

4,7 * 10" [N/m°].
Het is aannemelijk dat P, < ﬁa, aangezien de vloeistof naar boven stroomt.

c¢) De snelheid in de buis vocr t > 0 is gelijk aan:

<
it

T
dv _
OJ 3t dt = 0,5t + C.

1]
)

Op t was de vloeistof in rust, dus

<
1]

055t
Het debiet op tiidstip t is dan
Q(t) = A.v(t) = 0,10t

Oftewel in de eerste 10{s] strcomt er een volume

210
v = J o(t)dt = 5[m°]
(@]
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water uit dé buis.
De massa hiervan is p.V = 5000[kg].

De massastroom van de vloeistof op tijdstip t is:
S(t) = pQ(t) = ¢ A v(t) = 100t (zie c)
.M.a.w.:de impuls in de buis op t = 1 is gelijk:
p(1) = S(1).%£ = 100.6 = 600[Ns].
.De impﬁlsstroom op t = 1 is gelijk
S(1).v(1l) = 100.0,5 = SO[N].
De stuwhoogte op tijdstip t = 2 in punt 2
vg(l) |

h2 + Tz 0,7 + 0,05 = 0,75[m].

De snelheid is namelijk in deze starre cilindrische buis met het (h.i.) wa-

ter in elke doorsnede gelijk. z

4 '
ro
L

4

T
A

» Y.
JN 4 3’\;‘\\‘ ~
- }{ du f}a iy
)&&‘» i ‘.' . ’ s & xd
..__.-_[_“"_':.g__L\’"

We beschouwen een mootje met afmetingen dx',dy en lengte (a - 2z').
Op dit mootje werkt in de z-richting de gravitatiewisselwerking met de aarde
ter grootte van

= — i t
Fz pg(aﬁ. z') dx'dy.

Deze geeft een component in de z‘-richting

Fz' = pg(a - 2') cosadx'dy’.

~



b)

- 083~

Aangezien we in de z' richting geen versnellingen zijn, velgt uit de impuls-

balans voor het mootje:

-+ > = :
p(z') dx'dy e,r =B, dx‘dy et - F2$ez, =3 '
z 2
oftewel s to / 1
Y / ’& -
S
. “_. )/
p(z2') = p_ + pgla - z') cosa (I ‘“")“*fj_ ;q '
a - ; 4
=
S
Dus de laatste term is piet pgla - 2'), “\}__
maar de projectie van pg(a - z') op de I \éﬁﬁ>
. AR~
z-as. (zie fig.) e
g
Eigenlijk is snel in te zien, dat vgl. (25) hier van toepassing is, dus:
g dv Py Py
===z h ~h,=—+32, - ==~ (1
g dt 1 2 eg .1 vreg Zg )

Dus geen zi.
We zullen dit nogmaals aantonen. We stellen de impulstalans op in de x'-rich-
ting. De vloeistof links van Al
oefent op het balansgebied een
druk uit die verdeeld is, zoals
in nevenstaande figuur is aan-
gegeven (zie a(I}).

Hetzelfde is het geval in door-
snede A2, dus de drukkrachten
elkaar op.

De vlioeistofmaterie in het ba-
lansgebied ondervindt t.g.v.

de gravitatiswisselwerking in
de x'-richting de kracht

> . -
F = pg £ b.a sina e*

x! T

Velgens de tweede wet van Newton geldt nu dat

N dv —+ - e
Fer T Mg 3T Sy (mc = massabalansgebied)

-
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oftewel .
5 =¥ dv >
pg L b a sina e =P £ ba it k'

Dus
&8y = # sina
g dt

Nu is £ sing = z. - 2

1 2°
‘;N'\.\A ;
M.a.w. AR el
‘x’
Bav._
g dt 1 2

Dit is dezelfde uitdrukking als b(II), want er geldt dat P, = Py
N.B. z, en z, worden gekozen waar Al en A2 de x'-as snijden. Meestal worden
de z-codrd-en van de snijpunten van de leiding-as en de beschouwde door-

snedes gekozen.

c) Substitutie van de gegeven waarden in

i 8 2

geeft

av _ : _ A . 2

3¢ - 8 sina = lo.lo 1[m/s7]

a) v=,[g{-dt= dt =t + C
J

0pt=0isv=2_[m/s]-—»

v(t) = t + 1[m/s].

Het debiet op t = 5 is dan dus

Q(5) = A v(5) = 20.1 % 5 = lQb[mafs}.
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e) Een VQlﬁaakrﬁ vlceistof is een vloeistof zonder schuifspanningen.
Een ideale vloeistof is een incompressibele volmaakte vloceistof.

Dus het antwoord luidt: nee

£f) Ja (zie e.)

a) In het meest algemene geval luidt Euler-Bernoulli in dit probleem voor

een mootje dz.

1 odvizt) . 3 D, ., v2(zzt) }

g 3t iz = pg 2g

Aangezien.de druk overal in het straaltie P, (constant) is, volgt:

2
Lo3vzt) o3 g, v(z,t),
g - 3t 3z 2

b) In het geval van een stationaire stroming is de snelheid onafhankelijk van

de tijd dus:

2
e de | g+ EALE) 5o,
4z 2

Integratie geeft dat

2 :
X—££4£l + 2z = congtant langs (I) het straaltje. (vergeliiking van Bernoulli

2E

c) Toepassing van b(I) geeft als we de hoogte in A2 z, noemen en de snelheid v,

en in Al resy. zZ., en vy dat

1
2 2
VI(Zl’t) L vz(zz,t) .
2g 1 28 S T2
Aangezien 2, =z, = 0,20fm], volgt dat

2(z,,t) =+ 22,0,2 = 4 (1I1)

2 E -
volzyst) = vilz,

Voor deze stroming geldt tevens dat het debiet in elke doorsnede gelijk is.

Mia.we.
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2 dan geldt er, dat

5 * R
Noemen we Al~gen A_ de oppervlaktes van Al resp. A

2

<
e
=
)
i
<
+i=
=
N

Oftewel

Gegeven is dat

Pl =D,

Substitutie geeft

Oftewel:

_ _8 /= [m/s].
Vo T15 Y 1

N.B. We hadden in dit vraagdtuk ook de snelheid in A_ kunnen geven om daar-

1

mee de diameter in doorsnede A_ te bepalen. Doe het zelf maar eens.

2
Een vertikale waterstraal (naar beneden) snoert dus altijd in bij aan-

wezigheid van gravitatie).

v

Daar we te maken hebben met een stationaire stroming zal de vloeistofhoogte

in het kanaal niet veranderen in de tijd.

M.a.w. we kunnen de vloeistofspiegel als een "vaste" wand beschouwen.

Aangezien we met een homegene ideale vloeistof te maken hebben, zal de verge-
1lijking van Bernoulli geldig zijn.

In een buis gebruikten we ds buisas als referentie, echter in deze stromings-
vorm 1s moeilijk zo'n as aan te wijzen. ‘

In deze stroming geldt echter dét de stijghoogte constant is over de dwars-

doorsnede. In dwarsdoorsnede A, is deze op hoogte 2

1
pl(z) - P ST

= h)
hl T + z (0 < z < z;)

P, t P8 (zl -z} - P,
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Dus de stijgheogte in dwarsdoorsnede Al is

hl = zl[m].

Evenzo is de stijghcogte in doorsnede A2

Nu volgt uit Bernoulli (stationaire stroming) dat de stuwhoogte in elke

dwarsdoorsnede gelijk is:

M.a.w.
v2 v2
1 2
2t 3g " %2ty (1)
(In een buis geldt dit langs de buis-as.)
De volumebalansvergelijking voor het balansgebied luidt:
bz v, = b(z2 - a) v, (11)
Oftewel
viZ, = (z2 - a)v2.

2 uitdrukken in v1 en Zl‘

We lossen daartoe z, uit (II) op en vinden:

We willen nu v

Deze gelijkheid substituren we in (1). Hetgeen resulteert in:

3 2 .
v, + { 2za vy T %8z, } vyt 282 =0

WV
2 11
Dus de relatie is een 3de machtsvergelijking die we niet zo maar even kunnen

oplossen., Meestal gebeurt dit iteratief.

Substitutie van de gegeven waarden geeft:
3 = #
v, = 31 v, + 40 =0
2 2
R e eSS e ey
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a) De traégheid van de duiker met constante vierkante dwarsdoorsnede is:

b)

c)

d)

a)

b)

Mo .. 50_5 s
T gA T 104 4 n2

De verandering van het debiet wordt bepzald door:

MR-y _y

i

dt 1 2°

(Hi = stijghoogte in dwarsdoorsnede Ai)
Uitwerking levert, dat

.

égg:a-Q—) g..Q_:.”L
4 dt dat 5

Met Q = A, v(x,t) = A v(t) volgt

dv _ 4 av _ 1 _ 2
dqt.Aaft--S -—*dt—s—O,Q (m/s%]

Doordat de peilen de eerste 10[s] niet veranderen blijft het stuw (stijg=)-

hoogteverschil over de duiker aanwezig, Uit (b) volgt:

19:-:—-—» Q(t) =

i

g

Dus het aantal [mal water dat in (0,10) uit de boezem strocomt is:
10 10
2
[ Q(t) dt = §-t2 J
o o)

Nee. zie b.

40[m3].

De traagheid van de buis tussen de vaste dwarsdocorsnedes Al en A2 is:

N3 10 400

BA 10,

M =

Fi=

De relatie tussen het debiet en het stijghocgteverschil over het vaste ba-

lansgebied tussen Al en A2 is:

dQ . o
MT S by

(hi = stijghoogte in dwarsdoorsnede Ai}.
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c¢) Voor het debiet in de buis geldt

400.4Q _ _Pi "B
_"a—;-10 (hl- v + z.)
29 . T, = =X ¢ (Vs
33 T g U = gt m/s] . (1)

Daar het debiet in elke dwarsdoorsnede gelijk moet zijn, geldt dus ook dat

het debiet Ql welke aan vat T toegevoerd moet worden gelijk is aan

Q, = — ¢ [m /]

1 40

d) Aangezien Q(t) = A(z) v(z,t) en de dwarsdoorsnede langs de buisas constant is

volgt dat

Q(t) = A.v(t)

Met (1) volgt, dat v{(t) = I% t, dus de vloeistof stroomt niet-stationair.
a) De traagheid van het balansgebied tussen Al en A2 is: h
_ & _ 300 _ ...2,2
M= K" T0.00 - ols™/mlL

b) De verandering van het debiet per tijdseenheid volgt uit de relatie

dQ _
Md'c‘ 1 hy.

(hi = stijghoogte in dwarsdoorsnede hi)"

- = - 1 &
Met hl h2 ha 2 volgt dat

oftewel met Q = A.v(t) (A constant)

av(o®) _ Q _ ha- 2

dt A 20

h -2
Dus de versnelling op tijdstip t = o ig B,

]
w
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Voor grotere t zal ha afnemen dus ook de versnelling van het water.

c) Aangezien het volume van het meer groot is t.o.v. die van het kanaal, mogen
we veronderstellen dat de snelheid in het meer congeveer nul is zodat er geldt
dat

dh

a _ ~ 2
B 5t ° Q met B = 5000[m"].

d) Voor het kanaal geldt bij benadering dat:

g
. dt a 2

1
to
'
=2

Differentiatie naar de tijd en substitutie van c geeft

2
BMg—-Q*(-12:—)-Q(t)=O
dt

a) De traagheid van de buis volgt uit
E

omdat het oppervlak van de dwarsdoorsnede variéert langs de x-as.

cu

M

i
0a [

>
~

%)

A}

Het opperviak ter plaatse van x is:

Alx) = 7. 1020 &t

Dus
106G “
" 1010 J dx = lO9 [ o 1 ]lOO lO6 - 10~
10.7 10 X w 3x3 10 37 3T

We zien hieruit, dat de traagheid vooral bepaald wordt door het nauwe buis-

gedeelte,

b) Voor het balansgebied, geldt:

dQ _
M3 T (Hy - Hy)
Aangezien de stroming stationalkr is geldt er dat T 0, dus
Hl = H2 (Hl is stuwhoogte cp x = 10)

(H, ™ " op x = 10C),
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Uitwerking levert dats: .

A Y
28 pg 1

Nu geldt dat zl'=

oM
Va 2 10

- - £
Py " Py 73

Met vi = lOeV

v2
.2
2 z2g °

Z, en uit het feit dat Q constant is volgt dat

s+ velgt er dat

Py ?2 = 250 (v2 10 v2)

4 -~ 250.107v

8 2
2

tel b.v. vl = 1[m/s] = v, = 10_4[m/s]

2

. N
=Py " Py - 250 [ =]

m

c) De traagheid van de moct wordt bepaald docr

g

A 10.A 5

8=Ra ‘
T I TN >
s=0

d) Dat we te maken hebben met een homogene idecle . vioeistof,
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ADVIEZEN TOETS 10 (Lees de doelstelling bij het adviesnummer)

1. Bestudeer

opnieuw Hoofdstuk II, de bijbehorende studievragen, de beweringen

1.1 t/m 10.3 en de aanvullende vraagstukken 1 en 2.

Probeer zelf vraagstukken te verzinnen.

2. Bestudeer

opnieuw de hoofdstukken III en IV, de bijbehorende studievragen,

de beweringen.l10.4 t/m 10.6 en de aanvullende vraagstukken 3 en 4. Verander

de gegevens in de vraagstukken en maak ze nogmaals.

3. Bestudeer

opnieuw hocfdstuk IV, de bijbehorende studievragen, de beweringen

en 10.7 t/m 10.8 en de aanvullende vraagstukken 5 en 6.

Probeer zelf nieuwe vraagstukken te ontwerpen en laat ze controleren op een

instructie.

4. Bestudeer
10.10 t/m

Maak zelf

5. Bestudeer
10.13 t/m

opnieuw hoofdstuk V, de bijbehorende studievragen, de beweringen
10.12 en de aanvullende vraagstukken 7 en 8.

nieuwe vraagstukken.

opnieuw hcofdstuk V, de bijbehorende studievragen, de beweringen

10.15 en de aanvullende vraagstukken S en 10,

Probeer zelf varianten te verzinnen.
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SAMENVATTING

In deze eenheid beschouwen we vlceistoffen, die nog wel onsamen-
drukbaar en homogeen zijn, echter waarvan we de schuifspanningen
binnen de vloeistof niet meer verwaarlozen.

Er zal blijken, dat afhankelijk van de viscositeit (coéfficient
van inwendige wrijving) en de snelheid van de vloeistof en de
geometrische vorm van de leiding waardoor de vloeistof stroomt,
twee stromingswijzen van de vlceistof mogelijk zijn en wel
laminaire en torbulente stroming.

Voor beide stromingswijzes worden bij stationaire stroming de
relaties bepaald tussen de stuwhoogte verschillen en het debiet
in enkele geemetrische configuraties, hetgeen resulteert in de
zgn. toestandsvergelijkingen, waaruit b.v. de weerétanden van de
geometrie volgen.

In laminaire stroming van een vloeistof blijkt de schuifspanning.
recht evenredig met de verandering van de snelheid over de door-
snede, terwijl in een turbulente stroming de schuifspanning even-
redig is met het kwadraat van die verandering.

Dit geeft reeds het vermoeden, dat de weerstandsverliezen in een
turbulente stroom groter zullen zijn, dan in een laminaire.

In de praktijk betekent dit, dat we turbulentie proberen te ver-
mijden door stroomlijning van een profiel in de stroomrichfing.
Om de invloed van plotselinge veranderingen in een dwarsprofiel
op het weerstandsverlies in een geometrie te laten zien worden

de zgn. Carnot-verliezen bepaald.

Tenslotte worden de toestandsvergelijkingen voor een buis met niet-
stationair debiet Q (:;“ZEEZizzﬁjv;;arbij we naast een weerstands-
effect bovendien een traagheidseffect in de buis in rekening

brengen.
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DOELSTELLINGEN

Het onderscheid kennen tussen laminaire en turbulente stromingen.

De betekenis kennen van het getal van Reynolds voor het onderscheid

tussen laminaire en turbulente stroming.

Zelf in een probleem uit kunnen maken of de stroom laminair dan wel
turbulent is. .
De wetten van Poiseuille en Dar@y kennen bij laminaire stromen.
De weerstand en de doorlating van een buis of kanaal of grond-'-'
lichaam kunnen bepalen en.het verband daarvan met hoogtes en
volumestromen.

