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Our imagination is stretched to the utmost, not as in fiction,
to imagine things which are not really there, but just

to comprehend those things which are there.

Richard P. Feynman
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1
Introduction

Tyger Tyger, burning bright,
In the forests of the night;

What immortal hand or eye,
Could frame thy fearful symmetry?

from The Tyger by William Blake

Nothing in life is to be feared,
it is only to be understood

Marie Skłodowska-Curie

1
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2 1. Introduction

1.1. Enabling the second quantum revolution
Many of the technologies we enjoy today, such as our telephones, computers
and the internet, would not have been realized without a basic understanding
of the quantum mechanical behavior of non-interacting particles. The physics
of semiconductor materials, where the individual electrons that make up electri-
cal current flow in a non-interacting and wave-like manner, stands out in partic-
ular. Most laser and transistor hardware, cornerstones of nearly all modern tech-
nologies, depend on it. To put the potential of this scientific genie that got out of
the bottle in perspective: if advances in car manufacturing would have kept pace
with the exponential Moore’s law advances in computing [1] made possible by the
physics of semiconductors, we would by now be able to buy new cars at less than
a cent. Spending but another cent on fuel, such a car could drive us across the
globe many times over at cruising velocities beyond the speed of light.

The quantum technologies we use in our day-to-day lives, however, represent
only a tiny fraction of the phenomena allowed by the rich underlying physics.
Sustained research and development is underway into what has been called
the Second Quantum Revolution. Its goal is to unlock ever more of the poten-
tial of quantum physics as a driver for advances in computing, communication and
metrology [2]. These efforts are no longer limited to university research groups and
government institutes, but extend to globally active industrial players. Amongst
other things, they aim to implement quantum key distribution schemes (where
communication encryption is set up securely using the no-cloning law of quan-
tum physics and relativity), quantum annealing (as a resource for the optimization
codes underpinning machine learning and artificial intelligence) and universal and
fault-tolerant quantum computing (for classes of otherwise classically intractable
computing tasks).

What is new about these technologies is how they utilize the concept of quan-
tum correlations, or entanglement, as particles are made to interact in con-
trolled ways. Imagine the two of us have two marbles, one red and one blue.
Imagine next that we put them in a bag, shake the bag, blindly take one each and
subsequently part ways. We might not know which color of marble we have in our
pockets, but the correlation is clear: when you sneak a peek and see that yours
is blue, you know mine to be red. Furthermore, you are convinced that yours was
blue all along, leaving little room for tricks to be played in the period between our
separation and your peek. As it turns out, however, if we replace the marbles and
their colour by single electrons and their internal magnetic moment, or spin, this
need not be the case. Until the moment you checked for the spin of your electron,
the spins were indeed correlated, but the individual ones need not have been de-
fined yet! Instead, they found themselves to be in a so-called entangled state [3].
These entangled states are the yet to be fully utilized tool that quantum physics
provides us with. They allow for additional tricks to be played, tricks that open
up a whole world of color (such as the implementations mentioned above) to the
palette of the “quantum engineer”.
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Even without the rules of quantummechanics, it is well known that an increase
in system size allows for an increase of complexity and for many novel and po-
tentially useful properties to show up. This idea of emergence is perhaps best
captured by Phil Anderson in his 1976 paper ”More is Different” [4]. In it, he ar-
gues that as some well-defined system increases in size, its symmetries tend to
break and novel, emergent phenomena arise. These phenomena are to be un-
derstood using vastly different theories than the one pertaining to their underlying
constituents, requiring new language (or even branches of science) to be effec-
tively described. As a living example: it takes many broken symmetries to have
a cell emerge from a blob of fundamental particles. It takes many further broken
symmetries to enable functional diversification at embryonic growth [5], from which
finally emerges William Blake’s Tyger, whose countenance has but one clear, albeit
striking, symmetry left.

The sheer number of interacting electrons one can find inmaterialsmeans they
can exhibit entanglement at an enormous scale, in turn allowing the hostmate-
rials to exhibit many possible novel electrical and magnetic properties. Entan-
glement provides the potential for exponential scaling of complexity with system
size and thus for a near-infinite stack of emergent phenomena. As an example of a
surprising and potentially very useful feature of materials with strongly-correlated
electrons, or quantum matter, consider high temperature superconductors. They
constitute a class of materials in which interacting electrons on their material lattice
exhibit a lossless flow of current up to surprisingly high temperatures [6].

Our understanding of quantummatter, however, is severely limited by the clas-
sical (meaning conventional or non-quantum) tools at our disposal. The ex-
act coupling mechanism that leads to high temperature superconductivity, for in-
stance, is unknown, even though we know exactly the forces that the individual
electrons feel. This ignorance greatly hinders the synthesis of materials that could
exhibit superconductivity at room temperature. As Richard Feynman put it: “Nature
isn’t classical, dammit, and if you want to make a simulation of nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem, because it
doesn’t look so easy” [7]. As an example, in order to compute with all states of a
system of electrons on a lattice of ten-by-ten sites on a classical computing sys-
tem simultaneously, we would have to make a machine that has more transistors
than the number of atoms in the visible universe (estimated to be roughly 1080). As
we will never have access to such a machine, the potential of quantum matter to
kick-start new technologies goes unused.

One potential roadmap to understanding quantum matter lies in the construc-
tion of artificial systems of interacting particles that can be made to emulate
underlying models, so-called quantum simulation. Following Feynman’s pro-
posal, quantum simulation allows us to harness the knowledge that similar equa-
tions yield similar solutions. By turning the knobs of the artificial system and seeing
what happens, we learn about the model under investigation. And indeed, multiple
experimental platforms are employed in this ongoing effort to emulate the quan-
tum physics of interacting particles. Some exemplary animals in the petting zoo
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of tamed quantum systems include linear arrays of ions trapped in fast-changing
electric fields, atoms cooled to near perfection and confined by standing wave
optical light fields and arrays of coupled superconducting circuits [8].

A particularly promising, controllable system for quantum simulation is com-
prised of artificial lattices of conduction band electrons, confined using a com-
binationof semiconductor bandengineeringandgateelectrostatics. In essence,
a quantumdot array constitutes an array of miniaturized transistors. At each individ-
ual site, a single electron can be stored and its charge and spin degrees of freedom
controlled [9]. Labs around the world are working on quantum dots as building
blocks for quantum computing, enthused by the potential for long-lived quantum
states, all-electrical control and integration with conventional and industrial-grade
nanofabrication protocols. On top of this, these arrays of electrostatically confined
electrons constitute almost exactly (a scaled version of) the electronic lattices of
quantum matter, and as such provide a natural platform for their emulation. Fur-
thermore, one can hope to leverage ongoing advances in the field of using quan-
tum dots for quantum computing, trading off some of the difficulties involved in
full coherent control for ease of scaling.

However, quantum dot experiments have so far been restricted to small arrays
of several sites only, limited by the intrinsic electrostatic disorder of the semi-
conductor substrates and imperfections in the fabrication process. Controlled
scaling to larger device sizes is exactly one of the most difficult aspects of the
platform [10]! Furthermore, even for the small arrays that have been realized, the
control shown for quantum computing purposes constitutes only a small part of
the full parameter space one would like to access. In order to utilize quantum dots
as a platform for quantum simulation of quantum matter and unlock the potential
for materials with novel electrical and magnetic properties, we need to find solu-
tions to these problems.

In this thesis, I work to overcome problems of disorder and control, and with
that break newground by establishing quantumdots as a plausible platform for
quantum simulations of the strongly-correlated electronic phases of quantum
matter. To do so, we have adopted two approaches. A top-down approach allows
us to scale to large devices easily, but without the ability to control or measure
individual sites. This means that reducing disorder and inhomogeneity through
clever wafer design and fabrication is paramount. A bottom-up approach utilizes
the small quantum dot devices that the community has been making for qubit
experiments, in which control of individual sites is both a blessing (allowing for the
negation of inhomogeneity) and a curse (difficult and time consuming). We address
the issue of control to the point where mapping to the relevant model is possible
and efficiently calibrating larger devices becomes feasible. These results open up
the inherently well-suited and scalable platform of quantum dots to emulate novel
quantum states of matter.
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1.2. Thesis outline
First, in Chapter 2, I introduce a generic model for interacting electrons on a lat-
tice, the so-called Fermi-Hubbard model, its parameters and derivative models.
Furthermore, I show how quantum dot arrays constitute a natural platform for the
emulation of electron lattices by readily adhering to a generalized version of this
model.

After that, I present our efforts in trying to reduce the disorder and associated in-
homogeneity to the level where we can scale up the size of quantum dot arrays
without the need of additional site-specific electrical control (Chapter 3). In this ap-
proach, we employ a capacitance spectroscopy technique that allows both global
control and read-out.

In parallel, we have developed a toolbox for calibrating the more commonly used
small dot arrays, whose sites have to be controlled individually. I describe these
novel concepts and techniques in Chapter 4. They allow us to map the parameters
of quantum dot arrays to those of the physical models we want to emulate.

Exactly this is done inChapter 5 as we emulate a finite-size analogue of the interaction-
driven metal-to-insulator transition, or Mott transition. Our toolbox and the results
are verified using computer calculations and serve as an example of the potential
for quantum dots to emulate strongly-correlated electron systems.

Lastly, I look ahead at what can be realized in the near future using these ideas in
Chapter 6, linking theoretical proposals to the detailed requirements, opportunities
and limitations of the quantum dot platform, as well as to ongoing roadmaps for
improving quantum dot systems. A conclusion is reached in Chapter 7.
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2
Hubbard model description of

quantum dots

Quantum dot lattices have the potential to emulate the poorly understood strongly-
correlated electronic phases that lead to novel electrical and magnetic properties
of materials, as introduced in the previous chapter. Part of what makes quantum
dots so suitable is that they readily adhere to a generalized version of the model
describing interacting electrons on a lattice. That so-called Fermi-Hubbard model
is the focus of this chapter and is introduced in Section 2.1. The interaction terms
can be understood in direct analogy with the theory of capacitively coupled dots
and are described in Section 2.2. As electrons are also allowed to quantum tun-
nel between sites in Section 2.3, the mapping is complete. Finally, I discuss how
from the generalized Fermi-Hubbard model other models can emerge which in
themselves are of particular theoretical and experimental interest, in Section 2.4.

7
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2.1. The Fermi-Hubbard model
Electronic properties of materials are typically well understood in the limits of lo-
calized and delocalized electrons. In the case of the former, electronic states
closely resemble those of atomic orbitals around individual atoms, with small cor-
rections formed by the finite overlap of adjacent orbitals. Such states are well de-
scribed by tight-binding models, of which the Heitler-London model of the hy-
drogen molecule is a prime example [1]. The resulting electronic bands are very
narrow, and will be close in energy to the orbitals of individual atoms. In the case
of the latter, the atomic potentials can be seen as a mere perturbation acting on a
gas of electrons, in the so-called nearly-free electron model. Bands are wide and
electronic states are best described in Fourier space, as waves in a Bloch-band
picture [2]. In both these limits, electronic interactions can be neglected, either
because they freeze out degrees of freedom by posing insurmountable energetic
hurdles for the low-energy excitations that govern the electronic properties (for-
mer) or because they are too weak to influence them significantly (latter).

It has been long clear, however, that in the intermediate case of narrow bands,
Coulomb-induced electron-electron interactions cannot be neglected. In an at-
tempt at describing the correlation effects seen for such intermediate cases, Hub-
bard derived a simple model that now bears his name [3]. By assuming fairly lo-
calized electronic states (which means electrons only interact when they are on
the same site) and subtracting the energy offset on each site (as all unit cells are
assumed to be equal) we are left with two terms only. The first term describes the
delocalized nature of the electronic states given some tunneling energy 𝑡, similar
to the finite overlap of adjacent orbitals in the Heitler-London model. The second
term describes the on-site Coulomb repulsion, or Hubbard interaction energy 𝑈 .
This is the energy penalty for placing two electrons on the same site, which ef-
fectively tries to force localization. As we focus on one particular atomic orbital (a
so-called single-band picture), each site 𝑖 can be occupied once with a spin-up
𝜎 = ↑ and once with a spin-down electron 𝜎 = ↓, and we get:

𝐻 = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

(𝑐†
𝑖𝜎𝑐𝑗𝜎 + h.c.)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻tunneling

+ 𝑈
2 ∑

𝑖
𝑛𝑖(𝑛𝑖 − 1)

⏟⏟⏟⏟⏟⏟⏟
𝐻interaction

(2.1)

in a second quantized picture with site-and-spin-specific electronic (Fermionic)
creation and annihilation operators 𝑐†

𝑖𝜎 and 𝑐𝑖𝜎 and site occupations 𝑛𝑖 = ∑𝜎 𝑐†
𝑖𝜎𝑐𝑖𝜎.

The resulting picture is deceptively simple: that of a lattice of sites that are up to
doubly occupied by electrons (given they form a spin-singlet state and at a cost 𝑈 )
which themselves are allowed to quantum tunnel between those sites at a certain
rate described by 𝑡 (Fig 2.1). In the limit of 𝑡 ≪ 𝑈 interactions reign supreme, split-
ting the spectrum into two Hubbard bands denoting either singly or doubly occu-
pied sites, respectively. At one electron per site (so-called half filling, in which the
lower Hubbard band is fully occupied) the lattice is described by a single-particle
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tight-binding picture. In the limit of 𝑈 ≪ 𝑡 we can ignore interactions altogether,
regaining the all familiar band-physics.

Figure 2.1: Impression of the two-dimensional Hubbard model. Two-dimensional poten-
tial lattice is shown, hosting a number of spin-up (red) and spin-down (blue) electrons. As
the potential for motion of one particular electron depends on the location and spin of close
by electrons, we see how electronic and magnetic properties in such a system can be gov-
erned by interactions, and emergent properties can arise.

Note the role of dimensionality on the behavior of a system described by the Hub-
bard model. As the number of directions in which an electron can evade interact-
ing with neighboring electrons grows with the number of dimensions, it is not sur-
prising that the strongest quantum correlation effects are typically found in one-
and two-dimensional systems. Indeed, most of the yet-to-be-fully-understood
emergent electronic and magnetic properties of materials with narrow bands re-
sult from correlation effects of electrons confined to effectively decoupled one- to
two-dimensional sub-lattices [4, 5].

2.2. Theory of classically coupled quantum dots
As the name implies, the confinement potential, or lattice, for gate-defined quan-
tum dots derives from the electrostatic control offered by gates, instead of the
atomic potential of the material lattices Hubbard was trying to describe. This in-
validates some of the assumptions that Hubbard took, leading us to use a slightly
larger Hamiltonian to the Hubbard model in describing quantum dot systems, a
resulting model that I will gradually introduce below.

First, we will ignore the tunnel coupling and describe the system of classically (ca-
pacitively) coupled quantum dots as well as introduce the concept of charge addi-
tion spectra. In the next section, we add in again the tunnel coupling, finalizing the
Hamiltonian that will be prevalent throughout this thesis and showing in particular
how charge addition spectra are modified by such hybridization effects. Lastly, we
describe several emergent models, models that describe the low-energy excita-
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tions of subsets of unfrozen degrees of freedom, given some parameter values
and electron fillings.

So let us start by ignoring the tunnel coupling and changing our terminology: in-
stead of speaking about sites on a lattice we will discuss (quantum) dots on a
(quantum dot) array. In this classical limit of 𝑡 = 0 life is easy, as we can denote
the resulting states 𝑠 describing the array simply by listing the charge occupations
(𝑛1, 𝑛2, ..) of the individual dots. This ignores potential degeneracies of particular
charge states due to the spin degree of freedom, but that will not concern us for
now.

Unlike the potential lattice provided by atoms in a material, not all quantum dots
in a gate-defined array are necessarily the same. That forces us to do some more
bookkeeping, as we have to deal with the fact that any energy term becomes site-
dependent (𝑈 → 𝑈𝑖 and so on). It also means we have to add a term that Hubbard
himself dropped, as it leads only to a constant offset in a perfect lattice: the site-
specific detuning, which takes into account for each site the single-particle energy
offset 𝜖𝑖 of the 𝑛𝑖 electrons inhabiting it.

Furthermore, we cannot neglect Coulomb interactions between sites, an effect
which is taken into account by adding an energy penalty 𝑉𝑖𝑗 when sites 𝑖 and 𝑗 are
occupied by 𝑛𝑖 and 𝑛𝑗 particles, respectively. A model with such a term added is
typically referred to as an extended Hubbard model [4]. Adding up what we have
discussed so far, we get the total energy (I could write it down as a Hamiltonian,
but that Hamiltonian is of course readily diagonalized in this classical limit):

𝐸𝑠 = − ∑
𝑖

𝜖𝑖𝑛𝑖 + ∑
𝑖

𝑈𝑖
2 𝑛𝑖(𝑛𝑖 − 1) + ∑

𝑖,𝑗
𝑉𝑖𝑗𝑛𝑖𝑛𝑗 (2.2)

In the early days of quantum dots, and still now sometimes, actually, one finds
experimentalists model their quantum dot systems by describing a spider web of
capacitances between gates, dot potentials and the electrical ground [6]. This so-
called constant interaction model might be appealing for device physicists as it
directly describes the electrostatic couplings that a device design imposes, but is
an inherently indirect (overly elaborate) and classical (fundamentally insufficient)
method for describing the electronic states in the array itself. Only slowly did ex-
perimentalists take over the view of their more condensed-matter aware theory
colleagues to model dots in a Hubbard perspective [7], with the mapping between
both views formally established relatively recently [8].

Having formalized a classical model in Eq. 2.2, we can now start putting it to use.
As experimentally it is the charge state of a quantum dot array exchanging elec-
trons with adjacent reservoirs that is measured, it is the charge addition spectrum
that merits our focus. As such, we are interested in some classical thermodynam-
ics. Introducing the (electronic or Fermi) reservoir at chemical potential 𝜇 and tem-
perature 𝑘B𝑇 , we can describe the charge addition spectrum 𝜕⟨𝑁⟩

𝜕𝜇 within classical
thermodynamics using simple Boltzmann-weighted sums:
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𝜕⟨𝑁⟩
𝜕𝜇 = ⟨𝑁2⟩ − ⟨𝑁⟩2

𝑘B𝑇 with ⟨𝑁𝑘⟩ = ∑
𝑠

𝑁𝑘
𝑠 exp[𝐸𝑠 − 𝜇𝑁𝑠

𝑘B𝑇 ] (2.3)

where 𝑁 = ∑𝑖 𝑛𝑖 counts the total number of electrons in the system. For 𝜕⟨𝑁⟩
𝜕𝜇 ≠ 0

the system will be allowed to exchange particles with the reservoir. In a typical
measurement, we make a two-dimensional map of the charge stability as experi-
mental voltages are changes, inducing changes in 𝜇 or the 𝜖𝑖. Such a map is called
a charge stability diagram, and some examples are shown below. Note that these
diagrams are essentially visualizations of particular two-dimensional slices of the
(higher-dimensional) charge addition spectrum.

Figure 2.2: Charge stability diagrams. Simulated charge stability diagrams for a single (a),
double (a) and triple quantum dot (c). Given a clever choice of axes, in this case potential
(vertical) and distinguishable dot detunings (horizontal), identifying for what parameters dif-
ferent charge states are energetically preferred becomes obvious. Note that for the single-
dot case shown in (a) there is no relevant detuning to show, and text in brackets denotes
the local equilibrium charge state. Instead of these particular two-dimensional cuts in the
charge stability spectrum, we can also take some set of parameters (i.e. focus on one point
in charge stability, as depicted by the arrows) and vary the three detunings 𝜖𝑖 ’s individually,
resulting in a ladder diagram representation of charge stability (inset). Rungs in the ladder
depict detunings for which charge states with local occupations differing by one electron
become degenerate, and thus correspond to charge addition.

We will see in Chapter 4 that the control of the quantum dot systems hinges on the
measurement and interpretation of diagrams such as those shown in Fig 2.2. As an
example, the size of charge states in a charge stability diagram is indicative of the
interaction energies 𝑈𝑖. Furthermore, note that I have tried to consequently employ
red colormaps for (computer) simulations, blue colormaps for experimental data,
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and blue-white-red colormaps for data with both polarities and a well-defined zero
(white).

2.3. Adding quantum fluctuations

As it turns out, tunnel couplings are typically much smaller than interaction ef-
fects in experiments, and as such do not influence the charge addition spectrum
strongly. Nonetheless, without tunnel coupling the system is fully classical, so let
us look at what happens when we add it back into the mix. This results in the fol-
lowing total Hamiltonian:

𝐻 = − ∑
𝑖

𝜖𝑖𝑛𝑖
⏟⏟⏟⏟⏟

𝐻detuning

− ∑
⟨𝑖,𝑗⟩,𝜎

𝑡𝑖𝑗(𝑐†
𝑖𝜎𝑐𝑗𝜎 + h.c.)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻tunneling

+ ∑
𝑖

𝑈𝑖
2 𝑛𝑖(𝑛𝑖 − 1) + ∑

𝑖,𝑗
𝑉𝑖𝑗𝑛𝑖𝑛𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻interaction

(2.4)

If we want to model the thermodynamic charge stability of this quantum system
as it is coupled to a reservoir, we can do it using:

𝜕⟨𝑁⟩
𝜕𝜇 = 𝑘𝐵𝑇 𝜕2 ln𝒵

𝜕𝜇2 with 𝒵 = Tr{exp[−(𝐻 − 𝜇𝑁)/𝑘𝐵𝑇 ]} (2.5)

where 𝒵 is the partition function. Note that the Hamiltonian of Eq. 2.4 implicitly
describes a single band only, whereas each physical dot can easily be filled with
more than two electrons. A more complete simulation would take into account the
orbital degree of freedom on each dot as well as the single-particle energy offsets
associated with them [6]. It is justified from the point of view of charge stability
diagrams, however, to focus on the addition of the next two electrons per dot within
a single, effective, band picture [9].

The added effect of tunnel coupling hybridizes states where a single electron is
free to hop between adjacent dots, and thus has most impact when these charge
states are nearly degenerate. At this point, the charge states anti cross and bond-
ing and antibonding states are formed, similar to the Heitler-London model. This
serves as a starting point for a charge qubit, using the relative location of the elec-
tron as the unit of information. For our purposes, however, what is most important
is that as the bonding state is at a lower energy than the uncoupled states, it be-
comes energetically more favorable in the charge stability diagram, and as such
starts to occupy a larger space, effectively bending nearby charge addition lines.
For a larger number of dots, this will gradually deform the charge stability into one
that looks to be describing a single dot (i.e. a gradual change from diagrams such
as that of Fig. 2.2c to one resembling Fig. 2.2a)
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Figure 2.3: Effect of hybridization on charge stability diagrams. At increasing tunnel cou-
pling, charge states hybridize as schematically shown in a. The charge states are shown
in red, with the hybridized spectrum depicted with black, dashed lines. The effect on the
charge stability diagram becomes apparent first at anti crossings, where two tunnel-coupled
charge states are (close to) degenerate. The energy gained by the bonding state stabilizes
the single-particles states (01) and (10) close to their transition, which in turn pushes out the
charge addition lines at which they are degenerate with the empty (00) and doubly occu-
pied (11) states. This effectively bends them outwards as indicated by the black, dashed
lines in b.

