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Abstract

The safety of the Dutch dikes depends on various failure mechanisms. Macro stability, a geotechnical
failure mechanism, is highly affected by differences in soil strength because the sliding plane propa-
gates through areas of least resistance. The variations in soil properties in space, also known as spatial
variability, are caused by geological processes and determine the locations of weaker zones in a dike.
This highlights the importance of incorporating spatial variability into dike stability assessments.

The approach to incorporate spatial variability in the official Dutch assessment framework (WBI2017)
relies on various assumptions. It assumes complete local variance reduction and neglects that the fail-
ure mechanism propagates through the weaker zones, leading to a mean strength reduction. Moreover,
it assumes a default value for the ratio between local and regional variance α = 0.75, which lacks em-
pirical evidence. Another method to incorporate spatial variability in stability calculations is the Random
Finite Element Method (RFEM). This probabilistic technique models strong and weak zones through
random fields. However, the main drawback is its considerable computation time, making it impractical
to use for the assessment of the hundreds of kilometers of dikes in the Netherlands.

To address these issues, this research answers the question: What is an effective approach for incor-
porating spatial variability in soil into dike stability calculations? The study is divided into two parts: a
data analysis and the creation of an RFEM model.

The first part investigated national and regional spatial correlations using variograms. The study found
that the local spatial variance cannot be analyzed with variograms based on the national dataset. This
is because the variograms average the variance in the local data due to their large scale. Investigating
local variability requires local data with a high enough density and accuracy in the research area.

In the second part, the inclusion of spatial variability was studied for a case study dike using RFEM,
which is part of dike trajectory 34-2, located between Willemstad and Noordschans. The research
highlighted two differences between assumptions made by RFEM and the WBI2017 method: (1) the
inclusion of statistical uncertainty and (2) the use of different stress components in calculating the
undrained shear stress. The results of the different methods can only be compared if these differences
are accounted for. Furthermore, the study found that using a probabilistic calculation with α = 0.8 better
fits the results of the realistic RFEM model of the case study dike, particularly in the lower tail of the
distribution of the results, compared to the default value of α = 0.75. Therefore, it can be concluded
that α = 0.8 leads to a more realistic approximation of the probability of failure of this cross-section.

To investigate the importance of this finding, an assessment was carried out following the guidelines
of WBI2017 but with α = 0.8. This showed that the probability of failure for dike trajectory 34-2 was
reduced by 39.72% but that the safety category of the dike trajectory (for macro stability) remains un-
changed.

Therefore, the answer to the research question is that when considering the computational require-
ments of RFEM, it is more effective to keep using the WBI2017 approach of implementing spatial
variability into the input parameters of dike stability calculations with α = 0.75.

These findings are relevant as they validate the use of the current method with the available data. The
study used different approaches for incorporating spatial variability in stability calculations and provides
valuable insights for future research.
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1
Introduction

1.1. Motivation
Throughout history, the Netherlands has faced the constant threat of water (Deltacommissie, 1961;
ENW, 2016; Stijnen et al., 2014; TAW, 1998). People in the low-lying areas began building dikes
centuries ago to protect their fertile lands and homes (TAW, 1998). Despite their efforts, floods have
plagued this land for hundreds of years. One of the most devastating floods was the Watersnoodramp,
a powerful storm surge in 1953, which flooded over 2, 000 square kilometers of land, killing 1, 835 people
(Deltacommissie, 1961; Jonkman et al., 2008). To prevent such a disaster from happening in the future,
the government formed the Delta Commission. In 1993 and 1995, the river dikes in the Netherlands
could not handle the high river discharges of 11, 000 and 12, 000 cubic meters per second, leading to
the evacuation of 250, 000 residents. (ENW, 2016). As a result, the Delta Commission expanded its
efforts to improve the river dikes as well (Deltacommissie, 2008).

In the Netherlands, most of the primary dikes are earthen structures. The soil properties significantly
influence the strength of these dikes (ENW, 2016). According to Clayton (2001), around 85% of the
general construction risk is related to geotechnical issues. Therefore, an accurate understanding of
the soil strength is crucial in reducing the risk of flooding. Unlike manufactured materials like concrete
or steel, natural soil varies considerably due to geological processes (Calle et al., 2021). To accurately
measure this variability in the soil, thorough soil investigations are needed. However, limited data is
usually available due to time and cost limitations (Calle et al., 2021). As a result, conservative values
for soil properties are often used because of a lack of knowledge about the uncertainties and their
effect on the stability of dikes, potentially leading to overly cautious and uneconomic designs (Varkey,
2020). This highlights an issue: in an attempt to cut expenses on extensive soil investigations, there is
a potential for incurring higher costs through uneconomic designs.

1.1.1. Background Information
In the Netherlands, dike safety is governed by the Water Law (Waterwet) and assessed through pro-
cedures of the Legal Assessment Instrument (Wettelijk BeoordelingsInstrumentarium) (WBI), with the
latest version published in 2017. The Dutch dike network has been divided into trajectories, each with
its own safety standard. The same threat and, to a lesser extent, the same consequences in the case
of a breach are assumed over the whole trajectory (ENW, 2016). Within each trajectory, statistically
homogeneous sections share the same loads, geometry, and soil layers. Evaluating representative
cross-sections involves considering various failure mechanisms, as shown in the fault tree (Figure 1.1).
If any section fails, flooding occurs, indicating a dike breach.

One of the failure mechanisms significantly affected by differences in soil strength, along with piping, is
macro-instability. As a geotechnical failure mechanism, spatial variability is one of the primary driving
factors, alongside the load and geometry of the dike (ENW, 2016). This is because the sliding plane
propagates through areas of least resistance, whose locations are determined by the spatial variability
of the soil.

1



1.1. Motivation 2

Cross-section

Figure 1.1: Fault tree with the different dike failure mechanisms. Adapted from ENW (2016).

In the WBI2017 assessment method, spatial variability of the soil is included in the model by Calle
et al. (2021), based on Vanmarcke (1983). This model proposes complete averaging of local soil
strength variability (variance reduction) due to the small scale of fluctuation compared to the layer
thickness crossed by the failure surface. However, the strength of the soil fluctuates over a smaller
distance in the vertical direction than in the horizontal direction due to geological deposition processes
(Schweckendiek et al., 2017). Consequently, this model assumes that averaging is only relevant in the
vertical direction.

Recent research has shown that spatial averaging in the Vanmarcke sense is an incomplete represen-
tation of the spatial variation in geotechnical engineering problems (Cami et al., 2020). Furthermore,
studies with Random Finite Element Method (RFEM) reveal that the attraction of failure surfaces to
weaker soil zones has significant implications in some cases (Calle et al., 2021), reducing mean soil
properties. This is not included in the current model.

Moreover, Calle et al. (2008) and TAW (1989) found that Vanmarcke’s model did not perfectly fit the
dataset of available Dutch soil tests. To accommodate the wide range of means of the local test sets
that made up the regional test set, the model had to be extended (Calle et al., 2021). To achieve this,
Calle et al. (2008) proposed to incorporate the ratio between the local and regional variance (α) in the
determination of soil strength parameters used for calculations. The default value of α, set at 0.75, was
initially established by the TAW (1989) based on intuition due to the absence of adequate data, time,
and techniques (Calle et al., 2021).
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1.1.2. Problem Statement and Relevance
In the Netherlands, the water boards and Rijkswaterstaat (the State Department of Waterways and Pub-
lic Works) maintain primary and regional dikes. They rely on (semi-)probabilistic stability calculations
based on regional and local soil investigation. However, the current method of incorporating spatial
variability into these calculations relies on numerous assumptions as outlined in Paragraph 1.1, which
are as follows:

• The inclusion of variance reduction while neglecting the influence of reduced mean. By doing this,
the method fails to account for the tendency of failure to occur in weaker zones. This neglect can
lead to unconservative failure probability estimates depending on the problem.

• The default value of the α ratio, representing the relationship between regional and local data,
lacks empirical evidence. It is assumed to be a conservative value (Calle, 2007, 2008). This
parameter significantly influences the entire schematization, affecting the determination of the
characteristic value or standard deviation.

It is widely acknowledged that spatial variability is a significant driving force behind dike instability (ENW,
2016). However, the amount of impact remains unknown due to the limited research conducted on the
abovementioned assumptions. This knowledge gap shows the importance of understanding how these
assumptions affect the failure probability estimation. It is necessary to bridge this gap to increase the
accuracy and reliability of our stability assessments.

Although the use of RFEM provides a sophisticated approach for modeling spatial variability through
random fields, its computational complexity makes it impractical for implementation in engineering prac-
tice.

1.2. Research Objective
The fact that the WBI2017 model for assessing Dutch dikes is based on assumptions (see Paragraph
1.1.2) and the impracticality of RFEM for dike maintenance institutions further highlights the need for
an alternative approach. Therefore, the primary objective of this research is to develop a method that
accurately and effectively accounts for spatial variability in the stability assessment of dikes. To achieve
this objective, the following research question and sub-questions will be answered:

RQ What is an effective approach for incorporating spatial variability in soil into dike stability calcula-
tions?

SQ1 How do different soil characteristics correlate in the spatial domain?
SQ2 What is the number and distribution of measurements on a local scale needed to accurately

model the spatial variability in the soil?
SQ3 How does soil spatial variability on a regional scale influence the different steps involved in

the schematization of dike stability calculations?
SQ4 How important is the spatial variability in the soil compared to other uncertainties?

1.2.1. Methodology
The method used to investigate the influence of spatial variability consists of two parts. Firstly, a data
analysis is conducted to investigate national and regional spatial correlation. Secondly, an RFEMmodel
is generated to approximate reality and investigate the assumptions in the current model.

The data used in the data analysis is collected by Applied Water Management Research Foundation
(Stichting Toegepast Onderzoek Waterbeheer) (STOWA) and will be filtered to handle outliers. Sample
variograms will be constructed for different soil types and two different soil parameters: the volumetric
weight γwet and SHANSEP parameter S. Analyzing the detail and accuracy of the sample variograms
can determine whether the dataset is appropriate for answering sub-question 2. Theoretical variograms
will be fitted to quantify the spatial variability per soil type and soil parameter. The data will be analyzed
for different categories to gain more insight into the influences of spatial variability. This includes refining
the soil classes, filtering by a specific depth range, only including the vertical variability, and investigating
the influence of spatial scales. By doing this, the range over which the parameter is correlated, the
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amount of total variance, and the variance due to spatial variability can be investigated. This information
will answer sub-question 1 by quantifying the correlations in the spatial domain.

In the second part of the study, a realistic case of spatial variability will be created by generating a
random field for a case study dike using Random Finite Element Method (RFEM). For this, a TU-Delft
in-house finite element code (version Dec. 2023), built upon the finite element library by (Smith et al.,
2014), as used in for example (Varkey et al., 2023), will be used. Sub-question 3 will be answered by
comparing this realistic case with the current methodology for incorporating spatial variability in dike
assessments as described in WBI2017. The calculations will be performed using a Finite Element
Method (FEM). To calculate the probability of failure of the dike, Monte Carlo simulations will be used
for the probabilistic and RFEM calculations. The distribution of the outcomes from the realizations and
the shapes of the failure surfaces will be analyzed to study the assumptions of mean and variance
reductions and the significance of spatial variability compared to other uncertainties (sub-question 4).

1.2.2. Scope
This research focuses exclusively on analyzing failure in primary flood defences in the Netherlands,
referred to as ”dikes” hereafter. However, it should be noted that this topic is also relevant for the
stability assessment in other soil bodies, like embankments.

The failure analysis will specifically consider the Ultimate Limit State (ULS) method. According to
section 1, subsection 1 of the Water Act (Waterwet), the ULS is defined as follows: ”loss of flood
defence capacity in a dike trajectory causing the area protected by the dike trajectory to flood in such
a way that fatalities or substantial economic damage occur”. Therefore, this study will investigate the
macro-stability failure of the land-side slope that directly leads to a dike breach, causing flooding. It will
not address macro-stability in combination with other failure mechanisms.