De samenstelling'van weerstanden en doorlatingen in serie en
parallel kennen.

De wetten van Chézy en Carnot kunnen toepassen bij turbulente
stromen voor het bepalen van weerstanden en doorlatingen en daar-
bij blijk geven van het inzicht dat het verband tussen hoogtes

en volumestromen niet-lineair is en verschillend kan zijn voor de
twee stroomrichtingen.

Het kunnen opstellen van vergelijkingen door stroomvoerende vaten
met traagheid en tevens weerstand en voor combinaties van vaten
met hetzij traagheid dan wel weerstand.

Fysische dimensies kennen van de gebruikte grootheden.
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INLEIDING

In de eenheden 9 en 10 is steeds uitgegaan van de aanname dat

we te maken zouden hebben met vloeistoffen, waarin alleen isotrope
druk en geen schuifspanningen optreden.

In deze eenheid gaan we rekening houden met de schuifspanningen,
waarbij we onderscheid maken tussen laminaire en turbulente
stroming van de vloeistof.

In eenheid 9 is voor de spanningsvector ; in een punt in een -
vlceistof afgeleid, dat:

Fp2 -2,

De isotrope druk P is zo gedefinieerd, dat deze positief is

bij drukspanning. Dit in tegenstelling tot de definitie van
positieve spanning bij wisselwerkingen tussen puntmassa's.
Aangezien in een vloeistof bijna nooit trekspanningen kunnen
optreden (de uitzondering is cohesie), wordt hier druk positief"
gekozen en er geldt dus altijd;r 2 0,

Het minteken voor de schuifspanning t is een gevolg van de

gehanteerde tekenconventie in de Toegepaste Mechanica.

Zoals boven reeds is vermeld maken we onderscheid tussen laminaire
en turbulente stroming van de vloeistof.
Ter verduidelijking van deze stromingswijzes geven we het volgende

voorbeeld.

We beschouwen een stationaire stroming door een buis en meten
de snelheid in een vast punt P (zie figuur 1) met een daarvoor
geschikt instrument b.v. een klein meetschroefije, dat door de

waterstroom rond wordt gedraaid.
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fig.1 (b) fig.2

We registreren de snelheid v in P als funktie van de tijd t.
In een bepaald geval vinden we een registratie als aangegevén in
fig.2a, d.w.z. een constante waardevp De stromingswijze in de buis
noemen we dan laminair. .
Op een andere plaats b,v. Q vinden we dan eveneens een constante
snelheid met een (andere) waarde

In een ander geval vinden we een registratie als aangegeven is .
fig. 2b. De gemeten snelheid vertoont hier onregelmatige fluctuaties
t.0.v. een constante gemiddelde waarde&é' Dit wijst erop dat de

stroming turbulent is.

De waardev'p noemen we de ‘snelheid van de hoofdstroming in P,

De onregelmatige fluctuaties van 5% noemen we de turbulentie.

Een andere wijze om het verschil tussen laminaire en turbulente

stroming te constateren is aangegeven in fig. 3.

P . Py W~

(A) | (B)

fig. 3.
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In een buis of open kanaal wordt op een zeker tijdstip op een plaaté P
een klein voorwerp (drijver) in de stroming gebracht, dat door de
vloeistof wordt meegevoerd.

In een laminaire stroming (fig.3a) zal de baan van de drijver een
gladde rechte (of kromme) lijn zijn. ‘

In een turbulente stroming, vertoont de baan van de drijver onregel-

matige afwijkingen van een gladde 1i_‘j‘n.

Ogmerkingen:

de stroming, resp. de hoofdstroming was in de gegeven voorbeelden
stationair in de tijd.
Een laminaire stroming, resp. de hoofdstroming bij optreden van tur-

bulentie kunnen in het algemeen van de plaats en van de tijd afhangen.

Behalve het optreden van fluctuaties in de snelheid of de baan van
een drijver kunnen ook het optreden van onregelmatige druk of:énregel-
matig veranderende oneffenheden in de vloeistofspiegel wijzen op
turbulentie., Niet alle onregelmatigheden zijn echter aan turbulentie

toe te schrijven.

De meting met een meetschroefje is een voorbeeld van een Euler-beschrij-
ving van de stroming; de bepaling van de baan van- een drijver is een

voorbeeld van een LZgrange-beschriiving.

Praktische voorbeelden van laminaire en turbulente (%) strdming vindt
umig:
- het kielzog van een schip (%)
~ een langzaam lopende waterkraan
(overgang laminair naar turbulent)
- een lucifer in waterstraal {=)
~ de rock uit een schroosteen (=z)

w
- cumulgs-wolken die aan de horizon zichtbaar zijn (x)

Soms is turbulentie hoorbaar b.v. bij het ruisen van een beek.
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II. STROOMWEERSTANDEN IN LAMINAIRE STROMEN

II.I. Viscositeit en laminaire stromen.

We beschouwen twee oneindig lange platen A en B
waar tussen zich een viskeuze vlceistof bevindt,
dwz. een vloeistof, die inwendige wrijving heeft.

Veronderstel dat we plaat A in rust houden t.o.v.

het inertiaalstelsel Oxy en dat plaat B met een

constante snelheid ’\f'gx beweegt, _

In het algemeen zal er bij een vloeistofstroming langs een wand een slip
optreden en zal de snelheid van de vloeistcfdeeltjes niet gelijk zijn aan
de snelheid van de wand. Deze slip is echter alleen bij zeer lage dicht-
heden van belang, zodat voor normale viskeuze vloeistoffen gesteld mag
worden, dat de viceistof door adhesie aan de wand blijft "plakken™

dew.z. de snelheid ervan t.o.v. de wand is nul. ‘

De vloceistofdeeltjes, die tegen plaat A aanliggen zullen dus in rust

7iin, terwijl de vloeistofdeéltjes, die tegen plaat B aanliggen de snelheid
V'gx zullen krijgen. We veronderstellen de stroming van de viceistof .
stationair. ~
Om deze stromingstoestand als die in fig.4 in stand te houden blijkt empi-

risch, dat op de beide platen krachten moeten worden uitgeoefend.,
f ;

"=n_nnnt=_=m°¢un==_dh€f:. r2, Over een oppervlak A (zie fig.$5)

-+ ;
moet een kracht F e, naar links op

T | de onderste plaat werken-
:E?k"'AA s Deze krachten worden op de vloeistof
overgebracht. .
‘ q“*’Fé? Beschouwen we namelijk een doorsnede
o LA — S op afstand y van de plaat A, dan
{ig.5 (fig.8) blijkt uit een evenwichts-
S 4 beschouwing in de x-richting van het

mootje met volumen Ay, dat in de
doorsnede een kracht moet werken,
aangezien de vloeistof niet versneld

wordt en er geen andere krachten op

het mootje werken.

(De drukkrachten links en rechts

heffen elkaar op )
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We maken hieruit op dat er in de vlceistof een schuifspanning 7 = F/A heerst en

wel zodanig dat op ieder vlakje A A evenwijdig met de beide platen, door de

vloeistof boven dat vlakje (fig.5) op de vloeistof daaronder een kracht = AAi

naar rechts wordt uitgeoefend en tevens (beglnsel van aktie en reaktle) door

de onderste vloeistof op de bovenste vloeistof een kracht -t AA ex naar links,

Bij veel stoffen b.v. water, olie, lucht etc. geldt bij laminaire stroming voor

de schuifspanning t de wet van Newton.

T2 n

€1)

<l

Hierin stelt n de dynamische viscositeit van de vlceistof voor.

Bij deze stoffen vinden we dan ook in het bovenstaande probleem, daar T

constant is, dat:

?;?Yx= _T = constant  (2)
sy T
Daar Ve ¥ 0 voor y = 0O
Ve = voor y = a
vinden we na integratie van (2) .
V.. =¥
b ,
% o y - (zie figuur ) (3)

Oftewel het snelheidsverloop is lineair over de hoogte.

Uit (3) volgt tevens de grootte van de schﬁifspanning nl.

= 1 vb . (33)
..;.-

OEmerkingen:

1.

2,

De dgnamische viscositeit n is vrijwel onafhankelijk van de

druk, echter wel afhankelijk van de temperatuur,

Er zijn vele media, die niet aan de wet van Newton voldoen met n constant,

/

T P é;uspensies,colloidale oplossingen
klei //’/ aten, hicht, olie zoals blijkt uit neven-
pasta staande grafiek.
zalf _ cplastics Bovendien geldt (1)
: — alleen voor laminaire
(v ) stromen.

(oY)

Vaak wordt n geschreven als pv met de p de dichtheid envv de kinematische
viscositeit. De fysische dimensie van v is nl. [ﬁelé]hetgeen een kinematische

grootheid is.

e e
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tabel 1:

Enkele gegevens over dichtheid en.viscositeit

Verschillende stoffen bij QOGC.

P (kg/ma) v(mQISec) n fﬁ%fzz)
kwik 13600 0,114,107° 15,50.10 ~*
ether 720 0,316.107° 2,275.,10""
benzol 880 0,75. 1070 6,60 .10
water 1000 1,01, 1075 10,1 .107*
spiritus 850 1,51, 1078 12,8 .107%
lucht (bij 760 mm hg) 1,2 1,9 , 1078 0,179,107
glycerine 1250 8s0 . 107° 10625  ,107"

De invloed van de temperatuur op v

T8¢ Vv van water (m /ssd) v ¥z %gcygo(gifggé)

0 1,80 ,107° 13,0.10708

10 1,30 ,107° 13,9.107° i
20 1,01, 1078 14,9,107°

40 0,661,10"° 17 ,107®

60 0,482.107° 19,2.1078

80 0,368,105 21,7.1078

100 0,296.10"° 24,5,107°

Gegevens voor atmosferische lucht volgens standaardatmosfeer: ARDC 1959

hoogte t % ’(kg/ma) v (m2/sec) n(%%;;c)
zeeniveau 15 1,225 14,6.10° 0,1788.10™%
1000 m 8,5 1,111 15,8,10"° 0,1755.10™"
5000 m - 17,47 0,735 22,1.107° 0,1624,10™"
10000 m - 49,90 0,412 35,3.107° 0,1454,107%
20000 m w55, B 0,088 159,9,107° 0,1407.107%
» = dichtheid |

v = kinematische viscositeit = n / o

n = dynamische viscositeit

kg= kg massa.
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Met behulp van de wet van Newton zijn alle viskeuze schuifspamningen in
een vloeistof te bepalen, d.w.z. alle schuifspanningen, die het gevolg zijn

van de inwendige wrijving van de vloeistof zijn met (1) te bepalen,

Studievraag 11.1: Bepaal de schuifspaming in water bij laminaire

stationaire stroming tussen twee platen. Gegeven v, = 1072

[m/é] en a= 10720 yoor gegevens van water zie tabel 1.
2= 20°8,
Een in de praktijk veel voorkomend stroomvoerend vat is de buis. e
Voor deze geometrie zullen we in eerste instantie het snelheidsverloop over
de dwarsdoorsnede bepalen. ' ‘

We beschouwen een stationaire stroming door een cilindrische rechte bgis
met constante diameter d=2a. De vloeistofdeeltjes bewegen evenwijdig met‘ﬁé
buisas, die we als x-as kiezen.

Zulk een stroming noemen we laminair. De vloeistof stroomt in de x-richting,

en is onsamendrukbaar, en homogeen.

—

De vloeistofbeweging in de buis is stationair d.w.z. dat de snelheid v -

van de vloeistofdeeltjes een funktie is van de plaats, dus v= v.(x,y,z).
gv_ . : %
= o

echter niet van de tijdparameter t, dus ==

ot
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Omdat we te maken hebben met ggﬁygﬁzgzendrukbare vloeistof is
het debiet Q door de buis onafhankelijk van x (zie eenheid 10).
Daar de doorsnede A = 7 a2 onafhankelijk van x is, zal dus ook
de snelheid VY onafhankelijk van X moeten zijn.

Met andere woorden er geldt dat V =V (ysz).
We veronderstellen de stroming rctatiesymmetrisch, er volgt dan
dat V=V (r) met r2 = Y2 + 22.

Teneinde de snelheidsverdeling van de vloeistof over de

dwarsdoorsnede van de buis te bepalen, stellen we een impulsbalans

op. We kiezen een balansgebied GB, dat begrensd wordt door twee
dwarsprofielen S en S2 op afstand £ wvan e’lkaar en verder door een
cilindermantel S3 met straal r < @, We stellen de balans op voor

de X =-gerichte impuls.

Voorlopig laten we de invloed van de zwaartekracht buiten beschouwing.
Gezien het s:zationair zijn van de vloeistofstroom betekent dit,

dat de druk P alleen nog van de Xkan afhangen dus PP (x)

Studievraag 11.2: ' Probeer aannemelijk te maken, dat de druk P
ntet van ¥ en 2 afhankelijk is.

In de dwarsdoorsnedes S, resp. S, werkt in de X-richting een drukkracht

- 2 -+ . . e
F1 = p, T ro-e resp. ?2 == p,mr e
(P1 is de druk op S1, P, de druk op S, De drukkracht van S, op GB werkt

niet in de x-richting).
Daar we te maken hebben met een laminaire viskeuze stroom geldt langs de

cilinder S, de wet van Newton.

. dv

Langs S, werkt dus een schuifspanning 1 _-n r i

3
Het min-teken ontstaat, doordat we nu niet zoals in fig. 6a vanuit
de wand meten, maar naar de wand toe (fig.7).

Aangezien de stroming rotatiesymmetrisch is, geldt dat:

Y N rsa-y
‘ zodat
a TEn vy = I dr =-n Jwy
el P 4 Sr dy 3T
combinatie

fig, 6a en 7.
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Dit resulteert in een schuifkracht lang 83 ter grootte van :

+ > + . dv .

£3 =--'t'.0PPS3.ex =1 2wrle =2wrlndr e

in de richting’

Omdat de snelheid v alleen een funktie is van de straal r van

de buis en niet van de tijd, geldt voor de impulsbalans in de

x-richting, dat:
-

- > 4 e -
Ft'FQ"rs:-Et (p) =0
Oftewel:

Hier uit volgt, dat

:-p.--pz

Iﬂ— (4)

De randvoorwaarde v:0 op r=a geeft bij integratie van (2)

2 v
r dr

de snelheidsverdeling volgens Poiseuille:

v(r) = p ~P, (32-r2)

4 1n _ (5)

Ook wel wet van Poiseuille genoemd.

De wet is tegelijkertijd door Hagen en door Poiseuille empirisch op-
gesteld. Vaak wordt daarom ook wel van de wet van Hagen of van Hagen-

Poiseuille gesproken.

snelheidsverdeling in de buis.

fig. 8

Opmerking: De stroming van het bloed in de aderen is b.v.

een Poiseuille stroming.
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In het voorgaande hebben we vooralsnog de invloed van de
zwaartekracht buiten beschouwing gelaten.
Teneinde de invlced ervan duidelijk te maken, plaatsen
we de buis vertikaal in een locaal gravitatieveld met versnelling
- 3 2:

E="2g. ¢ [" . ‘/\q
4L .,;.__,Ldi

L | F

| {
—~ P L—\x&—————~-~~--~->3

i

£ig. 9 C

We beschouwen daartoe de opstelling van fig. 9.

De waterstand in bak B wordt steeds op het niveau § gehouden
door vloeistof in de bak bij te gieten (debiet Q).

Het vloeistofniveau C onderaan de buis is constant en staat
een niveau § boven de uitstroomopening van de buis.

De grootheid Sveronderstellen we zeer klein.

We kunnen nu geen mootje uit de buis beschouwen aangezien
de schuifspanningTeen drukverloop in de buis geeft en daarom
nemen we een vloeistofmoot (cilindervormig) over de gehele
lengte £ van de buis.

De stroming in de buis veronderstellen we weer laminair en
stationair, en we verwaarlozen de invloed van de vloeistof-
hoogtes & ( §<<%.).

