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Summary

Concrete is a composite construction material, which is composed

primarily of coarse aggregates, sands and cement paste. The fracture

processes in concrete are complicated, because of the multiscale and

multiphase nature of the material. In the past decades, comprehensive

effort has been put to study the cracks evolution in concrete, both

experimentally and numerically.

Among all the computational models dealing with concrete fracture,

the lattice fracture model wins at several aspects, such as being able to

capture detailed crack information, high computational efficiency and

stability. The lattice fracture model also enables to investigate how

the fracture properties of concrete depend on its material structure.

This can be achieved by projecting the lattice network on top of the

original material structure of concrete. In this thesis a parallel com-

puting code is described, which is implemented for the lattice fracture

model, in order to reduce the computational time and to enable the

analysis on even larger lattice system.

The fracture properties of cement paste, mortar and concrete are

highly related in nature. In this thesis the lattice fracture model

is coupled with the parameter-passing multiscale modeling scheme to

study the relationship of the fracture processes in cement paste, mor-

tar and concrete. A multiscale fracture modeling procedure is pro-

posed and demonstrated. Three levels are defined, including microm-

eter scale for cement paste, millimeter scale for mortar and centimeter

scale for concrete. The lattice fracture model is applied at each scale

respectively. The inputs required at a certain scale are obtained by



the simulation at a lower scale. At the lowest scale in question, the mi-

crometer scale for cement paste, inputs are determined by laboratory

experiments and/or nanoscale modeling from literature.

Besides the multiscale lattice fracture model, another highlight in this

thesis is the development of the Anm material model, which can sim-

ulate a material structure of concrete with realistic shape aggregates.

Compared with classic concrete material models, the shape of aggre-

gates is changed from spheres to irregular ones, which is closer to

reality. The aggregate particle shape is represented by spherical har-

monic expansion, where a set of spherical harmonic coefficients is used

to describe the irregular shape. The take-and-place parking method

is employed to put multiple particles together within a pre-defined

empty container, which can be interpreted as the material structure

of concrete. The key element in this parking algorithm is to check

whether two particles overlap, as no overlap is allowed in the result-

ing simulated material structure.

The multiscale lattice fracture model and the Anm material model,

proposed and established in this thesis, can be used by researchers in

concrete community, to study the various factors which influence the

mechanical performance of cementitious materials. They can also be

adapted with other computational models to form a complete fully

multiscale modeling framework, from nanoscale to macroscale.



Samenvatting

Beton is een composiet constructiemateriaal dat is samengesteld uit

grind, zand en cementsteen. Breukprocessen in beton zijn gecom-

pliceerd omdat het materiaal van nature verschillende schalen en com-

ponenten bevat. In de laatste decennia was er veel aandacht voor het

besturen van scheurgroei in beton, zowel op experimenteel vlak als

ook numeriek.

Kijkend naar al de numerieke modellen voor scheurvorming in beton

kan gesteld worden dat het lattice fracture model op enkele aspecten

duidelijk als winnaar uit de bus komt. Deze zijn het vermogen om

gedetailleerde scheurinformatie te produceren en de hoge numerieke

efficiëntie en stabiliteit. Het lattice fracture model maakt het ook

mogelijk om breukeigenschappen van beton te onderzoeken als func-

tie van de materiaalstructuur. Hiervoor kan het lattice netwerk wor-

den geprojecteerd bovenop de materiaalstructuur van beton. In dit

proefschrift is een parallelle computer code beschreven, die is gëımple-

menteerd in het lattice fracture model, om de benodigde rekentijd te

reduceren en het berekenen van grotere lattice systemen mogelijk te

maken.

De breukeigenschappen van cementsteen, mortel en beton zijn sterk

aan elkaar gerelateerd. In dit proefschrift is het lattice fracture model

gekoppeld met het parameter-passing multi-schaal modelleer schema

om de relatie te besturen tussen de breuk processen in cementsteen,

mortel en beton. Een multi-schaal scheurmodelleer procedure is uit-

gewerkt en gedemonstreerd. Drie niveaus zijn gedefinieerd: de mi-

crometerschaal voor cementsteen, de millimeterschaal voor mortel

en de centimeterschaal voor beton. Het lattice fracture model is



toegepast op elke afzonderlijke schaal. De benodigde invoerparam-

eters voor een bepaalde schaal volgen uit de simulatie van een lagere

schaal. Bij de laagste schaal, de micrometerschaal voor cementsteen,

zijn de invoerparameters bepaald op basis van laboratoriumexperi-

menten en/of nanoschaal modellering uit de literatuur.

Een ander belangrijk onderwerp in dit proefschrift, naast het on-

twikkelen van het multi-schaal lattice fracture model, is de ontwikkel-

ing van het Anm materiaal model. Dit model kan een materiaalstruc-

tuur van beton simuleren, waarbij de toeslagkorrels realistische vor-

men hebben. Vergeleken met klassieke materiaalmodellen voor beton

kunnen in het Anm model naast bolvormige ook onregelmatige vor-

men worden gebruikt voor de toeslagkorrels, hetgeen realistischer is.

De vorm van de toeslagkorrels wordt weergegeven met spherical har-

monic expansion, waarbij een set van sperical harmonic coëfficiënten

wordt gebruikt om de onregelmatige vorm te beschrijven. De take-

and-place parkeer methode is toegepast om korrels in een gedefinieerde

container te positioneren. Het resultaat levert vervolgens de materi-

aalstructuur van beton op. Het belangrijkste element in dit parkeer-

algoritme is om te controleren of twee korrels elkaar niet overlappen.

Overlappende korrels zijn niet toegestaan in de gesimuleerde materi-

aalstructuur.

Het multi-schaal lattice fracture model en het Anm materiaal model

die beide zijn voorgesteld en uitgewerkt in dit proefschrift kunnen

worden gebruikt door onderzoekers in de betonwereld. Met de mod-

ellen kunnen de verschillende factoren worden bestudeerd die het

mechanisch gedrag van cementgebonden materialen bëınvloeden. Ze

kunnen ook worden verweven met andere numerieke modellen om zo

een compleet multi-schaal modelleer kader te vormen van nano- naar

macroschaal.
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Chapter 1

Introduction

1.1 Background

Cement-based materials, such as cement paste, mortar and concrete, have a mul-

tiphase heterogeneous structure at microscale/mesoscale. In cement paste the

size of cement grain particles is in the range of 0.5 ∼ 50 µm, the sands in mortar

have the sizes of 0.1 ∼ 4 mm, and the coarse aggregates in concrete are sized

4 ∼ 32 mm. Cement paste is classified as heterogeneous material at microscale,

but it can be homogenized at a higher scale. This principle also applies to mortar

and concrete, which are deemed as heterogeneous materials at mesoscale and can

be regarded as homogeneous materials at macroscale.

The global mechanical performance of materials is determined by the material

structures and the local properties of constituents. The constituents also have

their own material structures at a lower scale, which determine their mechanical

properties. Take cement-based materials as an example. Concrete is a compos-

ite material consisting of coarse aggregates and mortar. The global mechanical

behavior of concrete is determined by the material structure of concrete and the

mechanical properties of coarse aggregates and mortar. At a lower scale mortar is

made up with sands in cement paste. The properties of mortar are related to the

material structure of mortar, as well as the local properties of sands and cement

paste.

The fracture processes in concrete, mortar and cement paste must be rele-

vant from a multiscale study point of view. The research about multiscale failure
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1. INTRODUCTION

modeling has received comprehensive investment during the last decades, as re-

searchers keep looking for the origin of the load bearing capacity of materials.

The macroscopic mechanical properties of concrete, such as Young’s modulus

and compressive strength, are often of interest to the structural engineers. But

to answer the question why concrete has these properties, it is necessary to turn

attention to what is happening at a lower scale during the failure of concrete. The

research work in this area helps to explain the damage mechanisms, to improve

the mechanical properties and to design better cement-based materials.

1.2 State of the art

Homogenization method [1] and concurrent method [2] are usually employed to

address the failure modeling problem of heterogeneous materials. The homoge-

nization method applies when the scales can be ideally divided and separated,

while the concurrent method is used when the scales are somehow coupled. Gener-

ally speaking the homogenization method consumes less computational resources,

and the concurrent method provides more accurate simulation results.

Suppose that there is a piece of heterogeneous material, and it is meshed into

a network of blocks. The homogenization method requires that each block of

heterogeneous material is taken out and isolated to evaluate its mechanical prop-

erties, and then these properties are used as the homogenized properties of the

blocks and are put back to the network to simulate the global performance of

the original piece of material. The concurrent method demands that the connec-

tion between neighboring blocks is preserved and the boundaries of blocks remain

compatible with each other during the simulation, the stress and strain fields also

remain the same as if the domain was not decomposed.

In this thesis the concept of homogenization is adapted and combined with 3D

lattice fracture analysis [3] to develop a parameter-passing multiscale modeling

scheme. In addition the HYMOSTRUC3D model [4] is used to simulate the

cement hydration and microstructure formation process at microscale, and the

Anm material model (see Chapter 4 for details) is proposed and implemented

to simulate the material structures of mortar and concrete with irregular shape

particles at mesoscale.
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Figure 1.1: Layout of the thesis main body

1.3 Objectives and methodology of this research

The work in this research aims at developing a set of algorithms and procedures,

which enable the multiscale modeling of fracture processes in cementitious mate-

rials, such as cement paste, mortar and concrete.

In this thesis there are two types of models serving as the fundamental tools,

which include a material model to simulate the material structures, and a me-

chanical model to evaluate the mechanical performance of material structures.

These two types of models can be combined to study the fracture processes at a

single scale, while the multiscale modeling scheme makes it possible that the data

exchange between different scales can be done by passing parameters. Examples

are given to illustrate how these models can be used in a coupled way to solve

practical problems.

1.4 Outline of the thesis

The thesis discusses the multiscale modeling of fracture processes in cementitious

materials. It is divided into six chapters, including an introduction (Chapter 1)

and conclusions (Chapter 6). The layout of the main body is given in Figure 1.1.
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Chapter 1 introduces the multiscale problems to be addressed in this thesis.

Cement paste, mortar and concrete are studied numerically for their mechanical

performance. The relations between these three cementitious materials are em-

phasized in the parameter-passing multiscale modeling scheme developed in this

thesis.

Chapter 2 deals with the 3D lattice fracture model. The mechanical perfor-

mance of cement paste, mortar and concrete can be evaluated by the 3D lattice

fracture analysis. Quadrangular lattice mesh, uniaxial tensile test setup, fracture

processes simulation, stress-strain response, microcracks propagation and cracks

pattern in final failure state are discussed in detail.

Chapter 3 focuses on the cement paste at microscale. The microstructures

of cement paste can be obtained through the computer modeling program HY-

MOSTRUC3D model, as well as the experimental method of micro computed

tomography. The lattice fracture model is employed to predict the uniaxial ten-

sile properties based on the microstructures. Various factors are examined to

evaluate their influences on the mechanical performance of cement paste, includ-

ing the degree of hydration, cement fineness, water/cement ratio and mineral

composition of cement.

Chapter 4 proposes an innovative model to simulate the material mesostruc-

tures of mortar and concrete: the Anm material model. From modeling point

of view the material structures of mortar and concrete can be represented by

particles embedded in matrix. The particle shapes are irregular in reality and

the spherical harmonics provides a good mathematical representation of irreg-

ular shapes. The Anm material model parks multiple irregular shape particles

together into an empty container to stand for the mesostructures of mortar and

concrete. The parking algorithm is illustrated in detail, and examples are given

to show how the mesostructures of mortar and concrete can be simulated respec-

tively.

Chapter 5 makes use of all the tools discussed in previous chapters to address

two types of multiscale modeling problems: for cement paste only but at differ-

ent sizes, and for the integrated system of cement paste, mortar and concrete

at microscale/mesoscale. The scale division and parameter-passing scheme are
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discussed, and the domain decomposition modeling technique is also employed to

solve the length scale overlap.

Chapter 6 summarizes the work and achievements in this thesis and presents

all the findings in a brief way. An outlook is also given for the further development

and potential future use of the algorithms and numerical models proposed in this

thesis.
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Chapter 2

Three-dimensional Lattice

Fracture Model

2.1 Background

Numerical modeling of fracture processes in brittle materials, such as cement

paste, mortar, concrete and rocks, started in the late 1960s with the landmark

papers of Ngo and Scordelis [5] and Rashid [6], in which the discrete and smeared

crack models were introduced. Especially the latter approach gained much pop-

ularity, and in the 1970s comprehensive efforts were invested in developing con-

stitutive models in a smeared setting which could reproduce the experimentally

observed stress-strain characteristics of concrete. However, neither of them could

tell the fracture processes in detail. In the 1990s, Schlangen and van Mier pro-

posed another model to compensate the drawbacks of discrete and smeared crack

models, which is called lattice fracture model [7].

The concept of lattice was proposed by Hrennikoff in the 1940s to solve elastic-

ity problems using the framework method [8]. In the 1970s and 1980s the lattice

model was introduced in theoretical physics to study the fracture behavior of dis-

ordered media [9, 10]. In the field of material sciences, a model was proposed by

Burt and Dougill to simulate uniaxial extension tests, which consists of a plane

pin-jointed random network structure of linear elastic brittle members having a

range of different strengths and stiffnesses [11].
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2. THREE-DIMENSIONAL LATTICE FRACTURE MODEL

In the last two decades, plenty of efforts have been made to develop the lat-

tice fracture model in a variety of different settings: regular/irregular network,

triangular/quadrangular mesh, truss/beam element, the way to implement het-

erogeneity (random distribution of local properties/microstructure mapping) and

whether to introduce the softening at the element level. A lattice system of truss

elements was constructed based on a random particle model to study the fracture

of aggregate or fiber composites by Bazant et al. [12]. The tension softening

response of the matrix phase was implemented in the lattice fracture analysis for

concrete by Arslan et al. [13]. The fracture of particle composites due to large

deformation was investigated by Karihaloo et al. using lattice fracture model

[14]. Vervuurt made use of lattice fracture analysis to study the interface frac-

ture in concrete [15], and van Vliet investigated the size effect in tensile fracture

of concrete and rock [16]. The size effect on strength in numerical concrete was

also studied by Man, where the influences of aggregate density and shape were

discussed [17]. An irregular lattice model was proposed by Bolander and Suku-

mar for simulating quasistatic fracture in softening materials, in which accurate

modeling of heterogeneity is enabled by constructing the lattice geometry on the

basis of a Voronoi discretization of the material domain [18]. Lattice modeling of

uniaxial compression was studied and applied to normal concrete, high strength

concrete and foamed cement by Caduff and van Mier [19]. Grassl and Davies

modeled corrosion induced cracking and bond in reinforced concrete using lattice

approach [20]. Fracture laws for simulating compressive fracture in lattice-type

models were explored and discussed by van Mier [21]. The possibility of modeling

self-healing of cementitious materials using lattice approach was investigated by

Joseph [22].

In the lattice fracture model, the continuum is replaced by a lattice of beam

elements. Subsequently, the microstructure of the material can be mapped onto

these beam elements by assigning them different properties, depending on whether

the beam element represents a grain or matrix. Detailed modeling procedures are

given in Section 2.2. Various conventional laboratory experiments like uniaxial

tensile test, compressive test, shear test, bending test and torsional test can be

simulated by the lattice fracture model and the model can be applied towards
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a wide range of multiphase materials, such as concrete [3], cement paste [23],

graphite and fiber reinforced concrete [24].

The lattice fracture model can solve both 2D and 3D problems as the prin-

ciples are the same. The differences mainly exist in the computational resources

requirements in terms of computer memory and computing time. Hence compre-

hensive efforts were made to reduce the memory demand by employing a matrix

free linear algebraic equation solver [25]. The pre-conditioned conjugate gradi-

ent algorithm is also applied to guarantee the convergence of solutions to linear

equations resulting from very large size lattice structure. Parallel computing for

lattice fracture analysis is a good solution to save computational time and be

able to analyze even larger lattice structure [26]. A parallel computer implemen-

tation of lattice fracture model for shared memory architecture computers was

developed by Qian et al. in 2009, in which OpenMP API (Application Program

Interface) was used in combination with the host programming language C++.

2.2 Modeling procedures

The lattice fracture model can simulate the stress-strain response, cracks pattern

and microcracks propagation, based on the microstructure or mesostructure of

the material in question. Three stages are defined to make the modeling proce-

dures clear: pre-processing, fracture processes simulation and post-processing. In

the pre-processing stage, a lattice network is constructed and the local mechanical

properties are assigned to every lattice element, and then appropriate boundary

conditions are imposed, depending on the type of the test to be simulated (e.g.

uniaxial tensile test, bending test, shear test). The fracture processes are simu-

lated by removing the critical element from the system one after one, representing

the microcrack occurrence. The critical lattice element is the element with the

highest stress/strength ratio. In the post-processing stage, the stress-strain re-

sponse diagram and the cracks pattern can be obtained, and the microcracks

propagation can be animated as well. An overview of the lattice fracture analysis

is given in Figure 2.1.
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2. THREE-DIMENSIONAL LATTICE FRACTURE MODEL

Pre-processing:

Lattice network construction;

Local mechanical properties assignment; 

Boundary conditions setting

Post-processing:

Stress-strain response diagram;

Cracks pattern and microcracks propagation

Kernel solver:

Fracture processes simulation

Figure 2.1: An overview of the lattice fracture analysis

2.2.1 Lattice network construction

A lattice network can be constructed based on the microstructure of materials.

Two construction methods are presented in this subsection, which are ImgLat

(Image to Lattice) and HymLat (Hymostruc3D to Lattice). The first method,

ImgLat, is good for any microstructure in terms of voxels, and the second one,

HymLat, can only be applied to a spherical particles embedded microstructure.

The construction method ImgLat is more general and has a wider range of applica-

tions, as a spherical particles embedded microstructure can always be converted

into a voxel-based digital image. However, the lattice network resulting from

the second construction method HymLat usually has less nodes and elements,

and thus costs less computational resources for the fracture processes simulation.

During the lattice network construction, the following parameters need to be de-

termined: location of lattice node, and length, radius, Young’s modulus, shear

modulus and tensile strength of lattice element (the cross-section is assumed to

be circular for simplicity).
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lattice element

square grid

lattice node

sub-cell
cell

voxel

sub cell

lattice node

Figure 2.2: Lattice network construction for general material and scale

General construction method ImgLat: applicable to voxel-based digital

image

The lattice network construction is illustrated in Figure 2.2. The sketch at left

side is shown in 2D for a more clear illustration, and the mesh method also works

for 3D case. A digital image consisting of multiple phases can be taken as the

basis for the lattice mesh. A network of cells is generated first, and a sub-cell

can be defined within each cell. A lattice node is randomly chosen within each

sub-cell which represents solid phase. The pore phase cells do not generate any

lattice node. Then the lattice nodes in the neighboring cells are connected by

lattice beam elements, which eventually form a lattice network system. The

lattice system is able to carry loads and thus replaces the original continuum

materials in terms of mechanical performance. The lattice network shown in

Figure 2.2 is quadrangular. Alternatively it can also be meshed to a triangular

system. If a perfect regular lattice network is generated, then the quadrangular

option leads to the Poisson’s ratio 0, while the triangular one not. The above

construction method implements the heterogeneity of the materials through the

network geometry irregularities. It is also possible to achieve this by assigning

random local mechanical properties to different lattice beam elements. See [3, 25,

27, 28] for more information about the construction of random lattice network.