For the stability of dikes, it can be assumed that the soft soils, namely peat and clay, have the most
influence due to their low volumetric weight, leading to low effective stresses and undrained shear
strength. Consequently, this research was focused solely on these soil types.

While the entire process shown in Figure 1.2 is essential for an effective approach to include spatial
variability in dike stability assessments, this project will focus only on the initial stages. These stages
involve integrating sample data into the assessment of dike stability and not the scaling process from the
cross-section probability of failure to the section and trajectory level. Therefore, due to time constraints,
this research will not analyze the length effect or the impact of horizontal variability parallel to the dike
direction.

1.3. Structure of the Thesis
Firstly, in Chapter 2, the necessary literature on the WBI2017 method for assessing dike stability will be
presented, followed by a discussion on geostatistical methods and a brief explanation of RFEM. After
that, the thesis is divided into three parts, given the fact that the methodology consists of two parts,
followed by a part of the discussion and conclusion.

The first part of the thesis, the data analysis, is further subdivided into three chapters. Chapter 3
provides a description of the databases and an overview of the strategy that will be used to investigate
the spatial variability. Chapter 4 presents the results of the variograms, which will be discussed and
concluded in Chapter 5. This chapter also includes an overview of the data from the data analysis that
will be used for the model.

The second part of the thesis focuses on the model of the case study dike, with Chapter 6 introducing
the case study and presenting the setup of the model. Chapter 7 presents the results of the model
using different scenarios, while Chapter 8 discusses the results of the model and draws conclusions.

The third and final part of the thesis consists of two chapters, with Chapter 9 discussing the limitations
of the approach of combining the data analysis with the model and the impact of the findings. Chapter
10 provides the answers to the research questions and some recommendations for future research.
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Figure 1.2: A schematization of the WBI2017 method (blue) (based on Calle et al. (2008)) and the RFEM method to include
spatial variability and student-t correction of strength parameter X. Local averaging is implemented in different parts of the

model. For the current method, local averaging is accounted for in the model input, while in RFEM, local averaging happens by
modeling the strong and weak zones in the soil layers. In this way, the amount of local averaging can be investigated. The

dashed line depicts the scope of this research.
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Literature

2.1. WBI2017 Method
The dikes in the Netherlands are divided into separate trajectories, each with its safety norm as de-
fined by the Water Law. To determine the failure probability of the trajectory, it is further divided into
smaller sections, which are regarded as statistically homogeneous, indicating the same loads, geome-
try, and soil layers. For a more detailed description of the subdivision of dike trajectories, please refer
to Appendix A.2. The evaluation of a representative cross-section involves considering multiple failure
mechanisms. Figure 1.1 illustrates the fault tree for this analysis. If any of the dike sections fail, it
leads to flooding. Consequently, the failure of a dike section occurs when a specific failure mechanism
occurs within that particular section.

This research focuses on the macro-stability failure mechanism. Therefore, in the first section of this
paragraph, a brief overview of the mechanism is provided. For a more extensive explanation of this
mechanism, including calculation methods and information about Critical State Soil Mechanics (CSSM)
and SHANSEP, please refer to Appendix A.3. Because this research investigates the current method
of incorporating spatial variability into dike stability assessments, an overview of the theory behind the
WBI2017 method will be given in the second section.

2.1.1. Macro-Stability
Macro-instability in dikes, as depicted in Figure 2.1, occurs when large sections of a soil mass shear
along straight or curved deep shear planes. Macro-instability impacts both the dike body and the soil
foundation underneath it (’t Hart et al., 2016). Together with internal erosion, the instability of a dike
has been identified as one of the primary causes of past flooding events (ENW, 2016; Jonkman &
Schweckendiek, 2015). A high water level will raise the water head and phreatic level by infiltration
into the dike body, causing an increase in water pressures in the dike. This reduces effective stress,
the primary driver of shear strength, and subsequently decreases the mobilized shear strength of the
soil. This will ultimately cause the soil mass to slide and can trigger a dike breach.

Figure 2.1: The failure mechanism macro-stability of the inner slope. Adapted from ENW (2016).

Determining the probability of dike failure due to macro-stability depends on several factors, including

6
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the soil’s strength. Since there are often significant uncertainties, probabilistic methods are frequently
used to assess the probability of failure. Please refer to Appendix A.1 for the definition of the probability
of failure and an outline of the various reliability analysis levels used to determine it.

The techniques used to evaluate the stability of a dike include numerical and Limit Equilibrium Methods
(LEM). The LEM assumes that a dike will fail if a potential slip plane’s horizontal, vertical, or moment
equilibrium is disturbed and can model detailed soil profiles, seepage, and various loading scenarios
(Sharp et al., 2013). Bishop (Bishop, 1955), Uplift-Van (Van, 2001), and Spencer (Spencer, 1967) are
examples of LEM. On the other hand, numerical models, like the Finite Element Method (FEM), are
more flexible in their choice of constitutive models. They can model groundwater flow and soil-structure
interaction but are more computationally heavy and prone to input errors (Jonkman et al., 2021). More
information about the second method will be provided in Chapter 2.3.1. Various factors influence the
shape of the failure surface of a dike, and the choice of the method depends on the specific application.

Rijkswaterstaat (2021) has determined that the appropriate way to analyze macro-stability is through
Critical State Soil Mechanics (CSSM) (Schofield & Wroth, 1968), which focuses on critical state rather
than the peak shear strength. The critical state is where the soil no longer changes its volume during
shearing. In CSSM, a distinction is made between drained and undrained modeling:

• Drained: The non-associative Mohr-Coulomb drained model is suitable for permeable layers like
sand and layers above the phreatic line (Rijkswaterstaat, 2021). Excess pore pressures can
dissipate, and effective stresses determine soil strength. In the CSSM framework, the dilation
angle (ψ) and cohesion (c) are zero at the critical state.

• Undrained: The Stress History and Normalized Soil Engineering Property (SHANSEP) model
(Ladd & Foott, 1974) has been used since 2017 to determine the strength of undrained layers in
Dutch primary dikes. It describes the relationship between the undrained shear strength of the
soil and the vertical effective stress.

2.1.2. WBI2017 Schematization of Spatial Variability
The current method for incorporating spatial variability in dike stability assessments in the Netherlands
in WBI2017 is described by Rijkswaterstaat (2021) and Calle et al. (2021) and based on Calle et al.
(2008). The assessment considers various factors of spatial variability, as shown in Figure 1.2. These
factors include (1) the length effect, which is not within the scope of this research, (2) the complete
averaging of vertical spatial variability to reduce variance, and (3) the ratio between local and regional
variance.

The first point, the length effect, refers to the phenomenon where the probability of encountering a ”weak
spot” increases with the length of the slope, thereby raising the probability of a dike trajectory failure
(Hicks & Li, 2018). Even though the length effect plays a vital role in understanding the relationship
between the probability of failure of a cross-section and the probability of failure of a dike section and
trajectory, this part falls outside the scope of this research. This research focuses on translating soil
investigation to a probability of failure of a cross-section, as is covered in the section within the dashed
line in Figure 1.2.

The last two points are incorporated in Calle et al. (2008) ’s ”2.5D” model, which is based on Vanmarcke
(1983). These two aspects of this model will be described in this chapter.

2.1.3. Variance and Mean Reduction
The current method, described by Calle et al. (2008), assumes that the vertical scale of variation in soil
properties is typically smaller than the thickness of the layer intersected by the failure plane. Conse-
quently, the model assumes that vertical variation can be averaged out entirely, a concept referred to
as variance reduction (see Figure 2.2). For a more detailed description of variance reduction, please
refer to Calle et al. (2021). The current method (Calle et al., 2008) states that actual finite failure could
only occur in a longitudinally unstable zone. In this zone, the average soil strength in the longitudinal
direction along the failure surface is below the required stability limit. Therefore, no averaging is con-
sidered in the horizontal direction parallel to the dike, as the scale of fluctuation in that direction is often
significantly larger than the width of the failure surface (Schweckendiek et al., 2017). However, due to
these assumptions, this method fails to account for the tendency of failure to propagate through weaker
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Figure 2.2: The ”effective” distribution accounts for the effects of spatial correlation and the problem being studied in the
derivation of characteristic property value. Modified from Hicks et al. (2019).

zones, which would reduce the mean strength. Depending on the specific problem, this exclusion may
lead to overly optimistic values.

2.1.4. Ratio between Local and Regional Variance
The theory behind the current model of including spatial variability is extensively described by Calle et
al. (2021). This section presents an overview of the current method for incorporating local and regional
variance in three directions, as depicted in Figure 2.3.

Figure 2.3: Axes along the dike and the fluctuations of a soil parameter along different directions. Adapted from
Schweckendiek et al. (2017) and Calle et al. (2021).

The proposed model consists of two separate components. The first component is a three-dimensional
local variation, which is represented by a function f(x, y, z). The second component is a two-dimensional
variation represented by another function c̃(x, y). The fluctuation rate in the horizontal directions x and
y are assumed to be equal. To obtain the final combined three-dimensional field c(x, y, z), the two
components are added together:
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c(x, y, z) = c̃(x, y) + f(x, y, z) (2.1)

The two-dimensional horizontal component c̃(x, y) and the three-dimensional component f(x, y, z) are
assumed to have a normal distribution and are treated as statistically independent. The total variance
of the combined field c(x, y, z) can therefore be expressed as the sum of the variances of the two- and
three-dimensional components:

σ2
c = σ2

c̃ + σ2
f (2.2)

Where:

σ2
c is the total variance.
σ2
c̃ is the variance of the two-dimensional horizontal component.
σ2
f is the variance of the three-dimensional local component.

To incorporate these components in the current method, a factor α has been introduced in the deter-
mination of soil parameters. α is defined by Calle et al. (2021) as the ratio between the variance of
the three-dimensional local component and the total variance. In other official documents, such as
Rijkswaterstaat (2021), it is also referred to as the ratio between local and regional variance.

α =
σ2
f

σ2
c

=
σ2
loc

σ2
reg

(2.3)

Where:

σ2
loc is the local variance.
σ2
reg is the regional variance.

Because in the current method, ”local” is defined at the scale of a failure surface, the current model
assumes that local variance can be completely averaged out (Calle et al., 2021). Therefore, α also
determines which part of the sample variance can be averaged out. This parameter plays a role in con-
verting sample data from soil investigation into input suitable for calculations, which are characteristic
values for a semi-probabilistic analysis or mean and standard deviation for a probabilistic or FORM
analysis.

The default value of α, set at 0.75, was initially established by TAW (1989) based on intuition due to the
absence of adequate data, time, and techniques (Calle et al., 2021). Subsequently, Calle (2007) and
Calle (2008) used a statistical approach and determined that this value is plausible yet conservative.
However, it is worth noting that the suitability and the level of prudence of the α value varies depending
on the regional dataset being considered (Calle et al., 2008).

2.1.5. Adjustment of Soil Parameter Input
As explained in the previous paragraph, the sample mean and standard deviation or characteristic
value are adjusted for spatial variation before being used as input for (semi-)probabilistic calculations.
This paragraph presents the equations used to determine the calculation inputs.

Semi-Probabilistic Analysis
Rijkswaterstaat (2021) states that the friction angle ϕ, the pre-consolidation stress σ′

p and SHANSEP
parameters S andm should be modeled with a 5% lower bound value of a lognormal distribution. If the
parameter is lognormal distributed, the characteristic value of the median (Xmed,char) can be calculated
with Equation 2.4. In addition to adjusting for spatial variation, this formulation accounts for uncertainty
due to limited data points using student-t correction (statistical uncertainty).
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Xmed,char = exp

(
µlnX ± tn−1σlnX

√
(1− α) +

1

n

)
(2.4)

Where:

Xmed,char is the characteristic value of the median lognormal distributed parameter X that
accounts for local averaging.

tn−1 is the student t-factor corresponding to the 5% quantile and n− 1 degrees of free-
dom.

n is the number of independent data points.