De vloeistofspiegels B en C staan in direkt contact met de
buitenlucht, dus er heerst een atmosferische drukp

Bij het opstellen van de impulsbalans moeten we ook de
volumekracht G van de vloeistofcilinder in rekening brengen.
De impulsbalans voor het gebied, begrensd door 31.,82 en de

cilindermantel Sé, levert dan:

-> -

G+? + F +? =£12=—(?
5 So S5 dt

Oftewel:

2 >

~Pa wp? 2 €.t D e g pELTE ez— 2Wrl o dve =-5’
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Hieruit volgt, dat:

+<gg_l =+ ﬁg

In

dv
dr

o B IS

(6)

Integratie van (6) met randvoorwaarde 9=0 op rz levert:

vir) = RE (5207 (1)

Na deze introductie van de zwaartekracht bij een vertikale
buis gaan we terug naar de horizontale buis, die nu,geplaatst
is in een locaal gravitatieveld. ‘
De vloeistof stroomt weer laminair en stationair en voldoet

aan de wet van Newton.

' S.
S’H »‘, ,L lq
- 1 Vo
v S
i id‘zp'>&
Ly
fig. 10

De zwaartekracht, die nu op de vloeistofmaterie werkt geeft
een drukverloop over de dwarsdoorsnede van de buis.
Veronderstellen we de druk op de oppervlaktes van de dwarsdoor-
snedes S{ en -SQ- resp. p;° en p:, dan is het drukverloop over S

(zie fig. 11a) en de drukverloop over $2 (zie fig. 11b)
w .

4 ' ".
: . % A
s :___.""" S; y E\.
P 5 ':":: P X
,’;—'»—’ t‘
oo g S
et
B S s e
2p32 B S, . 'Sy WG X
fig. 1a fig. 11b

De drukbijdrage van de zwaartekracht is dus in elk punt op hoogte " Z
in beide dwarsdoorsnedes gelijk en levert dus geen bijdrage aan de
impulsbalans voor een gebied begrensd doorS1,Sé'en de cilinder-
mantel Sfé

Uitwerking van de impulsbalans levert dus voor de snelheidsverdeling
over de dwarsdoorsnede (zie (5) )

v ()= pimpg (a°-r’) (8) .
. 4 n
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Studievraag 11.3: Toon wiskundig aan, dat de snelheids—

verdeling (8) juist %s.

Tenslotte beschouwen we een buis, die onder een helling in een
locaal gravitatieveld ligt.

De stroming veronderstellen we weer laminair

’
. l? . en stationair en de vloceistof voldoet aan de
\ wet van Newton.

De buisas maakt een hoek (w-& ) met delposi-

~ ‘e
- S ~~.

‘*-\\" ’ ey, . tieve x-as. De zwaartekrachtsversnelling is

4 T~ [ o % * 2 -

~ S & g == g ez
o A 7% De drukverdelingen in de dwarsdoorsnede § en
2

,)(,‘3_ 12 * S, t.g.v. de (volume) zwaartekracht is weer

hydrostatisch. )
Veronderstellen we de (oppervlakte)-druk in S,en 82 B, resp. p, -,_' dan
levert een impulsbalans voor het gebied omsloten door 'S1,'S° en Sa.
rekening houdend met de vlceistofmaterie in de cilinder.

(hydrostatische verdelingen vallen tegen elkaar weg)

2 > _ I .0 -+ - ij_! -> o <>
P‘ T e p;L ™ ex, + pglm rCose ex( + nrl o ex\ (o)

&

Uitwerking levert met de randvoorwaarde

V=0 op r=a
2 2 .
virF(a -r7) { (py -» +?.g lcosa ,} (9)
4 2n .

Nu geldt dat lcos = 2y "%y

met Z,, de plaatshoogte het middelpunt van S, en Z, de plaatshoogte
van het middelpunt S2 .

Oftewel (9) is te schrijven, als

vi(r) a?.-r .

42n g Pyt przy) = (p, + prz,) ) (10)

De stijghoogte was gedefinieerd als

€45 p; + ?gzi),' dus de snelheidsverdeling in een buis, met laminaire,

stationaire stroming van een vloeistof, die voldoet aan (1) is:

2 2
v(r) = pg (a°-r“) {h. -h_}
B T (11)
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Met de kennis van het verloop van de snelheid over de doorsnede

kunnen we de relatie bepalen tussen de velumenstroom Q en de

stijghoogte-verschil (hy-h N

3
-7 27%¢r= omtrek.~> opp. 27rr dr.

Het debiet Q is gelijk aan

o j\rdA . oftewel met (11)
A
fig. 13 .
§¥ “
Q¢ =\v. 2%rdr = a .
) s (mm) (12)

Deze formule geldt strikt genomen met by en h,in de middelpunten
van S, resp. S » echter de stijghoogte is ongeveer constant over

deze doorsnedes.

Studievraag 11.4: Maak aamemelijk, dat de stijghoogte alleen afhangt

van ¥y, dus constant is over de dwarsdoorsnede.

Vgl. (12) is ook te schrijven als

= K (hy-h &) (13)
We noemen K in (13) de doorlating van de buis en deze is:
K= g a g T l+
Lol 1’{1 Bt

Omgekeerd is ook te stellen, dat:
(h1 ‘h) = RQ (15)

met Rz (K) "1 de weerstand van de buis.

In het algemeen kan voor een buis met constante, doch willekeurig
gevormde dwarsdoorsnede, de doorlating van de buis bepaald worden

met:
K= c?g du

Waarin 1 de lengte, d een kenmerkende dwarsafmeting en C een vorm-

coéfficient van de buis is.
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Voor een buis met elliptische dwarsdoorsnede geldt b.v.

. 4/ a_ b . _m
Als we voor d nemen: d = ;Q-;—Se dan :Lscl4

met a,b de lange en korte halve as van de ellips

Voor een buis of open kanaal met rechthoekige dwarsdoorsnede

:

a 4 a?,b

u
dan is c= 16 Als d= A4 ab3 voor een buis
kg ' ' "

> —

b
De waarde van Ko voor verschillende waarden van a worden gegeven

in ondergtaand tabel ( -E =1 correspondeert met een vierkante

buis en a =o met een spleet).

TABEL II
b ) .
a = f 1,0 .9 8 .7 rs ,.5 A rz ‘ A ’* 0
kg I 28.44 I 25.73[ 23.22‘ 21.09|19.17]17.u9]15.oul1u.80l13.73112.81’ 12.00

De beweging van een vloeistof in een open kanaal met lengte L en breedte a
en diepte D is dezelfde als in een helft van een rechthoekige buis met de
afmetingen %,a,2D.

De doorlating van het kanaal is twee keer zo klein als die van de buis.
Voor een kanaal hebben we dus (als a & 2D).

L -
c-ko d= D a

Met K, bepaalt uit bovenstaande tabel als men 2D i.p.v. b kiest.
a - a

Studievraag 11.5: Door een buts met straal a=0,5 ['mJ wordt een

vlceistof gepompt, over een afstand van 1000 ["j
- 0,5%2] on oo 200] 4
N1 O’S[ms en p= 900 3

Bepaal de weerstand van de buis.

Aan welke eisen moet de stroming voldoen ?
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Studievraag 11.6: Bepaal de fysische dimensies van R en K.

Met de snelheidsverdeling van Poiseuille hebben we de snelheid op

elk punt in de dwarsdoorsnede bepaald.

Een vaak gehanteerde snelheidsgrootte is de gemiddelde snelheid

over de dwarsdoorsnede gedefinieerd door

_Q Q = voclumestroom
v vy

gem A= oppervlak dwarsdoorsnede

In eenheid 10 hebben we de gemiddelde snelheid gedefinieerd als

v :.§=
gem eA &

Studievraag 11.7: Bepaal de maximale snelheid in de Poiseuille

verdeling in de buis met mrkelvomge doorsuede
als deze horizontaal ligt. Bepaal tevens de
gemiddelde snelheid.

Studiévraag 11.8: Wat is het effect op de resultaten van een snel-
heidsverdeling, als een gefdealiseerd tot ideale
viceistof?

Bij welke waarden ven n verschillen de resultaten

van de berekeningen minder dan bijv. 5% van de
Jutste waarden?
b
Studievraag 11.9: Verklaar de invloed van de verhouding a op R, in
tabel II.

Opme rkingen

1. We hebben nog steeds te maken met laminaire stationaire stroming

van een vloeistof, die aan de wet van Newton voldoet.

2. Als we te maken hebben met sta‘ciohaire stroming door een rechte buis
- met variabel dwarsprofiel moet vgl. (13) geschreven worden als:
Q=K (H, -H,) (15a) ’
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waarbij de snelheid in S1 en S2 in overeenkomstige punten b.v. de
middelpunten moet worden gekozen.

In (13) geldt namelijk dat Y12 in S, = ¥22 “in s

. 2°

2g 2g

De in (15ajebruikte grootheid
H'.i".i’;"\,"’ z; +Y£ is de in
pe a8

eenheid 10 geintroduceerde stuwhoogte.

3. Op plaatsen waar buizen of andere Stroomvoerende leidingen
overgaan in andere vaten, evenals in de nabijheid van vloeistof
spiegels van vertikale buizen is de Poiseuille verdeling niet
meer van toepassing.

Meestal wordt de afwijking van de Poiseuille-vérdeling ver-
waarloosd. In het eerste geval speelt de ontwikkeling in de
grenslaag een rol, terwijl in het tweede geval de oppervlakte-

spanning een belangriijke rol speelt.

4. Een relatie tussen het (stuw-of stijg-) hoogte-verval en
"~ het debiet kan als een toestandsvergelijking van de buis

worden opgevat.

Buizen in serie en parallel.

We beschouwen opnieuw laminaire, stationaire stroming van een
vloeistof, die voldoet aan de wet van Newton.

Veronderstel dat twee buizen met verschillende dwarsdoorsnedes
gekoppéld zijn via een geleidelijke overgang, waarvan de
extra weerstand te verwaarlozen is ( zie fig. 14).

1Sy S3 Sa

3 Buis 2 opp A;

Buis 4  oPP A,
fig. 14

Het debiet Q stroomt van links naar rechts.

Dan geldt er voor buis 1, dat het debiet Q van de vloeistof gelijk
is aan (154)

( H,-Hy) = R.Q (16)
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Met (H1- Ha) het verschil in stuw hoogte in punt 1 en 3.
R1 is de weerstand van buis 1.
Het debiet Q door buis 1, gaat ook door buis 2 (behoud van volume),

dus voor buis 2 geldt, dat
H3-H2 = R2 Q (17)
R2 is de weerstand van buis 2,

Sommatie van de vlg (16) en (17) geeft:

(H,-H,) = (R,+R,) Q.

Oftwewel voor twee buizen in serie (de een achter de ander) kunnen de
weerstanden van elk der buizen opgeteld worden in de toestandsvergelijking
voor de totale stroomgeometrie.

Voor de doorlatingen is het verband ingewikkelder.

Dit geldt ook voor meer dan twee buizen.

Beschouwen we twee buizen, die parallel (naast elkaar Jaan elkaar lopen.
met doorlatingen resp. K1 en K2, dan geldt, dat het debiet Q zich splitst
in twee debieten Q, en_Q2 zodanig dat Q1 + Q, = Q (wet van behoud

S : van volumen)
/ - 8, Voor- buis (K1)Ageldt:

i, - — L2 Q, = K, (H1;H,) (18)

—

Y Qz= K, mf‘_"g) , (19)
fig. 5

Sommatie van (18) en (19) geeft

Dus voor twee (meer) parallelle buizen kunnen de doorlatingen
van elk der buizen worden opgeteld in de toestandsvergelijking voor
het gehele stelsel. Nu is het verband van de weerstanden de moeilijkere,

1 Ry Ry
Studievraag 11.10: Q

2
Ry

R Re

Bepaal de toestandsvergelijking voor de bovenstaande
configuratie van buizen met Ri :(1’{7:)_7 1=7,2,3,4,5.
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We zagen dat van buizen in serie de weerstanden van de buizen
gesommeerd mogen worden teneinde de weerstand van de gehele configuratie
te bepalen.

Intuitief voelen we aan dat vernauwingen (bottlenecks) in buizen
(of andere geometrién) een hogere weerstand zullen hebben dan wijde

delen van de buis

VOORBEELD

We beschouwen twee buizen met cirkelvormige dwarsdoorsnede die’

onderling verbonden zijn,

We veronderstellen, dat de verbinding

tussen de buizen geen extra wrijv1ng onder~’

evert.-
g%ameter van buis 1 is Dy = 1[m] ,

terwijl D, = 0,1 [m] .
De lengtes 2 ,ep %, zijn b.v. 50 [m) .
Uit het feit, dat de buizen in serie liggen, volgt voor de

toestandsvergelijking voor de totale configuratie

(611'“2) = (R *R ) Q

(R1 + 1) 0 (20)
r

2

Uit (i4) en (15) volgt voor de weerstand

=.128 In B = 128 1n
Pgw D1u en voor R, = ?gn D,4

Substitutie in (20) levert:

Ho-Hy= 128 1n 1, p,*
: . +1) Q
pe D, % Ly

Substitutie van de gegeven waarden in de verhouding

R,

— geeft:

R,
H.-H_=R (10"%1) o.
17H=R,

Er blijkt uit dat de invlced van de weerstand R 10.000 keer kleiner is dan de

weerstand R2 en dus meestal te verwaarlozen.
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Studievraag 11.11: Bepaal de verhouding 22 als we eigen dat de
) weerstand R, 5 procentzgf'minder 18 van de
weerstand Ry als D= 1[mjen D, = 0,7 [m].

OPMERKING:Steeds werd aangenomen dat de verbinding tussen de twee
buizen geen extra wrijving geeft.

Als de overgang geleidelijk is, kan men dit binnen zekere grenzen
verdedigen, echter bij abrupte overgangen is dit zeker niet het
geval. Ook blijkty dat de weerstandsverliezen bij een versnellende
stroom (van grote naar kleine diameter) kleinerp zijn dan bij een

vertragende stroom (omgekeerd).

II.II. Stroming door een poreus materiaal.

In een doorlatend, korrelig materiaal (bv. grond) vormen de porlen
kanaaltjes waar vlceistof doorheen kan stromen (grondwaterstroming)
De stroming veronderstellen we laminair en stationair.

We beschouwen een vloeistof die voldoet aan de wet van Newton.

We beschouwen een blok materiaal met lengte % en constant dwarsprofiel A,
z

Fig, 16 PRt

f—vasia £ >
Stel dat er door oppervlak A een debiet Q in de x-richting gaat.
We noemen dan § = q gx = ﬁL;; het specifieke debiet (ook wel de
filtersnelheid (21) A

(een debiet per coppervlakte eenheid noemen we specifiek debiet met
fysische dimensie fm/s} » dus de dimensie van een snelheid).
Tussen het specifieke debiet q en het stijghoogteverschil (h —h )

bestaat een relatie

g =k (h;-h,)

(22)
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Deze formule (22) wordt de wet van Darcy genoemd.

Hierin is k de doorlatendheid van de grond..De doorlatendheid is
afhankelijk van de grootte van de korrels en de porién tussen de
korrels en de soort vlceistof.

Soms schrijft men de doorlatendheid dan ook a ls:
c.g :
k= v.d (23)
waarin &x een coéfficient is voor de vorm van de korrels.
§: een maat is voor de afmetingen van de korrels
v: de kinematische viskositeit is van de vloeistof.

g. de grootte is van de zwaartekrachtsversnelling'.

In tabel IIT is de k-waarde van enkele materialen opgenomen, als er

water door stroomt.

Met (21) en (22) is de toestandsvergelijking voor een boreus

materiaal te bepalen nl.

- -1 A o
Q= qA =k i (h1 h,) (24)
Oftewel de doorlating K van het blok is
- A
K= k 1

Tabel III
materiaal k-waarde voor water door materiaal
grofzand 107" -1073 Em/s]
fijnzand 1075 -107% [m/s}
veen 107% T107? [n/s)
klei 107117107 [ars)

Studievraag 11.12: Bepaal de doorlating K van een grondlichaam bestaande
uit grofzand (k-waarde 70-3[m/§7met lengte 2,=20[ m_]en
dwars doorsnede A met opperviak 10 [EJM de lengte-

richting van het lichaam.
De getransporteerde vloetstof is water.

Studievraag 11.13: Bepaal de fysische dimensies van k en—g-
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II.III. Criterium voor laminaire of turbulente stroming.