The length ratio of the sub-cell to the cell is defined as the randomness of the

lattice system, which represents the disorder of the materials. The value of the

randomness is in the range of [0, 1]. When it takes 0, the lattice node is always
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2. THREE-DIMENSIONAL LATTICE FRACTURE MODEL

Figure 2.3: Prism of the size 40 mm× 40 mm× 60 mm subject to uniaxial tensile

load

located at the center of the cell, and a perfect quadrangular lattice system is

generated, but the Poisson’s ratio of the materials represented is restricted to 0.

When the randomness is equal to 1, the sub-cell becomes identical to the cell,

and the materials have the maximum degree of disorder. The choice of random-

ness affects the simulated fracture behavior of the materials, and the following

numerical experiment is carried out to show the influence of randomness on the

simulated mechanical properties of single phase perfect homogeneous materials.

A specimen in the shape of a prism at the size 40 mm× 40 mm× 60 mm is

analyzed for its global mechanical properties through a uniaxial tensile test by

lattice fracture model. It is modeled as a single phase homogeneous material

and represented in terms of voxels at the resolution 1 mm/voxel, as shown in

Figure 2.3.

A lattice network is constructed based on the voxel image. In each voxel,

a sub-cell is created, and the length ratio of the sub-cell to the voxel is the

randomness. A lattice node is positioned randomly within the sub-cell, and then

the neighboring lattice nodes are connected to form lattice elements as shown in
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2.2 Modeling procedures

Table 2.1: System size of the prism in Figure 2.3

Number of voxels: 40× 40× 60 = 96000

Number of lattice nodes: 96000

Number of lattice elements: 39× 40× 60× 2 + 59× 40× 40 = 281600
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Figure 2.4: Linear-brittle constitutive law of lattice elements

Figure 2.2. The system size of the resulting lattice network is listed in Table 2.1.

The lattice elements follow linear-brittle constitutive law as shown in Figure 2.4

and the corresponding local mechanical properties are given in Table 2.2.

During the lattice network construction, the randomness is varied at 0, 0.25,

0.5, 0.75 and 1 respectively in the computational model to study its influence on

the simulated global mechanical properties. At each randomness, three instances

are taken using different random seed 1, 2 and 3 respectively. The random seed

controls the pseudo random number sequence in the C++ programming language,

thus the resulting lattice networks would be different using different random seeds,

Table 2.2: Local mechanical properties of lattice elements in Figure 2.4

Young’s modulus Shear modulus Poisson’s ratio Tensile strength

E (GPa) G (GPa) ν ft (MPa)

35 14 0.25 3.5
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2. THREE-DIMENSIONAL LATTICE FRACTURE MODEL

Table 2.3: Simulation configurations with regard to lattice network construction

Randomness 0 0.25 0.5 0.75 1

Random seed 1/2/3 1/2/3 1/2/3 1/2/3 1/2/3

even though at the same randomness, but the global properties should be more

or less the same. The simulation configurations with regard to lattice network

construction are summarized in Table 2.3, and in total 15 simulations are exe-

cuted.

The specimen is loaded in vertical direction as shown in Figure 2.3. The

external surface load is imposed on the top and the bottom surface is fixed. All

the other four side surfaces are free to expand/shrink. The lattice elements on

the top and bottom boundaries are not allowed to be broken during the fracture

processes as the external load requires a path into the specimen.

The fracture processes of the prisms are simulated using lattice fracture model,

and the simulated global Young’s modulus E, tensile strength ft and fracture

energy GF are presented in Table 2.4.

From the Table 2.4 it is concluded that the influences of using different ran-

dom seeds to generate the pseudo random number sequences can be neglected,

but the choice of randomness really matters the simulation results. When the

randomness is taken as 0, the simulated global Young’s modulus and tensile

strength are the same as the local mechanical properties inputs, and all the mi-

crocracks are located on one plane as shown in Figure 2.5, which is due to the

fact that a piece of perfect homogeneous material is modeled. The increase of

the randomness results in a decrease of the simulated global Young’s modulus

and tensile strength, as artificial disorder of the materials is introduced gradually

by increasing the randomness in the model. The change of fracture energy is

somehow more complicated, as it decreases first and then increases again. The

decrease of the fracture energy is because of the decrease of the strength, and

the increase is due to the fact that more microcracks are generated with more

heterogeneous materials. These two forces push the change of fracture energy in

opposite directions, and the decrease of strength wins when the randomness is

still small, but the more microcracks become dominant when the randomness is
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Table 2.4: Influence of randomness on the simulated global Young’s modulus E,

tensile strength ft and fracture energy GF

Randomness Random seed Young’s modulus Tensile strength Fracture energy

E (GPa) ft (MPa) GF (J/m2)

0

1 35.0 3.50 0.753

2 35.0 3.50 0.753

3 35.0 3.50 0.753

Average

properties: 35.0 3.50 0.753

0.25

1 33.8 3.08 0.589

2 33.8 3.03 0.661

3 33.8 3.06 0.591

Average

properties: 33.8 3.06 0.614

0.5

1 30.8 2.64 0.644

2 30.8 2.66 0.637

3 30.8 2.66 0.644

Average

properties: 30.8 2.65 0.642

0.75

1 26.8 2.28 0.717

2 26.8 2.22 0.722

3 26.8 2.29 0.698

Average

properties: 26.8 2.26 0.712

1

1 22.8 1.95 0.981

2 22.8 1.94 1.009

3 22.8 1.91 0.911

Average

properties: 22.8 1.93 0.967
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2. THREE-DIMENSIONAL LATTICE FRACTURE MODEL

Figure 2.5: Microcracks pattern of perfect homogeneous material subject to uni-

axial tension

large enough. The diagram of simulated global mechanical properties reduction

against the randomness is shown in Figure 2.6.

The randomness defined in the lattice mesh represents the heterogeneity of

the materials in reality. The following procedures may be employed to determine

the value of randomness. The first step is to obtain the material structure of the

specimen through CT scan (see Subsection 3.1.3 for more information), and then

construct a lattice network based on the material structure with different values

of randomness. Afterwards the lattice systems with different randomness values

are evaluated by the lattice fracture analysis for their mechanical properties such

as Young’s modulus and tensile strength. The simulated mechanical properties

are compared with the measured value to find out the best simulation, and it is

concluded that the randomness used in the best simulation is the correct one.

The next step after creating the lattice network is to assign local mechanical

properties to all lattice elements. Either truss element or beam element may be

employed in lattice fracture analysis, and the choice is dependent on the appli-

cation. Generally speaking beam elements are preferred as a beam network can
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Figure 2.6: Simulated global mechanical properties reduction against randomness

simulate a wider range of Poisson’s ratios and more complicated crack patterns

[25, 29].

The local mechanical properties of a lattice element is determined by the loca-

tion of the element, whether it is within a grain or in the matrix, or it connects a

grain to the matrix, as shown in Figure 2.7. If both ends of an element are located

in the same phase, then this element is assigned the same mechanical properties

as the phase in question, otherwise it is classified as an interface element. The

mechanical properties of an interface element are preferred to be measured in

laboratory test, but in case of lack of experimental data, the following guidelines

may be applied. The Young’s modulus of an interface element is the harmonic

average of the Young’s moduli of the grain and the matrix, and its tensile strength

takes the lower value of the two phases, as determined by the equation (2.1) and

the equation (2.2). Shear modulus of an interface element is determined in a

similar way to the determination of its Young’s modulus.

2

EI
=

1

EA
+

1

EB
(2.1)

in which EI , EA and EB are the Young’s modulus for interface element, phase A

and phase B respectively.

ftI = min (ftA , ftB) (2.2)
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Figure 2.7: Lattice element type determination and its constitutive relation

where ftI , ftA and ftB are the tensile strength for the interface element, phase A

and phase B respectively.

Special construction method HymLat: only applicable to spherical par-

ticles embedded microstructure

Having introduced the general lattice network construction method for voxel-

based microstructure of materials, a special construction method is also devel-

oped for the spherical particles embedded microstructure of cement paste from

the HYMOSTRUC3D model. A sample of the microstructure simulated by the

HYMOSTRUC3D model is given in Figure 2.8. Details about the simulation of

microstructures of cement paste can be found in Chapter 3. In total four phases

are presented in the microstructure, including one pore (P) phase and three solid

phases which are unhydrated cement (U), inner product (I) and outer product

(O).

During the lattice network construction, a lattice element is generated if the

two particles have overlap, as shown in the Figure 2.9(a). The lattice element

goes from the center of the first particle to the center of the other one. The cross-

section of the lattice element is assumed to be circular and its area is equal to the

contact area of the two particles in question. This construction principle applies

to all the pairs of overlapped particles, thus a lattice network can be created, as

shown in Figure 2.9(b) for the case of three pairs.
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Figure 2.8: Microstructure of cement paste simulated by the HYMOSTRUC3D

model

(a) Lattice element (b) Lattice network

Figure 2.9: 3D contact particles, lattice element and network
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The determination of Young’s modulus of a lattice element is through a two-

step averaging. The particle modulus is computed as a result of the length-

weighted harmonic average modulus of unhydrated cement, inner product and

outer product, as determined by the equation (2.3) and illustrated in Figure 2.10,

RO

Ep
=
RU

EU
+
RI −RU

EI
+
RO −RI

EO
(2.3)

where RU , RI and RO are the radius for unhydrated cement, inner product and

outer product respectively, EU , EI and EO are the corresponding Young’s mod-

ulus, Ep is the computed particle modulus. The lattice element modulus is the

length-weighted harmonic average of the particle moduli of the two particles which

it links. The formula depends on the two particles’ relative locations, as given in

the equation (2.4) and shown in Figure 2.11,

E =



lEp1Ep2(Ep1 + Ep2)

(l −R1)E2
p1 + (R1 +R2)Ep1Ep2 + (l −R2)E2

p2

if case 1

lEp1(Ep1 + Ep2)

(l +R2)Ep1 + (l −R2)Ep2
if case 2

Ep1 + Ep2
2

if case 3

(2.4)

where R1 and R2 are the radius of the first and the second particle, Ep1 and

Ep2 are the corresponding particle moduli, l is the lattice element length, and

E is the computed element modulus. Shear modulus of a lattice element can be

determined through the same procedures, and its tensile strength takes the lowest

tensile strength among unhydrated cement, inner product and outer product, as

given in the equation (2.5),

ft = min (ftU , ftI , ftO) (2.5)

where ftU , ftI and ftO are the tensile strength for unhydrated cement, inner

product and outer product respectively, and ft is the tensile strength of the

lattice element.

2.2.2 Test setup

Similarly to various laboratory experiments, many types of tests can be simulated

on a lattice network, including but not limited to tensile test, three-point (four-
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Figure 2.10: Determination of particle modulus (first step averaging)

point) bending test, shear test and more. They are implemented by setting up

proper boundary conditions of the sample. For example a uniaxial tensile test

can be configured by fixing all the nodes on the bottom surface of the specimen

and imposing a uniform surface load on the top surface, as shown in Figure 2.12.

During the lattice network construction, all the layers close to the surfaces are

forced to be regularly meshed, irrespective of the material randomness setting,

as irregular geometry on the boundaries might create some extra stresses which

may have negative influence on the fracture processes simulation. In addition all

the lattice elements involved in the bottom and top layers are not allowed to be

broken, even if the stress in such an element has already exceeded its strength,

as the external loads need a path to be transferred into the specimen. In other

words, it is assumed that all the restraint elements have infinite strength.

In the laboratory tensile test, there are two possible methods to connect the

specimen to the testing device: glued and clamped. In the numerical model,

these are implemented through whether or not to fix the degrees of freedom of the

nodes at the bottom and top surfaces. In both cases for a tensile test, the vertical

displacements of all the nodes at the bottom surface are prescribed to be 0, and

the top surface to be unit deformation. In the case of a glued specimen, all the

other degrees of freedom of the nodes in question are restricted to be 0. But only

one node is chosen to be fixed completely in the case of a clamped specimen, as

this is required to prevent possible rigid body movement. The clamped setting is

suitable for the study about Poisson’s ratio. The following example demonstrates
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Figure 2.11: Determination of lattice element modulus (second step averaging)
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Figure 2.12: Uniaxial tensile test setup

the influences of these two different settings on the simulated global mechanical

properties.

A cubic specimen of the size 20 mm at the resolution 1 mm/voxel is con-

figured for a uniaxial tensile test using two different aforementioned boundary

conditions, as shown in Figure 2.12. The input local mechanical properties are

given in Table 2.2 and it behaves linear-brittle locally as shown in Figure 2.4. The

randomness of the material is taken as 0.5 in the numerical experiments. The

simulated global Young’s modulus, tensile strength and fracture energy are pre-

sented in Table 2.5. The comparisons show that the differences are so small that

they can be neglected for the glued and the clamped boundary settings, at least

this is true for specimens with Poisson’s ratio close to 0. If the Poisson’s ratio of

the specimen is far from 0, then the restriction on the boundaries will affect the

deformation of side surfaces, thus the mechanical responses will be different for

different boundary settings.
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Table 2.5: Influence of boundary settings on the simulated global Young’s mod-

ulus E, tensile strength ft and fracture energy GF

Boundary settings Young’s modulus Tensile strength Fracture energy

E (GPa) ft (MPa) GF (J/m2)

Glued 31.4 2.74 0.638

Clamped 31.3 2.74 0.643

2.2.3 Fracture processes simulation

After the lattice network is constructed and boundary conditions are imposed, it

is ready to proceed with the fracture processes simulation which is the kernel part

in the entire lattice fracture analysis. The flowchart of lattice fracture analysis

kernel solver is given in Figure 2.13. It seems similar to the traditional finite

element analysis, but two major differences exist. One is about the removal

of broken lattice elements from the system and the other is the absence of the

explicit assembly of global stiffness matrix.

In lattice fracture analysis, a unit prescribed displacement is imposed on the

system. At every analysis step it is required to determine the critical element

and the corresponding system scaling factor after the calculation of compara-

tive stress in every lattice element. The critical element is the one with highest

stress/strength ratio when the system is loaded by a unit prescribed displace-

ment. The inverse of the ratio is defined as system scaling factor. The system

scaling factor, together with the reactions on the restraint boundaries, determines

one scenario of critical load-displacement pairs. The critical element is removed

from the system and if the system does not fail completely yet, it is recomputed

as the system is updated due to the element removal. Multiple analysis steps

are carried out until the system fails. Hence a set of load-displacement pairs

can be obtained and used to plot the load-displacement diagram, which can be

converted to a stress-strain diagram later to represent the constitutive relation of

the material. The step-by-step removal of critical lattice elements indicates the

microcracks evolution in the specimen. Thus the microcracks propagation and

the cracks pattern in the final failure state can be simulated.
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Element stiffness 
matrix in local domain

Calculate total 
reaction force(s)

Calculate element 
internal force vector in 

local domain

Transformation matrix

Calculate element 
comparative stress

Link local degrees of 
freedom to global 

degrees of freedom

Update system due to 
damage

Element stiffness 
matrix in global 

domain

Solve linear algebraic 
equations to get node 
displacement vector

Determine critical 
element(s) and system 

scaling factor(s)

Impose boundary 
conditions

Assemble load vectorStart

End

System failed?

Yes

No

Figure 2.13: Flowchart of lattice fracture analysis kernel solver
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Figure 2.14: 3D lattice beam element in local domain

Another highlight in the lattice fracture analysis is the adoption of the ma-

trix free technique in the linear algebraic equation solver to reduce the computer

memory demand. The global stiffness matrix is not assembled or stored explicitly,

rather than that the element stiffness matrices in global domain and the connec-

tivity array, which links local degrees of freedom to global degrees of freedom, are

sent to the equation solver directly to get the node displacement vector. Jacobi

pre-conditioned conjugate gradient iterative method is employed to solve the set

of linear equations. More details about the algorithm can be found later in this

subsection on Page 64.

3D lattice beam element stiffness matrix in local domain and in global

domain

In lattice fracture analysis, continuum materials are discretized into a network

of lattice elements. The lattice beam element is a straight bar of uniform cross-

section and can transmit axial forces, shear forces, bending moments and torsional

moments as shown in Figure 2.14. The formulation of a 3D lattice beam element

stiffness matrix is based on the Timoshenko beam theory, which can be found in

many textbooks about Finite Element Analysis.

The 3D lattice beam element has two nodes and each node has six degrees
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of freedom including three translational and three rotational degrees of freedom.

The element stiffness matrix in local domain is of the size 12×12 and can be for-

mulated by assembling axial component, torsional component, bending and shear

components in the planes xOy and xOz. The element cross-sectional bending and

shear centers are assumed to be coincident.

Along the axial direction as shown in Figure 2.14, the kinematics, equilibrium

and constitutive equations are,
εx(x) =

du(x)

dx

A
dσx(x)

dx
+ f(x) = 0

σx(x) = Eεx(x)

(2.6)

where E is the axial elastic modulus, A is the cross-sectional area of the element,

f(x) is the external body force along the axial direction, σx(x), εx(x) and u(x)

are the stress, strain and displacement respectively.