And where µlnX and σlnX are the natural logarithm of the sample mean and standard deviation, re-
spectively, and can be calculated by:

µlnX =

∑
lnXi

n
(2.5)

σlnX =

√∑
(lnXi − µlnX)2

n− 1
(2.6)

(2.7)

When using the default value of 0.75, the characteristic value becomes lower than when using α = 1.
A lower value is a more conservative input, resulting in a more conservative estimation of the Factor of
Safety (FoS).

Probabilistic and FORM Analysis
When performing a probabilistic analysis, the input required includes the mean (µprob) and standard
deviation (σx,prob) of different soil parameters. If a lognormal distribution is assumed, the mean and
standard deviation can be calculated by:

σlnX,prob ≈
T 0.05
n−1

u0.05
σlnX

√
(1− α) +

1

n
(2.8)

µx,prob = exp

(
µlnX +

1

2
σ2
lnX,prob

)
(2.9)

σx,prob ≈ µx,prob

(√
exp

(
σ2
lnX,prob

)
− 1

)
(2.10)

Where:

σlnX,prob is the corrected standard deviation of a lognormal distributed parameter.
σX,loc,avg,nor is the reduced standard deviation of normal distributed parameterX that accounts

for local averaging.
T 0.05
n−1 is the student t-factor corresponding to the 5% quantile and n− 1 degrees of free-

dom, where n is the number of measurements.
u0.05 is the value that corresponds to the 5% quantile of the normal distribution. This

value is equal to 1.65.
σlnX is the standard deviation of the log of a measurement set. It is defined in Equation

2.6
n is the number of data points.
µx,prob is the corrected mean of a log-normally distributed parameter. This value should

be used as an input for probabilistic calculations.
µlnX is the mean of the log of a measurement set. It is defined in Equation 2.5.
σx,prob is the corrected standard deviation of a log-normally distributed parameter. This

value should be used as an input for probabilistic calculations.
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When the default value of 0.75 is used, the standard deviation used as input becomes larger than when
α = 1 is used. A wider input distribution of soil parameters leads to lower values, which results in a
more conservative estimation of the Factor of Safety (FoS).

Influence of α
α is a parameter that determines the part of the sample variance that can be averaged out. This affects
the formulas for the standard deviation and characteristic value for calculations (see Equations 2.4 and
2.8). The impact of α on the input becomes evident when examining different values:

• When α = 1.0: the regional variance equals the local variance. This means that the measured
sample variance can be completely averaged out in the calculation. Suppose the number of points
in your dataset becomes large enough. In that case, the input standard deviation goes to zero,
and the characteristic value becomes the sample mean (transformed to a lognormal distribution).

σlnX,prob ≈
T 0.05
n−1

u0.05
σlnX

√
1

n

n→∞−−−−→ 0 (2.11)

• Whenα= 0: the local variance becomes zero. Therefore, the sample variance cannot be reduced
when implemented in the calculations. Suppose the number of points in your dataset becomes
large enough. In that case, the input standard deviation becomes the sample standard deviation,
and the characteristic value becomes the 5% quantile of the sample distribution (both transformed
to a lognormal distribution).

σlnX,prob ≈
T 0.05
n−1

u0.05
σlnX

√
1 +

1

n

n→∞−−−−→ σlnX (2.12)

• When α = 0.75: the local variance is 0.75 times the regional variance. So, a part of the sample
variance can be averaged out. Suppose the number of points in your dataset becomes large
enough. In that case, the input standard deviation becomes half of the sample standard deviation
when transformed to a lognormal distribution, and the sample standard deviation only contributes
half of its value to the characteristic value.

σlnX,prob ≈
T 0.05
n−1

u0.05
σlnX

√
(1− 0.75) +

1

n

n→∞−−−−→ 1

2
σlnX (2.13)

This means that:

σα=1.0
lnX,prob < σα=0.75

lnX,prob < σα=0
lnX,prob (2.14)

Xα=1.0
med,char > Xα=0.75

med,char > Xα=0
med,char (2.15)

2.2. Geostatistical Models
It is common practice in geotechnical design to consider uniform soil properties within distinct soil
layers or materials. However, laboratory tests on soil samples and in situ tests conducted at different
locations within these units show significant variability in the outcomes. Since the 1960s, researchers
have proposed to model the variability as simple univariate statistics (Calle et al., 2021).

A soil property is often modeled as the sum of the trend function (t) and the spatial variable residual
(ε). The predicted measurement of a soil property (X̃i) at depth zi can be calculated by (Ching et al.,
2017):

X̃i = t(zi) + ε(zi) (2.16)

Spatial variability contains more than variations in soil properties at different depths; it extends through-
out a three-dimensional domain. Figure 2.3 displays the definition of the axes used in this context.
Typically, due to the specific depositional environment of the soil, fluctuations in the vertical direction
are more pronounced compared to the horizontal direction. This behavior is depicted in Figure 2.3.
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Vanmarcke (1977) modeled the residual as a stochastic field defined by a mean of zero, a standard
deviation, and a correlation. The amount of correlation between variables X1 and X2 is expressed by
the correlation coefficient ρ (Baecher & Christian, 2003):

ρ =
Cov(X1, X2)√
Var(X1)Var(X2)

(2.17)

An Auto Correlation Function (ACF) describes the correlation coefficient as a function of the lag (τ ). The
lag is a discrete distance between measurements. For example, if two points have a distance of 0.2m
between them, the correlation is defined by (τ1), where τ1 = 0.2m. The ACF defines the correlation
between these points by assigning a numerical value that ranges between −1 and 1. 1 indicates a
strong positive correlation, −1 indicates a strong negative correlation, and 0 indicates no correlation or
independence (Baecher & Christian, 2003).

The shape of the ACF curve provides information about the spatial correlation structure. For example,
a rapidly decreasing ACF curve indicates that properties at nearby locations are highly correlated, while
a slower decay suggests a more extended range of correlation.

One input of the ACF is the scale of fluctuation (θ). It is defined as the distance over which a soil’s
properties are comparable or correlated (Cami et al., 2020). In Paragraph 2.2.1, the scale of fluctua-
tion is discussed in more detail. Possible approaches for determining the scale of fluctuation and its
relationship to theACF are provided later in this chapter.

2.2.1. Scale of Fluctuation
The distance over which a soil’s properties are correlated is called the scale of fluctuation θ (Cami et
al., 2020). The scale of fluctuation is given as an input of the ACF, see Table 2.3. Vanmarcke (1983)
defined θ as the area under the autocorrelation function:

θ =

∫ ∞

−∞
ρ(τ)dτ = 2

∫ ∞

0

ρ(τ)dτ (2.18)

Table 2.1: Summary of scales of fluctuation (θ) from a literature review conducted by Cami et al. (2020) per soil types (meters).
The value of θ is primarily determined by cone resistance data from CPT measurements.

Horizontal θ Vertical θ
Soil type Number Min Max Average Number Min Max Average
Alluvial 9 1.07 49 14.2 13 0.07 1.1 0.36
Ankara clay - - - - 4 1 6.2 3.63
Chicago clay - - - - 2 0.79 1.25 0.91
Clay 9 0.14 163.8 31.9 16 0.05 3.62 1.29
Clay, sand, and silt mix 13 1.2 1, 000 201.5 28 0.06 21 1.58
Hangzhou clay 2 40.4 45.4 42.9 4 0.49 0.77 0.63
Marine clay 8 8.37 66 30.9 9 0.11 6.1 1.55
Marine sand 1 15 15 15 5 0.07 7.2 1.43
Offshore soil 1 24.6 66.5 45.6 2 0.48 1.62 1.04
Overconsolidated clay 1 0.14 0.14 0.14 2 0.063 0.255 0.15
Sand 9 1.69 80 24.5 14 0.1 4 1.17
Sensitive clay - - - - 2 1.1 2.0 1.55
Silt 3 12.7 45.5 33.2 5 0.14 7.19 2.08
Silty clay 7 9.65 45.4 29.8 14 0.095 6.47 1.4
Soft clay 3 22.2 80 47.6 8 0.14 6.2 1.7
Undrained engineered soil - - - - 22 0.3 2.7 1.42
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Table 2.3: Common autocorrelation models. Adapted from (Cami et al., 2020). For the Matérn function, ν is the smoothness
parameter, ρ is the scale, and Kv is the Bessel function of the second kind.

Autocorrelation model Correlation as a function of the lag τ
Markovian (single exponential) ρ(τ) = exp

(
− 2|τ |

θ

)
Second-order Markovian ρ(τ) =

(
1 + 4|τ |

θ

)
exp

(
− 4|τ |

θ

)
Third-order Markovian ρ(τ) =

(
1 + 16|τ |

3θ + 256
27 ( |τ |θ )2

)
exp

(
− 16|τ |

3θ

)
Gaussian (squared exponential) ρ(τ) = exp

(
−π( |τ |θ )2

)
Spherical ρ(τ) =

{
4
3 − 2| τθ |+

2
3 |

τ
θ |

3 if |τ | ≤ θ

0 otherwise
Cosine exponential ρ(τ) = exp

(
− |τ |

θ cos |τ |
θ

)
Binary noise ρ(τ) =

{
1− |τ |

θ if |τ | ≤ θ

0 otherwise
Whittle-Mátern ρ(τ) = 2

Γ(ν)

(√
πΓ(ν+0.5)|τ |

Γ(ν)θ

)ν
Kv

(√
πΓ(ν+0.5)|τ |

Γ(ν)θ

)

Worst-Case Scale of Fluctuation
In design and stability calculations, the ratio of θ to the size of the structure is important. If the scale of
fluctuation is much larger than the structure, it can be considered practically infinite. This means that the
soil volume influencing soil-structure interaction can be seen as homogeneous. However, when this is
not the case, the previous method is not applicable, especially for failure mechanisms like slope failure,
which has an emerging failure path. In this instance, a ’worst-case’ θ should be considered. Fenton
and Griffiths (2003) defined the worst-case scale of fluctuation as: ”the scale of fluctuation value that
results in the highest probability of failure”.

An example of this is a study conducted by Ali et al. (2014), where the influence of a spatially varying
hydraulic conductivity on the risk associated with rainfall-induced landslides was investigated. In the
case of an infinite slope, they found that the critical θz = H, where H is the height of the slope and θz
is the scale of fluctuation in the vertical direction z.

In a study by De Gast et al. (2019), the impact of displacement on horizontal scales of fluctuation
was examined. The research revealed that the construction process of the dike, including its loading
history, significantly affects the horizontal scale of fluctuation of the undrained strength parameter su.
Specifically, in the direction perpendicular to the dike, it was observed that θx varied depending on the
compressibility of the soil type. The determined values of θx ranged from half the width of the dike to
slightly larger than the width.

Identifiability Problem
Ching et al. (2017) introduced the concept of the identifiability problem, which occurs when estimating
θ becomes difficult due to limited data availability. Accurate determination becomes difficult when θ
is smaller than the spacing between data points. In these cases, the worst-case scale of fluctuation
serves as a valuable tool for design purposes (Cami et al., 2020).

Currently, there is a lack of quantitative research regarding the scales of fluctuation for different soil
characteristics. Therefore, it is unclear how scales of fluctuation relate to one another. Although the
general assumption suggests that a single autocorrelation model governs all soil parameters (Cami
et al., 2020), further studies are required to validate and improve our understanding of this assumption.

Estimation of the Scale of Fluctuation with Data
Several methods have been developed to characterize the fluctuation parameter scale from soil data,
particularly using Cone Penetration Test (CPT) measurements. The following methods can be utilized
to estimate the scale of fluctuation from soil investigation:

1. Method of Moments (MoM): This approach utilizes statistical moments to estimate the scale of
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fluctuation. This includes the autocorrelation function, autocovariance function, and semivari-
ogram.

