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SUMMARY

C AVITY optomechanics studies the interaction between mechanical resonators and
optical cavities through radiation pressure forces and aims to harness this inter-

action for applications in the areas of high precision metrology, tests of fundamental
quantum mechanics, or quantum information processing. For the most ambitious of
these applications it is necessary that the mechanical resonator has a sufficiently high
mechanical quality factor such that it can undergo at least a few coherent oscillations
before interacting with incoherent thermal phonons. Furthermore, the optomechanical
coupling must be large enough to make the interaction between optics and mechanics
probable and, ideally, deterministic.

This work pursues both goals using a thin membrane in the middle (MIM) of an op-
tical cavity. This is a common configuration in cavity optomechanics but most experi-
ments to date have low mechanical quality factors and optomechanical couplings.

Chapters 2 and 3 contain a brief overview of the basic theory and experimental con-
cepts required to understand the following.

On chapter 4 we investigate the mechanical properties of SiN trampoline resonators:
square membranes supported by four tethers connected to the substrate. We study the
effect of all their geometrical parameters on the frequency–quality factor product and
find that the most relevant ones are the thicknesses of both the membrane and the sub-
strate. By fabricating trampoline membranes with a Si thickness of 1 mm and a 20 nm-
thick SiN layer, we obtain fundamental frequencies close to 150 kHz and quality factors
up to 108, resulting in a frequency–quality factor product of 1.37×1013 Hz. This is the
first demonstration of a mechanical resonator with good enough properties to, for exam-
ple, reach the mechanical ground state of a macroscopic object using optomechanical
cooling starting from room temperature conditions.

Bare SiN membranes have low reflectivity due to their low refractive index and since
they are typically much smaller than a quarter of a wavelength (the thickness for which
the reflectivity of a thin film reaches its maximum). Since the optomechanical coupling
in a MIM configuration scales with the square root of the membrane’s reflectivity, bare
membranes have low optomechanical couplings. To counter this, we pattern photonic
crystals (PhC), composed of a periodic array of holes etched into the membranes, ob-
taining reflectivities higher than 99.3 %. For PhCs with a small area, the maximum re-
flectivity achievable drops with the film thickness. This work presents two solutions for
this problem. On chapter 4 we leave thick pillars of SiN on the 20 nm-thin membranes,
obtaining similar performance to thicker devices. On the other hand, on chapter 5 we
increase the PhC area from 90×90µm2 up to 10×10 mm2. This allows using laser beams
with a larger waist and smaller wavevector spread, increasing the maximum achievable
reflectivity of thin membranes.

Due to its square root dependency on the reflectivity, the gain in optomechanical
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x SUMMARY

coupling by patterning a PhC on the trampoline membranes is limited to little more
than 50 % of what can be achieved with a bare membrane. However, the high reflec-
tivity of PhC membranes can be harnessed to increase the optomechanical coupling by
orders of magnitude in comparison with that of a bare membrane. If more than one
highly reflective membrane is placed in the middle of a cavity, the relative motion be-
tween the mechanical elements is expected to generate strong phase shifts which can
result in strong optomechanical coupling rates. On chapter 6 we present one of the first
experimental explorations of such optomechanical arrays. We fabricate two PhC tram-
poline membranes on both sides of the same chip, which constitute two high reflectivity
mechanical resonators parallel to each other. We characterize them independently, mea-
suring finesse values up to 220, as well as inside an optical cavity, confirming that their
center-of-mass motion couples to the cavity in a fashion well described by the single-
MIM model. This type of device is a large step towards the observation of enhanced
coupling with optomechanical arrays.

The results presented here are not only significant for the field optomechanics but
they also present promising applications elsewhere. Mechanical resonators with very
high mechanical quality factor, such as those of chapter 4, can be used for displace-
ment or force detectors with very high sensitivity. Large-area PhC membranes (chapter
5) open the door to mechanically tunable mirrors whose optical properties can be freely
adapted to the wavelength or polarization response that the user wishes. And finally,
devices such as the double-PhC-membranes of chapter 6 could be used as integrated
cavities for filtering or simple optomechanics experiments.



SAMENVATTING

C AVITY optomechanica bestudeert de interactie tussen mechanische resonatoren en
optische trilholtes (cavities) middels de stralingsdruk en beoogt deze interactie te

gebruiken voor toepassingen zoals hoge precisie metrologie, het testen van fundamen-
tele quantum mechanica of quantum informatieverwerking. Bij de meest ambitieuze
van deze toepassingen is het noodzakelijk dat de mechanische resonator een voldoende
hoge mechanische kwaliteitsfactor heeft zodat de resonator tenminste een paar cohe-
rente oscillaties heeft ondergaan vóór de interactie met incoherente thermische phono-
nen. Daarnaast moet de optomechanische koppeling sterk genoeg zijn om de interactie
tussen optiek en mechaniek waarschijnlijk en idealiter ook deterministisch te maken.

Beide doelen worden in dit werk nagestreefd met behulp van een dun membraan
in het midden van een optische trilholte (MIM). Dit is een welbekende configuratie in
cavity optomechanica maar in de meeste experimenten tot nu toe zijn de mechanische
kwaliteitsfactoren en optomechanische koppelingen laag.

Hoofdstukken 2 en 3 geven een kort overzicht van de theorie en experimentele con-
cepten die benodigd zijn om het volgende te begrijpen.

In hoofdstuk 4 onderzoeken we de mechanische eigenschappen van SiN trampoline
resonatoren: vierkante membranen die via vier verbindingen vast zitten aan het sub-
straat. We bestuderen het effect van al hun geometrische parameters op het frequentie–
kwaliteitsfactor product en ontdekken dat daarin de diktes van het membraan en het
substraat het meest relevant zijn. Door trampoline membranen te fabriceren met een Si
dikte van 1 mm en een 20 nm dikke SiN laag verkrijgen we fundamentele resonantie fre-
quenties nabij 150 kHz en kwaliteitsfactoren tot aan 108, wat resulteert in een frequentie–
kwaliteitsfactor product van 1.37×1013 Hz. Dit is de eerste demonstratie van een me-
chanische resonator met eigenschappen die voldoende zijn om bijvoorbeeld de mecha-
nische grondtoestand van een macroscopisch object te bereiken door vanaf kamer tem-
peratuur optomechanisch te koelen.

Membranen van onbewerkt SiN hebben een lage reflectiviteit door hun lage bre-
kingsindex en doordat ze typisch veel kleiner zijn dan een kwart van de golflengte (de
dikte waarbij de reflectiviteit van een dunne film maximaal is). Aangezien de optome-
chanische koppeling in een MIM configuratie schaalt met de wortel van de reflectiviteit
van het membraan, is de optomechanische koppeling van onbewerkte membranen laag.
Om dit te bestrijden etsen we een periodiek patroon van gaatjes, een zogenaamd pho-
tonisch kristal (PhC), in de membranen, waardoor we reflectiviteiten boven de 99.3 %
verkrijgen. Bij PhC’s met een klein oppervlak zakt de maximaal bereikbare reflectiviteit
met de filmdikte. In dit werk worden twee oplossingen voor dit probleem gepresen-
teerd. In hoofdstuk 4 laten we dikke pilaren van SiN op de 20 nm dunne membranen
staan, waarbij we gedrag vergelijkbaar met dikkere apparaten verkrijgen. Aan de andere
kant vergroten we het PhC oppervlak van 90×90µm2 naar 10×10 mm2 in hoofdstuk 5.

xi
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Hierdoor kan men laser licht gebruiken met een grotere waist en een kleinere golfvector
spreiding, waardoor de maximaal haalbare reflectiviteit van dunne membranen wordt
verhoogd.

Door zijn wortel afhankelijkheid van de reflectiviteit is de versterking van de optome-
chanische koppeling, door het etsen van een PhC in een trampoline membraan, gelimi-
teerd aan ongeveer 50 % van wat gehaald kan worden met een onaangepast membraan.
Echter, de hoge reflectiviteit van PhC membranen kan gebruikt worden om de optome-
chanische koppeling met een aantal orde groottes te vergroten ten opzichte van onaan-
gepaste membranen. Als er meer dan één zeer reflectief membraan in het midden van
een trilholte wordt geplaatst, wordt er verwacht dat de relatieve beweging tussen de me-
chanische elementen sterke fase verschuivingen genereert wat tot sterke optomechani-
sche koppeling kan leiden. In hoofdstuk 6 presenteren we een van de eerste experimen-
tele verkenningen van zulke optomechanische reeksen. We fabriceren twee PhC trampo-
line membranen aan beide zijdes van dezelfde chip, die zo twee zeer reflectieve parallele
mechanische resonatoren vormen. Deze worden onafhankelijk gekarakteriseerd, waar-
bij finesse waardes tot 220 worden gemeten, en in een optische trilholte, waarbij wordt
bevestigd dat de massamiddelpunts beweging aan de trilholte koppelt op een manier die
goed beschreven kan worden door het enkel-MIM model. Dit type apparaat is een grote
stap richting het observeren van versterkte koppeling met optomechanische reeksen.

De hier gepresenteerde resultaten zijn niet alleen significant met betrekking tot op-
tomechanica maar kunnen elders ook tot veelbelovende toepassingen leiden. Mechani-
sche resonatoren met zeer hoge mechanische kwaliteitsfactor, zoals die beschreven in
hoofdstuk 4, kunnen gebruikt worden in verplaatsings- of krachtmeters met zeer hoge
gevoeligheid. PhC membranen met groot oppervlak (hoofdstuk 5) openen de deur naar
mechanisch afstembare spiegels waarvan de optische eigenschappen aangepast kunnen
worden aan de gewenste golflengte of polarisatie respons. Tenslotte zouden apparaten
zoals de dubbele PhC membranen uit hoofdstuk 6 gebruikt kunnen worden als geïnte-
greerde trilholtes voor optisch filteren of simpele optomechanische experimenten.



1
INTRODUCTION

CONTEXT

L ENGTH is a fundamental dimension which plays a crucial role in society. It is there-
fore natural that scientists and engineers have placed extensive efforts in developing

tools to measure it as accurately as possible.
Perhaps some of the most impressive length measurement tools developed recently

are gravitational wave detectors [1–4]. The goal of these devices is to measure minute
displacements caused by gravitational waves. An example of the extreme sensitivity of
these devices is the recent measurement of the collision of two black holes of approx-
imately 30 M¯ each which occurred 410 Mpc away from the Earth. The gravitational
wave generated by this collision created a peak displacement on Earth of 4 am at approx-
imately 100 Hz. This event was notably measured by the LIGO and Virgo collaborations
in 2016 [5], which was awarded the Nobel Prize in Physics one year after [6].

The principle of operation of these remarkable experiments is surprisingly simple:
it relies on measuring variations in the distance between two mirrors using light. The
mirrors constitute an optical cavity. If the distance between them changes, so will the
cavity’s resonance frequency and, consequently, the phase of light that couples out of
the cavity. By accurately measuring light’s phase, one can retrieve the variations in cavity
length caused by passing gravitational waves or other sources of displacement.

However simple, it was soon understood that achieving the required sensitivities
would prove to be an incredibly complex scientific and engineering challenge. Crucially,
it was necessary to identify and minimize all possible sources of cavity displacement os-
cillations not related to gravitational waves, which in this context act as sources of noise.
Some effects are quite obvious. For example, the cavity mirrors need to be decoupled
as much as possible from their environment, so that mechanical vibrations around the
experiment do not make the mirrors move [7, 8]. Others are much subtler.

Of particular interest, when a photon reflects off one of the mirrors, it will trans-
fer some momentum to the mirror and thus displace it. Although the momentum of a
single photon is small, this effect can still be relevant, since one typically works with a
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large number of photons and each photon bounces back and forth inside the cavity a
large number of times. If the rate of photon momentum "kicks" (i.e. the radiation pres-
sure) was stable, it would simply cause a fixed change of the cavity length. But due to
the random nature of light [9], the radiation pressure fluctuates and acts as a source of
displacement noise.

CAVITY OPTOMECHANICS

In the context of displacement measurements, the radiation pressure is typically seen
as a source of noise which should be avoided in order to increase the measurements’
sensitivity. Interestingly, one can look at it not only as a source of noise, but also as a
tool to control the mirror’s motion. For example, if the radiation pressure is modulated
in phase with the motion, then the mirror can be accelerated; vice versa, if the force
is out of phase, it is possible to decelerate it. This type of feedback amplification and
cooling can be applied directly to a moving particle [10] but, together with an optical
cavity, this effect can be harnessed to control objects with a high mass [11]. For example,
using feedback cooling it is possible to dampen the motion of particular mechanical
resonances of the gravitational wave interferometers and thus decrease their thermal
displacement noise [12].

Cavity optomechanics is the field that more generally studies the interaction between
an optical cavity and a mechanical oscillator [13]. These effects are observed in a mul-
titude of systems with different optical and mechanical properties. The mechanical res-
onators span from massive, kilogram-scale mirrors oscillating at 100 Hz [12]; to thin, sus-
pended nanogram membranes with frequencies around 1 MHz [14]; or even picogram
nanobeams with GHz vibrational modes [15].

The most conventional cavity optomechanical picture is the case where the mechan-
ical resonator is a mirror at the end of a Fabry-Perot cavity, such as in gravitational wave
interferometers. Another typical situation is that in which the optical and mechanical
oscillators are highly integrated in the same volume, such as in nanobeams, where a
photonic crystal confines the mechanical and optical modes in the same region [15]. An
issue with these configurations is that when either the cavity or the mechanical oscilla-
tor needs to be modified, they will in general also affect the other one. An alternative
is to place a membrane in the middle of an optical cavity [14]. In this way, the cavity
and the mechanical oscillator are completely independent, avoiding common trade-offs
between their properties.

Over the past years, the goals of cavity optomechanics expanded further than high
sensitivity displacement detection. Indeed, today’s most interesting paths of research lie
on the regime where both oscillators behave as quantum harmonic oscillators. In this
case, the optomechanical coupling allows the preparation of quantum states of motion
(optical and/or mechanical) [16]; studying quantum decoherence mechanisms in mas-
sive objects [17]; or transducing between different frequencies coherently through the
mechanical oscillator [18].
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3

CHALLENGES
A few requirements must be met to realize some of these quantum optomechanics ex-
periments. Most prominently:

• The mechanical resonator must be able to undergo at least a few coherent oscilla-
tions before interacting with incoherent thermal phonons;

• The coupling between optics and mechanics must be large enough to make their
interaction probable and, ideally, deterministic.

The rate of thermal phonons that couple to the mechanical resonator is given by the
product of the thermal phonon occupancy nth, which depends on the working frequency
and environment temperature, and the coupling between the resonator and its thermal
environment, also called the mechanical decay rate, Γm, which is an intrinsic property
of the resonator [13]. The most straightforward way to increase the number of coherent
oscillations that a mechanical resonator can perform before it is decohered by environ-
mental phonons is to decrease nth by cooling the bath temperature. This decreases the
thermal occupation of phonons at the frequency of the mechanical oscillator, therefore
decreasing the rate of thermal phonon coupling. This method is particularly interesting
for GHz resonators, since, at temperatures commonly reached by dilution refrigerators,
the thermal phonon occupancy is so low that the resonator can be considered to be in its
ground state of motion [19]. Unfortunately, in systems with lower frequencies, such as
the ones studied in this thesis, it is not technically feasible to decrease the temperature
sufficiently. Instead, one must engineer the resonator itself to decrease Γm.

The optomechanical coupling g0 is a measure of how strongly the optical and me-
chanical resonators interact [13]. It is defined by how much the cavity frequency changes
for a given displacement of the mechanical oscillator. To facilitate comparison between
different systems, one often looks at the ratio between g0 and the cavity decay rate. If this
ratio is larger than 1, an optomechanical system is said to be in the single photon/phonon
strong coupling regime. This means that a single phonon shifts the cavity frequency by
more than the decay rate. Having such a strong coupling between the optical and me-
chanical oscillators is a long-standing goal in the field. The most common approach to
increase g0 is to optimize the overlap between the optical and mechanical mode vol-
umes, but the best results to date are still orders of magnitude below the strong coupling
regime [20]. Many groups are therefore exploring alternative paths that can bring us
closer to it.

THESIS GOALS AND OUTLINE
One of the most promising approaches towards the strong coupling regime explores the
collective motion of multiple membranes inside an optical cavity [21]. This type of op-
tomechanical array is a variation of the membrane-in-the-middle system. The concept
relies on using two or more highly reflective membranes with a spacing between them
such that they are optically resonant with the outer cavity. Small variations of the relative
position between the individual membranes will change the phase of the outer cavity’s
field more strongly than what would happen with a single membrane. It is predicted that
if the reflectivity of the membranes is high enough and if they are placed much closer to
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each other than the length of the outer cavity, it could be possible to strongly couple the
optical and mechanical oscillators.

This thesis paves the way towards the observation of enhanced coupling with op-
tomechanical arrays of tethered silicon nitride membranes. Chapter 2 briefly introduces
fundamental theory concepts of mechanical resonators, optical cavities, cavity optome-
chanics and optomechanical arrays. Chapter 3 explains how the devices are fabricated
and the tools we use to study them. The following three chapters describe experiments
realized during the course of the past four years. Chapter 4 explores the mechanical
properties of individual tethered membranes and shows that their geometries can be
optimized such that the mechanical decay rate decreases to values that could allow per-
forming quantum optomechanical experiments at room temperature. These membranes
are made reflective by patterning photonic crystals on them. Chapter 5 shows it is pos-
sible to make high-reflectivity photonic crystals on thin silicon nitride membranes with
large areas, which is necessary for optomechanical arrays with low mechanical dissipa-
tion and high optomechanical coupling. Finally, chapter 6 presents the first platform
that combines two tethered silicon nitride membranes with a high reflectivity and a
study of their optomechanical center-of-mass coupling.



2
THEORY

T HIS chapter introduces some theoretical concepts required to understand the exper-
iments performed in the remainder of the thesis. This is a brief introduction and

the reader is recommended to consult the cited references for more details and in-depth
discussions.

2.1. MECHANICAL OSCILLATORS
The displacement of a mechanical oscillator can be described by a vector ~u(~r , t ) [13]. ~r
represents a position on the device and t a particular time at which the displacement
is described. Typically we are interested in studying the normal modes of the oscillator,
described by the product of a time-independent amplitude ~un(~r ) and a scalar function
xn(t ) that contains the time evolution of each mode. n is a label of each specific mode.
The dynamics of these modes are described by the linear equation of motion

mẍ(t )+mΓmẋ(t )+mω2
mx(t ) = F (t ), (2.1)

where m is the mass of the mechanical mode, F (t ) represents the total force applied to
the resonator and where we have dropped the subscript n, since from now on we will
always focus on a single resonance. Γm and ωm are the decay rate and frequency of the
mechanical mode. The decay rate will be discussed in more detail on chapter 4. The
frequency can usually be either calculated, if the geometry of the mechanical oscillator
is simple enough, or simulated.

By Fourier transforming equation 2.1 we can rewrite it in the form x(ω) =χm(ω)F (ω),
whereω is the frequency and χm(ω) is the mechanical susceptibility which describes the
resonator’s displacement in response to applied forces:

χm(ω) = 1

m

1

ω2
m −ω2 − iΓmω

. (2.2)

As such, by measuring x(t ) with respect to a known force F (t ) and performing a Fourier

5
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transform of both, one obtains the mass, frequency and decay rate of the particular res-
onator normal mode which is being studied.

Often, x(t ) is acquired by a spectrum analyzer. This tool measures the variance
Var[x(t )], which is equal to 〈x2(t )〉 if the mean is zero, and performs its Fourier trans-
form, outputting 〈x2(ω)〉 [22, 23]. Using the Wiener-Kinchin theorem we learn that

〈x2(ω)〉 = Sxx (ω),

where Sxx (ω) is the power spectral density of x(t ) [13].
Assuming once again that our system is linear, we can write

Sxx (ω) = ∣∣χm(ω)
∣∣2 SF F (ω),

where SF F (ω) is the power spectral density of the force applied to the resonator. If the
device is in thermal equilibrium with an environment of temperature T ,

SF F (ω) = 2
kBT

ω
Im

[
χ−1

m (ω)
]= 2mkBTΓm

where kB is Boltzmann’s constant. This leads to a thermally driven displacement power
spectral density which follows a Cauchy (Lorentzian) distribution [22, 24]

Sxx (ω) ≈ 2kBT

mωmΓm

1

1+4(ωm −ω)2/Γ2
m

. (2.3)

The previous equations give us the tools to interpret the spectra of mechanical res-
onators measured with a spectrum analyzer. They were derived from a classical interpre-
tation of the resonator’s motion. However, this can also be analyzed from the perspective
of a quantum harmonic oscillator. One of the key results of this picture is that even if the
oscillator has a phonon occupancy n̄ = 0, its position still has a non-zero variance x2

zpf,

where

xzpf =
√

ħ
2mωm

(2.4)

is the zero-point fluctuation of displacement and ħ is the reduced Planck constant.
If the resonator is in thermal equilibrium with its environment, it will have a thermal

phonon occupancy nth ≈ kBT /ħωm [13]. The rate of thermal phonon coupling between
the resonator and the environment is given by

nthΓm = kBT /ħQm,

where Qm = ωm/Γm is the mechanical quality factor. This interaction acts as a deco-
herence mechanism of the resonator. As mentioned on the introduction, in order to
perform quantum optomechanics experiments it is necessary that the resonator can os-
cillate coherently at least a few times, i.e.

ωm

nthΓm
> 1 ⇔ωm > kBT

ħQm
⇔Qmωm > kBT

ħ .

In this context, it is typical to compare mechanical resonators based on Qm fm, where
ωm = 2π fm and the previous inequality can be written as Qm fm > kBT /h ≈ 6.25×1012 Hz.
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L

x

R1 R2

Figure 2.1: Schematic representation of a Fabry-Perot optical cavity, composed of two mirrors with reflectivities
R1 and R2. The mirrors have a distance L between each other. The left mirror is fixed, whereas the second can
suffer displacements of amplitude x around its resting position.

2.2. OPTICAL CAVITIES
Fabry-Perot interferometers are perhaps the most commonly known type of optical cav-
ities. These consist of two mirrors with reflectivities R1 and R2 which are aligned to each
other just as in figure 2.1. An incident optical beam that is transmitted through the input
mirror undergoes multiple reflections inside the cavity before it couples out of it. The
spectrum of a Fabry-Perot cavity results from the interference between all these partially
reflected and transmitted beams. Assuming there are no losses, the reflection and trans-
mission spectra are given by [25]

Rlossless =
(p

R1 −
p

R2
)2 +4

p
R1R2 sin2

(
φ

)(
1−p

R1R2
)2 +4

p
R1R2 sin2

(
φ

) (2.5)

Tlossless =
(1−R1)(1−R2)(

1−p
R1R2

)2 +4
p

R1R2 sin2
(
φ

) (2.6)

where 2φ is the phase light acquires after a round-trip inside the cavity. This is usually
the sum of the phase shift caused by the reflections at the mirrors and the propagation
phase 4πnL cos(θ)/λ. In this, n is the refractive index inside the cavity, L is the distance
between the two mirrors, θ is the angle between light’s propagation direction and the
cavity axis, and λ is the wavelength of light. From here on we will assume n = 1 and
θ = 0, i.e. that the cavity is empty and that light propagates parallel to the cavity axis.

Figure 2.2 contains the reflection and transmission of a Fabry-Perot cavity with R1 =
R2 = 0.9 as a function of phase φ. The reflection is minimized (and the transmission
maximized) when φ= qπ, q ∈Z. These points are called the cavity resonances. Neglect-
ing the phase shifts introduced by the mirrors, the resonance condition can be written
as

φ= 2πL

λ
= qπ⇔ νq = q

c

2L
(2.7)

where we have used c = λν. This equation indicates the frequency of the cavity reso-
nances. Notice that the mirror phase shifts would only add a constant offset to all reso-
nance frequencies. The frequency difference between consecutive resonances is c/2L, a
constant which we name free spectral range (FSR).

Another interesting observation from figure 2.2 is that as the mirror reflectivities in-
crease, the resonances become narrower. For high reflectivities, the full width at half
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Figure 2.2: Reflection and transmission intensity coefficients of a lossless Fabry-Perot cavity as a function of
phase φ, according to equations 2.5 and 2.6. The mirror reflectivities are equal (R1 = R2) and vary from 0.6
(lighter traces) to 0.9 (darker traces).
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Figure 2.3: Reflection and transmission intensity coefficients of a lossless Fabry-Perot cavity as a function of
phase φ, according to equations 2.5 and 2.6. The reflectivity of mirror 2 is kept constant at R2 = 0.9, whereas
R1 varies from 0.6 (lighter traces) to 0.9 (darker traces).

maximum (FWHM) of these resonances, expressed in terms frequency, is given by [26]

κ

2π
= FSR

2π

− ln(R1R2)
. (2.8)

The ratio between a cavity’s FSR and FWHM is called the finesse

F = 2πFSR

κ
= 2π

− ln(R1R2)
≈ 2π

(1−R1)+ (1−R2)
(2.9)

where the approximation assumes that the reflectivities are close to 1. The finesse can
be interpreted as the average number of round-trips that a photon travels in the cavity
before it is either transmitted through one of the mirrors or lost, for example through
absorption or scattering.