The strong form of the axial governing equation can be derived from the

equations (2.6) and it is

EA
d2u(x)

dx2
+ f(x) = 0 (2.7)

The corresponding Dirichlet and Neumann boundary conditions areu(x) = u0 on Γu

EA
du(x)

dx
n = P0 on ΓF

(2.8)

where u0 and P0 are the given displacement and force at the boundaries respec-

tively, n is the outward unit normal vector, Γ represents the boundaries of the

element and it satisfies

Γu ∪ ΓF = Γ,Γu ∩ ΓF = ∅ (2.9)

To develop the weak form of the governing equation, the strong form equa-

tion (2.7) needs to be multiplied by a scalar weight function w(x), which comes

from an appropriately defined space V . An important requirement on the space

V is that weight functions w(x) be zero where Dirichlet boundary conditions
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are applied. Multiplying the equation (2.7) by the weight function w(x) and

integrating over the element Ω yields∫
Ω

w(x)EA
d2u(x)

dx2
dΩ +

∫
Ω

w(x)f(x)dΩ = 0 (2.10)

Applying integration by parts once yields

−
∫

Ω

dw(x)

dx
EA

du(x)

dx
dΩ +

∫
Γ

w(x)EA
du(x)

dx
ndΓ +

∫
Ω

w(x)f(x)dΩ = 0 (2.11)

As the boundary Γ can be decomposed into two parts Γu and ΓF , the above

equation can be re-written as

−
∫

Ω

dw(x)

dx
EA

du(x)

dx
dΩ +

∫
Γu

w(x)EA
du(x)

dx
ndΓ

+

∫
ΓF

w(x)EA
du(x)

dx
ndΓ +

∫
Ω

w(x)f(x)dΩ = 0 (2.12)

The term
∫

Γu
w(x)EAdu(x)

dx
ndΓ is always equal to zero as by definition the weight

function w(x) is equal to zero at Dirichlet boundary. The weak form of the

governing equation can be obtained by inserting the Neumann boundary condi-

tion (2.8) into the above equation. Solving it involves to find a trial function

u(x) ∈ S such that

−
∫

Ω

dw(x)

dx
EA

du(x)

dx
dΩ +

∫
ΓF

w(x)P0dΓ +

∫
Ω

w(x)f(x)dΩ = 0 ∀w(x) ∈ V

(2.13)

where S is an appropriately defined space of functions which satisfies the Dirichlet

boundary condition (2.8). The mathematical description for the spaces S and V

is that {
S = {u(x) | u(x) ∈ L(Ω), u(x) = u0 on Γu}
V = {w(x) | w(x) ∈ L(Ω), w(x) = 0 on Γu}

(2.14)

Based on the weak form of the governing equation (2.13), a Galerkin problem

can be formulated which involves to find uh(x) ∈ Sh such that∫
Ω

dwh(x)

dx
EA

duh(x)

dx
dΩ =

∫
ΓF

wh(x)P0dΓ +

∫
Ω

wh(x)f(x)dΩ ∀wh(x) ∈ V h

(2.15)

where Sh ⊂ S and V h ⊂ V are finite-dimensional spaces.
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The Galerkin method (more specifically, the Bubnov-Galerkin method) re-

quires that the trial function and the weight function come from the same finite-

dimensional space, taking into account the requirements on the trial and weight

functions where Dirichlet boundary conditions are applied.

To find the solution to the Galerkin problem (2.15), Lagrange polynomials can

be used to construct the shape functions, which results in a linear interpolation

of the displacement field in the element,

uh(x) = Ni(x)ui +Nj(x)uj (2.16)

where ui and uj are the axial displacements at node i and j respectively, and the

shape functions are Ni(x) = 1− x

l

Nj(x) =
x

l

(2.17)

Denoting that

N(x) =
[
Ni(x) Nj(x)

]
(2.18)

and

ae =

{
ui
uj

}
(2.19)

Thus the displacement field (2.16) can be re-written as

uh(x) = N(x)ae (2.20)

The first derivative of the trial function uh(x) is given by

duh(x)

dx
=
dN(x)

dx
ae (2.21)

Similarly the weight function and its first derivative are given by

wh(x) = N(x)be (2.22)

and
dwh(x)

dx
=
dN(x)

dx
be (2.23)
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Inserting the equations (2.21), (2.22) and (2.23) into the Galerkin problem (2.15)

yields∫
Ω

[
dN(x)

dx
be

]T
EA

[
dN(x)

dx
ae

]
dΩ

=

∫
ΓF

[
N(x)be

]T
P0dΓ +

∫
Ω

[
N(x)be

]T
f(x)dΩ (2.24)

Rearranging the above equation yields∫
Ω

[
dN(x)

dx

]T
EA

[
dN(x)

dx

]
dΩae =

∫
ΓF

[N(x)]T P0dΓ +

∫
Ω

[N(x)]T f(x)dΩ

(2.25)
Hence the element stiffness matrix for the axial deformation is given by

Ke

a
=

∫
Ω

[
dN(x)

dx

]T
EA

[
dN(x)

dx

]
dΩ

=

∫ l

0

[
−1

l
1
l

]
EA

[
−1

l
1
l

]
dx

=

[
EA
l
−EA

l

sym. EA
l

]
(2.26)

where E is the axial elastic modulus, A and l are the cross-sectional area and the

length of the element respectively.

The element stiffness matrix for the torsional deformation can be formulated

in a similar way and is given by

Ke

t
=

[
GJ
l
−GJ

l

sym. GJ
l

]
(2.27)

where G is the shear modulus, J is the polar moment of inertia about the axial

direction, and l is the length of the element.

The element stiffness matrix for the bending and shear deformation in the

plane xOy is formulated through two steps. The first step derives the stiffness

matrix for Euler-Bernoulli beam element, and then the shear effect is taken into

account at the second step, thus the Timoshenko beam element is developed.

In the plane xOy as shown in Figure 2.14, the translational equilibrium re-

quires that ∫
Γ

q(x)ndΓ +

∫
Ω

fy(x)dΩ = 0 (2.28)
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where fy(x) is the body force, q(x) is the distributed load, n is the outward

unit normal vector, Ω and Γ are the body and the boundaries of the element

respectively.

Noting that
∫

Γ
q(x)ndΓ =

∫
Ω
dq(x)
dx

dΩ, the above equation can be re-arranged as∫
Ω

dq(x)

dx
dΩ +

∫
Ω

fy(x)dΩ = 0 (2.29)

Since equilibrium must hold for an infinitely small segment of a beam, it requires

that
dq(x)

dx
+ fy(x) = 0 (2.30)

For rotational equilibrium, it is required that∫
Γ

m(x)ndΓ−
∫

Γ

q(x)nxdΓ−
∫

Ω

fy(x)xdΩ = 0 (2.31)

where m(x) is the distributed moment.

Noting that
∫

Γ
m(x)ndΓ =

∫
Ω
dm(x)
dx

dΩ and integration by parts
∫

Ω
xdq(x)

dx
dΩ =

−
∫

Ω
q(x)dΩ +

∫
Γ
xq(x)ndΓ, the above equation can be re-written as∫

Ω

dm(x)

dx
dΩ−

[∫
Ω

x
dq(x)

dx
dΩ +

∫
Ω

q(x)dΩ

]
−
∫

Ω

fy(x)xdΩ = 0 (2.32)

Rearranging the above equation yields∫
Ω

[
dm(x)

dx
− q(x)

]
dΩ−

∫
Ω

[
dq(x)

dx
+ fy(x)

]
xdΩ = 0 (2.33)

The term
∫

Ω

[
dq(x)
dx

+ fy(x)
]
xdΩ must be zero due to the satisfaction of the trans-

lational equilibrium (2.30), and equilibrium must hold for an infinitely small seg-

ment of a beam, hence,
dm(x)

dx
− q(x) = 0 (2.34)

The kinematics equation is based on the Euler-Bernoulli hypothesis, which

is plane cross-sections remain plane and normal to the longitudinal axis after

deformation. This assumption implies that the shear rotation is equal to zero,

hence, the rotation can be directly related to the translational displacement,

θ(x) =
dv(x)

dx
(2.35)
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which also implies that

κ(x) =
dθ(x)

dx
=
d2v(x)

dx2
(2.36)

where κ(x) is the bending curvature, θ(x) and v(x) are the rotational and trans-

lational displacement respectively.

The constitutive equation relates the bending moment in the beam to the

curvature by

m(x) = −EIzκ(x) (2.37)

where Iz is the moment of inertia of the cross-section about the z-axis.

On the basis of the equations (2.30), (2.34), (2.36) and (2.37), the strong form

the the governing equation can be obtained,

EIz
d4v(x)

dx4
− fy(x) = 0 (2.38)

The corresponding Dirichlet and Neumann boundary conditions are
v(x) = v0 on Γv

θ(x) = θ0 on Γθ

m(x)n = M0 on ΓM

q(x)n = Q0 on ΓQ

(2.39)

The Neumann boundary conditions can also be expressed in terms of translational

displacement v(x), which are
−EIz

d2v(x)

dx2
n = M0 on ΓM

−EIz
d3v(x)

dx3
n = Q0 on ΓQ

(2.40)

where v0 and θ0 are the given translational and rotational displacement at the

boundaries respectively, M0 and Q0 are the given moment and shear force at the

boundaries respectively.

The boundary Γ of the element is partitioned such that{
Γv ∪ ΓQ = Γ,Γv ∩ ΓQ = ∅
Γθ ∪ ΓM = Γ,Γθ ∩ ΓM = ∅

(2.41)
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To develop the weak form of the governing equation, multiplying both sides

of the equation (2.38) by a weight function w(x) and integrating over the beam

Ω yields ∫
Ω

w(x)EIz
d4v(x)

dx4
dΩ−

∫
Ω

w(x)fy(x)dΩ = 0 (2.42)

Integrating by parts once yields

−
∫

Ω

dw(x)

dx
EIz

d3v(x)

dx3
dΩ+

∫
Γ

w(x)EIz
d3v(x)

dx3
ndΓ−

∫
Ω

w(x)fy(x)dΩ = 0 (2.43)

Applying integration by parts again yields

−
[
−
∫

Ω

d2w(x)

dx2
EIz

d2v(x)

dx2
dΩ +

∫
Γ

dw(x)

dx
EIz

d2v(x)

dx2
ndΓ

]
+

∫
Γ

w(x)EIz
d3v(x)

dx3
ndΓ−

∫
Ω

w(x)fy(x)dΩ = 0 (2.44)

The above equation can be simplified as∫
Ω

d2w(x)

dx2
EIz

d2v(x)

dx2
dΩ−

∫
Γ

dw(x)

dx
EIz

d2v(x)

dx2
ndΓ

+

∫
Γ

w(x)EIz
d3v(x)

dx3
ndΓ−

∫
Ω

w(x)fy(x)dΩ = 0 (2.45)

Inserting the moment part of the Neumann boundary conditions (2.40) into

the term
∫

Γ
dw(x)
dx

EIz
d2v(x)
dx2

ndΓ and noting that the first derivative of the weight
function is equal to zero on Γθ yields∫

Γ

dw(x)

dx
EIz

d2v(x)

dx2
ndΓ =

∫
ΓM

dw(x)

dx
EIz

d2v(x)

dx2
ndΓ +

∫
Γθ

dw(x)

dx
EIz

d2v(x)

dx2
ndΓ

= −
∫

ΓM

dw(x)

dx
M0dΓ (2.46)

Inserting the shear force part of the Neumann boundary conditions (2.40) into

the term
∫

Γ
w(x)EIz

d3v(x)
dx3

ndΓ and noting that the weight function is equal to zero
on Γv yields∫

Γ

w(x)EIz
d3v(x)

dx3
ndΓ =

∫
ΓQ

w(x)EIz
d3v(x)

dx3
ndΓ +

∫
Γv

w(x)EIz
d3v(x)

dx3
ndΓ

= −
∫

ΓQ

w(x)Q0dΓ (2.47)
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The weak form of the governing equation can be obtained by substituting the

equations (2.46) and (2.47) into the equation (2.45). Solving it involves to find a

trial function v(x) ∈ S such that∫
Ω

d2w(x)

dx2
EIz

d2v(x)

dx2
dΩ +

∫
ΓM

dw(x)

dx
M0dΓ

−
∫

ΓQ

w(x)Q0dΓ−
∫

Ω

w(x)fy(x)dΩ = 0 ∀w(x) ∈ V (2.48)

where S and V are appropriately defined spaces satisfying the following conditions
S = {v(x) | v(x) ∈ H2(Ω), v(x) = v0 on Γv,

dv(x)

dx
= θ0 on Γθ}

V = {w(x) | w(x) ∈ H2(Ω), w(x) = 0 on Γv,
dw(x)

dx
= 0 on Γθ}

(2.49)

Both S and V must be sub-spaces of the Sobolev space H2(Ω), which requires

that 
∫

Ω

{v2(x) +

[
dv(x)

dx

]2

+

[
d2v(x)

dx2

]2

}dx <∞∫
Ω

{w2(x) +

[
dw(x)

dx

]2

+

[
d2w(x)

dx2

]2

}dx <∞
(2.50)

Based on the weak form of the governing equation (2.48), a Galerkin problem

for the beam can be formulated, which involves to find vh(x) ∈ Sh such that∫
Ω

d2wh(x)

dx2
EIz

d2vh(x)

dx2
dΩ = −

∫
ΓM

dwh(x)

dx
M0dΓ

+

∫
ΓQ

wh(x)Q0dΓ +

∫
Ω

wh(x)fy(x)dΩ ∀wh(x) ∈ V h (2.51)

where Sh ⊂ S and V h ⊂ V are finite-dimensional spaces.

The Galerkin method (more specifically, the Bubnov-Galerkin method) re-

quires that the trial function and the weight function come from the same finite-

dimensional space, taking into account the requirements on the trial and weight

functions where Dirichlet boundary conditions are applied.

To find the solution to the Galerkin problem (2.51), Hermitian polynomials

can be used to construct the shape functions, which results in a cubic interpolation

of the displacement field in the element,

vh(x) = Ni(x)vi +Mi(x)θi +Nj(x)vj +Mj(x)θj (2.52)
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where vi, θi, vj and θj are the translational and rotational displacements at node

i and j respectively, and the shape functions are

Ni(x) = 1− 3
x2

l2
+ 2

x3

l3

Mi(x) = x− 2
x2

l
+
x3

l2

Nj(x) = 3
x2

l2
− 2

x3

l3

Mj(x) = −x
2

l
+
x3

l2

(2.53)

Denoting that

N(x) =
[
Ni(x) Mi(x) Nj(x) Mj(x)

]
(2.54)

and

ae =


vi
θi
vj
θj

 (2.55)

Thus the displacement field (2.52) can be re-written as

vh(x) = N(x)ae (2.56)

The second derivative of the trial function vh(x) is given by

d2uh(x)

dx2
=
d2N(x)

dx2
ae (2.57)

Similarly the weight function, and its first and second derivatives are given by

wh(x) = N(x)be (2.58)

dwh(x)

dx
=
dN(x)

dx
be (2.59)

d2wh(x)

dx2
=
d2N(x)

dx2
be (2.60)
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Inserting the equations (2.57), (2.58), (2.59) and (2.60) into the Galerkin prob-

lem (2.51) yields

∫
Ω

[
d2N(x)

dx2
be

]T
EIz

[
d2N(x)

dx2
ae

]
dΩ

= −
∫

ΓM

[
dN(x)

dx
be

]T
M0dΓ +

∫
ΓQ

[
N(x)be

]T
Q0dΓ +

∫
Ω

[
N(x)be

]T
fy(x)dΩ

(2.61)

Rearranging the above equation yields

∫
Ω

[
d2N(x)

dx2

]T
EIz

[
d2N(x)

dx2

]
dΩae

= −
∫

ΓM

[
dN(x)

dx

]T
M0dΓ +

∫
ΓQ

[N(x)]T Q0dΓ +

∫
Ω

[N(x)]T fy(x)dΩ (2.62)

Hence the element stiffness matrix (Euler-Bernoulli beam) for the bending and
shear deformation in the plane xOy is given by

Ke

bExOy
=

∫
Ω

[
d2N(x)

dx2

]T
EIz

[
d2N(x)

dx2

]
dΩ

=

∫ l

0


− 6
l2

+ 12
l3
x

−4
l

+ 6
l2
x

6
l2
− 12

l3
x

−2
l

+ 6
l2
x

EIz [− 6
l2

+ 12
l3
x −4

l
+ 6

l2
x 6

l2
− 12

l3
x −2

l
+ 6

l2
x
]
dx

=


12EIz
l3

6EIz
l2

−12EIz
l3

6EIz
l2

4EIz
l

−6EIz
l2

2EIz
l

12EIz
l3

−6EIz
l2

sym. 4EIz
l

 (2.63)

The shear deformation and rotational inertia effects can be taken into account

(Timoshenko beam) by introducing an adjustment factor Φ into the above element

stiffness matrix (2.63), and it is given by

Ke

bTxOy
=


12EIz

l3(1+Φ1)
6EIz

l2(1+Φ1)
− 12EIz
l3(1+Φ1)

6EIz
l2(1+Φ1)

(4+Φ1)EIz
l(1+Φ1)

− 6EIz
l2(1+Φ1)

(2−Φ1)EIz
l(1+Φ1)

12EIz
l3(1+Φ1)

− 6EIz
l2(1+Φ1)

sym. (4+Φ1)EIz
l(1+Φ1)

 (2.64)
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where E is the elastic modulus, Iz is the moment of inertia of the cross-section

about the z-axis, l is the length of the element and Φ1 is the shear effect adjust-

ment factor in the plane xOy.

The element stiffness matrix for the bending and shear deformation in the

plane xOz can be formulated in a similar way and is given by

Ke

bTxOz
=


12EIy

l3(1+Φ2)
− 6EIy
l2(1+Φ2)

− 12EIy
l3(1+Φ2)

− 6EIy
l2(1+Φ2)

(4+Φ2)EIy
l(1+Φ2)

6EIy
l2(1+Φ2)

(2−Φ2)EIy
l(1+Φ2)

12EIy
l3(1+Φ2)

6EIy
l2(1+Φ2)

sym. (4+Φ2)EIy
l(1+Φ2)

 (2.65)

where E is the elastic modulus, Iz is the moment of inertia of the cross-section

about the z-axis, l is the length of the element and Φ1 is the shear effect adjust-

ment factor in the plane xOy.

The element stiffness matrix in local domain for a lattice Timoshenko beam

element can be obtained by assembly of the axial (2.26), torsional (2.27), bending

and shear components in the plane xOy (2.64) and in the plane xOz (2.65), and

it is given by

Ke

local
=



EA
l

0 0 0 0 0 −EA
l

0 0 0 0 0
12EIz

l3(1+Φ1)
0 0 0 6EIz

l2(1+Φ1)
0 − 12EIz

l3(1+Φ1)
0 0 0 6EIz

l2(1+Φ1)
12EIy

l3(1+Φ2)
0 − 6EIy

l2(1+Φ2)
0 0 0 − 12EIy

l3(1+Φ2)
0 − 6EIy

l2(1+Φ2)
0

GJ
l

0 0 0 0 0 −GJ
l

0 0
(4+Φ2)EIy
l(1+Φ2)

0 0 0 6EIy
l2(1+Φ2)

0 (2−Φ2)EIy
l(1+Φ2)

0
(4+Φ1)EIz
l(1+Φ1)

0 − 6EIz
l2(1+Φ1)

0 0 0 (2−Φ1)EIz
l(1+Φ1)

EA
l

0 0 0 0 0
12EIz

l3(1+Φ1)
0 0 0 − 6EIz

l2(1+Φ1)
12EIy

l3(1+Φ2)
0 6EIy

l2(1+Φ2)
0

GJ
l

0 0
(4+Φ2)EIy
l(1+Φ2)

0

sym. (4+Φ1)EIz
l(1+Φ1)


(2.66)

where E is the elastic modulus, G is the shear modulus, A is the cross-sectional

area of the element, l is the length of the element, Iz and Iy are the moment

of inertia about the z-axis and the y-axis respectively, J is the polar moment of

inertia about the x-axis, Φ1 and Φ2 are the shear effect adjustment factors in the

plane xOy and xOz respectively and can be computed by
Φ1 =

12EIz
GAsl2

Φ2 =
12EIy
GAsl2

(2.67)
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2. THREE-DIMENSIONAL LATTICE FRACTURE MODEL

in which As is the shear cross-sectional area and is given by

As =
A

κ
(2.68)

where κ is the shear correction factor and it is equal to 10
9

for circular cross-section.