2.4. Emergent models
Imagine a homogeneous lattice with strong local Coulomb repulsion, filled with
one electron per site. In this case, any excitation in the charge sector would entail
the creation of a double occupation at a large cost in energy. Focusing on smaller
excitations, therefore, only the local spins on each site are relevant and we find
ourselves describing the physics of an array of spin-1/2 particles.

This constitutes one example of an emergent model, and shows how Eq. 2.4 can
be used to study different types of physics, in this case a particular model in quan-
tum magnetism (the Heisenberg model [10]). As magnetic fields can split the local
spin-up and spin-down states and virtual hopping events can lead to the coupling
of these spins via so-called direct exchange, such quantum magnetism is con-
ceptually close to the physics used to define spin qubits and their coupling gates
[11].

In Chapter 6, we will introduce some of these emergent models in more detail, as
they allow us to use the Hubbard model description of quantum dots to emulate
different physical phenomena. Note that in general, one can distinguish two types
of analog quantum simulation. First, one can reproduce ’textbook examples’ of
models that are well understood, in order to showcase the potential or give further
insight (these are typically interesting single-particle models or small many-body
states), but secondly, one can try to simulate less understood phases (which typi-
cally entails larger and strongly-correlated electronic states).
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3
Towards large quantum dot

arrays with global control only

The ability of quantum dots to map onto Hubbard models of interest is only fully
leveraged through the synthesis of extended arrays that have well-controlled pa-
rameters. These two qualities, however, size and control, are at direct odds. In
this chapter, I describe a novel experimental technique for realizing large arrays at
the cost of site-specific control. Disorder in the host material and inhomogeneity
in fabrication limit not only this technique but quantum dots in general, and are
described in Section 3.1. By using capacitance spectroscopy (Section 3.2), we aim
to reduce the effect of disorder, as well as allowing for global measurements of
the density of states. However, as described in Section 3.3, applying a strong and
sufficiently homogeneous periodic potential required for seeing lattice physics is
difficult - and our current device quality is assessed. Section 3.4 concludes with
ways in which devices can be improved1.

1The work described in this Chapter can be found in ArXiv 1709.09058.
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3.1. Disorder and inhomogeneity
The wave equation physics of quantum mechanical bands has been emulated on
several different experimental platforms, most notably and unsurprisingly so at
photonic length scales - although adding interactions as well as gauge fields are
difficult on such systems [1, 2]. The relevant length scales for electronic systems in
semiconductors, however, are sub-micron, at which scale the fabrication of homo-
geneous periodic structures becomes significantly harder. Furthermore, inherent
(charge) disorder felt by electrons in imperfect host materials constitutes a back-
ground of disorder, that can overpower any periodic effect [3]. As such, realizing
artificial electronic lattices has proven to be quite challenging indeed [4–6].

A notable exception is that of superlattices of graphene on hexagonal boron ni-
tride, which shows Hofstadter’s butterfly physics [7–10]. Actually, even fractional
quantum Hall states on the butterfly can be observed [11], highlighting the potential
of semiconductor superlattices to realize novel phases of interacting electrons.

In general, however, semiconductor heterostructures with electrostatic control us-
ing nano-fabricated gates would constitute a most promising platform, as it allows
for designer lattices and voltage tunable electron density and lattice strength [12].

Manners in which inherent material disorder can be reduced, a clean and peri-
odic gating can be achieved and read-out can be performed in two-dimensional
structures will also prove to be important in assessing the feasibility of scaling of
quantum information processors of quantum dots as spin qubits [13], where such
disorder-negating site specific control as described in the next chapter might still
be possible, but would at any rate constitute a severe experimental overhead.

3.2. Capacitance spectroscopy technique
Capacitive coupling has been long used to study 2D electronic systems [14]. In
this chapter, we demonstrate a novel experimental platform that is based on the
technique of capacitance spectroscopy, as pioneered by Ashoori as a graduate
student, and later added on in his group to study, for instance, exchange effects
in Landau levels through excited state spectroscopy [15, 16] as well as the two-
dimensional dispersion of a 2DEG [17] and the observation of the vibrations of a
Wigner crystal [18].

In a capacitance spectroscopy set-up, a parallel-plate capacitor is formed out of
the doped back gate region of a semiconductor wafer and a fabricated top gate
(see Fig 3.1). A quantum well grown between the two allows a two-dimensional
electron gas (2DEG) to form as electrons tunnel in from the doped back gate, mod-
ifying the capacitance between both gates. When the density of states (DOS) in the
2DEG is large, the capacitance is defined by the distance from top gate to 2DEG.
When the density of states in the 2DEG is negligible, however, the capacitance is
simply described by the distance between the gates. Equivalently, we can mea-
sure the capacitance at frequencies above that of electrons tunneling between the
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2DEG and the back gate, and the bare capacitance can also be found. This allows
for the measurement of the charge addition spectrum of the 2DEG as function of
filling and external influences (periodic potential, magnetic field,..). Furthermore,
the proximity of mobile carriers in the back gate region screens disorder [12], ef-
fectively reducing both intrinsic disorder levels and reducing the impact of short-
length-scale imperfections in the fabrication over any longer-length-scale periodic
potential we will try to set.

The device capacitance is measured using a capacitance bridge technique, where
the amplitude ratio and phase difference between measurement signals applied to
the device and a reference capacitor are balanced at the bridge point (red dot in Fig
3.1c), where any remaining voltage fluctuations are amplified at different stages and
read out using a lock-in amplifier. The device, reference capacitor and first amplifier
are mounted on a home-built printed circuit board (PCB) that is itself mounted on
the mixing chamber stage of a dilution refrigerator. Furthermore, the PCB hosts
R/C filters for the D/C lines as well as bias-tees for combining D/C and A/C signals
and attenuators for the A/C inputs. These attenuators were necessary as we found
attenuators in the fridge to lead to ground loop issues. A high-mobility electron
transistor (HEMT) is used for the first amplifier, further amplification is built at 0.7 K
and at room temperature.

Figure 3.1: Overview of the capacitance spectroscopy technique. A schematic side (cut)
view of a device made on a GaAs/AlGaAs heterostructure is shown in a, where a 2DEG can
form in the quantum well layer as electrons tunnel in from a n-doped back gate layer. We
can derive DOS information by modeling the electrostatics as charges are added to a sheet
in between two parallel plate capacitor plates, as shown in b. The measurement itself is
done at the 10 mK stage of a dilution refrigerator set-up, comparing the sample capacitance
to that of a reference capacitor in a capacitance bridge (c). Measurement excitations are
sent using a waveform generator (WG) and iteratively updated depending on the lock-in
measurement outcome of the amplified bridge point (red point) voltage.

In order to balance the bridge, an iterative scheme based on a simple secant
method is implemented, where the excitation on the sample side is kept at some
constant phase 𝜙sample and amplitude 𝑉sample and the phase 𝜙ref and amplitude
𝑉ref on the reference side updated. Modeling the bridge as a linear system of com-
plex variables 𝑌 = 𝐴𝑋 + 𝐵, with reference signal 𝑋, lock-in measurement 𝑌 and
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bridge defined by 𝐴 and 𝐵 and given two slightly different inputs 𝑋𝑖 and 𝑋𝑖+1 with
respective measurement outcomes 𝑌𝑖 and 𝑌𝑖+1, we calculate 𝐴 and 𝐵 and define
the next step as 𝑋𝑖+2 = −𝐵/𝐴. Convergence is reached when the amplitude dif-
ference between the last two reference signals drops below some reference, typ-
ically several parts per thousand of the signal itself. From the final 𝑋𝑖 = 𝑉ref𝑒𝑖𝜙ref

we infer the sample capacitance 𝐶sample = 𝐶ref
𝑉ref

𝑉sample
cos(𝜋 + 𝜙ref − 𝜙sample).

The aim of this set-up is to through modulations in the capacitance derive the elec-
tronic spectrum of the 2DEG as function of density, applied field and (later in this
chapter) periodic potential. In the procedure for deriving DOS from capacitance
data, the device is modeled as a simple parallel plate capacitor (Fig 3.1b), where
charges can be added at the quantum well layer. It follows from this schematic that
the total capacitance equals 𝜕𝑄

𝜕𝑉 = 𝐴 𝜕𝜎top
𝜕𝑉 = 𝜖𝐴

𝑤+𝑑 − 𝑑𝐴
𝑤+𝑑

𝜕𝜎QW
𝜕𝑉 + small terms that de-

pend on changing distances and which we ignore. The realization that this is the ca-
pacitance which is measured at sufficiently low frequencies, whereas at frequen-
cies above the tunnel rate 𝑓𝑡𝑢𝑛𝑛𝑒𝑙 the second term is void, allows us to infer changes
in the electron density in the 2DEG using 𝜕𝑛

𝜕𝑉 = − 1𝑒
𝜕𝜎QW
𝜕𝑉 = 1

𝑒𝐴
𝑤+𝑑

𝑑 (𝐶low − 𝐶high).
See Fig 3.2 for measurements as function of frequency.

Figure 3.2: Frequency dependence of measured capacitance. Sample phase offset
(𝛿𝜙 = 𝜋 + 𝜙ref − 𝜙sample, a) and capacitance (b) as function of applied back gate bias and
measurement frequency of a device with a global metallic gate (see inset) at a perpendicu-
larly applied magnetic field of 1 T. Oscillations in the capacitance and tunnel frequency are
due to the formation of Landau levels in the integer quantum Hall effect.

It is clear that a frequency dependent capacitance indicates a non-zero DOS and
as such (with changing bias) filling of the 2DEG. In order to extract the DOS, how-
ever, we also need to know how the Fermi level in the quantum well changes
with changes in gate voltage, the so-called lever arm. This follows from a simi-
lar derivation: 𝛼 ≡ −𝑒 𝜕𝑉

𝜕𝜇 = ( 𝑤
𝑤+𝑑 + 𝑒𝜖 𝑤𝑑

𝑤+𝑑
𝜕𝑛
𝜕𝑉 )−1

. For a gapped system (𝛿𝑛 = 0), we
find the lever arm to simply be described by the relative distance of the quan-
tum well location between both plates of the capacitor. The second term is due
to the quantum capacitance, and becomes the dominant term after accumula-
tion. Using the expressions for density and energy, the DOS is defined through
𝜕𝑛
𝜕𝜇 = 𝜕𝑛

𝜕𝑉
𝜕𝑉
𝜕𝜇 = 1

𝑒2𝐴
𝑤+𝑑

𝑑 𝛼 (𝐶low − 𝐶high).
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Figure 3.3: Overview of the conversion from capacitance to DOS. From the low and high
frequency capacitance (a) one can derive (changes in) density (b) and lever arm (c). Us-
ing both, the DOS is found (d), where we peg the 0 T DOS after accumulation to the ex-
pected value. The same calibration is used for nonzero field values, where for increasing
field strength Landau levels get resolved.

There is one unknown in the calibration of DOS, the distance 𝑑 between back gate
and 2DEG. The growth distance can be used as a first guess, but a better estimate
can be made using either the known degeneracy or spacing of Landau levels at
finite magnetic fields, or the expected value of the DOS at zero field, 𝑚

𝜋ℏ2 ≈ 2.8×1010

meV−1cm−2 (Fig 3.3).

3.3. Trying to impose a periodic potential

As discussed in the previous section, capacitance spectroscopy allows for the
measurement of the charge addition spectrum of a 2DEG under a global magnetic
field. Here we briefly discuss two phenomena that are expected to occur when a
periodic potential is applied as well (Fig 3.4). Next we describe two different device
designs that would allow for a lattice potential to be applied. Several experimental
imperfections of such devices have to be considered, which we do in the rest of
this section.

When a weak periodic potential is applied to a 2DEG, gaps of the size of the ap-
plied potential modulation open up at the edge of the Brillouin zone, indicating
the formation of a miniband that can host two additional electrons per lattice site
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as described by the nearly free electron model. As confinement gets stronger with
increased potential modulation, electron-electron interactions dominate and mini-
bands split in two as electrons are filled one by one on each site. This constitutes
an effective Mott transition [19, 20]. For the capacitance spectroscopy devices, we
should therefore look for modulations in the capacitance at densities commensu-
rate with the minibands, as a periodic potential is turned on. For a 200 nm periodic
square grid, the expected miniband densities are 5×109 cm−2, which coincide with
a period in back gate voltage of 6 mV. The splitting of these bands in two and corre-
sponding doubling in the periodicity would then be indicative of the Mott transition
(Fig 3.4a).

Figure 3.4: Theoretical proposals. As shown in a, when an imposed periodic potential (ver-
tical) gets sufficiently strong, on-site repulsion gaps out a half-filled state with increasing
Fermi level (horizontal), implying a Mott transition from a metallic nearly free electron state
to a Mott insulator state (adapted from [20], a simulation on a 3x3 array with 𝑁 the total num-
ber of electrons, 𝑉0 the amplitude of the potential and 𝑛 the average number of electrons
per site). As shown in b, a small periodic potential perturbs the integer quantum Hall fan
diagram by modulating the Landau level widths and opening a fractal spectrum of gaps at
energies (vertical) and fields (horizontal) corresponding to the frustrated ratio between the
magnetic and periodic length scales (adapted from [5]). This ratio depends on the perpen-
dicularly applied magnetic field 𝐵 and corresponds to the number of flux quanta threading
each plaquette of area 𝐴 as Φ/Φ0 = 𝐴𝐵/Φ0 .

In a different and inherently single-particle phenomenon, the joint application of a
periodic potential and perpendicularly applied magnetic field leads to a fractal but-
terfly spectrum [7] as the magnetic length scale describing the discrete magnetic
translational symmetry of integer quantum Hall states becomes commensurate or
not to the wavelength of the Bloch states on the lattice itself. Gaps open up inside
the Landau levels as a repetitive function of the number of excessive flux quanta
Φ0 threading through each lattice site (Fig 3.4b). The largest gaps are expected
around 𝑘 ± 1/4 flux quanta (with 𝑘 an integer), corresponding to 52𝑘 ± 13 mT for a
200 nm periodic square grid.

From an experimental point of view, there are three considerations to take into
account, three possible device imperfections that would lead to no visible gaps
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appearing in the data: (i) the lattice strength does not exceed disorder levels, (ii)
the induced modulations in density are too small to be experimentally resolved
and (iii) the applied lattice potential is not sufficiently homogeneous2. As a start,
therefore, we need to assess the disorder levels in our devices.

In the previous section, we have seen how a perpendicularly applied magnetic
field modulates the density of states through the formation of Landau levels. Here,
we use the visibility of the Landau levels as function of magnetic field as a heuris-
tic metric of inherent disorder levels, given their known spacing and degeneracy
(Fig 3.5). Note that for larger magnetic field, exchange enhanced Zeeman splitting
becomes visible as well, highlighting that interaction effects become important for
increasingly confined electrons (Fig 3.5a). In Fig 3.5b, the charge addition spectrum
at low field values is shown, tracing out a Landau ”fan” diagram. Gaussian fits to in-
dividual levels yield typical level broadening of 0.4-1 T. The levels get resolved at
fields of roughly 0.25 T, corresponding to densities per level of 1.2×1010 cm−2 and
cyclotron gaps of 0.43 meV. As a check, we have applied small changes in tem-
perature and excitation voltage, which do not change Landau level widths. Also,
we consistently measure similar results on different fabrication runs and schemes.
We therefore regard these numbers in density and energy as a heuristic metric for
the achievable disorder levels of particular wafers, and have striven to optimize
heterostructure design to minimize them.

Figure 3.5: Landau fan diagram to assess intrinsic disorder level. Low frequency capac-
itance as function of applied back gate bias and field (a) for a device with a single global
top gate, and the low-field regime converted to a charge addition spectrum (b). Landau
level visibility is a hallmark of intrinsic disorder levels, given the known linear dependence
of degeneracy and spacing on applied field strength. Note also how Landau levels split at
fields over 2 T as exchanged-enhanced gaps open up. The gaps at filling factors 𝜈 = 4 and
𝜈 = 8 are indicated. At lower fields, the small Landau level spacing combined with a limited
number of steps in magnetic field leads to aliasing in the image.

2The experimental resolution is further limited by the resolution and noise of the applied voltages and
measured capacitance, but these effects are smaller than those due to device imperfections, as we
will see.
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Over twenty different wafers were measured in total, in various attempts to mini-
mize their inherent disorder levels (see Appendix A). Of these, we found decreasing
(increasing) the aluminum content in the tunnel (blocking) barrier to be the most
successful. In order to keep the tunnel rate roughly constant, this also entails in-
creasing the tunnel barrier thickness. As the 2DEG in these wafers is thus moved
slightly further away from the doped back gate region, we hypothesize that the
imperfect abruptness of the doping profile at the top interface of the back gate re-
gion, where some silicon doping atoms might have diffused into the spacer layer
during growth, has the largest effect on the disorder levels.

To control both the electron filling and apply a lattice potential in the 2DEG, we have
fabricated devices based on two different designs (Fig 3.6). For both designs, the
gate directly on top of the heterostructure surface is patterned into a grid shape,
using electron-beam lithography and evaporation and lift-off techniques (see Ap-
pendix A for further design considerations and fabrication details). An unpatterned
top gate is placed on top. In the first design, these two gates are separated by a
thick dielectric layer. This renders the capacitance between the gates to be negli-
gible with respect to the device capacitance (between the grid and back gate). In
the second design, the grid gate is made of a material that can be oxidized (alu-
minum), and is actively oxidized, such that the top gate can be placed directly on
top. Given their close proximity in such a scheme, the capacitance between both
gates exceeds that of the device, and from an A/C perspective they can be seen
as a single gate.

Figure 3.6: Two distinct device designs for imposing a periodic potential. Either the grid
and top gate are separated by a thick dielectric (a), rendering their capacitance small enough
to be neglected, or they are separated only by the oxidation of the first layer (a), in which
case their capacitance is much larger than the device capacitance and the two gates can
be seen as one from the perspective of the A/C measurement signal.

The critical step in device fabrication is to create the grid gates (given that these are
the only sub-micron features). Perhaps surprisingly so, the limiting factor for yield
and dimensionality is the grain size of the evaporated metal, and not the patterning
itself (details in Appendix A). As such, we use Ti/Au(Pd) gates for both top gates
in the first design, and Al only for the second design. For both, pitches of 100-200
nm can be reliably fabricated (Fig 3.7a-b). In the first design, either a > 200 nm
plasma-enhanced chemical vapor deposited SiO2 layer separates the gates, or a
> 350 nm plasma-enhanced atomic layer deposited AlO𝑥 layer, leading to a stray
capacitance between the gates of several pF, typically, and no measurable con-
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ductance. In the second design, the Al grid gate is oxidized using a remote oxygen
plasma, leading to a stray capacitance between the gates of several hundred pF
and resistances exceeding 1 GΩ.

In fabrication, it is clear that reducing the lattice dimensionality comes at a price of
decreased homogeneity and fabrication yield. There are two clear limits to the lift-
off process: the plaquettes of metal in the grid that have to be lift-off have to be of
some minimum size (typically 40 nm by 40 nm), and the line width of the metallic
lines has to be sufficient to avoid broken lines (typically 20 nm to 40 nm, depending
on the metal used, see Fig 3.7c). As such, we are limited to lattice periodicities of
roughly 100 nm or larger. Note that patterning a grid gate through dry etching
would allow for the definition of smaller features, but is known to cause defects in
the underlying substrate, and seems as of yet to be an unproven technique in the
fabrication of quantum dot devices in general.

Figure 3.7: Assessment of scale and inhomogeneity of nano-fabricated grid gates. Elec-
tron micrographs of square grids at a pitch of 200 nm and 100 nm are shown in a and b,
respectively, consisting of 20 nm of Al (blue) or 5/15 nm of Ti/AuPd (red). Using thresh-
olding and contour finding techniques we extract the areas 𝐴𝑖 of non-metal plaquettes for
grids of both metals and several pitches, and plot the fraction of the surface area covered
in metal (c) and the relative variation in plaquette areas (d). The black line in c indicates the
surface covered by a grid that leaves non-metal plaquettes of 40 nm by 40 nm, whereas the
blue (red) line indicates that of grids comprised of 35 nm (22 nm) lines. The dashed line in
d shows which variations in plaquette area coincide with variations of a tenth of a threaded
flux quantum at a field of 1 T.

To assess the homogeneity, we define the relative variations in the non-metal pla-
quettes in the grid gate as a measurable metric. These areas can be extracted
from electron micrographs and indeed show a decrease in homogeneity with lat-
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tice size (Fig 3.7d). Assuming that the grid shape correlates with the applied poten-
tial in the 2DEG, these variations would lead to a different amount of flux threading
through each plaquette. As such, they lead to a scrambling of the butterfly spec-
trum in magnetic field direction, described by Hofstadter as ”jiggling the graph”. At
sufficient inhomogeneity, therefore, one expects the added gaps to no longer be
resolvable. Considering the scrambling effect on a grid at an applied field of 1 T,
the experimental inhomogeneity corresponds to variations of roughly a tenth of a
threaded flux quantum. Jiggling the theoretical graph by this much renders the
largest gaps still resolvable. It is difficult, however, to assess whether this indicator
directly translates to variations in the relevant potential applied on the 2DEG.

Figure 3.8: Strength of imparted periodic potential. Simulation of imparted potential in the
2DEG for both designs, with a 200 nm periodic 20 nm wide grid and a 350 nm SiO2 spacer
(a) or a 5 nm AlO𝑥 spacer dielectric (d). For both designs, the grid gate is kept at -0.5 V.
Measured capacitance is shown for devices with 200 nm periodic square grid gates based
on both gate designs in b and e, respectively. Derivative of these data sets are shown in c
and f.

Next, we measure the capacitance of double-layer gate devices, to assess if the
applied periodic potential overcomes inherent disorder levels. The amplitude of
the applied potential will depend on the design as well as on the maximum volt-
ages that can be applied on the gates. In the measurements, we keep the voltage
on the grid gate fixed, as it serves as the gate voltage of the first amplifier in the
amplification chain, and change the top and back gate voltages. Electrostatic sim-
ulations show that, as expected, a much larger voltage is required on the top gate
for the first design in order to set a sizable lattice potential (Fig 3.8a,d). In gen-
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eral, we expect accumulation to occur in a direction that requires changes in both
voltages, which is also measured experimentally (Fig 3.8b,e).