(Getal van Reynolds)

In het voorgaande hebben ve steeds verondersteld, dat de stroming
laminair was. In de civiele praktijk komt een -zuiver laminaire stroming
weinig voor en hebben we meestal te maken met turbulente stroming.
De wijze waarop een vloceistof stroomt wordt vooral bepaald door de

grootte van het getal van Reynolds (Re)

Voor dit getal geldt:

R = fvid (= wv.d) (25)
n v
waarbij

v: een kenmerkende snelheid van de stroom (meestat wordt hiervoor
gekozen de gemiddelde snelheid over de dwarsdoorsnede)

d: een kenmerkende dwarsafmeting van de stroomvoerende configuratie
(bv. voor een cirkelvormige buis de diameter)

p: de dichtheid van de vloeistof.

n: de dynamische viscositeit van de vloeistof.

v: de kinematische viscositeit van de vloeistof.

Als we voor een cilindrische rechte buis de diameter ervan voor de
kenmerkende dwarsafmeting d kiezen, dan geldt dat de stroming
laminair is als Re <300 en turbulent als Re $2300 (proefondervindelijk
vastgesteld).
Het overgangsgebied ‘300 < Re <2300, waarin beide stromings wijzen
naast elkaar voor kunnen komen wordt in deze eenheid niet beschouwd.
Voor een kanaal, waarvan de waterhoogte klein is t.o.v. de breedte

van het kanaal, geldt dat de stroming laminair is, als:

Re <1200
en turbulent als:
Re ¥ 9200.

Voor de kenmerkende dwarsafmeting wordt in dit geval de waterhoogte
gekozen.

U zult opgemerkt hebben, dat deze Re-waarden vier keer zo hoog
zijn dan in het geval van de buis.
Dit hangt samen met de andere snelheidsverdeling in het kanaal en

de vorm van de dwarsdoorsnede.
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Hierop gaan we echter niet in.
In het algemeen kunnen we stellen, dat -in een bepaalde leiding,
de kleinste dwarsafmeting de grootste invloed heeft op het
getal van Reynolds, aangezien de invloed van de wanden op de

stroming langs die dwarsafmeting het grootst -is.

Studievraag 11.14: Van een ronde buis ts de diameter 0,10 [mJ

Het debiet is 0,10 [m°/s] . Is de stroming
laminair of turbulent?

Wat kunt U zeggen van de viscositeit als
de stroming laminair ts?

Studievraag 11.15: Door een kanaal met breedte 20 [ﬂ_l] en

diepte 3 [ m] stroomt water.

Het debiet is 9 [m’/e .

De kinematische viscositeit van water
is v= 1,0 10°% m’/s bij 2CC.

Is de stroming turbulent of laminair?

Turbulente stroming in een kanaal of buis

Bij grote waarden van het getal van Reynolds wordt de stroming
steeds en overal in de dwarsdoorsnede turbulent. _
Laminaire stroming is dan alleen nog mogelijk zeer dicht langs

de wand, in de zgn. laminaire sublaag.

Teneinde dit duidelijk te maken beschouwen we de snelheidsverdeling
bij een turbulente stroming door een buis.

De hoofdstroming (zie inleiding) vertoont dan een verdeling als
»r

aangegeven in nevenstaand figuur.

De snelheidsverdeling van de hoofd-
» v sStroming is vergeleken met de

Poiseuille verdeling bij laminaire

stromen, over een groot deel van

het dwarsprofiel gelijkmatiger,
doch nabij de wand (bodem) wordt de verandering van de snelheid
met de plaats (%}) zeer groot.

Voor de hoofdstroming moet gerekend worden met impulstransporten

t.g.v. turbulente schuifspanningen, die men ook wel schuifspanning

van Reynolds noemt.

Naast deze turbulente schuifspanningen treden echter ook nog

viskeuze schuifspanningen op.
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In een stroming door een buis of een kanaal kunnen we nu drie

gebieden onderscheiden.

laminaire

£

-

snelheidsverdeling in

volledig een turbulente buisstroming.

turbulent
oveXgangs- gebied.
ied
e

; y=afstand tot
| de wand. ¥

&)

(viskeuze)sublaag 4

fig. 17

1. Viskeuze (laminaire) sublaap- Hier zijn alleen viskeuze schuif-

spanningen werkzaam, omdat naar de wand toe de turbulente

fluctuaties steeds kleiner worden.

Deze laag is zeer dun.

Overgangsgebied waar turbulente en viskeuze schuifspanningen

van dezelfde orde van grootte zijn.

Volledig turbulente gebied waar de viskeuze schuifspanningen t.o.v.

de turbulente schuifspanningen verwaarloosbaar zijn.

De grootte van de drie onderscheiden gebieden is sterk afhankelijk

van de waarde van het getal van Reynolds. Hoe groter het getal van

Reynolds is, des te kleiner zijn de viskeuze sublaag en het

overgangsgebied.

fig.18 Volledig ontwikkelde snelheidsprofielen voor stromingen

door gladde buizen met cirkelvormige doorsneden.

0,8, |
? amina
"/a‘l 0,6 7 = t-(rR)
04" Vo x
b
0.2/
0,2 -
0,4 "
- U}
0,6 turbulent v/"mx - [""E)nm‘t N
0,8
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We zien in fig. 18 in dezelfde buis duidelijk het verschil +ussen

de énelheidsprofielen voor laminaire stroming en die voor turbulente
stroming. Dit verschil wordt verocorzaakt door de grotere turbulente
schuifspanningen ten gevolge van de turbulente beweglng van de
vloeistof.

Voor de drie onderscheiden gebieden zijn experimenteel of met
behulp van een theorie formules opgesteld waarmee de snelheids-
verdeling bepaald kan worden.
Voor de viskeuze sublaag geldt de theorie die voor een laminaire
Stroming is afgeleid. (zie hoofdstuk II van deze eenheid).

Voor het overgangsgebied en het volledig turbulente gebied zijn

de formules aanzienlijk ingewikkelder dan voor een laminaire
stroming. '

De formulering van de snelheidsverdeling van de hoofdstroom valt buiten
het kader van b 8.

We vermelden enkele in de praktijk gebruikte weerstandsformules

zonder op de theoretische achtergrond in te gaan.

III.I Stromingsweerstand volgens Chézy:

z, 2
y S,
! - ¢ S2
i »
B 4
| O' e, v % ] a
L ) . ool (VY 7*

o
We beschouwen een kanaal met een verhangI~s1nd, diepte a en breedte hL¥7a .
We kiezen twee 1nert1aal stelsels Oxz metT? evenwijdig aan de

L |
zwaartekracht en O X Z. met e£> evenwijdig aan de bodem van het

)
kanaal in de stroomrichting.
We veronderstellen,dat de stroming in het kanaal turbulent is
(Re 79200) met stationaire hoofdstroming, oftewel dat het debiet
door elke dwarsdoorsnede gelijk isen constant.
Uit de veronderstelling van een constante dwarsdoorsnede volgt dan
dat de waterhoogte a overal gelijk is.
Daar we het kanaal breed verondersteld hebben laten we de invloed
van de oevers buiten beschouwing.
Uit de aanname, dat de hoofdstroming stationair is, in de x‘-richting volgt dat de
gemiddelde druk over de hoogte verloopt volgens de hydrostatische
drukverdeling.
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Als we een impulsbalans opstellen voor een balansgebied bestaande
uit een kanaalgedeelte met lengte & tussen de twee dwarsprofielen
S1 en 82 ,» dan volgt dat de schuifspanning toeneemt met de afstand

tot de bodem en volgt voor het debiet Q: ( zie aanvullend vraagstuk 1 )
Q = abCy¥ al (26)

waarin: a: de waterhoogte
C: de constante van Chézy
b: de breedte van het kanaal

I: net verhang van het kanaal

Dit is de zgn. formule van Chézy. Chézy heeft (26) uit empirische

gegevens afgeleid.

Studievraag 11.16: Ga de tnvlced na van elk der pa_rameteré
a, b, cen I op het debiet @ in (26).

Onder de aannames. t.a.v. gelijke snelheidsverdeling en geliijke

drukverdeling in beide dwarsdoorsnedes S] en §, volgt voor het

2
stijghoogteverschil over een lengte &:

- = {
h1 h2 21 {27)

Substitutie van (26) door eliminatie van I geeft

L 2
hy, = h, 5 ——p—. 0Q (28)
CY
1 2 a“b2C2
Met @ = Avgem ( vgem is de gemiddelde snelheid over de doorsnede,
A is het oppervlak van de dwarsdoorsnede)
volgt:
A 1Vgenl E gen! | '
h, - h, = —2=£" g = I - ( A= ab) (29)
1 2 3 2.2 2
ab'¢ aC A

De weerstand R van §et kanaal is dus:

LAY enl '
R . (30)

aC2A
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Uit {30) zien we, dat de weerstand R snelheidsafhankelijk is, d.w.z.
als de gemiddelde snelheid toeneemt, ook de weerstand toeneemt in

tegenstelling tot wat we bij laminaire stroomweerstanden vonden (H.II'.)

Studievraag 11.17: Ga de invlved na van elk der faktoren in

het rechteriid van (30) op de weerstand.

In de Nederlandse praktijk wordt vaak de formule van Chézy als
volgt gebruikt:
m———
apth_-h,)
5 -~ 172
gem E

: C
¢
In plaats van de coéffici&nt C, die de dimensie mig”! heeft, wordt

vaak een dimensieloze co&fficidnt A = 8C /g ingevoerd, waarvan de

grootte te stellen is op:

-

gj : ‘~-€’ = g = 50 & 1000, met een geschikte middel-
ct ' waarde van 200. O

Dan is he wverband met (30}

8 isvgem‘
R == (31)
A aAg .
Voor een rechte buis met constante clr\kelvormlpe dwarsdoorsnede vinden

we voor de weerstand:

ilv

R =4 gem' .

ak  c(C+7,7) ‘ t82)
Studievraag 11.18: Bepaal de weerstand van een buis met a=0,5[mf
=1 [;r /8l € = 50 en de lengte 10° [m] is.
De szematzsnhp viscositeit van de vloed i8tof

is 10~ Lmz/s] .

Waé zou de weerstand zijn ale de viceistof

Laminair stroomde ?
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ITT:11 Grenslegen

In de inleiding van hoofdstuk III hebben we reeds een introductie
gegeven van het begrip grenslaag. Bij elke stroming van een
vlceistof of gas langs een wand {cever,bodem, buiswand, brugpijler,
scheepswand, enz) wordt de stromende materie afgremd, waardoor een
laminaire sublaag ontstaat. s s !

Het invoeren van het concept van de grenslagen is daarom belangrijk,

omdat: Hprrdsyor ﬂ*j’?

= ermee na is te gaan, hoe een stroming zich in ' de lengterichting
van een buis of kanaal ontwikkelt.

- Het loslaten van grenslagen bij scherpe overgangen in een
dwarsdoorsnede in de lengterichting extra weerstanden geeft
en daarom vaak moet worden voorkomen (zie ook volgend hoofdstuk )
Hierin ligt ook de reden dat vele nitstroomopeningen en lichamen

die dcor een vlceistof of gas bewegen gestroomlijnd worden.

ITI.III Stroming bij. profielverandering.

Bij min of meer plotselinge veranderingen van het dwarsprofiel
van een buis of kanaal (verwijdingen, vernauwingen, drempels,
bochten, obstakels) kan een aanvankelijk matig turbulente of
laminaire stroming door het loslaten van de grenslaag plaatseliik
een sterk met de tijd Ffluktuerende stroming vormen (turbulentie).
De turbulentie neemt meestal toe als de gemiddelde snelheid
afneemt in de stroomrichting (vertraagde stroming) b.v. bij
een verwijding.
Bij een vernauwing neemt de gemiddelde snelheid toe (versnelde
stroming), waardoor de turbulentie niet zo erg zal toenemen.
In een vertragingsgebied worden plaatselijk de snelheidsveran- }
) o .w,,uwh'»,
deringen zeer groot, wat aanleiding geeft tot zeer grote /fmﬂmm

turbulente schuifspanningen en dus weerstand.
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7

Wrijvingsverlies’volggns Carnot bij een stroomvertraging.

z 1y
. 5z "
b L 3 .i We behandelen weer stationaire turbu-
~ i X
J :{/]:/- = ' lente hoofdstromen.

; J~ T 3 x We beschouwen een stroming met debiet
13 R B e " . '

) ¥ 0 { constant )} door een buis, die

e

zich plotseling verwijdt van een dwars-

| £ , ' \. profiel met oppervlak A naar één met
\ _

-S»lg 9 Sz 5, een oppervlak A { A > A1 ).
De grenslaag in het nauwe buisgedeelte zal de plotsellnge ver-
wijding niet kunnen volgen en loslaten. Het gevolg is dat de
grenslaag zich kegelvormig turbulent ontwikkeld. Dientengevolge .
ocntstaat er rondom de buis bij de verwijding een neer ( aangegeven
door ( & ) ).

Verderop in de buis wordt de hoofdstroom weer meer gelijkmatig

{ zonder neren ).

Teneinde de wrijvingverliezen t.g.v. de grenslaagloslating uit

te drukken in een weerstznd gaan we de wet van behoud van impuls
toepassen in de stroomrichting cp een balansgebied begrensd dcor
51, S;, 82 en 83.

Empirisch blijkt, dat de druk langs S; ongeveer overeenkomt met
de druk in S1 en dat de schuifspanningen langs 53 te verwaarlozen
zijn t.o.v. de grote turbulente schuifspanningsn in het inwendige
van de buis,

Opstellen van de balansvergelijking levert dan: ( zie aanvullend

vraagstuk 2 )

-t

Hy = Hy = 5l (v, - v, ) = (33)

2 J
& 2, 2 A
geni

gem 1 2

sk
N
N

0q

N.B. Daar de snelheden in de in de dwarsdoorsnedes S en S niet
meer gelijk zijn, moeten we hier werken met de stuwnoogtes in

plaats van met de stijghoogtes.

Formule (33) staat bekend als het stuwhoogteverlies volgens

Carnot bij stroomvertraging.
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Studievraag 11.19: Bepaal zelf R en K als gegeven is dat

Q = ATv

7’gem ?2‘ gem

Studievraag 11.20: In een kanaal met vrije waterspiegel loopt
' de waterstand op -als gevolg van een Carmot-
verlies in een verwijding. Toon dit aon.

Carnotverlies in een versnellingsgebied. i)

o
l = h : " ;
t 3 7 LA L
[ H § A = A .
s - 50; yem .. __....__?--,., S reimscrmemere i g —P
e i 9o
! e o 1‘ !
= i S
S

Bij omkering van de stroomrichting zal zich een stroming ontwik-
kelen als aangegeven in fig. 8. De stroming "legt" uich tegen de
overgangswand aan en vertoont daardoor bij het betréden van het
nauwere buisgedeelte een insnoering tot een stroomdoorsnede

uA1 t.pav. SC' Daarna verwijdt de stroming zich onder vorming
van een dissipatiegebied, tot er verderop weer een stationaire:
stroom ontstaat over het volle ter beschikking staande_pfofiel
A, in S.. '
Tussen 82 en SC is de stroming vrijwel stationaair. Daarom mag
de stuwhoogte in SC gelijk gesteld worden aan die in 82 ( ver-
waarlozing van wandwrijvingsverliezen).

Tussen SC en S1 rekenen we dan met het Carnotverlies:

1 1 2 1 T~ 2 2
Hy-H =3¢ L . 1 2. 1 1wy2 (34)
2 1 & WA, A, 2g VA, T gem

We noemen u de contractiecodfficiént.

Studievraag 11.21: Bepaal zelf R en K.

Een recente toepassing van de Carnotverliezen bij plotselinge
profielveranderengen vinden we bij de berekening van de weerstands-
verliezen bij de geplande s*ormstuwcaissondam in de Oosterschelde

( bijv. stapeling van stortsteen).
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Buis met niet-stationaire volumenstroom (.

We beschouwen een variabele volumenstroom Q{t) door een cilindrische

buis met lengte 1 en een dwarsdoorsnede met oppervlakte A.

S b & [sz
e S

Q&) :: - T e
—_— e
B, —
—
——
—

We laten in eerste instantie de invloed van de zwaartkracht
buiten beschouwing en stellen de impulsbalansvergelijking
(Newton2) op voor het gebied begrensd door S.,,-S2 en S, in de x-
richting.