2. Maximum-Likelihood Estimation (MLE): MLE maximizes the likelihood function to determine the
most likely value for the scale of fluctuation.

3. Bayesian analysis: Bayesian analysis incorporates prior knowledge and data to estimate the
scale of fluctuation. This method provides a probabilistic framework for estimating the parameter.

The method of moments (MoM) is the most used, as stated by (Cami et al., 2020). While MLE may
be more precise, it is susceptible to theoretical ACF functions that fit only one parameter. The Whittle-
Mátern function introduces a second parameter better suited for MLE. However, this study aims to
investigate different ACF functions, and therefore, the MoM will be applied.

The following paragraph will provide a further explanation of this method.

Implementation of θ in the Current Method
In the Netherlands, the stability assessment method for dikes also includes the scale of fluctuation θ.
This parameter is used in the ACF of the combined field c(x, y, z), which is explained in Paragraph 2.1
and Calle et al. (2021).

The ACF is defined in three directions of the dike, as shown in Figure 2.3, and is calculated using Equa-
tion 2.19. The ACF is not directly used in determining soil parameter input for stability assessments
but is part of the theoretical basis of Equations 2.4 and 2.8, as explained in Calle et al. (2021). Two
assumptions are made in this method: (1) the horizontal scales of fluctuation (θh) in the two horizontal
directions (x and y) are equal, and (2) a Gaussian ACF is used.

ρc = exp

(
−π∆x

2 +∆y2

θ2h

)(
(1− α) + α exp

(
−π∆z

2

θ2v

))
(2.19)

Here, the parameter α represents the ratio between the local variance (σf ) and the total regional vari-
ance (σc).

Please note that the Equation 2.19 provided by Calle et al. (2021) uses a correlation length d. For a
Gaussian ACF, θ = d

√
π.

2.2.2. Method of Moments
Vanmarcke (1977) introduced the method of moments to estimate θ. With this method, the scale
of fluctuation can directly be approximated from the characteristics of the variance function or ACF
(Christodoulou et al., 2021). The ACF described in Equation 2.17 is often hard to determine because
of limited data (Phoon et al., 2006). Therefore, an approximation ρ̂ can be used. The first equation is
suitable for equally spaced data, while the second formulation can be used for non-uniformly distributed
spaced data:

ρ̂(τj) =

∑k−j
i=1 (Xi − µX)(Xi+j − µX)

σ2
Xk

j = 0, . . . , k − 1 (2.20)

ρ̂(τj) =

∑t
i=1(Xi − µX)(Xi+∆i − µX)

σ2
X(t− 1)

(2.21)

Where:

ρ̂(τj) is the experimental or sample correlation coefficient between two points that are τj apart.
k is the number of sample points [-].
i is the index of the point pair at lag distance τj .
t is the number of point pairs at lag distance τj .
∆i is the index of the distance between the points of a point pair for unequally distributed data.
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Figure 2.4: Semivariogram and its parameters. Adapted from Oliver and Webster (2015).

With the Method of Moments, θ can be found by minimizing the error between the experimental mo-
ments ρ(τ) and the theoretical moments (Cami et al., 2020) as described in Table 2.3. ”moments” refers
to the statistical quantities used to match a theoretical model’s properties to the observed data.

This technique may be divided into two categories: semivariogram or variogram fitting and autocorre-
lation or autocovariance function fitting (Cami et al., 2020). In this report, only the semivariogram and
autocorrelation will be investigated.

Semivariogram Fitting
The semivariogram was first introduced by Krige (1951) to determine the spatial correlations for gold
mines in South Africa. Semivariograms are often used to define the spatial correlation in geology but
are not often used in geotechnical engineering (Cami et al., 2020). The semivariogram γ(τ) expresses
the average dissimilarity of a random variable X value between sample points at various distances
(ui):

γ(τ) =
1

2
Var [X(ui)−X(ui + τ)] (2.22)

Where X(ui) is the value of parameter X at location ui. Half of the average squared difference in X
as a function of the spatial displacement is quantified by the (semi)variogram. Because it is half of the
squared difference, it approximates the variance and, therefore, goes by ”semivariance”. ”Semivari-
ogram” will be abbreviated to ”variogram”.

Some important parameters can be defined from the semivariogram: the sill, nugget, and range, see
Figure 2.4. They are defined as follows:

• The Sill (s): The semivariogram eventually reaches an upper bound known as the sill. Depending
on the variogram, the sill can remain constant or act as an asymptote. It represents the maximum
variance of the process. The partial sill is the difference between the nugget and the sill and
quantifies the variance due to spatial variability.

• The Range (r): When a semivariogram reaches its sill at a finite lag distance, it has a range.
The range defines the limit of spatial correlation, beyond which the autocorrelation becomes 0.
Locations that are farther apart than the range are considered spatially uncorrelated or indepen-
dent (Cov(τ) = 0). For semivariograms that approach their sills asymptotically, strict ranges do
not exist. However, in practice, an effective range is determined at the lag distances where the
variograms reach 95% of their sills (Oliver & Webster, 2015). The effective range (r′) is defined
to approximate the range. How this relates to the range depends on the theoretical function (see
Table 2.4).

• The Nugget (n): The variogram often intersects the y-axis at a positive value. The term ”nugget”
originated from gold mining, where gold nuggets were found to occur randomly and indepen-
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dently of each other. In the context of the semivariogram, the nugget represents a discontinuity
in variation, signifying an uncorrelated component. This occurs when the variation at a location
is unrelated to the variation at neighboring sites.

These three components, the sill, range of spatial correlation, and nugget provide insights into the
behavior and characteristics of the semivariogram. It can help to understand spatial variability and
correlations in the soil. The experimental or sample semivariogram is defined as (Cami et al., 2020):

γ̂(τ) =
1

2k

k∑
i=1

[X(ui)−X(ui + τ)]2 (2.23)

To define the parameters as mentioned earlier, a theoretical function (see Table 2.4) is fitted to the
experimental points calculated by Equation 2.23. The theoretical functions of the ACF in Table 2.3 can
also be used as variogram functions when subtracted from the variance.

Table 2.4: Examples of theoretical semi variance models as a function of the lag τ . Where p is the partial sill (p=sill-nugget), r
is the range, r′ is the effective range, n is the nugget. h is the shape parameter of the Stable function, which determines if the

shape of the function looks more like a Gaussian or Exponential and Spherical shape. For the Matérn function, ν is the
smoothness parameter, ρ is the scale, and Kv is the Bessel function of the second kind. All the functions are fitted to p, s and

n. The Stable function is also fitted to h, and Matérn is also fitted to ν.

Name semivariogram model Semivariogram function Range
Gaussian (Allard, 2013) γ(τ) = p

(
1− exp

(
− τ2

(r/2)2

))
+ n r ≈ r′

2

Exponential (Allard, 2013) γ(τ) = p
(
1− exp

(
− τ2

r′/3

))
+ n r ≈ r′

3

Spherical (Burgess & Webster, 1980) γ(τ) =

{
p
(

3d
2r − τ3

2r3

)
+ n if τ ≤ r

p+ n otherwise

Stable γ(τ) = n+ p

[
1− exp

(
− τ

r′
31/h

)h
]

r ≈ r′

31/h

Matérn γ(τ) = n+ p
[
1− 1

2ν−1Γ(ν) (
τ

r′/2 )
νKv(

τ
r′/2 )

]
r ≈ r′

2

Pure nugget γ(τ) = n

A variogram can be created when the data exhibits intrinsic stationarity (Marchant & Lark, 2004). This
concept is closely tied to second-order stationarity. When the data is second-order stationary, the
observations at different locations can be treated as sampled from the same stationary process. In this
context, a ”process” refers to a collection of random variables organized in time or space. The variance
of the difference between the values of a variable at two different places is influenced solely by the
lag vector between these locations, not their absolute positions. This assumption rests on the idea
that statistical characteristics like mean, variance, and autocorrelation remain constant or unvarying
with location. If the increments of X(u) are second-order stationary, the process can be defined as
intrinsically stationary.

To create a variogram and determine its parameters, the following steps should be performed:

1. Detrending;
2. Binning the variogram cloud;
3. Selecting an appropriate bin width;
4. Select an appropriate cutoff value;
5. Fitting theoretical functions.

For a more detailed description of the steps, please refer to Appendix A.4.

Autocorrelation Function Fitting
The fitting described above can also be done for the ACF instead of the semivariogram. In this case,
the error between the experimental ACF and a theoretical ACF (Table 2.3) is defined in Equation 2.24.
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Error =
k∑

i=1

[ρ̂(τi)− ρ(τi)]
2 (2.24)

Autocorrelation and autocovariance are limited to second-order stationary processes, while variograms
apply to intrinsically stationary processes. This implies that variograms are more widely applicable
(Baecher & Christian, 2003).

2.3. RFEM
The Finite Element Method (FEM) is a numerical model that evaluates the response of the dike by
solving the partial differential equations within the predefined elements that make up the dike’s geometry
(the mesh). When combined with the technique of generating random fields of soil parameters, it is
known as the Random Finite Element Method (RFEM) (Hicks & Li, 2018). The random field represents
the spatial variability of soil by modeling stronger and weaker zones in a soil layer, as illustrated in
Figure 2.5. The primary advantage of RFEM over traditional Limit Equilibrium Method (LEM) and FEM
is that the failure surface can ”seek out” the weaker zones and propagate through them (Fenton &
Griffiths, 2008). This makes the analysis more realistic and accurate. By generating a large number
of realizations of random fields using a Monte Carlo analysis, the failure probability of a dike can be
estimated while considering the spatial variability.

Figure 2.5: Example of a realization of a RFEM random field. The strong zones are depicted in black, while the weak zones
are white. Adapted from Fenton and Griffiths (2008).

This chapter explains the general concept of an RFEM analysis by following the flowchart shown in
Figure 2.6. The process involves four main steps:

1. Firstly, soil investigation is conducted, and the dataset of soil parameters is analyzed to determine
the marginal distribution for one or multiple soil parameters X. An appropriate spatial correlation
structure should also be defined, as this is crucial input for the RFEM analysis. More information
about geostatistical methods can be found in Chapter 2.2.

2. Based on the point statistics and the spatial correlation structure, a random field can be generated,
as will be explained in Paragraph 2.3.2.

3. A realization of a random field is created and mapped onto a FEM mesh. A numerical analysis is
performed to calculate the system response to this realization, and the outcome of this analysis
is a single Factor of Safety (FoS). This step is repeated multiple times.

4. Finally, the distribution of the calculated factors of safety is analyzed, and by dividing the number
of failed realizations (FoS < 1), the failure probability of the dike can be calculated.
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Figure 2.6: General flowchart RFEM.

2.3.1. FEM
The Finite Element Method (FEM) was developed in the 1960s to approximate solutions that could not
be calculated with classical analytical solutions. To solve complicated physical processes, like slope
stability under gravitational loading, FEM uses numerical techniques. Geometries are split into discrete
linked areas called elements, which form the mesh. The response of the entire domain to a particular
set of boundary conditions is then determined by solving a group of partial differential equations at the
element level. The differential equation that is solved for is known as the governing equation and can
be formulated as:

δσ′
x

δx
+
δτxy
δy

+ Fx = 0

δτxy
δx

+
δσ′

y

δy
+ Fy = 0

→
[
A
]T {

σ
}
= −

{
F
}

(2.25)

Where:

σx and σy are the effective stresses in the x- and y-direction respectively [kPa].
τxy is the shear stress [kPa].
Fx and Fy are the body ”forces” in the direction respectively [force/m3]

An additional advantage of using FEM, next to the free shape of the failure surface, is the ability to model
complex material behavior by employing advanced constitutive models (Hicks & Spencer, 2010).