In 3D lattice network construction a circular cross-section of the element is

preferred to rectangular one as it gives isotropic geometry properties about the

cross-section, and the following formulas apply,

A = πr2

Iz =
π

4
r4

Iy =
π

4
r4

J =
π

2
r4

(2.69)

The element stiffness matrix in global domain can be computed by the fol-

lowing formula,

Ke

global
= TKe

local
T T (2.70)

where Ke

local
is the element stiffness matrix in local domain as shown in the

expression (2.66), T is the transformation matrix of local and global domains,

and T T represents the transposed matrix of T .

The local and global domains are illustrated in Figure 2.15 and the local

domain O∗x∗y∗z∗ is attached to the element. The relationship of the two domains

is indicated by the transformation matrix T , which is in the size of 12 × 12 and

in the form of

T =


t
t
t
t

 (2.71)

where the matrix t of the size 3× 3 is given by

t =

 l1 = cos(x, x∗) l2 = cos(x, y∗) l3 = cos(x, z∗)
m1 = cos(y, x∗) m2 = cos(y, y∗) m3 = cos(y, z∗)
n1 = cos(z, x∗) n2 = cos(z, y∗) n3 = cos(z, z∗)

 (2.72)

in which nine direction cosines are defined.
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Figure 2.15: Local and global domains

Procedure. The nine direction cosines can be determined based on the coordinates

of the two nodes i(xi, yi, zi) and j(xj, yj, zj) in global domain. The procedure is

(1) calculate a1, a2 and a3 according to
a1 = xj − xi
a2 = yj − yi
a3 = zj − zi

(2.73)

(2) choose an arbitrary reference point B(xb, yb, zb) on the principal plane x∗O∗y∗

or x∗O∗z∗, provided that the point B is not located at the x∗-axis, and then

compute b1, b2 and b3 according to
b1 = xb − xi
b2 = yb − yi
b3 = zb − zi

(2.74)

(3) calculate c1, c2 and c3 using the following formulas,
c1 = a2b3 − a3b2

c2 = a3b1 − a1b3

c3 = a1b2 − a2b1

(2.75)
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(4) compute d1, d2 and d3 according to
d1 = c2a3 − c3a2

d2 = c3a1 − c1a3

d3 = c1a2 − c2a1

(2.76)

(5) calculate the length of the element l =
√
a2

1 + a2
2 + a2

3, and then l1, m1 and

n1 can be obtained, 
l1 =

a1

l

m1 =
a2

l

n1 =
a3

l

(2.77)

(6) compute the expression d =
√
d2

1 + d2
2 + d2

3, and then l2, m2 and n2 can be

obtained, 
l2 =

d1

d

m2 =
d2

d

n2 =
d3

d

(2.78)

(7) finally l3, m3 and n3 can be computed according to
l3 = m1n2 −m2n1

m3 = n1l2 − n2l1

n3 = l1m2 − l2m1

(2.79)

Jacobi pre-conditioned conjugate gradient linear equations solver

A set of linear equations are formulated and solved during the lattice fracture

analysis, and the Jacobi pre-conditioned conjugate gradient method [30] is em-

ployed. The basic algorithm is presented as following.

Algorithm. Suppose that a system of linear equations is represented by

Ax = b (2.80)

where A is the coefficient matrix, b is the constant vector, x is the solution vector.
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Given the inputs A, b, an initial guess of x, absolute error tolerance εa < 1,

relative error tolerance εr < 1, and a maximum number of iterations imax.

m⇐ diag(A)

m⇐ m−1

r ⇐ b− Ax
d⇐ m. ∗ r

δnew ⇐ rTd

δ0 ⇐ δnew

if δ0 < ε2a, then terminate;

for (int i = 1; i <= imax; i++)

{
q ⇐ Ad

α⇐ δnew

dT q
x⇐ x+ αd

r ⇐ r − αq
s⇐ m. ∗ r

δold ⇐ δnew

δnew ⇐ rT s

if δnew < ε2a or δnew < ε2rδ0, then terminate;

β ⇐ δnew

δold

d⇐ s+ βd

}

Fracture law

The most frequently used fracture law in lattice fracture model is the classic

Rankine failure criterion, which requires the comparative stress in the lattice

beam element is smaller than its strength. Other fracture laws are also possible,

and see [21] for more discussions. The comparative stress defined in this thesis is

caused by the normal force and bending moments, and can be computed by

σ = αN
N

A
+ αM

max(MxOy,MxOz)

W
(2.81)
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Figure 2.16: Multi-linear constitutive law of lattice elements

where A is the area of the cross-section, W is the cross-sectional factor for bending

resistance, αN and αM are the normal force influence factor and the bending

influence factor whose values are 1.0 and 0.05 respectively in this thesis.

Lattice element removal mechanisms

The basic removal procedure is to remove one element at one lattice analysis step.

To speed up the analysis, it is also possible to remove multiple elements at one

analysis step. Alternatively the bending resistance of an element may be removed

first and then the axial resistance. In the case of local softening implemented, as

shown in Figure 2.16, the element loses its stiffness and strength gradually and

eventually quits from the system through several analysis steps.

2.2.4 Load-displacement response and cracks propagation

The major outputs of lattice fracture analysis include the load-displacement re-

sponse, microcracks propagation and cracks pattern in the final failure state.

The load-displacement response can be converted to stress-strain diagram, which

represents the constitutive relation of the material analyzed. The cracks are

represented by the broken lattice elements. As the broken lattice elements are

removed step by step during the analysis, the sequence of the removal is traced,

which simulates the microcracks propagation. At the end of the lattice fracture
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analysis, all the broken lattice elements form the cracks pattern in the final failure

state. An application of the 3D lattice fracture model is given in Section 3.1 on

Page 70, which is about the micromechanical modeling of cement paste.

2.3 Summary

In this chapter the development of some fracture models (such as discrete cracking

model, smeared cracking model and lattice fracture model) for brittle materials

were reviewed. The 3D lattice fracture model is implemented for parallel com-

puting on shared memory architecture computers, which enables the study on

large systems within a relatively short computing time.

The modeling procedures of 3D lattice fracture model are discussed in detail.

The lattice network may be constructed according to ImgLat scheme and/or

HymLat scheme, depending on whether the input microstructure of materials is

described in terms of voxels or spheres. The influences of mesh randomness and

random seed are investigated through a uniaxial tensile test on a prism of the

size 40 mm× 40 mm× 60 mm. The local mechanical properties determination

principles for lattice elements are developed for ImgLat and HymLat schemes

respectively.

The lattice fracture model can be configured to simulate various laboratory

tests such as tensile test, shear test, bending test and more. The uniaxial tensile

test is illustrated in detail and two types of boundary conditions are distinguished

and compared: glued and clamped boundaries. It turns out that the influences

of different boundaries on the tensile behavior of materials can be neglected,

provided that the Poisson’s ratio of the specimen is close to 0, otherwise the

influences are significant.

The fracture process simulation is the kernel part of the lattice fracture anal-

ysis. The critical lattice elements are removed from the system step by step,

representing the propagation of microcracks. The lattice element fracture law

and removal mechanisms are also discussed. The load-displacement response of

the specimen in question can be obtained from lattice fracture analysis, and it
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can be converted to stress-strain diagram, based on which some mechanical prop-

erties such as Young’s modulus, strength and fracture energy can be computed.

The cracks pattern and microcracks propagation can also be obtained.

The 3D lattice fracture model described in this chapter is applied to simulate

the fracture processes in cement paste at microscale in Chapter 3, and the fracture

processes in mortar and concrete at mesoscale in Chapter 5.
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Chapter 3

Cement Paste at Microscale

The microstructure of materials determines its global performance. This funda-

mental principle of materials science is adapted in this chapter to predict the

mechanical performance of cement paste.

The microstructure of cement paste can be imaged either experimentally or

numerically. The micro X-ray computed tomography (CT) [31] offers a non-

destructive experimental technique to collect microstructure information of ce-

ment paste in terms of digitized voxels. Computer modeling packages are also

available to simulate the cement hydration and microstructure formation pro-

cesses, for instance, the HYMOSTRUC3D model developed by TU Delft [4, 32],

the NIST CEMHYD3D toolkit [33] and the Mic model by EPFL [34]. Subsec-

tion 3.1.1 talks about simulations of microstructures of cement paste using the

HYMOSTRUC3D model, and Subsection 3.1.3 introduces a microstructure of

cement paste obtained through CT scan.

After obtaining the microstructure of cement paste, the 3D lattice fracture

model can be employed to simulate the fracture behavior of the cement paste.

For example, a uniaxial tensile test can be set up and simulated on the cement

paste to predict its Young’s modulus, tensile strength and fracture energy, as well

as the microcracks propagation and cracks pattern in the final failure state. It

will be elaborated in Subsection 3.1.2.

The cement hydration and microstructure formation model, HYMOSTRUC3D

model, and the mechanical performance evaluation model, 3D lattice fracture

69



3. CEMENT PASTE AT MICROSCALE

Specimen size;
Mineralogical composition;

Cement fineness;
Water/cement ratio

Degree of hydration 
diagram;

Microstructures of 
hydrating cement paste

HYMOSTRUC3D model

3D lattice fracture analysis

Load-displacement 
diagram;

Microcracks propagation 
and cracks pattern

Local mechanical 
properties of every phase

Figure 3.1: Combined application of the HYMOSTRUC3D model and the 3D

lattice fracture model

model, can be combined to study the influences of various factors on the me-

chanical properties of cement paste, including but not limited to the influences

of degree of hydration, cement fineness, water/cement ratio and mineral compo-

sition of cement. Details and findings can be found in Section 3.2.

3.1 Micromechanical modeling of cement paste

In Subsection 3.1.1 and 3.1.2, a numerical experiment is carried out to illus-

trate the combined application of the HYMOSTRUC3D model and the 3D lat-

tice fracture model. A series of microstructures are simulated for the cement

paste at different degrees of hydration by the HYMOSTRUC3D model, and then

the mechanical performance of the microstructure at the curing age of 28 days

is evaluated through the 3D lattice fracture analysis. The workflow is shown in

Figure 3.1.

In Subsection 3.1.3, an alternative method to obtain the microstructure of

cement paste is introduced, which is the micro X-ray computed tomography [35].

A sample microstructure at the curing age of 28 days is scanned and provided

by the researchers at UIUC (University of Illinois at Urbana-Champaign, United

States) [36], and then it is tested for its uniaxial tensile properties using the

3D lattice fracture model [37]. This example demonstrates that the 3D lattice
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3.1 Micromechanical modeling of cement paste

fracture analysis can accept microstructures of cement paste from laboratory

experiments, in addition to the computer simulated microstructures.

3.1.1 Simulated microstructures of cement paste

The clinker of Portland cement is mainly composed of calcium, silicon and oxygen.

In cement chemistry it is usually represented in terms of constituents as trical-

cium silicate 3CaO ·SiO2 (C3S), dicalcium silicate 2CaO ·SiO2 (C2S), tricalcium

aluminate 3CaO ·Al2O3 (C3A) and calcium ferroaluminate 4CaO ·Al2O3 ·Fe2O3

(C4AF ). A set of chemical reactions is initiated when water is mixed with ce-

ment, the process of which is called hydration. The hydration process is always

accompanied by heat release as the energy state of cement mixture turns from

higher one to lower one. The heat release indicates the degree of hydration and

it can be used as a measurement to determine the extent of hydration. The hy-

dration products are also generated during the hydration process, which mainly

include calcium silicate hydrates (CSH) and calcium hydroxides (CH).

In the HYMOSTRUC3D model, the cement particles are modeled as spheres

and these spherical particles grow during the hydration process. The inputs

include the specimen size, the mineralogical composition of cement, the cement

fineness in terms of Blaine value (Rosin-Rammler particle size distribution is

assumed) and the water/cement ratio. The amount of hydration products is

dependent on the degree of hydration. A simplification is made in the model that

the amount of CH product is substituted with the same amount of CSH product.

In general the hydrating cement particle contains three layers from center to

outward surface, namely unhydrated cement, inner product and outer product,

as shown in Figure 3.2.

The cement grain dissolves and the hydration products are generated grad-

ually during the hydration process, which yields expansion and layer thickness

change of the cement particle, as shown in Figure 3.2. The amount of unhydrated

cement is decreasing, while inner product and outer product are being produced.

The interactions between neighboring particles are taken into account in the

HYMOSTRUC3D model. If the outer product of one hydrating cement particle
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(a) Earlier stage (b) Later stage

Figure 3.2: Hydration of a single cement particle

Figure 3.3: Contact of hydrating cement particles

meets the outer product of another particle, then the overlapping part is redis-

tributed to the outer layer of the particles. As a result contact volume and area

can be formed as shown in Figure 3.3. In [38] it is found that the mechanical

properties (such as Young’s modulus, shear modulus and compressive strength)

of cement paste can be related to the contact area.

An example is given to demonstrate the application of the HYMOSTRUC3D

model. The cement CEM I 42.5N is used, and the specification of the cement mix

is summarized in Table 3.1. The initial microstructure of cement paste can be

created by parking multiple spherical particles into an empty container, as shown

in Figure 3.4(a). The simulated degree of hydration diagram is given in Figure 3.5,

on which each point corresponds to a microstructure. The microstructures at

the curing ages of 28 days and 365 days are shown in Figure 3.4(b) and 3.4(c)

respectively, the corresponding degrees of hydration are 69 % and 88 %. Periodic

material boundary conditions apply.
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Table 3.1: Specification of the cement mix used in the simulation

Cement type CEM I 42.5N

Mineralogical composition C3S: 64 %, C2S: 13 %, C3A: 8 %, C4AF : 9 %

Fineness (Blaine value) 420 m2/kg

Minimum particle diameter 1 µm

Maximum particle diameter 37 µm

Particle size distribution Rosin-Rammler distribution F (x) = 1− e−bxn

(n = 1.0698, b = 0.04408)

Specimen size 100 µm× 100 µm× 100 µm

Water/cement ratio 0.4

Curing temperature 20 ◦C

(a) Initial (b) Degree of hydra-

tion 69 % (28 days)

(c) Degree of hydra-

tion 88 % (365 days)

Figure 3.4: Microstructures of cement paste at different degrees of hydration with

the specification in Table 3.1
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Figure 3.5: Simulated degree of hydration diagram against hydration time

The cement paste of curing age 28 days is usually of interest, as the strength at

28 days is commonly used in many structural design codes, hence the microstruc-

ture in Figure 3.4(b) is further analyzed after it is converted to a voxel-based

digital image, as shown in Figure 3.6. It can be decomposed to four phases,

including a pore phase shown in Figure 3.7(a), and three solid phases namely

unhydrated cement shown in Figure 3.7(b), inner product in Figure 3.7(c) and

outer product in Figure 3.7(d). The volume percentage of every individual phase

is indicated in the subcaptions in Figure 3.7.

3.1.2 Mechanical performance evaluation of the microstruc-

tures

Having obtained the microstructure of cement paste, the next step is to evaluate

its mechanical performance using the 3D lattice fracture model. It is required to

convert the spherical particle embedded microstructure to a voxel-based digital

image, where the ImgLat lattice construction method applies, as discussed in

Subsection 2.2.1 on Page 35. The microstructure of cement paste in Figure 3.6 is

taken for the mechanical performance evaluation. The water/cement ratio is 0.4,

the degree of hydration is 69 % and the porosity is 13 %.
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Figure 3.6: Voxel-based image of the microstructure of cement paste in Fig-

ure 3.4(b) (100 µm× 100 µm× 100 µm)

The specimen of the size 100 µm× 100 µm× 100 µm is meshed at the reso-

lution 1 µm/voxel, and a quadrangular lattice network is constructed. The ran-

domness of the lattice system is set to 0 for all the boundary cells and 0.5 for

other cells. This configuration would yield a realistic crack pattern and a regu-

lar specimen shape. The influence of randomness on the simulated mechanical

performance is studied in Subsection 2.2.1 and the results are summarized in

Table 2.4. The cross-section of a lattice element is assumed to be circular, and

its area is equal to the perpendicular voxel surface area which is 1 µm2 in this

example. The elastic properties of solid phases can be measured or simulated

as presented in [39, 40], the values of which are scattered due to different mea-

surement approaches used. The tensile strength ratio of each phase is considered

equal to the nanoindentation hardness ratio. The assumed local mechanical prop-

erties of individual solid phases are given in Table 3.2. More discussions about

the local mechanical properties can be found in [41].

The assignment of local mechanical properties to a lattice element is related to

the type of the lattice element in question, which is determined by the locations
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(a) Pore (13 %) (b) Unhydrated cement

(13 %)

(c) Inner product (31 %) (d) Outer product (43 %)

Figure 3.7: Individual phases of the microstructure of cement paste in Figure 3.6

Table 3.2: Assumed local mechanical properties of solid phases of cement paste

No Solid phase Young’s modulus Shear modulus Tensile strength

E (GPa) G (GPa) ft (GPa)

1 Unhydrated cement 135 52 1.8

2 Inner product 30 12 0.24

3 Outer product 22 8.9 0.15

76



3.1 Micromechanical modeling of cement paste

Table 3.3: Classification of lattice element types

No Element type Node 1 phase Node 2 phase

1 Unhydrated cement Unhydrated cement Unhydrated cement

2 Inner product Inner product Inner product

3 Outer product Outer product Outer product

4 Interface U-I Unhydrated cement Inner product

5 Interface I-O Inner product Outer product

6 Interface O-U Outer product Unhydrated cement

Table 3.4: Local mechanical properties of lattice elements

No Element type Young’s modulus Shear modulus Tensile strength

E (GPa) G (GPa) ft (GPa)

1 Unhydrated cement 135 52 1.8

2 Inner product 30 12 0.24

3 Outer product 22 8.9 0.15

4 Interface U-I 49 20 0.24

5 Interface I-O 25 10 0.15

6 Interface O-U 38 15 0.15

of its two nodes, as shown in Figure 2.7. Three solid phases in the microstructure

result in six types of lattice elements, as listed in Table 3.3. No lattice node is

generated in the voxels which represent pore phase, as it does not contribute to

the global mechanical performance of the specimen.

The local mechanical properties of lattice elements are determined according

to the rules laid down in Subsection 2.2.1 on Page 41. All lattice elements behave

linear-brittle, and the Young’s modulus, shear modulus and tensile strength are

given in Table 3.4.