When R1 = R2, Rlossless = 0 and Tlossless = 1 on resonance. The same does not happen
if the mirror reflectivities are different from each other, like represented in figure 2.3. In
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this case, the transmission (reflectivity) reaches a lower (higher) value. Analogously to
transmission lines, it is common to say that a cavity’s mirrors are impedance matched or
mismatched if they are equal or different, respectively. This is typically quantified by the
cavity contrast, which is defined by 1−Rlossless on resonance [27]. This is also colloquially
called the reflectivity dip depth.

In case there are intensity losses, for example through scattering or absorption at the
mirrors or somewhere inside the cavity, the reflected and transmitted powers do not add
up to one and so the models must be altered. A simple change which can take losses into
account is through adding to the previous equations a round-trip intensity loss 1− A:

Rlossy =
(p

R1 −
p

R2 A
)2 +4

p
R1R2 A sin2

(
φ

)(
1−p

R1R2 A
)2 +4

p
R1R2 A sin2

(
φ

) (2.10)

Tlossy =
(1−R1)(1−R2)A(

1−p
R1R2 A

)2 +4
p

R1R2 A sin2
(
φ

) . (2.11)

Absorption worsens the cavity finesse. Equation 2.9 can be generalized to include losses
by defining the round-trip losses ρ = (1−R1)+ (1−R2)+ A as F = 2π/ρ.

So far the discussion considered a cavity composed of two infinite plane mirrors par-
allel to each other, with an incident plane electromagnetic wave with wavevector per-
pendicular to the mirrors. In this case, we can simply describe the cavity modes as plane
waves as well. However, in practice mirrors have a finite size and laser beams have a
gaussian profile. As a gaussian beam propagates back and forth inside the cavity, its
width (in the direction transverse to the cavity axis) increases. If the width is larger than
the mirror size, part of the light is lost through diffraction losses [25, 26]. Due to this, it
is hard to make high finesse cavities with a parallel-plane cavity geometry, since it im-
poses strict parallelism between the mirrors and also that they have a large area. Instead,
one typically uses spherically curved mirrors. In certain conditions, cavities composed
of spherical mirrors can have modes which are stable, in the sense that the beam width
does not increase after one round-trip and, therefore has lower diffraction losses.

A cavity can sustain stable modes if the condition 0 ≤ g1g2 ≤ 1 is met, where gi = 1−
L/ROCi is the stability parameter and ROCi is the radius of curvature of mirror i [25, 26].
In a plane-parallel cavity ROCi =∞, and therefore the above product would be 1, right on
the limit of the stability condition. Commonly, stable cavities sustain Hermite-Gaussian
modes [25, 26], whose electric field distribution is described by

El ,m(x, y, z) = E0
w0

w(z)
Hl

(p
2

x

w(z)

)
Hm

(p
2

y

w(z)

)
e−

x2+y2

w(z) e−i kz+i (1+l+m)η (2.12)

where z is longitudinal direction of beam propagation, x, y are the transversal axes, E0

is the field amplitude, w0 is the beam waist radius or spot size, w(z) is the radius of
the beam at a distance z from the spot, H j are Hermite polynomials of order j , k is the
wavenumber, and η = arctan

(
λz/πw2

0

)
. l and m indicate the order of the transversal

mode. The cavity spot size w0 is defined by the geometry of the optical resonator [26]

w0 =
√

Lλ

π

[
g1g2(1− g1g2)

(g1 + g2 −2g1g2)2

]1/4

. (2.13)
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The last term of equation 2.12 is the phase of the Hermite-Gaussian modes, which
include a propagation term −i kz, and the Gouy phase i (1+ l +m)η. The latter is an
important term which can help us differentiate the behaviour of the multiple transversal
cavity modes. By considering its effect on the cavity resonance condition we arrive at an
improved description of the cavity spectrum [23, 25, 26]:

νq,l ,m = c

2L

[
q + 1+ l +m

π
arccos

(±pg1g2
)]

. (2.14)

Each of these modes is an independent peak on the cavity spectrum. When a Gaussian
beam is sent to an optical cavity, it is split into all the transversal cavity modes accord-
ing to the projection of the incident beam to these modes. This projection tells us how
much of the incident beam energy propagates in each transversal mode. It also affects
the contrast of each resonance. One is usually interested in the situation when most of
the incident beam is coupled to the fundamental transversal mode l ,m = 0. For this to
happen, the spot of both incident beam and fundamental mode must be located at the
same position and must have the same radius w0. The process of adjusting the incident
beam to maximize its overlap with the fundamental cavity mode is called mode match-
ing.

2.3. CAVITY OPTOMECHANICS

2.3.1. LINEAR COUPLING HAMILTONIAN
The electromagnetic field can be quantized, giving rise to a description of light as quan-
tum harmonic oscillators with a distribution of single photon energies ħω [9]. Inside
an optical cavity, the energy spectrum is restricted to the cavity modes ħωq,l ,m , where
ωq,l ,m = 2πνq,l ,m is given by equation 2.14, for the case of a Fabry-Perot cavity. Since
we will always be concerned with the same optical mode, the mode indices will be from
now on dropped and the cavity mode frequency will be labeled as ωc. The total energy
in a mode is given by the product of the single photon energy with the total number of
photons in the mode n̂c. In mathematical form, the Hamiltonian is given by

Ĥ =ħωc

(
n̂c + 1

2

)
.

Recall that even if a quantum harmonic oscillator is not occupied (i.e. if n̂c = 0), it still
has a zero-point energy of ħωc/2, as can be read from the previous equation.

In a similar fashion, the motion of a mechanical oscillator can also be quantized.
Considering a particular mechanical mode with frequency ωm and phonon number n̂m,
the Hamiltonian of a system containing two independent optical and mechanical modes
is

Ĥ =ħωcn̂c +ħωmn̂m

where the zero point energy ħ (ωc +ωm)/2 has been dropped.
Consider now the situation in which the optical and mechanical oscillators are some-

how coupled. For example, one of the cavity mirrors might be allowed to move, modu-
lating the cavity length and, therefore, the cavity mode spectrum. In such a dispersive
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cavity optomechanics system, the cavity frequency becomes a function of the mechani-
cal resonator’s position x:

Ĥ =ħωc(x)n̂c +ħωmn̂m.

We are typically concerned with small mechanical displacements. As such, the previ-
ous equation can be approximated by expandingωc(x) into a sum of Taylor polynomials
and discarding terms with an order larger than 1, thus arriving at the linear coupling
Hamiltonian

Ĥ ≈ħ
(
ωc(0)+ ∂ωc(x)

∂x
x̂

)
n̂c +ħωmn̂m =ħωc(0)n̂c +ħωmn̂m +ħ∂ωc(x)

∂x
x̂n̂c.

G ≡ ∂ωc(x)/∂x is called the optomechanical coupling strength and it represents the cavity
frequency shift per unit of displacement [28].

Recall that n̂c = â†â, where â† and â are the creation and destruction ladder opera-
tors or the specific light mode we are studying. Similarly, n̂m = b̂†b̂, where b̂† and b̂ are
the ladder operators of the mechanical oscillator. The ladder operators can be used as
well to describe the mechanical displacement as x̂ = xzpf(b̂† + b̂), where xzpf is the zero-
point displacement amplitude, as defined in equation 2.4. The Hamiltonian of the last
equation can now be rewritten using the ladder operators as

Ĥ ≈ħωc(0)â†â +ħωmb̂†b̂ +ħGxzpf

(
b̂† + b̂

)
â†â.

where the first two terms are the uncoupled resonator energies and the last term is the
dispersive optomechanical interaction. The product g0 ≡ Gxzpf is called the vacuum or
single photon/phonon coupling rate and it quantifies the cavity frequency shifts due to
the mechanical vacuum fluctuations. In other words, it is a measure of the interaction
strength between single photons and phonons. g0 is a particularly useful value which
allows comparing optomechanical systems with distinct properties.

It is often relevant to compare g0 to the cavity linewidth κ. The ratio g0/κ deter-
mines how much the cavity frequency shifts in relation to the cavity linewidth when the
mechanical resonator has a displacement of xzpf. If g0/κ > 1, the system is said to be
strongly coupled at the level of single quanta. In this case, a single phonon excitation is
able to shift the cavity resonance by more than the cavity linewidth, making the optome-
chanical interaction non-linear and the system energy spectrum anharmonic [28, 29].
This regime is crucial for quantum optomechanics experiments such as photon block-
ade or efficient production of non-classical optical and mechanical states [28]. How-
ever, apart from atomic clouds [30], all optomechanical systems have so far g0/κ < 1.
The most common approach to reach single-photon/phonon strong coupling is to max-
imize the overlap between the optical and mechanical modes, such as with nanobeams
or zipper-cavities. Indeed, the best results reported to date are with slotted photonic
crystal cavities with g0/κ = 2×10−3 [20, 31]. This is still far from strong coupling and
there is an intense research effort in the field to reach this regime.

The following subsections discuss the situations in which one or more mechanical
resonators are placed in the middle of an optical cavity, with a focus on calculating the
optomechanical coupling strength of both systems. Interestingly, the relative motion
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Figure 2.4: Frequency of several consecutive longitudinal modes of a Fabry-Perot (left) and MIM (right) as a
function of mirror and membrane displacement, respectively. The displacement is normalized by the laser
wavelength. Both cavities have the same length. The frequencies are subtracted by the laser frequency and
normalized by the FSR. The membrane reflectivity |rm|2 takes the values 0.4 (lighter traces), 0.6, 0.8 and 0.99
(darker traces).

between multiple mechanical resonators has a coupling strength that scales very favor-
ably with the reflectivity of the individual elements, offering a promising path towards
reaching the strong coupling regime.

2.3.2. FABRY-PEROT
The previous subsection did not specify an equation for the optomechanical coupling
strength G since this is dependent on the details of the particular system one is inter-
ested in. One of the simplest cases is that of a Fabry-Perot cavity in which one of the
mirrors can move, such as represented in figure 2.1. In that situation, the frequency of a
particular cavity mode isωFP

c (x) = 2πqc/2(L+x) (eq. 2.14) where q is the index of the lon-
gitudinal mode which is being studied (assuming that this is the fundamental transversal
mode and ignoring additional frequency offsets) and x is the displacement of the mirror
from the average cavity length L. With this we have direct access to the coupling strength
of a Fabry-Perot:

GFP = ∂ωFP
c (x)

∂x
= 2π

∂

∂x

qc

2(L+x)
=−ω

FP
c (x)

L+x
=−4π

FSR

λ
(2.15)

where c = λωFP
c /2π. The left plot of figure 2.4 shows the cavity frequency for a few con-

secutive longitudinal FP cavity modes as a function of displacement of one of the mir-
rors. Since the displacement is typically very small in comparison to the cavity length,
the cavity frequencies appear to decrease linearly with displacement with a constant rate
GFP.

2.3.3. MEMBRANE-IN-THE-MIDDLE
One extension of the simple Fabry-Perot cavity is the case when the mirrors are fixed
rigidly but a mechanical resonator is placed in the middle of it. The first experiments
of this type used a membrane in the middle (MIM) of an optical cavity [14, 32], but the
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Figure 2.5: Schematic representation of a membrane with reflectivity Rm = |rm|2 in the middle of a Fabry-
Perot optical cavity, composed of two mirrors with reflectivities R1 and R2. The mirrors are fixed at a distance
L between each other. The membrane can undergo displacements of amplitude x around its resting position.

mechanical element can also be a nanosphere, a cantilever, or any other type of me-
chanically compliant scatterer [33]. This is schematically represented in figure 2.5. As
the membrane moves along the cavity axis, it changes the boundary conditions of the
electric field and, consequently, the optical spectrum. One advantage of a MIM system
is that the mechanical and optical properties can be decoupled from each other. This
means that in principle one can study a mechanical element with arbitrary characteris-
tics and change the cavity finesse independently, whereas in other systems these two are
often coupled together and suffer from technical trade-offs.

To obtain an expression for a MIM’s cavity frequency as a function of the membrane’s
position ωMIM

c (x) and, consequently, the optomechanical coupling strength GMIM, we
analyze the system in one dimension (along the cavity axis) and separate the electro-
magnetic field into forward and backward propagating planewaves in different regions,
labelled by the index i . The waves share the same propagation constant |k| = ωc/c but
have different amplitudes ai and bi , as indicated in figure 2.5. In the paraxial beam ap-
proximation, this type of problem can be solved using the transfer matrix method [25,
34–36]. For this the system is separated into individual building blocks, such as free-
space propagation and scattering. Each of these can be described by a 4× 4 matrix M
which, when applied to the field amplitudes on one side i of the block, outputs the field
on the opposite side i −1: [

ai−1

bi−1

]
= M

[
ai

bi

]
.

The free-space propagation over a distance d can be represented by the matrix

Mp(d) ≡
[

e i kd 0
0 e−i kd

]
and the scattering at an infinitesimally thin element with amplitude reflection and trans-
mission coefficients r and t by

Ms(r, t ) ≡ 1

t

[
t 2 − r 2 r
−r 1

]
.

We can now transform the MIM into a product of these two matrices:[
ain

br

]
= Ms(rM, tM)Mp(

L

2
+x)Ms(rm, tm)Mp(

L

2
−x)Ms(rM, tM)

[
at

0

]
= MMIM

[
at

0

]
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where rM and tM are the amplitude reflection and transmission coefficients of the mir-
rors and rm and tm those of the membrane. x is the displacement of the membrane from
the center of the cavity. We assume that the mirrors have the same amplitude reflection
and transmission coefficients, and that they are lossless (i.e. |rM|2+|tM|2 = 1). The mem-
brane transmission and reflection coefficients are given by [37, 38]

tm = 2n

2i n cos(knl )+ (n2 +1)sin(knl )
, rm = (n2 −1)sin(knl )

2i n cos(knl )+ (n2 +1)sin(knl )

where n is the refractive index and l the thickness of the membrane.
Having defined the matrix MMIM, the overall amplitude transmission tMIM and re-

flection rMIM of the system can be calculated by taking the matrix elements Mα,β
MIM as

follows [34]:

tMIM = 1

M 2,2
MIM

, rMIM = M 1,2
MIM

M 2,2
MIM

. (2.16)

Thus using this method one can obtain a full description of the MIM system. It should
be pointed out that it is not necessary to assume that the mirrors are lossless nor that
they have the same transmission and reflection coefficients. However, these assump-
tions strongly simplify the analysis and they do not impact the cavity resonance fre-
quencies, which is what we are interested in finding. These frequencies can be found
by maximizing |tMIM|2, which gives [37, 39]:

ωMIM
c (x) = 2πFSR

[
q + (−1)q

2
− (−1)q

π
arccos

(
|rm|cos

(
4πx

λ

))]
(2.17)

where q is the index of the mode. This expression assumes that the membrane is loss-
less, i.e. that |rm|2 + |tm|2 = 1. The right plot of figure 2.4 represents ωMIM

c (x) for differ-
ent membrane reflectivities Rm = |rm|2. Just as expected, equation 2.17 reduces to the
frequency of an empty Fabry-Perot (eq. 2.7) when rm = 0, with equally spaced longitudi-
nal modes and no dependency in the displacement of the fully transparent membrane.
However, if the membrane is reflective, the behavior of a MIM is markedly different.
There are two regimes which are particularly interesting.

The first is the regime for which the cavity frequency depends linearly on the dis-
placement. This occurs for small displacements close to x = λ/8+nλ/4,n ∈ Z. Around
these positions, the first derivative of the cavity frequency, which was defined in subsec-
tion 2.3.1 as the linear coupling strength, is given by

GMIM = max

(∣∣∣∣∂ωMIM
c (x)

∂x

∣∣∣∣)= 8π
FSR

λ
|rm| = 2GFP |rm| . (2.18)

From the last equality we learn that the coupling strength of a MIM system can be twice
as high as that of a Fabry-Perot with the same cavity length, if the reflectivity of the mem-
brane is large enough.

The second regime of interest occurs around x = λ/4+nλ/4,n ∈ Z. For small dis-
placements around these positions, the first derivative of ωMIM

c (x) vanishes and the fre-
quency depends quadratically on the displacement. Just as for the linear coupling, we
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Figure 2.6: Schematic representation of a membrane with reflectivity Rm = |rm|2 in the middle of a Fabry-
Perot optical cavity, composed of two mirrors with reflectivities R1 and R2. The mirrors are fixed at a distance
L between each other. The membrane can undergo displacements of amplitude x around its resting position.

can define a quadratic coupling strength [28, 32]

G (2)
MIM = max

(∣∣∣∣∂2ωMIM
c (x)

∂x2

∣∣∣∣)= 32π2 FSR

λ2

|rm|√
1−|rm|2

and a quadratic vacuum coupling rate g (2)
0 =G (2)

MIMx2
zpf.

It is interesting to note that by displacing the membrane by λ/8, the system’s main
coupling mechanism can be easily tuned from linear to quadratic. This is another advan-
tage of the MIM platform, which is not easily achievable in other systems. The quadratic
coupling regime offers different physics which do not have as much attention in the op-
tomechanics community. Also in this thesis we will focus our attention on the properties
of the linear MIM coupling.

2.3.4. OPTOMECHANICAL ARRAYS

From the previous subsection we learned that GMIM increases with the membrane am-
plitude reflectivity coefficient. This can also be seen in figure 2.4. However, this scaling
is linear, which means that only modest gains can be made even with highly reflective
membranes. In fact, the best reported g0/κ MIM ratios are of the order of 10−4 which is
still quite far from the strong coupling regime [14, 40].

Curiously, some theoretical proposals predict that variations of the MIM configu-
ration can result in strongly enhanced linear optomechanical coupling strengths and,
consequently, may provide a path towards strong coupling [21]. These consist in placing
more than one scattering element with similar mechanical and optical properties in the
middle of a cavity. If the scatterers are somehow coupled together, for example through
the electromagnetic field that travels between them, their motion can be described by a
set of collective motional modes. We will discuss the coupling of two particular collec-
tive modes of motion to the optical cavity: the center-of-mass (COM) mode, in which the
membranes move synchronously with each other, and the relative or breathing mode, in
which the COM remains constant but the distance between membranes oscillates.

Figure 2.6 represents such an optomechanical array for the particular case of two
membranes in the middle of a cavity. We assume that the membranes have the same
amplitude reflectivity rm and mechanical properties. The membranes have an initial
spacing between them of l and can undergo displacements of x1 and x2 in relation to
their resting positions. Defining the position of mirror 1 as the origin of the x axis, the
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COM can be found from L/2+ x1 + x2, whereas the relative distance between the mem-
branes is given by l + x2 − x1. Similarly to the previous subsection, this problem can be
solved using the transfer matrix method. The matrix which defines the whole system is

Ms(rM, tM)Mp(
L− l +x1

2
)Ms(rm, tm)Mp(l +x2 −x1)Ms(rm, tm)Mp(

L− l −x2

2
)Ms(rM, tM)

and the cavity frequency can be calculated once again from the maxima of the transmis-
sion function (c.f. equation 2.16). Several papers discuss this and alternative methods of
obtaining the cavity frequency of an optomechanical array [21, 38, 39, 41, 42], but in this
thesis we will only reproduce the results more relevant to us, pertaining to the optome-
chanical coupling strength of the COM and relative modes of motion.

The two-membrane array can be seen as a shorter Fabry-Perot etalon. As such, the
spacing between the membranes will define the reflectivity rT of the stack. If the mem-
branes move synchonously, the spacing between them and, consequently, the reflectiv-
ity, remains constant. As such, the COM motional mode couples to the cavity in a similar
fashion to a MIM. The COM coupling strength takes a similar form to equation 2.18 but
the reflectivity is now that of the stack of membranes [21]

GCM = 8π
FSR

λ
|rT| = 2GFP |rT| . (2.19)

When using low reflectivity membranes, GCM is can be larger than GMIM since, in that
case, |rT| can be higher than |rm|. However, by adding a membrane, the system’s total
mass doubles. Therefore, the optomechanical coupling rate becomes

g CM
0 = 2GFP |rT|

xzpfp
2

where xzpf is that of a single membrane. If |rm| is close to 1, g CM
0 is actually lower than

g MIM
0 by a factor of

p
2. In a more general way, although GCM does not depend directly

on the number of membranes used (but indirectly through the total reflectivity) the cou-
pling rate of a stack with N similar membranes scales as

g CM
0 = 2GFP |rT|

xzpfp
N

where xzpf is that of a single membrane.
For the COM mode, the membranes move synchonously and the distance between

them is fixed. Therefore, the reflectivity of the membrane stack remains constant. In
contrast, for the relative motional mode, the COM is fixed but the distance between
the membranes oscillates. As a consequence, the reflectivity of the stack varies more
strongly, introducing larger optical phase shifts and, thus cavity frequency oscillations.
This effect is most pronounced for small displacements around a certain spacing l for
which the membrane array is optically transmissive. In this case, the coupling strength
is [39]

Grel = 2GFP
|rm|

1−|rm| . (2.20)
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The previous equation is valid only for reflectivity values not too close to 1. We can see
that the coupling strength scales very favourably with the single membrane reflectivity.
As the reflectivity approaches 1, the coupling strength is capped at [38]

Gmax
rel ≈GFP

L

l
=GMIM

L

2l
. (2.21)

This means that the coupling of the relative motion between two membranes is en-
hanced by a factor of L/2l in comparison to the coupling of a single MIM, when the
membrane reflectivity is close to 1. This enhancement factor is geometrically defined
and if the membranes are placed close together in the middle of a long cavity, one could
aim at achieving coupling rates close to the strong coupling regime. As opposed to the
COM coupling, this effect scales favourably with the number of membranes in the array,
with a factor of N 3/2 [21].

In conclusion, we have seen that the optomechanical coupling between the relative
motion of an array of membranes in the middle of an optical cavity can be very large,
provided that the membranes are close together and that their reflectivity is very high.
The challenge lies in successfully creating such structures while maintaining good me-
chanical properties. This thesis contains a series of experiments that culminates in an
optomechanical array of two highly reflective membranes which paves the way towards
the observation of coupling enhancement in the context of optomechanical arrays.





3
METHODS

T HE goal of this thesis is to develop and study mechanical resonators for optomechan-
ical experiments in membrane- or array-in-the-middle configurations. This chapter

contains a description of the devices that were used, in particular in what concerns their
design and fabrication. It also discusses the most important methods and techniques
used to perform the studies presented in the following chapters: two setups used to test
and characterize devices in terms of their mechanical and optical properties, followed
by a cavity setup, whose goal is to perform optomechanical experiments.

3.1. DEVICE DESIGN AND FABRICATION

3.1.1. DESIGN
The first membrane-in-the-middle (MIM) experiments were performed using square
membranes made of suspended silicon nitride (SiN) films [14, 37]. These films are typ-
ically created using low pressure chemical vapor deposition (LPCVD) on top of a crys-
talline silicon (Si) substrate. With this technique it is possible to obtain SiN films with
large intrinsic stress (∼ 1GPa), high purity and smooth surfaces. Due to these properties,
SiN square membranes can have large mechanical quality factors of 1×106 at 1 MHz and
low optical losses (imaginary part of the refractive index of ∼ 1×10−6 at 1550 nm). This
makes them very interesting objects of study for MIM optomechanics experiments.

Recently many groups started exploring if and how the mechanical dissipation of
such devices could be improved even further. One possible approach is to design a struc-
ture around the membrane which impedes the leaking of phonons around the mechan-
ical resonance frequency which one is interested in interacting with. These phononic
shields effectively try to create a bandgap to avoid mechanical excitations from propa-
gating.

A different approach is to change the geometry of the membrane and its connec-
tions to the substrate in order to lower the mechanical dissipation through stress engi-
neering. This is the approach followed in this thesis. We suspend square membranes
with a side length of 100 ∼ 300µm using four ∼ 10µm-wide tethers connected to the
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Figure 3.1: False-colored scanning electron microscope picture of three trampoline membranes fabricated on
the same Si substrate. The membranes patterned onto LPCVD SiN and suspended by four tethers. The right
figure is a zoom-in of one of the membranes, where the PhC pattern can be seen.

substrate. Figure 3.1 shows examples of this type of tethered or trampoline membranes.
Chapter 4 explores in more detail the loss mechanisms of this type of structure and how
their mechanical decay can be optimized to be at least two orders of magnitude better
than simple square membranes at the same fundamental resonance frequency.

In addition to manipulating the mechanical properties of SiN membranes, we study
and tailor their optical spectrum using photonic crystals. The following subsections ex-
plain their principle of operation, as well as how the devices are fabricated.

3.1.2. PHOTONIC CRYSTAL SLABS

As mentioned on the introduction, the mechanical resonators studied in this thesis are
thin silicon nitride membranes and we interact with them using perpendicularly inci-
dent optical beams. The reflectivity spectrum of such a thin film is well modelled by a
low finesse Fabry-Perot etalon (see section 2.2) in which the refractive index inside the
etalon is that of silicon nitride (n ≈ 2 at λ = 1550nm [43]) and the reflectivity of the in-
terfaces R = 0.11 can be calculated through Fresnel’s equations [44]. For a wavelength of
1550 nm, the reflectivity is a function of film thickness t , with a period λ/2n = 387.5nm,
and reaches its first maximum of 0.6 at λ/4n = 193.75nm. Two problems arise. First,
one is often interested in using films thinner than 193.75 nm, for reasons which will be-
come clear on chapter 4. Second, for some applications it is crucial to have membrane
reflectivities much higher than 99 %.