In 51 resp. 5, werkt in de x~richting een drukkracht:

-
? = Ae . resp. F o= - Ae . .
1 - PR ey P 2 = "Ppf €y
. . 5 i
Langs S3 werkt een schuifspanning T, ST, B en dus

een schuifkracht:

Z ' y . .
F, = - Tnbl e, in de x-richting.

3

Aangezien de volumenstroom Q{t) varieert met de tijd en A constant
is zal ook de gemiddelde snelheid van de stroom met de tijd

s ; Lz _+ L
variéren. Toepassing van F = p geeft:

dv
F1 + F2 + F3 = plA T
Substitutie geeft:
L _ 1 = ~q 490
( I JA - %Dl = pl e

Oftewel

©
~—h

i
o
N

Iﬂ
>!g
Ji
.-..
"D
e |
Ljﬂ
1o
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Dit is te schrijven als:

Pr _Pp _mpr1 . 1 do

— - — —

JREL as
Pg pg pgA ' Ag dt (85}

Nemen we de invlioed van de zwaartekracht mee en realiseren we
ons dat uit het behoud van volumen volgt, dat op elk tijdstip
het snelheidsprofiel in elke doorsnede gelijk moet zijn ( vloei-

stof onsamendrukbaar) dan is (35) te schrijven als:

Sy = ETL 1 4
Hl H2 Y7 & gA dt v hae)

Tot nu toe hebben we ons, zoals U gemerkt zult hebben, nog
niet uitgesproken over de stromingswiize van de vloeistof,
laminair of turbulent, m.a.w. vgl. (36) geldt voor beide

stromingswijzes.

Laminaire stroming:

Bij een constant debiet (-%% = 0 ), vonden we in hoofdstuk II:

H, - H, = RQ {37}

ot R & 128 1n
pgmD
Daarom stellen we (36) als volgt voop:
-n =n90 |
H1 H2 =M at + RQ (38)
met de traagheid M = éx (zie ook eenheid 10).

Opmerking: Bij een nadere analyse blijken ¥ en R iets groter
te zijn als gevolg van de wederkerige beinvlceding van de

wrijving en de traagheid.
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Resultaat (38) is ook te bereiken door in gedachte twee buizen
in serie te pemen, waarbij we aan de ene uitsluitend een traag-

heid M en aan de andere uitsluitend een ﬁeerstand R toe - kennen.

— -_Af_, N R - i
ST
Si Swm Sz

Er geldt dan dat

- - 3.9 - -
H1 HM M 3t en HM H2 . RQ

Opgeteld gee;x dit
= 4Q
By - Hy sHg +RO

dus vgl. (38).

Turbulente stroming.

In het geval, dat we met esn stationaire hoofdstroming te maken

hebben vonden we dat met (30)

1 ]v i
R = ol en ag =0 , dat
ac2a oL '

H. - H, = RQ + _~,§2 (39)

Ock hier kunnsn we irn eerste benadering dezelfde traagheid M = éﬁ
substitueren , waarbij we ons wel dienen te realiseren dat dit
eenvoudige beeld bij een nadere analyse niet helemaal meer opgaat

echter bij benadering voldoet (32) meestal.
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Opmerking: Voor een turbulente stroming is moeilijk met serie-
en paralleltakken te werken, aangezien de weerstand R snelheids-

afhankelijk is.

Studievraag 11.22: Als het debiet Q van water door een buis

met een straal 0,07[mJ s een lengte 10[m7
2
gegeven is als §Q = Ce 4 7%:::“/3] » bepaal
dan het stuwhocgteverschil als funktie van
de tijd. C is zodanig, dat de stroming
laminair is =707 kg
) * Mwater = ms
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Stationaire stromen van homogene incompressibele vlceistoffen.

Laminair:
R ( Poisseuille) R ( Darcy )
Cilindrische 128 1n
buis pgﬂbu
Breed kanaal met Q
konstante A, 3 {Y(' .
dwarsdoorsnede Spg':rd d?ab ()(_3/
Rechthoekig blok Y
kA
Turbdlent:
R {Chézy) R (Carnot)
Cilindrische
8 1|v |
. gem 19,1142
buis DA C(CrTT) 32 ( E, A2) (vertraagd)
Breed kanaal .
¥ geni
A konstant) 10,1 1.2
a o2 a X ( ;KT 32) (versneld)

Niet-stationaire stromen

R

(Laminair en turbulent)

M

Cil. buis

Breed kanaal

zie boven

1=

i
!

o

il
2=
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BEWERINGEN

Bewering: 11.1 : In een laminaire stationaire stroming van een

viskeusze vloeiétof door een rechte buis is de
schuifepanning in de vloeistof recht evenredig
met de dynamische vwkosztett en de enelheids-~
verandering in de atroomchtmg.

Bewering 11.2 :  In een stationaire turbulente stroming geeft

een snelhezdmnetmg in een vast punt een
constante waarde, .

Bewering 11.3 : Voor waarden van het Reynoldsgetal groter dan
300 e de stroming in een buis, met constante -\

cirkelvormige dwarsdoorsnede, turbulent.

Bewering 11.4 : In een buis, met constante cirkelvommige dware- /
doorsnede, is de echuifspanning een lineaire j’
funktie van de straal van de buis. = /

|

Bewering 11.5 : De wet van Darcy betreft uztsluttend stationaire /

laminaire stromen. [

Bewering 11.6

Als twee buizen in serie staan, dan mogen de
dobrlati_ngen van de twee buizen worden opgeteld

bij de bepaling ven de toestandsvegelijking voor

de totale eonfiguratie. e

Bewering 11.7 :  Fen stroming is laminair voor waarden van het
Reynoldsgetal die kleiner zijn dan 1200.

Bewering 11.8 : De weerstand van een kanaal bij stationaire
turbulente stroming iz recht evenredig met de
kinematische viscositeit.




Bewering 11.9 :

Bewering 11.19:

Bewering 11.11:

Bewering 11.12:

Bewering 11.13:

Bewering 1114

Bewering 11.15:

= 1139~

De weerstand, die optreedt bij een plotselinge werandering
van het dwarsprofiel in een buis met een

eirkelvormige dwarsdoorsnede s onafhankelijk van

de richting van de stroming.

Als het debiet in een buis niet varieert in
de tijd, dan is de traagheid van een buis nul.

De fys‘z_sche dimensie van de dynamische
viscositeit is [

In een kanaal is de snelheidsverdeling lineair
met de diepte als de stroming laminair is.

De waarde van de constante van Chézy is gemddeld
45 [m /8.

Voor waarden van het Reynoldsgetal kleiner dan
1200 is de stroming in een kanaal laminair.

Voor een laminaire etroming van water geldt
de wet van Newton.
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AANVULLENDE VRAAGSTUKKEN

z

s

-l
.1 '

o - ,z_v - . / &—-j—:ir__f,-?——— = ‘_:_.T:_—:;——
A > - ‘ a
; - | | 5

i & } 4,“_4_“_.,,4: , ,gAz

In een kanaal, dat herizontaal ligt, stroomt stationair en laminair
water in de x-richting door een constante dwarsdoorshede A.(a%b) s
(b> a).

a) Bepaal de snelheidsverdeling in de dwarsdoorsnede.

b) Bepaal de maximale en de gemiddelde snelheid en de onderlinge

verhouding.
c) Bepaal de weerstand van het kanaal over een lengte 1.

N.B. Boven het water heerst de atmosferische druk P+

Leid zelf de weerstandsformules van Carnot af door impulsbalansen

op te stellen voor de gegeven gebiedern ( zie ITI.II ).
&l

~1

-

Door een cilindrische buis met diametsr D = 0,2[@] stroomt stationair
een vloeistof met kin. viscositeit v = 10-6[h2/s] . De buis maakt

een helling “@ = %/6 met een horizontaal vlak. De lengte 1 van de
buis is SO[n] .De constante van Chézy is bij turbulemte stroming

C = So[ba/sl. Aan beide uiteinden van de buis heerst de atmosferische

druk P, * De zwaartekrachtsversnelling is g = -10 Zv [m/s%l.

-

a) Bereken de gemiddelde snelheid in de buis.

b) Is de stromingswijze turbulent?
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¢) Hoe groot is het debiet?

d) Hoe groot is de weerstand?

J

1 P——

Door een rechte cilindrische buis ( D = 0,5[m] ) stroomt stationair
vloeistof met een debiet van 1 [ms/s]. De lengte van de buis is
103[m]. De waarde van de constante van Chézy is C = ksfm;/s].

De zwaartekrachtsversneliing is E = =10 zé[m /s .

De kin. viscositeit van de vloeistof is v = 10-6[m2/a].
a) Bepaal de weerstand van de buis.

b) Hoe groot is het stijghoogteverschil over de buis?

c) Wat is de waarde van het getal van Reynolds?
Az

E
et

~T - PR 7- W15 - g
A.lengtedoorsnede kanaal dwarsdoorsnede ;

Onder invloed van een konstant hoogteverschil di - d2 = 0,1[@]

stroomt water stationair door een kanaal rechts van de schuif.
{

Boven het vrije watemppervlaklﬂueerst de atmosferische druk Py*

De Chézyconstante is 50[m3/s]. De versnelling van de zwaarte-
kracht is E = -10 e fm/s2 . Voor de verdere gegevens zie de
figuren., Links van 42 schuif is een groot meer.*J(water):ro‘ﬁ&?s}
a) Bepaal de gemiddelde snelheid in het kanaal.

b) Is de stromingswijze turbulent?
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c) Bepaal de weerstand van het kanaal.

d) Hoe groot mag (d1 —.d2) zijn opdat de stroming laminair wordt

in het kanaal?
e) Hoe groot is dan de maximale shelheid en waar treedt deze op?
.4‘ -e AZ

e >
-

D » X

4

Door een cilindrische buis met diameter 1,0 En]’stroomt water
niet- stationair met een debiet:
-4, 1 3 .
Q= 210 ~ sin ( S t)[ﬁ /s]' De lengte van de buis is 100 fn]
Z
De viscositeit van het water is vz 10 Gfm /sj. De constante van
2 3 4
Chezy is C= so[m /sl.
a) Bepaal de stromingswijze van het water.
b) Bepaal de weerstand van de buis.

c) Bepaal de traagheid van de buis.

d) Bepaal het stuwhoogteverschil over de buis.

A Az

T o
K - .

- 1D, 1] ' D= 2l

‘ e | e [m] > \
-’
[ Pue=aidlie. SN, 4

Een buis met cirkelvormige dwarsdoorsnede verspringt twee keer

van profiel.

~

Door de buis stroomt stationair water onder invloed van een

drukverschil over de uiteinden. De zwaartekracht1wordt ver-
- 2
waarloosd. Gegeven vH20 = 1076 [m /s] C = 50 {m:/s~,

3
Q= 1{" s} Contractiecoéfficiént M = 0,7. Voor verdere gegevens,

zie de figuur,
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a) Bepaal de instroom weerstand.
b) Bepaal de weerstand van het dunne gedeglte.
c) Bepaal de uitstroomweerstand.
d) Bepaal de totale weerstand tussen A1 en A2.

e) Bepaal de vereiste stijpghoogte over de geometrie tussen

A1 en A

o
Z
to 0
l
o | b 2
£ !
Q i O \..l_c .
— & ® == —,@& — } »
: N = ans

Drie cilindrische buizen ziijn zcdanig gekoppeld, dat de ver-
bindingen geen extra weerstand opleveren.

De diameters van de dwarsdoorsnedes van de buizen ziin :ésp.
D, = O,1{q], D,= 5.10-2[m] en D, = 10_1[m].

De lengtes zijn 11 = 10[m], l2 = 20[m} en l3 = 20[m}~' 5
Door de buizen stroomt laminair en stationair water met v = 10-6[m /s].

[)

De zwaartekrachtsverénelling is g = 10 gz [m/SQJ

a) ?epaal de weerstand van elk der buizen.

b) Bepaal de totale weerstand van de configuratie.

c) Wat is het maximale debiet O opdat de stroming laminair blijft?

d) Wat is dan de grootst optredende snelheid?

Wat is de fysische dimensie van de
- doorlatendheid k?
~ de traagheid M?

=~ de weerstand R?

de dynamische viscositeit n?
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z.
4
: L
e e 4 =
mé !
N - R B S —
R e sial 2 -~

Door een slootje met constante dwarsafmeting diepte a= 1ﬁn1 en
breedte b= 5[n], stroomt water stationair met een debiet van
5:107° [ma/s]v p

szo = 1078 [m2/sl. Chézyconstante C = 50[m2/s}

De zwaartekrachtsversnelling E = 10 ZZ [m/SQJ De lengte van
het kanaal is 1000[m].

a) Is de stroming laminair?

b} Bereken de maximale snelheid, die in de dwarsdoorsnede op-

treedt.
¢) Voor welk debiet wordt de stroming volledig turbulent?

d) Wat is dan de weerstand van het kanaal?

Voor bevloeiing van een gebied met

water is een debiet vereist van

0,5 &n3/;}.

We hebben daartoe %6 cilindrische buizen met elk een diameter
van 10-1[}1'] en een lengte van 50[m7 .

De afstand tussen vaterwinplaats en het gebied is 200[m]. De
stroming in devbuiZEniis stationair VH20= 10~3 [m /s], Constante
van Chezy is C = 50[?’/3].

We leggen 4 buizen in serie vijf keer parallel naast elkaar.

Door elke buis stroomt evenveel water.

a) Is de stroming turbulent?

b) Hoe groot is de totale weerstand.
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c) Welk stijghoogteverschil is nocdzakelijk om de stroming te

handhaven.

Cnder invloed van een stijghoogteverschil tussen de uiteinden
van een grondlichaam stroomt laminair en stationair water van

links naar rechts

/‘
LTl gndosr ladee! |

C oot

SHT ""‘7'“7W‘Bhdoav .‘fhd—m’

2
"Hzo = 1078 (@7,

- b
De doorlatendheid van de grond is k = 10> [m/sl;

Voor verdere gegevens zie Ffiguur.

a) Bepaal de weerstand van het grondlichaam.

v

b) Wat zal het debiet zijn als het stijghoogteverschil
S[m] iz ?

¢} Bepaal ook het specifieke debiet .

Door een cilindrische rechte buis (D = 0 ufm]) stroomt water onder
invloed van een in de tijd vari&rende stljghoogteverschll Ah= 2 sin —fW
De lengte van de buis is 1 = 5[n], ¥ [ / ]

a) Hoe groot is de traagheid van de buis?

b) Als we de weerstand van de buis verwaarlozen, welk debiet ont-

staat er dan?

¢) Hoe luidt de toestandsvergelijking voor de buis als we geen ver-
waarlozingen toepassen?

Uit welke vergelijking moet dan het debist worden bepaald?
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ANTWOCRDEN OF AANWIJZINGEN BIJ DE STUDIEVRAGEN

S.11.1

s.11.3

Water is een vloceistof, die bij laminaire stroming voldoet

aan de wet van Newton, dus

av&
?y

Volgens (3A) geldt, dan dat

v,

= n -7 , 2angezien de stroming stationair is d.w.z.

is geen funktie van de tijd.
- J
Dus r-n=103[}'/m"?.

T
V

In de rechte buis, verstonden we onder laminaire stromlng,
een stroming, waarbij de vlceistofdeeltijes evenwijdig met
de buis-as bewegen. M.a.w. er zijn geen snelheldscomponenten
in de y eﬁ z richting.
Veronderstellen we b.v. p een funktie van z en stellen we
een impulsbalans op in de z-richting, dan geldt volgens de
tweede a;ic;r:% ginz Newton.
. Z v‘

4*1 RY M - ;%g dz = pdxdydz —= dt .

pgal ¥ aangezien we de zwaartekracht

verwaarlocosd hebben.

Aangezien Yz = o volgt dat igg = 0

oftewel p is geen funktie van z.