The periodic potential builds up in the perpendicular direction. As both gates are
swept, we indeed find maximum voltages that can be applied. In the case of the
first design, we find a saturation in the effect of the top gate at gate voltages ex-
ceeding 20 V in absolute value, a possible sign of charges building up in the di-
electric or at the dielectric-semiconductor interface. For too negative voltages set
to the back gate, both designs show leakage through the heterostructure from the
back gate to the grid gate. The same happens in the second design for top gate
voltages above 750 mV.

The onset of accumulation is broadened with changing top gate voltage for both
designs, indicating that the applied potential exceeds the disorder levels of 0.4 -
1 meV (Fig 3.8c,f) at low densities, as expected from the electrostatic simulations.
A clear asymmetry between positive and negative top gate voltages shows up for
the first design, however, possibly as electrons accumulate either underneath the
(screening) grid gate or underneath the dielectric. For the second design, we fur-
ther look at the effect of gating by seeing how the Landau levels get broadened
and the cyclotron gaps eventually close, concluding that the potential must ex-
ceed the Landau level splitting (which is 1.7 meV at 1 T).

In conclusion, we have assessed the inherent disorder in the wafers as well as
the homogeneity of the grids, and seen that the imposed potential modulations at
positive and negative top gate values overcome disorder. So far, however, no signs
of butterfly gaps or the formation of minibands and subsequent Mott transition
have been seen. In the case of the formation of minibands and the Mott transition,
this was to be expected, given that the smallest density modulations that have
been resolved (Landau levels at 0.25 T and high density on a global gate device)
were still larger than those corresponding to filling a 200 nm periodic grid with
one or two electrons per site, and only barely larger than those of a 100 nm grid
with two electrons per site. In the case of the opening of butterfly gaps it is harder
to speculate as to what forms the bottleneck, as it is hard to assess whether the
imposed potential modulations in the 2DEG are more homogeneous or less so than
the nano-fabricated grid shape suggest, without first results in observing the effect
itself.

3.4. Outlook: room for improvement

As described above, in order to see miniband formation and the Mott metal-to-
insulator transition, either the lattice dimension or the intrinsic disorder levels should
be further reduced. Given the limits of the lift-off process, decreasing wafer dis-
order seems to be the most promising. There is room left to optimize the het-
erostructure, in particular to further increase (decrease) the thickness (Al content)
of the tunnel barrier in order to increase the distance from 2DEG to back gate. Fur-
thermore, the top interface of the back gate region can be made more abrupt by
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reducing the growth temperature for the first couple of nanometers of the spacer
layer, which has been shown to strongly reduce disorder [18].

Such a reduction in disorder levels would also lead to Landau levels that are better
defined and hence observable at lower fields. Hofstadter’s butterfly-induced gaps
inside the Landau levels can then be searched for at lower fields as well, where
the inhomogeneity-induced scrambling of the graph is less.

Although heterostructure design has to be further optimized for lattice effects to
become visible, however, the potential for combining band physics with finite in-
teractions is clear (see for instance the exhange-split Landau levels). Furthermore,
time-domain measurements can be done on similar devices that would allow to
probe the excitation spectrum as well [15, 16], which would be particularly interest-
ing in studying the Mott transition.

When periodic effects become visible, capacitance spectroscopy can also be used
as a relatively simple experimental platform on which scaling and homogeneity
using various fabrication procedures can be studied. The fractal structure of the
butterfly lends itself very well to this. As an example, the control gates for quantum
dot devices intended for spin qubit measurements are fabricated with lift-off tech-
niques similar to the ones employed here, but as groups start to seriously consider
scaling [13], the more industrially viable and robust technique of dry etching is con-
sidered for imposing gate patterns. The impact of dry etching on disorder levels
as well as on gate homogeneity could then be directly studied using capacitance
spectroscopy measurements techniques.
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4
Efficient calibration of model

parameters using local control

Progress isn’t made by early risers.
It’s made by lazy men

trying to find easier ways to do something.

Robert A. Heinlein

In direct contrast to the large arrays with global control described in the previous
chapter, small quantum dot arrays, with site-specific control using gate voltages,
are more commonplace. These are the devices intended for quantum informa-
tion processing, where charge and spin degrees of freedom can be controlled
and read out at a large measurement bandwidth. Engineering desired Hubbard
model parameters is typically inefficient, however, limiting experiments to small
parameter spaces and hindering the calibration of larger devices. In this chapter, I
describe a toolbox of experimental techniques that use more of the available mea-
surement bandwidth to efficiently set Hamiltonian parameters, a process called
tuning (Section 4.1). In Section 4.2, I show how we can control site-specific ener-
gies by employing linear combinations of gate voltages. This in turn leads to the
programmable control of chemical potential and disorder, and provides a starting
point for the automated measurement of tunnel couplings (Section 4.3) and inter-
action energies (Section 4.4). A sufficient amount of bandwidth remains for further
tools and automation to be implemented, outlined in Section 4.51.

1Parts of this chapter have been published in Nature 548, 71–73 (2017).
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4.1. The problem of tuning

In the small devices intended for spin qubit measurements, a quantum dot array
is electrostatically defined by applying appropriate voltages to a set of gate elec-
trodes fabricated on the surface of the semiconductor material, and read out using
parallel sensing channels whose conductance is sensitive to the charge state in-
side the array (Fig 4.1). Below I provide a brief overview of the relevant elements of
this platform.

First of all, a combination of electrical fields and band offsets between different
layers of the semiconductor (or the oxide at its surface) define an energetically fa-
vorable two-dimensional plane close to the surface. Conduction band electrons
at sufficiently low energies are confined to this plane and form a two-dimensional
electron gas (2DEG). We distinguish doped and undoped substrates, where in the
case of the former, a finite density of electrons is achieved through modulation
doping close to the 2DEG, and in the case of the latter, gate-induced electrical
fields are required to pull the conduction band edge below the Fermi level. Typi-
cal densities are on the order of 1011 cm−2, implying a mean separation between
charges of several tens of nm. As sources and/or drains for measuring electrical
currents running through the 2DEG, ohmic contacts are fabricated, which galvani-
cally connect measurement wires to the 2DEG at different locations. Finally, gate
electrodes are fabricated on the surface of the semiconductor, which are also con-
nected to measurement wires. Voltages applied to these electrodes shape the po-
tential that conduction band electrons in the 2DEG experience and as such allow
for further confinement.

One can think of this potential as a landscape or topographical map. The gate elec-
trodes allow us to shape this landscape, albeit in a fundamentally limited (once
fabricated, the gate layout is fixed) and somewhat indirect (the gates live at a finite
distance) manner. Furthermore, imperfections in the material and nanofabrication
mean the actual landscape is disordered. Control over the potential landscape is
paramount, however, as Fermi-Hubbard parameters are controlled through de-
tailed modulation of it. Overcoming these limitations and engineering the Hamil-
tonian through the application of correct gate voltages is the process called tuning
(see Fig 4.1).

Apart from the dots themselves, device layouts are designed to allow for the def-
inition of sensing (dot) channels. By tuning these to positions where the chan-
nel conductance is highly sensitive to the electrostatic environment, such as the
pinch-off of a quantum point contact or the flank of the Coulomb peak of a sens-
ing dot, we can identify discrete transitions in the charging of the (other) quantum
dots through changes in sensing channel conductance. These are typically read
out using radio-frequency reflectometry techniques at frequencies of roughly 100
MHz using homebuilt LC tank circuits on the printed circuit board [1], together with
cryogenic amplification and room-temperature demodulation.
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Figure 4.1: The aim of tuning: Hamiltonian engineering. Electron micrograph (left) of a
triple quantum dot array, showing metallic topgates (grainy and lighter structures) on a GaAs
surface (dark background). The 2DEG lives at a depth of 85 nanometer under the surface.
Crossed squares indicate ohmic contacts to the 2DEG, allowing transport measurements
to be done both through the device channel (three dashed circles) and the sensing dot
channel (single dashed circle and arrow). The aim of the tuning process (right) is to set a
desired Hamiltonian through the efficient control of voltages applied to the seven bottom-
most gates.

Changes in the sensing (dot) channel conductance as probed via the phase and/or
amplitude of a signal reflected off the tank circuit provide the single measurable
when the quantum dot array is insulating, which it is under typical conditions. It is
from this single measurable that we should try to distill the charge states 𝑛𝑖 of the
dots, as well as figure out how to control and measure relevant Hubbard param-
eters. Central to this are so called honeycomb diagrams, the experimental equiv-
alent of the two-dimensional charge stability plots introduced in Chapter 2, where
changes in the dot occupations appear as clear steps in the charge sensing sig-
nal. For an example of such a measurement, and a comparison to the plots shown
before, see Fig 4.2 below.

The addition spectra introduced in Chapter 2 were mapped out by changing the
chemical potential 𝜇 (of the electron reservoir) and specific on-site energy detun-
ings 𝛿𝜖𝑖 of individual dots. Experimentally, we can control the filling by chang-
ing the energy difference between the electronic states at the Fermi level of the
reservoir and those of the dot array itself in two ways: either by applying bias volt-
ages to relevant electron reservoirs that directly change their Fermi level 𝜇, or by
deforming the potential landscape of the dot array using the top gate voltages,
changing the on-site energies 𝛿𝜖𝑖 of the dots2. This latter is employed in honey-
comb diagram measurements, albeit with some complications that warrant a brief
discussion. First of all, we find that the physical gate voltages influence not only
the local dot, but actually change the on-site energies of all of the dots to some
degree. Second, as the raw data of Fig 4.2 shows, the charge sensor is sensitive

2On a technical note, one should realize that because the partition function is sensitive only to changes
in 𝐻 − 𝜇𝑁 , we can equivalently think about changes in the 𝜖𝑖 ’s as influencing the chemical potential
directly through 𝛿(𝜇𝑁) = 𝛿(∑𝑖 𝜖𝑖𝑛𝑖), which is to say, keep the reservoirs at a fixed energy and change
the dot energies with respect to that energy. We can therefore map out the charge addition spectrum
with top gate voltages only, whilst keeping the reservoir potentials fixed.
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to changing gate voltages also, yielding a non-zero background gradient in the
charge sensor signal. Countering these two complications will be the topic of sec-
tion 4.2. Third, as the sensing dot is sensitive to any change in its local electric
field, more transitions can appear. In particular, we find so-called polarization lines
to appear in the experimental data. These are charge transitions where the total
number of electrons in the array stays fixed, but charges rearrange between the
dots, and will prove important in the determination of tunnel rates.

Figure 4.2: Comparing experiment to theory. Experimentally, changes in on-site energies
and as such dot occupation are induced through changing plunger gate voltages. Steps in
the charge sensing data indicate charge transitions, as seen in a and its gradient (b). Such
a plot is reminiscent of the theoretical charge diagrams (c), albeit with some complications,
which we model in d. The charge sensing data itself is a convolution of the sensing dot
conductance (the flank of a Coulomb peak) and any changes in its local electric field: this
will be both due to (un)wanted charge transitions or due to the direct, gradual and linear
effect that changing gate voltages has on the sensing dot. Note that the polarization line
is visible in all figures except c, as the total number of electrons remains fixed and as such
𝜕⟨𝑁⟩
𝜕𝜇 = 0.

Some further complications become apparent as we look at a double dot honey-
comb diagram covering a larger gate space in Fig 4.3. Note first that a symmetric
point in the charge stability of the dots requires different gate voltages for their
respective plunger gates, indicating some inhomogeneity in the quantum dot po-
tential minima - either due to inherent disorder in the semiconductor material or
fabrication imperfections. A further inhomogeneity is visible in the tunnel rates be-
tween the dots and their adjacent Fermi reservoirs. For this, I should note that this
scan is made by sweeping the horizontal axis (here gate P1) voltage. Horizontal
features at some transition are indicative of charges not being able to follow this
sweep, and thus of tunnel rates below the sweep rate (here roughly 100 µs, or 10
kHz). As the (00)-(01) transition shows such features, and the (00)-(10) does not,
we can conclude different tunnel rates Γ𝑖𝑗 for filling the two dots3. Furthermore,
we see that these tunnel rates are not constant. At higher electron numbers, for
instance, the features are absent. The curvature of the lines around (33), which is

3In this particular scan, we used similar barrier gate voltages to form the barriers between the two dots
and their adjacent Fermi reservoir.
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indicative of charge state hybridization, shows that the same is true for the inter-
dot tunnel rate 𝑡12. Similarly, the charge addition energies (which depend mainly
on the Hubbard 𝑈 ) are non-constant with filling, as we find not all charge states
to be of equal size. Finally, note the reduced contrast for charge transitions at the
most positive plunger voltages. This is due to the sensing dot being influenced by
the plunger gates to a point where its conductivity is no longer as sensitive to the
electrostatic environment.

Figure 4.3: Zooming out: what goes wrong. As we focus on a large plunger gate scan of
a double dot (a) and compare it to a theoretical charge stability diagram (b, with 𝑉 /𝑈 = 0.2
and 𝑘B𝑇 /𝑈 = 0.003), some of the difficulties involved in tuning become apparent.

On top of the plunger gates P𝑖 as used in Fig 4.3 to change the overall chemical
potential and the individual dot detuning terms, we can influence the tunnel rates
using the barrier gates B𝑖, making the list of controllable parameters {𝜇, 𝛿𝜖𝑖, 𝑡𝑖𝑗, Γ𝑖𝑗}.
This exhausts the list of available gates, though, meaning that the interaction en-
ergies {𝑈𝑖, 𝑉𝑖𝑗} are determined by the potential landscape realized to achieve this
set.

To summarize, control of the Fermi-Hubbard parameter set is achieved by mod-
ulating the potential landscape in the 2DEG using two flavors of gate electrodes,
plunger and barrier gates. Main difficulties are (i) the significant cross-talk between
any of the gates and the Hubbard parameters it is not meant to influence, and (ii) in-
herent non-linearities with large steps in gate space in general and dot occupation
in particular.

4.2. Virtual gates, controlled disorder and uniform filling
Excellent mapping of small linear combinations of gate voltage changes onto on-
site energy differences has been long shown to be possible [2], and is used re-
peatedly for experiments that aim at coherently manipulating the spin and charge
degrees of freedom of electrons in quantum dots [3–5]. Focusing on specific imple-
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mentations that require only small changes in gate voltages, these are not troubled
by the inherent non-linearity and suffice with a pragmatic countering of specific
cross-talks only. Furthermore, within the two-dimensional context of the honey-
comb diagram, different slopes (and thus cross-talks) are routinely eyeballed to
distinguish between different charge transitions.

In this section, we combine these two ideas. We go further by fully embracing
the idea of changing linear combinations of gate voltage changes, so called virtual
gates, and suggest a simple but universal framework in a higher-than-two dimen-
sional space for identifying charge transitions as well as countering cross-talk on
specific quantum dot energies. These virtual gates can be used to uniformly fill
a quantum dot array with electrons, as well as add specific and programmable
disorder in the on-site energies.

When initially tuning a quantum dot array, several different features appear, both
in transport (when checking the gates initially and setting up the sensing dot) as
well as in charge sensing (for the dot array once the sensing dot is formed). Ex-
amples of features are: a quantum point contact as a one-dimensional channel is
formed in transport, the Coulomb peak of a sensing dot or steps in the sensing dot
conductance due to changing nearby dot occupation. Because of the finite elec-
trostatic cross-talk, all of these will shift with a change in any of the physical gate
voltages. If we take one of the gates as a reference, a simple way to check this
cross-talk is by scanning across such a feature as function of both this gate and all
other gates. This allows for the pinpointing of where the feature is located in the
2DEG, and thus what one is looking at [6–8]. Some examples are shown in Fig 4.4
below:

Figure 4.4: Gate influence on features indicate their origin, such as (A) a Coulomb peak in
the sensing dot, (B) a polarization line between the left and middle dot, (C) the conductance
through a quantum point contact formed at the tip of gate B2 or (D) an addition line for the
rightmost dot. The horizontal axis of all the sub-elements are changes in the voltage on
gate P2, whereas the vertical axis is an equal change in the gate listed for that particular
column. Rows (B) and (D) indicate charge sensing data, whereas (A) and (C) are transport
measurements through the sensing or dot array channel, respectively.
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Determining the relative strengths in gating such a feature is as easy as recognizing
the slope of the individual images, which can be robustly done without interpre-
tation of the feature itself using image processing tools, and directly yields a row
of cross-talk numbers. Note that some of this robustness can be traded in for re-
duced measurement time by measuring shifts in one-dimensional traces as gate
voltages are changed (see [9] for example data). Because in the end we are in-
terested in the three-dot plus sensing dot system, we choose as features for each
dot a point on the higher-dimensional plane where a charge is added to that dot
from a reservoir and focus on the cross-talks between these addition lines and the
relevant set of gates (Fig 4.5). Again, which feature (dot) is which is obvious from
the cross-talk. Because we know the charge addition of the individual dots to be
linearly dependent on 𝜖𝑖 in the low tunnel coupling regime, we can write down the
linear approximation of how the gates influence the dot potential energies.

Figure 4.5: Physical gate strengths for a sensing dot + three dots system. Relative
strengths have been determined with measurements similar to those of Fig 4.4. Absolute
lever arms for each of the plungers in influencing their intended dot can be determined
either using the temperature dependence of polarization line width measurements [10, 11],
photon-assisted tunneling (used here, see [2] and section 4.3) or bias triangle measurements
[12].

As devices with more dots and corresponding gates become available, the fall-off
in gating strength with distance as can be seen in the rows of Fig 4.5 indicate a
certain length scale for cross-talk. Expressed for instance by the number of gates
that influence a particular dot by more than one per cent of the strength with which
the plunger gate designed to influence it does, this length scale should be seen as
one particular metric that, besides other (yet to be well defined) metrics of nonlin-
earity and sensitivity to fabrication imperfections of inhomogeneity in dot energies
and tunnel couplings should be used in the future to qualitatively assess different
device designs.

As a point of interest, the length scale for cross-talk is significantly smaller for
most more recent device designs, in which more of the surface area is covered
in metallic gates and long-distance electrostatic coupling is thus screened more
strongly [13–15] - a possibly unforeseen advantage of the gating schemes invented
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for SiMOS and SiGe-based quantum dots for different reasons4. In a way, we ex-
pect the design of the triple dot device measured here (single layer gates as per
[16], doped GaAs wafer, deep quantum well) to constitute something of a worst-
case scenario in terms of cross-talk and corresponding difficulty of gating.

A square matrix can be formed of the gate strengths measured, by adding rows
that describe the physical parameters not supposed to be influenced by plunger
gates (the tunnel couplings). Applying a simple matrix inversion yields our set of
virtual gates. Having done this, any gate can be changed without worrying about
unwanted influence on the dot energies (see Fig 4.6). This will prove especially
useful for controlling tunnel coupling, as described in section 4.3. Furthermore, a
continuous update of the virtual gates is found to be extremely useful in the initial
tuning of the dots, as it allows for large changes in gate voltage in order to add
new dots whilst keeping the occupations of previously tuned dots constant. Note
furthermore that as expressed above, even for devices with many dots and given
some required accuracy, only a finite number of adjacent gates will have to be
taken into account in order to apply local changes, and as such the problem of
inverting such a matrix to counter cross-talk will remain bounded.

Figure 4.6: Virtual versions of the physical gates (lowercase) where the cross-talk to the
(sensing) dot energy levels has been compensated for to within several per cents. Note
how such a level of control is reminiscent of the schematic ladder diagram representation
of charge state energy level crossings in quantum dot systems [12].

Note that although the absolute values of such (ever changing) linear combina-
tions of physical gates are not very telling, they allow controlled changes of indi-
vidual parameters5. Any remaining imperfection, in part because of the finite non-
linearities, can be compensated for by doing repeat measurements of cross-talk
using the virtual gates as a starting point, and using these linear approximations

4(i) As the effective mass for conduction band electrons is higher in silicon devices, shorter length scales
are required to achieve similar inter-dot tunnel couplings. These shorter length scales are achieved in
fabrication by overlapping adjacent plunger and barrier gates, as such covering much of the surface.
(ii) Due to the undoped nature of SiMOS and (most) SiGe wafers, bias cooling cannot be used to deplete
the 2DEG underneath the gates, and extra depletion gates are needed to initially define a dot channel.
The plunger and barrier gates run over the depletion gates in these designs, and only ’see’ the wafer
at exactly the locations they are meant to influence. This also reduces the cross-talk.

5Nonetheless, referring to physical gate voltages is still the easiest way to store and describe well-
defined points in gate-space.
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within small windows. As we will see in the next Chapter, it takes repeated cross-
talk measurements to keep the virtual gates well-defined over large gate ranges
for the triple-dot device used here. Gate designs that allow for a more linear be-
havior would be preferred. In particular, accumulation and depletion of the 2DEG in
any part other than the array itself (e.g. underneath the gates) should be indepen-
dently controllable and constant during the tuning process. Furthermore, a more
well-defined one-dimensional channel would help, such that the dots move only
along the axis defined by the channel and not in the direction perpendicular to it,
as the gate-induced screening and thus cross-talks terms change non-negligibly
in that direction. Both these considerations are best taken into account by the def-
inition of a first layer of screening gates, the voltages on which are kept constant in
the tuning process6.

Figure 4.7: Theory of filling an inhomogeneous triple dot system. The array is filled along
the center vertical, whereas along the horizontal axis the outer two dots are detuned. We
distinguish the case in which 𝑉𝑖𝑗 = 0 (a) and 𝑉𝑖𝑗 > 0, without (b) or with (c) a small detuning in
the middle dot energy. The simulations follow Eq. 2.3 with energies 𝑈2 = 1.05𝑈1 = 0.95𝑈3,
𝑉12 = 𝑉 23 = 2𝑉13 = 0.2𝑈2 and 𝑘𝐵𝑇 = 0.02𝑈2 .

Using the virtual gates, we can define a chemical potential knob that uniformly
fills the array, akin to the doping parameter in Fermi-Hubbard models, as well as
add programmable charge disorder. The latter is the easiest, as we have already
defined 𝛿𝜖𝑖 gates. For the former, we have to realize that we have to overcome
the sum of local interaction energies 𝑈𝑖 + ∑𝑖≠𝑗 𝑉𝑖𝑗 in order to fill all dots at the
same rate. For a large and homogeneous system, these terms would be the same

6 . Such screening gates are typical for recent device designs on undoped silicon substrates [14, 15]. The
high mobilities and low effective mass in GaAs, would however, combined with a gate design that has
a layer of depletion gates underneath overlapping plunger and barrier gate layers, probably lead to
devices with unprecedentedly reliable gate control.
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everywhere, and it suffices to change all 𝜖𝑖 at the same rate. In the triple dot de-
scribed here, however, this does not work. If we were to simply change all the 𝜖𝑖
by some large amount, this would not define homogeneous filling, as some dots
will be filled with more electrons than others. We have to take the finite size of the
array (only the middle dot has two neighbours) as well as inhomogeneity in the
interaction terms (see section 5.2) into account.