This research uses a non-linear Finite Element Method (FEM) that uses quadrilateral elements with
eight nodes and four integration points. The algorithm used is based on the process outlined in the
book written by Smith et al. (2014). According to Griffiths and Lane (1999), the FEM algorithm involves
the following general steps:

1. The calculation of the normal and shear stresses at each integration point in the mesh, assuming
that the soil behaves elastically.
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2. The comparison of these stresses with the Mohr-Coulomb failure criteria at each integration point
in the mesh. If a point falls inside the failure criteria, it will behave elastically.

3. Yielding occurs at the points that are at the failure envelope. A visco-plastic algorithm, as de-
scribed by Zienkiewicz and Cormeau (1974), redistributes the yielding stresses to neighboring
integration points and calculates the plastic strains.

4. When enough integration points have yielded, a failure surface can develop, resulting in overall
shear failure.

Slope Stability Analysis
The stability of a dike is assessed using a strength reduction algorithm in FEM, as described by Matsui
and San (1992). This thesis uses a strength reduction algorithm developed by TU Delft. This algorithm
combines strength reduction with Mohr-Coulomb and SHANSEP. Smith et al. (2014) presents this
algorithm in program 6.4. Varkey et al. (2023) describes the extension of this algorithm with SHANSEP.
The first three steps described in the previous section calculate the strains in the integration points.

The loading stages are also described by Varkey et al. (2023). The application of gravity loading gen-
erates the initial stress state. Subsequently, two stages of loading are applied to consider the normal
daily water level condition in the first stage, followed by a high water level condition.

The user can choose between drained or undrained analysis per layer. The drained shear strength cal-
culation uses Mohr-Coulomb, defined in Equation A.12 in Appendix A.3. The undrained shear strength
is calculated using SHANSEP, which is defined for the FEM code in Equation 2.26.

su = σ′
1 ∗ S ∗OCRm (2.26)

OCR =
σ′
1,max

σ′
1

(2.27)

The ratio between the strength and the loading of the dike is the Factor of Safety (FoS). In FEM, the
FoS is determined by reducing the strength of the structure by a factor known as the Strength Reduc-
tion Factor (SRF). The SRF is gradually increased until the point where the numerical model fails to
converge, which means that the global equilibrium cannot be reached within a user-defined maximum
number of iterations (Griffiths & Lane, 1999).

To find the minimum SRF that leads to failure, the algorithm first evaluates the SRF of 0.5, and if it does
not lead to failure, it increases the SRF by values of 0.1 until it does. Once the first SRF that leads
to failure is found, the algorithm iteratively searches for the lowest value of SRF that results in failure
using a bisection method. The FoS of the dike is then defined by this value (Smith et al., 2014).

In a drained analysis, the SRF is applied to the tangent of the friction angle (ϕ) and the cohesion (c),
as presented in Equations 2.28 and 2.29 respectively. In an undrained SHANSEP analysis, the shear
strength (su) is calculated using Equation 2.26, which is then reduced following Equation 2.30. It is
important to note that the same SRF is applied for all the terms.

ϕf = arctan

(
tanϕ

SRF

)
(2.28)

cf =
c

SRF
(2.29)

su,f =
su
SRF

(2.30)

2.3.2. Random Fields
The random process ofX(u), such as the cone resistance of a CPT, can be approximated by aGaussian
random field that is second-order stationary, according to Fenton and Griffiths (2008). An example of a
random field realization can be seen in the upper plot in Figure 2.7. This type of random field is widely
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applicable (Varkey, 2020) and is also used in this study to create the spatial variability in Random
Finite Element Method (RFEM). In this research, the random field and a FEM mesh are combined by
allocating the cell average of the underlying random field to the integration point (Van Den Eijnden
& Hicks, 2017). According to Fenton and Griffiths (2008), to create a random field, the following is
needed:

1. The mean µX ;
2. The variance σ2

X ;
3. The rate at which the random field changes as we move through space.

The covariance function can define the last two. Specifically, the covariance of the values at two points
u = ui and u = uj can be defined as:

Cov [X(ui), X(uj)] = E [(X(ui)− µ(ui)) ∗ (X(uj)− µ(uj)] (2.31)

The correlation function, as defined in Equation 2.17, can be rewritten using E [X(ui)] = µ(ui) and
Var [X(ui)] = σ(ui):

ρ (X(ui), X(uj)) =
Cov [X(ui), X(uj)]

σ(ui)σ(uj)
(2.32)

Figure 2.7: The impact of variation on local averaging: The lower plot is obtained by averaging the plot throughout a changing
window length denoted by T . Figure from Fenton and Griffiths (2008).

As the random field is second-order stationary, the covariance is only determined by the distance be-
tween the points, referred to as the lag (τ ), and not the absolute location within the random field. This
allows for expressing Equation 2.32 in a generalized form for any given lag (τ ):

ρ (τ) =
C (τ)

σ2
X

(2.33)

Where C(τ) represents the covariance between two points separated by lag τ , and σ2
X represents the

variance of the random field. The autocorrelation is described using an adapted version of the Markov
ACF, which is shown in Table 2.3 and is based on van den Eijnden and Hicks (2019):

ρ(τ) = ω + (1− ω) exp

(
−2|τ |

θ

)
(2.34)

Where:
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Figure 2.8: Markov autocorrelation function with different values of ω and θ

ρ(τ) is the correlation between two points with separating lay τ .
ω is residual correlation factor.
θ is the scale of fluctuation [m].

In Chapter 2.2.1, the scale of fluctuation θ is defined as the distance over which a soil’s properties are
similar or related (Cami et al., 2020). When the scale of fluctuation decreases, the correlation between
points at the same lag τ also decreases. Thus, the correlation function ρ decays faster with a smaller
θ. In slope stability analyses, Equation 2.34 is defined in all directions, meaning each direction has its
own θ.

For the purpose of this study, only two directions are modeled: the vertical and horizontal directions
of a cross-section. Even though the ratio between the out-of-plane horizontal scale of fluctuation and
the domain size is crucial for the probability of failure of a dike section, as researched by Hicks and
Spencer (2010), the out-of-plane spatial correlation is not considered and is assumed to be greater
than the width of the failure surface.

When the spatial variability is on a smaller scale than the system domain, averaging occurs. This
process is illustrated in Figure 2.7. For example, suppose the variability in a soil layer is smaller than
the layer thickness intersected by the failure plane. In that case, there will be a reduction in the variance
of the soil properties. This results in a σT less than σ, as shown in the figure.

Averaging the variance is only permitted when the scale of fluctuation is sufficiently small relative to
the problem size. The measured variance of the samples is defined by local and regional variance.
Local variance can be averaged out if the scale of fluctuation is small enough. In contrast, regional
variance should not be averaged out since it represents spatial variability on a larger scale than the
failure surface domain. Moreover, statistical uncertainty resulting from the limited size of a dataset is an
inherent component of variance that cannot be effectively averaged (van den Eijnden & Hicks, 2019).

Figure 2.8 shows the Markov autocorrelation function. To prevent total averaging of the variance, a
residual correlation factor called ω is introduced.

The mean and the covariance function define the random field. The covariance function is the product
of the correlation function ρ(τ) and the standard deviation of the random field σ2

X (see Equation 2.33).
If the scale of fluctuation is small enough compared to the thickness of the layer, the variance of the
random field will be averaged out for very large lags when ρ → 0, which is not desirable. Therefore,
residual correlation is introduced as ω to prevent the correlation function from going to zero.

Covariance Matrix Decomposition
Random fields are often generated by transforming standard normal random fields (Van Den Eijnden &
Hicks, 2017). In this thesis, standard normal random fields are generated by covariance matrix decom-
position using Cholesky decomposition. This approach is described in more detail by Van Den Eijnden
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and Hicks (2017). To obtain the standard normal random field vector (Z), a vector of uncorrelated stan-
dard normal random numbers (U ) is multiplied with the decomposed covariance matrix (A) (Varkey,
2020):

Z = AU (2.35)

The covariance of a random field is usually a positive definite covariance matrixC. The elements of this
matrix are represented by Cij = C(τij), where τij is the lag between the points ui and uj (as shown in
Equation 2.31) (Fenton & Griffiths, 2008). The matrix that is decomposed by Cholesky decomposition
(A) can be used to determine C:

E
[
ZZT

]
= AAT = C (2.36)

According to Van Den Eijnden and Hicks (2017), this method is more exact and poses fewer limita-
tions on the mesh when compared to other methods, such as Local Average Subdivision (Fenton &
Vanmarcke, 1990).
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3
Database

One of the objectives of this research is to explore the spatial variability of soil properties in the Nether-
lands. This chapter will investigate two soil parameters: the wet volumetric weight γwet and the SHANSEP
parameter S. This will help to verify whether the WBI2017 method of incorporating spatial variation is
accurate. Data from two databases are utilized for this purpose. One is on a national scale to investi-
gate any national spatial correlations within the parameters, while the second database is sampled on
a more regional scale to compare the spatial variance for the national and regional scales.

This chapter introduces the sources of the data and explains how the data is prepared for use. Moreover,
it provides a brief overview of the investigated soil parameters.

For this analysis, two different databases are utilized: (1) the STOWA database (STOWA, n.d.) and (2)
the Rivierenland database. The geographical distribution of the data in these databases is illustrated
in Figure 3.1.

The first database is a collection of samples assembled by Kindermann and Tigchelaar (2022) on
behalf of the Applied Water Management Research Foundation (Stichting Toegepast Onderzoek Wa-
terbeheer) (STOWA). It contains data collected by multiple water boards, including HH Delfland, WS
Rivierenland, Wêtterskip Fryslan, HHNK, WDOD, HDSR, HH Rijnland, WS Brabantse Delta, and WS
Rijn en IJssel. This database provides geotechnical information both from regional and primary Dutch
dikes. This dataset includes data from the following laboratory and in situ tests:

• Classification tests
• Grain size analysis
• Cone Penetration Test (CPT)
• Constain Rate of Strain (CRS) tests
• Oedometer tests
• Direct Simple Shear (DSS) tests
• Triaxial tests

These tests can be used to obtain an understanding of the soil properties and are used in the design
and stability calculations of dikes.

The data is consolidated in an Excel sheet, including all the necessary information extracted from these
tests. The unfiltered data consists of 30, 413 sample points, each with a distinct (x, y, z) location.

Kindermann and Tigchelaar (2022), on behalf of STOWA, researched the distribution of some soil
strength parameters by performing a data analysis on clay and peat. Apart from some conclusions
about the mean value, standard deviation and characteristic value of these parameters, some inter-
esting points on the national spatial distribution of the parameters were presented. They concluded
that it may be possible to use only one dataset for the whole of the Netherlands since the national
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Figure 3.1: Locations of the data points. Green dots illustrate the STOWA database, and brown dots illustrate the Rivierenland
database.

spatial distribution of the strength parameters was found to be minimal (see Figure 3.2). However, they
recommended further investigation of this hypothesis through a statistical test.

The Rivierenland (RL) database, collected by water board Rivierenland, consists of 2655 datapoints
primarily located in the Alblasserwaard. This is a predominantly agricultural area in the south-east of
the Dutch province Zuid-Holland. Some data points are located further east, just over the border in the
province of Utrecht, along the Merwede channel.

In line with the recommendations of Kindermann and Tigchelaar (2022), a statistical test is performed
to further investigate the distribution of some soil strength parameters across the Netherlands. To
determine the spatial variability on the national scale, semivariograms from the STOWA dataset were
constructed for different soil types (for more information on variograms, please refer to Chapter 2.2.2).
The two datasets were kept separate to compare the results on both national and local scales.
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Figure 3.2: National distribution of the wet unit weight of clay. Translated and modified from Kindermann and Tigchelaar
(2022). The authors concluded: ”It can be seen that the dispersion is generally not very large.”

3.1. Interpretation Strategy
In Chapter 2.2.2, the use of the variogram of the Method of Moments (MoM) is discussed. MoM is the
most standard method in statistics (Cami et al., 2020) and the variogram is more widely applicable than
autocorrelation function fitting (Baecher & Christian, 2003). For a more detailed description of creating
variograms, please refer to Chapter 2.2.2 and Appendix A.4.