A conventional uniaxial tensile test is simulated on the lattice system, the

external load is imposed on the top and bottom surfaces in the z-direction, and

all the other surfaces are free to expand and/or shrink as shown in Figure 3.8.

The fracture process is simulated by the removal of lattice elements step by

77



3. CEMENT PASTE AT MICROSCALE

Figure 3.8: Uniaxial tensile test on lattice system of cement paste at microscale
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3.1 Micromechanical modeling of cement paste

Table 3.5: Simulated mechanical properties of cement paste at microscale, corre-

sponding with Figure 3.9

Young’s modulus Tensile strength Strain at peak load Fracture energy

E (GPa) ft (MPa) εp GF (J/m2)

13 20 0.18 % 22

step. The basic idea of lattice fracture analysis is that imposing a prescribed

displacement on the lattice structure, finding the critical element that has highest

stress/strength ratio, and then removing it from the system. This procedure is

repeated until the system fails. The final outcomes of the simulation include the

load-displacement diagram which can be converted to a stress-strain diagram, as

shown in Figure 3.9, and the microcracks propagation as shown in Figure 3.10.

The stress-strain diagram reveals the tensile behavior of cement paste at mi-

croscale, from which the elastic modulus, tensile strength, strain at peak load and

fracture energy can be obtained. For the example given hereby, the simulated

mechanical properties of cement paste at microscale are given in Table 3.5. The

Young’s modulus is the slope of the curve at the linear stage in the stress-strain

diagram in Figure 3.9, the tensile strength corresponds to the peak point, and

the fracture energy can be computed as the area below the stress-strain curve.

The absolute values of global tensile strength and the strain at peak load are

linearly dependent on the local input strength listed in Table 3.4. If all the local

strengths would be doubled, then the resulting global tensile strength and the

strain at peak load would also be doubled, and the fracture energy would be four

times larger as it is related to the square of the local strength values.

Figure 3.10 shows that first a few microcracks are initiated around the middle

part of the specimen, and then the microcracks spread further until the final

failure state. In total 38 106 lattice analysis steps are performed, which means

38 106 lattice elements are broken and thus removed from the system, as all

elements behave linear-brittle locally. The pre-peak and post-peak microcracks

are also shown in Figure 3.10. The deformed specimen in the final failure state

is shown in Figure 3.11.
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Figure 3.9: Simulated stress-strain diagram of cement paste at microscale

(a) Microcracks initia-

tion (step 5)

(b) Microcracks at

peak load (step 956)

(c) Microcracks in the

final failure state (step

38106)

Figure 3.10: 3D microcracks propagation of cement paste due to tension at

microscale, corresponding with Figure 3.9
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3.1 Micromechanical modeling of cement paste

Figure 3.11: Deformed specimen due to vertical tension in the final failure state,

corresponding with Figure 3.9

Table 3.6: Simulated mechanical properties of cement paste at microscale, loaded

horizontally along x-direction or y-direction, and vertically along z-direction

Loading Young’s modulus Tensile strength Strain at peak load Fracture energy

direction E (GPa) ft (MPa) εp GF (J/m2)

x-axis 13 21 0.18 % 17

y-axis 13 21 0.21 % 20

z-axis 13 20 0.18 % 22

Influences of loading directions

The external tensile load is imposed along the vertical z-direction in Figure 3.8,

alternatively the specimen can also be loaded horizontally along x-direction or

y-direction. The simulated mechanical properties are not necessary to be exactly

the same, as summarized in Table 3.6, due to the fact that the cement paste is not

ideal isotropic homogeneous. The stress-strain responses are given in Figure 3.12

and the cracks patterns are shown in Figure 3.13.

Comparisons can be made based on Table 3.6 and Figure 3.12 to learn the

influences of loading directions on the simulated stress-strain response. It is

apparent that differences exist but not too much. The cracks patterns in the

final failure state also have some differences, as shown in Figure 3.13.
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(a) Along x-axis
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(b) Along y-axis
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(c) Along z-axis

Figure 3.12: Simulated stress-strain diagrams of cement paste at microscale,

loaded horizontally along x-direction or y-direction, and vertically along z-direction

(a) Along x-axis (b) Along y-axis (c) Along z-axis

Figure 3.13: Cracks patterns in the final failure state, loaded horizontally along

x-direction or y-direction, and vertically along z-direction
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(a) Regular mesh
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(b) Irregular mesh

Figure 3.14: Simulated stress-strain diagrams of cement paste with regular lattice

mesh, and irregular lattice mesh at the randomness of 0.5

Regular lattice mesh

During the construction of the lattice network, the randomness is set to 0 for all

the boundary cells and 0.5 for other cells in the previous examples in this chapter.

A regular mesh can be made by setting the randomness to 0 for all cells. The

simulated tensile mechanical response is shown in Figure 3.14. Some mechanical

properties can be computed based on this diagram, as listed in Table 3.7.

Comparisons can be made based on Figure 3.14 and Table 3.7 to see the

influences of randomness on the simulated mechanical properties. Adopting an

irregular mesh introduces artificial heterogeneity and thus makes the simulated

Young’s modulus lower. This finding is in accordance with the trend found in

Table 2.4, which studies the influences of randomness using a homogeneous prism.

The pre-peak and post-peak microcracks are shown in Figure 3.15 for the regular

meshed lattice system and the irregular meshed lattice system at the randomness

of 0.5.

3.1.3 CT-scanned microstructures and its micromechani-

cal properties

A lattice network can be constructed based on a microstructure simulated by a

computer modeling package, as shown in the examples in Subsection 3.1.1 and
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3. CEMENT PASTE AT MICROSCALE

Table 3.7: Simulated mechanical properties of cement paste with regular lattice

mesh at the randomness of 0, and with irregular lattice mesh at the randomness of

0.5

Mesh Young’s modulus Tensile strength Strain at peak load Fracture energy

E (GPa) ft (MPa) εp GF (J/m2)

Regular 14 20 0.15 % 16

Irregular 13 20 0.18 % 22

(a) Regular mesh (b) Irregular mesh

Figure 3.15: Pre-peak and post-peak microcracks for the regular meshed lattice

system, and the irregular meshed lattice system at the randomness of 0.5
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3.1 Micromechanical modeling of cement paste

Figure 3.16: Microstructure of cement paste of size 75 µm× 75 µm× 75 µm at

the curing age 28 days with water/cement ratio 0.5 from CT scan (provided by

UIUC)

Subsection 3.1.2. Alternatively the microstructure can also be obtained through

laboratory experimental method like CT scan. A microstructure of real cement

paste is given in Figure 3.16, which is taken from an X-ray tomograph of a

real cement paste sample captured using a micro X-ray CT system located at

UIUC (University of Illinois at Urbana-Champaign, US). The water/cement ratio

of the paste is 0.5, the curing age is 28 days and the size of the specimen is

75 µm× 75 µm× 75 µm. The resolution of the digital image in Figure 3.16 is

0.5 µm/voxel, resulting in 150 voxels per direction.

In the microstructure shown in Figure 3.16, three phases are distinguished,

including the pore phase and two solid phases, namely unhydrated cement and

hydration products [36]. The phase segmentation is carried out on the microstruc-

ture and the result is given in Figure 3.17.

The local mechanical properties of individual solid phases are given in Ta-

ble 3.8, which are derived from the properties in Table 3.2. Two solid phases re-

sult in three types of lattice elements, as listed in Table 3.9. The tensile strength
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3. CEMENT PASTE AT MICROSCALE

(a) Pore (18 %) (b) Unhydrated ce-

ment (18 %)

(c) Hydration prod-

ucts (64 %)

Figure 3.17: Phase segmentation of the microstructure of cement paste in Fig-

ure 3.16

Table 3.8: Local mechanical properties of solid phases of experimental cement

paste

No Solid phase Young’s modulus Shear modulus Tensile strength

E (GPa) G (GPa) ft (GPa)

1 Hydration products 26 10 0.2

2 Unhydrated cement 135 52 1.8

ratio of hydration products to unhydrated cement is 1:9, which is equal to the

measured nanoindentation hardness ratio.

A uniaxial tensile test is simulated on the experimental microstructure, and

the stress-strain response is shown in Figure 3.18. Some mechanical properties

are computed and summarized in Table 3.10. The cracks pattern in the final

failure state is given in Figure 3.19.

3.2 Influences of various factors

The combination of the HYMOSTRUC3D model and 3D lattice fracture analysis

makes it possible to investigate the influences of various factors on the global

mechanical performance of cement paste at microscale, including but not lim-

ited to the degree of hydration, cement fineness, water/cement ratio and mineral
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3.2 Influences of various factors

Table 3.9: Local mechanical properties of lattice elements for experimental cement

paste

No Element type Young’s modulus Shear modulus Tensile strength

E (GPa) G (GPa) ft (GPa)

1 Hydration products 26 10 0.2

2 Unhydrated cement 135 52 1.8

3 Interface 44 17 0.2
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Figure 3.18: Simulated stress-strain diagram of the experimental cement paste

at microscale

Table 3.10: Simulated mechanical properties of the experimental cement paste at

microscale, corresponding with Figure 3.18

Young’s modulus Tensile strength Strain at peak load Fracture energy

E (GPa) ft (MPa) εp GF (J/m2)

16 27 0.19 % 34
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3. CEMENT PASTE AT MICROSCALE

Figure 3.19: Simulated cracks pattern in the final failure state for the experimen-

tal cement paste at microscale, corresponding with Figure 3.18

composition of cement. Numerical experiments are carried out to simulate the mi-

crostructure and the corresponding tensile properties of the cement paste samples

of the size 100 µm× 100 µm× 100 µm. The starting point is the cement mixture

and the resulting outcomes are the Young’s modulus, tensile strength, fracture

energy and cracks pattern, as shown in Figure 3.1.

3.2.1 Degree of hydration

For the cement mixture given in Table 3.1, the HYMOSTRUC3D model is em-

ployed to simulate the initial microstructure and a set of microstructures at var-

ious degrees of hydration. The resulting degree of hydration curve is shown in

Figure 3.5. The following curing ages and degrees of hydration are chosen for fur-

ther mechanical performance evaluation, as given in Table 3.11. The correspond-

ing microstructures are simulated and analyzed, and the results are summarized

in Table 3.11. The local mechanical properties of individual phases are given in

Table 3.2.
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3.2 Influences of various factors

Table 3.11: Influences of degree of hydration on the tensile mechanical properties

of cement paste at microscale

Curing age (h) 29 67 83 162 203 1999 7947 12 593

Degree of hydration 31 % 44 % 47 % 55 % 58 % 79 % 88 % 90 %

Porosity 36.2 % 27.2 % 25.2 % 20.0 % 18.4 % 8.2 % 5.4 % 4.8 %

Young’s modulus E (GPa) 1.9 4.8 5.6 8.2 9.1 15.7 17.5 17.9

Tensile strength ft (MPa) 2.7 6.9 8.5 12.4 14.1 27.1 31.5 31.6

Strain at peak load εp 0.37 % 0.28 % 0.21 % 0.22 % 0.19 % 0.19 % 0.20 % 0.20 %

Fracture energy GF (J/m2) 6.4 13.1 14.7 20.8 24.1 14.9 14.3 14.4
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Figure 3.20: Porosity of the hydrating cement paste system against degree of

hydration

The porosity of the hydrating cement paste is decreasing when the hydration

process continues, as shown in Figure 3.20, and strong linear relevance is found.

The pores in the system are filled by hydration products gradually, resulting in

a microstructure with low porosity in the end.

Both the Young’s modulus and the tensile strength increase linearly with

the increase of degree of hydration, as shown in Figure 3.21, which is obtained

based on the data from Table 3.11. As the porosity is linearly dependent on the

degree of hydration, it can be derived that the Young’s modulus and the tensile

strength also change linearly against the porosity, as shown in Figure 3.22. The
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Figure 3.21: Development of the Young’s modulus and the tensile strength

against the degree of hydration

development of Young’s modulus and tensile strength is due to the continuous

maturing of the microstructure of cement paste during hydration, and eventually

a well developed system is obtained.

At the initial stage of hydration, the strain at peak load is relatively high,

up to 0.37 % at the degree of hydration 31 %, then it drops to the range of

[0.19 %, 0.22 %] when the degree of hydration reaches 47 %, and then it stays in

that range although the hydration process continues, as shown in Figure 3.23.

This suggests that the tensile strain at peak load for well developed cement paste

is about 0.2 % at microscale.

The fracture energy increases first and then decreases during the hydration

process, as shown in Figure 3.24. The paste system is getting stronger all the

time, which would increase the fracture energy. At earlier stage the number of

microcracks in the final failure state also increases as shown in Figure 3.27(a)

and (b), thus the more fracture energy is required to break the system. However,

a more localized cracks pattern shows up for better developed microstructure at

later stage as shown in Figure 3.27(b) and (c). Thus less microcracks are required

to bring the system to failure, which would decrease the fracture energy. The

two forces that higher strength and less microcracks push the change of fracture
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Figure 3.22: Trendlines of the Young’s modulus and the tensile strength against

the porosity of the cement paste system
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Figure 3.23: Relationship between the strain at peak load and the degree of

hydration
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Figure 3.24: Relationship between the fracture energy and the degree of hydration

energy towards opposite directions, hence the net effect is dependent on which

force wins. The curve in Figure 3.24 shows that the effect of less microcracks

becomes dominant for paste at high degree of hydration.

In this particular example it is observed that the fracture energy reaches the

maximum when the porosity of the system is 18.4 %, as shown in Figure 3.25. It

indicates that a low porosity does not correspond to a system which can absorb

maximum energy during the fracture processes. If seeking capacity to absorb

fracture energy is the objective when designing a material, then leaving some

pores in the system may help. More investigations on this aspect could be done

to find out the relationship between the fracture energy and the porosity of the

system under varying conditions.

The entire stress-strain responses are compared at three different degrees of

hydration, which are 44 %, 58 % and 90 %, as shown in Figure 3.26. The cracks

patterns in the final failure state are given in Figure 3.27. The two figures suggest

that the paste behaves more brittle and microcracks are more localized at higher

degree of hydration. The number of microcracks in the final failure state increases

with the degree of hydration at early stage of hydration, and then decreases after

the degree of hydration exceeds a certain level. The increase is because more

and more solid phases are present in the microstructure, while the decrease is the
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Figure 3.25: Relationship between the fracture energy and the porosity

result of cracks localization.

3.2.2 Cement fineness

The cement fineness can be indicated by the Blaine value. A higher Blaine value

represents finer cement particles. The cement paste mixture in Table 3.1 is used

and the cement fineness is varied at 210 m2/kg, 420 m2/kg and 600 m2/kg respec-

tively. The microstructures are simulated by the HYMOSTRUC3D model and

then their mechanical properties are predicted by the 3D lattice fracture analysis.

The local mechanical properties of individual solid phase are listed in Table 3.2.

The fineness of cement affects the hydration rate, i.e. finer cement hydrates

faster, as shown in Table 3.12. Higher degree of hydration corresponds with

lower porosity, higher Young’s modulus and higher tensile strength. The strains

at peak load for these three microstructures are almost the same, around 0.2 %,

which supports the findings from Figure 3.23. The fracture energy goes with

cement fineness due to the fact that higher strength is reached at a higher degree

of hydration at 28 days and the crack localization is not dominant yet, as shown

in Figure 3.28.

It is also possible to compare the mechanical behavior of paste at the same

degree of hydration instead of at the same curing age. The stress-strain response
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Figure 3.26: Influences of degree of hydration on the tensile stress-strain response

(a) DoH=44 % (14699

microcracks)

(b) DoH=58 % (35405

microcracks)

(c) DoH=90 % (30232

microcracks)

Figure 3.27: Influences of degree of hydration on the cracks pattern in the final

failure state, corresponding with Figure 3.26
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3.2 Influences of various factors

Table 3.12: Influences of cement fineness, compared at the same curing age of 28

days, all values are resulted from simulations

Cement fineness (m2/kg) 210 420 600

Degree of hydration 62 % 69 % 73 %

Porosity 15.0 % 12.5 % 11.1 %

Young’s modulus E (GPa) 11.0 12.9 14.3

Tensile strength ft (MPa) 14.9 20.3 28.2

Strain at peak load εp 0.18 % 0.18 % 0.21 %

Fracture energy GF (J/m2) 18.9 21.6 23.2

(a) Blaine=210 m2/kg

(27847 microcracks)

(b) Blaine=420 m2/kg

(38106 microcracks)

(c) Blaine=600 m2/kg

(36810 microcracks)

Figure 3.28: Influences of cement fineness on the cracks pattern in the final failure

state, compared at the same curing age of 28 days, corresponding with Table 3.12
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Figure 3.29: Influences of cement fineness on the tensile stress-strain response,

compared at the same degree of hydration 69 %

diagrams are given in Figure 3.29 for cement paste specimens with different ce-

ment fineness. The computed Young’s modulus is independent of the Blaine value.

The tensile strength and fracture energy are higher for finer cement paste system,

as it contains smaller but more particles to fill the gap between big particles. The

cracks patterns in the final failure state are shown in Figure 3.30.

3.2.3 Water/cement ratio

The water/cement ratio of the cement paste mixture in Table 3.1 is varied at

0.3, 0.4 and 0.5 to study its influences on the mechanical properties of paste.

The HYMOSTRUC3D model gives the microstructures, and then the 3D lattice

fracture model evaluates the mechanical performance by simulating a uniaxial

tensile test on the 100 µm× 100 µm× 100 µm specimen, using the local mechan-

ical properties of individual solid phases given in Table 3.2.

The water/cement ratio influences the hydration rate. A higher water/cement

ratio speeds up the hydration process, as shown in Table 3.13. However, a higher

degree of hydration does not result in lower porosity, because of the higher initial

water/cement ratio. The change trend of Young’s modulus and tensile strength

can be linked to the porosity. The strain at peak load is about 0.2 %, which
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(a) Blaine=210 m2/kg

(35932 microcracks)

(b) Blaine=420 m2/kg

(38106 microcracks)

(c) Blaine=600 m2/kg

(36579 microcracks)

Figure 3.30: Influences of cement fineness on the cracks pattern in the final

failure state, compared at the same degree of hydration 69 %, corresponding with

Figure 3.29

supports the findings from Figure 3.23. The fracture energy decreases when the

water/cement ratio increases, which is dominated by the decrease of the tensile

strength. The cracks patterns at the same curing age of 28 days are shown in

Figure 3.31. It is apparent that a more localized microcracks pattern is observed

in the cement paste with lower water/cement ratio.