Uniform filling denotes a line in the higher-dimensional gate space, which can be
formed by linking up a set of well-defined points. In the case of negligible inter-site
Coulomb effects (𝑉𝑖𝑗 = 0), the only obvious choice consists of the points where the
charge states (000) to (111), (111) to (222) and so on meet, as indicated by A and B,
respectively, in Fig 4.7, and entails a change in 𝜖𝑖 at rates determined by the local
Coulomb interactions 𝑈𝑖. A non-zero inter-site Coulomb effect, however, breaks
particle-hole symmetry and moves states with more than one particle added or
removed from a homogeneously filled array away in energy. As such, points A and
B do not exist anymore, and we can choose to link up points C (where (000)-(100)-
(010)-(001) are degenerate), D (where (111)-(211)-(121)-(112) are degenerate) and so
on, or E (where (111)-(011)-(101)-(110) are degenerate), F (where (222)-(122)-(212)-(221)
are degenerate) and so on.

Figure 4.8: Uniform filling of the triple dot device. Charge stability diagram in which the
array is homogeneously filled (a). Only 𝑃1 values are shown on the vertical axes, whereas
a combination of gate voltage changes is used. In b a theoretical diagram of a triple-dot in
the classical limit (𝑡 = 0) is shown that is analogous to the measurement of a.

Fig 4.8 shows uniform filling for the triple quantum dot device. To achieve this con-
trol, an added compensation in the (virtual) barrier gates was required to account
for the effect that larger wave function overlap has on increasing the tunnel cou-
pling at higher fillings. In general, it shows how calibration of tunnel coupling as
well as cross-talk (note how the different charge addition lines are not exactly par-
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allel) have to be repeated for different overall fillings - a complication in the tuning
process that cannot be captured using a simple linear scheme.

One further complication is that the middle dot in the array is not directly adjacent
to a reservoir, so it takes a longer time to fill during measurements. In this particular
diagram, however, the middle dot lines lie horizontal, and the middle dot does not
have to be filled in the timescale of the horizontal experimental sweep of plunger
gates 1 and 3. For larger arrays, therefore, different diagrams would be preferable
to indicate and verify electron filling.

4.3. Controlling tunnel couplings

In this section I introduce and compare two different measurements for the inter-
dot tunnel coupling. The previously defined virtual gates allow for repeat measure-
ments using these techniques as function of changing barrier gate voltages, which
allows us to again counter cross-talk using a simple linear scheme and yielding the
independent control of individual tunnel couplings.

In a photon assisted tunneling (PAT) measurement, we check for changes in the
charge sensor response across a polarization line as an AC excitation at a given
frequency is turned on [2]. See Fig 4.2 for the location of polarization lines in a
honeycomb diagram, and Fig 4.9 for examples and a comparison between this
technique and polarization line width measurements (explained below). The de-
tunings 𝜖 = 𝛿(𝜖𝑖 − 𝜖𝑗) and frequencies corresponding to the observed changes in
measured charge sensor response map out the hybridized charge state spectrum
of the double dot. The energy difference between the bonding and antibonding
states at zero detuning amounts to twice the tunnel coupling, and the slope away
from detuning yields the lever arm between the gate voltages changed and the
energy difference between the two dots. Because of the complications of apply-
ing microwave excitations well above 40 GHz, however, this technique is limited to
distinguishing tunnel couplings of up to roughly 20 GHz (83 µeV).

Alternatively, an equilibrium measurement of the width of the polarization line it-
self can be used to infer the tunnel coupling, as the charge hybridization widens
the transition [10]. For this, some experimental complications have to be taken into
account. First of all, the transition is also broadened by the effective electron tem-
perature. Also, the charge sensor response is not a direct measurement of excess
charge. A finite cross-talk between gate voltages and sensor signal 𝑉 has to be
taken into account, as well as a possible back-effect of the excess charge on the
sensing dot, leading to different slopes on either side of the transition. To take these
effects into account, we fit the data using the following equation, that handles the
back-effect to first order in excess charge:

𝑉 (𝜖) = 𝑉0 + 𝛿𝑉 𝑄(𝜖) + [𝛿𝑉
𝛿𝜖 |𝑄=0 + (𝛿𝑉

𝛿𝜖 |𝑄=1 − 𝛿𝑉
𝛿𝜖 |𝑄=0) 𝑄(𝜖)] 𝜖 (4.1)
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Excess charge on one of the dots is described by ([10]):

𝑄(𝜖) = 1
2 (1 + 𝜖

Ω tanh( Ω
2kB𝑇eff

)) (4.2)

where Ω = √𝜖2 + 4𝑡2
𝑖𝑗 and, for the triple quantum dot array in the set-up used for

this work, we find an effective temperature kB𝑇eff ≈ 6.5 µeV (1.6 GHz). This scheme
works for tunnel rates that are larger than the effective electron temperature, and
neglects any inherent nonlinearity in (the flank of the Coulomb peak to which the)
charge sensor (is tuned).

Figure 4.9: PAT and Pol measurement techniques: explanation and comparison. The
difference between the charge sensor response with and without applying the AC excitation
in a PAT measurement shows the hybridized charge spectrum in a, whereas the width of the
transition itself depends on effective electron temperature and tunnel coupling (b). Excess
charge as function of detuning for different tunnel couplings is shown in c, indicating that
this method works up to tunnel couplings several times higher than those obtainable using
PAT. A comparison between the two techniques is made in d. The data is well explained
assuming a constant lever arm between gate P2 and 𝜖2 of 83(1) µeV/mV.

Tunnel coupling measurements are typically seen as a large effort, and repeat
measurements, when made at all, are few and far between. One reason for this
is that in the higher-dimensional charge stability of the array, one has to find the
right polarization line indicative of a charge jumping between two specific dots, and
stay there as other gate voltages are changed, most notably the barrier gate that is
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meant to influence that particular tunnel coupling. When using physical gate volt-
ages only, that means that repeated charge stability measurements are necessary
just to regain the polarization line. Using well-defined virtual gates, however, we
are free to change (virtual) barrier gate voltages without changing our location in
charge stability, and repeat measurements become more straightforward. Having
access to repeat measurements, in turn, allows us to reduce also the cross-talk
that (virtual) barrier gates have on other tunnel couplings. We first realize that un-
like the dot energies, tunnel rates 𝑡𝑖 will depend exponentially on changes in the
potential landscape and as such on (all, virtual) barrier gate voltages 𝑏𝑖:

𝑡𝑖 = 𝑡0
𝑖 × 2∑𝑗 𝑏𝑗/𝛼𝑖𝑗 (4.3)

in which 𝛼𝑖𝑗 describe the couplings - they are defined as the voltage change in
gate 𝑏𝑗 that causes a doubling of 𝑡𝑖. As a practical example, let us write out Eq. 4.3
for the linear three dot system, which has two tunnel couplings:

( log2[𝑡1/𝑡0
1]

log2[𝑡2/𝑡0
2]) = ( 1/𝛼11 1/𝛼12

1/𝛼21 1/𝛼22
) ( 𝑏1

𝑏2
) (4.4)

These cross-talks are best measured at relatively large tunnel coupling values and
using polarization line measurements, as they entail simple one-dimensional scans
and repeat measurements are thus fast (tunnel coupling measurement rates of 1 Hz
can be achieved). In assessing the feasibility of scaling, note that the same bound-
edness on cross-talk length as discussed for the virtual plunger gates applies here
as well. If we require 𝑚 points for a sufficiently accurate fit of the exponential de-
pendence, and have to take 𝑘 adjacent tunnel couplings into account at any point,
it follows that (1 + 𝑘(𝑚 − 1)) tunnel coupling measurements are required. With
𝑚 = 10 and 𝑘 = 6, a single minute of characterization measurements per tunnel
coupling suffices.

Figure 4.10: Controlling one tunnel coupling at a time. Compensating for the cross-talk
measured in Fig 4.4, we can define barrier gates 𝑣𝑏𝑖 that influence only one tunnel coupling
at a time. (add meV to x-label!)
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And again we can negate cross-talk effects by defining a linear combination of
gates, in this case of virtual barrier gates that influence one single tunnel coupling
at a time (Fig 4.10). Such a virtual barrier gate is particularly relevant in the opera-
tion of quantum dots as spin qubits. It allows to turn the exchange interaction effect
between one particular pair of adjacent spins on and off without influencing adja-
cent spins or coupling to (inherently less coherent) charge degrees of freedom,
and as such defines a two-qubit gate with increased robustness to charge noise
[4, 5]. In order to achieve a certain on-off ratio in exchange, it entails pulses with a
certain height, given the measured barrier lever arms. A ratio of 900, for instance,
would entail a tunnel rate change of factor 30 (as exchange goes with tunnel rate
squared) and pulses on the gates of 150-200 mV - large steps, given finite pulse
rise times and the potential for heating under repeated operation.

It will be interesting to see how homogeneous such operation voltages will prove to
be for larger arrays, as well as their dependence on device design. As an example,
anything between similar to five times stronger sensitivity of tunnel coupling to
barrier gate voltages has been reported on first experiments with overlapping gate
designs on undoped SiGe wafers (the voltage change that doubles tunnel coupling
is roughly 10 mV in [17], 30 mV in [5] and 6 mV in [13], with the device designs for
the last two nominally identical).

Similarly, one can define a global tunnel coupling knob, a linear combination of
gate changes that increases all tunnel couplings at the same rate. As 𝑡/𝑈 de-
fines the relevant interaction strength, such control will prove relevant for probing
interaction-driven effects, such as in the experiment described in Chapter 5.

We have so far though omitted the problem of measuring the tunnel rates for elec-
trons that jump between the dots and the Fermi reservoirs, which we typically tune
to be in the several (tens of) kHz. A relatively simple measurement that can be
added to this framework is one where the real-time hopping of electrons at the
transition is observed [18], which would also allow for the measurement of slower
inter-dot tunneling rates - although decoherence rates have to be taken into ac-
count to extract coherent tunnel rates [19, 20].

4.4.Measuring interaction energies

Note again that in current gate designs there is no independent control over the
interaction energies - they just are what they are, depending on the number of
electrons and the potential landscape that is set. For a full understanding of our
Hamiltonian, however, it is imperative that we find a way to measure them. Luckily,
this becomes fairly trivial using virtual gates that can add offsets in on-site energies.
See Fig 4.11 for an example. The spacing between parallel charge addition lines
yields the on-site interactions, whereas the jump in a charge addition line as an
adjacent dot is filled yields their inter-site repulsion.
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Figure 4.11: Extracting interaction energies from charge stability diagrams. Given some
charge occupation, such as the (111) state shown in a, the interaction energies can be found
by focusing on the parallel (single-dot) and crossing (double-dot) features as the relevant
dot energies are changed (b). Note also how such a measurement employs virtual gates to
closely resemble a naive theoretical picture. Also shown are theoretical triple dot charge
stability diagrams at low (𝑡 = 0.006, 𝑈1 = 3.98, 𝑈2 = 3.48, 𝑈3 = 2.70, 𝑉12 = 0.41, 𝑉23 =
0.35, 𝑉13 = 0.11 in c) and higher (𝑡 = 0.17, 𝑈1 = 2.92, 𝑈2 = 2.39, 𝑈3 = 2.53, 𝑉12 =
0.55, 𝑉23 = 0.47, 𝑉13 = 0.27 in d) tunnel coupling (all energies in meV). In both cases we
can extract the interaction energies from the simulated data to within 5 % using the method
shown in Fig 4.11.

Two things complicate this picture. First of all, as discussed in Chapter 2, single-dot
lines bend at increased tunnel couplings, and as such we expect this technique to
break down at large tunnel coupling. For tunnel couplings up to 𝑡/𝑈 ≈ 0.1 though,
we have verified that no large errors build up (Fig 4.11c,d). Furthermore, we require
electron addition from the reservoir to be possible, something that will break down
for larger arrays. A different scheme has to be used there, one that focuses not on
charge addition but on polarization lines between neighboring dots [21].
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4.5. There is plenty of room in a coax

The charge state of an array can be measured using an RF sensing dot with suit-
able signal-to-noise ratio at rates of over 1 MHz. We therefore know that there is a
lot that can be measured and/or calibrated in a short time, given the proper elec-
tronic input. As has been shown before [22], this means that a two-dimensional
honeycomb diagram of 100 by 100 points can easily be measured in real-time,
at refresh rates of over 1 Hz, which is now routinely used. Harnessing this band-
width is however limited to measurements employing gates that have bias-tees
and coaxial cables connected, as twisted pair wires employed for DC bias volt-
ages are typically filtered to lower cut-off frequencies and would at any rate suffer
from large cross-talk.

However, the increased dimensionality of the charge stability of ever larger quan-
tum dot devices asks for a revision of the central use of two-dimensional honey-
comb diagram. Charge addition lines and polarization lines are in fact planes in a
higher-dimensional space, defined by a single point and a normal vector (which is
exactly the row of numbers measured in a cross-talk measurement). Because of
plot crowding as well as the loss of direct contact to a Fermi reservoir, furthermore,
overview diagrams such as Fig 4.8 will have to make way for ladder diagram plots
[12], which at least for linear arrays still allow for the visualization of close by charge
transitions.

A ladder measurement is nothing but a set of one-dimensional measurements
where the dot detunings are swept about their DC value (see Fig 4.12 for exam-
ples of such a measurement, taken at several points in the charge stability of a
double quantum dot). The differentiated charge sensor signal clearly indicates
where charge transitions take place, which are furthermore clearly identified given
their occurrence in a particular ladder (loading from reservoir) or adjacent ladders
(inter-dot transition). Given the small number of measurement points in total (as
compared to a two-dimensional plot) they can easily be done in real-time.

Note that for a longer linear array, additional dots can be added with little overhead,
both visually and in terms of measurement time. Compensating for sensing dot
shifts in the one-dimensional scans would clearly be beneficial too, and given the
known charge sensor derivative allow us to calibrate the color bar of the ladders to
show the induced energy shifts in the sensing dot, further simplifying the real-time
identification of visible charge transitions. Additionally, we can show the measured
data from multiple nearby charge sensors for each dot, further adding to ease
of use and scalability. As an example, that means that polarization lines would
be clearly distinguishable due to the opposite step on neighboring sensors, as an
electron moving away from one sensing dot would inevitably move towards the
other sensor.

Note also that the idea of virtual gates, when embraced fully, can simplify the initial
tuning of quantum dots. Already formed dots will stay as is during the addition
of further ones, as cross-talk is negated for. One could even keep checking the
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charge addition lines of previous dots in real-time using one-dimensional traces
as discussed above. This, then, means that there is no reason that after setting up
the sensing dots, remaining initial tuning cannot be done in minutes, as compared
to the weeks or even months that many in the field accept as reasonable. All that
needs doing is writing the code, and the first steps have already been made [23].

Figure 4.12: Measuring a double dot using ladder diagrams. Charge stability diagram of a
double dot. Virtual plunger gates corresponding to dot 1 and 2 are swept on the horizontal
and vertical axis, respectively. Circles indicate locations in gate space where two simple 1D
traces in the same virtual plunger gates were measured, with location 7 indicating an empty
array. Note that ladders 1 and 2 show the second charge addition line for dot 2. Also, ladders
2, 4, 6 and 8 show one addition and one polarization line, whereas a and b show the same
polarization line for both dots. The path that the ladders at point 5 trace are indicated in the
charge stability diagram (orange for dot one, green for dot 2), with the one transition both
ladders encounter indicated with crosses for both.

A more formidable obstacle is the reliable fabrication of larger devices on Si sub-
strates [15], and the inherent difficulties these have with respect to the GaAs sub-
strate used here, such as higher effective mass (meaning smaller length scales are
required in fabrication) and potentially small valley splittings [24].

To assess these larger devices, we have to define relevant metrics, some of which
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have been alluded to in this Chapter. Spread in pinch-off voltages for plunger and
barrier gates (1) are obvious ones, and should be followed by measurements of the
length-scale of gate-dot cross-talks (2). With charge sensing set up and the device
tuned to the single-electron regime (constant dot energies and tunnel couplings),
the voltages required to get there (3) are important, as are the lever arms for virtual
plunger (4) and barrier (5) gates in changing dot energies and tunnel rates, respec-
tively. It is only when the spread in voltages is sufficiently small (especially for bar-
rier gates, as too high tunnel rates mean individual dots are no longer well-defined)
that one can measure the metrics of final interest, the variations in potential energy
offsets (6) and tunnel rates (7) given some fixed voltage for all plungers and some
fixed voltage for all barriers.

But who knows - perhaps we are but several breakthroughs in fabrication away
from measuring (6) to be fractions of a charging energy and (7) to vary by less
than an order of magnitude, and in turn, rendering the techniques described in this
Chapter irrelevant.
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5
Quantum simulation of

collective Coulomb blockade

The tools described in the previous chapter allow us to map the physical parame-
ters of a small quantum dot array onto those of the Hubbard model. That exact
concept is employed in this chapter. In particular, I will show how the experi-
mentally accessible parameter space of filling and delocalization maps onto the
physics of collective Coulomb blockade (Section 5.1) for a triple quantum dot de-
vice. This serves three main purposes. First, it is an exploration of the experimen-
tally accessible phase space of the Hubbard model for a typical device (Section
5.2). Second, it allows us to verify the toolbox of the previous chapter by com-
paring the results to classical simulations (Section 5.3). Lastly, it serves as a clear
example that quantum dots can indeed be used to emulate the physics of strongly-
interaction quantum states of matter, discussed in more detail in Section 5.4.1

1Parts of this chapter have been published in Nature 548, 71–73 (2017).
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5.1. A finite-size analogue of the Mott transition

Metal-insulator transitions have been widely observed and described in a large
variety of solid state systems [1]. As a first guess of whether a material should
conduct or not, the number of valence electrons per unit cell can be counted, as it
indicates whether one expects a partially or fully filled band at the Fermi level. To
the surprise of two physicists working at a light bulb factory in Eindhoven in 1937,
however, NiO2 does not follow this rule: one expects to find a conducting, partially
filled 3𝑑 band, but nonetheless insulating behavior was observed [2]. It was quickly
suggested, by Nevill Mott, that a simple band physics description might not suffice
here, as electronic (Coulomb) interactions could be forcing localization and the
resulting insulating behavior [3].

Perhaps surprisingly so, eighty years since, the interaction-driven transition be-
tween a metallic state and a (Mott) insulating state is still an active topic of research.
Proof-of-principle experimental work has shown how two-site Mott physics can be
simulated on a programmable quantum processor [4], but the requirement or er-
ror correction leads to a large experimental overhead. Analog quantum simulation
efforts, on the other hand, are typically limited by residual entropy of the system,
restricting correlations in span and strength [5]. In the early years of gate-defined
quantum dots, it was realized that the Mott transition can be studied in small quan-
tum dot systems also, by varying the relative strength of tunnel coupling (delocal-
ization) to that of the charging effects (Coulomb interaction-induced localization)
[6].

As a theoretical example of CCB in a triple dot system, we consider a simplified
Hubbard model that stays close to the original proposal [6]. In this simplified model
(Fig 5.1a), each dot has two orbitals separated by level spacing Δ, all parameters
are constant over the different sites and the inter-site Coulomb coupling is ne-
glected. CCB can be seen clearly in the charge addition spectrum as the relative
tunnel coupling strength is increased (Fig 5.1b). At low tunnel couplings, we find
four distinct peaks in the charge addition spectrum at 𝜇 = 0, 𝑈 , 𝑈 + Δ and 2𝑈 + Δ.
Note that the first two peaks are similar to points A and B in Fig 4.7a, and all four
correspond to filling each dot in the array simultaneously with one additional elec-
tron. This is the well-known classical Coulomb blockade, which arises from the
classical charging effect (Hubbard 𝑈 ) of each dot.

When we turn on tunnel coupling, quantum fluctuations start to compete with
classical charging effects, splitting the peaks into minibands and reducing the gaps
at uniform filling. Coulomb blockade of individual dots is lost, and the gap at half
filling becomes of a collective nature, akin to the gap describing charge excitations
in a Mott insulator. As tunnel coupling is increased even more, we find nonzero
𝜕 ⟨𝑁⟩ /𝜕𝜇 even at uniform filling, as the gap starts to yield to temperature.

Experimentally, it is long known that the two extremes of low and high tunnel cou-
pling can be reached for gate-defined quantum dots [7–10]. The Coulomb block-
ade regime at low tunnel coupling is where individual dots can be well controlled,
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and as such has been the focus of the last chapter as well as the typical working
condition for spin qubit experiments. Similarly, a regime in which a large dot (typi-
cally with a large and unknown number of electrons) is formed that spans several
lithographically defined locations, is also quite common. Indeed, such a config-
uration is sometimes used as intermediary state in the initial tuning of quantum
dots [11]. A controlled transition between both regimes, with a small and known
number of electrons occupying each dot, will be the focus of this Chapter. This
not only showcases the Hamiltonian engineering described in the previous Chap-
ter, but also maps out a typical experimentally accessible Fermi-Hubbard phase
space for quantum dots, and as such, forms a good start for a discussion into how
quantum dots can be used to emulate Fermi-Hubbard physics in general.

Figure 5.1: Simplemodel of CCB. Cartoon diagram of a simplified triple dot system is shown
in a. The tunnel couplings 𝑡𝑖𝑗 and on-site interactions 𝑈𝑖 are taken to be constant, the inter-
site interactions 𝑉𝑖 are neglected and a finite level splitting ∆ is defined between the first
and second orbital. We use ∆/𝑈 = 0.2 and 𝑘𝐵𝑇 /𝑈 = 0.04. Peaks in the charge addition
spectrum are shown in red in b, c-f shown cuts at different values of 𝑡/𝑈 . Numbers indicate
total number of electrons in the array when the chemical potential is placed in the respective
gap. This simple model is based on [6].

5.2. The experimental phase space of a triple quantum
dot array

An overview addition spectrum similar to that of Fig 5.1b amounts to measuring
the experimentally accessible phase space of a triple quantum dot. Here, I first
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describe a strategy for navigating such a gate space, which revolves around con-
trolling the filling and delocalization, whilst measuring the Coulomb interaction pa-
rameters in the process [12]. Next, I outline how the full overview addition spectrum
is put together.