To get around these issues, we pattern a square array of holes on the thin film in or-
der to create a photonic crystal (PhC) slab [45, 46]. The left side of figure 3.2 represents a
unit cell of such a device. The cylindrical holes have a radius r and are patterned with a
period a (also called the lattice parameter) onto a membrane with thickness t . Figure 3.2
(right) contains a cross-section view of a PhC slab. Suppose the device interacts with a
plane-wave with an incident wavevector~ki. If the slab was not patterned with the PhC,
its reflection~kr and transmission~kt would be well modeled from the Fabry-Perot etalon
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Figure 3.2: Left: unit cell of a photonic crystal slab. The crystal consists on a series of cylinders with radii r
etched with a periodicity a onto a film with thickness t . Right: cross-section of a PhC slab and representation
of the wavevectors involved in the resonant response of the device.

model (eqs. 2.10 and 2.11). In addition, the slab supports in-plane guided modes, rep-
resented by~kg . The photonic crystal functions as a grating which diffracts the incident

beam and the guided modes. The diffracted wavevectors~kd depend on the geometry of
the PhC. By careful design, it is possible to modematch the incident and guided modes,
resulting in an efficient coupling between~ki and~kg , as well as between~kg and~kr,t [47].
The interference between the highly resonant light which leaks out of the guided modes
with broadband direct reflection and transmission of the thin film results in spectral fea-
tures which resemble Fano resonances [48].

The plot in figure 3.3 is an example of the reflection spectrum of such a PhC slab. Due
to the symmetry of the unit cell, this type of structure is polarization independent for
normal incidence. The resonance wavelength λPhC is defined by the geometrical param-
eters of the slab. To find geometries for which λPhC is close to our operating wavelength
of 1550 nm, we use simulation softwares which are able to estimate the spectrum of PhC
slabs. For this we have used Lumerical [49], a commercial simulator based on the finite-
difference time-domain (FDTD) method, as well as a S4 [50], an open-source rigorous
coupled-wave analysis (RCWA) solver. These programs calculate the optical response of
a PhC slab when a plane wave of a given wavelength is incident on it.

With FDTD, the space is discretized and Maxwell’s equations are solved by approxi-
mating the derivatives as central-differences. This process is repeated such that the time
and space propagation of an electromagnetic wave incident on a PhC can be obtained.
With this method one can simulate the response of a short pulse incident on a PhC. By
Fourier transforming the time response we obtain the frequency spectrum. This makes it
a simple method to calculate the spectrum over a large range of wavelengths with a single
simulation. In addition, it is possible to simulate a whole structure composed of many
unit cells, as well as to define multiple types of incident beams, such as plane-waves or
Gaussian beams. Since the whole space and time must be discretized, this comes at the
cost of long simulation durations and large memory consumption.

By contrast, the RCWA method simulates the response of plane-waves incident on
the unit cell of a longitudinally periodic structure. The software divides the unit cell into
multiple layers (such as vacuum or silicon nitride) which can have arbitrary geometries
in the longitudinal directions. It then calculates the modes of the electromagnetic field
in each of the layers and solves the boundary conditions at the interfaces between lay-
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Figure 3.3: Example of the reflection spectrum of a PhC slab, resembling a Fano resonance, with resonance
wavelength λPhC.

ers, assuming uniformity in the z direction and periodicity at the edges of the unit cell.
The reflected and transmitted waves are calculated as the sum of the electromagnetic
modes. The user must choose how many modes to use from the infinite basis of the
electromagnetic field. For simple structures, such as the PhCs used in this work, only a
small number of modes are necessary to accurately simulate the spectrum. Because of
this, and since it does not require a fine discretization along the z direction, RCWA can
be more efficient than FDTD. Each simulation calculates the electromagnetic field for a
specific wavelength. This can be repeated over the desired wavelength range.

When designing a PhC membrane, we start with a known device thickness and de-
sired resonance wavelength. We then run an algorithm which optimizes the lattice con-
stant a and hole radius r for which the spectral response of a plane wave perpendicu-
larly incident on a unit cell of a PhC with those dimensions has a resonance wavelength
close to the desired one. Given the simplicity of our structure and simulation, FDTD and
RCWA require similar computational times and therefore we have used both methods
for this application.

In some cases, we would like to study how a Gaussian beam, and not a simple plane
wave, interacts with the sample. If performed with FDTD, this would be computation-
ally expensive, since it would have to simulate a space with a volume considerably larger
than the actual Gaussian beam waist. Furthermore, each simulation would be specific to
a given beam waist. We know, however, that a Gaussian beam (and other types of beams)
can be composed from an infinite sum of plane waves with a continuous (Gaussian) dis-
tribution of wavevector angles. As such, one can simulate the spectrum of many plane
waves incident on the PhC unit cell at different angles and later recreate the response of
Gaussian beams with arbitrary waist radii. Each plane wave simulation is computation-
ally cheap and can be reused later for the recreation of any type of beam. This method is
explained in more detail on chapter 5.
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3.1.3. FABRICATION
This section describes the fabrication process in general terms. A more detailed discus-
sion can be found in [51]. The essential steps to fabricate a tethered SiN membrane are:

1. SiN deposition

The fabrication process starts with the preparation of the substrate. We use double-
side polished silicon (Si) substrates, with the crystal orientation 〈100〉 and a thick-
ness ranging from 100µm to 1 mm. The substrates are cleaned with RCA-1 and -2
processes, which remove organic and ionic contaminants, as well as stripping the
oxidized surface layer. Using low pressure chemical vapor deposition (LPCVD), a
thin silicon nitride (SiN) layer is uniformly deposited on top of the Si substrates at
a temperature of 800 °C (fig. 3.4a). After deposition, the substrate is slowly cooled
down. Due to their difference in thermal expansion coefficients, as the chip cools
down, SiN contracts more than Si, resulting in a net tensile stress of the thin film at
room temperature. Depending on the exact recipe, the stoichiometry of the film
can be controlled, as well as its final intrinsic stress. Using this technique we can
deposit films with a thickness between 25 and 300 nm and about 1 GPa of intrinsic
stress.

2. Lithography

The SiN layer is patterned using electron beam lithography. For this, a 500 nm-
thick layer of positive electron beam resist (AR-P 6200) is spun on the chip (see
fig. 3.4b). The trampoline and PhC patterns are exposed on the resist layer using
a Raith EBPG 5200 lithography system. We typically write an array of 3×3 devices
on a single chip. With this we can either sweep some parameter of the device ge-
ometry, or make 9 similar ones to test consistency of properties. The areas of the
resist exposed to the electron beam are developed using pentyl acetate (fig. 3.4c).

3. SiN etching

The resist pattern is transferred on to the SiN layer using reactive ion etching (see
fig. 3.4d). In particular we create a plasma of C4F8/SF6 or CHF3 using an inductively
coupled reactive ion etcher, which etches the SiN both physically and chemically.
Once the pattern is transferred, the electron beam resist is stripped with an O2
plasma and a piranha (H2SO4/H2O2) solution (fig. 3.4e). Often it is also necessary
to pattern the SiN layer of the opposite side. In that case, we repeat the lithography
and SiN etching steps, taking care to protect the already patterned layer with resist
to minimize harm or contamination.

4. Si etching

The Si between the two thin film SiN layers is removed using a KOH wet etching
step (fig. 3.4f). We typically perform this process with a KOH concentration of 30 %
in weight and at 70 °C, which results in a Si etching rate of 44.5µm/h along the
〈100〉 direction. The residuals from KOH etching are cleaned using a solution of
HCl. Furthermore, organic residues from any of the previous steps can be cleaned
using a piranha solution. During this step, the SiN patterns are suspended and
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Figure 3.4: Schematic representation of the essential steps for the fabrication of tethered SiN membranes.
Adapted from [51].

therefore the chip must be handled with great care. Some of the structures which
we fabricate are very sensitive to shocks and surface tension forces between liq-
uids. Particular attention must be given to the way the samples are dried. For this
we use critical point drying, which greatly decreases the exposure of the sample to
large surface tension forces and to the commonly used N2 blow drying.

Since we typically alter the geometry of the trampolines and the photonic crystal pat-
terns in almost every sample iteration, it is more useful to work with small chips rather
than a whole wafer. Therefore, we perform the SiN deposition on a 4 ′′ wafer, since this
step is common to every chip with the same thickness, which we afterwards dice into
10×10 mm2 chips. Before dicing, we cover the wafer with photoresist on both sides to
protect the surfaces from scratches and contamination during dicing and handling. The
protective photoresist coating is stripped using acetone immediately before each chip
is used in a lithography step. If after stripping the chip still looks to have contaminated
spots, it is cleaned using a piranha solution.

If only one side of the chip were to be patterned with a trampoline, after the Si etch-
ing the unpatterned side would have a suspended square SiN membrane. To obtain a
trampoline with clear optical access on both sides, we must also perform a lithography
and SiN etching step on the side opposite to the trampoline. For single-trampoline de-
vices, we simply pattern a square on the side opposite to the device. This way, during the
Si etching, both sides of the chip are etched simultaneously, making this step take half as
long as if only one side were to be patterned.

In fact, it is crucial to minimize the Si etching time. Even though KOH etches Si
anisotropically, it is not perfectly selective to a single crystal orientation. In particular,
the etch rate ratio between the 〈100〉 and the 〈111〉 directions, which correspond to the
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perpendicular and parallel directions to the chip surface, is about 74:1. This results in
a small overhang around the trampolines which has a strong impact in the mechanical
properties of the devices. One method to decrease the overhang substantially is to use
a special chip holder which isolates the trampoline side and only exposes the opposite
one to the etchant [52]. With this, the process can be stopped as soon as the KOH etches
the Si underneath the trampoline, minimizing that side’s exposure to KOH and therefore
the overhang. However, this method is often cumbersome and time-consuming.

As it was briefly mentioned, the devices must be handled with care once suspended.
Whereas 200 to 50 nm devices are notoriously robust, mishandling thinner ones results
in unwanted consequences. The worst case is when the trampoline rips or shatters. Of-
ten, however, the device remains intact but with poor mechanical properties. As such,
we take great care to avoid shock collisions of the chip holder, strive to move the chip as
slowly as possible when immersed in liquids, and use critical point drying.

Finally, one must highlight the importance of cleanliness during the whole fabrica-
tion process. Any impurity that lays on the trampoline membranes, in particular on its
tethers, will strongly cripple its mechanical properties. Our recipes therefore include
many cleaning and optical analysis steps to ensure that the chips are clean. The chal-
lenge lies in guaranteeing that this is true over the majority of the chip, since our devices
span much larger areas than what is typical in other photonics applications. One detail
which is often overlooked is the drying step. If not done properly, whenever drying a chip
which was immersed on some liquid there is a chance of leaving residues on the surface
which might be hard to later remove. Water is particularly hard to dry properly. As such,
we try to always transfer the chip to a beaker with isopropyl alcohol, which has a much
lower surface tension and is therefore easier to dry.

3.2. MECHANICS CHARACTERIZATION SETUP
In order to characterize the mechanical resonators studied in this thesis, we have built a
dedicated setup based on the optical readout of the devices’ displacement. When a laser
beam is reflected off a sample, its phase φ(t ) depends on the device’s position x(t ) as
φ(t ) = 2πx(t )/λ, where λ is the laser wavelength. In other words, the device’s movement
changes the optical path of the reflected beam and, consequently, its phase in relation
to a fixed reference. The Fourier transform of the phase oscillations give us access to
information about the mechanical resonances of the device.

Photodetectors are sensitive to light’s intensity but not its phase. Typically, in order
to measure the phase of an optical beam, one interferes it with a reference beam which
does not interact with the sample. The two beams interfere, which translates phase dif-
ferences between them into intensity variations, which can be measured with a pho-
todetector. If all other sources of phase oscillations are small or if they affect both beams
equally, then the phase difference between the two will primarily include signatures of
the sample. Perhaps the best known interferometry techniques are the Michelson and
Mach-Zehnder interferometers. Here we use a different technique, named Balanced Ho-
modyne Detection, which is described in the following subsection.

The setup is schematically represented in figure 3.5. For probing the mechanical dis-
placement we use a fiber coupled laser tunable from 1520 to 1570 nm (New Focus Vidia-
Discrete 6427). Only 10 % of this laser’s power is used to probe the sample, whereas 90 %
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Figure 3.5: Schematic of the mechanics characterization setup. FPC: fiber polarization controller; PID: propor-
tional, integral, differential controller; SA: spectrum analyzer; PM: powermeter; PD: photodiode.

is used as an interference reference (local oscillator). The probe goes through a fiber
polarization controller (FPC) and a circulator. After, it is combined with a 650 nm laser.
Although the optical components are designed for 1550 nm, they still allow the propaga-
tion of this red laser, which coarsely follows the path of the probe and, therefore, is used
as an alignment aid, since 1550 nm is not visible by naked eye nor by Si cameras. The
laser beams are coupled to free-space using a Thorlabs TC12APC-1550 triplet collima-
tor, with an output waist radius of 1.14 mm, and aligned to the sample with the help of
two steering mirrors. We focus the beam with a f = 125mm lens, resulting in a spot of
55µm at the sample. The beam is aligned to be perpendicular to the sample’s surface,
such that the light reflected from it couples efficiently back into the fiber collimator. The
beam goes once again through the circulator and 90 % of it is used as a signal, while 10 %
is measured by a powermeter (PM), which is useful during alignment.

In order to see the sample which is being measured, we set up a simple imaging sys-
tem. A white LED is coupled to the beam path through one of the steering mirrors, whose
back surface is unpolished, working as a light diffusing element. Light reflected from the
sample is focused on a Si camera. Together with the alignment laser, this allows us to
identify the positions of the probe beam and the sample.

The sample sits on two stick-slip piezoelectric translation stages from Physik Instru-
mente (Q-521). These stages have a travel range of 32 mm in both directions of the plane
perpendicular to the laser beam, making it possible to study four different 10×10 mm2

chips with multiple devices on each. We add a gold sputtered chip to the stage, which
provides a large, highly reflective surface with no topographical features, which greatly
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aids in the alignment of the laser beam to the translation stage plane. We also clamp a
small piezoelectric to the chip stage, which can be used to mechanically drive the sam-
ples.

The sample and stages are placed inside a vacuum chamber, which, with the aid of
a turbomolecular and a Roots pump, is able to achieve pressures as low as 1×10−8 hPa.
This is a particularly crucial component of the setup since, otherwise, the main damping
mechanism of samples with low intrinsic mechanical losses would be viscous drag from
collisions with surrounding gas molecules. The chamber can be pumped down close
to base pressure in approximately 2 h. Together with the large stage which allows us to
move between multiple chips in a single pump-down, this constitutes a practical setup
to quickly test devices with high mechanical quality factors. This was an important factor
for the experiment in chapter 4.

3.2.1. BALANCED HOMODYNE DETECTION
Balanced homodyne detection (BHD) is an interferometry technique which allows mea-
suring the field quadratures of a weak signal beam in relation to a stronger one, the local
oscillator (LO). The measured quadrature is defined by the phase difference between
both beams at low frequencies which can be arbitrarily chosen. In fact, this technique
is commonly applied in quantum optics to tomographically measure the quadratures of
signals with quantum properties, such as vacuum or squeezed states, which gives access
to their probability density distributions [53].

In a BHD we assume the signal (αs(t )) and LO (αLO(t )) field amplitudes to be de-
scribed by

αs(t ) =αs +δXs(t )+δYs(t )

αLO(t ) = [
αLO +δXLO(t )+δYLO(t )

]
e iφ

where αi represents the average vector of field i ∈ {s,LO}, δXi (t ) and δYi (t ) are small
fluctuations of the field quadratures around the respective average, and φ is the phase
difference between both fields. We assume that αs is parallel with δXs(t ), which means
that δXs(t ) can be interpreted as amplitude and δYs(t ) as phase fluctuations of the signal
field. In the experiments described in this work, we are generally interested in measuring
the phase oscillations of the signal, i.e. δYs(t ), which contains information about the
motion of our mechanical oscillators.

As indicated in figure 3.5, the beams are combined in a beam splitter and measured
by two photodiodes, whose currents are subsequently subtracted. If the condition that
|αs| << |αLO| is met, the difference between the photodiode currents i−(t ) is given by

i−(t ) ≈ 2 |αs| |αLO|cos(φ)+p
2 |αLO|

[
δXs(t )cos(φ)+δYs(t )sin(φ)

]
. (3.1)

The first term of this equation is an offset to the current which does not vary with time.
Looking at the second term we find that by varying φ accordingly it is possible to mea-
sure any quadrature of the signal. In particular, setting φ = π/2, the equation reduces
to i−(t ) =p

2 |αLO|δYs(t ), i.e. to a signal oscillating around zero and proportional to the
signal phase quadrature. Furthermore, this measurement does not depend on the sig-
nal’s, but on the LO’s amplitude. Thus it is often said that the LO acts as a gain factor to
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the signal quadrature oscillations. More detailed discussions of the BHD can be found
in multiple sources [23, 54, 55].

In practical terms, φ can have strong oscillations due to temperature drifts or me-
chanical vibrations of the setup which affect the signal and LO arms differently. This
results in strong variations of the bias term of the BHD output with typical frequencies
up to ∼ 10kHz. To counteract this effect, one typically places a tool on the LO arm to ac-
tively control its phase and counteract the unwanted oscillations which shift the average
φ away from π/2. For this, one first acquires the low frequency component of the BHD
output current i error− (t ) = 2 |αs| |αLO|cos(φ). Note that close to φ = π/2, i error− (t ) can be
approximated by a linear function, symmetric around the origin. This can thus be used
as an error signal in a feedback circuit. This error signal is processed by a commercial
Proportional-Integral-Differential analog circuit board (Toptica PID110) and connected
to a fiber stretcher, a tool to control the phase of a signal propagating in an optical fiber,
explained in detail in the next subsection, on the LO arm. With this, we are able to ac-
tively keep φ = π/2 and, therefore, lock the BHD at the point of highest sensitivity to
phase oscillations. The locking circuit compensates oscillations with frequencies up to
a few kHz, whereas the mechanical modes of our devices are at hundreds of kHz. There-
fore, the feedback loop should not affect the higher frequency measurements.

3.2.2. FIBER STRETCHER

A low-cost and straightforward way to shift the phase of a beam propagating through
an optical fiber is to change the optical path length, for example by stretching the fiber.
This can be done, for example, by tightly winding an optical fiber around a cylindrical
piezoelectric tube which expands when a voltage is applied between the inner and outer
sides. The stretchers we have built can be seen in figure 3.6a. The piezoelectric actu-
ator, model SMC4037T50111 from Steminc, has a diameter of 50 mm, a capacitance of
37.5 nF, a piezoelectric constant d33 = 320×10−12 m/V and an unloaded resonance fre-
quency of 32 kHz. This means that theoretically we can use this device to compensate
for phase oscillations up to this frequency. The holder for the actuator and the case to
enclose it were designed and 3D-printed inhouse. The 3D models are free to use and can
be found online [56].

Considering the situation in which a fiber is tightly wound around the cylinder and
that its length changes by exactly the same amount as the piezoelectric actuator perime-
ter δP , the phase change δφ can be calculated from δφ= N 2π

λ nδP , where λ is the wave-
length, n is the refractive index of the optical fiber and N is the number of fiber loops
around the cylinder. Using the fact that the piezoelectric constant d33 = δr /V tells us
how the radius r of the cylinder changes when a voltage V is applied, we arrive at an
equation for the phase change as a function of voltage and number of loops

δφ= N
4π2

λ
nd33V.

This equation can be rearranged to provide the voltage to obtain a phase change of π:

Vπ = λ

4πnd33N
.
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Figure 3.6: a Picture of a homemade fiber stretcher. b Output of a homodyne detector as a function of the
modulation applied to a fiber stretcher in one of the interferometer arms. c Typical magnitude response of a
fiber stretcher, together with a voltage amplifier and the low frequency output of a homodyne detector. The
dashed line indicates the frequency of the first piezoelectric actuator resonance.

We usually wind the fiber between 70 and 100 times, resulting in expected Vπ be-
tween 2.7 and 3.8 V. To measure the actual Vπ, we place the fiber stretcher in the local
oscillator arm of an unlocked homodyne detection scheme and measure the low fre-
quency output of the BHD as a function of voltage applied to the stretcher. This is shown
on figure 3.6b. Equation 3.1 tells us that the low frequency oscillations of the BHD follow
the cosine of the phase difference between the two arms, which is verified in the figure.
Vπ is then half of the periodicity of this curve, which is 0.95 V.

The measurement shown in 3.6b was obtained by applying a ramp function to the
fiber stretcher at 500 Hz. The ramp was created by a signal generator and amplified using
a Falco WMA-200 low noise voltage amplifier. We also measured the magnitude of the
response of the same setup as a function of frequency using a vector network analyzer,
shown in 3.6c. In this setup it was not possible to optimize the SNR, which is why the
measurement is so noisy. Even so, it is possible to observe the piezoelectric actuator
resonance at about 34 kHz.
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3.2.3. RINGDOWN SPECTROSCOPY
As mentioned before, if the BHD is locked at φ = π/2, its output current is propor-
tional to Ys(t ), which includes information about the sample’s displacement x(t ). Us-
ing a spectrum analyzer, one directly obtains the power spectral density of the current
Si i (ω) which is proportional to the mechanical power spectral density Sxx (ω) (see eq.
2.3). Therefore, from the BHD current we gain access to the frequency and linewidth
of the mechanical resonances of the device under study. In this work we are concerned
with features of relatively low frequency (hundreds of kHz) and linewidth (down to a few
mHz). However, our spectrum analyzer (R&S FSV30) has a minimum resolution band-
width of RBW = 1Hz. In order to properly resolve such fine features one would have to
average the signal for a long time or to acquire a long time trace and extract the mechani-
cal properties from its Fourier transform. But these methods expose the measurement to
artificial broadening mechanisms, limiting the minimum linewidth that we can measure
to a value close to the spectrum analyzer’s RBW.

An alternative is to measure the dynamics of the specific mode of interest, which is
achieved by integrating the spectrum within a certain bandwidth around the resonance.
Recall that the linewidth can be interpreted as the rate at which energy of a mode leaks to
the environment. As such, the mechanical linewidth Γm can be obtained by resonantly
driving the resonance until it reaches an excited steady-stade and measuring the time it
takes for its energy to decrease by a factor of e−1 after the driving force is stopped. This
technique is called ringdown spectroscopy and it is commonly applied to systems with
narrow linewidths, as is the case of high finesse optical cavities.

In a ringdown measurement one typically assumes the time evolution of the system’s
energy follows

W (t ) =W (t0)e−Γm(t−t0),

where t0 is the moment when the resonant driving force is stopped [22]. Notice that the
energy is related to the displacement by

W (t ) = 1

2
mx2(t ).

Therefore the previous equation can be rewritten as

x2(t ) = x2(t0)e−Γm(t−t0).

The area under the noise spectrum of a mechanical resonanceωm is equal to the average
of x2(t ) over some integration time and bandwidth BW [13, 28]

〈x2〉 =
∫ ωm+BW/2

ωm−BW/2
Sxx (ω)

dω

2π
.

BW must be larger than the expected linewidth but small enough so that the signal-to-
noise ratio is significant. If the integration time is much slower than Γm, the time evolu-
tion of 〈x2〉 can be used to obtain Γm.

Experimentally, we use the spectrum analyzer to measure Sxx (ω) and integrate it
over some frequency range around the mechanical resonance of interest. Calculating
the total power in a certain bandwidth is a common procedure and in some spectrum
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analyzers this is called zero-span mode. We chose the BW to be close to 100 Hz and the
measurement is repeated at a rate much faster than the mechanical decay time. The
sample is driven with sinusoidal signal at the resonance frequency applied to a piezo-
electric actuator which is clamped to the sample stage. During this driving phase 〈x2〉
increases from its thermal fluctuations level and soon reaches a steady state. Finally, the
driving is turned off, the decay of 〈x2〉 is acquired and Γm is obtained from fitting this
decay to an exponential function.

3.3. OPTICS CHARACTERIZATION SETUP
In order to characterize the optical properties of our samples, in particular to study the
photonic crystal mirrors, we use the setup outlined in figure 3.7. With this setup we
measure light transmitted and reflected from a sample. By properly calibrating the setup
we gain access to the transmission and reflection spectra.

A fiber coupled Santec TSL510 wavelength-tunable laser is used as a light source.
Its polarization is adjusted with a fiber polarization controller (FPC) and the beam is
brought into free-space using a triplet collimator (Thorlabs TC12APC-1550). The first
polarizing beam splitter (PBS) is used as a polarizer to mitigate the effect of polariza-
tion drifts in the fiber part of the setup. The second PBS splits light into the beam that
is going to interact with the sample (incident beam) and a reference beam that is de-
tected by PDref. We use the reference beam to remove the effect of power oscillations
from the measured spectra that are not related to the sample. Between the two PBSs we
place a half-waveplate (λ/2) to control the power ratio between the incident and refer-
ence beams. After the second PBS, the incident beam is focused onto the sample us-
ing a lens set (between 1 and 3 lenses) which are adjusted to change the waist from 8
to 420µm. Light reflected by the sample is sent back into the second PBS. We place a
quarter-waveplate (λ/4) in the incident beam path such that the reflected beam is sep-
arated from the incident beam by the PBS and then detected by PDR. Light transmitted
by the sample is recorded by PDT. The photodetectors are home-built surface-mount-
device circuits equipped with a JDSU ETX500 photodiode. By means of electronic design
and spectral characterization, a linear response to the optical input power is guaranteed.
An oscilloscope (Rhode & Schwarz RTB2004) records the output of all photodetectors si-
multaneously as the laser wavelength is scanned, allowing the acquisition of the sample’s
reflection and transmission spectra.