It is also possible to compare the mechanical performance of paste at the same

degree of hydration, as given in Table 3.14. Higher water/cement ratio takes less

time to reach the target degree of hydration 69 %, and is accompanied by higher

Table 3.13: Influences of water/cement ratio, compared at the same curing age

of 28 days

Water/cement ratio 0.3 0.4 0.5

Degree of hydration 65 % 69 % 75 %

Porosity 3.2 % 12.5 % 20.1 %

Young’s modulus E (GPa) 23.4 12.9 7.0

Tensile strength ft (MPa) 42.1 20.3 10.6

Strain at peak load εp 0.19 % 0.18 % 0.18 %

Fracture energy GF (J/m2) 23.1 21.6 12.3
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(a) w/c=0.3 (34808

microcracks)

(b) w/c=0.4 (38106

microcracks)

(c) w/c=0.5 (15783

microcracks)

Figure 3.31: Influences of water/cement ratio on the cracks pattern in the final

failure state, compared at the same curing age of 28 days, corresponding with

Table 3.13

porosity, lower Young’s modulus and tensile strength. The strains at peak load

for the three cases are about the same, around 0.2 %, which supports the findings

from Figure 3.23. The fracture energy is dependent on the strength and the

number of microcracks in the final failure state. The water/cement ratio 0.4

produces more microcracks and thus requires the highest fracture energy among

the three cases, although the strength is not the highest one. The stress-strain

response diagrams are given in Figure 3.32. More brittle softening behavior is

observed for the lower water/cement ratio system. The cracks patterns in the

final failure state are given in Figure 3.33. It is observed that microcracks are

more localized in the paste with lower water/cement ratio.

3.2.4 Mineral composition of cement

The hydration processes and products are dependent on the mineral composition

of cement. Hence the mechanical performance of cement paste can be altered by

changing the cement mineral composition. The ordinary Portland cement usually

consists of C3S, C2S, C3A and C4AF . Four special combinations are made to

study the effect of C3S and C2S on the mechanical properties of cement paste,

as given in Table 3.15. These special cements are produced in laboratory by

Italcementi in Italy [42]. The particle size distributions are measured and then
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3.2 Influences of various factors

Table 3.14: Influences of water/cement ratio, compared at the same degree of

hydration 69 %

Water/cement ratio 0.3 0.4 0.5

Curing age (h) 1262 635 402

Porosity 2.0 % 12.5 % 22.5 %

Young’s modulus E (GPa) 24.2 12.9 6.0

Tensile strength ft (MPa) 41.7 20.3 9.0

Strain at peak load εp 0.19 % 0.18 % 0.18 %

Fracture energy GF (J/m2) 17.7 21.6 12.0
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Figure 3.32: Influences of water/cement ratio on the tensile stress-strain response,

compared at the same degree of hydration 69 %, corresponding with Table 3.14
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3. CEMENT PASTE AT MICROSCALE

(a) w/c=0.3 (30668

microcracks)

(b) w/c=0.4 (38106

microcracks)

(c) w/c=0.5 (15225

microcracks)

Figure 3.33: Influences of water/cement ratio on the cracks pattern in the final

failure state, compared at the same degree of hydration 69 %, corresponding with

Figure 3.32

Table 3.15: Mineral compositions of the special cements

Combination C3S C2S

(a) 100 % 0

(b) 70 % 30 %

(c) 30 % 70 %

(d) 0 100 %

hydration tests are carried out by CSIC (Spanish National Research Council) in

Spain [43]. Several batches of the special cements are measured and a Rosin-

Rammler distribution F (x) = 1− e−bxn with n = 1.014 and b = 0.0754 is fitted,

as shown in Figure 3.34. The corresponding Blaine value is 600 m2/kg. The fitted

curve will be used in the HYMOSTRUC3D model to simulate the microstructures

of cement paste.

In the numerical experiment the water/cement ratio is 0.4 and the specimen

size is 100 µm× 100 µm× 100 µm. The initial microstructures of cement paste

for the four combinations of mineral compositions are the same, because the

same particle size distribution and water/cement ratio are applied, as shown in

Figure 3.35.

The degrees of hydration are measured and simulated for the four combina-
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Figure 3.34: Particle size distribution of the special cements

Figure 3.35: Initial microstructure of the special cement paste (porosity=56 %)

101



3. CEMENT PASTE AT MICROSCALE

Table 3.16: Degree of hydration and phase segmentation for the special cement

pastes at the curing age of 28 days, corresponding with Figure 3.37

Combination Degree of hydration Pore Unhydrated cement Inner product Outer product

(a) 79 % 8 % 9 % 35 % 48 %

(b) 84 % 6 % 7 % 37 % 50 %

(c) 68 % 12 % 14 % 30 % 44 %

(d) 38 % 30 % 27 % 17 % 26 %

tions respectively, and the resulting hydration diagrams are shown in Figure 3.36.

The microstructures at the curing age of 28 days are taken for further analysis,

as shown in Figure 3.37. The corresponding degree of hydration and phase seg-

mentation are given in Table 3.16. It is observed that C3S hydrates faster than

C2S by comparing the combination (a) and (d). However, the combination (b)

hydrates faster than pure C3S, even though it consists of some C2S. This phe-

nomenon can be explained by separating the hydrations of C3S and C2S. The

combination (b) can be obtained by replacing 30 % C3S with C2S based on the

combination (a). At 28 days the 30 % C2S consumes less water than C3S as C2S

hydrates slower, the effect is the 70 % C3S could attract more water, thus its

hydration process speeds up. The 30 % C2S hydrates slower while the 70 % C3S

hydrates faster, the net effect is determined by the amount portions of C3S and

C2S. When the weight of C2S is increased to 70 %, as shown in the combination

(c), the hydration rate is decreased.

The 3D lattice fracture model is employed to evaluate the mechanical perfor-

mance of the microstructures in Figure 3.37 through simulating a uniaxial tensile

test. The local mechanical properties for individual solid phases are taken from

Table 3.2. The resulting stress-strain response diagrams are shown in Figure 3.38.

Some global mechanical properties are computed and summarized in Table 3.17

based on Figure 3.38. The microcracks in the final failure state are shown in

Figure 3.39. The combination (b) has the best mechanical performance in terms

of Young’s modulus and tensile strength, and the most localized cracks pattern,

as its degree of hydration is the highest one among the four combinations. This

suggests that the mineral composition of the ordinary Portland cement is already
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(a) Combination 100 %C3S
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(b) Combination 70 %C3S+30 %C2S
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(c) Combination 30 %C3S+70 %C2S

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Hydration time (h)

De
gr

ee
 o

f h
yd

ra
tio

n 
(%

)

simulated
measured

 
(d) Combination 100 %C2S

Figure 3.36: Degree of hydration diagrams for the special cement pastes
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3. CEMENT PASTE AT MICROSCALE

(a) Combination 100 %C3S

(porosity=8 %)

(b) Combination

70 %C3S+30 %C2S

(porosity=6 %)

(c) Combination

30 %C3S+70 %C2S

(porosity=12 %)

(d) Combination 100 %C2S

(porosity=30 %)

Figure 3.37: Microstructures of the special cement pastes at the curing age of 28

days
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(a) Combination 100 %C3S (degree of

hydration=79 %)
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(b) Combination 70 %C3S+30 %C2S

(degree of hydration=84 %)
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(c) Combination 30 %C3S+70 %C2S

(degree of hydration=68 %)
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(d) Combination 100 %C2S (degree of

hydration=38 %)

Figure 3.38: Stress-strain response diagrams for the special cement pastes at the

curing age of 28 days

optimized, as combination (b) is the most similar one to the ordinary Portland

cement.

3.3 Summary

The microstructure of cement paste and its mechanical performance are studied

numerically in detail in this chapter. The microstructure of cement paste can be

obtained by the HYMOSTRUC3D computer modeling program, and/or by the

experimental method of CT scan. The 3D lattice fracture model developed in

Chapter 2 is employed to predict the mechanical properties and cracks propaga-
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3. CEMENT PASTE AT MICROSCALE

(a) Combination 100 %C3S

(40457 microcracks)

(b) Combination

70 %C3S+30 %C2S (46115

microcracks)

(c) Combination

30 %C3S+70 %C2S (40309

microcracks)

(d) Combination 100 %C2S

(12828 microcracks)

Figure 3.39: Cracks patterns in the final failure state for the special cement pastes

at the curing age of 28 days, corresponding with Figure 3.38
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3.3 Summary

Table 3.17: Global mechanical properties of the special cement pastes at the

curing age of 28 days, corresponding with Figure 3.38

Combination Young’s modulus Tensile strength Strain at peak load Fracture energy

E (GPa) ft (MPa) εp GF (J/m2)

(a) 17 33 0.22 % 22

(b) 18 37 0.22 % 23

(c) 14 26 0.21 % 26

(d) 4.2 7.9 0.33 % 14

tion by simulating a uniaxial tensile test on the microstructure of cement paste at

microscale. The influences of loading directions and mesh randomness are exam-

ined. The simulated mechanical properties of 100 µm× 100 µm× 100 µm cement

paste specimen are used as input properties for mesoscale modeling in Chapter 5.

Some factors, such as degree of hydration, cement fineness, water/cement ra-

tio and mineral composition of cement were investigated to see their influences

on the mechanical performance of cement paste at microscale. It turns out that

better mechanical properties can be achieved with higher degree of hydration,

finer cement and lower water/cement ratio, and the mineral composition of or-

dinary Portland cement is already an optimal combination. Both the Young’s

modulus and the tensile strength increases linearly against the increase of degree

of hydration, while the fracture energy increases first and then decreases during

the hydration process. At the same degree of hydration the Young’s modulus is

independent of the Blaine value, but the tensile strength and fracture energy are

higher for finer cement paste system. The increase of water/cement ratio results

in a decrease of Young’s modulus and tensile strength, while the fracture energy

goes up first and then down if compared at the same degree of hydration. It is

observed that the tensile strain at peak load for well developed cement paste is

about 0.2 % at microscale in the numerical experiments. It is also interesting to

notice that the system with lowest porosity does not have the maximum capacity

to absorb the energy during the fracture processes, thus planting some pores in

the system may help to improve the fracture energy dissipation.
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Chapter 4

Mortar and Concrete at

Mesoscale

Concrete is a kind of multiscale and multiphase heterogeneous construction mate-

rial. Normal concrete is made from coarse aggregates (e.g. crushed stones, river

gravels), fine aggregates (e.g. sands), cement and water. A chemical reaction

starts immediately when water is mixed with cement, and reaction products are

produced. The resulting cement paste keeps aggregates together and forms a sys-

tem which is able to carry loads. Mortar consists of cement paste and sand, and

concrete is composed of mortar and coarse aggregates. The relationship between

cement paste, mortar and concrete is illustrated in Figure 4.1.

From the modeling point of view, the material mesostructures of both mortar

and concrete can be represented by particles embedded in matrix material model,

as shown in Figure 4.2. The particles are interpreted as sands, and the matrix

Figure 4.1: Cement paste, mortar and concrete
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4. MORTAR AND CONCRETE AT MESOSCALE

Figure 4.2: Particles embedded matrix material model

as cement paste for mortar model, while the particles are coarse aggregates, and

the matrix is mortar in the concrete model. Hence it is achievable to make a

universal material mesostructure model for mortar and concrete. However, the

particle shape characterizations can be different for sands and coarse aggregates,

and furthermore they can even be different for different classes of sands or coarse

aggregates. This requires the universal material model to be able to recognize

various particle shape characterizations. It is pointed out by Garboczi that spher-

ical harmonics is a good mathematical tool to characterize the shape of particles

numerically, and the procedures to retrieve particle shape characterizations for a

given class of aggregates from CT (computed tomography) scanned digital im-

ages are also established [44]. The next step is to place multiple irregular shape

particles into a pre-defined empty container to build up a complete particles

embedded in matrix material model, which is elaborated in Section 4.1. An ap-

plication of the proposed material model is given in Section 4.2, for simulating

the mesostructures of mortar and concrete respectively.

4.1 Anm material model

There are many existing particles embedded in matrix material models [45, 46,

47, 48], most of which employ regular shape particles like spheres, ellipsoids, or

multi-faceted polyhedrons, as shown in Figure 4.3. However, the real particle

shapes are more complex and sometimes play an essential role. In this section

a material model with irregular shape particles is proposed, the Anm material

110



4.1 Anm material model

Figure 4.3: Spheres, ellipsoids and multi-faceted polyhedrons [http://

wikipedia.org]

model, which is named after the fact that the particle shapes are described in

terms of spherical harmonic expansion coefficients anm.

4.1.1 Irregular shape description

In mathematics an arbitrary 2D surface can be represented by a function r(θ, φ)

in the 3D spherical coordinate system as shown in Figure 4.4. The particle mass

center is placed at the origin in the local coordinate system.

The function r(θ, φ) might be difficult or even impossible to be expressed

explicitly for complex shapes, but it can always be approximated by a summation

of spherical harmonic functions for star-like shapes [49, 50, 51]. The spherical

harmonic expansion is given in the equation (4.1),

r(θ, φ) =
∞∑
n=0

n∑
m=−n

anmY
m
n (θ, φ) (4.1)

where r(θ, φ) is any smooth function defined on the unit sphere (0 ≤ θ ≤ π, 0 ≤
φ < 2π), Y m

n (θ, φ) is the spherical harmonic function and is given in the equa-

tion (4.2),

Y m
n (θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos θ)eimφ (4.2)

in which Pm
n (cos θ) is the associated Legendre polynomial, i is the imaginary unit.
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Figure 4.4: Spherical coordinate system [http://wikipedia.org]

The first derivatives of the function r(θ, φ) are involved in the expressions (4.25)

and can be computed as follows,
∂r(θ, φ)

∂θ
=
∞∑
n=0

n∑
m=−n

anm
∂Y m

n (θ, φ)

∂θ

∂r(θ, φ)

∂φ
=
∞∑
n=0

n∑
m=−n

anm
∂Y m

n (θ, φ)

∂φ

(4.3)

where the two derivatives of the spherical harmonic function Y m
n (θ, φ) can be

computed as below,
∂Y m

n (θ, φ)

∂θ
=

1

s

(
nxY m

n (θ, φ)−
√

(2n+ 1)(n2 −m2)

2n− 1
Y m
n−1(θ, φ)

)
∂Y m

n (θ, φ)

∂φ
= imY m

n (θ, φ)

(4.4)

in which x = cos θ and s =
√

1− x2.

Proof. Here is the derivation about ∂Ymn (θ,φ)
∂θ

in the equation (4.4).

(x2 − 1)
dPm

n (x)

dx
= nxPm

n (x)− (n+m)Pm
n−1(x) (4.5)
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let x = cos θ, s =
√

1− x2,

dPm
n (cos θ)

dθ
=
dPm

n (x)

dx

dx

dθ

= − sin θ
dPm

n (x)

dx

= − sin θ
nxPm

n (x)− (n+m)Pm
n−1(x)

x2 − 1

= −s
nxPm

n (x)− (n+m)Pm
n−1(x)

−s2

=
nx

s
Pm
n (x)− n+m

s
Pm
n−1(x) (4.6)

∴
∂Y m

n (θ, φ)

∂θ
=

√
(2n+ 1)(n−m)!

4π(n+m)!
eimφ

dPm
n (cos θ)

dθ

=

√
(2n+ 1)(n−m)!

4π(n+m)!
eimφ

(
nx

s
Pm
n (x)− n+m

s
Pm
n−1(x)

)

=
nx

s

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (x)eimφ − n+m

s

√
(2n+ 1)(n−m)

(2n− 1)(n+m)√
[2(n− 1) + 1][(n− 1)−m]!

4π[(n− 1) +m]!
Pm
n−1(x)eimφ

=
nx

s
Y m
n (θ, φ)− 1

s

√
(2n+ 1)(n2 −m2)

2n− 1
Y m
n−1(θ, φ)

=
1

s

(
nxY m

n (θ, φ)−
√

(2n+ 1)(n2 −m2)

2n− 1
Y m
n−1(θ, φ)

)
(4.7)

Proof. Here is the derivation about ∂Ymn (θ,φ)
∂φ

in the equation (4.4).

∂Y m
n (θ, φ)

∂φ
=

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos θ)eimφim

= imY m
n (θ, φ) (4.8)

The particle shape is uniquely defined by a set of spherical harmonic coeffi-

cients amn , which is a complex number. The data structure of the coefficients amn

is shown in Figure 4.5, where n is the degree and m is the order.

113



4. MORTAR AND CONCRETE AT MESOSCALE

0n =    0,0a    
1n =   1, 1a −  1,0a  1,1a   
2n =  2, 2a −  2, 1a −  2,0a  2,1a  2,2a  

   ...   
 2m = −  1m = −  0m =  1m =  2m =  

 
Figure 4.5: Spherical harmonic coefficients data structure

Figure 4.6: An irregular shape particle described by spherical harmonics

The number of the coefficients up to the degree n is (n+ 1)2, and the index of

the coefficient is n(n+ 1) +m. There should be sufficient coefficients involved in

the spherical harmonic expansion to describe a shape accurately. The number of

the coefficients required is dependent on the shape characterizations. As a general

guideline, the degree n should be about 26 for common aggregates in mortar and

concrete, thus the corresponding number of coefficients is about (26 + 1)2 = 729.

See [44] for more discussions on this aspect. An example irregular shape particle

described in terms of spherical harmonic coefficients is shown in Figure 4.6.
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4.1.2 Individual particle properties and operations

Many geometric properties of the particle shape can be computed once the spher-

ical harmonic coefficients are known, including the particle volume, length, width

and thickness. Length is the longest surface-surface distance in the particle,

width is the longest surface-surface distance in the particle such that width is

perpendicular to length, and thickness is the longest surface-surface distance in

the particle such that thickness is perpendicular to both length and width [44]. A

particle can be scaled by multiplying each coefficient with a scaling factor. The

scaling factor s is determined by the equation (4.9),

s =
Wa

Wb

(4.9)

where Wa is the particle width after scaling, and Wb is the width before scaling.

The particle volume will be also be scaled according to the equation (4.10),

Va = s3Vb (4.10)

where Va is the particle volume after scaling, and Vb is the volume before scaling.

The operation of a rotation on the particle in the local coordinate system

can be done by transforming the spherical harmonic expansion coefficients [50].

Denote the rotation Euler angles as α, β, γ, then the new spherical harmonic

coefficients after rotation can be determined by the equation (4.11),

anew
nm =

n∑
m′=−n

anm′D
(n)
m′m(α, β, γ) (4.11)

where the complex number D
(n)
m′m(α, β, γ) is one element in the (2n+ 1)× (2n+

1) square rotation matrix D(n)(α, β, γ). The complex number D
(n)
m′m(α, β, γ) is

computed according to the equation (4.12),

D
(n)
m′m(α, β, γ) = e−im

′αd
(n)
m′m(β)e−imγ (4.12)
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in which the β dependant real number d
(n)
m′m(β) is calculated by the equation (4.13),

d
(n)
m′m(β) =

√
(n+m′)!(n−m′)!
(n+m)!(n−m)!

min(n−m′,n+m)∑
k=max(0,m−m′)

[(−1)k+m′−m
(
n+m

k

)(
n−m

n−m′ − k

)
(cos

β

2
)2n+m−m′−2k(sin

β

2
)2k+m′−m] (4.13)

where the binomial notation
(
M
N

)
= M !