Evenzo volgt uit een lmpulsbalans in de y-richting, dat p

geen funktie van y is,

Bij de stroming door de buis hebben we te maken met naast
een uniforme drukverdeling t.g.v. oppervlakte krachten een
lineaire dgykverdelipg t.g.v. de zwaart {volume) kracht.
“
A K
7 e
|
| kracht, dan is op hoogte z de
L

Beschouwen we even alleen de

r verdeling t.g.v. de zwaarte-

293;' druk P (a-2).
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Integratie van de lineaire

®
drukverdeling over de cirkel-
vormige dwarsdoorsnede ‘geeft
als kracht:
ta  + a2- z°
F = f Pz {a=z) dxdz
) 2
-a =ya' -z
+a = +a -
= f 2egav a"'-szz - I 2 ?gz<a2-—z dz.
-a -a

Beschouwen we eerst de tweede term van het rechterlid:

}a 2 gz \/a:’--z2 dz f 2 ng\/ -z dz + f 2 ng\l -zgdz

-a

_Ia 2 pez mz + f 2 prz V-ag—zzdz
o)

-ja 2 Egz aQ-Zde - lﬁ2 egz‘Jaz-izdz — é
o]

o]

1]

L

[}

De laatste stap is als volgt in te zien:
De funktie £ (z) = 2 pez \;/a?---z2 is antimetrisch want
f (-2) = - £ (z). Dus substitutie van de integratie parameter

(-2} i.p.v. z in de eerste term geeft:

+a N 2 2&
- +2egz Ya“=z“ dz.

o

! ta
M.a.w., TF= f 2ega\/;§-z—_2-kdz.

=7k

Substitutie van z = ay geeft

F = 2 pga = f s -y dy = (symmetrlsch)zk ega f V1 -y dy

Met y = sin 8 o<f3<I'I/2 volgt

3 /2 2 3 /2
quega f cos 666=4;‘>ga f (3 + 1 cos 28) de
¢

o
3 n/2
gIIa + 4 gga ’& sin 26
® R

o]
3

gella®

—




S.11.4

S.T‘I.S1

1
S.11.6

S.11.7
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. Dit resultaat vinden we aan beide dwarsdoorsnedes van de buis.

M.a.w. de invlced van de zwaartekracht valtr eruit en dus is

resultaat (8) juist. (zie afleiding (4) ).

In studievraag 11.3 Zagen we dat de druk op hoogte 2z gelijk
was aan

(z) = (a-2)
sy PE Tt (e
Oftewel

plz) + psz = §1 + pea.

P
o, . B

Oftewel de stijghoogte op willekeurige hoogte z is gell]k aan

de constante waarde(p\(f an;/e? = B-Pa ,q.
=

Pas (14) en (15) toe en realiseer U onder welke voorwaarden

deze formules gelden.

Maak gebruik van de betrekkingen:

hl-—h2=RQenQ=K(h1-h2)

De snelheidsverdeling van Poiseille luidt voor een horizontale

buis:
Py P

4 on

2 2

V4 _r)

(a

viy) =

De maximale snelheid treedt op als

v _ Py . By

Sz o oftewel T In («2r) =

Huiu.v. dat » = o.

v Pi . P o : .
Dus 'max = o g2n @ s treedt op in het midden van de buis.
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L

De totale verdeling ziet er als volgt uit:

-

ot

De gemiddelde snelheid is Oop twee manieren te berekenen

(in principe dezelfde).

( ) &l
Q n Py=Pg
Namelijk: “gem = A =(R-R) X 2_ . 8 n
g g8 In
na2

De gemiddelde snelheid is ook te bepalen met

Voem = 1 ~‘[v(r)dA A = opp. dwarsdoorsnede
(In feiteAis .fv(r)dA het debiet)
A
We zien uit een vergelijking van vgem en max dat in de .

Poiseuille-verdeling geldt:

v v
max = 2 ‘gem,

Dit is een belangriik resultaat, aangezien we met kennis

van &8n van de twee de ander kunnen bepalen.

Voor een niet horizontale buis volgt hetzelfde, met dit
verschil dat er nu i.p.v. P1 - P stijghoogteverschil

hT - h2 in de uitdrukkingen komt.

In een ideale vloeistof treden geen schuifspanningen op,
dus laat in de viskeuze vioceistof de schuifspanningen naar

nul gaan en bedenk dan de gevolgen voor de stroom.

Des te groter de breedte & van de rechthoekige doorsnede des
te kleiner wordt k; (b constant verondersteld. ).

Het gevolg van een verbreding is dat de invloed van de zij=-
wanden op de stroming steeds kleiner wérden en dus de weer-
stand van de geometrie afneemt oftewel de doorlating toeneemt.

. 15
De ¢ waaride is ¢ = %~ + dus als k, afneemt neemt % en dus de
5 ;

doorlating k toe, hetgeen in overeenstemming is met de boven-

Staande verwacht ing.
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G

We veronderstellen, dat de onderlinge verbindingen der
buizen geen extra weerstand geven.
De toestandsvergelijking voor buiis 1 is:
U= %y (- By
Evenzo wvoor buis 2:
Q= K (M - Hyy
Combinatie geeft
= { -
Q1 + Q2 (K1 + K2) \H1 HA)

Q =(X, + K)(H,- H,)» H, - H, = « Q.
L R i 1+ Ry (a)

Voor buis 3 geldt:

RyQ = Hy - Hy

Combinatie met A geeft:

N

R1R2 L

g & B = H, - H, +H, - H, = H - H. (B)
1 +R2 ?) 1 A A B 1 B

Voor de configuratie van buis 4 en 5 geldt:

RLETN S

\Bu . 5J B 24

Combinatie met (B) geeft tenslotte:

'R, R, R,Rg 3

i
& R " Ry +R5 }Q 2

Met andere woorden de toestandsvergelijking van de totale

geometrie is:

R.R R R
172 - us
H, H = ij__*___- + R, 4+ ——— Q
1 2 R1 +R2 3 Rq +R5

Hieruit volgt dat de totale weerstand van de configuratie
gelijk is aan R R N\
T D + R, + R }

L$1 +R2 u +5 }
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Waarom zouden we voor de gekoppelde buizen de teestandsvergeliiking

H1 a H2 =RQ i.peve h, - h, = R Q gebruiken?

1 2

We beschouwen daartce de

7\\\4’_“““~““‘ﬁ verbinding tussen de twee
: - . X

e i : > rechte buizen met verschil-
L~ L lend cppervlak van dwars-
; T AR Ag
A, A doorsnede. ‘

De weerstand van een cilindrische buis is:

R = %§§3%2 » waarin R de lengte van de buis is, (1)

Voor de buis tussen AL en A1 geldt de toestandsvergelijking (bij

stationaire stroming):

h1 - hL = R1Q (2)
Evenzo geldt voor de buismoot tussen AR en A2
hR - h2 =z RZQ {3}

Door beide buizen ga2at nl. steeds hetzelfde debiet Q.
Als nu het verbindingstuk tussen AL en Ap klein is t.o.v. de buizen
dan volgt uit (1} dat de weerstand ervan gering is. We kunnen dan
bij benadering Bermoulli toepassen, waaruit we concluderen dat HL= HR’
oftewel de stuwhoogte is gelijk in beide doorsnedes.
Dus schrijven we (2} en (3) in stuwhoogterelaties dan geeft sommatie
ervan:
H1-H2=(R1+R2)Q
hetgeen bij de stijghoogterela+ies niet het geval zou zijn, daar
hF hy.
QEEi Bij het opstellen van de impulsbalansvérgelijking veor een buis
met variabele dwarsdoorsnede, volgt op dezelfde wijze als voor de
traagheid in eenheid 10 dat er geldt dat HL— HR= RQ f.p.v.

-h = np !
hL ba RQ !
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We hadden twee buizen in serie met verschillende lengtes en diameters.

| 10 b |

' L _ ”
y |
S E—— 4 >< ‘o >'

Gegeven 2ijn de diameters: D1 = 1[m] en D2 = O,I[mll De eis, is dat de weer-

stand Rl 5 procent of minder is van die R

e
Oftewel -

' 5

Ry % 150 %o

Daar we ons nog steeds bezighouden met stationaire laminaire stromen moet gel-
den dat

128 4;n .5 128 %1
4 % 100 n
pg ™ D, rg ™ D,
cftewel
iy
Bos Yls 1.
%, 100 D; 100 -4 ==

M.a.w. buis 1 moet 500 keer langer ziin dan buis 2.

Ock kunnen we zeggen dat buis 2 maar 1/500 van de lengte van buis.1l hoeft te
hebben om toch nog een 20 % zo grote weerstand te leveren.

Hieruit blijkt dus de grote inviced van de diameter cp de weerstand van een

buis.

A= 100

De toestandsvergelijking voor ‘het lichaam luidt bij laminaire stationaire stro-

ming:
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~55~

met

-3 -3

Dus de doorlating is K = 10 .%% = %'10

oftewel de weerstand is'i = 500.[s/m2].

De fysische dimensie van de doorlatendheid is te bepalen met (22)

(h. =~ h.)
"t 1 2
q =k T
cftewel [k] = lal (2] £ jm/sp %EJ.: Im/s].
[h, - byl i

De fysische dimensie van ¢/8§ volgt uit(23)

Ik [vl . Im/s] fn?/s] = [m?]
T [gl ” 2 ol b
[m/s”]

A
Daoybl—| -} x
_x J
De gemiddelde snelheid in de stroming is geliijk aan:

i
0,1 4,10 40
ge 2 = = -; [m/s].

0,0 71077

|
B

v -
gem

>0

De waarde van het Reynoldsgetal is:

40
W - vgem‘D ) “5 w3l 4
v v ™

We moeten van de vlceistof, die door de buis dus nog de kinematische viscositeit
kennen teneinde de stromingswijze te kunnen bepalen.
In een buis is de stroming laminair als de Re~waarde kleiner is dan 300

M.a.w.

== < 300
[ aY



-6y~

oftewel

-l |
v > 50—% = 4,2 % 10 “[mz/s].

: -6, 2
In vergelijking met water v = 10 6[m'/s] is de vereiste viscositeit veel

groter, d.w.z. we zullen met een zeer "stropige" vloceistof te maken hebben.

L .
+15. Is het nodig eerst de snelheidsverdeling in een kanaal te bepalen? Moeten we

daaruit de gemiddelde snelheid in de dwarsdoorsnede bepalen?

-16. Het debiet (volumenstroom) van een stationaire turbulente stroming door een

hellend kanaal met grote breedte-diepte verhouding is

Q = abC VY al. = a/ a bo/ 1. [ma/s].

- variatie van de diepte a heeft een niet-1ineaive variatie a¥ a van het debiet
tot gevolg.
- variatie van de breedte b heeft ean line&ire variatie van Q tot gevolg. .

- De constante van Chézy

C=Q(zn-a=—1). (&)
% € .

volgt uit de snelheidsverdeling van Prandtl-Von karmann. nl..

. T y' + & ‘
Y2 5% ¥ § =S (B)

De verdeling is in de handleiding niet behandeld omdat het erop ingaan te
veel inzicht en wiskunde zou vergen.

In (B) is v; de stroomsnelheid (gemiddeld) op afstand y' van de wand. k is
de constante van Von Karmann (X = 0,4).

e 1s een maat, die afhangt van de ruwheid van de wand en de dikte van de la-
minai?e sublaag. De 1 ig de schﬁifspanning langs de bocdem.

Formule (A) en (B) behoren niet tot de stof.

Door (B) te integreren over de doorsnede volgt het debiet Q.

De waarde van de constante van Chézy variee.rt-met de hoogte en de wandruw-
heid.

Meestal wordt een gemiddeld€ waarde gekozen die ligt omstreeks us[m%/SI.

- Variatie van de helling ] = sinuy heeft een niet-line.aire variatie v ¥ van

het debiet tot gevolg.
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De meest voor de hand liggende wijze waarop dus het debiet van een kanaal

bij turbulente stroming te vergroten is, is verhoging van de waterstand.

g - .
S.11.17. Probeer op dezelfde wijze als in S.11.16 de invlced van de factoren op de

weerstand R na te gaan.

/

S.11.18. &= 2[mY] 0,51
. —

e

De weerstand van de buis is bij turbulente stationaire stroming:

4 £ lzsgm] 1

= = aa c(C + 7,7)

Allereerst zullen we bekijken of de vlceistof laminair dan wel turbulent stroomt.

De waarde van het getal van Reynolds is:

\'4 D
R = —EEE__
e v
v = g % i-—+ R = i-'L-G >‘°6 =
gem A ™ e w10
Dus de stroming is zeker turbulent.
De weerstand van de buis is dus
3 4
- j_f !?geml 1 L Bd0 e
BA SO FVald g 0™ w8 1072 (oS0 & 7,7))
_ 16.10% _16.10°  _ 16.10° =

= - =

125 107° (2500 + 385)  125.2885 3,5.10°

496[S/m2]

In het geval de stroming laminair zou zijn is de weerstand

- 128 2n %
pgnDF :

onafhankelijk van de vlceistofsnelheid.
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De Carnot vergelijking voor een verwijding bij stroomvertraging is
2

C L ) i i 1 1 2
H -H,"== ( 5= -—=)".
1 2 2 g Al A2
De relatie tussen de stuwhoogte en het debiet luidt dus:
19Q 1 1
i - H === ==
iy 2 2¢g ( A, A, )2.Q

M.a.w. de weerstand van de verwijding is

19, 1 _ 1.2
R"_'-,- (""'._'-' .
2 g Al A2

Hierin kan Q nog geschreven worden als Q = A WV

v = A .
_ 1" 1,gem 2% 2,gem )
Eet blijkt, dus dat bij een verwijding de weerstand, evenals bij Chézy, snelheids-

afhankelijk is. De doorlating k = (R)~l

Schrijf de Stuwhoogteverandering uit in deeltermen en toon het gestelde daarmee

aan. Maak voorlopig gebruik van (33).
Bij een plotselinge vernauwing in een buis is de weerstand te bepalen uit (34)
en deze is ' ’

1
{ it =

o]
i
N =
o o

e

We zien dus (vgl. $.11.18), dat de Carnotweerstanden verschillend zijn, al naar
gelang we te maken hebben met een vernauwing dan wel een verwijding in de

Stroomrichting. De doorlating k is gedefinieerd als (R)_l.

We hebben te maken met laminaire stroming dus de weerstand van de buis wordt
bepaald uit de wet van Poiseuille en is:

. 128 on _ 128.10.10°° 128 _ 2  sgoo

. = = 107 =
S o
pg D 10* 7 161078 167 .

T

De traagheid van de buis is

we ko 20 _10* _ 2500
B 1o%mio™

Ly i

De toestandsvergelijking voor de buis bij niet-staticnaire stroming luidt:

-H = aQ
H - H, =RQ+ M2 .
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ANTWOORDEN NA AANWIJUZINGEN BIJ DE_STUDIEVRAGEN.

D

)

8.11.5.
1
it
- kgl
1. 0-‘.'5 [ms s. 1 [m]
p = 900 [kg/m ja
]
1000 [m] il
th
De weerstand van de buis bij laminaire stationaire stromlng van een
vloeistof, die voldoet aan de wet van Newton is
3
R = 128 20 _ 128.10°.0,5
pg m D¥  10% 5 5% 107%
3 A
- 54 10 - B4.40 iy 39
n. 625 T. 25
De eisen t.a.v. de vlceistofstroming zijn boven vermeld.
s.11.86. Ce toestandsvergelijking:
- - Rl = 4ml s
h, - h, = RQ geeft [R] = =2 = [}
1 2 3 2
(m™/_] m
s
en
3
A m /] 2 -1
Q = K(h. - h,) geeft [K] = - — = [m“/.] = [R]
1 2 g
[m]
8.11.8. We vonden rekening houdend met de inwendige wrijving van de

vloeistof bij staticnaire S'romlng de Po seuille-verdeling in
—oa el e :

de buis.
nl.
pg(h.~k,) .
vir) = o (a —r2) (a)
Hin
en voor de weerstand:
R :_1282n (B)

og 7 D'



_nsg-

 Over de buis staat een e’ljghoogteverschll (h —h ) bij een debiet Q,:

zodanig dat:
= (hl-hg).

We veronderstellen nu, dat we het Qtllghoogteverschll (h h2)

over de buis kunnen handhaven, en we laten n (dynamlsche
viscositeit = co&fficient van inwendige wrijving) in de tijd

naar nul gaan.

De vlceistof wordt dus volmaakt.