For alignment purposes, the λ/4 waveplate is adjusted to allow reflected light to
propagate back to the collimator. If the incident beam is perpendicular to the sample
surface, which is the alignment that is usually desired, then the reflected beam couples
most efficiently back into the collimator. The back-coupled power is sent to a powerme-
ter (PM) using a fiber circulator and the sample’s tip, tilt, x, y and z positions are adjusted
to maximize this power. Care is taken to ensure good tip and tilt alignment with respect
to the incident beam, since the response of the PhC is very sensitive to the incidence
angle.

Using flip mirrors we are also able to send the transmitted or reflected beam into
an infrared CCD (Duma Optronics BeamOn-IR 1550). The camera helps during the tip
and tilt alignment of the sample, or acts as a reference during the alignment of the lens
system. It is also useful to assess if the sample affects the beam profile in any way.
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Figure 3.7: Schematic of the optics characterization setup. All beam splitters are polarizing. FPC: fiber polar-
ization controller; PM: powermeter; PD: photodiode.

To obtain the reflection and transmission spectra, the voltages measured by the pho-
todetectors have to be calibrated. Depending on the experiment, this calibration can
be based on some assumptions that make it more or less laborious. For example, if the
sample can be assumed lossless, then the calibration procedure is greatly simplified.
When studying individual photonic crystal membranes, the losses are usually lower than
10−5 [57, 58], which cannot be resolved by this setup due to its uncertainty being on the
order of 10−3, as we will see below. As losses become of the same order of the measure-
ment uncertainty, as in the case of double PhC membranes, it is important to calibrate
the setup in a way that allows us to directly measure such losses. Finally, in some sit-
uations we do not have access to the transmitted light, which requires calibrating the
reflected power in relation to a mirror with known reflectivity. These calibration meth-
ods are described in the following subsections.

3.3.1. CALIBRATION WITH KNOWN MIRROR

If there is no access to the transmitted beam, one can still estimate the reflection spec-
trum by comparing the power that the sample reflects to that which is reflected from a
mirror with well known properties. This requires two measurement sets: in the first we
place a mirror with known reflectivity Rcal in place of the sample and acquire the voltages
of the reflection V cal

R and reference V cal
ref photodetectors as a function of wavelength; in

the second, we replace the mirror by a sample and obtain V PhC
R and V PhC

ref . The sample’s
reflection spectrum is then calculated as

R =
V PhC

R /V PhC
ref

V cal
R /V cal

ref

×Rcal.
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The reflectivity of the calibration mirror is specified to be 99.8(3) %. Considering all mea-
surement uncertainties to be independent from each other, one can estimate the uncer-
tainty in reflectivity ∆R via the method of uncertainty propagation

∆R =
√∑

x
(
∂R(x)

∂x
∆x)2 ≈ 0.006,

where x = {V PhC
R ,V PhC

ref ,V cal
R ,V cal

ref ,Rcal}.
In the experiment described in chapter 5, to estimate the uncertainty of the beam

waist, the same propagation method was applied. As uncertainty parameters, the posi-
tion of each lens and its focal length was taken into account. The beam was propagated
through the lens system by means of the complex beam parameter and ABCD matri-
ces [26].

3.3.2. CALIBRATION ASSUMING NO LOSSES

If both the reflected and transmitted beam are accessible, a different calibration pro-
cess can be followed. Assuming that all loss sources are negligible, then the input power
Pin = PR +PT, where PR and PT are the reflected and transmitted powers, respectively.
By definition, the reflection coefficient is given by R = PR

Pin
= PR

PR+PT
. The powers are pro-

portional to the voltages that the photodetectors output. Assuming the photodetector
responses are similar, then R = VR

VR+VT
. Similarly, the transmission coefficient is given by

T = VT
VR+VT

.
The convenience of this method makes it a good choice when one is interested in

quickly characterizing the spectrum of many samples, for example during the resonance
wavelength optimization phase of the fabrication process, by sacrificing accuracy in R
and T . This method was thus not used in the results which are shown in the remainder
of this thesis.

3.3.3. CALIBRATION OF PHOTODETECTORS

More realistically, some of Pin is lost either in the optical components or by the sample
itself through scattering or absorption. As such, Pin 6= PR +PT. In this case we can ob-
tain the sample’s spectrum by properly calibrating all photodetectors in order to more
accurately estimate Pin, PR and PT.

If no sample is present, then Pin = PT, assuming the losses at the last two lenses to be
negligible. By measuring ε = PT/Pref without a sample, we can later retrieve Pin = εPref,
even if a sample is in the incident beam path. With this it is straightforward to obtain the
transmission coefficient as T = PT/εPref.

The reflected beam suffers some losses when it goes through the λ/4 waveplate and
the PBS. These losses are not negligible and they are wavelength dependent. Therefore,
to obtain a more accurate reading from PDR, we once again place a mirror with known
reflectivity Rcal instead of the sample in order to measure γ = PR/PinRm = PR/εPrefRm.

After, the reflection spectrum of a sample is given by R = PR/γ
Pin

= PR
γεPref

.

Contrary to the previous subsection where we assumed that all photodetectors re-
spond similarly, in this case we measure the responsivity κ of each device, arriving at the
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following equations for the reflection and transmission spectra:

T = κTVT

εκrefVref

R = κRVR

γεκrefVref
.

An in depth explanation of this calibration procedure is given in [59].

3.4. CAVITY SETUP
As discussed in the previous chapters, our goal is to perform optomechanics experi-
ments by placing mechanical resonators in a membrane-in-the-middle (MIM) config-
uration. For this we have built a setup with an optical cavity inside a vacuum chamber,
which is outlined in figure 3.8. In this setup, two beams, named probe and pump, are
derived from the same laser. Depending on the measurement one wishes to perform,
this laser can either be a stable, fixed frequency laser (NKT Koheras Adjustik), or a highly
tunable one (New Focus TLB-6730 or Santec TSL510). The probe and the cavity are kept
resonant with each other using a Pound-Drever-Hall scheme (section 3.4.2), in which
the feedback signal can either tune the laser frequency or change the cavity length using
a piezoelectric ring. The frequency of the pump can be shifted using a single-sideband
suppressed-carrier (SSB-SC, Thorlabs LN86S-FC) modulation scheme [60–62]. The cav-
ity transmission is measured with a photodiode (PDT), and the phase oscillations of re-
flected light are measured with a balanced homodyne detector (section 3.2.1).

Most of the laser is initially split into a local oscillator (LO) for the BHD. As before, the
phase of this beam can be controlled with a fiber stretcher. After, it is brought into free-
space using a fiber collimator and its polarization is adjusted so it is fully transmitted
through a polarizing beam-splitter (PBS) which later combines the LO with the signal
beam. The two beams are then split equally into two photodiodes, whose difference
current provides the BHD signal that is used for spectral measurements and for locking
the phase of the signal and LO paths.

The remaining laser light is split into the probe and pump beams. The probe is phase
modulated with an electro-optical modulator (EOM, Ixblue Photline MPX-LN-0.1) to
generate sidebands for PDH locking. It is brought into free space and focused through
a Faraday isolator which will later send light reflected from the cavity into a detector for
PDH (PDPDH) and BHD (PDBHD). After, it goes through a PBS that combines the probe
and pump into the same propagation path. The profile of the beam is matched to one
of the fundamental transversal modes of the optical cavity using three lenses placed in
between the cavity and two steering mirrors which are used to align the beam with the
cavity axis. These beams are then aligned to the optical cavity by repeatedly scanning the
laser frequency over a span large enough to include a few cavity free spectral ranges and
optimizing the ratio between light coupled to the fundamental transversal modes and
higher order ones. With proper alignment and mode-matching, we are able to reach ra-
tios as high as 96 %. The pump beam follows a path with similar optical components and
propagation length to that of the probe, which makes it possible to have similar coupling
efficiencies to the fundamental cavity mode for both probe and pump.
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Figure 3.8: Schematic of the cavity setup. All beam splitters are polarizing. LO: local oscillator; PM: power-
meter; PD: photodiode; PDH: Pound-Drever-Hall; EOM: electro-optic modulator; SSB-SC: single sideband,
suppressed carrier modulator; SA: spectrum analyzer; PID: proportional, integral, derivative controller.
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Similarly to the mechanics setup, the cavity and the membrane sit inside a vacuum
chamber to minimize viscous damping. The chamber is pre-pumped with a turbomolec-
ular and Roots pump set down to 5×10−7 hPa. Below this pressure, the vacuum is kept
with an ion pump, which after a few days of pumping can bring the pressure down to
1×10−8 hPa.

The following subsections describe in more detail the cavity design and properties.
The Pound-Drever-Hall modulation technique is also introduced. Even though it was
implemented in the setup, it is not required to understand the experiments described in
the following chapters.

3.4.1. CAVITY DESIGN

In designing an optical cavity one must specify the spatial mode profiles as well as the
cavity finesse [26, 63]. The mode profiles are set by the spacing between the end mirrors
as well as their radii of curvature. The finesse is given by the total cavity losses, which for
an empty cavity are the transmission from and scattering at the mirrors.

To study the membrane in the middle of the cavity, we chose to use mirrors with the
same radii of curvature. In order to obtain small waists between 25 and 50µm, which are
fractions of the membrane widths that we are able to fabricate (100 to 300µm), the cav-
ity assumes a nearly concentric, or spherical, geometry, in which both radii of curvature
are approximately equal to half the cavity length. Short cavities result in high optome-
chanical coupling rates. However, they also increase the cavity linewidth and, as such,
the sideband resolution ratioωm/κ. We chose a cavity length L of approximately 50 mm,
which gives enough room to build the membrane translation system around it; results
in a free spectral range FSR = 3GHz, which is easily accessible with the frequency fine
tuning controls of our lasers and with the modulators and electronics at our disposal;
and gives us the chance of reaching sideband resolution with commercially available
mirrors. This length sets the radii of curvature to 25 mm. Notice that in this concen-
tric geometry, the stability parameter of both mirrors is −1, which is on the edge of the
stability criterion (see section 2.2). Therefore, we slightly decrease the cavity length to
47.9 mm (FSR = 3.13GHz), corresponding to a beam waist of 49µm (eq. 2.13). Having
defined the fundamental cavity mode profile, we use a beam propagation software to
calculate the focal length and position of the three lenses that match the shapes of the
beam right after the PBS which combines probe and pump, and that of the cavity.

The cavity finesse F , in combination with its FSR, defines the optical linewidth κ =
FSR/F . A small linewidth is usually desirable, since it makes reaching the sideband re-
solved regime easier. However, it also makes the cavity more sensitive to length fluc-
tuations, which can complicate the laser locking procedure. We therefore opted to use
reflectivities for the front and back mirrors of, respectively, 99.9 % and 99.995 %. This
results in a theoretical finesse and linewidth of 6000 and 240 kHz.

Figure 3.9a shows the cavity spectrum in transmission where the resonances are in-
dicated with a red dot on top. The high transmission features correspond to longitudinal
modes with similar transversal mode indices. In this case, we have aligned the cavity
such that these modes correspond to the fundamental transversal modes. The smaller
peaks are higher order modes to which a small part of the incident beam couples to.
Panel b of the same figure shows a zoom-in of the fundamental cavity mode. For this
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Figure 3.9: a Spectrum of the cavity transmission. The cavity modes are indicated by the red dots. The two
highest peaks correspond to consecutive longitudinal modes with similar (fundamental) transversal mode in-
dices, spaced by the cavity FSR = 3.13GHz. The smaller peaks are higher order transversal modes. b Fine scan
over one of the fundamental modes. The two sidebands are generated by an EOM modulated with a 3 MHz
sinusoidal voltage. A fit of the data gives a finesse of 8000 and a linewidth of 192 kHz. c Exploded view of the
cavity and the membrane stage assembly.

scan, the probe was weakly modulated using the EOM with a 3 MHz sinusoidal voltage.
The modulation creates sidebands at higher and lower frequencies of the carrier and
since the modulation is weak, we only need to consider the first order sidebands. These
will couple to the optical cavity and they are seen in the spectrum as the two peaks at
the left and right of the main resonance. The distance of the sidebands from the carrier
is well defined by the sinusoidal voltage modulation and can therefore be used to accu-
rately calibrate the timescale of the oscilloscope into a frequency scale, allowing us to
directly measure the cavity linewidth. In this particular case we have obtained a finesse
and linewidth of 8000 and 192 kHz, slightly better than predicted theoretically. However,
shortly after the cavity mirrors may have gotten dirty, increasing their scattering, chang-
ing these values to 2900 and 526 kHz.

The cavity assembly, as well as the membrane stage and the support structure that
connects both to the vacuum chamber is shown in an exploded view on figure 3.9c. The
cavity is composed of the grey structure on the figure top. The mirrors are mounted
inside the cubic structures, with a steel spacer in between. The bottom mirror holder
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includes a ring piezo which we can use to fine tune the cavity length by approximately
2.5µm. On the figure bottom one can see a plate that connects to the vacuum cham-
ber. In between the support plate and the cavity there are two elevation stages which are
separated by rubber pads made of viton. These are included as a means to reduce the
coupling of mechanical vibrations from outside the chamber to the cavity. Finally, the
chip translation stage is shown on the right. It consists of a stack of stick-slip piezoelec-
tric stages (Attocube ANPx/z101) with a cantilever on top, where the chip is mounted.
The stick-slip assembly can move the membrane in x, y and z by 5 mm. This gives us
great flexibility to align and study multiple devices in a single pump down. In addition,
the z element can be fine tuned over a range of 5µm. For tip and tilt control, the stages
are mounted on top of a kinematic plate (Thorlabs POLARIS-K1M4/M).

Although this setup was useful to perform the static measurements presented in
chapter 6, it could not be used for other typical cavity optomechanics measurements
due to difficulties in locking the frequencies of the laser and the cavity. Even though it
was possible to lock the cavity and the laser when the cavity was empty, the same was not
true with a membrane in its middle. After many tests and modifications of the detection
and feedback electronics, we concluded that the problem lies in low frequency mechan-
ical vibrations from the device positioning stage which couple dispersively to the cavity
frequency through the optomechanical interaction and which are amplified by the feed-
back loop, making the system unstable. In particular, the cantilever-shaped membrane
holder has its first mechanical resonance frequency oscillating along the cavity axis at
approximately 700 Hz. Interestingly, it was possible to lock the system if the optome-
chanical coupling was quadratic. In this regime, the cavity frequency depends on the
total energy of the mechanical resonances and not on the displacement itself. Since the
total energy changes much slower than the displacement, the effect of these low fre-
quency resonances became less pronounced, making it easier to lock the cavity and the
laser. Presently we are finishing building a revised cavity assembly in which several key
changes were made with the goal of increasing the system’s stability:

• The tip and tilt stage was modified to one which is more compact and can be cou-
pled to the rest of the setup in a more rigid and symmetric way;

• The x and y stages are now based on stiffer, more compact and ball-bearing based
manual translation stages; the z stage was removed, to make the system more
compact;

• The device holder was thickened, elongated and it is now partially clamped on the
opposite side of the cavity (still allowing freedom for x and y translation), pushing
its first relevant resonance frequency to above 7000 Hz.

More details about the new cavity design can be found in [64].

3.4.2. POUND-DREVER-HALL MODULATION
In experiments involving optical cavities one is often interested in having the laser fre-
quency ωl to be the same or at a known offset from the cavity resonance frequency ωc.
However, both the laser and the cavity suffer from frequency noise (e.g. due to length
oscillations, thermo-optical drifts of the laser gain medium, etc.) which can have a large
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amplitude, making it impossible to passively make the two resonant. To counteract these
effects, one typically generates an error signal that carries information about the differ-
ence in frequency between the laser and the cavity, and actively tunes either the laser or
the cavity frequency to compensate for those differences.

The error signal must indicate in which direction the frequency of one of the ele-
ments needs to be changed in order to achieve resonance. Simply measuring the reflec-
tion or transmission of a probe incident to the cavity cannot generate a valuable error
signal, if the frequency oscillations are of the order or larger than the cavity linewidth,
since the intensity spectrum of the cavity is symmetric around the resonance and, there-
fore, does not provide information about the direction in which the frequency needs to
be corrected. However, the phase spectrum of a beam reflected from the cavity is asym-
metric around the resonance and can therefore indicate the direction of the frequency
correction.

As mentioned in section 3.2, one usually must interfere a beam with a known refer-
ence in order to measure an optical phase. In our experiment we use the Pound-Drever-
Hall technique to lock the cavity to the lasers [65, 66]. In this technique, the probe is
weakly modulated with an EOM with a frequency ωPDH, generating two sidebands at
frequencies ωl +ωPDH and ωl −ωPDH. ωPDH is chosen to be 2π×17.3MHz, much larger
than the cavity linewidth κ, such that the sidebands do not couple into the cavity when
the probe is close to resonance. If the probe is approximately resonant with the cavity,
the phase of the upper and lower sidebands will be constantly shifted by ±π/2, respec-
tively, and they can therefore be used as phase references. On the other hand, the probe
phase shift will strongly depend on how far it is from the cavity resonance. The inter-
ference between the probe and the sidebands therefore generates an error signal which
indicates the magnitude and direction of the frequency difference between the cavity
and the laser.

As shown in figure 3.8, we use signal generator to modulate the probe EOM. The
signal reflected from the cavity is measured by PD PDH and mixed with the same fre-
quency that modulates the EOM. The low frequency mixing component has the phase
information we desire for the error signal. The signal is therefore lowpass-filtered, fed
to a proportional, integral, derivative (PID) controller and sent to the piezo that controls
the cavity length, after being amplified. The feedback can alternatively be applied to the
laser frequency fine tuning modulator.

This type of locking technique is well described in the literature. For more details,
the reader can, for example, look into the very instructive article from Eric Black [66].
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HIGH-Qm SIN MECHANICAL

RESONATORS

All quantum optomechanics experiments to date operate at cryogenic temperatures, im-
posing severe technical challenges and fundamental constraints. Here we present a novel
design of on-chip mechanical resonators which exhibit fundamental modes with frequen-
cies fm and mechanical quality factors Qm sufficient to enter the optomechanical quan-
tum regime at room temperature. We overcome previous limitations by designing ultra-
thin, high-stress silicon nitride membranes, with tensile stress in the resonators’ clamps
close to the ultimate yield strength of the material. By patterning a photonic crystal on
the SiN membranes, we observe reflectivities greater than 99 %. These on-chip resonators
have remarkably low mechanical dissipation, with Qm ∼ 108, while at the same time ex-
hibiting large reflectivities. This makes them a unique platform for experiments towards
the observation of massive quantum behavior at room temperature.

This chapter has been published together with R. A. Norte and S. Gröblacher in Physical Review Letters 116
(14), 147202 (2016) [67]
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4.1. INTRODUCTION

O PTOMECHANICAL systems, where light is coupled to mechanical motion via the ra-
diation pressure force, have generated enormous interest over the past years as they

are promising candidates for testing macroscopic quantum physics, have great potential
as quantum transducers between distinct quantum systems, as well as for their capabil-
ities in sensor applications [13]. State-of-the-art systems have recently demonstrated
ground-state cooling [19, 68], mechanical quantum state preparation [16, 69], entangle-
ment [70] and squeezing of both the optical [71, 72], as well as the mechanical mode [73–
75]. Experiments involving such optomechanical systems in the quantum regime are
technically very challenging and so far have exclusively operated at cryogenic tempera-
tures. This poses serious restrictions on the type of experiments that are feasible. With-
out the need for cryogenic pre-cooling, one could envision their use as hybrid quantum
systems with for example atomic gases [76] or single atoms [77]. It would also open up
practical avenues for real world applications of such quantum optomechanical systems.

One of the most successful implementation of mechanical oscillators for such (quan-
tum) optomechanics experiments are devices made of high-stress silicon nitride (Si3N4),
which have been utilized in quantum-limited accelerometers [78], coupling of their mo-
tion to ultra-cold atoms [33, 79], optomechanics in 3D microwave cavities [80], quadratic
coupling in cavity optomechanics [14] and conversion between microwave and optical
signals [81].

However, even these low mechanical dissipation oscillators have to date not operated
in a regime where realistic quantum experiments at room temperature are feasible. The
benchmark for this elusive regime is the fm×Qm product of the resonator which requires
the mechanical quality factor Qm to be larger than the number of thermal phonons at
room temperature ( fm ×Qm > kBTroom/h), with h being the Planck and kB the Boltz-
mann constant [82]. This regime will allow for ground-state cooling using the radiation
pressure force and hence allow for experiments operating in the quantum domain. In
general, the quality factor-frequency product also determines the number of coherent
oscillations the resonator can undergo before one thermal phonon enters the system, i.e.
Nosc = Qm fm ·h/2π ·kBT . Experimental realizations of on-chip mechanical resonators
that exceed this requirement have all been demonstrated in higher-order mechanical
modes [83, 84]. Such mechanical systems are however in practice not useful for cool-
ing experiments as higher order modes are enveloped by numerous neighboring modes,
which increase the displacement background noise as one cools the mode of interest.
To avoid this limit, it is important to couple to the fundamental mode of the membrane.
An additional challenge is to operate at mechanical frequencies beyond 105 Hz, where
commercial lasers exhibit a minimal amount of classical noise and can relatively eas-
ily be quantum limited to shot-noise in order to avoid heating or decoherence through
noise [85]. Another difficulty for realistic quantum optomechanics experiments at room
temperature is that often good mechanical quality is mutually exclusive with good opti-
cal reflectivity [86–88]. This limits the achievable coupling rates and increases the neces-
sary optical power to a level where absorption becomes a practical limitation for cooling
and quantum experiments.

In this letter, we demonstrate the first optomechanical platform that overcomes all
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Figure 4.1: a Schematic of our tethered membrane which consists of a central membrane connected to the sil-
icon substrate through a series of thin tethers. The central photonic crystal reflector can be used for increased
reflectivities. Shown are our design parameters which are individually swept keeping all other parameters con-
stant to observe their effect on the fm×Qm product. Finite element simulations map out the strain throughout
the resonator and calculate deformation due to the relaxation of the material at the b tether clamps and c cen-
tral membrane, which together significantly enhance the tensile stress in the tethers. d Schematic of ringdown
measurement setup. The membrane is resonantly driven by a piezoelectric transducer inside an optical inter-
ferometer. We determine the mechanical dissipation by observing the ringdown of the mechanical resonance
(see text for details).

these limitations, paving the way for room temperature experiments in the quantum
regime. We fabricate on-chip optomechanical mirrors which exhibit fm ×Qm products
of their fundamental mechanical modes above the requirement for ground state cooling
without cryogenics (figure 4.1). With a center-of-mass frequency of ∼ 150kHz and me-
chanical quality factor Qm ∼ 108, this new-generation of Si3N4 tethered membranes is on
par with the state-of-the-art in optically levitated nanospheres, known for their extreme
mechanical isolation and ultra-low dissipation, which are only limited by gas-molecule
collisions in high vacuum and photon recoil-heating [89, 90].

In order to achieve such remarkably low dissipation rates of Γm/2π= 1.4mHz with a
tethered system, we design ultra-thin high-stress Si3N4 membranes which enhance the
intrinsic stress in crucial tether regions – significantly reducing clamping and bending
losses [91]. A key observation is that high-stress membranes have mechanical frequen-
cies which are stress-dominated, meaning that one can minimize the thickness of the
resonator in order to reduce bending losses without significantly reducing the mechani-
cal mode frequencies. We fabricate tethered membranes with ultra-low dissipation rates
by engineering up to 6 GPa of stress within films as thin as 15 nm and intrinsic stress
of 1.3 GPa. Using finite element simulations to calculate the stress throughout the res-
onators, we push the tensile stress in the resonator’s clamps to values near the ultimate
yield strength of low-pressure chemical vapor deposition (LPCVD) Si3N4. In addition, we
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are able to show that we can increase the intrinsic optical reflectivity R of these mem-
branes to up to 99.3 % by patterning a two-dimensional photonic crystal onto the struc-
ture. These structures enable coupling rates that allow ground-state cooling from room
temperature with realistic parameters in a membrane-in-the-middle design [37, 92–94]
and can also be used as an end-mirror of a Fabry-Perot cavity [87, 95–97].

4.2. DEVICE DESIGN
The central mirror on the tethered membranes is a 2-D photonic crystal device (see fig-
ure 4.2a), that is designed using finite difference time domain (FDTD) simulations. They
are similar to previous designs of grating reflectors [57] and photonic crystals [98, 99],
which usually consist of an array of either lines or holes etched into the dielectric, re-
spectively. Such a periodic change in the refractive index allows for a bandgap to be
tailored for a specific wavelength, resulting in (simulated) reflectivities > 99.9%. Exper-
iments to date employing such photonic crystal mirrors for optomechanical resonators
have however suffered from a trade-off between high reflectivity and high-mechanical
quality, due to the requirement of thick dielectrics in order to achieve large R [99]. We
confirm this by measuring PhC mirrors consisting of a square lattice of holes as a func-
tion of silicon nitride thickness (see section 4.6.3). In order to circumvent this design
issue we follow two slightly different approaches: we either leave a thick cylindrical slab
of SiN around the PhC (see figure 4.2b) or instead of using holes we use pillars, resulting
in an inverse photonic crystal (see figure 4.2c). While the latter design still suffers from
fabrication imperfections resulting in reflectivities of ∼ 95%, the other new design allows
us to reach R > 99% (figure 4.2d). We show that both methods decouple the mechani-
cal from the optical properties and allow for optomechanical devices with simultaneous
high-Qm and high-R.