N !(M−N)!
applies.

4.1.3 Parking procedures and algorithms

In the Anm material model, the concept of particles embedded in matrix applies.

An empty container is created to represent a specimen at the beginning, and then

all the particles are placed one after another into this container, from the larger

ones to smaller ones. It is good to start with the largest particles as it would

be more difficult to place them if they were processed at a later stage. All the

particles are separated into several sieve ranges according to the particle sizes in-

dicated by the particle widths. The largest sieve range is processed first, a width

within this sieve range is picked randomly and assigned to a particle which is cho-

sen from the appropriate particle shape database. The particle shape database

can be created for varying classes of powders and aggregates with the procedures

proposed in [44]. An arbitrary rotation is performed on the particle to get rid of

possible orientation bias, which might be introduced during the production of the

particle shape database. After the rotation the particle is placed at a randomly

chosen primary location in the specimen, and then the ghost locations are deter-

mined if any, depending on the type of the specimen boundary conditions and the

position of the particle. See Subsection 4.1.4 for the details about periodic and

non-periodic material boundaries. The primary particle and its ghost particles

are checked against all the previously placed particles for overlap. If no overlap is

detected, then the particle enters the simulation box successfully, otherwise it will

be moved to a new randomly chosen location. The reassignment of the location

is subject to a pre-defined maximum number of attempts. After the consecutive
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failures reach the limit, the particle will be resized to another randomly selected

width within the current sieve range, and then be thrown into the specimen fol-

lowing the same trial-and-error procedure. The particle size rescale is also subject

to a pre-defined maximum number of attempts. If the rescales do not help, then

the particle will be rotated again to have another orientation. If the problem

still exits, then a new shape will be chosen from the particle shape database. In

case the particle cannot find its position eventually, it may suggest there is no

space available for new particles within the current sieve range. The next sieve

range will be processed if no availability for the current sieve range is found, or

all the particles within the current sieve range have already been placed. The

above trial-and-error procedures are called parking procedures and are illustrated

in Figure 4.7.

The key algorithm required in the parking procedures is to determine whether

two particles overlap. This can be examined by formulating and solving con-

tact equations. As shown in Figure 4.8, the mass center of the two particles

are O1(x1, y1, z1) and O2(x2, y2, z2) respectively in a global coordinate system

O(x, y, z). Two local coordinate systems are also defined and their origins are

placed at O1 and O2 respectively. It is assumed that there is a contact point

C(xc, yc, zc), and its local coordinates are (θc1, φc1) and (θc2, φc2) respectively in

the corresponding local coordinate system.

The contact point C is located on the surface of particle O1, thus the following

equations (4.14) should be satisfied,
xc = x1 + r1(θc1, φc1) sin θc1 cosφc1

yc = y1 + r1(θc1, φc1) sin θc1 sinφc1

zc = z1 + r1(θc1, φc1) cos θc1

(4.14)

The contact point C is also located on the surface of particle O2, thus the equa-

tions (4.15) should also be valid,
xc = x2 + r2(θc2, φc2) sin θc2 cosφc2

yc = y2 + r2(θc2, φc2) sin θc2 sinφc2

zc = z2 + r2(θc2, φc2) cos θc2

(4.15)

The contact equations can be formulated by combining the equations (4.14) and
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Start Stop
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Figure 4.7: Flowchart of parking procedures
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Figure 4.8: Two particles overlap

(4.15), which yields
x1 + r1(θc1, φc1) sin θc1 cosφc1 = x2 + r2(θc2, φc2) sin θc2 cosφc2

y1 + r1(θc1, φc1) sin θc1 sinφc1 = y2 + r2(θc2, φc2) sin θc2 sinφc2

z1 + r1(θc1, φc1) cos θc1 = z2 + r2(θc2, φc2) cos θc2

(4.16)

However, the equations (4.16) have four unknowns θc1, φc1, θc2, φc2 but only

three equations, which makes it unsolvable. The strategy to overcome this diffi-

culty is to fix one of the four unknowns (e.g. φc2) at pre-select values in the range

of [0, 2π), and then try to solve the three equations with the three unknowns

θc1, φc1, θc2. If a solution is found, then it demonstrates that the contact point

exits, and the two particles overlap. If no solution can be obtained for every

selected value of φc2, then it may suggest that the contact point does not exist,

thus there is no overlap between the two particles.

The number of select φc2 values should be sufficient, and it is recommend to

take at least 20 different values evenly distributed in the range [0, 2π) according

to the following sequence (4.17),

φc2 = φ2d, φ2d ± incremental(φc2), φ2d ± 2× incremental(φc2), . . . (4.17)

where φ2d is the second entry in the direction vector (θ2d, φ2d) from particle O2

to particle O1 and can be determined by the equations (4.19) or (4.20).
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The direction vector (θ1d, φ1d) from particle O1 to particle O2 can be deter-

mined by solving the following equations (4.18),
x2 − x1 = d sin θ1d cosφ1d

y2 − y1 = d sin θ1d sinφ1d

z2 − z1 = d cos θ1d

(4.18)

Similarly the direction vector (θ2d, φ2d) from particle O2 to particle O1 can be

determined by solving the following equations (4.19),
x1 − x2 = d sin θ2d cosφ2d

y1 − y2 = d sin θ2d sinφ2d

z1 − z2 = d cos θ2d

(4.19)

where d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Alternatively the direction vector (θ2d, φ2d) can also be determined by the

equations (4.20),{
θ2d = π − θ1d

φ2d = φ1d ± π
(take the sign which makes φ2d in the range of [0, 2π) ) (4.20)

The contact equations (4.16) can be re-arranged as
F (θc1, φc1, θc2) = 0

G(θc1, φc1, θc2) = 0

H(θc1, φc1, θc2) = 0

(4.21)

in which
F (θc1, φc1, θc2) = r1(θc1, φc1) sin θc1 cosφc1 − r2(θc2, φc2) sin θc2 cosφc2 + x1 − x2

G(θc1, φc1, θc2) = r1(θc1, φc1) sin θc1 sinφc1 − r2(θc2, φc2) sin θc2 sinφc2 + y1 − y2

H(θc1, φc1, θc2) = r1(θc1, φc1) cos θc1 − r2(θc2, φc2) cos θc2 + z1 − z2

The contact equations (4.21) are non-linear equations and can be solved by

Newton-Raphson iteration method. In the Newton-Raphson iteration scheme, an

initial guess of the solution (θc1, φc1, θc2) should be given and then it gets updated

after every iteration step until it is close enough to the real solution, as shown in

Figure 4.9.

A good initial guess can speed up the convergence. It is suggested that the

direction vectors (θ1d, φ1d) and (θ2d, φ2d), which connect the two particle centers,
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... ... ... ... 
 
Figure 4.9: Newton-Raphson iteration scheme

can be taken as the initial guess of the solution, that is,


θ

(0)
c1 = θ1d

φ
(0)
c1 = φ1d

θ
(0)
c2 = θ2d

(4.22)

The iteration formulas are


θ

(i)
c1 = θ

(i−1)
c1 + h(i)

φ
(i)
c1 = φ

(i−1)
c1 + k(i)

θ
(i)
c2 = θ

(i−1)
c2 + l(i)

(4.23)

where h(i), k(i), l(i) are the corrections at the ith iteration step and must satisfy

the following three linear equations,


∂F (θc1,φc1,θc2)

∂θc1

∂F (θc1,φc1,θc2)
∂φc1

∂F (θc1,φc1,θc2)
∂θc2

∂G(θc1,φc1,θc2)
∂θc1

∂G(θc1,φc1,θc2)
∂φc1

∂G(θc1,φc1,θc2)
∂θc2

∂H(θc1,φc1,θc2)
∂θc1

∂H(θc1,φc1,θc2)
∂φc1

∂H(θc1,φc1,θc2)
∂θc2


(i−1)

h
k
l


(i)

=


−F (θc1, φc1, θc2)
−G(θc1, φc1, θc2)
−H(θc1, φc1, θc2)


(i−1)

(4.24)

where the derivatives of the functions F (θc1, φc1, θc2), G(θc1, φc1, θc2), H(θc1, φc1, θc2)
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with respect to the variables θc1, φc1, θc2 can be computed as following,

∂F (θc1, φc1, θc2)

∂θc1
= cosφc1

(
sin θc1

∂r1(θc1, φc1)

∂θc1
+ r1(θc1, φc1) cos θc1

)
∂F (θc1, φc1, θc2)

∂φc1
= sin θc1

(
cosφc1

∂r1(θc1, φc1)

∂φc1
− r1(θc1, φc1) sinφc1

)
∂F (θc1, φc1, θc2)

∂θc2
= − cosφc2

(
sin θc2

∂r2(θc2, φc2)

∂θc2
+ r2(θc2, φc2) cos θc2

)
∂G(θc1, φc1, θc2)

∂θc1
= sinφc1

(
sin θc1

∂r1(θc1, φc1)

∂θc1
+ r1(θc1, φc1) cos θc1

)
∂G(θc1, φc1, θc2)

∂φc1
= sin θc1

(
sinφc1

∂r1(θc1, φc1)

∂φc1
+ r1(θc1, φc1) cosφc1

)
∂G(θc1, φc1, θc2)

∂θc2
= − sinφc2

(
sin θc2

∂r2(θc2, φc2)

∂θc2
+ r2(θc2, φc2) cos θc2

)
∂H(θc1, φc1, θc2)

∂θc1
= cos θc1

∂r1(θc1, φc1)

∂θc1
− r1(θc1, φc1) sin θc1

∂H(θc1, φc1, θc2)

∂φc1
= cos θc1

∂r1(θc1, φc1)

∂φc1
∂H(θc1, φc1, θc2)

∂θc2
= − cos θc2

∂r2(θc2, φc2)

∂θc2
+ r2(θc2, φc2) sin θc2

(4.25)

in which the functions r1(θc1, φc1) and r2(θc2, φc2), that represent the shapes of

particle O1 and particle O2 respectively, can be computed by the equation (4.1),

and the first derivatives by the formulas (4.3).

4.1.4 Periodic and non-periodic material boundaries

In mathematical models and computer simulations, periodic boundary conditions

are a set of boundary conditions that are often used to simulate a large system by

modeling a small part that is far from its edge [http://en.wikipedia.org/wiki/

Periodic_boundary_conditions]. In the Anm material model, both periodic

and non-periodic boundary conditions are implemented. The periodic boundary

permits a particle to pass through the surface of the simulation box and the

part outside the simulation box is put on the opposite surface, while the non-

periodic boundary does not allow a particle to pass through the surface of the

simulation box, as shown in Figure 4.10. In the specimen with periodic boundary

conditions, if a particle passes through a surface, then it generates one mirroring
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4.2 Material mesostructures for mortar and concrete

Figure 4.10: Periodic and non-periodic material boundaries

ghost particle; if a particle goes through an edge, then three ghost particles are

mirrored; if a particle passes through at a corner, then the number of its ghost

particles is seven.

4.2 Material mesostructures for mortar and con-

crete

Concrete is a kind of heterogeneous materials with multiple phases at multiple

scales. Normal concrete usually consists of hardened cement paste and aggregates

like sands and stones. A normal concrete mix is given in Table 4.1 and it will

be used to simulate the material mesostructures for mortar and concrete by the

Anm material model.

In the simulations, the concrete specimen is a cube of the dimension 150 mm,

consisting of two phases: mortar and crushed stones. The mortar specimen is in

the shape of a cube at the size 10 mm and consists of two phases: cement paste

and uncrushed sands. The sizes of the specimens are taken at least 2.5 times

larger than the largest aggregate [52].

4.2.1 Mortar mesostructure

The mesostructure of mortar is simulated for a cubic specimen of the size 10 mm

and it is represented by sand particles embedded in cement paste matrix. Periodic
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Table 4.1: A normal concrete mix

Crushed stones (> 4 mm) 786 kg/m3 Grading:

Uncrushed sands (< 4 mm) 983 kg/m3 Crushed stones: 786 kg/m3

Cement 463 kg/m3 [8, 16) mm 503 kg/m3

Water 185 kg/m3 [4, 8) mm 283 kg/m3

Uncrushed sands: 983 kg/m3

Concrete mass density 2417 kg/m3 [2, 4) mm 270 kg/m3

Water/cement ratio 0.4 [1, 2) mm 252 kg/m3

[0.5, 1) mm 192 kg/m3

Stone and sand mass density 2650 kg/m3 [0.25, 0.5) mm 153 kg/m3

Cement mass density 3150 kg/m3 [0.125, 0.25) mm 116 kg/m3

Table 4.2: Particle size sieve ranges for the sands in mortar

Sieve ranges [2, 4) mm [1, 2) mm [0.5, 1) mm [0.25, 0.5) mm [0.125, 0.25) mm

Mass percentage 27 % 26 % 19 % 16 % 12 %

material boundary condition is employed, which mirrors the sticking out particles

onto the opposite surfaces. The total mass of the sands used in the mortar

specimen is 1.397 g, the corresponding volume of which is 527 mm3 and takes up

52.7 % space of the specimen. The size of the sand particles are indicated by the

width and varies from 0.125 mm to 4 mm. The particle size distribution is given

in Figure 4.11 and summarized in Table 4.2 in terms of sieve ranges.

The Anm material model parks all the sand particles into the empty simulation

box with periodic material boundaries one after one, making sure that there is

no overlap between any of the two particles. The resulting mesostructure of the

10 mm cubic mortar specimen with irregular shape sand particles is sketched in

Figure 4.12.

4.2.2 Concrete mesostructure

Concrete specimen of the size 150 mm in the cubic shape is simulated. The

specimen has two phases, the mortar matrix and crushed stone aggregates. Non-

periodic material boundary applies, which requires all the particles are inside the

124



4.2 Material mesostructures for mortar and concrete

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4

Particle Width (mm)

C
um

ul
at

iv
e 

%

Figure 4.11: Particle size distribution for the sands in mortar

Figure 4.12: The mesostructure of the mortar specimen with irregular shape sand

particles
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Figure 4.13: Particle size distribution for the coarse aggregates in concrete

specimen and no part of a particle can pass through a surface. The total mass

of the crushed stones is 2653 g, and 64 % of which are in the sieve [8, 16)mm,

the rest 36 % are in the sieve [4, 8)mm. The particle size is taken as the particle

width and its distribution for the coarse aggregates is given in Figure 4.13. The

volume percentage of the crushed stones in the concrete specimen is 30 %. The

simulated mesostructure of the concrete specimen with irregular shape crushed

stones is sketched in Figure 4.14.

4.3 Summary

In this chapter an innovative material model is proposed to simulate the material

structures of cementitious materials: the Anm material model. In mathematics

any arbitrary shape can be represented in terms of spherical harmonic coefficients

anm. Sands in mortar or stones in concrete can be regarded as irregular shape

particles in a matrix. The shapes of a class of aggregate can be captured by CT

scan, and then discretized by spherical harmonic expansion. The characteristics

of shapes represented by anm are stored in a shape database. The material struc-

ture can be reproduced by parking multiple particles with the appropriate shape

characteristics into an empty container, and the parking algorithm is the key to
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4.3 Summary

Figure 4.14: The mesostructure of the concrete specimen with irregular shape

crushed stones

work it out. Both periodic and non-periodic material boundaries are implemented

in the Anm material model. The mesostructures of mortar and concrete are sim-

ulated in this chapter and further analyzed for the mechanical performance in

Chapter 5.
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Chapter 5

Multiscale Modeling

Cement-based materials, such as cement paste, mortar and concrete, are mul-

tiscale heterogeneous construction materials. Two types of multiscale modeling

problems are addressed in this chapter, for the cement paste only but at differ-

ent sizes, and for the integrated system of cement paste, mortar and concrete at

different scales. Section 5.1 discusses the parameter-passing scheme, and then

it is applied to link the micromechanical model to the mesomechanical model of

cement paste. Section 5.2 bridges the scales among cement paste, mortar and con-

crete by employing the parameter-passing scheme and the domain decomposition

technique.

5.1 Parameter-passing scheme and size effect of

cement paste

Crack localization occurs during the fracture processes of hardened cement paste

and influences its mechanical behaviors. The phenomenon is observed in labora-

tory and must be reproduced in numerical experiments. This section attempts

to answer some questions arising from the fracture processes of hardened ce-

ment paste and to study its mechanical performance using multiscale modeling

approach. Uniaxial tensile tests are simulated at microscale and mesoscale respec-

tively, by employing the 3D lattice fracture model. The two scales are seamlessly

connected, and the simulated output properties of cement paste from microscale
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local properties from lower scale element, 
global properties to be simulated 

Figure 5.1: Parameter-passing multiscale modeling scheme

modeling are used as the input properties for the mesoscale modeling, thus the

parameter-passing multiscale modeling scheme is established, as illustrated in

Figure 5.1.

The cement paste specimens are in the shape of a cube, and the side length

is 100 µm with mesh size 1 µm at microscale and 7 mm with mesh size 0.1 mm

at mesoscale. Hence, the length 100 µm is the point which connects the mi-

croscale model to the mesoscale model. At microscale the sphere-based model is

employed to represent the microstructure of cement paste, but at mesoscale the

cement paste is modeled as continuum material with some heterogeneity, which

is implemented during the lattice network construction by introducing some ge-

ometry randomness. The method to determine the randomness is suggested in

Subsection 2.2.1 on Page 40. It is assumed that the material behaves linear-brittle

locally at microscale, while some softening is allowed locally at mesoscale and is

determined by the output of the microscale model.
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Figure 5.2: Approximation of non-linear stress-strain response by multi-linear

curve

At microscale the microstructure of cement paste is simulated by the hydration

and microstructure formation model HYMOSTRUC3D with the specifications in

Table 3.1. The microstructure at the curing age of 28 days is taken to evaluate

its global mechanical properties, using the linear-brittle local mechanical proper-

ties given in Table 3.2 as input. The simulated tensile stress-strain response of

the 100 µm× 100 µm× 100 µm specimen is shown in Figure 3.9, from which the

softening behavior is observed. Seven points are picked up from this stress-strain

diagram to form a multi-linear curve to approximate the original non-linear one,

as shown in Figure 5.2. The multi-linear curve is served as the input local me-

chanical properties for mesoscale modeling. The points should be chosen in such

a way that makes the change of input properties gradual in terms of Young’s

modulus and tensile strength, as listed in Table 5.1.