To analyze the data, the following steps were taken to investigate the spatial variability:

1. Data subtraction:

• For SHANSEP parameter S:

(a) The data was subdivided based on the soil type as defined in Paragraph 3.2. The single-
stage undrained triaxial tests were used for clays, while for peats, DSS were used. Both
were evaluated at large strains, and only the normally consolidated and anisotropically
loaded tests were considered when calculating S.

(b) To handle outliers, the three filters described in 3.4 are used.
• For the wet volumetric weight γwet:

(a) The data was subdivided based on the soil type.
(b) To handle outliers, the first two filters described in 3.4 are used.

2. Variogram Cloud Construction: A variogram cloud was constructed to visualize the spatial vari-
ability.

3. Sample Variogram Construction: An appropriate bin width was selected to create the sample
variogram. Subsequently, an appropriate cutoff lag value was chosen.

4. Theoretical Variogram Fitting: The theoretical variogram was fitted to the sample variogram
through the following steps:

(a) An initial guess for the range, sill, and nugget parameters was made based on the results of
the sample variogram.
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(b) Initially, only the Spherical function was fitted to the variogram using non-linear least squares
optimization. The optimized parameters of this function were then used as a refined initial
guess for other theoretical functions.

(c) Based on this refined initial guess, the Spherical, Exponential, Stable, andMatérn theoretical
functions (see Table 2.4) were fitted to the sample variogram using weighted non-linear least
squares optimization. The Gaussian function was not employed because it does not account
for the expected discontinuity in the variogram.

(d) The optimal theoretical function is selected based on the WNLS score.

3.2. Soil Classification
The data analysis involved different soil types. However, before 2022, the original soil types in the
database did not meet the standard soil description of NEN5104. The soil descriptions were interpreted
and adjusted during the preparation of the study conducted by Kindermann and Tigchelaar (2022). Al-
though this standard is no longer in use, it was used for simplicity. This allowed for the direct correlation
of inherent parameters, such as S, instead of wet volumetric weight (γwet), a usual starting parameter
for regional datasets.

Clay was further subdivided into silty clay, organic clay and sandy clay. Each subclass was further
divided into three sub-classes: weakly (1), medium (2), strongly (3), silty, organic or sandy. While the
organic clay can also be subdivided based on its sandy or silty additives, Kindermann and Tigchelaar
(2022) found that this subdivision gives a smaller difference in volumetric weight than subdivision with
weak, medium and strongly organic. Therefore, the latter subdivision was chosen for performing the
analysis.

3.3. Soil Parameters
The data analysis focuses on the volumetric weight (γwet) and the SHANSEP parameter S. γwet is
selected because a significant amount of data is available from the STOWA and Rivierenland (RL)
databases. The dataset from STOWA includes a larger number of triaxial and DSS tests compared to
the number of CRS and Oedometer tests, which are necessary for determining the SHANSEP param-
eter m. Therefore, it was decided to focus on the analysis of SHANSEP parameter S in this research.

3.3.1. Volumetric Weight
For both the Rivierenland and STOWA database, the wet volumetric weight (γwet) for each soil type
was determined by examining the classification tests of the dataset. Here, the volumetric weight was
evaluated and recorded for different soil samples. The data was subsequently filtered, with the applied
filters described in Paragraph 3.4.

3.3.2. SHANSEP S
The SHANSEP parameter S is an important soil strength parameter. This parameter, defined as the
ratio of undrained shear strength (su) to the consolidation stress in a normally consolidated state (σvc),
is calculated as S = su

σ′
vc
.

When assessing Dutch dikes, S must be determined at the critical state, characterized by shearing at
”large” strains. For clay and sands, ”large” corresponds to 25% axial strain in a single stage triaxial test,
while for peat, it corresponds to 40% shear strain during a DSS test (van Duinen, 2012). More detailed
information about the SHANSEP parameter can be found in Appendix A.3.3.

In the t, s-space, where the DSS or triaxial test results can be analyzed, S can be computed. Here, the
undrained shear strength is equal to half the deviator stress (su = t), and the consolidation stress can
be calculated by adding the mean stress at the end of consolidation to half of the deviator stress at the
end of consolidation (σ′

vc = s′c + tc). This results in:

S =
su
σ′
vc

=
t

s′c + tc
(3.1)



3.4. Filtering the Data 28

The STOWA dataset provides these values for both single-stage triaxial tests and DSS tests at large
strains:

• For clays:

– t: half the deviator stress at the end of a triaxial test.
– s′c: average effective stress at the end of consolidation in a triaxial test.
– tc: half the deviator stress at the end of consolidation in a triaxial test.

• For peats:

– su = τv: the shear stress at the end of the DSS test.
– σ′

vc: the effective vertical stress during the maximum consolidation stress that occurs during
consolidation.

Because S should be determined at a normally consolidated state, only the normally consolidated
samples were used in this determination. Further explanation about the filters on the data are given in
the next paragraph.

3.4. Filtering the Data
During the study of Kindermann and Tigchelaar (2022), some inconsistencies in the data were found.
To ensure sufficient data quality, three specific filters were applied. This section describes these filters
in detail because they were also applied in both datasets of this research.

1. Kindermann and Tigchelaar (2022) observed classification errors in soil types, particularly visible
in the volumetric weight analysis of clay. Some clay types had unrealistically high volumetric
weights, which exceeded physically possible values. Because sandy and silty clays cannot have
a water content higher than 150%, these data points with higher values and those with values
lower than 10% were deleted.

2. To effectively deal with outliers in the volumetric weight, data points in the 5% percentile and
outside the 95% are excluded.

3. For the analysis of S, four additional filters are applied. It is determined that the determination of
S requires a single-stage, anisotropically loaded, normally consolidated test conducted at large
strains (van Duinen, 2012). Therefore, these conditions are specifically selected. Furthermore, a
triaxial test on clay behaves differently when a higher sand content is present in the soil. Conse-
quently, sandy clays were filtered out and data points with a volumetric weight exceeding 17kN/m3

were removed.



4
Results Semivariogram Analysis

In this chapter, the results of the variogram analyses are presented for both the S parameter and γwet.
To provide a clearer picture, an example of the construction of a variogram is given in Chapter 4.1.1.
Furthermore, some comparisons between results are made:

1. Soil type versus their sub-classes;
2. With and without filtering for a certain depth range;
3. Horizontal versus vertical variograms;
4. Scale differences (Rivierenland versus STOWA).

4.1. Volumetric Weight
Variograms were constructed for different soil types to investigate spatial correlation for wet volumetric
weight γwet. First, an instructional example for creating a variogram for the clay soil type will be given.

4.1.1. Variogram of clay
To illustrate the variogram analysis process, this example involves the ’k’ soil group (clay) within the
STOWA database. The filters described in Paragraph 3.4 are applied to obtain these data points.

To create an initial understanding of the distribution of the data, the values of γwet are visualized on
the map of the Netherlands (see Figure 4.1a). There are no clear trends or spatial correlations visible
in this visualization. The values for γwet do not show a distinctive difference when further apart. To
illustrate, there is no noticeable difference between the Dutch regions Noord- and Zuid-Holland.

However, it is noteworthy that some values tend to cluster together. Additionally, it is important to
acknowledge that the eastern and eastern-southern part (Limburg) of the Netherlands has a limited
number of data points. This is consistent across all datasets in this study. Consequently, this region is
not well-represented in the analysis.

As no clear correlation can be seen, the spatial correlation is further investigated by constructing a
variogram, following the steps described in Chapter 2.2.2.

The first step requires creating a variogram cloud by plotting the squared differences in values for
all point pairs in the dataset against the distances separating these points. The variogram cloud is
displayed in Figure 4.1b). Several observations can be made from this cloud:

• The maximum distance between data points is approximately 236km.
• The maximum squared difference in values is around 43.7(kN/m3)2.
• It is clear that the number of data pairs decreases as the distance between them increases.

It should be noted that in this example, only the distances in the horizontal plane are considered. Given
that volumetric weight is assessed per soil sample, and each borehole (with x and y coordinates) may

29
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contain multiple soil samples at varying depths (z coordinates), many locations exhibit a distance of
0m. However, the number of point pairs with a 0-meter distance is only 0.08% of the total point pairs.

Due to the large amount of data points in the variogram cloud (around 34.7million points), nomeaningful
conclusions can be drawn about spatial correlation. Therefore, it is necessary to bin and average the
data to create a better overview.
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(a) Data points on the map of the Netherlands.

(b) Variogram cloud.

Figure 4.1: Data of γwet of subset ’k’ (clay).

To construct the variogram, the data should be binned based on a specific bin width. Determining
the bin width is a process of iterative evaluation, where different bin widths are tested to identify the
most appropriate value. Starting with a bin width of 10km, the results are depicted in Figure 4.2. The
histogram (Figure 4.2a) shows that for distances up to until 100km, each bin contains more than 1.5
million pairs of data points. This indicates that further refinement is possible by applying a narrower bin
width.

It can be observed that the variogram in Figure 4.2b lacks detail. In the first 30km, there is an upward
trend in the sample variogram, which gradually flattens beyond this range. Beyond 100km, the points
in the sample variogram show weaker alignment with the straight line, and there is more noise. This
corresponds with the reduced number of data point pairs in the histogram bins. A smaller bin width is
needed to gain more detailed information about the spatial correlation.
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(a) Histogram of binned data.
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(b) Variogram.

Figure 4.2: Histogram and variogram of γwet of subset ”k” (clay) with a bin width of 10 km.
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A higher level of detail is needed to estimate the variogram parameters. This requires selecting a
smaller bin width of 900m (see Figure 4.3). The histogram (Figure 4.3a) shows that every bin contains
more than 100, 000 point pairs up to a distance of 100km. The sample variogram (Figure 4.3b) shows
significant scatter beyond approximately 120km. An appropriate cutoff value is applied to further in-
vestigate the beginning of the variogram, which is crucial for parameter determination. The choice of
this number depends on how clearly the variogram’s initial segment can be seen. In this case, a value
of 35km is chosen (see Figure 4.3c). This variogram shows a continuous and increasing trend that
appears to approach an asymptote. Using this sample variogram, an initial estimation of the variogram
parameters can be made:

• Range (r) ≈ 18km. This means that points within a distance of approximately 18km show spatial
correlation. Beyond this range, points are considered spatially uncorrelated or independent.

• Sill (s) ≈ 3.2. The sill describes the maximum variability observed within the spatial domain. It
represents the total variance in the dataset, incorporating both spatial and non-spatial sources of
variability.

• Nugget (n) ≈ 1.9. The nugget is the intersection with the y-axis, and it represents the non-spatial
variance in the measurements. It might indicate that the measurements could not capture corre-
lations at small spatial scales. It is worth noting that the nugget accounts for more than half of the
sill, suggesting that the contribution of spatial variability to the overall variance is relatively small.

This study uses Equation A.24 for the weighting scheme. Although Equation A.23 is a stricter weighting
scheme, it is onlymore useful when the number of point pairs decreases rapidly with increasing distance.
However, in this study, multiple clusters are illustrated in Figure 4.1a, which means that a more flexible
weighting scheme like Equation A.24 would be more appropriate.

As shown in Figure 4.3b, the variogram has a wave-like shape. Typically, the variogram increases
as the distance between points increases since the values become less alike. However, in this case,
the variogram decreases after approximately 30km and then increases again at around 80km before
decreasing again at 90km. This phenomenon is likely caused by the presence of clusters, as illustrated
in Figure 4.1a. The wave-like shape could be due to the fact that the data does not meet the requirement
of intrinsic stationarity. For more information on this requirement, please refer to Section 2.2.2. This
phenomenon will be discussed in more detail in Chapter 5.3.3.