We also study the tethered membranes’ mechanical parameters, several of which suf-
fer from the conventional trade-off between either good mechanical quality factor or
high frequency (see figure 4.5 and table 4.4, Supplementary Information). For example,
extending the length of the tethers by increasing the size of the window aw in order to
reduce clamping and bending losses not only results in higher mechanical quality fac-
tors but also lower frequencies [100]. Achieving ultra-high Qm with this parameter will
result in very low fundamental modes, where low-frequency classical noise in lasers be-
comes a compelling limitation on radiation-pressure sideband cooling (for more detail
and discussion on design parameters see the Supplementary Information).

4.3. LOSS MECHANISMS
It is known that for fundamental modes of long, thin nanostrings (width w ≈ 3 ∼ 5 µm),
mechanical dissipation starts to be dominated by bending losses [101]. By accounting
for the dominating effect of flexural bending near the clamps of tensile strings one can
express the quality factor for the fundamental mode of doubly clamped strings as [102,
103]

Qstr =
[
π2

12

E

σ

(
tf

L

)2

+
√

E

3σ

(
tf

L

)]−1

Qbending (4.1)
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Figure 4.2: a Conventional design of a PhC membrane. The maximum reflectivity (1−Tmin) strongly depends
on the thickness of the silicon nitride (see SI). For a this is in competition with the requirement of thin films
(i.e. small tf) for good mechanical quality (cf. figure 4.4). We overcome this limitation by either leaving a thick
cylindrical slab in the center of the membrane b or by using an inverse photonic crystal design c. These designs
decouple the mechanical and optical properties of the membrane and show similar optical performances to a.
d Transmittance T of three different designs of tethered mechanical membranes. We experimentally confirm
the minimum transmission measurements by using a PhC membrane as one end-mirror of a Fabry-Perot cavity
in combination with a second mirror with known reflectivity and measuring the finesse. The thickness of the
photonic crystal tPhC was chosen to be 200 nm for all designs.

where E is the Si3N4 Young’s modulus, σ is the stress in the string, tf is the film thick-
ness, L is the length of the nanostring, and Qbending is the quality factor due to bend-
ing losses in a relaxed string, which is mostly dependent on intrinsic material damp-
ing. From eq. 4.1, one finds that the quality factor of a string can be enhanced by us-
ing thinner strings with decreasing tf. A crucial observation from thin plate theory is
that membranes under large tensile forces have stress-dominated mechanical frequen-
cies (i.e. f11 = 1/(

p
2L)

√
σ/ρ, where ρ is the material’s density) which are independent

of membrane thickness. Since our devices’ dissipation is dominated by bending losses
through the tethers and their mechanical modes are weakly dependent on thickness, we
can engineer thinner membranes with increased mechanical quality factors and negli-
gible impact on the frequency. This design scheme overcomes the trade-off between Qm

and fm in order to realize optomechanical resonators with unprecedented enhancement
of the fundamental mode fm ×Qm product.

In addition, substrate thickness also plays an important role in anchoring losses
for out-of-plane fundamental modes, where larger vibrational displacements of thin-
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Figure 4.3: a Shown is the fm ×Qm product for the nominal design (see text) of our tethered membrane for
various silicon substrate ({200, 500, 900} µm) and Si3N4 film ({20, 50, 100, 200} nm) thicknesses. Each point is
the average of measurements on resonators with identical geometry. In addition we verified that the results
are independent of the particular PhC design. For thin silicon substrates (ts = 200 µm), the anchoring losses
completely dominate and result in minimal enhancement of the mechanical quality factor even at tf = 20 nm.
However, these ultra-thin films exhibit fm ×Qm products above the ground state cooling limit (shaded region)
when fabricated on thicker substrates, where anchoring losses are less pronounced. b Ringdown measurement
for the best observed value for a single device with Qm = 9.8(2)×107 at fm = 140 kHz for a 20 nm thick film,
with otherwise nominal parameters.

ner substrates near the clamping points of a fundamental mode significantly increase
mechanical dissipation [104]. Previous studies found some enhancement in 30 ∼ 50nm-
thick square membranes when moving from 200µm substrates to 500µm with a negligi-
ble effect in thicker Si3N4 films (tf ≥ 100) [22]. Silicon substrate thickness and silicon ni-
tride film thickness are the parameters we focus on to achieve significant enhancements
in fm ×Qm. We investigate these effects by fabricating our resonators from ultra-thin
films ≤ 15nm and on substrates as thick as 900µm.

4.4. RESULTS
We determine the mechanical quality factors of our membranes by performing ring-
down measurements using a piezoelectric stack in an optical interferometer (see fig-
ure 4.1d). Due to viscous damping, which becomes increasingly dominant with thinner
membranes, our measurements are conducted inside an ultra-high vacuum chamber at
∼ 10−7 hPa. Positioning stages are used to align the chip with the membranes to a 20 µm
spot of a 1550 nm laser. The chip is placed onto the piezolectric stack under its own
weight since any type of clamping or gluing of the chip to the experimental setup can
reduce the mechanical quality factor by several orders of magnitude [22]. Each of our
chips has 9-16 resonators which allow us to collect several data points for each param-
eter sweep. We start with a nominal resonator design (see Supplementary Information
for details) and adjust each parameter keeping others fixed.

In figure 4.3a we plot the effects on fm×Qm by varying the thickness of the silicon ni-
tride films and silicon substrates for the nominal membrane design. We find that losses
in thicker Si3N4 resonators (tf ≥ 100nm) are dominated by bending losses. From the
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Figure 4.4: a Sketch of the stress-strain curve for silicon nitride. We design our structures such that for the
thinnest films we operate in the regime close to the ultimate yield strength of the material. b Microscope image
showing a nominal clamp with outer fillet rout = 20µm and tether width w = 5µm when properly fabricated
with turbulence reducing holders. c Typical necking deformation in very thin films (≤ 20nm). This occurs at
the tether clamps where the stress is the largest and when the resonators are being exposed to small viscous
forces or temperature gradients during fabrication. The tether is deformed to a width of ∼ 1µm.

data we also see that low dissipation in ultra-thin resonators can be completely dom-
inated by anchoring losses in thin substrates (∼ 200µm). A clear enhancement in the
fm ×Qm product is observed, exceeding the above requirement for ground state cool-
ing at room temperatures as one fabricates thinner tethered membranes on increasingly
thicker substrates, where their anchoring losses are no longer a limiting factor on Qm.

In order to push the devices to their material limits, we engineer the stress at the
clamps (the dominant source of flexural bending loss) to just short of the Si3N4 ultimate
yield strength (≈ 6.4GPa [105]). At thicknesses ≤ 15nm, the silicon nitride membranes
become increasingly susceptible to plastic deformation when subjected to small viscous
forces due to handling or large temperature variations during wet chemical processing.
Figure 4.4c shows the necking that occurs when the resonator is subjected to these small
forces which result in large frequency drops from ∼ 170kHz to ∼ 60kHz and reduction in
Qm to ∼ 105. Necking is a form of irreversible plastic deformation that occurs when ex-
cessively large strains localize in small cross-sections. In order to minimize such effects,
we use polytetrafluoroethylene (PTFE) turbulence shielding holders [106, 107] which
gently dilute the resonators from one liquid to the next during fabrication. This signifi-
cantly reduces the resonators’ exposure to viscous forces and surface-tension in the wet
chemistry processes required to release, clean and rinse the sample thoroughly [107]. At
thicknesses below 20 nm we observe consistently reduced Qm ∼ 107. Ultra-thin films be-
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low 20 nm produce delicate structures which make it difficult to attribute the lower qual-
ity factors to intrinsic limits of the sensitive handling during fabrication or whether other
surface-dominant loss mechanisms such as Akhiezer damping become more dominant
loss channels. Figure 4.3b shows a ringdown for our best device at 20 nm silicon nitride
thickness, 900µm wafer thickness and mechanical quality factor Qm = 9.8(2)×107 at a
fundamental mode frequency of 140 kHz ( fm ×Qm = 1.37×1013 Hz).

With the demonstrated combination of large reflectivities and low mechanical dissi-
pation, we will be able to access the optomechanical quantum regime from room tem-
perature. A first demonstration of such quantum behavior could be achieved by cooling
the mechanical mode into its quantum ground state, which is already realistic with these
device parameters (see Supplementary Information for detailed calculations).

4.5. CONCLUSION
To conclude, we studied the dissipation mechanism in a new regime of ultra-thin, highly-
stressed optomechanical resonators and their effects on mechanical quality factor and
fundamental mode frequency. By moving to these thin devices on thick silicon sub-
strates and by engineering the stress in their tethers to near the ultimate yield strength of
Si3N4 we are able to overcome a well-known trade-off between frequency and mechani-
cal quality factor to achieve fundamental mode fm ×Qm which are more than twice the
requirement for quantum ground state cooling from room temperature. Our on-chip
device performances are on par with the best values measured for optically levitated
nanospheres without the need for high power trapping lasers or complex experimen-
tal setups. We also demonstrate the possibility to combine our resonators with differ-
ent photonic crystal mirror designs which result in reflectivities between 95 % and 99 %,
while simultaneously achieving ultra-high Qm. These results allow to finally realize ex-
periments to laser-cool a mechanical oscillator from room temperature to its quantum
ground state (see SI). Such reflective tethered membranes are also ideal for optical trap-
ping configurations that enhance the frequency and the mechanical quality factor even
further, while avoiding thermal bistabilities which become a severe limitation at high
laser powers [108, 109]. With a Qm ∼ 108, our dissipation rates are only matched in other
silicon nitride membranes with the use of cryogenic cooling near 14 mK, with an im-
provement of two orders of magnitude in mechanical quality factor from room temper-
ature [110]. This allows one to speculate that coupling our new generation of resonators
to such low temperature baths could allow for Qm ∼ 109.

Our devices have the potential to allow for fundamental tests of quantum physics
by generating massive, non-classical states of a mechanical oscillator, for example in
space, where complicated cryogenic setups are not feasible [111]. In addition, thanks to
the ultra-low mechanical dissipation, it is possible to push boundaries of applications
in ultra-sensitive (e.g. force) detection, as has recently been demonstrated [112]. For the
devices used here, we calculate a force sensitivity of about 10 aN/Hz1/2, which, together
with reference [112] and to our best knowledge, is the highest to date at room tempera-
ture. Achieving this level of dissipation in an on-chip design heralds a realistic building
block towards optically-linked silicon-based quantum networks [113] operating at room
temperature.
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4.6. SUPPLEMENTARY INFORMATION

4.6.1. COOLING TO LOW PHONON OCCUPANCIES
Cooling to the motional ground state of a mechanical oscillator with frequency ωm and
linewidth Γm (FWHM) using an optical cavity with frequency ωc and amplitude decay
rate κ in practice means reducing the average thermal occupation to n̄f < 1. In order
to resolve the mechanical noise spectrum this also means that the effective mechani-
cal quality factor Qeff > 1. Qeff is the optomechanically broadened quality factor and is
different from the intrinsic quality factor Qm =ωm/Γm. To experimentally achieve such
cooling performances, we significantly increase the optomechanical coupling from bare
Si3N4 resonators by adding photonic crystals, which allow us to reach reflectivities be-
tween 95 % and 99 % (see main text). In the following analysis, we calculate the phonon
occupancies and the corresponding effective quality factors that are achievable by op-
tomechanically cooling the mechanical resonators presented in this letter.

EFFECTIVE MECHANICAL FREQUENCY AND DAMPING RATES

The optomechanical coupling changes the mechanical properties of the resonator, giv-
ing rise to an effective frequency ω2

eff(ω) = ω2
m +2ωωOM(ω) and damping rate Γeff(ω) =

Γm +ΓOM(ω). ωOM(ω) and ΓOM(ω) are the shifted frequency and damping rate due to
the optomechanical interaction, derived from the modified mechanical susceptibility in
frequency space ω, which are given by [13]

ωOM(ω) = g 2ωm

ω

(
∆+ω

(∆+ω)2 +κ2 + ∆−ω
(∆−ω)2 +κ2

)
,

ΓOM(ω) = g 2ωm

ω

(
κ

(∆+ω)2 +κ2 − κ

(∆−ω)2 +κ2

)
,

where ωl is the laser frequency, ∆ = ωl −ωc the detuning with respect to the cavity,
g = g0

p
n̄c the linearized optomechanical coupling strength, n̄c = 2P

ħωl

κ1
κ2+∆2 the aver-

age cavity photon number, P the laser power, κ1 the amplitude decay rate of the input
mirror, ħ the reduced Planck constant, g0 =− ∂ωc

∂x xzpf the single-photon optomechanical

coupling, xzpf =
√

ħ
2meffωm

the zero-point fluctuation of the mechanical mode, and meff

the effective mass of the mechanical mode. Note that these effects are most pronounced
for ω=ωm.

FINAL AVERAGE PHONON OCCUPANCY

Using the previous equations one can calculate the effective mechanical quality factor
Qeff = ωeff

Γeff
and the oscillator’s final average phonon occupancy, which in general is given

by

n̄f =
ΓOMn̄min +Γmn̄th

ΓOM +Γm

where n̄th = (e
ħωm
kBT − 1)−1 is the average phonon occupancy of a thermal bath at tem-

perature T , kB is Boltzmann’s constants, and n̄min =
(
κ2+(∆−ωm)2

κ2+(∆+ωm)2 −1
)−1

is the minimum

phonon occupancy.
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λc, λl L ωm/2π Γm/2π meff ∆

1550nm 100mm 140kHz 1.4mHz 1ng −ωm

Table 4.1: Nominal parameters for cooling estimates.

Rphc 2κ/ωm C0 n̄f Qeff

95% 85 0.1 180000 410000
99.3% 12 0.8 90 188
99.9% 1.8 5.1 0.7 1.4

Table 4.2: Estimated cooling performance for a 2MC, assuming R2 = 99.999% and P = 100µW.

Note that g0 = − ∂ωc
∂x xzpf depends on the configuration of the cavity through ωc(x).

We estimate n̄f and Qeff starting from room temperature for two different configurations
of particular interest, namely the 2 Mirror (2MC) and the 3 Mirror (3MC) Configurations,
described below. For both configurations we use the parameters indicated in table 4.1.

TWO MIRROR CONFIGURATION (2MC)
In a 2MC, the cavity is composed of two mirrors, in which one of them is the mechanical
resonator. In this case,

ω2MC
c (x) = n

c

2x
,

where n is the index of the cavity resonance of interest. If we let one of the mirrors be a
distance x away from a predefined cavity length L, ωc(x) = n c

2(L+x) . For small x we get

− ∂ωc
∂x =−n c

2L2 = ωc(L)
L . Simplifying the notation ωc(L) by ωc we get

g 2MC
0 = ωc

L

√
ħ

2meffωm
.

We now calculate the achievable average phonon occupancies and mechanical qual-
ity factors from cooling membranes such as the ones presented in this letter, in a config-
uration where the membranes are used as input mirrors Rphc in a 2MC in combination
with a second mirror with reflectivity R2. Taking R2 = 99.999% and P = 100µW, we show
the estimated n̄f and Qeff for several values of Rphc in table 4.2. Here C0 = 4g 2

0 /κΓm is the
single-photon cooperativity and 2κ/ωm is the sideband resolution parameter. While in
such a configuration it is not possible to enter the ground state regime with our currently
best reflectivities of 99.3 %, future minor improvements in fabrication and design will al-
low us the reach the required reflectivities of around 99.9 %. In addition, as is shown in
the next section, a membrane in the middle approach (3MC) allows us to realistically
cool to the quantum mechanical ground state with our current devices.

THREE MIRROR CONFIGURATION (3MC)
In a 3MC, the membrane is placed at an arbitrary position x between two high highly
reflective mirrors which are separated by a fixed distance L. In this case [37],

ω3MC
c (x) =ωc

[
2φr +2cos−1

(
|rm|cos

(
4π

λc
x

))]
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F 2κ/ωm C0 n̄f Qeff

3400 3.2 11 0.95 1.3
4100 2.6 13 0.67 1.0

18000 0.6 58 0.10 0.3

Table 4.3: Estimated cooling performance for a 3MC assuming a PhC reflectivity of 95 %, the lowest reflectivity
achieved by our devices, and P = 10µW.

where rm is the amplitude reflectance coefficient of the membrane, φr = arg(rm), and
λc is the cavity wavelength. Note that − ∂ωc(x)

∂x is optimal for 4π
λ x = π

2 +nπ. Assuming
the membrane is positioned at such an optima and that it is allowed to move a small
distance ε away from the optimum, i.e. 4π

λ x = π
2 +ε, it is possible to approximate ωc(ε) ≈

ωc
[
2φr −2 |rm|ε]. As such, − ∂ωc(x)

∂x =− 4π
λ
∂ωc(ε)
∂ε = 2 |rm| ωc

L and we get,

g 3MC
0 = 2 |rm| ωc

L

√
ħ

2meffωm
.

The advantage of this configuration is that the optomechanical mirror with reflectiv-
ity |rm|2 = Rphc can be positioned inside a cavity where the finesse F is only determined
by the fixed mirrors and not by the membrane reflectivity itself. In such an approach the
influence of the membrane’s optical properties on the achievable cooling performance
is significantly smaller compared to the case for 2MC. Even when using our design with
the lowest reflectivity RPhC = 95%, P = 10µW, we see that occupancies below 1 phonon
are easily accessible with a modest finesse cavity. In table 4.3 the estimated n̄f and Qeff

for varying cavity finesse are shown. In particular, for F = 4100 we estimate n̄f = 0.67 and
Qeff = 1.0. These calculations show that our novel designs place the quantum ground
state of an optomechanical device at room temperature well within experimental reach.

4.6.2. RESONATOR DESIGN
Our devices are designed and optimized by performing a systematic analysis of several
parameters of the tethered membranes (see figure 4.1, main text) in order to enhance the
fm ×Qm product. Parameters we studied are the size of the central membrane (amem),
width of the tethers (w), total size of the window (aw), fillet radius connecting the tethers
to the central membrane (rin), fillet radius connecting the tethers to the substrate (rout),
diameter of the photonic crystal mirror (PhC) (dphc), Si3N4 film thickness (tf) and silicon
substrate thickness (ts) to measure their effects on the fm×Qm product of the center-of-
mass mode.

In order to measure the effects of the different design parameters on the mechanical
quality factor and frequency we start with a set of nominal parameters and sweep each
one while keeping all other parameters fixed. Our nominal parameters are: w = 5 µm,
aw = 700 µm, amem = 100 µm, rin = 60 µm, rout = 20 µm. The following plots include
a blue-dashed line representing the nominal value of the swept parameter. By chang-
ing the size of the inside and outside fillets we effectively change the length of the teth-
ers. In order to decouple these parameters we change the size of the window, aw, as
a way to change the length of the tethers. While the relationship of these parameters
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Figure 4.5: Frequency fm, quality factor Qm and fm ×Qm of several devices with different geometry. In each
subplot, a single geometrical parameter is varied: a tether length aw; b tether width w ; c membrane size amem;
d inner fillet radius rout; e outer fillet radius rout.

with frequencies is experimentally robust, one of the main challenges is observing these
parameters’ effects on the mechanical quality factors which are susceptible to unavoid-
able fabrication imperfections due to small changes in handling and contaminants from
sample to sample. To mitigate this effect, all resonators for these sweeps are fabricated
with tf = 50 nm and ts = 500 µm, where we know that our quality factors are consistently
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f Qm fm ×Qm

tether width w,↑ ↑ ↓ =
window size aw,↑ ↓ ↑ =

membrane size amem,↑ ↓ ↑ ↓
inner fillet rin,↑ ↓ ↑ =

outer fillet rout,↑ ↑ ↑ ↑
PhC diameter dphc,↑ = = =

Table 4.4: Using 50 nm thick Si3N4 films on 500µm silicon substrates as a standard platform, we sweep all
design parameters to determine their effect on fm and Qm. Here ↑ means an increase, while ↓ a decrease
of the associated value. Most parameters suffer from a trade-off between fm and Qm, resulting in negligible
enhancement (=).

high. The first parameter we investigate is the length of the tethers which we effectively
vary by changing the size of the square window (aw). As shown in figure 4.5a, increasing
the length of the tethers increases Qm and decreases fm, as expected, with almost no
change in the fm ×Qm product.

We next sweep the width of the tethers from the nominal value of 5 µm to 64 µm,
which is the maximum width before the tethers begin to overlap (figure 4.5b). We mea-
sure the mechanical frequency increase and quality factor decrease towards a plateau
near 7 × 106, which is also the quality factor for a 50 nm thick square membrane of
700 µm. Intuitively in the limit of increasing tether width the tethered membranes begin
to resemble square membranes where the tether width can no longer be properly de-
fined and only the size of the window, aw, defines the lateral geometry of the membrane.
We see a large enhancement in Qm from 15×106 to 32×106 when we decrease the tether
width from 9 µm to 5 µm as the membranes losses begin to be dominated by clamping
losses associated with strings (Qclamp ∝ aw/w).

From finite element simulations we know that the contraction of relaxing material in
the central membrane plays a key role in the enhancement of stress in the tethers. We
sweep the size of the central membrane, amem, in order to see how it enhances the stress
in the tethers and ideally increases fm ×Qm. As we increase amem, we simultaneously
also increase aw to keep the length of the tethers constant. We find that the mechanical
quality factors remain at nominal values while the frequency drops dramatically as the
resonator mass increases quadratically (figure 4.5c). In this case, fm ×Qm improves with
decreasing membrane size. From a practical standpoint, the optimal size of the mem-
brane is set by the minimum cavity beam waist which can still achieve large reflectivities
from the photonic crystal on the central membrane. By using a small beam waist the size
of the central membrane can be minimized in order to increase fm×Qm, with the limit of
good mode overlap with the photonic crystal to achieve high reflectivities. A beam waist
of 20 µm gives us maximal reflectivity and requires a minimum photonic crystal mirror
with dphc ∼ 80 µm in order to overlap the tails of the Gaussian beam.

In addition, as the inner fillet radius rin between tethers and central membrane is
increased, there is a slight increase in quality factor with a large decrease in frequency as
the mass of the central membrane increases (figure 4.5d)

We also vary the size of the outer fillet radius between the tether and the edge of
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Figure 4.6: Sweep of the number of tethers N . a N = 4. b N = 20. c N = 1024. d Zoom-in of the region in c
marked in red.

the window. As we increase rout we see the mechanical quality factors and frequencies
increase as the length of the tethers are effectively shortened. It is however difficult to
directly compare resonators with different outer-fillet shapes since larger outer-fillets
require longer KOH release times. The increased etching times also widens the overhang
around the perimeter of the window, which we find to lower the mechanical quality fac-
tors for nominal dimensions (figure 4.5e).

Table 4.4 contains a summary of the results of these geometry sweeps, where we in-
dicate how they influence fm, Qm and fm ×Qm.

Last but not least, we also vary the number of tethers connecting the central mem-
brane to the substrate, N . We sweep it from N = 4 to N = 20 as shown in figure 4.6(a,b)
while keeping all other parameters nominal. The observed shift in frequency in these
"pinwheel" flexural resonators is from 170 kHz (N = 4) to almost 350 kHz (N = 20). In or-
der to keep the lengths of the tethers equal, a rotationally symmetric design is required.
In figure 4.6(c,d), we show a resonator with N = 1024 tethers, each 500 nm wide, and a
square hole through the substrate for optical access. This large-N design exhibits fre-
quencies around 1 MHz, with Qm∼106, which could be an interesting approach to fur-
ther mitigate classical laser noise. An important fabrication challenge for such devices is
to keep the overhang at the perimeter of the resonator to a minimum in order to reduce
radiative losses into the substrate. The smallest overhang we were able to attain was
≈ 8 µm wide, which incurred significant losses resulting in Qm ∼ 1-3 ·106. The nominal
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Figure 4.7: The measured transmittance of the tethered mechanical membranes as a function of silicon nitride
thickness for a standard photonic crystal design of an array of holes (Fig 4.2a). The legend indicates the film
thickness and the minimum of the transmission.

design (N = 4) keeps the overhang to a minimum due to the nature of rectangular crystal
lattice etching of 〈100〉 silicon.

4.6.3. PHOTONIC CRYSTAL THICKNESS
Using FDTD simulations we are able to optimize for the most reflective design at dif-
ferent photonic crystal thicknesses (tPhC = 100,150,200 nm) for 1550 nm light. In our
simulations we sweep the lattice constant a and r /a, where r is the radius of the holes.
Using these parameters, we are able to experimentally verify the FDTD results which
show increased maximum reflectivity with increasing thickness of the photonic crystal
tPhC (see figure 4.7). While we only plot transmittance measurements for clarity, we also
experimentally confirm that the reflectivity R = 1−T to within our measurement error by
using the membranes as part of a Fabry-Perot cavity in conjunction with another mirror
with known reflectivity.
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MIRRORS

Demand for lightweight, highly reflective and mechanically compliant mirrors for optics
experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes
are ideal alternatives to conventional mirrors, as they provide high reflectivity with only
a single suspended layer of patterned dielectric material. However, due to limitations in
nanofabrication, these devices are usually not wider than 300µm. Here we experimen-
tally demonstrate suspended PhC mirrors spanning areas up to 10×10 mm2. We over-
come limitations imposed by the size of the PhC and measure reflectivities greater than
90 % on 56 nm-thick mirrors at a wavelength of 1550 nm–an unrivaled performance com-
pared to PhC mirrors with micro-scale diameters. These structures bridge the gap between
nano-scale technologies and macroscopic optical elements.