At mesoscale a uniaxial tensile test is simulated on the specimen of the size

7 mm× 7 mm× 7 mm, with a mesh size 0.1 mm. The randomness of the quad-

rangular lattice network is 0.5 for all the non-boundary cells, and it is 0 for

all the cells located at the surfaces. The irregular geometry of the mesh intro-

duces some numerical heterogeneity into the system. All the lattice elements

share the same local mechanical properties, which originate from the microscale

simulation, as given in Table 5.1. The simulated stress-strain response for the
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Table 5.1: Mechanical properties of the cement paste specimen of the size

100 µm× 100 µm× 100 µm, corresponding with Figure 5.2

Point 1 2 3 4 5 6 7

Young’s modulus E (MPa) 12 846 11 096 7601 3627 1590 611 87

Shear modulus G (MPa) 5265 4548 3115 1486 652 250 36

Tensile strength ft (MPa) 10 20 18.6 15.1 10.3 5.4 2.7
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Figure 5.3: Simulated stress-strain response for the 7 mm× 7 mm× 7 mm speci-

men of cement paste at mesoscale

7 mm× 7 mm× 7 mm specimen is shown in Figure 5.3. Some mechanical prop-

erties are computed based on the stress-strain diagram and given in Table 5.2.

Table 5.2 shows the size effect of cement paste that the Young’s modulus and

tensile strength are dependent on the specimen size, the larger the specimen is,

the smaller Young’s modulus and tensile strength are. The snap back behavior

is observed for the 7 mm× 7 mm× 7 mm specimen as shown in Figure 5.3, while

post-peak softening occurs for the 100 µm× 100 µm× 100 µm specimen as shown

in Figure 3.9. One should be aware that the setting of the randomness affects the

simulated global mechanical performance. For more details reference is made to

Table 2.4. It is also possible to eliminate the elastic deformation from Figure 5.3

to get the stress crack opening diagram, as shown in Figure 5.4.
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Table 5.2: Simulated mechanical properties for cement paste at microscale and

mesoscale respectively

Specimen size Young’s modulus Tensile strength Strain at peak load Fracture energy

E (GPa) ft (MPa) εp GF (J/m2)

100 µm× 100 µm× 100 µm 13 20 0.18 % 22

7 mm× 7 mm× 7 mm 11 16 0.17 % 24
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Figure 5.4: Simulated stress crack opening diagram for the 7 mm× 7 mm× 7 mm

specimen of cement paste at mesoscale
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(a) Stage A (b) Stage B (c) Stage C

Figure 5.5: Affected lattice elements during the fracture processes in the cement

paste specimen of the size 7 mm× 7 mm× 7 mm at mesoscale

The fracture processes can be identified as three stages marked as stage A, B

and C in Figure 5.4. In stage A almost all the lattice elements along the loading

direction are strengthened, as shown in Figure 5.5(a), the local tensile strength of

which jumps from 10 MPa to 20 MPa while the local Young’s modulus decreases a

little bit from 12 846 MPa to 11 096 MPa, following the path defined in Table 5.1.

During stage B some of the strengthened lattice elements are weakened, as shown

in Figure 5.5(b), the local tensile strength and Young’s modulus of which turn

smaller. In stage C cracks start to localize after the peak and eventually make

the specimen fail, as shown in Figure 5.5(c).

5.2 Bridging scales among cement paste, mortar

and concrete

Concrete is a type of widely used multiphase heterogeneous construction mate-

rials, and it usually consists of hardened cement paste and aggregates such as

sands and stones. A normal concrete mix is given in Table 4.1, and it is used

to simulate the microstructure of cement paste by the HYMOSTRUC3D model

and the material mesostructures of mortar and concrete by the Anm material

model respectively. The specimens at the curing age of 28 days are taken for the

mechanical performance evaluation through the parameter-passing scheme. The

scale division is given in Table 5.3. Some conditions need to be satisfied when
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Table 5.3: Scale division and specifications of the specimens

Cement paste Mortar Concrete

Specimen size 100 µm× 100 µm× 100 µm 10 mm× 10 mm× 10 mm 40 mm× 40 mm× 40 mm

Mesh size 1 µm× 1 µm× 1 µm 0.1 mm× 0.1 mm× 0.1 mm 1 mm× 1 mm× 1 mm

Minimum particle size 1 µm 0.125 mm 4 mm

Maximum particle size 37 µm 4 mm 16 mm

determining the scale division. It is suggested that the specimen size should be at

least 2.5 times larger than the largest particle [52], and the mesh size should be

smaller than the smallest particle. The connecting length between cement paste

and mortar is 100 µm, thus the upscaling can be done seamlessly as demonstrated

in Subsection 5.2.1. However, there is some length scale overlap between mor-

tar and concrete, and domain decomposition technique is employed to solve this

problem, which will be elaborated in Subsection 5.2.1 and 5.2.2.

5.2.1 Connecting cement paste to mortar

The microstructure of a 100 µm× 100 µm× 100 µm cement paste specimen at the

curing age of 28 days is simulated by the HYMOSTRUC3D model, as shown in

Subsection 3.1.1, and then its tensile mechanical performance is evaluated by the

3D lattice fracture analysis, as demonstrated in Subsection 3.1.2. The resulting

stress-strain curve is approximated by a multi-linear curve as shown in Figure 5.2.

The multi-linear curve is used as the input mechanical properties of cement paste

for the mortar properties prediction at mesoscale, as given in Table 5.1.

The mesostructure of mortar of the size 10 mm× 10 mm× 10 mm is simu-

lated by the Anm material model as shown in Subsection 4.2.1. The resulting

mesostructure in Figure 4.12 is then digitized to facilitate the subsequent lattice

network construction. In the mesostructure of mortar, two solid phases are pre-

sented, namely cement paste and sand. The lattice mesh size is 0.1 mm as shown

in Figure 5.6, making sure that the properties of cement paste can be passed

to mesoscale modeling seamlessly from microscale modeling. Three types of lat-

tice elements are defined during the lattice network mesh, which represent sand

(uncrushed US sand C109), cement paste and interface respectively. The local

mechanical properties are given in Table 5.4.
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Figure 5.6: Lattice mesh for the 10 mm× 10 mm× 10 mm mortar at mesoscale

Table 5.4: Local mechanical properties of sand, cement paste and interface ele-

ments in mortar at mesoscale

No Element type Young’s modulus Shear modulus Tensile strength

E (GPa) G (GPa) ft (MPa)

1 Sand (uncrushed) 70 29 24

2 Cement paste multi-linear, see Table 5.1

3 Interface 22 8.9 0.75

136



5.2 Bridging scales among cement paste, mortar and concrete

Figure 5.7: Simulated Young’s modulus and tensile strength of every block in the

10 mm× 10 mm× 10 mm mortar at mesoscale

The lattice system in Figure 5.6 is decomposed to a network of blocks. The size

of a single block is 1 mm× 1 mm× 1 mm, thus there are 10 blocks per direction

in the original lattice system and in total 1000 blocks. Uniaxial tensile tests are

simulated on these blocks one after one, using the local mechanical properties

in Table 5.4. The resulting mechanical responses are scattered as the material

structures of blocks may differ a lot. The simulated Young’s modulus and tensile

strength of every block are shown in Figure 5.7.

The simulated Young’s modulus of a 1 mm× 1 mm× 1 mm block is in the

range of 17 ∼ 65 GPa and averaged at 29 GPa. The tensile strength is in the

range of 1.1 ∼ 19.5 MPa and averaged at 5.8 MPa. The stress-strain responses

of these blocks are randomly passed onto concrete mesomechanical modeling and

served as inputs there, as elaborated in Subsection 5.2.2.

5.2.2 Upscaling mortar to concrete

Domain decomposition technique is employed for the upscaling from mortar to

concrete, due to the length scale overlap between them, as indicated in Table 5.3.

The mortar specimen of 10 mm× 10 mm× 10 mm is decomposed into a network

of 1 mm× 1 mm× 1 mm blocks, and then these blocks are evaluated by the 3D

lattice fracture model one after one to get stress-strain responses, as demonstrated

in Subsection 5.2.1.
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Figure 5.8: 40 mm× 40 mm× 40 mm out of 150 mm× 150 mm× 150 mm con-

crete specimen

Having obtained the mechanical properties of the 1 mm× 1 mm× 1 mm mor-

tar blocks, it is ready to proceed with the concrete mesomechanical modeling. The

mesostructure of concrete is simulated by the Anm material model, as presented

in Subsection 4.2.2. A small piece of concrete of the size 40 mm× 40 mm× 40 mm

is cut out from the original simulated 150 mm× 150 mm× 150 mm concrete speci-

men at its center, as shown in Figure 5.8. The 40 mm× 40 mm× 40 mm concrete

specimen is then digitized at the resolution of 1 mm, and consists of two solid

phases namely stone and mortar. A lattice network is constructed based on the

digital concrete specimen, and three types of lattice elements are identified, which

represent crushed stone, mortar and interface respectively, as shown in Figure 5.9.

The local mechanical properties are given in Table 5.5. The properties of the lat-

tice elements representing mortar are varied according to the simulation results

of 1 mm× 1 mm× 1 mm mortar blocks.

A uniaxial tensile test is simulated on the lattice system meshed from the

40 mm× 40 mm× 40 mm concrete specimen as shown in Figure 5.9, using the lo-

cal mechanical properties listed in Table 5.5. The resulting stress-strain response
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Figure 5.9: Lattice mesh for the 40 mm× 40 mm× 40 mm concrete at mesoscale

Table 5.5: Local mechanical properties of stone, mortar and interface elements in

concrete at mesoscale

No Element type Young’s modulus Shear modulus Tensile strength

E (GPa) G (GPa) ft (MPa)

1 Stone (crushed) 70 29 24

2 Mortar multi-linear and varied based on the 1 mm× 1 mm× 1 mm mortar blocks

3 Interface 41 17 1
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Figure 5.10: Simulated stress-strain response for the 40 mm× 40 mm× 40 mm

concrete at mesoscale

Table 5.6: Simulated mechanical properties of concrete at mesoscale, correspond-

ing with Figure 5.10

Young’s modulus Tensile strength Strain at peak load Fracture energy

E (GPa) ft (MPa) εp GF (J/m2)

31 1.8 0.04 % 127

is presented in Figure 5.10, and some mechanical properties can be computed

as given in Table 5.6. The simulated stress crack opening diagram is shown in

Figure 5.11.

The pattern of the simulated stress-strain response of 40 mm× 40 mm× 40 mm

concrete is similar to the one observed in laboratory, and the mechanical proper-

ties computed from the stress-strain diagram are also located within the reason-

able range.

5.3 Summary

In this chapter, the parameter-passing multiscale modeling scheme is established

and applied to address two types of multiscale modeling problems respectively:

for the cement paste only but at different sizes, and for the integrated system

of cement paste, mortar and concrete at different scales. Domain decomposi-
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Figure 5.11: Simulated stress crack opening diagram for the

40 mm× 40 mm× 40 mm concrete at mesoscale

tion technique is employed to solve the length scale overlap between mortar and

concrete. The material structures of cement paste, mortar and concrete are simu-

lated by the HYMOSTRUC3D model and the Anm material model respectively,

in Chapter 3 and Chapter 4. The 3D lattice fracture model is used to evaluate

their mechanical performance by simulating a uniaxial tensile test. The simulated

output properties at lower scale are passed onto higher scale to serve as input

local properties. Thus a fully multiscale lattice fracture analysis is performed.

The final simulation results at mesoscale seem to be reasonable and realistic, and

must be further verified by experiments in laboratory in future. The combination

of the 3D lattice fracture model and the parameter-passing scheme enables the

study on cement-based materials through a fully multiscale approach, which is

proved to be a successful initiative in this chapter.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

A parameter-passing multiscale modeling scheme is established in this thesis to

study the fracture processes in cementitious materials, and to predict the me-

chanical performance, cracks pattern and propagation. The cement paste is in-

vestigated at the length scale 1 ∼ 100 µm, mortar at 0.1 ∼ 10 mm and concrete at

1 ∼ 40 mm. Microstructure of cement paste is simulated by the HYMOSTRUC3D

model, and mesostructures of mortar and concrete are simulated by the Anm ma-

terial model respectively, and then they are evaluated for the mechanical proper-

ties by the 3D lattice fracture model. The upscaling between cement paste and

mortar is done seamlessly at 100 µm, while the domain decomposition technique

is employed to solve the length scale overlap 1 ∼ 10 mm between mortar and

concrete.

The 3D lattice fracture model is discussed in detail. The lattice network

may be constructed according to the ImgLat scheme or the HymLat scheme,

depending on whether the material structure is given in terms of voxels or spheres.

Irregular random mesh can be applied, and the extra randomness reduces the

simulated mechanical performance as artificial heterogeneity is introduced by

making the geometry of lattice network irregular. The random seed does not

have too much influence on the computed output properties. The influence of

boundary conditions (glued or clamped) on the uniaxial tensile behavior can be
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6. CONCLUSIONS AND OUTLOOK

neglected, provided that the Poisson’s ratio of the specimen is close to 0, otherwise

the influences are considerable.

The combined application of the HYMOSTRUC3D model and the 3D lattice

fracture analysis makes it possible to study the individual influences of several

factors on the mechanical performance of cement paste, such as the degree of hy-

dration, cement fineness, water/cement ratio and mineral composition of cement.

The cement paste is stronger at higher degree of hydration with finer cement and

lower water/cement ratio. The study reveals that the mineral composition of

ordinary Portland cement is already optimal. The 3D lattice fracture model also

works with experimental microstructures of cement paste obtained by CT scan.

The mesostructures of mortar and concrete can be represented by particles

embedded in matrix model. The Anm material model is proposed and imple-

mented to park multiple irregular particles together into an empty container,

thus it is possible to simulate a realistic mesostructure of mortar or concrete

when the aggregate shape characteristics are available. Both periodic and non-

periodic material boundaries can be used.

The size effect of cement paste is investigated using the parameter-passing

multiscale modeling approach. It is found that the Young’s modulus and tensile

strength decrease when the size of the specimen increases.

A complete example is given to demonstrate the multiscale modeling of frac-

ture processes in cementitious materials, starting from 1 µm cement paste at

microscale and ending with 40 mm concrete at mesoscale. The pattern of the

simulated stress-strain response of the 40 mm× 40 mm× 40 mm numerical con-

crete is similar to the one observed in laboratory, and the mechanical properties

computed from the stress-strain diagram are also within the reasonable range.

This is a positive support for the multiscale modeling procedures used in this

thesis, and the validity of the material parameters employed in this example.

The highlights in this thesis include the parallel implementation of 3D lattice

fracture model, the development of the Anm material model and the application

of parameter-passing multiscale modeling scheme for cementitious materials. The

parallel computation of 3D lattice fracture analysis improves the computing effi-

ciency and makes the modeling of very large lattice system practical. The Anm

material model can generate a virtual material structure with realistic aggregate
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shapes, which provides a more accurate microstructure for the further mechan-

ical performance evaluation. Permeability analysis may also benefit from this

improved material model. The successful application of parameter-passing mul-

tiscale modeling scheme for cementitious materials enables the communication

among cement paste, mortar and concrete.

6.2 Outlook

The starting point of the multiscale fracture simulations is the microstructure of

hardened cement paste at the microscale. It is assumed that the local mechanical

properties are brittle at this scale. This is an arbitrary assumption. The prop-

erties at this scale are difficult to measure experimentally and therefore there is

no proof yet for this assumption of brittle behavior at microscale. Perhaps it is

necessary to go to nanoscale or even to atomistic scale to have real local brittle

behavior. But at least it seems reasonable to assume that the behavior becomes

more brittle at lower scale.

At microscale the local mechanical properties can be determined with the

help of nanoindentation test. The test gives local stiffness and hardness, which

is related to tensile strength of the components. No absolute values of the tensile

strength can be measured directly by the test, but the tensile strength ratios of

the components can be obtained. Therefore the tensile strength values of the

components at the microscale used in this paper are based on assumptions, only

the tensile strength ratio comes from the nanoindentation hardness values.

The real tensile strength values can be corrected after simulations on a level

(mesoscale or macroscale) where mechanical tests can be performed easily. At

microscale some attempts are done to do mechanical tests on the composite.

However, the sample preparation and the boundary conditions in the tests may

cause many problems which prevent obtaining reliable results.

The multiscale model will be adopted in the future to simulate fracture at

multiple scales in different geometries. An experimental campaign is started at

Delft University of Technology to perform tests on different levels, starting from

different original materials to be able to validate the procedure further and to

obtain more proof for the assumed local material properties.
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Propositions

1. Upscaling is a man-made challenge, hence, a good solution is to reduce the

number of scales.

2. No two particles have exactly the same shape in the real world, thus neither

do in the Anm material model (irregular shape particle parking model).

3. Since lattice approach is a bridge between continuum and discretization, it

is (potentially) applicable to model fracture, repair and self-healing processes.

4. The purpose of computing is insight, not numbers. (R.W. Hamming)

5. ... but for the student, numbers are often the best road to insight. (A.

Ralston)

6. We can’t solve problems by using the same kind of thinking we used when

we created them. (A. Einstein)

7. Some problems are solved, but more problems are created, by a PhD

research.

8. The future is unpredictable, but can be shaped.

9. Failing to plan is planning to fail. (A. Lakein)

10. If the human brain were so simple that we could understand it, we would

be so simple that we couldn’t. (E.M. Pugh)

These propositions are regarded as opposable and defendable, and have been

approved as such by the promotors Prof.dr.ir. K. van Breugel and Prof.dr.ir. E.

Schlangen.



Stellingen

1. Opschalen is een door de mens verzonnen uitdaging, derhalve zou het goed

zijn om het aantal schalen te verminderen.

2. Geen enkele twee korrels hebben een identieke vorm in de echte wereld, dus

ook in het Anm materiaal model (model voor parkeren van korrels met onregel-

matige vorm) zijn alle korrels verschillend.

3. Omdat de lattice aanpak een brug is tussen continuüm en discretisatie, is

deze (mogelijk) toepasbaar om breuk-, reparatie- en zelfherstellingsprocessen te

modelleren.

4. Het doel van berekenen is het verkrijgen van inzicht, niet getallen. (R.W.

Hamming)

5. ... maar voor de student zijn getallen vaak de beste weg voor het verkrijgen

van inzicht. (A. Ralston)

6. We kunnen problemen niet oplossen door het volgen van dezelfde denkwijze

als bij het creëren van de problemen. (A. Einstein)

7. Sommige problemen zijn opgelost, maar meer problemen ontstaan bij een

promotieonderzoek.

8. De toekomst is onvoorspelbaar maar kan worden vormgegeven.

9. Falen om het plannen is plannen om te falen. (A. Lakein)

10. Als het menselijk brein eenvoudig genoeg was om te begrijpen, waren wij

te eenvoudig om het te kunnen begrijpen. (E.M. Pugh)

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig

goedgekeurd door de promotoren Prof.dr.ir. K. van Breugel en Prof.dr.ir. E.

Schlangen.
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