As the tools described in the previous Chapter focus on small changes in gate
space, we divide the diagram of Fig 5.1b into four minibands, and focus on one
at a time. In the first miniband, the first three electrons are added to the array. In
the second miniband the next three are added, and so on. This is similar to the
concept of homogeneous filling described in the previous chapter and shown in
Fig 4.8. Note that the inter-site Coulomb already splits the three peaks even at zero
tunnel coupling, as shown again for the third miniband in Fig 5.2a. The middle dot
detuning has to be chosen to minimize the width of the miniband (see Fig 5.2b),
and the two tunnel couplings tuned to be a similar value. Once achieved, we note
down the voltages of the three points highlighted in red in Fig 5.2 that are needed
to follow the charge addition lines in the overview diagram.

Figure 5.2: Miniband width and electron temperature. A zoom-in on a miniband is shown
in a, in this case the from (222) to (333). The relevant anti crossings for measuring the tunnel
couplings and inter-site Coulomb couplings are highlighted by the white arrows. As the en-
ergy level of the middle dot (horizontal line in a) is changed, the overal width of the miniband
(vertical in a) is no longer due to only the inter-site Coulomb and tunnel coupling effects, but
is increased by unwanted disorder in one of the dot potentials. In order to check that this
is not the case, the middle dot energy can be varied and the width minimized (indicated by
a P2 tuning in between the vertical dashed lines in b). Red points indicate the sought after
transition points for the overview diagram, of which the gate voltages required are stored.
The width of a charge addition line, as shown in c, indicates the effective electron temper-
ature, which is typically found to be 70-75 mK (6.0-6.5 μeV).

Next, we re-measure the cross-talk between all gates and the three dots, that al-
low us to reliably go from changing gate voltages to dot detunings, and use these
to measure the inter-site and on-site Coulomb couplings. The relevant on-site in-
teractions for our description within a single-band Fermi-Hubbard model as de-
scribed in section 5.3 are those of the (111) state for the first two and the (333) state
for the last two minibands. With the gate voltages, cross-talks and Hamiltonian
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parameters for a certain value of the average tunnel coupling known, we can in-
crease the tunnel couplings to a larger but equal value and re-measure cross-talk
and interaction energies, progressively working our way up the miniband.

Figure 5.3: Gate voltages of secondminiband. The gate voltages that are used to traverse
the second miniband are shown in a-g as function of average tunnel coupling and filling. The
filling axis is chosen to have charge state (111) on the left and (222) at the right, with the three
charge addition lines defining this miniband at values of roughly 40, 80 and 120, respectively.
As the cross-talks have also been measured at several particular tunnel couplings, we can
derive the exact detunings that correspond to the filling axis as function of the seven gate
voltages, shown in j-l. We define 𝛿𝜖𝑖 = 0 at the middle transition.

Having repeated this set of measurements for as large a range as possible in tun-
nel coupling, we now have a library of stored gate voltages that correspond with
certain well-calibrated points in the overall diagram. By linearly interpolating with
tunnel coupling, a set of voltages is made to continuously map out each individual
miniband (Fig 5.3). As the cross-talk terms have also been repeatedly measured,
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the required gate voltages can be converted to changes in the site-specific detun-
ings 𝛿𝜖𝑖, taking the middle transition as a reference (Fig 5.3h-j).

Figure 5.4: Measured energies. Calibrated tunnel coupling values (a) and measured inter-
site Coulomb (b) and on-site Coulomb energies (c) as function of the average tunnel cou-
pling. Blue points indicate the first two minibands, red points the third and fourth mini-
band. For the on-site interactions, this means blue points are measured in the (111) charge
state and red points in the (333) charge state. Measured cross-talks 𝛼𝑖𝑗 between gate 𝑗 of
(P1,P2,P3,B0,B1,B2,B3) and dot 𝑖 are shown in d, also as function of the tunnel couplings. No
visual distinction is made between the different minibands.

In tuning the individual minibands, we found some regimes in tunnel coupling hard
to reach. For the first and second minibands, for example, tunnel couplings were
limited to 30 μeV and 150 μeV, respectively. At larger tunnel couplings, either (i)
only one of the two tunnel coupling could be further increased and at expense
of the other tunnel coupling, (ii) the voltages themselves became too large (too
strong local fields can lead to a rearrangement of charges in the doping layer) or
(iii) too large voltage differences between adjacent gates were required, that can
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lead to leakage. If future experiments are aimed at larger tunnel couplings at low
fillings, the lithographically defined dot-to-dot separation should be made smaller
by design. With more than six electrons in the array, on the other hand, we found
that the smallest tunnel rates were unachievable, which is probably due to the
larger wave function overlap of the more extended dots [13].

These limits in achievable tunnel rates are not surprising, as this particular triple
dot design [14] is optimized for spin qubit measurements that focus on the regime
with around 10 μeV tunnel coupling and one electron per site [15, 16]. In order to in-
crease the overall range in which we can tune the tunnel rates regardless of filling, a
design where gating is not achieved from the side, but directly from the top, would
be preferred. In such a gate design, the relevant plunger and barrier gates will also
be separated from each other and the heterostructure by dielectrics, further in-
creasing the maximum gate voltages that can be applied [17, 18]. Note furthermore
that the voltages required on the different gates are quite distinct, showcasing the
need for tuning protocols as described in the previous Chapter, to overcome the
inherent inhomogeneity and disorder.

Fig 5.4 shows the measured tunnel couplings, interaction energies and cross-talk
terms for the four minibands. Note that inter-site energies increase with tunnel
coupling, which is most likely due to changing dot locations. On-site energies re-
main fairly constant with tunnel coupling, but their values depend on the number
of electrons in the dot already, and at one electron per dot, differ substantially be-
tween the different dots. Such remaining inhomogeneity is beyond gate control,
and might be of concern for quantum simulation proposals where both local holon
and doublon excitation energies are typically assumed to be constant across the
array. For our current purposes however, it is not a concern, as the methods of the
last Chapter allow us to account for this inhomogeneity.

As calibrating large changes in the 𝜖𝑖 directly is hard given the inherent non-linearities,
we fix the middle transitions of the minibands and plot the minibands at distances
corresponding to the measured interaction energies at low tunnel coupling. It can
be seen in Fig 5.1 that this is justified for the effect of tunnel coupling on band bend-
ing for these values of 𝑡/𝑈 < 0.2. However, it neglects changes in the interaction
energies with tunnel coupling as shown in Fig 5.4b-c. We choose 𝜖3 as the variable
in which we express the filling, and plot the resulting overview in Fig 5.5.

The main effect of increased tunnel coupling is a widening of the minibands and
an accompanying reduction of the gaps at half filling, analogous to the reduction
of the Mott gap. Given the finite size of the array, these gaps do not close com-
pletely, as a finite capacitance exists for the resulting ’large dot’ at high tunnel cou-
pling. As all Hamiltonian parameters are calibrated or measured, we can compare
the measured transitions to Fermi-Hubbard theory (red points in Fig 5.5). Details
of this calculation are shown in section 5.3. The agreement validates the experi-
mental tools for Hamiltonian engineering discussed in the previous Chapter, and
shows how detailed mapping of a quantum dot array to a desired Hubbard model
is possible.
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Figure 5.5: Collective Coulomb blockade transition. The experimentally accessed phase
space is mapped out in continuous charge sensing, with addition lines showing up in dark
blue. The spacings between the bands are taken from the low tunnel coupling values of the
interaction energies, and are taken to be constant with tunnel coupling. Simulated locations
of the transitions are shown in red, for the same values of average tunnel coupling where
the tuning was done and the energies measured.

To clearly distinguish the CB regime at low and CCB regime at high tunnel coupling,
we focus on the half-filled band with three electrons per site and measure both in
charge sensing and transport through the quantum dot array (Fig 5.6).

Figure 5.6: Low and high tunnel coupling regimes in charge and transport. Charge sta-
bility diagrams at low (𝑡/𝑈 < 0.02, a) and high (𝑡/𝑈 > 0.15, c) tunnel coupling. Transport
data in both low and high tunnel coupling regimes are also shown in b and d, respectively.
A combination of gates is swept in the vertical direction (see section 4.2), but only 𝑃1 values
are shown. Bias is applied for 60% on the leftmost and 40% on the rightmost reservoir.

The distinct slopes of the charge addition lines in the low tunnel coupling regime
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indicate the three isolated dots. This individual nature is all but gone at large tun-
nel couplings, indicating the incipient formation of a single large dot (compare
Fig 5.6a,c). A similar effect is seen in transport, where Coulomb diamonds ap-
pear along the zero detuning line at applied bias. In the case of isolated dots,
the largest Coulomb diamonds correspond to homogeneously filled states such
as (333), whereas smaller Coulomb diamonds elsewhere indicate that significantly
less bias is required for current to flow when the Fermi level is placed inside a
miniband (Fig 5.6b). At high tunnel couplings, this distinction is all but gone, and
the Coulomb diamonds indicating charge addition become more independent of
filling, as expected for a single, large dot (Fig 5.6d).

5.3. Verifying the toolbox with classical simulations
We perform numerical calculations in line with the experiments by focusing on
individual minibands at certain tunnel couplings, and taking local values of the in-
teraction energies into account2. Both the first two and the last two minibands are
simulated independently using an effective single-band Hubbard Hamiltonian (see
Eq. 2.4 and [20]).

First of all, we have to find the correct (𝜖1,𝜖2,𝜖3)-line that corresponds to horizontal
changes in Fig 5.5 and takes the homogeneous filling into account. This is done
by identifying and linking the two points (for 𝑛 and 𝑛′ = 𝑛 + 1) where (𝑛,𝑛,𝑛) is
degenerate with (𝑛 + 1,𝑛,𝑛), (𝑛,𝑛 + 1,𝑛) and (𝑛,𝑛,𝑛 + 1). Next, we search for the
charge transitions residing on this line, and write down their 𝜖𝑖’s (see Table 5.1). To
clarify the difference with changing all 𝜖𝑖 uniformly, we also show the calculated
transitions when the array is filled along (𝜇,𝜇,𝜇) with 𝜇 = 1

𝑁 ∑𝑖 𝜖𝑖𝑛𝑖. The data is
clearly not described by such uniform filling.

Table 5.1: Transition points for a triplet dot system with parameters 𝑡 = 0.29, 𝑈1 =
2.26, 𝑈3 = 2.48, 𝑉12 = 0.65, 𝑉23 = 0.57, 𝑉13 = 0.43. The column headings 𝑁1 → 𝑁2
indicates that the data for each column are for the transition from a total of 𝑁1 particles to
𝑁2 particles. 𝜖𝑖 (𝑖 = 1, 2, 3) are the ‘local’ chemical potentials on each dot, while 𝜇 is the
‘uniform’ chemical potential. The last two columns compare the theoretical (Th.) and ex-
perimental (Exp.) width of the fourth miniband, that from 9 to 12 electrons. All energies are
given in meV.

6 → 7 7 → 8 8 → 9 9 → 10 10 → 11 11 → 12 (Th.) (Exp.)
𝜖1 6.38 7.13 8.05 9.78 10.56 11.51 1.73 1.67
𝜖2 7.46 8.37 9.48 11.58 12.53 13.68 2.10 1.91
𝜖3 6.66 7.44 8.40 10.22 11.04 12.04 1.82 1.74
𝜇 6.62 7.34 8.98 10.10 11.02 13.26 3.16 -

From these calculated values, the theoretical width of the miniband can be ex-
2The theoretical work and computer simulations described in this section were performed by X. Li and

S. Das Sarma at the University of Maryland as part of [19].
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tracted (see Table 5.2). This still leaves one degree of freedom, the relative po-
sition of the middle transition. The middle transition is typically halfway, but can
shift somewhat depending on the detailed middle dot detuning (see Fig 5.2b). To
overlay the simulated miniband widths on our data, we use values for the relative
location of the middle transition of (0.5,0.6,0.65,0.6) for the four minibands, respec-
tively.

Table 5.2: Comparison of the experimental (Exp.) and theoretical (Th.) width of the fourth
miniband. Theoretical widths take the interaction energies measured at the specific tunnel
coupling values into account. All energies are in meV.

𝑡 𝜖1 (Th.) 𝜖1 (Exp.) 𝜖2 (Th.) 𝜖2 (Exp.) 𝜖3 (Th.) 𝜖3 (Exp.)
0.08 1.00 1.00 1.16 1.13 1.02 0.99
0.11 1.16 1.09 1.43 1.46 1.23 1.37
0.19 1.58 1.54 1.82 1.76 1.62 1.53
0.29 1.73 1.76 2.10 2.07 1.82 1.74
0.35 2.04 2.18 2.35 2.43 1.91 1.96

5.4. Discussion: what has this example told us?
The work described in this Chapter (as summarized in Fig 5.5) entails an exercise in
the control described in the previous Chapter as well as the exploration of its limits.

In terms of control: tuning across a phase space such as that of Fig 5.2 took some
time, but was done using a process that can be sped up significantly more. Al-
ready over the course of measuring the data in this Chapter, we got more efficient,
but substantial follow-up steps in automation and control are in progress. Typical
errors in control and energy measurements that we settled for were 𝜎(𝑡𝑖)/𝑡 and
𝜎(𝛿𝜖𝑖)/𝑈 < 5 per cent, but can in principle be reduced further by more repeat
measurements (mainly to capture remaining non-linearities) to the limit of the in-
herent thermal broadening. Note also that we found the required gate voltages
to be surprisingly robust. Drifts in gate space for this particular device are easily
correctable even on the timescale of months. Furthermore, as mentioned several
times in this and the previous Chapter, overlapping gate designs should make the
control even easier. First, such designs separate the functions of depleting parts of
the 2DEG and that of influencing the potential in the section where the dot array will
form. Second, they allow for the definition of a more controlled one-dimensional
channel, which might furthermore help in decreasing non-linearities that arise due
to a movement of the dots in the direction perpendicular to the channel. Last, such
gate designs show significantly less cross-talk [17].

In terms of the limits in the controllable parameter space, let us look at the tunability
of different terms in the Fermi-Hubbard Hamiltonian. We shall take the mean on-
site interaction energy as a reference, but will also refer to the measured electron
temperature. Fig 5.2 shows the controlled relative strength of interactions versus
delocalization, or 𝑡/𝑈 , from 0 to 0.14 (0 - 54 kB𝑇 ), as well as the simultaneous
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control of filling 𝜇/𝑈 from -1 to 4 (-300 - 1200 kB𝑇 ). Practical limits on the latter
are due to unwanted remaining disorder of the device. In this case, an unwanted
dot shows up for larger fillings (it can be seen in the top-left of Fig 5.6a as it anti
crosses a middle dot line.). Practical limits on the former are perhaps more relevant.
As described in this Chapter, several practical effects, most of which are design-
related, limit the achievable tunnel rates. On top of these, note how the toolbox
described in the previous Chapter starts to break down for larger tunnel couplings,
as it gets progressively harder to distinguish individual sites.

Site-specific detunings can also be applied, and as such also disorder in on-site
energies imprinted. The homogeneous filling defining 𝛿𝜖𝑖 = 0 and used for Fig
5.2 constitutes a good starting point, and adding disorder 𝜎(𝛿𝜖𝑖)/𝑈 in the range
of -2 to 2 (-600 - 600 kB𝑇 ) is fairly straightforward, as also indicated by the mea-
surements for the interaction energies. This range should more than suffice for
studying disorder-(co)driven localization effects [1].

Important for the realization of correlated phases, these energies can all be made
sufficiently larger than temperature. As per some estimates, a superconducting
phase can be stabilized with 𝑡/kB𝑇 = 20 in the 2D Hubbard model [21]. One has to
keep in mind, however, that these large energy scales also mean short time scales.
Although the large energies with respect to temperature are convenient for realiz-
ing correlation effects in steady state without requiring adiabatic initialization [22],
the corresponding time scales for charge excitations are in the picosecond regime,
and as such will be hard to measure. A reduction in electron temperature (mea-
sured here to be 70-75 mK) by a factor 5 or so might be possible by careful filtering
and shielding [23], but a reduction in charge noise that leads to an increase in co-
herence times for charge excitations would be even more welcome (unexpectedly
lower charge noise levels have recently been measured [24]).

Another implicit number is obviously sample size, as described by the number of
sites 𝑁𝑠 = 3. For larger devices, one could measure the scaling behavior on the
reduction of the Mott gap at half filling with tunnel coupling. In a one-dimensional
array of dots (where multiple orbitals per site exist) and in the thermodynamic limit,
a quantum phase transition is indeed expected at a finite 𝑡/𝑈 [25]. In order to see
the gap fully close and witness the subsequent metallic behavior in the CCB phase,
either a larger device or a higher temperature is needed.

More worrying perhaps for future experiments is the remaining and uncontrollable
inhomogeneity in the interaction terms. As a matter of example, in the single-
electron regime for this device, 𝜎(𝑈𝑖)/𝑈𝑖 > 25 per cent. For overlapping gate
designs in SiGe, however, this relative spread in charging energies has been mea-
sured to be less than 10 per cent [18]. If this is an important number, one can con-
sider working with a larger number of electrons per dots. For the measurements
shown here, for instance, 𝜎(𝑈𝑖)/𝑈𝑖 < 5 per cent in the (333) regime.

Overall, the results highlight how quantum dots can be used to emulate the Hub-
bard model over a large range of effective interaction strengths and with well de-
fined dot occupation in the regime where quantum correlations are strong [6, 26–
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28]. The next Chapter takes these numbers and considerations to assess the feasi-
bility of several theoretical proposals for quantum simulations using gate-defined
quantum dots.
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6
Towards quantum simulations

of classically intractable
models

Yesterday’s sensation is today’s calibration,
and tomorrow’s background.

Richard P. Feynman

The work shown in the previous Chapters showcases the potential for quantum
simulation experiments using artificial lattices of interacting electrons confined in
semiconductor materials. Does that bring Feynman’s dream of solving open prob-
lems in physics through direct emulation within reach, using these devices? I at-
tempt to answer that question here. The small number of sites in current quantum
dot arrays is a clear issue, but there are also some less obvious experimental dif-
ficulties and complexities (Section 6.1). What advances can we expect from the
sustained effort of improving quantum dot devices and control (Section 6.2) in at-
tempts to build quantum processors employing its emergent spin physics (Section
6.3)? Given these considerations, opportunities for emulating many-body localiza-
tion physics in linear arrays are discussed in Section 6.4. And although large two-
dimensional systems seem out of reach, quasi-one-dimensional systems such as
ladders are feasible using current quantum dot fabrication techniques. In Section
6.5, I describe how these can already give insight into open questions in the de-
scription of doped Mott insulators.
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6.1. Complications

In this section I will discuss some intricacies in employing quantum dots as simu-
lators for Hubbard physics that we could avoid discussing for the work described
in the previous Chapters, but that are important to take into consideration for fu-
ture work. First, we will write down a more complete Hamiltonian that takes orbital
degrees of freedom and magnetic fields into account. Second, we summarize the
achievable energies for the parameters of this model, as well as the levels of disor-
der after tuning and their sensitivity to gate voltage changes. This last point is rele-
vant as electrons in a quantum dot array do not form a fully isolated system; elec-
trical and magnetic noise couple in and lead to dissipation and dephasing effects.
Lastly, we will discuss scaling at a device level, and argue that two-dimensional
arrays with site-specific control are unachievable.

We have already seen that given the less localized wave functions of electrons
in dots as compared to those of coupled atomic orbitals, they are described by a
more extended Hubbard model. As such, for quantum dots the orbital quantization
(whose characteristic energy spacings grow inversely proportional to the later di-
mension squared) is typically smaller than on-site interactions (that grow inversely
proportional to the lateral dimension). Although quantum dots get filled similarly to
atomic orbitals (in an orderly manner, starting from the lowest orbital [1]) one has to
keep in mind that orbital splittings are typically smaller than the on-site repulsion.

For a thorough description at all relevant energy scales, we should therefore use
a multi-band Hamiltonian. In the case of the experiment of the last Chapter, for
instance, this might mean that as we consider scaling the experiment to longer ar-
rays, the closing of the charge excitation gap in the regime with one electron per
site might behave qualitatively differently from that with three or five, and that a
complete calculation of the expected transitions would have to take all orbitals
into account simultaneously [2]. The added complexity means that fewer dots
are needed to make simulating such a transition classically intractable, but it also
means that the system does not behave like the simple single-band Hubbard model
one might prefer to study. Furthermore, an equally efficient manner for measuring
these orbitals as was employed for the interaction energies would be needed to
match theory and experiment [3].

As we write down a multi-band Hamiltonian, tunneling and interaction terms should
take into account both inter- and intra-orbital effects, the need for which we have
implicitly encountered in the previous Chapter as the addition energies in (111) and
(333) were seen to differ. I add a Zeeman term that describes the energy cost of
aligning (or not) the electron spins along the quantization axes defined by the local
magnetic fields. In this term, g is the electron g-factor, 𝜇B is the Bohr magneton
and 𝜎𝑖 the spin operator that describes the total spin on site 𝑖, which feels the local
field 𝐵⃗𝑖.

Let us now put everything together. For sake of clarity, I sum up the parts of the
Hamiltonian that are controlled by experimentally applied fields on the first line.
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These entail the local electric fields that are controlled by gate voltages (assuming
orthogonal control as described in Chapter 4 is achieved, we can describe the local
influence of virtual plunger gates 𝑝𝑖 and barrier gates 𝑏𝑖𝑗) and the global magnetic
field 𝐵⃗ext. Local engineering of Zeeman energies is also possible to some extent,
and will be discussed in section 6.3. Putting everything together, we get:

𝐻 = − ∑
𝑖

𝜖𝑖𝑛̂𝑖
⏟
𝐻detuning

− ∑
⟨𝑖,𝑗⟩,𝛼,𝛼′,𝜎

𝑡𝑖𝑗𝛼𝛼′ [ ̂𝑐†
𝑖𝛼𝜎 ̂𝑐𝑗𝛼′𝜎 + h.c.]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻tunneling

+ 𝑔𝜇B

2 ∑
𝑖

𝐵⃗𝑖𝜎𝑖
⏟⏟⏟⏟⏟

𝐻Zeeman

∑
𝑖,𝛼

𝑈𝑖𝛼𝛼
2 𝑛̂𝑖𝛼[𝑛̂𝑖𝛼 − 1] + ∑

𝑖,𝛼,𝛼′≠𝛼

𝑈𝑖𝛼𝛼′

2 𝑛̂𝑖𝛼𝑛̂𝑖𝛼′ + ∑
𝑖,𝑗

𝑉𝑖𝑗𝑛̂𝑖𝑛̂𝑗
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐻interaction

+ ∑
𝑖,𝛼

Δ𝑖𝛼𝑛̂𝑖𝛼
⏟⏟⏟⏟⏟

𝐻orbital

(6.1)

where 𝛼 describes the orbital degree of freedom, Δ𝑖𝛼 keeps track of the extra
energy of an electron inhabiting orbital 𝛼 on site 𝑖 and dot occupations 𝑛𝑖 sum
over both 𝜎 and 𝛼.