This chapter has been published together with R.A. Norte, J. Guo, C. Schäfermeier and S. Gröblacher in Optics
Express 26 (2), 1895–1909 (2018) [114]
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5.1. INTRODUCTION

P HOTONIC crystal (PhC) membranes are suspended dielectric sheets patterned with
sub-wavelength, low-index two-dimensional periodic structures [48]. These pat-

terns give rise to resonances that couple out-of-plane radiation to in-plane leaky modes,
and can be engineered to transform a flat membrane into a mirror [45], a lens [115], or
even a curved mirror [115–117]. Here we study a PhC consisting of a periodic lattice of
holes in a membrane, whose hole radius and lattice constant can be tuned to reflect light
at a wavelength of choice. When fabricated from materials with low optical absorption
such as low-pressure chemically vapor-deposited silicon nitride (LPCVD SiN), one can
realize mirrors with sub-wavelength thicknesses and reflectivities > 99%, mostly limited
by scattering losses, as shown in [58]. LPCVD SiN thin films also enable the combination
of PhC mirrors with low thermal noise mechanical oscillators, due to their high intrinsic
stress, thin geometry, and weak coupling to undesired thermal modes [67, 112].

Microfabrication processes have so far restricted suspended PhC mirrors to areas
around 300×300µm2 [58]. This size sets an upper bound to the waist of incident Gaus-
sian beams, since wider waists do not completely interact with the PhC, resulting in de-
creased reflectivity. But the waists also have a lower bound: very small waists have a
high divergence and couple to undesired PhC modes, which leads to shifting, broaden-
ing and shallowing of the high-reflectivity crystal resonance. These adverse finite-size ef-
fects have been consistently measured in very thin mirrors with thicknesses below 0.1λ,
where λ is the wavelength of the reflected light [67, 98, 118, 119]. The ability to fab-
ricate larger PhC mirrors with increasingly thinner membranes could greatly facilitate
the combination of high reflectivity and low mechanical losses [67]. These properties
indicate the potential that PhC mirrors may have for reducing thermal mirror coating
noise which stands as a limit in precision measurements such as atomic clocks [120],
frequency-stabilized lasers [121], and gravitational wave detectors [122]. At the cen-
timeter scale, PhC mirrors could have more immediate applications as deformable mir-
rors with adjustable wavefront [123], or evanescent field sensors with a large interaction
area [124, 125].

In this letter we experimentally demonstrate free-standing SiN photonic crystal mir-
rors with thicknesses of 56 and 210 nm and areas of up to 10×10 mm2. Not only do
we increase the area of suspended PhC mirrors by nearly 4 orders of magnitude com-
pared to previous works, we also show that these large aspect-ratios allow us to achieve
high reflectivity from membranes thinner than previously measured. We observe greater
than 90 % reflectivity of 1550 nm light from mirrors with a thickness of 0.038λ (56 nm) –
a significant increase compared to previous devices with similar thickness and wave-
length [118]. Such large structures allow studying the spectrum of PhC membranes as a
function of incident beam waist with less constraints from finite size effects.

5.2. METHODS
Our suspended PhC mirrors are fabricated from high-stress (1 GPa) LPCVD SiN films de-
posited on 200µm Si wafers. The geometry of the PhC structures is optimized for each
desired film thickness to a wavelength of 1550 nm using finite-difference time-domain
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Figure 5.1: a Photograph of a 10 mm-wide, 210 nm-thick PhC mirror next to a commercial 1/2 ′′ mirror for size
comparison. The rectangular shaped patterns within the PhC are stitching errors from the mainfields of the
beamwrite, which do not affect the measured reflectivity significantly. The inset shows a scanning electron
microscope picture of the actual photonic crystal. The full mirror is made up of around 6×107 holes. b Cross-
section schematic of the device. The thin membrane is made of SiN and is supported by a silicon chip. c FDTD
simulation of a reflected light mode on a PhC membrane.

(FDTD) simulations [48]. The structures are patterned on the SiN films using electron
beam lithography and a plasma etching process (CHF3 +O2). Stitching errors occur
about every millimeter due to stage drifts during the beamwrite and are on the order of
1µm wide. One of the fundamental challenges for large aspect-ratio membranes is sus-
pending them without causing any fractures. Typically liquid etchants such as KOH or
TMAH are used to release free-standing SiN structures from their Si substrates. However,
such wet processes produce a number of forces, like turbulences and surface-tension at
the interfaces, which can easily destroy the fragile suspended PhC mirrors. These meth-
ods also leave residues that negatively impact the optical performance of the mirrors,
requiring additional liquid cleaning steps that decrease the the fabrication yield, spe-
cially for large area devices [107]. In order to overcome these limitations, we have de-
veloped a stiction-free RIE-ICP plasma release using SF6 [126]. A hot piranha solution
consisting of sulfuric acid and hydrogen peroxide is first used to remove surface con-
taminations on the unreleased structures. This is followed by a diluted HF solution to
smoothen the SiN surface [127] and remove surface-oxide from the silicon which allows
for an even release of the membrane. Finally, we suspend the PhC mirrors using the SF6
plasma release. Figures 5.1a-c show a photograph of a 10 mm-wide, 210 nm-thin mirror,
a scanning electron microscope picture of the PhC pattern, a cross-section schematic of
the device and numerical simulations of the reflected optical field.

In order to characterize the optical properties of the PhCs, we fabricate three devices
with different thickness and size: two 210 nm-thick mirrors, 4×4 mm2 and 10×10 mm2-
large; and a 56 nm-thick, 1.6×1.6 mm2-large one. We measure the mechanical spec-
trum of the fabricated devices to match those of bare square membranes with the same
intrinsic stress. This indicates that despite the unconventionally large areas, the mate-
rial stress remains high, which should guarantee the membrane’s flatness, an important
point when developing high reflectivity mirrors. This is also a relevant observation when
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estimating the thermal displacement noise of this type of device. More details can be
found in section 5.5.1.

The devices are characterized by focusing a wavelength-tunable laser beam perpen-
dicular to the PhC mirrors. We measure the reflected and transmitted power and com-
pare it to a reference beam that does not interact with the devices. For calibration, we
use a commercial broadband mirror at the same position as the PhC mirrors. The laser
is tuned from 1530 to 1630 nm. The recorded signal is normalized to the reference arm
and to the calibration mirror to obtain the reflectivity spectra for multiple beam waists.
We vary the beam radius between 8µm and 1.1 mm using a lens system placed in front
of the PhC membranes. This allows us to analyze the behavior of PhC membranes with
different thicknesses to laser beams of varying sizes. For more details see 3.3.

5.3. RESULTS

Figure 5.2 shows a selection of measured spectra of the 210 nm-thick, 4×4 mm2-large
and the 56 nm-thick devices. While the PhC is completely released, for testing purposes
the chip itself is not fully etched through (cf. figure 5.1b). This results in a parasitic in-
terference pattern with a periodicity of 1.8 nm on top of the expected PhC spectra, cor-
responding to a 200µm-thick Si etalon. Since the frequency of this interference is well
defined, we post-process it by band-pass filtering the data. Section 5.5.2 contains the full
set of acquired spectra, as well as a detailed description of the data processing.

The spectra of the 210 nm-thick PhC mirror, shown in figure 5.2a, exhibit a resonance
at 1549 nm that varies little with the incident beam waist. At 1573 nm a parasitic reso-
nance emerges whose width increases as the waist becomes smaller. This can be under-
stood by considering the decomposition of a Gaussian beam with waist w0 into plane
waves [44]. The decomposition in terms of incidence angle is weighted by a Gaussian
distribution with a standard deviation equal to the beam divergence θ = λ/πw0. A large
waist w0 has a small divergence θ, which is a good approximation to a plane wave with
a zero angle of incidence. As w0 decreases, θ becomes larger, and so plane waves with
larger angles of incidence have a stronger weight on the decomposition. These waves
can couple to PhC modes other than the resonance of interest, giving rise to parasitic
features such as the one observed. We can apply the same reasoning to explain the in-
crease in maximum reflectivity of the main resonance: the device geometry was opti-
mized assuming a plane wave with normal incidence. Hence, beams with a large waist
approximate this condition better, which results in a reflectivity closer to the optimized
one.

In figure 5.2b we observe that the main resonance of the 56 nm-thick membrane ex-
hibits stronger shifts in wavelength, width and maximum reflectivity with varying beam
waist, in comparison to the 210 nm-thick device. As explained in the work of Bernard et
al. [118], the spectral response of plane waves incident on a PhC mirror depends on the
angle of incidence. This dependence is stronger for thinner devices and results in large
resonance wavelength shifts. Therefore, as the beam waist decreases – and its divergence
increases – the reflectivity of thin devices is more strongly attenuated. On the other hand,
due to the small size of the 56 nm-thick PhC mirror (area of 1.6×1.6 mm2 vs. 4×4 mm2

for the 210 nm-thick device) beams with waists larger than 280µm are partially scattered
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a

b

56 nm
1.6 × 1.6 mm2

210 nm
4 × 4 mm2

Figure 5.2: Reflectivity spectra of the PhC mirrors. Shown is a selection of measured reflectivity spectra of PhC
mirrors with film thickness of a 210 nm and b 56 nm. Each spectrum shows the reflection of a Gaussian beam
with the specified waist. As the waist increases, the incident beam approaches the behavior of a plane wave,
for which the devices are optimal, and so the maximum reflectivity increases. Due to the finite size of the
56 nm PhC mirror, its reflectivity drops as the incident beam becomes larger than the PhC area. The data were
digitally processed to remove parasitic interferences from the substrate (see section 5.5.2 for details).

outside the PhC and exhibit a decreasing maximum reflectivity (see below).
Figure 5.3 shows the maximum reflectivity of all PhC membranes as a function of the

incident beam waist. As described in the previous paragraphs, larger beam waists ap-
proximate the design conditions of the PhCs better, reducing the amount of light that
couples to unwanted modes. As such, the maximum reflectivity increases for larger
beams. We verify this behavior with simulations and plane wave decomposition: start-
ing with the geometry parameters that resulted from the FDTD optimization and that
were patterned on the SiN membranes, we simulate the reflectivity of plane waves with
varying angles of incidence at the resonance wavelength using rigorous coupled-wave
analysis (RCWA) [128]. The reflectivity at each beam waist is then the weighted sum
of the simulation results, following a Gaussian distribution with standard deviation θ,
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Figure 5.3: Maximum reflectivity as a function of incident beam waist. We show the maximum reflectivity for
several PhC thicknesses and membrane sizes, highlighting the potential of these structures as large-area, high-
reflectivity mirrors. For comparison, we include simulations, represented by lines, obtained from plane wave
decomposition of Gaussian beams using RCWA. The reflectivity of the 56 nm-thick PhC mirror decreases when
the optical beam becomes comparable to the PhC diameter, underlining the importance of finite size effects.
The measured data have an uncertainty in reflectivity of ±0.6 %. The uncertainty in the beam radii results from
propagating the estimated uncertainties in the positions of the lens sets. For more details see section 3.3.

which is further described in section 5.5.3.
The reflectivity of the 56 nm-thick PhC mirror decreases when the beam radius mea-

sures between 280 and 390µm. Considering that the field amplitude of a Gaussian beam

falls as e−r 2/w2
0 , where r is the distance from the beam’s center, we expect 99 % of the

field to be within a diameter of 6× w0. Since the PhC measures 1.6×1.6 mm2, beams
with waists larger than 1.6/6mm = 270µm will have larger field components reflecting
off the area outside the PhC. This allows us to observe a smooth transition between two
regimes: one, for small waists, where the PhC response is limited by a large beam di-
vergence and another one for large waists, where the limitation is the finite size of the
device. Between these two bounds we see a plateau where the maximum reflectivity
>90 % is approximately constant. To the best of our knowledge, this is the highest re-
ported reflectivity of a 56 nm suspended PhC mirror, operating in a regime with lower
beam divergence and finite size limits.

5.4. CONCLUSION
In conclusion, we fabricate and characterize the first suspended PhC mirrors that span
areas up to square-centimeters, with reflectivities exceeding 99 %, which are only lim-
ited by our measurement precision. Previous attempts focused on devices not wider
than 300µm, resulting in strong limits to the maximum achievable reflectivity, in partic-
ular for devices thinner than 0.13λ. By measuring the reflectivity spectrum of the PhC
mirrors for varying incident beam waists, our work shows that these devices are indeed
strongly affected by finite size effects. In particular, we observe a reflectivity of 90 % for a
0.036λ-thick PhC mirror at a wavelength of 1550 nm, whereas previous reports of devices
with similar thickness were limited to 62 % [98, 118]. Despite the presence of fabrication
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errors in the lithography process for the largest device (see figure 5.1a), we suspect that
its performance becomes insensitive to small defects in the PhC lattice for large beam
waists, since the reflectivity shows no appreciable changes with increasing waists (see
figure 5.3, 210 nm data). Since larger incident beams sample a larger area of the PhC
structure, we observe that the reflectivity seems robust to imperfections in the 2D array
of holes that arise from drifts or poor stitching during lithography. It is also important to
note that these mirrors could be improved even further with more sophisticated meth-
ods of lithography. Electron beam lithography is prone to stage drifts during exposure
and secondary back-scattering of electrons from the substrate which produce uneven
dosing – both of these effects can lead to an inhomogeneous lattice constant and vari-
ations in hole size. We envision scaling these devices further to full wafer sizes by us-
ing techniques such as nano-imprint lithography, lithography stepping, or interference
lithography [129].

Due to its high intrinsic stress, LPCVD SiN PhC membranes should remain rela-
tively flat even at larger areas. Together with the low optical absorption of SiN, this is
a promising platform for light sails in future space probes propelled by light, such as
the Breakthrough Initiative Starshot [130]. In addition, high-stress SiN membranes have
been shown to have high thermal noise suppression which becomes better with thin-
ner, larger membranes [67]. At large scales, SiN PhCs could thus be an interesting route
towards low-noise suspended mirror coatings. In section 5.5.4, we include a first-order
estimate of the thermal displacement noise such devices would have, and make a base-
line comparison of their performance to the well-documented mirror coatings used on
LIGO test-masses.

Furthermore, the fact that these mirrors are suspended allows them to be used in a
variety of applications that profit from mechanical tuning of mirrors. Deformable mir-
rors could be realized with these PhC structures [123], for example through electrostatic-
tuning with arrays of electrodes close to the mirror, or even as displacement noise tun-
able mirrors, using techniques such as optomechanical feedback control [131]. Further
experiments are planned to study the transversal mode composition of the reflected
beam and to properly characterize the devices’ optical absorption and scattering using
a high finesse optical cavity. These developments open up a new paradigm in photonics
– one that steers away from the focus on simply miniaturizing components, but instead
tries to bring the performance of nano-engineered materials to large scales.
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5.5. SUPPLEMENTARY INFORMATION

5.5.1. MECHANICAL MODES OF PHC MIRROR
In order to get a better understanding of the mechanical properties of the PhC mirrors,
a displacement spectrum was recorded for a 4×4 mm2 mirror. The device was mounted
in a vacuum chamber and a homodyne detector measured the phase quadrature of the
back reflected light. Figure 5.4 shows a spectrum recorded in the center of the mirror and
another spectrum measured at the edge of it. The off-center spectrum displays mechan-
ical modes which have no net-effect on centered beams, i.e. modes which are mirror
symmetric on two orthogonal axes. The fundamental mechanical frequency of a bare
square membrane is given by

ωm = 2πp
2L

√
σ

ρ
, (5.1)

where L is the length the membrane, ρ is the material density (2.7 g/cm3 for SiN), and
σ is the tensile pre-stress in the film, which we take to be 1 GPa, a value defined by the
parameters of the LPCVD deposition process. A square membrane with the same dimen-
sions and material properties as the one discussed here has a fundamental frequency of
108 kHz. Comparing this to the value measured for our device (117 kHz) leads us to con-
clude that the pre-stress remains high even for these unconventionally large suspended
areas.

To simplify the analysis, we model the structure as a simple square membrane with-
out holes. Starting from the fundamental mode frequency of the device, we can calculate
the frequencies of all higher-order modes [84], which we plot on the upper horizontal
axis in figure 5.4. We observe a very accurate fit of the measured higher-order modes
(the deviation is around 1 %). The measured spectrum also allows to predict the noise
performance of an optical cavity made with such PhC mirrors [13].

5.5.2. POST-PROCESSING OF SPECTRAL DATA
Figure 5.5 shows the full, unprocessed set of measured reflectivity spectra for the a 210
and b 56 nm-thick devices. We measured the spectra for several incident beam waists,
which are indicated in the figure legends. The spectra follow the expected Fano reso-
nance shape, characteristic for this type of device.

In addition, we also see a parasitic oscillation with a periodicity of 1.8 nm. This is
because the devices are suspended but the substrate is not etched through. In fact, to
facilitate the testing process, the membranes are undercut by only a few µm on top of
the 200µm silicon substrate (cf. figure 5.1b). The observed periodic pattern arises from
interference of reflections from the substrate interfaces. Using the thickness of the sili-
con substrate and a refractive index of 3.5, we calculate a free spectral range of 1.7 nm for
a wavelength of 1550 nm, which is in excellent agreement with the observed oscillations.
The periodicity observed on the measured spectra is equal for all measurements and as
such, we remove it digitally using the procedure described below.

The Fourier transformations of the unprocessed reflectivity spectra show peaks that
are well defined and common to all measurements, which we associate with the de-
scribed etalon effect. The peaks are marked by the dashed lines in figures 5.5c and d.
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Figure 5.4: Measured mode spectrum. Shown is the spectrum of the back reflected light from a 4×4 mm2

PhC sample detected with a homodyne detector. The optical power for this measurement was set to 1 mW,
the resolution bandwidth to 100 Hz and the spectrum was averaged 50 times. The device was driven with a
piezoelectric actuator connected to a white noise generator (peak-to-peak voltage 100 mV) inside a vacuum
chamber at 1×10−5 mbar. Electronic and displacement noise from the mounting-frame were subtracted from
the displayed data. We calibrated the noise from the mounting-frame by measuring a spectrum with the laser
beam focused on the frame. The blue trace (top) shows data obtained with the laser focused in the center of
the device, while for the red trace (bottom) the laser was focused onto the edge of the PhC mirror. The latter
was done to record modes which have no net-effect on the reflected beam, e.g. a (2, 2) or (4, 4) mode. The
theoretically expected mode frequencies are highlighted by the vertical dashed lines and match the measured
spectrum very closely.

The Fourier transforms are obtained with the fft.rfft and fft.rfftfreq commands
of the Python numpy library. To remove these parasitic features from the Fourier trans-
forms, we apply a Tukey filter, with filter parameter 0.9, around the identified peaks. The
filter was generated using the function signal.tukey from the scipy library. Finally,
the filtered spectra are obtained by performing the inverse Fourier transform using the
fft.irfft command. These can be seen in figures 5.5e and f. We carefully verify that
filtering does not change the reading of the maximum reflectivity.

Figure 5.6 shows the raw data of the 210 nm-thick, 10 mm-wide device. This device
was attached to a single-side polished carrier wafer using an index matching oil. Since
the bottom surface of the substrate is rough, the interference between interfaces is no
longer visible. Therefore this data set did not require any post-processing.

5.5.3. SIMULATED REFLECTIVITY SPECTRA FOR GAUSSIAN BEAMS

To simulate the expected reflectivity spectra of the PhC membranes, we use a rigorous
coupled wave analysis (RCWA) [128] combined with a plane wave decomposition [132].
On the one hand, choosing a RCWA implies that the simulated spectra are valid only for
periodic structures, i.e. spectral changes caused by diffraction effects at the membrane’s
edge cannot be recreated. As this approach commonly starts with a plane wave as the in-
cident electromagnetic field, it also requires to implement a composition of plane wave
spectra when dealing with Gaussian beams. On the other hand, a finite element analysis
(FEA) can in principle be set up to compute spectra of a finite, e.g. 10×10 mm2 large, PhC
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a b

c d

e f

210 nm
4 × 4 mm2

56 nm
1.6 × 1.6 mm2

Figure 5.5: The plots show the a,b unprocessed reflectivity spectra, their c,d Fourier transformations, and
the e,f filtered spectra of the PhC mirrors. The first column pertains to the 210 nm-thick, 4 mm-wide device,
whereas the second column corresponds to the 56 nm-thick, 1.6 mm-wide one.
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210 nm
10 × 10 mm2

Figure 5.6: Unprocessed reflectivity spectra of the 210 nm-thick, 10 mm-wide device.

membrane excited by a Gaussian beam of waist w0. However, the simplicity of a FEA ap-
proach has disadvantages when it comes to hardware, especially memory, requirements.
To faithfully simulate the structure, the model volume has to cover about 20×20×1 mm3

and still capture the details of the nano-scale membrane, which increases the memory
usage drastically. A RCWA only discretizes the actual PhC membrane, such that the re-
flected field can be retrieved at any point above or below the structure. Finally, having
simulated a set of plane waves via RCWA allows to assemble Gaussian beams of any size.
For our requirements, the RCWA approach therefore is most appropriate.

We simulate two different unit cells:

• 210 nm thick, lattice constant 1.355µm, hole radius 0.5014µm

• 56 nm thick, lattice constant 1.526µm, hole radius 0.6265µm.

Each cell, composed of 140 modes, is excited at a certain wavelength with 662 plane
waves of various polar and azimuthal angles of incidence. To verify that the structure is
polarization insensitive, the wavelength- and angle scan is conducted for both s- and p-
polarization. The simulation is built around an open source RCWA package [50], which
rotates the s and p component of the incident field with respect to the incident angles.
To align the polarization uniformly for all angles, the s- and p-electric field component
E are transformed as

Es 7→ cos(θ)/cos(φ) (5.2a)

Ep 7→ −sin(θ) (5.2b)

and

Es 7→ sin(θ)/cos(φ) (5.3a)

Ep 7→ cos(θ) (5.3b)



5

68 5. LARGE-AREA, SUSPENDED PHC MIRRORS

for a s- and p-polarized beam, respectively. Here the polar angle is denoted by φ, while
θ is the azimuthal angle. This set of transformations inverts the global rotation imple-
mented in the software package.

Having computed the reflection coefficients rs, p(φ,θ,λ) ∈ C for a plane wave, the
reflectivity of a Gaussian beam with the electric field distribution

E(x, y) =
√

2
πw2

0
e
− x2+y2

w2
0 (5.4)

at the waist position (z = 0) is obtained by weighting the reflection coefficients according
to the plane wave decomposition

E(kx ,ky ) =
Ï ∞

−∞
E(x, y)e ı(kx x+ky y− 2πc0

λ
t+φ)dxdy. (5.5)

Transforming the expression to spherical coordinates, the power reflectivity spectra are
computed via

Rs, p(λ, w0) =
Î ∣∣rs,p(φ,θ,λ)

∣∣2 e−
1
2 (w0r sin(φ))2

sin(φ)dθdφÎ
e−

1
2 (w0r sin(φ))2

sin(φ)dθdφ
. (5.6)

Figure 5.7 illustrates the results of the simulations for a 210 nm and 56 nm-thick unit cell
with the parameters given above. Due to a small mismatch in the cell parameters the
absolute resonance frequency of the measured and simulated spectra deviate from each
other slightly, however the overall features of the measurement are recreated faithfully.
The individual simulations of s- and p-polarization exhibit virtually no difference, which
is an important as we probe the membranes with a circularly polarized beam. From the
data plotted in figure 5.7, the maximum achievable reflectivity can be readily extracted
by determining the peak reflectivity for each wavelength and beam waist scan. In fig-
ure 5.8 the results from the main text are plotted again and the simulated maximum re-
flectivity is shown for both polarizations. A zoom into the last two percent helps reading
out the measured values.

5.5.4. ESTIMATION OF THERMAL DISPLACEMENT NOISE
Thermal mirror coating noise is currently one of the main limitations to the sensitivity
of high-precision experiments including atomic clocks, frequency stabilized lasers and
gravitational wave detectors. Widely used in these communities are distributed Bragg
reflector (DBR) coatings made of alternating layers of dielectric materials. One challenge
with DBR coatings is that their reflectivity has a natural trade-off with the number of
layers used (and therefore the total thickness). Increases in coating thickness are usually
associated with increases in coating’s thermal Brownian noise. Attaining high reflectivity
requires DBR surfaces which are commonly microns thick, while PhC mirrors can realize
similarly high reflectivities with a membrane which is only the thickness of a single DBR
layer. Additionally, their suspended geometry makes them into an easily deformable
mirror surface, which potentially provides mechanical isolation from substrate (i.e. test
mass) noise, and the possibility to dynamically tune the mechanical properties using
optomechanical techniques.
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a

b

56 nm

210 nm

Figure 5.7: Reflectivity simulations for PhC membranes. Reflectivity spectra for s- and p-polarized Gaussian
beams with the waist indicated on the legend. Panels a and b show data for a 210 nm and 56 nm-thick mem-
brane, respectively.