The next step in creating the variogram involves fitting the theoretical functions to the sample variogram.
Optimization of the parameters of these theoretical functions is accomplished through the Weighted
Non-Linear Least Squares (WNLS). To determine the best theoretical variogram fit, the WNLS scores
are compared among the different theoretical functions. The fit with the smallest WNLS score is se-
lected, and its parameters are saved. From the partial sill p and effective range r′, the sill s and range
r were calculated:

• r′ = 17, 635m. r = 14, 248m.
• p = 0.94. s = 3.00.
• n = 2.07.



4.1. Volumetric Weight 32

� 	���� ������ �	���� ������

�����������������������

�

������

������

������

������

	�����
��

���
��
���
��
��
��
��
��
��

���������������������γw�������∆d=900

(a) Histogram of binned data.
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(b) Variogram.
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(c) Variogram with a cut off at 35 km.
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(d) Variogram with a cut off at 35 km and the fitted theoretical
functions.
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(e) Variogram with a cut off at 35 km and the optimal fitted
theoretical function with its parameters.

Figure 4.3: Histogram and variogram of γwet of subset ’k’ (clay) with a bin width of 900 m.

It can be observed from the results that the spatial correlation of γwet of clay extends up to 14km, with
a maximum total variance of 3.01. The additional variance caused by spatial variation is at most 0.94,
whereas the variance due to, for example, measurement uncertainty accounts for more than 2/3 of
the total variance, which is 2.07. Consequently, it can be concluded that the spatial variability is less
significant than the sum of other uncertainties. However, it should not be disregarded, and national γwet

measurements of clay should only be used in calculations after accounting for an increased variance
due to spatial variability.

This process was repeated for all the remaining soil types. The results can be found in Table 4.1.
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Table 4.1: Variogram parameters of the different soil types in the STOWA database for the volumetric weight γwet.

Soil Number
of
points
N

Bin
width
∆d

Effective
range r′
[m]

Range r
[m]

Partial
sill p

Sill s Nugget
n

Ratio
p/s

k 8336 900 17635.17 14248.06 0.94 3.00 2.07 0.31
ks 1182 2000 20825.21 15876.61 1.08 2.74 1.66 0.39
ks1 142 8000 17492.09 16096.20 1.36 2.65 1.28 0.52
ks2 564 3000 36052.33 18026.16 1.00 2.34 1.34 0.43
ks3 378 2000 4063.35 3557.47 0.52 2.04 1.52 0.26
kh 5680 1000 19280.04 15000.47 1.14 3.21 2.07 0.35
kh1 3349 1000 25323.63 17258.26 1.49 2.76 1.27 0.54
kh2 1561 1500 21110.48 17471.34 0.60 1.58 0.98 0.38
kh3 688 1400 15572.56 12225.11 0.27 1.49 1.22 0.18
kz 596 450 2624.68 1105.83 0.68 1.66 0.97 0.41
kz1 306 10000 19125.34 15803.18 1.08 2.38 1.30 0.45
kz2 118 8000 15154.69 12378.87 0.80 2.23 1.43 0.36
kz3 123 1000 2510.88 2510.88 0.27 0.71 0.45 0.37
v 3625 4000 18002.41 17822.71 0.04 0.41 0.37 0.11
vk 753 2000 17777.29 17777.29 0.09 0.40 0.31 0.22
vk1 404 3000 33447.78 11149.26 0.08 0.32 0.24 0.26
vk2 0 - - - - - - -
vk3 329 1500 2740.45 2176.79 0.09 0.40 0.31 0.23
vm 2563 5000 170907.29 170907.29 0.03 0.21 0.18 0.16

4.1.2. Variogram comparisons
A detailed comparison of variograms will be given in this paragraph to investigate the influence of
spatial variability on γwet. Specifically, the influence of the soil type, depth, and spatial scale on γwet

will be examined. An example comparison using the variograms for clay will be given first, followed by
a summary of observations for the other soil types.

In order to compare variograms effectively, a new parameter has been introduced - the ratio between
the partial sill (p) and the sill (s). This parameter is used to describe the ratio between the variance
caused by spatial variability (p) and the total variance (s):

Rps =
p

s
(4.1)

Where:

Rps is the ratio between the variance caused by spatial variability and the total variance
of the soil parameter.

p is the partial sill (variance caused by spatial variability).
s is the sill (total variance).

Soil Types
To accurately compare the variance for different soil types, the variograms can be normalized by dividing
the semi-variance by the squared average γwet (µ2) of the soil type. These variograms are constructed
with the same bin width (∆d) for consistency. This approach accounts for the significant variation in
mean value for different soil types, ensuring that differences in variance can be compared accurately.
The result can be seen in Figure 4.4.

The graphs demonstrate a higher relative variance for the clay types than the peat soils. Moreover, no
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clear range is visible for the peat soils. When considering the sub-classes of the clay, the organic clay
types (’kh’) show a smaller variance. The p-s ratio (Rps) is generally smaller for the peat soil types.
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Figure 4.4: Normalized sample variograms with the same ∆d = 10km of γwet in the STOWA database.

Sub-Classes of Soil Types
Figure 4.3 illustrates the variograms for the data set of ’k’, including all the clay types as outlined in 3.2.
The broader clay category is expected to show less spatial correlation compared to more specific soil
types. To test this, a comparison is made in Figures 4.5, 4.6 and 4.7 between the variograms of clay
(’k’), silty clay(’ks’) and its subset, moderately silty clay (’ks’).

Figure 4.5 shows a significantly larger number of data points available for clay compared to silty and
moderately silty clay, which aligns with expectations since they are subsets of each other. Figure 4.6
shows that a greater level of refinement is possible in the ’k’ dataset, which can be explained by the
larger number of data points in that set. Note that the wave-like from, similar to the variogram of clay
in Figure 4.3b, is also evident in these variograms, which will be discussed in Section 5.3.3.

The optimal theoretical fits to the sample variogram also reveal some differences. The variogram of clay
presents a more continuous line than its subsets, implying a higher noise level in the subsets. However,
the nugget decreases with each sub-sampling step, and the effective range widens with increased sub-
sampling. From the effective range, the ranges can be calculated (see Table 4.1). It is important to
note that while the WNLS score of the silty clay variogram is smaller, it does not necessarily indicate a
variogram with reduced uncertainty.

Based on the results for ’k’ and ’ks’, it seems that sub-sampling for clay results in wider ranges, indicat-
ing spatial correlation over longer distances. Additionally, increasing sub-sampling levels can reduce
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the general variance between data points as the nugget decreases. However, the partial sill increases,
indicating an increase in variance due to spatial variability. For all ’ks’ sub-types, except for ’ks3’, the
p-s ratio (Rps) increases, suggesting that a larger part of the total variance is due to spatial variability.

The following observations can be made for the other subsets:

• Organic clay (’kh’): ’kh1’ has a larger range and partial sill but a smaller nugget than the other
subsets. The p-s ratio is also larger. ’kh2’ has a larger range but smaller partial sill and nugget
and a larger p-s ratio. On the other hand, ’kh3’ has a smaller range, partial sill, nugget, and p-s
ratio.

• Sandy clay (’kz’): The range of ’kz1’ and ’kz2’ is more than ten times larger than their parent
soil type. This indicates a strong spatial correlation over a much larger domain. However, this
could also be due to the smaller bin width (∆d) for ’kz’. More detail is visible with a smaller ∆d,
especially in the first section of the variogram. This could indicate that the range calculated with a
smaller ∆d is more reliable. It should also be noted that the number of points in the sub-classes
is much smaller, especially for ’kz2’ and ’kz3’, indicating less reliability for the results. The partial
sill is larger for ’kz1’ and ’kz2’ but smaller for ’kz3’. Only the nugget for ’kz3’ is smaller, and the
p-s ratio is larger only for ’kz1’.

• Clayey peat (’vk’): No variogram could be created for ’vk2’ since there were no points. ’vk1’ has
a smaller range, a slightly smaller partial sill and nugget than ’vk’. Conversely, ’vk3’ has a larger
range, while the difference between the partial sill and the nugget and the parent soil type ’vk’
is negligible. For ’vk1’, the non-spatial variability (nugget) is smaller, while the spatial variability
(partial sill) is almost the same when sub-sampled. This causes the ratio between spatial and
total variance (p-s ratio) to be larger for ’vk1’.
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(a) ’ks’ (silty clay).
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(b) ’ks2’ (clay moderately silty)

Figure 4.5: Distribution of data for one subset: silty clay.



4.1. Volumetric Weight 36

� ����� ������ ������ ������
����τ�
��

�

�

�

�

�

γ̂
(τ
)

	������������������γw��������∆d=2000

(a) ’ks’ (silty clay).

� ����� ������ ������ ������
����τz�
��

�

�

�

�

�

γ̂
(τ
)

	������������������γw���������∆d=3000

(b) ’ks2’ (clay moderately silty)

Figure 4.6: Full variogram for one subset: silty clay.
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(b) ’ks2’ (clay moderately silty)

Figure 4.7: Full variogram for one subset: silty clay.

Depth Range
A comparison is made between various depths for selected soil types to investigate the impact of
different vertical positions within soil samples. Only soil types with the largest data points were chosen,
ensuring the representation of different soil sub-types. The objective is to reduce the effects caused by
stress history and vertical spatial correlation.

Table C.1 in Appendix C displays the results, while Figure 4.9 illustrates the results for clay. One of the
key observations is that the number of data points decreases with depth. This is due to the higher costs
of performing a deeper borehole or the lesser importance of the properties of the deeper layers for the
intended purpose. In the case of the STOWA database, the intended purpose is to study macro-stability
and piping. The reliability of calculated variograms is affected by the low number of samples at greater
depths since the semi-variance in a bin is averaged over fewer points.

Additionally, less refinement is possible, resulting in a larger value for∆d. For specific depth ranges (16
- 20m), the data points become so sparse that fitting is impossible. The sample variogram for the depths
between 12 and 16m shows a large amount of noise, making it difficult to draw any clear conclusions
from the theoretical functions fitted in Figure 4.9. This was also observed for other soil types.

For clay (’k’) in Figure 4.9, the variograms for the first few depth ranges share similar shapes, indicating
consistency in spatial correlation across different depths. The nugget and sill values remain relatively
constant across different depths. The majority of partial sills (p) are larger than the partial sill for the
reference clay variogram (Table 4.1). The same applies to the range values (r). However, the nuggets
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(n) for the separate depths are mostly smaller. This pattern is also observed in the average values. In
cases where a good fit can be made for a specific depth, the average p, r and n values are calculated,
and the results are presented in Table 4.3. It can be seen that filtering for depth causes an increase
in partial sill and range values while the nugget value decreases. Furthermore, the p-s ratio (Rps) is
higher for the averaged values.

For the remaining soil types, the following observations can be made:

• Silty clay (’ks’), moderately silty clay (’ks2’) and organic clay (’kh’): Compared to the unfiltered
dataset, the average range, average partial sill, and p-s ratio of these soil types increase. How-
ever, the average nugget decreases. The sample variograms for the first few depth ranges have
a similar shape.

• Organic clay (’kh1’): Compared to the unfiltered dataset of ’kh1’, the average range of this soil
type increases. However, the average nugget, partial sill, and p-s ratio decrease. The sample
variograms for the first few depth ranges have a similar shape.

• Peat (’v’), clayey peat (’vk’) and weakly clayey peat (’vk1’): Compared to the unfiltered dataset,
the average partial sill and p-s ratio of these soil types increase. However, the average range and
nugget decrease. The sample variograms for the first few depth ranges have a similar shape.
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Figure 4.8: Distribution of data of γwet for different depth ranges within clay.
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Table 4.3: Average variogram parameters over the different depth ranges in the STOWA database for the volumetric weight
γwet. The depth ranges were selected on a 2m interval from 0 to 20m below ground level, as illustrated in Figure 4.8.