One of the largest effects of orbitals seen in charge stability is that of decreasing
the charging energy 𝐸𝑐(𝑁) required to add an electron to a dot with 𝑁 electrons
already present. Using the Hamiltonian above, we find for filling the first three or-
bitals (𝛼 = 0, 1, 2) of a single dot that 𝐸𝑐(1) = 𝑈11, 𝐸𝑐(2) = 𝑈12 + Δ1, 𝐸𝑐(3) =
(2𝑈12 +𝑈22)/3, 𝐸𝑐(4) = (𝑈13 +𝑈23)/2+(Δ2 −Δ1) and 𝐸𝑐(5) = (𝑈33 +2𝑈13 +2𝑈23)/5.
An independent measurement of the orbital splittings would thus allow one to ex-
tract the orbital-dependent on-site repulsions of up to the last fully filled orbital.
This would then allow for the fitting of charge stability diagrams over larger ranges
of filling1.

Note that despite the additions to the single-band extended Hubbard Hamiltonian
used in the previous Chapters, Eq. 6.1 still has many underlying assumptions. For
instance, we ignore the dependence on the orbital degree of freedom of the inter-
site Coulomb terms, detunings and g-factor, the spin-orbit effect in general and
assume an isotropic g-factor [4].

As was seen in the last chapter, there are limits to the degree of homogeneity
we can reach with the tuning process, as well as in the interaction-energies. I list
the values we found below, as well as typical numbers for how static these are
with changes in the control fields, in particular the closest gate voltage. The ef-
fect of a global magnetic field on these parameters has not been measured here,
but in particular the effect of the perpendicular component on confinement and
therefore orbital splittings [5] and tunnel rates [6] is known to be large. The global
magnetic field, however, is typically kept constant for long periods of time dur-
ing measurements, and some corresponding retuning with changing field values
taken for granted.
1The constant interaction model, as the name suggests, does not take such multi-band effects as
changes in the interaction energy with filling into account.
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Table 6.1: Assessment of parameters and gate dependencies. Fermi-Hubbard model
parameters and dependence on gate voltages, using the device measured in the previous
Chapters as an example. For the orbital splitting, we take the energy difference between
the ground and first excited orbital. Note that (1) any tunnel coupling apart from nearest-
neighbor can be ignored, and that the remaining inhomogeneity in tunnel coupling is mostly
due to the accuracy of the tunnel coupling measurements used for tuning. The Zeeman
term and its sensitivity (2) will be discussed in section 6.3. The fall-off of inter-site Coulomb
with distance (3) should be assessed in more detail in larger devices. Here I list the nearest-
neigbor value.

parameter typical size inhomogeneity sensitivity to gate voltage
(meV) after tuning (1 mV on nearby gate)

𝜖𝑖 -5 - 15 < 1 % 80 μeV
𝑡𝑖𝑗 0.01 - 0.31 < 5 % 2 %

𝜇B[𝑔𝐵]𝑖 0 - 0.5 0 - 0.4 μeV2

𝑈𝑖 2 - 5 25 % < 1 μeV
𝑉𝑖𝑗 0.3 - 13 10 % 8 μeV
Δ𝑖 1 ? ?

Conduction band electrons in the semiconductor host device do not yield a fully
isolated system. Electric field fluctuations arise due to charge noise in the mate-
rial, interfaces and on the gate voltages, a certain phonon occupation exists at finite
temperatures and fluctuations in the global, external field as well as on nearby nu-
clear spins couple to the system. As such, dissipation channels exist for both spin
and charge degrees of freedom, and coherent superpositions can dephase due to
fluctuating energy spacings. The largest effect is charge noise, which, when de-
noted as an rms voltage fluctuation on gates, is typically found to be several tens
of μV depending on device and set-up [7–9]. A look at Table 6.1 makes it clear,
then, that dephasing via detuning (𝜖𝑖) will usually be the most dominant contri-
bution. Typical dephasing times for charge excitations are then also the shortest
at under a nanosecond, although they can be extended to several nanoseconds
when working with superpositions that are insensitive to 𝜖𝑖 in first order, such as
the bonding and anti-bonding state at a polarization line [7].

These classical fluctuations, when described as an effective electron tempera-
ture, further indicate that initialization might not always yield a pure state - a finite
amount of classical entropy will remain. Certain pure states can be adiabatically
initialized [10], but a detailed look at the adiabaticity of such an initialization will be
necessary at a case-by-case basis. It is however still here that quantum dots ex-
cel, with comparatively large energies with respect to effective temperature. In
the experiments described in the previous Chapter, for instance, 𝑡/kB𝑇 > 50 was
reached.

Furthermore, other limits on experimental timescales (or corresponding frequen-
cies) exist. Applied excitations are practically limited to several tens of GHz (with
pulse rise times typically on the order of a fraction of a nanosecond), meaning that,
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for instance, the 80 GHz tunnel couplings measured in the previous chapter cannot
be effectively quenched. Obtained charge measurement bandwidths (at reason-
able signal-to-noise-ratios) in GaAs devices with RF reflectometry on a sensing
dot channel are on the order of MHz, a bandwidth which is yet to be realized in a
silicon-based device.

Lastly, a comment should be made on scaling. Whereas current gate designs for
linear arrays are copy-and-paste-able [11–13] with size limited by the yield of the
fabrication and the number of control lines required, no such designs exist for going
beyond linear arrays. Small plaquettes, including triangular and square designs,
have been realized [14–16], but those still rely on a fan-out of gates to all sides. In
principle, the fabrication recipes used for some of these devices [15, 16] but also
the multi-layer gate stacks used for Si devices [17] suffice for realizing designs with
the potential to define ladders of quantum dots, but so far, no measurement has
shown how a single dot can have controllable tunnel rates to more than two direct
neighbors. The problem of fan-out for gates indicates furthermore that large two-
dimensional lattices with site-specific control are out of reach, as they require a
number of layers in the fabrication that grows linearly with dimension, whereas
three or four layers is the limit of what can be done whilst maintaining the tight
spacing of the gates required for tunnel-coupled dots, even using state-of-the-art
industrial fabrication processes [18].

Having established some limitations to keep in mind whilst proposing future exper-
iments, let us now show how expected improvements at the device and control
level and the focus on emergent models (where we can start ignoring many de-
grees of freedom and corresponding parameters) can still provide an interesting
route forward.

6.2. Expected future advances
The spin physics of electrons in quantum dots has been proposed as a platform for
gate-controllable quantum computing [19], and a large effort in the field of gate-
defined quantum dots is indeed geared towards this goal in an attempt to leverage
the potential for scalability provided by the compatibility with conventional CMOS
nanofabrication techniques [20, 21], the long coherence times for individual spins
in purified silicon substrates [17] and a potential robustness to modest increases in
temperature [21].

Moving to silicon-based substrates, however, comes at the expense of reduced
mobilities and increased effective masses as compared to GaAs substrates [22].
To counter these effects, a clearly defined channel and a tight spacing of neigh-
bouring dots (and resulting gate-to-gate distances) is required. The alterations in
gate designs that have been developed to achieve this are relevant for our current
discussion, as they might greatly simplify the process of tuning.

To understand this, we must first realize that most currently used device designs
on silicon substrates are undoped, and therefore require gates to accumulate in-
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stead of deplete electrons in part of the 2DEG. As a first example, a strained silicon
quantum well sandwiched by silicon-germanium layers can be grown epitaxially,
defining a quantum well at some depth underneath the surface. As charge stabil-
ity was found to be an issue when such heterostructures also used modulation-
doped layers [22], most experiments are performed on undoped heterostructures.
In a second method, a 2DEG is formed directly underneath the oxide that forms
at the surface of an intrinsic silicon wafer [23]. A third method worth considering is
that of patterned silicon grown on an insulator. The substrate can then be used as
a bottom gate, and the silicon layer where the dots form is patterned to define a
channel without added gate electrostatics required [20].

Figure 6.1: Comparing gate designs. Electron micrograph of an 8-dot gate layout (a) akin
to that of the 3-dot device used in this work and false-color picture overlying gate micro-
graphs of the three gate layers of a 5-dot gate layout (b, courtesy of N. Kalhor) designed for
undoped SiGe. Fermi reservoirs contacted by ohmic contacts are shown with the crossed
white box, whereas white circles indicate intended (sensing) dot locations. In a single-layer
gate GaAs device such as in (a), bias cooling is used to deplete underneath the gates, which
already loosely defines a channel. In the triple-layer SiGe design shown in (b), the different
layers have different functions. The bottom layer (green) screens the effect of top layers
from accumulating at unwanted locations, and can be further used to clearly define the rel-
evant channels. The top layers form the local barriers (red) and plungers or accumulation
regions (blue).

In depletion-mode devices with a single layer of gates such as the triple-dot device
used in the previous Chapters, gates serve two purposes. First of all, they allow for
a loose definition of the dot and sensing dot channels via the application of bias
cooling voltages. By cooling down the device with positive voltages applied to the
gates, the doping layer underneath the gates becomes more negatively charged,
charges that get frozen below the ionization temperature of the silicon dopants
(roughly 70 K) and continually impose depletion underneath the gates during sub-
sequent operation. Second, they allow for the control of the potential landscape in
the dot and sensing dot channels, influencing energy offsets and tunnel barriers.
Because of this dichotomous function, however, these gates cannot be made to
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run over the section of the 2DEG they are designed to influence during the tuning
process, increasing cross-talk and limiting the amount of orthogonal control that
can be achieved even with compensation of cross-talk (given the finite window for
voltages that can be applied before leakage occurs)2.

In accumulation-mode devices, however, these two tasks are split by design. Gates
do run over the section of the 2DEG they are meant to influence (Fig 6.1), and the
gate leads made unimportant as to allow to better define a one-dimensional chan-
nel through either the placement of a dielectric [12, 26] underneath the leads, a
separate layer of screening gates [17], or by defining a channel in the semiconduc-
tor itself [20]. This has the potential for better gate control. Note, however, that a
process with a first layer of screening gates could also be implemented on doped
GaAs devices (which would then effectively serve as depletion gates). This, es-
pecially given the high mobilities and larger length scales that will suffice, could
allow for very well-controlled devices.

Although a similar assessment to that of Table 6.1 remains to be fully done for
larger devices and different gate designs on both GaAs and silicon-based sub-
strates, the potential for increased dot homogeneity despite decreased 2DEG mo-
bility has started to become more apparent, with for instance inhomogeneities in
on-site Coulomb interactions of under 10 % measured for individually formed dots
in a 9-dot linear array in SiGe [26] (the first orbital excited states were also measured
in the same work, with a relative spread of roughly 15 % found).

The more confined dots in silicon have typically even higher orbital energies, but
working in silicon comes at the expense of it being an indirect band-gap semi-
conductor, whose conduction band electrons reside in one of six different valley
states. The band-engineering and electrostatics of a dot in a 2DEG break spatial
symmetries and therefore the degeneracy of these valleys, although the gap be-
tween the lowest two remains smaller than that to the first orbital excited state
[17]. Given the potential for spin qubits, however, there is a large effort at getting
consistently large valley splittings (of over 100 μeV).

In general, GaAs is probably a better-suited platform for quantum simulation ex-
periments that focus on the charge sector, as charge noise is found to be compa-
rable, but the higher mobilities and proven high achievable tunnel couplings [11, 27]
are clearly important factors here. The greatly improved spin coherence in silicon
(and in particular purified silicon), on the other hand [17], make it readily preferred
for emulations that focus on coherent evolution in the spin sector.

An important open question at the moment is what the dominant sources of charge
noise are in quantum dot devices, and how it can be reduced. Some devices mea-
sured have already shown surprisingly narrow charge qubit linewidths [28], and
these might yield clues as to its origin. In general, however, as device yield im-

2Single-layer gate devices with an added accumulation gate running across the dot array and a dielec-
tric placed underneath the gates have been realized in GaAs, and show good control of the potential
landscape [24, 25]. Spacings and cross-talk can be further reduced, however, by using multiple gate
layers.
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proves and characterization measurements become more common in the path
towards scaling, one can hope to find systematic correlations that give further in-
sight. The distinction between the effective electron temperature of a galvani-
cally contacted Fermi reservoir and that of inter-dot transitions is an example, with
the latter becoming more important as scaled-up devices have less contact with
reservoirs, and reservoirs themselves can be fully depleted in accumulation-mode
devices once the correct number of electrons is loaded onto the array. Such de-
pendencies might hint at electrical noise on the gates or ohmic contacts to be the
dominant source. In parallel, ongoing work on better semiconductor host material,
dielectric layers and interfaces might bear fruit.

Lastly, expected advances in negating the experimental complexities involved with
issues such as packaging, calibration and measurement of larger devices are worth
mentioning. The need for more automated calibration tools is now widely real-
ized, with clear paths forward known (some of which are described in the previous
Chapters). Furthermore, increasing standardization of programming tools (such as
the Python-based data acquisition framework QCoDeS) and control electronics as
well as the reliability and ease of use of dilution refrigerators make that researchers
find more time to specialize in the control of devices as compared to setting up the
peripherals. Current experimental modus operandi can readily scale to linear ar-
rays of several tens of dots without yet requiring any large engineering hurdles to
be overcome.

6.3. Emergent quantum magnetism: spin physics
The emergent spin physics of a fixed number of electrons trapped in a quantum
dot array obviously resembles the concepts used in the field of spin qubits. To
introduce the subject in a way that allows for discussing the feasibility of future
experiments, I will again write down an effective Hamiltonian and discuss its limits
in control and homogeneity.

Assume each dot is occupied with a single electron, with the charge states deep
in Coulomb blockade. Charge excitations and corresponding Hubbard parame-
ters 𝑈 ,𝜖,𝑉 will then only play a role in second order (virtual) tunneling processes,
with the remaining unfrozen degrees of freedom being the site-specific spins 𝜎𝑖

3.
Because of Pauli blockade, such delocalization processes (in which an electron
joins one of its neighbors, and one of them quickly returns to the emptied dot) are
only possible when the spins are in a singlet-configuration, reducing the overall
energy. As Pauli blockade has no spatially-defined quantization axis, this yields an
effective isotropic (Heisenberg) exchange coupling between neighboring spins, in
direct analogy to the direct (kinetic) exchange effect in materials.

In this simple picture, the virtual process requires two hopping events, with the
intermediate state (the spins on the same site) at expense of an on-site repulsion
𝑈 . As such, one expects a nearest-neighbor exchange coupling 𝐽𝑖𝑗 ∝ 𝑡2

𝑖𝑗/𝑈 , with

3Furthermore assume large enough orbital and valley splittings, so these can also be neglected.
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typically employed values up to hundreds of MHz. The cost of double occupancy
can be reduced by detuning the single-particle energies between the dots, mean-
ing that the effective exchange coupling will depend on the location in the charge
stability diagram. Only at the so-called symmetric operation point are the effective
couplings insensitive to detuning to first order. In detunings where the equilibrium
charge state has two electrons residing on the same dot, the spin triplets are al-
lowed only with one of the electrons in an excited orbital/valley state, yielding an
effective exchange coupling that depends on the smallest orbital/valley splitting
[29]. Such exchange is also less sensitive to detuning, but is typically too large (too
fast) to be useful in experiments.

Besides the exchange coupling of adjacent spins, we have to take the site-specific
Zeeman term into account. I split it into two pieces: a global term, that can be
seen as a mean Zeeman splitting and is tunable by an external magnetic field, and
a ’disorder’-term, which takes site-specific effects into account:

𝐻 = ∑
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝜎𝑖𝜎𝑗
⏟⏟⏟⏟⏟

𝐻exchange

+ 𝑔𝜇B

2 ∑
𝑖

⟨𝐵⃗𝑖⟩𝜎𝑖
⏟⏟⏟⏟⏟⏟⏟

𝐻potential

+ 𝑔𝜇B

2 ∑
𝑖

𝛿𝐵⃗𝑖𝜎𝑖
⏟⏟⏟⏟⏟⏟⏟

𝐻designer−disorder

(6.2)

From this equation, it is clear that the mean magnetic field ⟨𝐵⃗𝑖⟩ can be seen as
something like a chemical potential term for spin, that defines an overall quanti-
zation axis. At an externally applied field of 1 T, this is the largest term at 5 GHz
(GaAs) or 28 GHz (Si), overcoming thermal fluctuations and polarizing all spins in
equilibrium. The effective exchange term in double occupancy, however, can be
even larger, providing a ways to adiabatically initialize regardless of external field.
This can be done by initializing in charge states with variable amounts of double
occupancy, yielding unpolarized (202020..) to partially polarized (20112011..) to fully
(1111..) polarized spin states [10].

The last term warrants further discussion. Site-specific variations can occur both
on the g-factor and the magnetic field. Variations in g-factor are typically small, and
might be slightly dependent on gate voltages [30]. In GaAs, the Overhauser field
induced by background nuclear spins yields significant variations 𝛿𝐵⃗𝑖 in local mag-
netic fields (on the order of several mT [4]). Variations in local field can, however,
also be engineered, using micro-magnets placed on the device. Micro-magnets
will induce not only a static field offset, but also magnetic field gradients (typically
on the order of tenths of mT/nm to several mT/nm, see the supplementary info
of [31] for general design considerations). Because of these gradients, voltage-
induced shifts in the effective dot location (on the order of nm/V, depending on
gate design and corresponding shallowness of the confinement potential) will also
have an influence on the Zeeman energy. This means that charge noise can cou-
ple to the spin degree of freedom and limit coherence times [32], but also that we
can engineer using gate voltages the site-specific disorder term. Assuming volt-
age ranges of several tens of mV are acceptable as to stay reasonably close to
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the charge symmetry point, we can tune Zeeman disorders over several (tenths
of) MHz.

As larger devices become available, a similar phase-space (as function of 𝐽/𝜇B𝑔𝐵,
kB𝑇 /𝜇B𝑔𝐵 and 𝜎(𝜇B[𝑔𝐵]𝑖)/𝜇B𝑔𝐵) and parameter assessment to that of the previ-
ous Chapter (and Table 6.1) should be done for this Heisenberg Hamiltonian, show-
ing access to disordered, anti-ferromagnetic and polarized phases4. Equivalently,
these emergent spin systems require a toolbox akin to that described in Chapter 4
for the charge stability, with a particular focus on scalable spin-to-charge conver-
sion [29, 33–35] and efficient measurements of on-site Zeeman splittings [34, 36]
and exchange-couplings [11]. Such tools, however, will also be needed and devel-
oped in the context of spin qubits.

Diverse proposals exist for experiments on well-controlled Heisenberg chains, that
are often discussed with potential uses for quantum information processing in mind.
As an example, the adiabatic transfer of spin through spin chains has been theo-
retically studied [10, 37, 38]. Initial experimental work that shows coherent coupling
via a mediator has already been done, using either an empty [9] or highly-occupied
dot [25]. As such coupling mechanisms come with different requirements and lim-
itations, they might prove useful for realizing (parts of) scalable quantum informa-
tion processors, but for now these measurements are perhaps better seen as em-
ulators of quantum magnetism, reminiscent of oxygen p-band mediated super-
exchange coupling in ceramic materials [39].

The eigenvalues and eigenvectors of the anti-ferromagnetic Heisenberg spin chain
have been long known, following Bethe’s ansatz [40]. Similarly, low energy excita-
tions such as single flipped spins in a polarized chain are easily described (in this
case in terms of spin waves). Emulating this textbook physics would yield further
confidence in the experimental set-up, but does not yet go towards classical in-
tractability. An experimentally accessible way, however, to nonetheless put strain
on classical methods and test them is to quench the chain [41], forcing a description
to take the coherent evolution of many states into account.

Lastly, I note that the effective evolution of a spin chain under non-Heisenberg
models can also be realized through the process of trotterization [42]. Experimen-
tal implementation is not very forgiving for imperfect single- and two-qubit gates
however, making implementation quite challenging. As such, an initial and proba-
bly limited demonstration of arbitrary spin models (see [43] as an example of such
a demonstration, in this case in a linear ion trap) would serve more as a showcase
of improved spin qubit control than as an efficient (direct) emulation of quantum
magnetism.

4Dimerization can also be of interest, defining artificial sub-lattices with, for example, twice as large a
unit cell by alternating the strength of exchange coupling terms.
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6.4. Simulating many-body localization
Materials can be made electrically insulating when a critical amount of disorder
is introduced, as described by Anderson [44]. More recently, the combination of
electronic interactions and disorder was shown to lead to a very particular type
of localization dubbed many body localization [45], where many-body effects also
play a role. A clear feature of an isolated many-body localized state is that it fails
to thermalize, showing non-ergodic evolution. As the name suggests, many-body
localized states are strongly-correlated, with detailed modeling limited to one-
dimensional chains of roughly twenty particles [46].

A canonical example of this physics is the Anderson-Hubbard model, the simple
Hubbard model with site-specific disorder added. As the previous Chapters have
shown, implementing such a Hamiltonian in a quantum dot array can be done. As
discussed in the previous section, however, the quantum dot system is not very
isolated when it comes to charge excitations. Overcoming the dephasing of charge
degrees of freedom requires tunnel coupling and disorder to be large, which is
doable, but means experimental timescales become too short to be workable. As
an example, quenching a certain initialized state (for instance prepared in equilib-
rium) to start evolving under the desired Hamiltonian will, because of the finite rise
times of pulses, be adiabatic instead of diabatic, with the same happening as this
Hamiltonian is switched off for read-out.

Such physics, however, can be mapped onto the spin degrees of freedom via the
Jordan-Wigner transformation [47]. Disorder in single-particle energy offsets be-
comes disorder in the local magnetic fields, or Zeeman energies. As discussed
in the previous section, a configuration with gate-programmable disorder on the
range of (tens of) MHz is feasible. Exchange couplings can be tuned to be of the
same order, and both will induce evolution effects that are much faster than the
timescale for dissipation, in particular on purified silicon substrates [17].

I sketch a measurement below (Fig 6.2) that is close to a previously performed
experiment in the charge sector of a linear atomic lattice [48]. It would allow to
search for the many-body localized state by distinguishing between ergodic and
non-ergodic behavior on a Heisenberg spin chain formed with electrons in quan-
tum dots.