In order to assess the potential that suspended PhC membranes could have in these
types of applications, we perform a simplified calculation of the thermal noise perfor-
mance of suspended PhC mirrors in this section and compare it to the thermal coating
noise of the a-LIGO experiment [1].

For large LPCVD SiN mirrors we estimate the biggest noise contribution to be due to
the thermal displacement noise, which for a square membrane is given by [24]

Sx (ω) = 4kBTmeffωm/Q

m2
eff(ω

2 −ω2
m)2 + (ωmω/Q)2

, (5.7)

where Q is the mechanical quality factor, kB the Boltzmann constant, T is the mem-
brane’s temperature, meff the effective mass of the membrane’s fundamental mode, and
ωm its frequency given by eq. (5.1). The effective mass can be estimated with meff =
m/4 [22], where m is the physical mass. It is further reduced by a factor of 0.3, which
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Figure 5.8: Extracted peak reflectivity compared to measured data. Shown are the same data as in the main
text with additional simulations for various polarizations.

accounts for the mass lost to the PhC holes.
There are numerous limiting factors to the mechanical quality of a membrane [84,

101]: thermoelastic damping, surface defects, Akhiezer damping, etc. For LPCVD SiN
membranes, the most relevant factors are acoustic radiation losses and damping from
collisions with gas particles. The acoustic radiation losses into the substrate generally
scale as the ratio between L and the thickness h: Qrl ∝ L/h [84, 101]. Considering pre-
viously measured radiation limited quality factors of 4×107 for L/h = 5×104, we can
extrapolate the radiation limit for arbitrary sizes of the PhC mirror. In addition, the qual-
ity factor limited by gas damping is given by [133]

Qp =
(π

2

) 3
2
ρh

ωm

2π

√
RT

mg

1

p
, (5.8)

where R is the ideal gas constant, p is the pressure, and mg is the molecular mass of
the background gas molecules. The final Q is given by Q−1 = ∑

i Q−1
i , where Qi are the

various contributions mentioned above.
In order to estimate the thermal displacement noise of suspended PhC mirrors, we

need to assume some parameters. We chose those of the a-LIGO experiment, since its
DBR coated mirrors are well known and characterized in terms of noise properties. This
allows us to make a first-order comparison of how suspended PhC mirrors would operate
when scaled up to the same size of the a-LIGO mirrors.

We take a SiN film thickness of 210 nm, a lateral size L = 350 mm, and effective mass
meff = 12 mg. We assume the mirrors are placed in a vacuum chamber at room tem-
perature with a pressure of p = 7×10−9 hPa and that the main background gas compo-
nent is hydrogen [1]. These parameters result in a fundamental mechanical frequency of
ωm/2π = 1200 Hz and a pressure-limited fundamental mode mechanical quality factor
Qp ∼ 108. Considering a detection frequency of 100 Hz, we find a thermal displacement

noise of around 10−17 m/
p

Hz. For comparison, the thermal coating noise of the mirrors
used in a-LIGO is of the order of 10−20 m/

p
Hz.
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These estimates are mainly limited by the environment pressure, which sets an up-
per bound to the mechanical quality factor. By decreasing the pressure further it could
be possible to improve the thermal displacement noise significantly. Furthermore, sus-
pended mirrors have the additional advantage that they can be adjusted, for example
either through the addition of tuning electrodes or optomechanical techniques, in order
to further reduce the noise performance in the desired regime.

It is important to note that the focus of this calculation is the estimation of ther-
mal Brownian noise associated with the mirror coatings. The presented calculations
and mirror designs are heuristic in nature and only allow one to make estimates com-
paring different mirror coating noise performances. It is however not entirely clear for
example, how the Brownian noise related to the substrate (or test mass) would couple
to such a suspended mirror. This could be relevant for monolithic cavities in quantum
optomechanics experiments at room temperature, where substrate thermal noise is the
dominant source of heating in laser cooling experiments [22]. In addition, it has been
shown that at increasingly large aspect ratios the substrate thickness becomes a signifi-
cant variable in a membrane’s mechanical quality factor [67]. A massive substrate could
work well in experiments which require large test masses. How these effects translate to
the cm-scale remains an open question.





6
OPTOMECHANICAL ARRAYS OF TWO

HIGH REFLECTIVITY MEMBRANES

Multi-element cavity optomechanics constitutes a direction to observe novel effects with
mechanical resonators. Several exciting ideas include superradiance, increased optome-
chanical coupling, and quantum effects between distinct mechanical modes, amongst
others. Realizing these experiments has so far been difficult, because of the need for ex-
tremely precise positioning of the elements relative to one another due to the high reflectiv-
ity required for each element. Here we overcome this challenge and present the fabrication
of monolithic arrays of two highly reflective mechanical resonators in a single chip. We
characterize the optical spectra and losses of these 200µm-long Fabry-Perot interferome-
ters, measuring finesse values of up to 220. In addition, we observe an enhancement of the
coupling rate between the cavity field and the mechanical center-of-mass mode compared
to the single membrane case. Further enhancements in coupling with these devices are
predicted, potentially allowing to reach the single-photon strong coupling regime, giving
these integrated structures an exciting prospect for future multi-mode quantum experi-
ments.

This chapter has been published together with C. Gärtner, W. Haaxman, R. A. Norte and S. Gröblacher in Nano
Letters 18 (11), 7171–7175 (2018) [134]
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6.1. INTRODUCTION

C AVITY optomechanics explores light-matter interactions by using the established
control techniques of optical resonators to manipulate highly sensitive mechan-

ical oscillators [13]. A particularly successful direction is to dispersively couple sus-
pended silicon nitride (SiN) membranes to a rigid optical cavity [14]. These so called
membrane-in-the-middle (MIM) systems combine independent optical and mechani-
cal oscillators, allowing the use of high finesse cavities to study a variety of mechanical
devices. Although recent years have seen tremendous progress in quantum optome-
chanics and in particular with experiments observing quantum behavior of the me-
chanical mode [69, 135, 136], most have focused on single mechanical or noninteract-
ing modes. Studying the behavior of multiple directly coupled modes could however
allow probing new and exciting regimes of optomechanics [137], like superradiance,
phonon lasing [138, 139], synchronization [140], the study of exceptional points [141],
quantum information processing [142], as well as the direct entanglement of mechani-
cal resonators [143]. It has also been suggested that the collective interaction of several
mechanical oscillators can allow reaching the single-photon strong coupling regime [21].
This effect is based on reducing the effective optical mode volume through an array of
closely spaced mechanical systems and it becomes stronger as the reflectivity of the in-
dividual systems Rm is increased.

Tethered SiN membranes patterned with photonic crystals (PhC) constitute ideal
candidates for this type of experiments, as they have excellent mechanical properties,
low mass, and high reflectivity due to the PhC which can be engineered to operate at a
large range of wavelengths [67, 112]. To date, experimental efforts have focused on using
independent mechanical membranes to create a mechanical array [39, 144], relying on
the intrinsic reflectivity of the bare SiN, with one recent attempt to fabricate a membrane
on each side of the same chip [145].

In the present work, we monolithically combine two tethered SiN membranes on a
single chip and control their reflectivity using PhC patterns. This allows us to avoid hav-
ing to manually align the mechanical elements to each other, which to date has been a
major challenge with such high-reflectivity resonators. To compare the properties of de-
vices with different reflectivity Rm, we fabricate pairs of single and double-membranes
for three different PhC parameter sets, spanning Rm from 33 % to 99.8 % at an operating
wavelength of 1550 nm. The optical spectrum of the arrays exhibits Fabry-Perot interfer-
ence, which allows us to study the optical loss mechanisms present in the system. The
optomechanical coupling rate of the center-of-mass (COM) mode of single and double-
membranes to an optical cavity are compared. By changing the incident laser wave-
length, we can operate the double-membrane stacks in their reflective or transmissive
regimes, corresponding to enhanced or null COM optomechanical couplings, respec-
tively.

6.2. DEVICE DESIGN AND FABRICATION
We fabricate our optomechanical devices on 200 nm of low-pressure chemical-vapor de-
position (LPCVD) SiN deposited on both sides of a 200µm-thick silicon (Si) substrate. A
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Figure 6.1: a Cross-sectional schematic of a released double membrane stack. b False-colored SEM image from
the top under an angle of 37° showing a stack of two membranes as depicted in a. The top (green) and bottom
(purple) SiN trampolines form a Fabry-Perot cavity. c Zoom-in of the PhC patterned central pad area of the
upper membrane.

trampoline membrane is patterned on each side of the chip using electron-beam lithog-
raphy and then etched into the SiN using a CHF3/O2 plasma etch. Finally, the Si in-
between the trampolines is removed with KOH etching. Figure 6.1 shows a cross-section
schematic of a final double membrane stack, as well as a false-colored SEM of one of our
released devices.

At the heart of our devices is a central mirror pad on the tethered membranes. It is
patterned with a two-dimensional PhC consisting of a periodic array of holes etched into
the SiN device layer. Such a periodic change in the refractive index creates a band gap
that can be tailored to a specific wavelength, resulting in reflectivities > 99.9% [58, 67].
Using S4, a Rigorous Coupled-Wave Analysis software, we simulate the spectrum of a
given PhC pattern [146]. During fabrication, we can accurately tune the PhC resonance
to our desired wavelength by adjusting the lattice constant a and hole radius r (see fig-
ure 6.6 for more details). We design three PhC patterns in order to obtain different Rm at
our operating wavelength of 1550 nm. We refer to these patterns as Low, Mid, and High R
and their geometries and measured Rm at 1550 nm are specified in table 6.1. The optical
beam we use to probe the PhC has a waist size of about 50µm. To avoid clipping losses,
the diameter of the PhC pattern is 300µm, while the tether length and width are 318µm
and 10µm, respectively.

6.3. RESULTS AND DISCUSSION

For each PhC pattern (cf. table 6.1) we fabricate a single- and a double-membrane, which
allows us to test all designs on a single chip, greatly facilitating the measurements. In the
following subsections, we characterize their optical, mechanical, and optomechanical
properties.
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a [nm] r [nm] Rm @ 1550 nm
Low R 1240 475 33 %
Mid R 1310 500 56 %
High R 1372 525 99.8 %

Table 6.1: Lattice constant a and hole radius r of the PhC patterns used in this work, as well as their measured
reflectivity Rm at our operating wavelength of 1550 nm.
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Figure 6.2: Reflection spectra of the devices. The photonic crystal pattern of each device is indicated at the top
of each figure, according to the parameters in table 6.1. The blue traces correspond to devices composed of a
single-membrane (SM), whereas the red traces are from double-membrane stacks (DM). The gray-shaded re-
gions correspond to the wavelength ranges where the center-of-mass optomechanical coupling was measured
(see figures 6.3 and 6.4).

6.3.1. OPTICAL CHARACTERIZATION

SINGLE MEMBRANES

We first obtain the optical spectra of the single devices by scanning a tunable laser from
1510 to 1600 nm and measure the reflected and transmitted signals from the PhC tram-
polines, which are shown in figure 6.2. At 1550 nm, we measure reflectivities of 33 %,
56 %, and 99.8 % for the Low, Mid, and High R samples, respectively. Because this mea-
surement procedure has an uncertainty of 0.5 %, we determine the dispersive effect of a
device similar to the High R sample on an optical cavity to obtain a lower bound on its
transmission at resonance [57, 58]. We measure a transmission of 2.5×10−5, comparable
to the best reported results in the literature [58]. Finally, we simulate a PhC membrane
with an imaginary component of the refractive index of 1.9×10−5 [57], and estimate that
a fraction of 3.4×10−4 of the light is lost when interacting with the devices, due to ei-
ther absorption or scattering from fabrication imperfections (see section 6.5.3 for more
details).

DOUBLE-MEMBRANE ARRAYS

The double-membrane arrays have the same PhC design as the individual membranes
and we determine their optical response in a similar way, shown in Figure 6.2. These
structures can be modeled as plane-parallel etalons (fig. 6.1) and the characteristic fea-
tures of Fabry-Perot interferometers can be clearly observed in their spectra. The free
spectral range FSRDM of 750 GHz, or 6 nm at a wavelength of 1550 nm, is, as expected,
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defined by the 200µm thickness of the Si substrate that separates the two membranes.
The linewidth of the resonances becomes smaller as the reflectivity of the individual
membranes increases. This is particularly prominent on the High R sample, where the
full-width at half-maximum linewidth changes from 176 GHz at 1521 nm to 8.7 GHz at
1554 nm, corresponding to a change in finesse F from 4.3 to 86. Our best performing
samples exhibit linewidths as low as 3.3 GHz (F = 220), suggesting a total loss per round-
trip of approximately 2π/F = 2.9×10−2.

Several sources contribute to this loss. First, using the measurements presented
in the previous section, we estimate a lower bound for the round-trip transmission of
5×10−5. However, in general the highest finesse etalon peak is not exactly at the reso-
nance of the PhC, being at most FSRDM/2 = 3nm away from it. At this point, the round-
trip transmission becomes 2.6×10−2. Second, we expect a round-trip absorption and
scattering loss of 6.8×10−4. Finally, some light will be lost due to the finite aperture size
of the etalon. Plane-parallel Fabry-Perot cavities are particularly susceptible to this ef-
fect [26, 63], and we estimate it to result in a round-trip loss of 2×10−3. Combining these
effects we arrive at estimated total round-trip losses between 2.8×10−3 and 2.9×10−2

(see section 6.5.3 for more details).

Although the maximum finesse measured in our devices fits well to this range, the
fact that we generally measure lower values suggests that they are underestimated. Scat-
tering, which has consistently been identified as one of the main loss mechanisms in
other PhC membranes [57, 58], could be higher than expected. In addition, these es-
timates assume that both membranes have the same reflectivity. In both the Low and
Mid R samples the reflection drops to zero at the etalon resonances, indicating that the
PhC resonances on the front and back membranes are sufficiently well matched in these
regimes. However, with increasing reflectivities, mismatches due to fabrication imper-
fections and small systematic shifts between the individual PhC mirrors become more
apparent and lead to smaller dip depths (cf. the High R device in Figure 6.2). In fact,
as the reflectivity of the individual membranes increases, the dip depth becomes sig-
nificantly more sensitive to differences between the two mirrors (see Figure 6.5 in sec-
tion 6.5.1). This also results in higher round-trip transmission values that can explain
the discrepancy between our finesse estimates and measurements.

6.3.2. MECHANICAL CHARACTERIZATION

We determine the mechanical quality factor of the fundamental modes of both single
and double membrane devices by performing interferometric ring-down measurements.
The mode frequencies are approximately 150 kHz and the difference in frequency be-
tween the front and back membranes is typically around 170 Hz. The small difference
of around 0.1 % in resonance frequency can be attributed to an irreproducibility in the
fabrication process. All devices show unclamped quality factors between 1.2×106 and
5.6×106. These values are in good agreement with measurements on a similar geometry,
which showed quality factors of 4×106 [67], indicating that the PhC patterning does not
negatively effect their mechanical properties.
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Figure 6.3: Optical cavity transmission T as a function of the frequency shift ∆ω of an incident laser and of the
displacement x of a mechanical device placed in the middle of the cavity. ∆ω is normalized by the cavity free
spectral range FSRc = 3.13GHz and x by the laser wavelength λ which is indicated on each plot. We measured
multiple devices in the middle of the cavity: above the dashed line we study single-membranes and, below it,
double-membranes. The type of photonic crystal used in each sample is indicated at the top of the figure. Note
that in order to work in a regime with a slow reflectivity change and large dip depth, the High R samples were
studied at a wavelength for which Rm = 0.76.
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6.3.3. OPTOMECHANICAL CHARACTERIZATION

In order to obtain the optomechanical characteristics of the devices we place them in-
side an optical cavity. The optical modes of this larger cavity strongly depend on the
position of the membranes inside. By measuring the changes in cavity mode frequency
ωc as a function of the device displacement x, we are able to determine the linear op-
tomechanical coupling between the cavity and the device’s center-of-mass mechanical
modes, which we define as G ≡ max{|∂ωc/∂x|}. The cavity has a free spectral range
FSRc = 3.13GHz and an empty cavity half-width at half-maximum of κ/2π = 550kHz.
We align our tunable laser to the cavity and measure the transmitted light. The laser fre-
quency is then scanned as a function of the device position, which allows us to directly
obtain ωc(x) and calculate the optomechanical coupling.

Let us first consider the case of a single-membrane, where the cavity modes are
affected by the membrane position and reflectivity Rm, according to ∆ωc/2π = FSR ·
arccos(

p
Rm cos(4πx/λ))/π [14]. The so-called linear coupling regime occurs when a

membrane is placed close to x = λ/8+nλ/4,n ∈ Z. Around these points, the cavity fre-
quency changes linearly with the membrane position and the optomechanical coupling
is given by

G

2π
= 4

FSR

λ

√
Rm. (6.1)

The first row of figure 6.3 shows the cavity transmission as a function of laser fre-
quency shift and displacement of the single-membrane samples. The wavelength at
which the measurements were taken is indicated on each plot. The points of high trans-
mission correspond to cavity modes. Because of alignment imperfections between the
laser, the cavity and the membranes, in addition to the fundamental cavity mode, we
also observe higher order modes, which can be coupled to each other [147]. The fun-
damental optical mode frequency depends on the membrane position with a period-
icity of x/λ = π/2 and the amplitude of the frequency oscillations increases with the
membrane reflectivity, as indicated by eq. 6.1. Using these data, we obtain G by numer-
ically calculating |∂ωc/∂x| and taking its maximum value, which occurs at the positions
of linear coupling. The blue data points in figure 6.4 show the single membranes’ cou-
pling around a narrow wavelength window obtained through the derivative method or
through applying eq. 6.1 to the spectra of fig. 6.2. Within this wavelength range, the
reflectivity of each device varies little and therefore G is practically constant. The aver-
age measured couplings G/2π for the Low, Mid, and High R samples are 3.8(60), 5.7(90),
and 7.7(12) GHz/nm, whereas the expected values using eq. 6.1 and

p
R are 4.5, 5.8 and

6.8 GHz/nm. Despite the large uncertainty, mainly due to the displacement calibration,
the results are in good agreement with eq. 6.1.

Finally, we follow the same approach to obtain the coupling rate between the cavity
and the COM displacement of the double-membrane chips, schematically represented
in fig. 6.1. The crucial difference between single and double-membranes is that the lat-
ter’s spectra vary more strongly with wavelength. In particular, over one FSRDM, the
device reflectivity can quickly change from zero to one (see fig. 6.2). When the reflec-
tivity is low, the COM mode of the device will interact weakly with the external cavity.
Correspondingly, at a reflection maximum, the coupling will be higher than that of a
device composed of only one membrane. In rows 2 to 5 of fig. 6.3 the measured cavity
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Figure 6.4: Center-of-mass optomechanical coupling G/2π as a function of wavelength λ. The points are cal-
culated from the maximum of the derivative of the dispersion data shown in figure 6.3, whereas the lines result
from applying equation 6.1 to the reflectivity data on figure 6.2. The blue data are taken from single- and the
red from double-membrane devices. The corresponding PhC patterns are indicated on top of each figure, with
the wavelength range studied here marked in gray in fig. 6.2. Given our experimental parameters, a single
membrane with a reflectivity of 1 is expected to have a coupling of 8 GHz/nm.

dispersion for the three double-membranes studied is shown. We perform these mea-
surements at several wavelengths spanning half a FSRDM, between which the reflectivity
varies between its maximum and minimum values. Note that for the High R sample we
choose to study a resonance for which Rm ∼ 0.76 since for higher Rm the laser fine scan-
ning range becomes similar to the resonance linewidth, and the dip depth decreases,
making the coupling oscillations less visible. Row 2 corresponds to the reflectivity max-
ima. When comparing it with row 1, it becomes clear that the cavity frequency varies
more strongly than in the single-membrane case. The data in row 5 are taken close to
a transmission maximum where, as discussed, the COM motion has little influence on
the cavity frequency. Rows 3 and 4 show wavelengths in between the maximum reflec-
tion and transmission of the double-membrane stacks. The extracted COM coupling is
plotted in fig. 6.4. As discussed, the coupling oscillates between almost zero and values
larger than those of the individual membranes. The oscillation follows the device’s spec-
tral response, indicating that the COM coupling of a double-membrane is well described
by eq. 6.1, a model derived from the single-membrane case.

6.4. CONCLUSION
In conclusion, we have fabricated and characterized stacks of optomechanical devices
that operate in various low to high reflectivity regimes. The devices presented here are
patterned onto a single chip without the need for additional bonding steps or micro-
positioners. Our devices form a flexible platform in which the finesse can be freely
tuned. Placing these devices inside an optical cavity allows the direct comparison of
membrane-in-the-middle systems in multiple reflectivity regimes, such as proposed in
reference [148]. We see an enhancement of the optomechanical coupling rate between
the COM motion of the two membranes and the cavity field as a function of reflectivity,
when compared to a single membrane system.

More importantly, we can tune the system such that the COM coupling is practi-
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cally zero. The theory of the collective motion of optomechanical arrays predicts that
at these points the cavity field becomes resonant with the inner cavity and thus cou-
ples strongly to the relative motion of the membranes. This is the regime where single-
photon strong coupling in an optomechanical system could be achievable [21]. We are
currently working on improving the stability of our setup in order to probe these relative
motional modes. For devices with large Rm, like the ones presented here, the coupling
enhancement of the differential mechanical motion is limited by the ratio L/2l between
the length of the optical cavity L and the separation between the membranes l [38].
Given our experimental parameters, this should allow us to observe an enhancement
of up to 120. Increasing this value further could be done by replacing the Si substrate by
a thin sacrificial layer as the spacer between mirrors, considerably decreasing d to values
similar to [144] but keeping the advantages of monolithic fabrication presented here.

Even more interestingly, the single-photon cooperativity scales quadratically with
the single-photon coupling strength, which in our case could boost this important figure
of merit by 4 orders of magnitude, assuming the mechanical and optical dissipation rates
stay the same. For many experiments, coherent control in the strong single-photon cou-
pling regime is not necessary, but reaching cooperativities greater than one is sufficient
for performing several quantum protocols [13, 31]. Other interesting experiments could
include synchronization of mechanical modes [140], studying exceptional points in op-
tomechanics with independent mechanical systems, as well as superradiance [138, 139]
and state transfer between mechanical systems [145]. In addition, our arrays could serve
as rigid, stable free-space optical filters with adjustable finesse. The arrays also con-
stitute an optomechanical system by themselves, whose mirrors are both movable and
with engineerable optical and mechanical properties. As both mirrors and mechanical
resonators are monolithically combined, the system is inherently stable, greatly relax-
ing the setup complexity of typical free-space optomechanical setups, and making it an
ideal platform for simple studies of radiation-pressure effects.
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6.5. SUPPLEMENTARY INFORMATION

6.5.1. DETAILED FABRICATION, CHALLENGES AND SOLUTIONS

DETAILED FABRICATION

Our devices are fabricated in 200 nm thick stoichiometric SiN deposited via low-pressure
chemical-vapor deposition (LPCVD) on a plain 200µm-thick Si substrate. We then litho-
graphically define a 500 nm thick electron-beam sensitive resist (AR-P 6200.13) in the
shape of our photonic crystal trampolines and transfer the pattern into the SiN device
layer with a CHF3/O2 plasma etch. In the case of our single photonic crystal trampolines
the backside of the wafer is then patterned with square openings to fully etch through
the entire Si wafer without forming a double membrane array. In the case of fabricating
the latter, we first thoroughly strip the remaining electron beam resist with a suitable
remover at elevated temperatures (Baker PRS-3000 at 80 ◦C) to ensure a clean surface af-
ter the first pattern transfer step. We then repeat the same procedure of transferring the
trampoline pattern into the second device layer while protecting the already patterned
front side as to minimize exposure of both device layers to the clean room environment.
This cannot fully be avoided as both device layers will get in contact during the spin
coating procedure, i.e. with both the spin coater chuck and the hot plate surface during
tempering. Despite that fact, we do not see clear negative effects on neither the me-
chanical nor optical properties of our resonators. After the pattern transfer into both SiN
layers, we again clean the chip surfaces thoroughly from any organic compounds. We
first use Baker PRS-3000 at 80 ◦C to remove the remaining electron resist off the surface
followed by a hot Piranha solution at 110 ◦C. To release the trampolines, the chips are
briefly rinsed in various water baths and then transferred to a 30 % potassium hydrox-
ide (KOH) solution at 75 ◦C. The silicon is etched through the entire wafer for about two
hours at a rate of 1µm/min. After the release, a 10 min hydrochloric acid (HCl) etch
cleans off KOH residues of the exposed resonators surfaces. We then carefully transfer
them into subsequent rinsing baths of water and isopropyl alcohol (IPA) before drying
them in a critical point dryer (CPD) to avoid their exposure to viscous forces and surface
tension.

FABRICATION YIELD

We have found that by patterning the entire central pad with a PhC, even on its edges, as
shown in the zoom-in of figure 6.1c, the fabrication yield increases considerably. Devices
with round PhCs as close as 5µm to the pad edge show either cracks or even fully break.
Increasing the PhC diameter such that we cover more of the central pad with etch holes
seems to reduce part of the large stress on the membranes which presumably is causing
their rupture during release. This allows us to explore a much wider range of possible
design parameters with even larger pad sizes, significantly improving on challenges like
alignment between both membranes related to finite aperture losses (see section 6.5.3),
or using bigger beam waists in an optical cavity.