Het gevolg hiervan op de snelheldsverdellng is zo blijkt uit

(A), dat als n naar nui gaat in de tijd, de vloeistofsnelheid

naar oneindig zou gaan., Echter (A) geldt voor stationaire

stroming en als de snelheid verandert in de tijd wordt de stroming

niet-stationair. M. a.w. de theorie van stationgire laanalre

Stromen gaat niet meer op. riet-
In eenheid 10 hebben we gezien, dat er bijYstationaive
Stromen een traagheidseffect in de viceistof optreedt, waarvan

de toestandsvergelijking luidt, als de vliceistof volmaakt is:

-h. = u 3 = &, .
hl h2 LS M dtt (M =t gA)- (C) ®

In de vloeistof, die wij beschouwen blijkt u1t (B) dat de weer-
stand van de buis naar nul gaat. ‘

Uit (C) blijkt dan dat de vloeistef zodanig versneld gaaf
stromen, dat de relatie () opgaat. '

Denken we ncg even terug aan de puntmassa waarop een kracht

werkt, dan volgt uit de

g

7 tweede wet van Newton
dt _ . 5

Vergelijken we (D) met (C), dan zien we dat het sthghoogte—
verschil Ah = A (E~—+ z) een maat van de "kracht" op het vloei-
stoflichaam voopstelt en Q een maat van de "snelheid" van het
lichaanm. .

Trekken we deze analogie nog even door dan komen we tot de
conclusie dat de volmaakte vloelstof alleen met‘constante
=g

sn2lheid kan stromen als de "kracht" £h nul is cftewsl 5

-+ Q
is constant.



L35,

—iifo-

De studievraag zoals die geformuleerd is in 11.8, is dus
eén zinloze vraagstelling, aangezien we in een stroming, waarin
wrijving optreedt te maken habben met stétionaire stroming en
in een stroming zonder wrijving met niet-stationaire stroming,
tenzij Ah = 0,

Resumerend kunnen we zeggen, dat het model van de volmaakte

vloeistof bij stationaire stroming slechts dan opgaat als er

geen stijghoogteverschil over de buis bestaat en dus het debiet

constant is. In het geval van niet-stationaire strcming is er

" een toepassing bij snel wisselende stroomrichtingen, waarop we

hier niet ingaan.

Voor een laminaire stroming is vereist, dat de waarde van het

getal van Reynolds

v . d
—§E§L——— < 1200 (4%300).

waarin d de diepte van het kanaal representeerd.

Voor turbulente stroming moet gelden:

v d '
—59§L—-> 8200 (4%2300)

Aangezien we het debiet kennen, is het niet nodig de snelheids-
verdeling te bepalen.
Er geldt, dat:

De waarde van het getal van Reynolds is

- d 0,15. 8 5
Re = RS o — = 4,5%10° (> 9200)
v 10—6

M.a.w. de stromingswijze in het kanaal is turbulent. Vergelijk

hiermee een schaalmodel van het kanzal waarin de stroming

laminair zou worden.

De moraal: Te sterke schaalverkleining is niet toelaatbaar,
want het modéi moet dezelfde stromingswijze hebben

als het protctype.
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3.11.20.
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De weerstand R van het kanaal is:

g'lvgem[ [Vgeml
R = =

aC2A aQbCQ

met -
C = Eg (2n % - 1) {z2e s8.211.16)

(Deze formule wordt niet getoetst, is gegeven ter informatie).

. =.variatie van de lengte van het kanaal waarover de weerstand

berekend wordt heeft een lineaire variatie van R tot gevolg.

- variatie'van de gemiddelde snelheid heeft een lineaire variatie
van R tot gevolg.

- variatie van de diepte a heeft een een niet-lineaire variatie

15 van R tot gevolg waarbij we eigenlijk rekening moet houden
a
met de invloed van de diepte a op de constante van Che zy.

- variatie van de breedte b heeft een omgekeerd evenredige

variatie van R tot gevolg.

Om dus de weerstand van een kanaal te verkleinen is de meest
voor de hand liggende wijze, het vergroten van de diepte a.

{zie ook conclusie s.11.16).

We nemen aan, dat de toestandsvergelijking (33) die voor een

buis geldt, ook bij benadering voor een kanaal geldt..
z

A N
Dan geldt dus: : B s ‘ |
I J“Id-.
PP B S S ) v
172" 2g A A, g ‘i‘V-,gem J 1y .
2 22 e | =
B: v,* © ®
Aangezien H, = — 2, + —=t B®M. Q= = v
- i pg 710 2g 1, gem 1 2., gem. 2
volgt, dat.
- v, 2 2 2
P178 +z =gz 1, gem 2, gem _ 1 ( ) (1)
Y 17 %2 T 28 l,gem  2,gem
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Daar de stijghoogte constant is in een dwarsdoorsnede geldt .
. g

in doorsnede 1:

P; trPgz, = p, trgd, (pA is atm. druk)
Evenzo geldt in doorsnede 2:

Py * PEZ) TPy tegd
 Substitutie in (I) geeft:

d. ~d = = V1,gem VQdem
1 2. " g

Aangezien v,

en v beiden positief zijn verondersteld,
1,gem 2,gem
volgt dat:

4, < ¢4,

Oftewel de waterhoogte in doorsnede 2 is groter dan in doorsnede 1.
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COMMENTAAR OP DE ‘BEWERINGEN.

b.11.1.

b.11.2,

b.11.3.

B. X1k,

b.11.5.

In een staticnaire stroming dcor een buis met constante dwars-
doorsnede is de snelheidsverdeling in elke doorsnede geliijk.
Loodrecht op de stroomrichting is de snelheld wel afhankelijk

van de plaats in de doorsnede, dus levert de wet van Newton

T = - g% voor de schuifspanning wel een waarde. Dus de bewering
is onjuist.

In een stationaire turbulente stroming geeft een’ snelbeldsmetlng
in een vast punt een met de tijd fluctuerende snelheid te zien.
De gemiddelde waarde over een bepaalde tijd blijkt echter wel
constant te zijn. Dus de bewering is onjuist. Herlees ook de

inleiding.

Vooﬁwaarden van het getal van Reynolds beneden 300 is de stromlng
in e;n cirkelvormige buis laminaiy.

Voor waarden groter dan 2300 Turbulent.

Voor waarden tussen 300 en 2300 komen beide stromingswijzers
voor (niet beschouwd).

I

Dus de bewering is onjuist.

We vonden voor de snelheidsverdeling over de dwarsdoorsnede blj
laminaire stroming
(h, - h,} pg
1
vir) = —= < £a” = %)
4in

M.a.w.

v (hl-hg) 74

W T

T
M.a.w. voor een stationaire laminaire stroming is het juist,
dus de bewering is onjuist. ‘

N.B. In feite moet de vlceistof ook nog voldoen aan de wet van
Newton, echter in deze eenheid worden alleen vioceistoffen, die

daaraan voldcen behandeld.

Deze bewering is juist.
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b.11.6. Deze bewering is in principe alleen juist voor laminaire statio-
naire stromen. Voor niet-stationaire laminaire stromen geldt het
bij benadering. Voor turbulente stromen is het echter oppassen
geblazen, want dan zijn de doorlatingen afhankelijk van de
gemiddelde snelheid in de buis, en als daar veranderingen in

optreden, dan veranderen ook de doorlatingen.

b.11.7. Deze bewering is onjuist, daar dit uitsluitend geldt voor
‘ vloeistofdwarsdoorsneden, waarbij de diepte-breedte verhouding -
klein is en bovendien een vrije vloeistofoppervlgk aanwezig is,

zoals bv. kanalen.

b.11.8. De weerstand van een kanaal is volgens Chézy, zie (30):

2 [v f
R = gem
2
aC™A

dus onafhankelijk van Vs m.a.w. de bewering is onjuist.

b.11.8.  Deze bewering is onjuist. Zie afleiding Carnotverliezen (33)
en (34).

b.11.10. VYoor een niet-staticnaire stroming dcor een buis met constante

dwarsdocrsnede luidt de toestandsvergelijking:

M.a.w. de bijdrage van de traagheid aan het stuwhoogteverschil
is nul echter de traagheid zelf is niet nul, dus de bewering is

onjuist.

b.11.11. De fysische dimensie van n volgt uit de wet van Newton
av
3y



b.11.12.

- 0 e B .

b.11.14.

b.11.15.

- 1165~

m.a.W.

, [w/ 2]
(ar = Lol - 5 ’“] = = 2
v / m/ m
Byl e |

De bewering is dus juist.

Deze bewering is onjuist. Zie aanvullende vraagstuk 1.
a2 _
éf is gemiddeld 200 » C is gemiddeld u45.

Dus de bewering is juist.

Deze bewering is juist, mits voor de kenmerkende diameter de

diepte van het kanaal gekozen wordt.

Voor water geldt bij laminaire stroming de wet van Newton, dus
de bewering is juist. '
We beschouwen in het algemeen slechts die vloeistcffen, die bij

laminaire stroming voldoen aan de wet van Newton.
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UITWERKING AANVULLENDE VRAAGSTUKKEN

1.

/f"
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r — ——t "
Ag .’//I ﬁ?t; p £S5 ,__;7~/1{
i . -— : |
“"lfﬁt;:_’i:ﬂ‘.- B . SN Rk

Water is &&n der vloeistoffen, die bij laminaire stroming voldoen
aan de wet van Newton.

We stellen nu de impulsbalans in de x-richting op voor
het vaste gearceerde gebied begrensd door 81,32 en de hori-
zontaal op willekeurige hoogte z (z<a).

Laten we de invloed van de zwaartekracht buiten bescbouwlng
(links valt tegen rechts weg) en veronderstellen we in Sl een
druk p, en in 52 een druk Pos zodanig dat Py > Py dan werkt er

op S1 een kracht:

?1 = Pl(a~Z).b 3 . Op S, werkt: ? = - P,(a*z)b g

2
Op het ondervlak werkt de scnulfspannlng bepdald door de wet
_ vy
van Newton 7 = n 37

dus een kracht:

? Bvx
35T L. b = - &n b. B

Aan de bovenkant werkt alleen de atmosferische druk. . loodrecht
op de x-richting, dus levert geen bijdrage. De invloed van de
zijwanden verwaarlozen we, daar de breedte groot is t.o.v. de
diepte. '

Het water stroomt staticnair d.w.z. daar de dwarsdoorsnede
constant is, is in elke doorsnede dezelfde snelheidsverdeling,
hetgeen tot twee conclusies leidt:

- De door Sl binnengestrocmde impuls is gelijk aan de dcor

82 uitgestroomde impuls.

- De impuls verandering van het gearceerde gebied is nul.

Dus ?1 + FQ + ?3 =%
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. Substitutie geeft:

Bvx
= o= = ) @& - =)
n 4 <P1 Pyl € J

o
o

Integratie levert:

PP
en

VX(Z) =

Op de bodem geldt, dat vx(o) =0, +

P.-p
172 1
vx(z) ey {az - 1 z

De maximale snelheid treedt op als

Dus
P17P o

a

v -

max ~ 24n

De gemiddelde snelheid volgt uit:

1 .
v = = [ vi{z) dA
gem A i
4 a Pp.-P
_1p2 1P 9
= = £ v(z) dz = T

vnax 3

Dug: —2 = =
v <
gem

De weerstand van het kanaal volgt uit de relatie
R.Q = (h;~h,) (1)

ebi = v A=z —2 3% Tm7y/ 23
Het debiet Q »gem. A @ b im S] (2)

Den volgr uit (1) en {2):
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H.a.w,
5 5 .
R = 2 (2
a bpg m
Ss
N Y S /
-;;;?,
8 ! I
4__9 : Il
. !

We stellen de impulsbalans op voor het vaste gebied G begrensd
door Sl’ S1 N S en 32, dat het dissipatiegebied met de neren
insluit.

We werken met de gemiddelde snelheden over de doorsnedes,

oftewel de snelheidsverdeling in S1 en 52 is uniform, met

- Q - Q.
- Al o Vo,gem T A

l,gem 2

We beschouwen de x—gerichté impuls en laten de zwaartekracht buiten
beschouwing.

In S werkt een druk p; en daardoor een drukkr'acht PIA e .
Deze draagt in een tijd dt een hoeveelheid Py A e dt een

x-gerichte impuls naar G over.

Verder gaat in de tijd dt een volumen Qdt door S1 heen naar G

met een impulsinhoud

pQat Vl,gem ex

De totale toevoer van x-gerichte impuls naar G door Sl in dt is:

dp, e =p A & dt e 4
P1 Sx = Pafy & 4t +eQ v, 1,gem °x B



- l1bg.

_ Empirisqh blijkt, dat de druk langs Sll

de druk in Sl‘ Door Sll wordt in een tijd dt de hoeveelheid

1= >
oy ey = py (Aymap) e
Door 82 heen gaat in dt een volumen Qdt uit G weg.

ongeveer overeenkomt met
dt aan x-gerichte impuls overgedragen.

We brengen dit in rekening als - Qdt naar binnen
Er werkt een druk P,- Als aangevoerde x-impuls brengen we
-+ B -
dp2 e, = - P, A2 e, dt - p'Qv2,gem e, dt
in rekening. _

De schuifspanningen langs S3 worden verwaarloosd (de grote
schuifspanningen in het gebied treden nier zozeer langs de wanden,
maar in het inwendige op). We stellen dus
dp3 e, = 3, voor de door S3 heen naar ¢ in dt overgedragen impuls.

Binnen het gebied G vertcont de impuls wel fluctuaties,
echter blijft gemiddeld constant (stationairve stroom), dus

-+ >
dpg e F 0

Opstellen van de balans levert dan na enig herleiden:

.

) (A)

1,gem‘v2,gem) =P VZ,gem (vl,gem—VQ,gem

Aangezien v is, geldt dat B, > Pis oftewel de druk

N
l.gen v2,gem
loopt in stroomafwaartse richting op.

Tot dusverre lieten we de zwaartekracht buiten beschouwing.

Nemen we deze invloed mee, dan verandert vgl. (A) in:

(Pg zl) N (§§+22) T gA2 (Vl,gem - V?,gem)
Oftewel
- - . QO — ) (B
hl by ® gh (Vl,gem V2,gem' )

2
Nu geldt voor de stuwhoogte t.p.v. dwarsdoorsnede Si (i=1,2)
2

H. = h .l._i_?_gﬂ

i i 2g

Oftewel (B) is te schrijven als:

172 gA2 vl,gem*VQ,gem' 2¢
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Hetgeen te schrijven is als:

Hl - H2 = %— ( i&-‘ xi )2 {(zie 33)
g 1 2 q.e.d. (quod est demonstrandum)

Drazit de stroming van richting om, dan hebben we te maken met onderstaand
stroombeeld.

OHP-A' Opstellen van de impulsbalans voor

het gebied tussen Sc en Sl levert
(34)

”d/~’/——”- P Toon dit zelf'aan.
Jhﬁl' &

5

Opm. Tussen 32 en Sc is de stroming

vrijwel stationair en verlies-
vrij, dus Bernoulli geldt bij benadering m.a.w. Hc & H2.
Opm.: Deze afleidingen worden niet getoetst.

De toestandvergelijking vcor de buis luidt, i.v.m. de stationaire streming

AH = R.Q

In geval van ldminaire stroming is de weerstand

128%n

R =
pgﬂDq
en volgt de gemiddelde snelheid uit

vgem AR = Ah =~ vgem =R

Het stijghoogteverschil over de buis is,aangezien beide uiteinden in contact

staan met de atmosferische druk,gelijk aan:

Ah = h. - h, = £ sing = 25[m].

1 2
Dus:
&
25 10 10
v = = = [m/s]
gem  1oggr  ap?  16.10 %, 18

pgmD "
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In geval van turbulente stroming is de weerstand
42,|v

g = <5§ml
aAc(c+7,7)

en volgt de gemiddelde snelheid uit

4 L ]v I
Ah = - v A=
a Ac(c+7,7) &M

tsp o )2 - 8h.a C(C + 7,7) _ 25 * 57,7
gem’ ¥) 2
vgem % 27[m/s].
v WD -1
o) Re = B8 = 2240 - gy 105 ww 2300
v 10

L lgm;;nqirgg
In het geval van veronderstelde stroming is Re nog veel groter dus we hebben te

maken met turbulente stroming en de

vgem fy 27[m/s].