This proposal relies on a simple micromagnet design combined with some con-
trol of the dot location within the single electron regime to realize the disordered
Heisenberg chain of Eq 6.2. Local magnetic fields are given by:

𝐵⃗𝑖 = 𝐵⃗ext + 𝐵⃗0
μmag⏟⏟⏟⏟⏟

⟨ ⃗𝐵𝑖⟩

+ 𝜕𝐵⃗μmag

𝜕𝑧 (𝛿𝑧𝑖 + ∑
𝑖

𝜕𝑧𝑖
𝜕𝑉𝑖

𝛿𝑉𝑖)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛿𝐵⃗𝑖

(6.3)

in which 𝐵⃗ext is the external, global magnetic field, 𝐵⃗0
μmag the average micromagnet
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field felt by the dots and the third term approximates the deviations due to varying
dot location as described in the previous section. Given strong vertical confine-
ment and the symmetry along the axis of the array, we focus on the 𝑧 direction,
adding a static contribution described by dot location disorder 𝛿𝑧𝑖 and a dynamic
contribution due to varying dot location with changes in gate voltages 𝛿𝑉𝑖 away
from the charge symmetry point.

Figure6.2: (Non)-Ergodic behaviour andmany-body localization in aquantum-dot based
Heisenberg spin chain with controllable disorder. Overview of micromagnet placement
and sample design, seen from the top (a) and side (b). Gate voltages 𝑉𝑖 induce small
changes in dot locations 𝑧𝑖, which in turn makes the spins feel modified local magnetic
fields 𝛿𝐵𝑖 . The measurement scheme is shown in c. An initialized spin wave evolves
for a time 𝜏 under exchange and disorder, with the latter controlled by small changes
in gate voltages 𝑉𝑖 . The black dot indicates the charge symmetry point, the white dot
the point in gate space where all Zeeman splittings are equal. Measuring the spin pro-
jection of (one or more) spins allows distinguishing ergodic vs. non-ergodic behavior by
measuring the diffusion of energy via changes in the local spin states. As observable
we define an imbalance 𝐼(𝜏) = 1

8 ∑𝑖(−1)𝑖𝜎𝑖(𝜏). The initial state has 𝐼 = 1, averaging
over random states yields 𝐴 = 0 and the inverted starting state has 𝐼 = −1. Simulation
of the evolution of an 8-spin array are shown in d, done by V. Michal with specific dis-
orders 𝑔𝜇B𝛿𝐵𝑖/2𝐽 = 𝑊(0.96, 0.11, −0.52, 0.63, −0.66, −0.17, 0.96, 0.23) and disorder
strengths 𝑊 = 0.1 (weak disorder, red) and 𝑊 = 5 (strong disorder, blue). Note that the
mean (global) magnetic field need not be defined as it does not influence the evolution,
and that the long-lived out-of-equilibrium spin wave state under strong disorder serves as
hallmark of the MBL phase.

Simulating the magnetostatics of a Co micromagnet that magnetizes to 1.8 T and
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given dot locations 100 nm away and 100 nm below the edge of the magnet, we
find 𝐵⃗0

μmag = (261, 0, −232) mT and 𝜕𝐵⃗μmag/𝜕𝑧 = (−1, 0, 0.5) mT/nm. The ratio
of inherent disorder in dot locations and tunability of those using gate voltages
depends on channel confinement, gate design and material quality and is yet to
be measured and optimized for extended arrays. Although no good numbers exist
for individual quantities (in particular on homogeneity), the ability to tune Zeeman
energies over the range of MHz to tens of MHz has been shown [32]. Exchange
couplings can be tuned to match, with evolution driven by both terms considerably
larger than dissipation times (which are on the order of hundreds of milliseconds
in purified silicon [17]).

More elaborate experiments have been done in linear arrays of trapped ions, that
use control and measurement tools developed for quantum information process-
ing to access further hallmarks of the MBL state such as the distribution of energy
level spacings and the long-term entanglement growth [49] (a disordered Ising
Hamiltonian with tunable, long-range couplings is realized). Further experiments
could focus on the coherent time evolution of the system under a periodic drive.
Such a non-equilibrium Floquet system can show long-lived, sub-harmonic cor-
relations, a phase that has been dubbed a ’discrete time crystal’ [50, 51]. Also here,
a coherent time-evolution experiment would serve as a showcase of spin qubit
control, following an experiment performed in a linear array of trapped ions [52].

6.5. Simulating (doped) Mott insulators

As will have become clear in the previous sections, experiments that focus on
emergent spin physics in general and on coherent time evolution of those in partic-
ular will have to compete with proof-of-concept experiments done on other qubit
platforms. The direct mapping of quantum dots to the Fermi-Hubbard model,
however, allows to directly emulate models in which spin and charge degrees of
freedom play a joint role, models that are much harder to simulate in generic qubit
platforms.

Proof-of-principle digital quantum simulations of Fermi-Hubbard physics have in-
deed been performed (see [53] for an example in which a two-site Fermi-Hubbard
model is simulated using a superconducting quantum circuit), but will remain to be
quite limited for the foreseeable future due to the inherent difficulty of anticommu-
tativity and the additional overhead required for error correction. At the same time,
classical tools that try to circumvent the exponential growth in complexity are fun-
damentally limited. Let me give some examples and discuss in more detail.

Mean-field techniques which rely on a semi-classical treatment, such as Hartree-
Fock [54] and density functional theory [55] are accurate in high spatial dimensions,
but struggle in 1D and 2D, where quantum fluctuations are important. Stochastic
methods such as Monte Carlo, on the other hand, have a hard time generating the
quasi-probability distributions that are non-positive or even complex that are re-
quired for fermionic systems, known as the sign problem [56]. A particularly pow-
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erful class of numerical techniques is based on Tensor Network states, where a
computationally manageable variational Ansatz based on an entanglement rep-
resentation allows capturing many-body properties to a certain extent [57]. These
techniques work best when tight constraints exist on the entanglement content of
low-energy states. This is remarkably often the case5, as the low-energy eigen-
states of gapped Hamiltonians with local interactions are known to obey the so-
called area-law for entanglement entropy growth with system size, and evolution
under a Hamiltonian with local interactions have been found to only be able to
evolve from a small subset of states to all over the Hilbert space in a time that
grows exponentially in system size [59]. All of which is of course in line with intu-
ition that the exponential growth with complexity is only really realized when a large
amount of entanglement exists, such as can for example be found at a quantum
phase transition, following a quench or in a system with built-in frustration [60].

It is thus here that potential for quantum dots as platform for quantum simula-
tion is the clearest, leveraging the direct analogy with the Hubbard model close
to the Mott transition (where fluctuations in charge and spin are expected to be
strong) and using the large energy scales with respect to temperature, allowing
it to serve as a simulation platform to further aforementioned theoretical and nu-
meric approaches. Actually, it would be a useful exercise to take a token many-
body problem on a small lattice and map out the results of different approximate
techniques next to a full diagonalization [61], regarding an experiment as just an-
other approximate technique with its own approximations and imperfections. An
example of an experiment that requires joint access to spin and charge degrees of
freedom would be a simulation of the so-called t-J model [62], describing a half-
filled Hubbard band with a small amount of holes added. In particular, Nagaoka
ferromagnetism can be realized in a 2x2 array with a total of three electrons [63],
showing not only the interplay of charge and spin degrees of freedom, but also
the phase-inducing effects of a magnetic field, as flux is threaded through the pla-
quette. Comparing for instance the overall magnetization in equilibrium over the
phase space of 𝑡/𝑈 and 𝐵⟂ (and/or kB𝑇 ) with a full diagonalization result as well as
different numerical techniques would allow for a direct comparison and detailed
discussion.

As another example, the collective Coulomb transition shown experimentally in
the previous Chapter contained up to twelve electrons and was compared to ef-
fective single-band Hubbard model. Such a single-band Hubbard model is known
to break down at larger tunnel couplings, and a multi-band Hubbard model would
already be quite challenging to compute. A simple proposal would be to redo the
same experiment in a larger array, with up to as many electrons as possible. An
experiment in which the eight-dot device shown in Fig 6.1 is filled with up to four
electrons per site, for instance, would require more thought to be sufficiently ac-
curately described in theory. It would be interesting to see if the uncertainties in
some of the theoretical approaches (such as a single-band assumption) exceed
those of the measurement itself.

5Efficient approximability, however, is not guaranteed, see for example [58].
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Whether Feynman’s goal of learning new physics can be reached using these
experiments is hard to say. Nonetheless, as these types of experiments, their
scale and complexity evolve, it serves to think about what observables and models
would make most sense to compare to theory. On the short term, using experi-
ments as additional simulation tools to train functionals for density functional the-
ory or compare different Tensor Network representations, that can subsequently
be employed for comparable problems, might seem like the most realistic path
forward. It requires, though, to start a more thorough discussion with special-
ists in many-body physics in general and numerical tools in particular, to look at
what models and observables would be most interesting. As example, measuring
charge addition lines is an indirect measurement of compressibility, an observ-
able of typical theoretical interest close to the Mott transition, as it becomes hard
to compute [64, 65]. Other examples could be specific heats and (higher-order)
correlation functions, whose extraction from measurement might be less straight-
forward. At the same time, related to the discussion above, measures of entangle-
ment have grown in interest, to benchmark the non-classicality of states and the
degree to which efficient classical tools exist [58, 66–68].

With such general considerations in mind, the experimental realization of Hubbard
ladders close to half filling seems like a promising line of inquiry. Both from a the-
oretical and experimental point of view ladders can be approached as quasi one-
dimensional, while still allowing for characteristics of the two-dimensional Hub-
bard model to emerge [69–71]. From an experimental perspective, ladder designs
need a manageable number of gate layers. Using the fabrication processes of
the device in Fig 6.1b, on GaAs substrates and given its corresponding reasonable
length scales, ladder designs can be readily realized. Indeed, the realization of
plaquettes of dots [14–16] and ongoing measurements towards Nagaoka’s ferro-
magnetism can be seen as a natural point on the way to a ladder structure. From
a theoretical perspective, the quasi one-dimensional nature is crucial for allowing
the implementation of the Jordan-Wigner transform and an accurate description
using Tensor Network techniques, in particular the density matrix renormalization
group (DMRG) [57]. There therefore exists a numerical tool that can be used to
benchmark experiments up to some point.

Weakly doped ladders are known to have a gapped spin mode and a single gap-
less charge mode, serving as a precursor phase to two different ordered phases
in the two-dimensional limit, either a superconducting or a charge-density-wave
phase. The question of which phase dominates boils down to finding whether the
ladder system has stronger density-density or superconducting (singlet-singlet)
correlations. DMRG calculations have found a fast decay of the superconducting
correlations, in disagreement with earlier analytical work and in turn in disagree-
ment with more recent and advanced DMRG work, which finds a sufficiently slow
decay in the superconducting correlations to favor the superconducting state over
the density wave [72]. Measuring the correlations in an experimentally realized
weakly doped Hubbard ladder of quantum dots would thus be a helpful additional
benchmark, providing a new tool in the discussion of doped Mott insulators.
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7
Conclusion

The work shown in this thesis has illustrated how problems of disorder and control
can be solved as to allow using quantum dot systems to emulate the many-body
physics of interacting fermions on a lattice. I have focused on both a top-down
fabrication approach to scaling that attempts to minimize disorder from the onset
as well as on a bottom-up approach that focuses on efficient site-specific control
to negate disorder. The latter specifically aligns with the rapid advances in the field
of quantum dot systems in general, with proof-of-principle experiments done and
further efforts underway. I have no doubt that the level of complexity of quantum
simulation realizations using dots will increase fast, keeping in mind the insights
that our work has taught us, with which I conclude here.
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Disorder in heterostructures and fabrication currently limits the definition of
two-dimensional arrays of quantum dots with global control only. Even in GaAs
structures designed to reduce the effect of disorder and optimize homogeneity
[1], we found intrinsic disorder levels to be too high to capacitively measure pe-
riodic effects and the formation of large arrays of dots [2]. In particular, it is hard
to quantify inhomogeneity with limited input from measurements. This is not the
case for bottom-up approaches, where the potential for scaling can be assessed
more thoroughly before attempts are made (more below).

There is much room for improvement in Hubbard Hamiltonian engineering of
site-controlled quantum dots with current technology. Given the expeditious
nature of charge sensing measurements [3] of transitions in dot occupations and
their well-known mapping to Hubbard terms [4], many elements are in place to
negate the previously inhibiting effects of gate cross-talk and remaining inhomo-
geneity. These allow for the orthogonal control of a number of Hamiltonian terms
equal to the number of control gates, yielding site-specific control of single-particle
energies (doping and disorder) and tunnel coupling (relative interaction strength)
over a large phase space [5].

To leverage these improvements in pushing to experiments with larger num-
bers of dots, standardization and specialization are important. A technological
push consolidating the best of individual set-ups and measurements can be ex-
pected from ongoing efforts in spin qubits, although the precise designs and re-
quirements for simulations might be slightly different. Unlike current experiments
involving only one or few dots, this involves the definition of clear metrics in control
and homogeneity [6], that describe both device and set-up performance. I see re-
ductions in charge noise (current bottleneck in coherent control) and consistently
solid charge sensing (say, signal-to-noise ratio for measuring the closest-by inter-
dot transition at an effective bandwidth of 1 MHz) as important drivers.

Regardless of that outcome, though, classical intractibility seems within reach.
Frankly, it does not take many quantum degrees of freedom for computers to get
a hard time for full diagonalization [7], and the Hubbard model describing dots
has many (site, orbital and spin). Furthermore, linear arrays of several tens of dots
can be controlled within current modus operandi (gate designs, wiring and control
electronics) and control requirements for simulations in the spin sector are signifi-
cantly less stringent than those for fault-tolerant spin qubit control.
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Further thought is required, however, as to go towards experiments that really
add to collective knowledge of emergent quantum phenomena. An impressive
amount of control has by now been shown for a range of tamed quantum systems,
including but not limited to trapped ions, atomic lattices and superconducting plat-
forms. Nonetheless, it has proven hard to employ this fledgling quantum hardware
to extend our knowledge of many-body systems [8]. In the case of quantum dots,
it would be a pitfall to realize elaborate toy models that are experimentally con-
venient just as to show off advances in control, in part because many such ex-
periments have been done in the above-mentioned platforms, but also because
they fail to cash in on the inherent advantages of quantum dots in readily real-
izing the strongly-correlated Fermi-Hubbard model and the resulting proximity to
many condensed-matter problems of interest. Already early on, it therefore makes
sense to assess in collaboration with theorists just where small quantum dot arrays
can make a difference, be it in studying the thermalization of isolated, disordered
many-body systems, benchmarking numerical tools in describing weakly doped
Hubbard ladders and their emergent superconducting pairing [9], or something
else.
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A
Design and fabrication of

capacitance spectroscopy
devices

Here I describe design and nano-fabrication details for the devices used for the ca-
pacitance spectroscopy measurements of Chapter 3. Note that different designs
(and corresponding recipes) have been used in order to fabricate either devices
with a single global top gate or two gates: a grid gate and a uniform global top
gate. I start by providing the step-by-step fabrication details for one double gate
design in particular, which should serve as an example from which the steps re-
quired for the others can be deduced. Background considerations in fabrication
and differences to other device designs are discussed thereafter. Furthermore,
our experiences in iteratively improving the heterostructure design itself are out-
lined.
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Detailed fabrication recipe

• Ohmic contacts

Spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ∘C (400 nm)
- lithography - development 60 s in 1:3 MIBK/IPA - wet etch of 180 nm in
diluted Piranha - evaporation of 5/150/25 nm Ni/AuGe/Ni - lift-off in acetone
and IPA rinse - anneal 60 s at 440 ∘C in forming gas.

• Mesas

Spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ∘C (400 nm)
- lithography - development 60 s in 1:3 MIBK/IPA - wet etch of 700 nm in
diluted Piranha - sputtering 700 nm of SiO2 - lift-off in acetone and IPA rinse.

• Bridges

Spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ∘C (400 nm) -
lithography - cross-link PMMA strips through electron beam overdose at 25
mC/cm2.

• Connection pads and markers

Spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ∘C (400 nm) -
lithography - development 60 s in 1:3 MIBK/IPA - evaporation of 10/50 nm
Ti/Au - lift-off in acetone and IPA rinse.

• Grid gate

Spin CSAR 62.04 resist at 5000 rpm - bake 3 min at 150 ∘C (72 nm) - lithography
- development 70 s pentylacetat and 60 s 1:1 MIBK:IPA - evaporation of 20
nm Al - lift-off in NMP at 70 ∘C using soft ultrasound excitation for 4 hrs and
subsequent acetone and IPA rinse - oxidation in 20 min at 200 ∘C at 100 mTorr
and 300 W RF power using the remote plasma of an ALD machine.

• Top gate

Spin PMMA 495K A8 resist at 6000 rpm - bake 15 min at 175 ∘C (400 nm) -
lithography - development 60 s in 1:3 MIBK/IPA - evaporation of 50 nm Al -
lift-off in acetone and IPA rinse.

• Bonding pads

Spin OEBR-1000 (200cp) lift-off resist at 3500nm - bake 30 min at 175 ∘C (500
nm) - spin PMMA 950K A2 resist at 2000 rpm - bake 10 min at 175 ∘C (90 nm)
- lithography - evaporation of 50/200 nm Ti/Au - lift-off in acetone and IPA
rinse.
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Figure A.1: Fabrication overview. Schematic side-view representation of nano-fabrication
steps of a double gate device for capacitance spectroscopy, with overlapping metallic
gates. Starting from a bare wafer (not shown), each figure indicates the result of a distinct
lithography (and corresponding process) step. The bond pad for the top gate is not shown
in this view.
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Comments on the fabrication

A side-view of the device at the end of each of these steps is shown in Fig A.1. Note
that the bridge sections are easily added features to make sure any remaining steps
or gaps in the filled mesa can be crossed by the bond pad lead, and that we use thin
layers of Ti/Au to be connected on two sides in order to make a robust electrical
connection (typically several Ohm) between the Al gates and the Au bond pads.

Fabricating the grid gates (the only step with sub-micron features) is the critical step
in the fabrication process. The requirement of small features clashes with that of
homogeneity and strains both the lithography and the evaporation/lift-off process.
Typical problems that arise in the lithography of such large, but detailed, features,
are drift (typically several tens of nm/min) and stitching errors. We have gotten rid
of these almost completely by direct programming of an iterative sequence that
the e-beam follows in writing the grid (as compared to the conventional procedure
of converting a design file using BEAMER software). This allows for an entire 200
µm x 200 µm grid to be written in under a minute and in a single main field. Fur-
thermore, we add a 200 nm thin frame around the grids whose overdose is chosen
to counter proximity edge effects (Fig A.2).

FigureA.2: Nano-fabricatedgrids. Electron micrographs of metallic (20 nm of Al, light) grid-
shaped gates fabricated on GaAs (darker background). Besides square grids, kagome (a)
and dice-shaped lattices can also be fabricated (b). Homogeneity at the edges is provided
for by overdosing a thin frame at the edge, as shown in c.

The opposite requirements of high resolution and undercut required for lift-off are
best met using a single layer CSAR62 resist. Note that with these fabrication details,
we actually find feature size, yield and reproducibility to be limited by the grain
size of the evaporated Al, instead of the resist mask or lithography process and
contrary to what might be expected. As such, Ti/Au but especially Ti/AuPd gates
were easier to fabricate than Al gates.
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Different designs and considerations

The fabrication detailed above represents only one of the designs used through-
out the work. First results were obtained on conducting wafers, where the ohmic
contact could be made on the back side of the wafer. Single layer gate devices
then only require a single lithography step to define the top gate. For double layer
gate devices, though, this can cause issues. Because mesas cannot be defined by
a shallow etch, bonding pads have to be placed on top of a thick dielectric layer in
order to reduce stray capacitance [1].

Although this requires fewer steps, handling both sides of the wafer proved tricky,
especially when detailed features (the grids) exist. Furthermore, it does not al-
low for the definition of mesas, and as such only works when the bonding pads
of the grid and the top gate are placed on a thick dielectric layer to reduce the
stray capacitance to the back gate. Adhesion issues of metal on GaAs can be bad
enough, but adhesion of dielectrics on the wafer surface is even worse, and as
such, bonding yield for such devices is unforgivably low (See Fig A.4 for some im-
ages of bonded devices).

Figure A.3: Optical images of device cells. Of the 6 squares in the center, the top left
and bottom right ones are the ohmic contacts to the back gate. The other four squares are
devices. Connected pairs of outer metallic squares are the bonding pads, which in the case
of a thick dielectric layer (a) can be placed directly on the dielectric (although one of the
two requires a via through the dielectric to contact the grid gate), but which in absence of a
dielectric layer (b) require dedicated bond pad mesas to be constructed (the SiO2 that fills
up the mesa etch shows up in green).

Heterostructure stack: wafers used and considerations

The general goal in varying the heterostructure design is to minimize the measured
disorder levels and increase the ability to apply a periodic potential. The latter can
be done either by reducing the back gate screening or by increasing the maximum
voltage that can be applied to the wafer before leakage occurs. The table below
shows the growth details of some of the wafers measured.

Initial wafer design was based on Dial [2], and grown on a conducting substrate (ini-
tial wafer W1 and W2, where the growth conditions itself were further optimized).
We varied quantum well width and spacer layer thickness (both in the range from
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15 to 30 nm), but none of these changed the disorder levels considerably. Fur-
thermore, we varied capping layer (from 5 to 10 nm) and blocking barrier thickness
(in the range from 40 to 70 nm, see M1 and W3). This also did not have a large
effect on disorder levels, and changes the maximum voltages we could apply to
our gates only slightly.

Instead, we found that increasing the tunnel barrier width (which has to be accom-
panied by a change in aluminum content to keep the tunnel frequency constant)
does reduce disorder levels substantially, with the Landau fan diagram data shown
in Chapter 3 measured on wafer M2.

Table A.1: Heterostructure details. Layer thicknesses and aluminum content of
Al𝑥Ga1−𝑥As layers of several wafers used for the capacitance spectroscopy devices. Also
noted are the tunnel frequency 𝑓𝑡 and the minimum field 𝐵0 at which Landau levels can be
resolved, an indicator for disorder levels.

W1 W2 M1 W3 M2
capping layer GaAs GaAs GaAs GaAs GaAs

10 nm 10 nm 5 nm 10 nm 5 nm
blocking barrier 0.316 0.316 0.316 0.315 0.360

60 nm 60 nm 40 nm 60 nm 60 nm
quantum well GaAs GaAs GaAs GaAs GaAs

23 nm 23 nm 23 nm 23 nm 23 nm
tunnel barrier 0.316 0.316 0.316 0.315 0.199

13 nm 13 nm 14 nm 14 nm 16 nm
spacer layer GaAs GaAs GaAs GaAs GaAs

25 nm 15 nm 15 nm 15 nm 15 nm
back gate GaAs n++ GaAs n++ GaAs n++ GaAs n++ GaAs n++

800 nm 800 nm 400 nm 400 nm 400 nm
𝑓𝑡 at 0 T 1 MHz 200 kHz 2 kHz 30 kHz 100 kHz
𝑛 ≈1011 cm−2

𝐵0 3 T 0.65 T 0.50 T 0.40 T 0.25 T
(at 4 K)

comments n++ doped n++ doped
wafer wafer
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Figure A.4: The hassle of bonding. We found bonding on GaAs surfaces to be unreliable
regardless of the metal (thickness) used for bonding pads: the resul of poor adhesion of the
metal to the semiconductor surface and the brittleness of the GaAs wafers themselves. As
adhesion for dielectrics is even worse, bonding pads on top of dielectrics are a bad idea.
Really, just don’t.