ALIGNMENT BETWEEN FRONT AND BACK MEMBRANE

We align front and backside using an optical microscope to determine the coordinates of
the patterns to be written with respect to one corner of our chips. By using this method,
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Figure 6.5: Influence of reflectivity mismatches between both mirrors. Plotted is the transmission T versus the
ratio of both mirror reflectivities R1/R2. For low finesse Fabry-Perot cavities, bigger mismatches do not have
as big of an influence on the the transmission as for the high finesse cases.

we introduce uncertainties to the correct coordinates between front and backside, lead-
ing to misalignments between 10µm and 30µm with good reproducibility, effectively
reducing the overlap between both mirrors. This could be significantly improved by us-
ing topological alignment markers reaching through the entire chip, e.g. by deep reactive
ion etching (DRIE). This would lead to better alignment between both membranes with
the drawback of adding additional fabrication steps.

OPERATION IN THE HIGH FINESSE TRANSMISSIVE REGIME

In order to understand the importance of matching the reflectivities between both mir-
rors, we plot the theoretical transmission T of the Fabry-Perot cavity with respect to the
ratio R1/R2 of its individual mirror reflectivities (see figure 6.5). The transmission (with-
out losses) follows the following equation for normal incident light

T = (1−R1)(1−R2)

(1−pR1R2)2
.

One can see that the transmission only reaches unity for matching mirror reflectiv-
ities and drops quicker the higher the finesse of the cavity becomes, i.e. for increasing
R1 and R2. In the case of R1 = 90%, mismatches of up to 10 % do not cause a big drop in
transmission yet (pink curve, see also low and mid R transmission plots in figure 6.2). For
very high mirror reflectivities above R1 = 99.99% even small mismatches between both
mirrors already lead to a significant and rapid reduction in transmission (blue curve,
figure 6.2).

It is crucial to have good control over the tuning of our PhC resonances in order to
account for mismatches between both mirrors induced by fabrication imperfections, es-
pecially in high finesse cavities. We therefore fabricated single membranes with various
PhC parameters in order to see its influence on the maximum of their resonanceλres (see
figure 6.6). We vary their radius r as well as lattice constant a and find a linear behavior
around our operating wavelength of 1550 nm. Taking the measured values of the lines



6

84 6. OPTOMECHANICAL ARRAYS OF TWO HIGH REFLECTIVITY MEMBRANES

1370 1375 1380
a / nm

1520

1540

1560

1580
re

s 
/ n

m

r = 550 nm
r = 525 nm
r = 500 nm

500 525 550
r / nm

1520

1540

1560

1580

re
s 

/ n
m

a = 1370 nm
a = 1375 nm
a = 1380 nm

Figure 6.6: Influence of the PhC design parameters on its resonance wavelength λr es . Plotted are measured
resonance maxima for varying lattice constants a and radii r . For increasing lattice constants, the maximum
of the PhC resonance shifts to higher wavelengths, whereas it decreases for increasing radii.

with three data points, we can determine the slopes to be ∆λres ∝ 1.81 ·∆a for a fixed
radius of r = 550nm, and ∆λres ∝−0.76 ·∆r for a fixed lattice constant of a = 1380nm.

In order to test how much the reduced dip depths can be attributed to mismatch-
ing mirror reflectivities, we fabricated double membrane arrays with varying PhC design
parameters. We keep the devices on one side of the chip fixed while sweeping the reso-
nances on the other side by ± 1.5 nm in their lattice constants a, effectively tuningλres by
more than 5 nm. We found that we could increase the dip depth of the high R array res-
onances from 1 % to up to 10 %. Further, more finely spaced sweeps of these parameters
should allow for even larger dip depths, while operating in a regime of high finesse.

6.5.2. SETUP FOR OPTOMECHANICAL CHARACTERIZATION
To characterize the optomechanical properties of the devices we place them in the center
of a rigid optical cavity, composed of two commercial mirrors which are 48.1 mm apart.
The mirrors are curved with an equal radius of 25 mm, making a stable cavity with a
FSRc = 3.12GHz, an empty cavity half-width at half-maximum linewidth of 550 kHz and
a corresponding finesse of 3000. We estimate the cavity waist to be 49µm, considerably
smaller than the PhC diameter of 300µm and approximately the same as the one used
on the optical characterization setup.

When empty, we align the incident laser to the cavity, achieving a mode matching
to the TEM00 modes larger than 90 %. By measuring light that is both transmitted and
reflected from the cavity and by scanning the laser frequency, previously calibrated using
a wavemeter, we obtain the cavity spectrum.

We then position the membrane inside the cavity using a 3-axis piezoelectric stick-
slip positioner. This allows us not only to precisely align the PhC membranes to the cav-
ity waist, but also to probe multiple devices on the same chip. The positioner is mounted
on top of a stage which enables the alignment of the membranes’ tip and tilt in relation
to the cavity axis. The x-axis positioner can also be operated in a conventional continu-
ous voltage mode, which lets us displace the membrane by up to 5 um along the cavity
axis.
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Figure 6.7: Left: Reflection of the optical cavity as a function of laser frequency∆ω and membrane position x at
a wavelength of 1566 nm. Here, we study a sample with a PhC resonance at 1565 nm and measure the splitting
of the avoided crossing δν. Right: The points indicate the measured δν, normalized by the cavity free spectral
range FSRc, as a function of the laser wavelength, close to the PhC resonance. These data can be converted into
a membrane transmission, which is indicated on the right axis. The traces are the result of an S4 simulation of
the transmission (green) and absorption losses (red) of a single PhC membrane with similar geometry as the
measured sample and an imaginary part of the refractive index of 1.9×10−5.

Finally, for a given laser wavelength and position we scan the laser frequency and
measure the transmitted power. The maxima of the transmission correspond to cavity
resonances. We obtain the dispersion maps of fig. 6.3 by repeating this measurement for
multiple positions and wavelengths. Due to their low signal to noise ratio, in order to
make the plots of fig. 6.3 clearer, we apply a bandpass-pass filter to the data, ensuring it
has no influence to the height and width of the resonances.

We would like to point out that on the optical characterization setup, due to the pro-
cedure we follow to do coarse wavelength sweeps, the wavelength has an uncertainty
of 0.5 nm, while the wavelength on the optomechanical characterization setup is much
better defined. To compensate for this mismatch, we use the coupling minima as a ref-
erence for the wavelength where the

p
R minima should occur in fig. 6.4 and shift

p
R

accordingly. To be specific, on that figure, the spectra of the Low, Mid and High R de-
vices were shifted by 0.1, 0.1 and −0.3 nm, respectively.

6.5.3. ESTIMATION OF OPTICAL LOSSES

SINGLE-MEMBRANE MINIMUM TRANSMISSION

To obtain a more accurate estimate of the maximum reflectivity achievable with our PhC
membranes, we place a sample with a PhC resonance at 1565 nm in the cavity setup de-
scribed before. The left plot on figure 6.7 shows the cavity reflection as a function of
laser frequency and membrane displacement x. The membrane divides the cavity into
two half-cavities whose mode frequencies are a function of membrane displacement x.
As x increases, the length of the half-cavity above (below) the membrane increases (de-
creases), changing the mode frequency as indicated by the dashed red (blue) line. If the
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membrane was perfectly reflective, both half-cavity mode frequencies would become
degenerate at a particular x. Realistically, the membrane has a non-zero transmission
which allows some light to leak between the two half-cavities. This lifts the degeneracy
and gives rise to an avoided crossing whose frequency splitting δν can be used to extract
the membrane transmission [57, 58].

We repeat this measurement for multiple wavelengths close to the PhC resonance.
The frequency splittings normalized by the free spectral range are plotted as blue circles
on the right plot of fig. 6.7. The smallest δν/FSRc measured for this sample was 3.2×10−3

at 1565 nm. Using the method of Stambaugh et al. [57], this corresponds to a a minimum
PhC transmission of 2.5×10−5.

DOUBLE MEMBRANE TRANSMISSION LOSS

In each round-trip, some light inside the double membrane etalon is transmitted through
the PhC mirrors. If both membranes had exactly the same PhC resonance wavelength
and if the highest finesse peak was exactly at the same wavelength as that resonance, this
would result in a round-trip transmission of 5×10−5. However, the double-membrane
peak is not, in general, at the PhC resonance. For a double-membrane with similar PhC
resonances, the peak can be, at most, 3 nm (approximately FSRDM/2) away from the PhC
resonance. According to fig. 6.7, this sets an upper boundary to the round-trip transmis-
sion of 2.6×10−2.

MATERIAL LOSSES

When light interacts with the SiN layer, some of it will be absorbed by the material or
scattered away due to fabrication imperfections. To estimate the magnitude of these ef-
fects, we use S4 to simulate the reflection and transmission through a PhC with similar
parameters to those of figure 6.7. We have considered the material to have an imaginary
part of the refractive index of 1.9×10−5 [57], which accounts for not only absorption
but also other loss mechanisms such as scattering [58], and we calculate the losses as
L = 1−R −T , where R is the reflection and T the transmission coefficients. The simu-
lation results are shown on the lower part of fig. 6.7. We see that the measured trans-
mission follows the simulation quite well. Within this wavelength range, the losses are
approximately constant and have a value of 3.5×10−4.

FINITE APERTURE LOSS

Any Fabry-Perot inteferometer with a finite aperture will lose some of the light through
diffraction at the mirror edges [26, 63]. These losses are higher for smaller mirrors and for
increasing cavity stability parameter. In particular, a plane-parallel Fabry-Perot cavity
has the highest stability parameter (g = 1), which makes it particularly susceptible to
finite aperture losses.

To estimate these, one can calculate the cavity Fresnel number N = a2/Lλ, where
a is the mirror radius and L is the cavity length, and obtain the estimated losses per
cavity round-trip from tables in literature [26, 63]. Given a mirror diameter of 260µm,
the Fresnel number of our devices is 54, which corresponds to a loss per round-trip of
2×10−3.

Notice that this effect could be directly mitigated either by making the PhC mem-
branes larger, or by controlling the wavefront of the field with one of the PhC, effectively
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Figure 6.8: Shown are the reflection spectra, together with the transmitted (T ) and reflected (R) beam mode
profiles of single a and double membranes b. The dashed lines indicate the reflectivity and wavelength at
which the mode profiles were measured.

realizing a focusing mirror [117]. This would reduce the stability parameter of the cavity,
making it less susceptible to finite aperture losses.

TOTAL LOSSES

Taking into account the previous results, we can estimate the total losses of the double-
membrane array if its highest finesse peak is at the resonance wavelength of the PhC
or if it is 3 nm away from it. Using the finite aperture loss, the measured transmis-
sions and the simulated material losses, we reach round-trip total losses of 2.8×10−3

and 2.9×10−2, corresponding to cavity finesse values of 2243 and 217. The lower bound
of this range is in good agreement with the maximum finesse we measure in our devices
of about 220. However, most of our samples show maximum finesses which are approx-
imately a factor of 5 smaller. This could be due to underestimations of scattering and
diffraction losses, or due to additional absorption by material residues on the SiN layers
or to the mismatch between the PhC resonances of both membranes.

MODE PROFILE ANALYSIS

The reflection and transmission beam profiles can also help in understanding the behav-
ior of our devices. We install flip mirrors in our setup which can send the optical beams to
an IR-sensitive camera and record the beam profiles for single and double membranes,
shown in figure 6.8a and b, respectively.

For the single membranes we obtain the beam profiles slightly detuned from the
maximal reflectivity, around 95 %, as otherwise the transmission is below the sensitiv-
ity of the camera. The measured modes have an overlap of approx. 83 % with a Gaussian
distribution, highlighting that the PhC structures distort the transmitted optical beams
only slightly.

In figure 6.8b we plot the reflection spectrum of a double membrane (red) whose
individual membranes have a spectrum similar to the one shown in blue. The reso-
nance with the highest finesse occurs at 1562 nm, however its low dip depth makes the
mode difficult to measure with our camera. The adjacent resonance at 1557 nm shows
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the second highest finesse (F = 144), corresponding to single membrane reflectivities
of around 97 %. Here we are able to measure the beam profiles for the transmitted and
reflected light. While the reflection is mostly unaffected, the transmitted beam appears
distorted. As the single membrane transmission does not show such behavior, we sus-
pect the distortion results partly from scattering losses, as described in section 6.5.3.
This loss mechanism becomes more dominant as the number of cavity round-trips, i.e.
the finesse, increases. Indeed, for the resonance at 1546 nm with a lower finesse of only
21, corresponding to a single element reflectivity of 75 %, the transmitted and reflected
beam profiles have an overlap with a Gaussian distribution of more than 84 %.

In addition, we would also like to note that the tip/tilt alignment becomes more im-
portant in double membrane arrays with high finesse, since the incident beam has to be
properly mode matched to the cavity. This is further complicated by the plane-parallel
geometry of our PhC cavities and could therefore be another main contribution to the
observed mode distortion. This problem could be ameliorated by making one of the PhC
mirrors a so-called focusing PhC [117], which can decrease the cavity stability parameter,
making the mode matching and alignment easier.
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CONCLUSION AND OUTLOOK

T HE aim of this thesis was to engineer systems based on SiN tethered membranes
with large mechanical quality factors and optomechanical coupling rates. Multiple

issues related to the study of optomechanical arrays of this type of membranes inside
optical cavities were addressed but plenty of new questions were also brought to light.
This chapter outlines some of those issues, as well as ideas for future experiments.

HIGH-Qm SIN MECHANICAL RESONATORS

Chapter 4 showed that tethered SiN membranes can have mechanical properties good
enough to be cooled down from room temperature to their ground state using optome-
chanical cooling. For this, the membrane thickness needs to be as small as possible,
whereas the chip thickness must be large. As the thickness of SiN films decrease, the
stress approaches this material’s ultimate yield strength, making the devices very fragile
and harder to fabricate. At 25 nm-thickness, even light collisions of the samples against
glass beakers during fabrication can harm the devices’ mechanical quality factor. The
yield is thus considerably lower. As to the requirement for thicker substrates, this in-
creases the KOH-etching time and demands additional steps to ensure short SiN over-
hangs, a crucial factor in achieving a high Qm, making the device more susceptible to
failure during fabrication.

More recently, other works have been published in which mechanical resonators
with frequencies close to our tethered membranes had equivalent or even higher fm×Qm

products [149, 150]. In these, to reduce clamping losses from the resonators to the sub-
strates, the authors design a phononic shield which greatly decreases the curvature, and
thus bending losses, of some mechanical modes and localizes these far from the clamp-
ing points, reducing radiative losses. In this way they are able to achieve fm ×Qm up to
1.1×1015 Hz. However, this is achievable for higher order mechanical modes and there-
fore it is questionable how useful this method is for ground state cooling. Therefore,
strain engineering, the method used primarily in our devices, still seems to be the most
promising approach to increase the fm ×Qm of fundamental mechanical modes at the
MHz-frequency range for ground state cooling from room temperature.

89
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Another advantage of devices with phononic shields is that they are reportedly less
sensitive to the way in which the chip is attached to the setup. This is a considerable
challenge in membrane-in-the-middle setups, since to ensure good mechanical stabil-
ity the chip must be mounted tightly to some sort of holder. This in turn modifies the
stress distribution of the device and can increase radiation losses [110]. The devices
studied in chapter 4 were simply lying on a translation stage and not tightly mounted
to it. We opted for this approach because we were already aware that mounting brings
a lot of inconsistency when it comes to the mechanical decay rate. Our devices could
in principle be made insensitive to these losses by making a phononic shield on the Si
substrate around the device, like demonstrated in [151], even though the unit cell, and
consequently the chip size, would be considerably larger due to our low mechanical fre-
quency.

As pointed out in chapter 4 and measured in [112], these high-Qm resonators have
force sensitivities of tens of aN/

p
Hz, making them promising candidates as detectors

for applications that require high sensitivity. Following up on this, a few groups are now
studying concrete applications of tethered membranes as sensors. As a notable example,
a tethered membrane can be functionalized with a magnet in order to build a magnetic
resonance force microscope based on optomechanical detection with a very low sensi-
tivity [152]. Another field were tethered membranes could result in direct improvements
in performance is in particle detectors. Some rely on the interaction of particles with
membranes, measuring their displacement using optomechanics techniques, such as
CERN’s KWISP [153]. In such a detector, using a trampoline membrane could greatly
improve the machine’s sensitivity and noise performance. Indeed, functionalizing and
exploiting SiN tethered membranes for sensing applications might be one of the most
promising avenues of research of this type of devices.

LARGE-AREA, SUSPENDED PHC MIRRORS

To obtain strong light-matter interactions, the reflectivity of the mechanical resonators
must be large, for example by patterning photonic crystals on the membranes. Decreas-
ing the thickness of SiN membranes makes it more challenging to achieve high reflectiv-
ities, since, as laid out in chapter 5, the PhC resonances become narrower and the device
response is more sensitive to the wavefront of the incident beam. For the purposes of
optomechanical arrays, these results establish clear trade-offs between PhC reflectivity
and mechanical properties: thinner devices can have low mechanical damping, but to
achieve large reflectivities the membrane must be widened, decreasing the mechanical
frequency and, thus, fm ×Qm. Chapter 4 proposes inverse-PhC patterns of thick SiN
cylinders supported by the thin membrane pad as a solution for this issue. On top of
an additional lithography step, this type of PhC requires etching down the SiN film with
reactive ion etching. It is not known if this process can harm the film surface and, con-
sequently, the mechanical dissipation rate.

The greatest impact of the results of chapter 5 will probably be in fields unrelated to
optomechanics, namely in the manufacture of thin optical elements. The development
of extremely thin PhC mirrors and lenses is promising, and the possibility of engineer-
ing their response to frequency, polarization, and angle of incidence opens the door to
a large array of applications. From miniaturizing the pixel size of screens [154] to coat-
ings that protect airplanes from laser attacks [155], photonic crystals and metamateri-
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als are increasingly finding their way towards more advanced technology development
stages. The large area PhC mirrors presented in this work could find niche applications
where properties such as very high reflectivity, low material absorption or high mechan-
ical quality factor are needed. Excitingly, one can envision harnessing the suspended
nature of these devices to decrease their displacement noise or control their position,
either globally or locally, as a deformable mirror.

One application where large-area, suspended PhC mirrors made of SiN could pros-
per is in low-mass lightsails, a topic which partially motivated this work in the first place.
SiN PhC mirrors meet many of the requirements of lightsails for projects such as the
Starshot Breakthrough Initiative [130] of broadband low optical losses, high emissivity,
high reflectivity and low mass [156]. But several challenges are still open. Such lightsails
require areas of about 10 m2, a large step from what we demonstrated. This would cer-
tainly require combining multiple mirror wafers together. Since the SiN mirrors require
a supporting Si substrate frame to sustain the tensile stress, the total sail mass would
necessarily be much larger than the desired 1 g. It is also not clear how these membranes
with large tensile stress would behave with collisions with space dust. Among other diffi-
culties, the extreme requirements of the Starshot project seem unrealistic. Even so, given
all its advantages, SiN PhC mirrors are strong contenders for Starshot’s sails.

OPTOMECHANICAL ARRAYS OF TWO HIGH REFLECTIVITY MEMBRANES

Our work on optomechanical arrays happens during an exciting time in which multiple
groups are starting to place considerable efforts towards observing enhanced coupling
using this platform. To this day there have only been two other experimental reports
which study two membranes in the middle of a cavity [39, 157]. In both, the distance be-
tween the membranes can be controlled with piezoelectric actuators, since the devices
sit on separate chips. The authors can thus study the optomechanical coupling strength
between a cavity and the distance between two unpatterned SiN square membranes.

However, having to control the position of both membranes complexifies the setup
considerably. This is a particularly serious consideration once the reflectivity of the
membranes increases. Indeed, in one of the cited works, the authors were able to lock
the cavity with two membranes in the middle but they had to operate in a regime of low
coupling strength in order to avoid instability of the cavity locking feedback loop [39]. In
this regard, placing the membranes on the same chip removes some sources of low fre-
quency mechanical noise and allows the feedback loop to be stable over a broader range
of parameters.

Fabricating the membranes on the same chip brings other advantages. First, if small
membranes such as the ones studied throughout this thesis are used, the method pre-
sented in chapter 6 provides a relatively easy way to align the membranes to each other.
Furthermore, the parallelism between membranes, which can be a serious source of op-
tical losses [39], is set by that of the substrate, which is typically better than machined
parts. In addition, such a double-membrane chip can be used as an optomechanical
system in itself, which allows for the realization of optomechanical experiments without
the need for complex cavity setups.

Of course with the monolithic-array approach one loses the flexibility of directly con-
trolling the distance between membranes. In this case, the regime of enhanced coupling
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can only be reached by tuning the laser wavelength to that of a transmission maximum
of the membrane stack. If this is not within reach of a fixed frequency laser, one must
instead use tunable lasers. These have typically much larger phase noise which, once
again, increase the demands of the feedback loop. However, it should be possible to
modify the PhC pattern to alter the phase shift acquired by light transmitted by each
membrane and, in this way, apply an offset to the stack’s spectrum.

We have estimated that for the parameters of our setup and devices we could po-
tentially observe a coupling enhancement of 120. To go beyond this, one must either
increase the cavity length, which comes at the expense of mechanical stability of the
setup, or decrease the spacing between membranes. With the current method, this can
only be achieved by using thinner chips, which are much more fragile and therefore diffi-
cult to handle during manufacturing. Therefore, to move forward, a different approach is
needed. One possibility is to bond two square membranes from different chips together,
such as described in [144]. This process has demonstrated to allow for membrane dis-
tances as short as 8.5µm. However, it requires careful alignment of the membranes in
relation to each other and between their planes, to guarantee parallelism. A promising
alternative is to use stacks of crystalline films, such as InGaP, separated by sacrificial lay-
ers of AlGaAs. Using a single lithography step, one could obtain a series of mechanical
resonators (at the InGaP layers) with very controlled spacings between them, set by the
sacrificial layers. This method would also allow for more than two membranes. Although
promising, the difficulty seems to reside in successfully fabricating such devices, which
are much less robust than SiN. Also, the mechanical properties of membranes made out
of such crystalline films have not proven to be able to surpass those of SiN, making it hard
to envision such a system having a high optomechanical coupling and low mechanical
dissipation simultaneously.

An important open question pertains to the optical losses of double-PhC-membrane
stacks. The estimations given on section 6.5.3 do not fully explain why stacks with a
higher finesse were not achieved which suggests there are other loss mechanisms at
play that we did not consider. For example, non-uniformities or roughness in the mir-
ror surfaces of plane-parallel Fabry-Perots act as scattering elements and lead to serious
losses [36]. Cavities with curved mirrors are less susceptible to this issue since they par-
tially recollect scattered light [112, 158]. For this reason, this loss source might not be
appreciable when studying a single membrane in the middle of the cavity to obtain its
total losses. One indication that surface roughness plays a role in limiting the losses in
our devices is in the measured mode profiles shown in section 6.5.3. There we observed
that the transmission of higher finesse peaks becomes deformed, which could be ex-
plained by a scattering process that makes the beam lose its Gaussian distribution. We
know that scattering from surface roughness is one of the dominant loss mechanisms
in micro and nanophotonic cavities [159], so it can also be a limiting factor of our PhC
optomechanical arrays.

Future experiments should aim at identifying all loss sources and assessing their im-
pact in the context of optomechanical arrays. Similarly, it is important to better define
requirements regarding the double-membrane’s dip depth and mechanical properties,
in particular how relevant the frequency difference between the two membranes is.
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FINAL CONSIDERATIONS

Although much effort has been placed in understanding theoretically the effect of the
motion of the membrane arrays on the cavity frequency, this was done from a static per-
spective. We still lack a better understanding of what happens to the mechanical modes
once they are coupled through the light field. Are there minimum requirements in the
field strength for the membranes to couple strongly enough and to observe the splitting
between the center-of-mass and relative motional modes clearly? In other works, what
form does the coupling strength between the membranes take? Solving this question
will help experimentalists progress more efficiently in the lab.

Going beyond arrays of two mechanical resonators is also an interesting challenge.
As mentioned before, one option is to use stacks of thin-films with sacrificial spacer lay-
ers, but the material difficulties here are large. An alternative relies on deep-etching
technology to pattern arrays of mechanical elements into thick Si chips. One could think
of fabricating closely spaced vertical cantilevers which would constitute an array of me-
chanical elements and whose spacing can be lithographically defined. The cantilevers
could be made more reflective by patterning them as a grating. Even more exciting would
be to make an optomechanical array system in an integrated photonic circuit. However,
it is hard to envision how such a system would look like.

Finally, the high-reflectivity PhC membranes presented in this work could be ex-
ploited for studies of quadratic optomechanical coupling. The membrane-in-the-middle
platform is one of the only optomechanical systems that allows easy access to this regime
which, as mentioned in section 2.3.3, scales favorably with the membrane reflectivity.
Given the large reflectivities we measured on single membranes, it is worth exploring
what experiments are interesting to perform.

The next few years will bring exciting results to the field of cavity optomechanics.
Considering all their potential, PhC membranes will certainly play an important role in
making light jump.
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[135] S. Hong, R. Riedinger, I. Marinković, A. Wallucks, S. G. Hofer, R. A. Norte, M. Aspelmeyer, and
S. Gröblacher, Hanbury Brown and Twiss interferometry of single phonons from an optomechanical res-
onator, Science 358, 203 (2017).
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