) . ) T -2 _ -2, 3
z) Het debiet Q = Vgem' A g 27.4.4.10 = 27.7.10 “[m”/s].

1) De weerstand van de buis wordt bepzald door:

4 v } 4,50.27
R = LT ¥ = % 500
a A C(C +7,7) 10 et 10 (5050 + 7,7)

Alvorens de weerstand van de buis te bepalen zullen we moeten onderzoeken of de
vliceistof laminair dan wel turbulent stroomt,

De gemiddelde snelheid volgt uit:

Q 1 400 _ 16 fm/
= = - = = = = [m/s].
gem A E“25.10 2 257 T
v %9.5.10"1 2
De waarde van het Re-getal is —E%——- = J-w—~:€-=-; 10

10
Deze waarde is veel groter dan 2300, dus de stroming in de buis is turbulent.

a) De weerstand van de buis is

g 1is -
4 & v | 4,107, ==
R = - = - & 160

r

-1

aAcC(C+7,7) 2,5.10 %.2,5.10‘ 45(45 + 7.7)



b)

a)

“ 32

Het stijghoogteverschil wordt bepaald door
Ah = R.Q 160.v, . &

% 160. 5%— . +25.107

2
& 160[m].

Aéngeiien de buis horizontaal ligt kunnen we het drukverschil over de .buis

bepalen uit

122, 160[m] = p, - p, = 1600 p [ - ]
b8 g ¥ P17 P2 =g

m

Voor de waarde van het Re-getal zie boven.

We nemen voorlopig aan, dat de stromingswijze in het kanaal turbilent is.
Later zullen we dit controleren. Er geldt dan voor het balansgebied tussen

de dwarsdoorsnedes A, en A_, dat

i 2

h; - h, = R Q (1) (hi is stijghoogte in A5

met

Met Q = A.v volgt uit (1) dat
gem

d 02

= (h, - h) —

2
1 2) %

v
gem

Substitutie van de gegeven- waarden geeft

2 A
v2 = 0,1.3.50° _ 750

gem 1000 ~ 1000

= 0,75

en

Voem %t 0:86[n/g}



~Hy5~

b) Veor hetmgetai'van Reynolds volgt dan dat:

v «3
5 4 2,6 * 10% 5> 9200

dus de aanname t.z.v. de turbulente stroming was juist.

c) De weerstand van het kanaal isg:
h, -~ h

-1 2 0,1 _s
R = 5 " 50,086 & 0,002] 5 i
¢ ¥ m
4) Er moet dan gelden, dat:
gewly o . . 1200,107¢
v A ~ ‘gem * 2

i
£ 6.10 '[m/s].

In het geval van een laminaire stroming is de weerstand van het kanaal:

R = 3£n = [ 2] (zie a.v. 1)
d bpg m*
_ 3%y
T .3
dlbg

Substitutie van de gegeven waarden geeft

3.1000.107% 15 o

———

- - =2 3
R = 27.20.10 T 27 ° L g - 10 [ 2 ]

(De weerstand is dus veel kleiner dan in het geval van turbulente stroming).
Uit

1 T b, = R.Q volgt dat

h, - h s~§.1o ®.60.10"% [m]

e
3,3 10 “[m].

A

e) De maximale snelheid in de stroming

(zie A.v. 1b).

treedt op aan het oppervlak en deze is.
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) , -9 B
v Co=EA 2 42 241;%9-75 . 9= 15,10 [m/s].

2:10°.10°
a) Het maximale debiet, dat in de buis optreedt is maximaal als
sin(% t) maximaal is.

Dit maximum is 1.

Dus het max. debiet is:
Q = 2.10 *[m3/s].

De gemiddelde snelheid bij dat debiet is:

N g_ 2,207

-4
= %*
- R 2,56 * 10 "[m/s].

v

Het getal van Reynolds is dan:

VonD 2,56 * 10 .80
R = & = = = 256
10

Voor een buis is de stroming laminair als,Re < 300, dus de stromingswijze

is lamipair.

b) De weerstand van de buis is in dat geval

R = 12880 _ 1282y _ 128.100.10°°
pgan g1rD'+ 10.7.1

fy u.lo_q[s/m2]

c) De traagheid van de buis volgt uit

M=—£—=-lf9-19;=i1;$127[s/m1
& lOE

met hi is stijghoogte in Ai.
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Hieruit volgt met Q = 2.107% sin% t[ma/s]:

h. - h, = 8.1078 sin(% £) + 4.107 "

T
1 9 cos(; t) [m].

a) De stroming in de buis is turbulent want in de wijde buisgedeeltes geldt,
dat

v .D QD
5 +
L 5 s = - %-. 10*® (> 2300).

‘e . v A v " 10—6

+ (In de nauwere buis is Re 2 keer zo groot}.

Volgens Carnot is dan het instroomweerstand bij de linkse profielverspringing:

=1Q (1. 12 . .2
Rp =55 (-3 [s/m?)
1 1 1 1 2 2
= et - . 3 7
72 To { o T ) 0,015 [s/m“].
Uty g

Deze weerstand treedt op tussen de dwarsprofielen Aq en ASW

b) De weerstand van de tussenbuis tussen de dwarsprofielen A3 en Al+ wordt bepaald
door Cﬂ%y en is:
A
82 lfgem! 8.100. u/m

Ry = DA, C(C + 7,70

= E 0,45[s/m2]
1.7.50.57,7

¢) De uitstroomweerstand in het vertragingsgebied tussen de dwarsprofielen A

iy
en A2 is
_1Q b 42
Ry =3 g’ (nDQ #D2 ’
1 2
1 1,4 1.2_ 3 _ 2
=30 (77 T gam 7 0s0us(s/m]

d) De beschouwde buisgedeeltes stonden in serie: met: (Q is in elke doorsnede

gelijk)
Hl - H3 = RlQ;
H3 = HH = R2Q
HW - H2 = R3Q +

H, - H,6 = (Rl # R2 + RS)Q.
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Dus de totale weerstand is

R = Rl + R_ + R3 Ay 0,50[s/m2].

2
d) Aangezien de dwarsdoorsnedes Al en A2 hetzelfde oppervlak hebben, zullen
de gemiddelde snelheden daar gelijk zijn, zodat’

h, - h, = R.Q & 0,50.1 % 0,50[m]

a) De streming is laminair, dus de weerstand van de buizen. zijn:

128 %, 0 128.10.107°

2
R. = = ——— 2 0,4[s/m"]
1 g D: 10% 7 107%
128 2, n 128.20.10°° 5
R. = 7 = ~ 4 12,8[s/m"]
2 P TmD] 0% 625.1078
2
= = 2
R3 2R, % 0,8[s/m"] (13 7 22.).

b) Voor de stuwhoogteversghillen geldt:

By ~ By = RQ (D) Hy = By = R)Q,
: (2).

Met

Q +0Q,= Q.

(2) schrijven we nu als

_ . _ -1
Q, -K2 (H_ - H,) .netk2 = (R))
(3) A
- _ _ -1
Q, -l<3 (B, - H) Kg = (R)
Q = (ké # Ks) (H - i)
Q= (m—t =5 ) (K -H )= (1,33) (A -H)
Y 12,8 0,8 b c $ Hb c

Dus er geldt: (Hb - Hc) 5 0,75.6. ' ' (w)
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Met (15 %olgt'dan dat

st
'

ey
1]

(R1 + 0,75)Q

(0,4 + 0,75)Q

1,15 Q.

Dus-de totale weerstand van de configuratie is

. : . B 2
Rtot = 1,15[{s/m“].

c) Het maximale debiet wordt bepaald, door de waarde van de gemiddelde snelheid,
zodanig dat
v
R = =R < 300.

Nu is de gemiddelde snelheid in buis 1 maximaal:

300.v
v . &
gem,1 Dl

= 3.10 3 [m/s].

De vraag is nu of de stroming in buis 2 en 3 ook laminair blijft,

Uit (4) volgt dat, als net debiet ¢ maximaal is, dat:

=)
i
by o3
i
O
-
~J
o
o
H
(e}
-
~J
w
w
-
[
(&
-
o

Uit (38) volgt dan; dat voor buis 2 geldt:

I -5 _ 3 7, 3
Ql ki) \Hb hc) = 0,08, T T.10 T = 5 T.10 _[m /s].
_"]'
_9/2 % 10 _ 386 “3 _ 5a wn
+ Vgem,2 = s .10 © = 0,72.10 “[m/s].

i
E.QS.lO

De toelaatbare maximale snelheid in buis 2 opdat de stroming laminair blijft
is

-

-6
< 300:10 - 4 9673 [n/a].

v em,?2 -2
gem, 5,10
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Dus in buis 2 is de stroming laminair.

Aangezien buis 3 dezelfde diameter heeft als buis 2 en Q2

zal de stroming in buis 3 ook laminair zijn.

_ 3 -5, 3
Dus Q = 7.10 Im“/s}.

Q- Q <Q

is (zie boven)

d) De grootst optredende snelheid treedt dus op in buis 1 en

_ ~3
. vgem,l = 3.10 " [m/s].

De doorlatendheid k is gedefinigerd als
(hl - h2)

q =k ¢ voor een rechthoekig -blok

met ¢ = % (specifiek debiet) [m/s]

h, - h2 (stijghoogteverschil over het blok) [m]

1
‘ L {lengte blok) fm].
Moaow, [K] = 1E1§%;§El = fo/s].

- De traagheid M is gedefinieerd als

d = -
M52 = (n, - m)

met H, - H2 (stuwhoogteverschil over leiding) -[m]

1
Q@  (debiet) m°/s]
bus: M) = —tbe = [s%/m?].
[m°/5%] ‘

- De weerstand R is gedefinieerd als’

1 2
[R] = -7¥£l‘ = [s/n?]
[m“/s]

- De dyramische viscositeit n levert de relatie tussen

~
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T = sehulfspanning [N/m2]

a2 W
= L %y

<

10 &) De stroming in een kanaal is laminair als

v .a
R = —532—- < 1200

e

‘Nu is de gemiddelde snelheid van het water:

-3
-9 _5.d0° -3,
Vgem T3 T T = 10 T[wm/s].
Dus
10733 3 '
R = ==—= =z 10" = 1000 < 1200
e 10—5

M.a.w. de stroming is laminair.

b} Voor een laminaire stroming in een kanaal geldt dat

v

max 3 . ¢
amam—— - (Zleo A-.V.»J.C)
w £

gem

Dus

_ 3 ,.-3
Comg ° 2.10 [m/s].

Deze snelheid treedt op aan het oppervlak,

¢) De stroming is volledig turbulent als:

v =

R =B 5 gogp
e v
oftewel
9200.10°° -3
> m—————— = 92,10 °[m/s].
gen 4

Het debiet moet dus groter zijn dan

Q> 9,2.3107°.8 = 4,5.10 %n/s].
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d) Defﬁéerstand van het kanaal wordt bepaald door de formule van Chezy. Voor

het gebied tussen de dwarsdoorsnedes A. en A geldt

1 2
2lv, |

gem
aCQ.A‘

-3
_ 1000.9,2.1072 _ b, 2
" TL.zs00.5 - 7»3-10 'ls/m7.

11 a) -We leggen 4 identieke buizen in serie, m.a.w. de weerstand van de achter el-
kaar, llggende buizen is die van é&n buis met een lengte van 200[m] en een
diameter van 10 1[ 1.

Van deze buizen liggen er vijf parallel aan elkaar,

‘ ‘zgj—‘\ﬁ_-_‘_~\\\
, T LEULOETING
m v t"§

r

.\\__/E
\<}”___ 2006 M) |

Er is voor bevloeiing een debiet vereist van O,S[mB/s]. Daar door elke buis

evenveel stroomt, zal dit per buis een debiet van O,l[m3/s] betekenen.

De gemiddelde snelheid in de buis wordt dan

0,1 40 1
m

Het getal van Reynolds is bij deze waarde
~1

R =A2e2:30 405 905 5 2300
e 10-6

Dus de stroming in de buizen is turbulent.

b) De weerstand per buis wordt bepaald door:

H“--HB:.RQ.

82 |v | 8.200.12,7 )
met R = £E R e = 9000([s/m°]
D.A. C(C +7,7) 10 ".710 °.50.57,7
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Daar de buizen parallel liggen moeten de doorlatingen worden opgeteld,

zodat
Q'= (kl Foiaineaent Ks)(Hw = )
_ 5 o
* Sooo Hy ~ Hp)

Dus de weerstand van de totale configuratie is:

Q
R = 1929 = 1800[s/m?].

c) Het vereiste stijghoogteverschil is dan: (alle buizen hebben dezelfde diamete

> Hy - By =h - hy)

hw - hb = R.Q
= 1800.,0,5 = SCO!m!
12
to A-l ’ / Az"
A
& o [
l ' |
SUEE S S S SRR
1ofm] ‘ }
4
vl = B o
[P— )1 % 2 e )

a) Voor het balansgebied tussen de dwarsdoorsnedes Al en A2 geldt bij laminaire
stroming:
(k- 1h)

_ 1~
a=k 3

Met

= g velgt dat

Yo
i

kA . e
< (nl - hg) cfFtewel

o
1]
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(b, S m) =g, (D

dus de weerstand

R = ;% = -Zggﬁ- = 2.10' {s/m?].
107°.10

b) Uit (1) volgt dat

= 2,5.10  [m°/s]

¢) Het specifieke debiet is dan

-7 -
q= % = 255.10 ° _ 2,5.10 8[m/s].

10
&

13 A

a) We veronderstellen, dat

Ah = h; - h, = 2.8in 3%

1 2 t {m].

De traagheid van de buis is onafhankelijk van de stromingstoestand:

M = ~§ = ﬂS ~5 = 4[32/m2]
g% 10.1.16.10
I
met
daQ
et S Ahl
L

b) Bij verwaarlozing van de traagheid volgt het debiet in de buis uit:

M 92 4p
ar

oftewel

Q-IQ-
ot O
1
o
-

(4,
0n
P
o
wis
t



c)
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- i
Dus Q = - =2= cos = t + constante.
S

De constante wordt bepaald m.b.v. beginvoorwaarden. (Hier niet gegeven).

De toestandsvergelijking voor de buis voor het geval dat we de weerstand

niet verwaarlozen is: (zie (36)).

_ - TDrs 4 dQ
Hl H2 T pgA * gAh dt

Dit is in ons geval (constante dwarsdoorsnede) te schrijven als

B o= b= mTD T & & 2 dQ

1 % pEA gh dt ° (1,

Afhankelijk of de stroming laminair dan wel turbulent is vinden we verschil
lende weerstanden voor de buis.

In het algemeen kunnen we {1) schrijven als

- by daQ
hl hg =R Q+ M Fral

waarin R afhangt van de stromingswijze.
Het debiet Q wordt dus bepaald uit de vergelijking:

dQ _ .
RQ+ 4 el 2 sin 3 t

Het oplossen van deze vergelijking gaat het kader van deze eenheid te boven
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ADVIEZEN TOETS 1l.  (Lees ook de bijbehorende doelstelling!).

ds

S

Bestudeer opnieuw hoofdstuk I (II) en (II1), speciaal II.III, de bij-
behorende studievragen, de beweringen 11.1 t/m 11.3, 11.7 en 11.14 en
de aanvullende vraagstukken 3,4,5,6,10 en 11. Verander de gegevens en

verzin nieuwe sommen.

Bestudeer opnieuw hoofdstuk I en II, de:bijbehorende studievragen, de be-
werlngen 11.4% t/m 11.6, 11.12 en 11.15 en de aanvullende vraagstukken 1,

8 10 en’'12. Maak zelf sommen door gegevens te veranderen.

Bestudeer opnieuw hoofdstuk III, de bijbehorende studievragen, de beweringen
11.8, 11.8 en 11.13 en de aanvullende vraagstukken 2,3,4,5,6,7,10 en 11.

Verzin zelf sommen en probleempjes b.v. door gegevens te wijzigen.

Bestudeer opnieuw hoofdstuk IV, de bijbehorende studievragen, de Beweringen
11.10 en de aanvullende vraagstukken 6,8 en 13. Bekijk nogmaals hoofdstuk.V

van eenheid 10.

Ga de fysische dimensies na van alle gebruikte grootheden. Kijk nog eens

naar bewering 11.9 en hef aanvullende vraagstuk 9.