Summary

Novel technologies are often kick-started by the synthesis of materials with new
properties. Actually, much of the technology we take for granted today relies in
some way on semiconductor materials, which are well-understood using early
last-century quantum physics and resulting advances in materials science. The
employed material properties, however, amount to but the tip of the iceberg of
what the underlying quantum physics allows for. Materials in which electrons build
up strong correlations, for instance, represent a class of systems with the poten-
tial for novel emergent electronic and magnetic properties, that cannot be fully
described and understood with classical methods alone.

In this thesis, conduction band electrons confined to an array of coupled sites, de-
fined by a combination of semiconductor band engineering and gate electrostat-
ics, so-called quantum dots, are shown to be able to emulate the physics of cor-
related electrons on a lattice. The underlying hope is that quantum dot arrays can
be used to elucidate novel emergent magnetic and electrical properties of materi-
als by realizing the underlying many-body physics. Disorder and inefficient control
of the quantum dot properties, however, have previously made it hard to achieve
accurate mapping over large phase spaces, as well as to scale up to larger arrays.

The Fermi-Hubbard model that underpins the many-body physics of electrons on
a lattice is introduced first, to which the specific Hubbard model describing quan-
tum dots is compared. Addition spectra are of importance, as they allow one to
map a quantum dot system to the Hubbard model by focusing on the set of charge
transitions that appear as function of changes in the control fields. Furthermore, the
concept of emergent models is mentioned, as it allows us to understand system
properties in certain parameter windows in a simpler picture. The emergent spin
physics of the magnetic degree of freedom of the electrons, for instance, forms a
platform for the realization of quantum processors.

Next, it is shown how the technique of capacitance spectroscopy can be used to
measure electron addition, in particular the global density of states of a large two-
dimensional electronic system, and how gates can be added to impose a lattice
potential. The wafer disorder and device (in)homogeneity are assessed, with the
first of these shown to limit the visibility of periodic effects and the formation of
large arrays of quantum dots.
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In an alternative approach, small arrays are defined using a set of electrostatic
gates whose gate voltages allow for site-specific control. This control is typically
inefficient due to gate cross-talk, non-linearities and initial disorder, but a toolbox
of techniques is presented that allows for overcoming these issues to nonetheless
orthogonally control single-particle energy offsets and inter-site tunnel couplings,
as well as measure Coulomb-driven interaction energies.

The potential for such efficient control of the underlying potential landscape is
shown as the physics of a small quantum dot array is mapped onto that of the
interaction-driven Mott transition, highlighting how quantum dots can be used to
emulate Fermi-Hubbard physics. A good agreement between Fermi-Hubbard the-
ory and the measurement further validates the toolbox for Hamiltonian engineer-
ing. In the process, general metrics describing the remaining classical entropy and
inhomogeneity are measured and discussed.

Lastly, an outlook is made on the types of experiments that can be done in the
(near) future, keeping current limitations and expected advances for quantum dot
arrays in mind. Despite the fact that we are already close to realizing quantum dot
systems whose description using a full diagonalization of the underlying Hubbard
model would be intractable, it is not a trivial problem to envisage how experiments
in the near future can aid in the improved understanding of relevant many-body
physics. Nonetheless, ideas for future experiments that focus on many-body lo-
calization and (doped) Mott insulators are presented, as well as the lessons learned
in realizing this work that future experiments should keep in mind.

Toivo Hensgens



Samenvatting

Vooruitgang in de techniek is vaak afhankelijk van de synthese van materialen met
nieuwe en gunstige eigenschappen. Zo leunen veel technologieën die we van-
daag de dag als vanzelfsprekend beschouwen op chips van halfgeleiders, materi-
alen die we goed begrijpen en kunnen realiseren met behulp van vroeg twintigste-
eeuwse quantummechanica en verwante vooruitgang in de materiaalkunde. De
eigenschappen van halfgeleiders, echter, vormen slechts het topje van de ijsberg
van wat de quantummechanica allemaal toestaat. Materialen wiens elektronen
sterke correlaties vertonen, bijvoorbeeld, vormen een klasse van systemen met
de potentie voor nieuwe emergente elektrische en magnetische eigenschappen
die niet kunnen worden beschreven en begrepen met enkel klassieke methodes.

Dit proefschrift laat zien dat elektronen uit de geleidingsband van een halfgeleider,
gevangen in naburige potentiaalminima met behulp van elektrostatische gates en
een zorgvuldig ontworpen bandenstructuur, zogenaamde quantum dots, de na-
tuurkunde van gecorreleerde elektronen op een rooster kunnen nabootsen. De
onderliggende verwachting is dat quantum dots licht kunnen schijnen op nieuwe
emergente magnetische en elektronische eigenschappen van materialen door de
onderliggende fysica in een gecontroleerde omgeving te realiseren. Een combi-
natie van wanorde en inefficiëntie in controle, echter, maken het lastig om zulke
fysica correct na te bootsen over een grote faseruimte, zowel als om haar op te
schalen naar grotere roosters.

Als eerste wordt het Fermi-Hubbard model geïntroduceerd, dat de veel-deeltjes
fysica van elektronen op een rooster beschrijft. Additie spectra zijn belangrijk, daar
ze ons toestaan om een quantum dot systeem direct te vergelijken met het Hub-
bard model door ladingstransities te volgen als functie van veranderingen in de
elektrische velden waarmee de dots worden gecontroleerd. Ook wordt het con-
cept van emergente modellen beschreven, die het toestaan om systeemeigen-
schappen in bepaalde situaties helderder te beschrijven. Zo vormt de emergente
spin fysica van de magnetische vrijheidsgraad van de elektronen, bijvoorbeeld,
een platform voor de realisatie van quantumprocessoren.

Hierna komt de techniek van capaciteitsspectroscopie aan bod, die kan worden
gebruikt om de additie van elektronen, specifiek de globale toestandsdichtheid
van een tweedimensionaal elektronengas, te meten, en hoe ontwerpen kunnen
worden gerealiseerd die een roosterpotentiaal aanbieden. De intrinsieke wanorde
in het materiaal en de (in)homogeniteit in de samples worden beoordeeld, waarbij
het duidelijk wordt dat de materiaalswanorde de zichtbaarheid van effecten van
het periodieke potentiaal verbergt en de formatie van grote roosters van quantum
dots tegenhoudt.
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In een alternatieve aanpak wordt een klein aantal quantum dots in een rij gevormd
met behulp van een aantal metallische gates op het oppervlak van de halfgeleider,
via wiens voltages dots individueel kunnen worden aangestuurd. Zulke controle
is typisch inefficiënt vanwege kruistermen, niet-lineariteiten en initiële wanorde,
maar een stel technieken wordt gepresenteerd die het toestaan om deze moei-
lijkheden het hoofd te bieden en individuele energieniveaus in dots en de tunnel
koppelingen ertussen te controleren, zowel als om de Coulomb interactie ener-
gieën te meten.

Een demonstratie van deze technieken wordt gedaan door met behulp van een
klein aantal dots de fysica van de interactie-gedreven Mott transitie na te bootsen.
Dit dient als voorbeeld van de potentie voor quantum dots om het Fermi-Hubbard
model te emuleren. Een goede overeenkomst tussen theorie en experiment vali-
deert het succesvolle implementeren van de beoogde Hamiltoniaan. In het proces
worden algemene metrieken van quantum dots aangestipt, zoals de eindige klas-
sieke entropy en de homogeniteit.

Als laatste wordt een vooruitzicht gemaakt naar types experimenten die gedaan
kunnen worden in de (nabije) toekomst, waarbij huidige beperkingen en verwachte
vooruitgang in quantum dots worden meegenomen. Ondanks het feit dat hui-
dige experimenten in de buurt komen van het regime waarin een volledige dia-
gonalisatie van het onderliggende Hubbard model niet meer mogelijk is, is het
geen triviale exercitie om te zien hoe toekomstige experimenten kunnen helpen
om meer begrip te vergaren van relevante veel-deeltjes fysica. Desalniettemin
worden toekomstige experimenten voorgesteld, die zich richten op interactie-en-
wanorde gedreven localizatie effecten en (gedoteerde) Mott isolatoren, als ook de
in dit proefschrift opgedane inzichten opgesomd, die relevant zijn voor toekomstig
werk.

Toivo Hensgens



Acknowledgements

I am afraid that the number of people I fail to mention here will only be trumped
by my inability to formulate clearly what those of you whose names can be found
below have meant to me personally and have contributed to my work and life in
the last couple of years.

It was you, Pierre, who first taught me the ways of the device physicist, how to
combine physical insight with nuts-and-bolts level engineering as well as how to
balance long-term ambition and day-to-day frustration. In those days, even though
our group was considerably smaller than it is today, it was never a problem to
find help, which was extended to me at any level by Floris, Victor, Thibault and
Mohammad. Let me also thank you, Pasquale, whose friendliness and vividness
knows no bounds, and you, Erika, whose fervor is unmatched. I am certain you
will find your way nicely in the exciting playground of academia. The same applies
to you, Srijit, you who has managed to transition from researcher to group leader
whilst, in true Delft fashion, remaining the light of any party.

Tim, in your own dissertation you wish us much good fortune with the quadruple
quantum dot you fabricated and ran experiments on yourself. A quick glance at
this one, however, will show you that it is the triple dot set-up that I owe much
of my own success to. The level of engineering you managed to achieve there is
still unrivaled within our group, an indication of the success I am sure you currently
enjoy as a research engineer. My real training in the ways of the few, however, came
from you, Takafumi. It was a pleasure working with you, not only because you are
the most incredibly bright and pleasant person, but also because you possess a
certain thought-out calmness that combined with my personal creativity (lack of
patience) to yield a very fruitful and innovative effort. And indeed, much of current
work in the lab is aligned along converting the dark magic of your control of these
quantum dot systems into well-understood and well-engineered things.

It was my pleasure to kick-start the research efforts of others. Carla, you have
an energy and optimism about you that even the hard work I had you do in the
cleanroom could not stifle, and which helped power me through a tough period of
my work in Delft. And Laurens, whom I regard as the quintessential Delft student:
organized, confident and independent - you have realized much of the data I put
on display in this booklet, and I am sure you will excel in whatever your chosen
field will be. And as history is known to repeat itself, I find myself describing you,
Udit, as my final padawan. You have injected an unprecedented amount of energy
and optimism into any of our joint efforts, mastering the art of cleanroom work
and solving all manner of engineering problems in ways and timescales that have
consistently made my head spin. You are awesome and you know it.

103



104 Acknowledgements

Talking about people whose endurance in fighting the fight in the trenches of nano-
fabrication knows no bounds: Nodar. Let me thank you by trying to describe the
indescribable, you, someone who combines the practical resourcefulness of a boy
scout with a contagiously ironic wit and a contradicting stressed relaxedness - and
all of this in a frame inside which one would not expect a physicist to be skulking.
For the last half of my work, I could also always rely on you, JP and Tom, to help
me out when help was needed and to provide some much-needed physics back-
ground to help contain my sometimes overly innovative ideas. You both exemplify
the ideal post-doc: knowledgeable and approachable, organized and responsible.

I am happy to leave the group in the hands of the next generation of researchers.
Jelmer, I am sure your sense for responsible initiative and confidence will keep this
raft of an experimental group of ours somewhat organized whilst maneuvering in
this ever-changing (post-)academic reef. As something of a child to this environ-
ment yourself, Sjaak, I am sure you will continue to use your pragmatic approach
to get great work done. Guoji, it is nice to see how your efforts have materialized
into successful work and the motivational boost it provides, both of which I am sure
will only continue. The same can be said for Stephan, you driven and confident
go-getter. Xiao, Anne-Marije, Gabriel, Nima, Christian, Sergey as well as Pieter,
Delphine and Kanwal, I wish the best to you all.

The Qutech institute has clearly followed up on the former Quantum Transport
group as a place that consistently manages to attracts a vibrant and colorful group
of people. Listing the likes of Michiel, Christian, Florian, Alex and James as fol-
lowing in the footsteps of such peeps as David, Vincent and Machiel I find my-
self rethinking as to whether I want to leave this place. That being said, though,
a moment’s thought of a mere whiff of the smell of an intermittently reappearing
concoction of a particular alcoholic beverage makes that choice somewhat easier.
Thanks for the good times and all the best!

Furthermore, thanks to the many great and amicable people who have helped me
here and there and can be relied upon to have a chat from time to time, people like
you: Suzanne, Julia, LaReine, Jasper and Iman. The same applies to the support
staff, in particular Yuki and Marja. I also very much enjoyed my interactions with
the cleanroom technicians. Much of the stuff that works in this thesis can be boiled
down to the efforts of you, Arnold, Ewan, Marc and Marco, whilst much that did
not work can be boiled down to the experimental wandering of me and my peers.

As a research group as a whole but also as an individual researcher, I feel greatly
indebted to our staff of technicians. In a way, I think the fact that not everyone
recognizes how much you help out the group is a mere indication of just how good
you are: the days of people constantly worrying about individual set-ups is a thing
of the past. Most of the problems that do occur I often find to be the result of the
fact that the decision making (as well as basic planning) is not left to you guys in
the first place. Jelle, Siebe and Mark, you have helped us realize a new lab in
which I am happy to leave my colleagues behind, and Remco, without your help
neither could we have kept the older systems running. Raymond, you already



Acknowledgements 105

know that many students, myself included, would not have been able to accurately
measure a resistor without your help, let alone realize world-class research. The
vast amount of accrued knowledge between you, Raymond, Marijn and Hans is
equaled only by the elegance with which you manage to thrive in such a hectic
and needy group of young researchers.

Thanks also to Vincent, Xiao and Sankar for the sometimes much needed theory
support. It is always a pleasure to find oneself working together efficiently and
successfully with people with a different view, and this has definitely been the case
with you.

For more than just keeping up with my power scream and the unsavory smell of my
climbing shoes, I consider you, Peter and Norbert, to have become close friends.
Apart from forming a power team in your own lab, your amicability, broad interests
and quick wits means that also individually and outside the spheres of academia,
you both present a force to be reckoned with.

Much has changed in these wings of the physics building since I started here. LeoK,
you have made quantum in Delft continuously move forward, creating a dynamic
that I feel fits you better than the isolationism that characterizes many other teams
in academia, a push that is never easy but nonetheless commendable. What’s in
a name - I see a similar drive in you, LeoDC, creating a fast-moving and result-
driven dynamic that propels all of Qutech labs forward. Ambition is also abundant
in your case, Ronald, something which I am sure means that I will keep coming
across many press releases of your group in the future. I furthermore would like to
wish the best of luck to the new group leaders at Qutech, in particular Giordiano,
whose relaxedness adds a brilliant Italian-Australian vibe to the spin qubit team,
and Atilla, whom I still remember being startled to see being flipped like a burger
in the bottom bunk of our shared bunk bed in the middle of the night during my
first QT uitje. Menno, thanks a lot for many an interesting hallway conversation and
in your organizational efforts in the spin qubit team as a whole. I am sure you will
keep finding creative ways to mix interesting and open physics questions with the
long-term view inherent to Qutech’s activities.

Foremost, however, let me thank you, Lieven. Your leadership style combines a
good judgment with a profound trust in those that work for you in a most inspira-
tional manner. It has often amazed me how you can join a discussion on any topic
without the detailed look of those of us laboring in the mud, and still get any of us
to start focusing on the relevant items every time. I have learned a lot from your
strive to have us understand everything to the point where we can explain it as
simple as possible, and am most grateful for the opportunity to have been a part
of your team these past years.



106 Acknowledgements

On to those who have kept me sane in these long years laboring in high school
physics class and physics departments. To my Bernardinus buds, thanks for ev-
erything from childish fun to adolescent joy, but also for being sufficiently rowdy
to have had me placed separate from you in maths class. Turns out the blond girl I
got placed next to and I had a lot in common.. My friends of 198+, you will be glad
to hear that I am finally leaving these same gray corridors we first entered together
in ’09 behind - it has been a great ride! Thanks also to my dear friends Diederik,
whom I wish all the success in the world in becoming a real-life dr, and Lars - it is
my honor to have you join the defense as my paranymph. You are unquestionably
bright and despite your resolute ambition and accompanying seriousness in many
matters, you never fail to appreciate my often simple and rather cynically harsh
jokes on a bunch of those. To my MASt physics buds at Cambridge, I will never
forget our hectic but joint preparation for the general physics paper on an under-
graduate program we did not attend, nor our unbridled relief of finishing such or-
deals relatively unscathed. To my Wolfson crew of Hilary, John and Tair, I promise
that even though we can no longer use the excuse of academic conferences to go
visit one another, we will still find ways to keep in touch, as you guys are the best.
And to the Utrecht Sunday morning boulder crew, I look forward to the prospect
of sharing with you many more a lazy indoor climb or outdoors adventure.

Verder heb ik het goede geluk een familie te hebben die me loslaat, maar waar ik
altijd op terug kan vallen. Daartoe beschouw ik ook jullie, Jan, Annemieke en JW.
Jullie hebben me met open armen een onderdeel laten worden van jullie familie,
geen vanzelfsprekendheid maar iets waarvoor ik erg dankbaar ben. En lieve Hans
en Tiny, ondanks de fysieke afstand van de laatste jaren en het geringe contact,
houden jullie altijd een speciale plek in mijn hart.

Chey, je bent een kanjer. Je hebt een hoeveelheid energie en een wilskracht die
je niet bij veel mensen ziet, en bent er altijd voor me wanneer ik je nodig heb. Ik
heb geluk met jou als broer.

Marij, jij en Hub hebben me van huis uit alles meegegeven wat ik nodig heb om
mijn eigen weg te bewandelen. Je hebt me altijd de vrijheid en het vertrouwen
gegeven om mijn dromen na te streven, een vertrouwen dat ik mijn hele leven
mee zal nemen. Ik zal jullie trots blijven maken.

LieveHeleen, ondanks het feit dat je mijn concentratie bij de wiskundeles enigszins
teniet hebt gedaan, sta ik hier nu toch, voor geen klein deel dankzij jou. Want jij
bent het die me vrolijk maakt na elke lange dag, die me naar de toekomst laat
kijken en die mijn leven zin geeft. Je bent prachtig, gepassioneerd, ontdekkend,
eigenwijs en intelligent, en houdt me altijd een spiegel voor wanneer dat nodig is.
Ik hou zielsveel van jou.



List of Publications

5. Capacitance spectroscopy of gate-defined electronic lattices
T. Hensgens*, U. Mukhopadhyay*, P. Barthelemy*, R.F.L. Vermeulen,
R.N. Schouten, S. Fallahi, G.C. Gardner, C. Reichl, W. Wegscheider,
M.J. Manfra and L.M.K. Vandersypen,
arXiv:1709.09058

4. Een quantumschaalmodel
T. Hensgens
Nederlands Tijdschift voor Natuurkunde 83, 360-363 (2017)

3. Quantum simulation of a Fermi-Hubbard model using a semiconductor quan-
tum dot array
T. Hensgens, T. Fujita, L. Janssen, Xiao Li, C.J. Van Diepen, C. Reichl,
W. Wegscheider, S. Das Sarma and L.M.K. Vandersypen,
Nature 548, 70-73 (2017)

2. Double-stranded RNA under force and torque: Similarities to and striking differ-
ences from double-stranded DNA
J. Lipfert, G.M. Skinner, J.M. Keegstra, T. Hensgens, T. Jager, D. Dulin,
M. Köber, Z. Yu, S.P. Donkers, F. Chou, R. Das and N.H. Dekker,
Proc. Natl. Acad. Sci. 111, 15408-15413 (2014)

1. A force calibration standard for magnetic tweezers
Z. Yu, D. Dulin, J. Cnossen, M. Köber, M. van Oene, O. Ordu, B.A. Berghuis,
T. Hensgens, J. Lipfert and N.H. Dekker,
Rev. Sci. Instrum. 85, 123114 (2014)

* These authors contributed equally.

107

https://arxiv.org/abs/1709.09058
https://www.ntvn.nl/
http://www.nature.com/nature/journal/v548/n7665/full/nature23022.html
http://www.pnas.org/content/111/43/15408.long
http://aip.scitation.org/doi/10.1063/1.4904148




Toivo Hensgens

May 6th, 1992 - Heerlen, The Netherlands

2003–2009 Secondary School (cum laude)
Bernardinuscollege Heerlen

2009–2012 Bachelor of Science in Applied Physics (cum laude)
Delft University of Technology

Undergraduate research project in the group of prof. dr. N.H. Dekker,
”The ABC of dsRNA and beyond: Elastic Properties and
Structural Transitions under Force and Torque”

2012–2013 Master of Advanced Studies in Experimental and Theoretical
Physics (with distinction)
University of Cambridge

Graduate research project in the group of dr. J.W.A. Robinson,
”All-Oxide Manganite/Cuprate Superconducting Spin-Valve”

Awarded the Wolfson College Jennings Prize and
the Cavendish Laboratory M.A.St. Prize

2013–2017 PhD in Experimental Quantum Physics
Delft University of Technology

Doctoral research in the group of prof. dr. ir. L.M.K. Vandersypen,
”Emulating Fermi-Hubbard physics with quantum dots”

109




	Introduction
	Enabling the second quantum revolution
	Thesis outline

	Hubbard model description of quantum dots
	The Fermi-Hubbard model
	Theory of classically coupled quantum dots
	Adding quantum fluctuations
	Emergent models

	Towards large quantum dot arrays with global control only
	Disorder and inhomogeneity
	Capacitance spectroscopy technique
	Trying to impose a periodic potential
	Outlook: room for improvement

	Efficient calibration of model parameters using local control
	The problem of tuning
	Virtual gates, controlled disorder and uniform filling
	Controlling tunnel couplings
	Measuring interaction energies
	There is plenty of room in a coax

	Quantum simulation of collective Coulomb blockade
	A finite-size analogue of the Mott transition
	The experimental phase space of a triple quantum dot array
	Verifying the toolbox with classical simulations
	Discussion: what has this example told us?

	Towards quantum simulations of classically intractable models
	Complications
	Expected future advances
	Emergent quantum magnetism: spin physics
	Simulating many-body localization
	Simulating (doped) Mott insulators

	Conclusion
	Design and fabrication of capacitance spectroscopy devices
	Summary
	Samenvatting
	Acknowledgements
	List of Publications
	Curriculum Vitæ