Soil Average
effective
range r′ [m]

Average
range r [m]

Average
partial sill p

Average sill
s

Average
nugget n

Ratio
pavg/savg

k 30662.68 27894.32 1.08 2.79 1.72 0.39
ks 15769.27 11730.47 1.00 2.33 1.33 0.43
ks2 45895.75 22642.07 1.41 2.18 0.77 0.65
kh 21508.59 16103.40 1.19 2.69 1.50 0.44
kh1 37844.58 35004.41 1.00 2.01 1.01 0.50
v 15045.73 14508.23 0.11 0.37 0.26 0.30
vk 9164.71 7665.89 0.16 0.41 0.24 0.40
vk1 9963.07 6466.42 0.15 0.29 0.13 0.53
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Figure 4.9: Variograms for different depth ranges for γwet of clay.

Vertical Variograms
Based on literature, it can be assumed that the range of spatial variation in the vertical direction is much
less than in the horizontal direction, mainly because θz is often greater than θh (see Table 2.1). This
is due to the depositional environment of the soils. To investigate this, variograms have been created
in the vertical direction, using only the points with the same x and y coordinates. The results of this
analysis can be found in Table 4.5.

Since the maximum distance between two points in the vertical direction is considerably smaller than
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that in the horizontal direction, comparing the ranges is inappropriate due to the different scales. The
ranges obtained for the clays are approximately equal to the average values presented in Table 2.1,
which validates the variogram results.

When comparing Figure 4.3 in the horizontal direction with Figure 4.10 in the vertical direction, it can be
observed that the partial sill is larger and the nugget is smaller in the vertical direction. However, it can
be seen that the p-s ratio (Rps) increases, which indicates that a larger proportion of the total variance
is due to the spatial variation between the samples.

For the other soil types (refer to Table 4.1 and 4.5), a similar trend is visible. Only for ’kh1’ is the partial
sill smaller in the vertical direction. All p-s ratios are larger for the vertical direction.
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Figure 4.10: Variogram of data in the vertical direction of γwet of clay (’k’) in the STOWA database.
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Table 4.5: Variogram parameters for the vertical direction in the STOWA database for the volumetric weight γwet.

Soil Number
of
points
N

Bin
width
∆d

Effective
range r′
[m]

Range r
[m]

Partial
sill p

Sill s Nugget
n

Ratio
p/s

k 8336 0.10 0.63 0.21 1.25 1.52 0.27 0.82
ks 3000 0.30 1.63 0.82 1.43 1.57 0.15 0.91
ks2 564 0.50 2.09 1.05 1.19 1.37 0.18 0.87
kh 5680 0.70 1.96 0.98 1.69 2.03 0.35 0.83
kh1 3349 0.60 1.18 0.70 0.81 0.94 0.13 0.86
v 3625 0.30 0.89 0.66 0.31 0.39 0.08 0.80
vk 753 0.8 No fit
vk1 404 1 No fit

Scale Differences
To compare the spatial variability between a national and regional scale, the variograms of two datasets
are compared: the STOWA and the Rivierenland (RL) dataset. The area of the RL dataset is shown in
Figure 4.11a, and it covers only about 3.3% of the total area covered by the STOWA dataset.

As shown in Figure 4.11, the range of the RL dataset is 756m, while the range of the STOWA dataset
is much larger, with a range of 14248m. This means that the range of the STOWA dataset is approxi-
mately 19 times greater than that of the RL dataset. In terms of maximum distance between points, the
STOWA dataset has a maximum distance of approximately 236km, while the RL dataset has a maxi-
mum distance of only 33km. By comparing the relative ranges (see Equation 4.2) of the two datasets,
it can be seen that the range of the STOWA dataset is significantly larger than that of the RL dataset.

rrel =
r

dmax
(4.2)

Where:

rrel is the relative range [m].
r is the range [m].
dmax is the maximum distance between two points in the dataset [m].

For ’k’, rrel,STOWA = 14, 248/236, 000 = 0.06 and rrel,RL = 756/33, 000 = 0.02. Due to the smaller
relative range of the RL dataset, it suggests that the data is spatially correlated over a shorter distance,
which is unexpected.

It is also unexpected that the nugget value for ’k’ is found to be higher for the RL dataset (nRL = 2.29)
in comparison to the STOWA dataset (nSTOWA2.07). However, it is noteworthy that the additional
variance beyond the nugget value is lower for the regional Rivierenland dataset when compared to the
STOWA dataset. This can be observed by comparing the partial sill (sill-nugget) of the Rivierenland
dataset (pRL = 0.38) with the STOWA dataset (pSTOWA = 0.94), indicating that the variance due to
spatial variability is more pronounced in the case of the larger region. Although the nugget value is
higher for RL, the part of the total variance due to spatial variation (p-s ratio) is lower for RL.

The characteristics of the other soil types are:

• Silty clay (’ks’) and moderately silty clay (’ks2’): The relative range is smaller, along with a smaller
nugget and partial sill.

• Organic clay (’kh’) and clayey peat (’vk’): No appropriate fit could be made.
• Weakly organic clay (’kh1’): The relative range is bigger while the nugget is larger and the partial
sill is smaller.
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• Peat (’v’): The relative range is bigger while the nugget is smaller, and the partial still remains the
same.

• Weakly clayey peat (’vk1’): The relative range is bigger, the nugget is smaller, and the partial sill
is equal to zero, making it smaller than the other soil types.

The Rivierenland dataset was also evaluated for the vertical direction. When comparing the vertical
variograms of the STOWA and RL dataset, a few observations can be made for all soil types: (1) the RL
dataset has consistently larger ranges and nuggets, and (2) smaller partial sills and p-s ratios for all soil
types. These observations for the nugget, partial sill, and p-s ratio are consistent with the horizontal
comparisons, meaning that the spatial variation is smaller for the smaller scale, even in the vertical
direction. In this direction, the range is larger for Rivierenland than STOWA (see Figures 4.10c and
4.11d), which is inconsistent with the findings in the horizontal direction. It should be noted that the
selected bin width (∆d) in the vertical direction of the RL dataset is almost always larger than the range
in the vertical STOWA variograms. This could be the reason for the significant difference between the
two datasets. Furthermore, when comparing the p-s ratio between the horizontal and vertical directions
in the Rivierenland dataset, an increase can be observed across all soil types, similar to the STOWA
dataset.
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Figure 4.11: Horizontal and vertical variograms of data in the Rivierenland data set of γwet of clay (’k’).
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Table 4.7: Variogram parameters in the Rivierenland (RL) database for the volumetric weight γwet.

Soil Number
of
points
N

Bin
width
∆d

Effective
range r′
[m]

Range r
[m]

Partial
sill p

Sill s Nugget
n

Ratio
p/s

k 1226 300 913.39 755.63 0.38 2.67 2.29 0.14
ks 584 500 1074.30 963.10 0.24 1.62 1.37 0.15
ks2 285 500 1816.47 1299.58 0.34 1.34 1.00 0.25
kh 484 600 No fit
kh1 260 2000 13207.06 9836.34 0.54 2.24 1.70 0.24
v 989 1500 21707.97 14576.50 0.04 0.22 0.18 0.17
vk 240 400 No fit
vk1 198 700 3648.19 3648.19 0.00 0.21 0.20 0.01

4.2. SHANSEP S
In Figure 4.13, a highly discontinuous sample variogram can be observed. Moreover, there appears to
be much more scatter for the other soil types than the variograms for γwet. One possible explanation
could be that less data is available for S. This lack of data makes it challenging to obtain accurate
fits, especially when implementing filters to analyze soil sub-classes, depth ranges, and the vertical
direction. Additionally, this specific Rivierenland dataset lacks triaxial or DSS tests, preventing compar-
isons at a smaller scale. However, the water board Rivierenland has incorporated these tests into the
STOWA dataset. Unfortunately, these do not have the required density for constructing variograms.

When comparing the variograms, the following observations can be made:

• S and γwet: Generally, the range is larger for S than γwet. The partial sill and nugget are both
smaller for S. However, this is mainly because the value of S is much smaller. The p-s ratio (Rps)
is also larger for almost all soil types.

• Different Soil Types: The nuggets and partial sills of S are generally smaller for peat than for clay.
However, the p-s ratios are not significantly different for the different soil types.

• Sub-Classes of Soil Types: When comparing ’ks’ and ’ks2’, a larger range, partial sill, and p-s
ratio can be observed. The nugget is smaller. However, ’kh’ and ’kz’ do not have an appropriate
fit, making it impossible to compare their sub-classes.

• Filtering for a Depth Range: No clear patterns or trends are visible for all the variogram parameters
and p-s ratios.

• Vertical: The theoretical functions are all horizontal lines, indicating no vertical spatial variability.

It should be noted that a proper variogram could not be constructed for many soil types. Only discon-
tinuous and sample variograms with high scatter were found, for which no theoretical function could be
fitted properly.
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Figure 4.12: National distribution of the SHANSEP parameter S of clay. Translated and modified from Kindermann and
Tigchelaar (2022).
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Figure 4.13: Variogram of data for S in the STOWA data set for clay (’k’).
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Table 4.9: Variogram parameters in the Applied Water Management Research Foundation (Stichting Toegepast Onderzoek
Waterbeheer) (STOWA) database for the SHANSEP parameter S.

Soil Number
of
points
N

Bin
width
∆d

Effective
range r′
[m]

Range r
[m]

Partial
sill p

Sill s Nugget
n

Ratio
p/s

k 1442 3000 24893.22 21893.90 0.04 0.10 0.06 0.40
ks 377 5000 16817.43 14235.63 0.07 0.09 0.02 0.76
ks1 50 30000 No fit
ks2 154 3000 7979.49 7714.12 0.05 0.08 0.03 0.66
ks3 155 10000 No fit
kh 997 500 No fit
kh1 607 4000 29054.44 29054.44 0.05 0.12 0.07 0.44
kh2 264 600 No fit
kh3 138 2500 19245.97 6415.32 0.08 0.09 0.01 0.85
kz 17 10000 No fit
kz1 10 10000 No fit
v 340 20000 28646.53 14323.27 0.01 0.02 0.01 0.60
vm 314 1000 7091.25 6602.54 0.02 0.02 0.00 0.87
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Figure 4.14: Variograms of S for different soil types in the Applied Water Management Research Foundation (Stichting
Toegepast Onderzoek Waterbeheer) (STOWA) dataset. All variograms were constructed with ∆d= 10, 000m.
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4.3. Local and Regional Variance
To further analyze the spatial variation in the soil parameters γwet and SHANSEP S, the relationship
between the variogram parameters the sill (s) and nugget (n) will be investigated. In Chapter 2.2.2, the
nugget is introduced as the point where the variogram intersects the y-axis. According to Clark (2010),
the nugget can be associated with random noise, measurement error, and short-scale variability. The
sill represents the maximum variability of the process and is an indicator of regional scale variability.
Assuming that the nugget is solely caused by short-scale variability, the local divided by the regional
variance can be calculated using the nugget-sill ratio. This concept is illustrated in Figure 4.15 for γwet

and in Figure 4.16 for SHANSEP S.

This section refers to the WBI2017 method used for accounting for spatial variability in Dutch dike
assessments, as explained in Chapter 2.1. The formulation of α is provided in Equation 2.3, which is
defined in Calle et al. (2021). This formulation is used by Rijkswaterstaat (2021) to define the standard
deviation that should be used in probabilistic calculations and the formulation of the characteristic value
for semi-probabilistic calculations.

When assuming the nugget to be fully defined by the local variance, α can be approximated by the
nugget-sill ratio:

α =
σ2
loc

σ2
reg

=
n

s
(4.3)

Where:

σ2
loc is the variance of the local dataset.
σ2
reg is the variance of the regional dataset.
n is the nugget.
s is the sill.

Equations 2.8 and 2.10 show that a larger value of α results in a smaller standard deviation compared
to the standard value of 0.75.

4.3.1. Volumetric Weight
First, the volumetric weight of the national scale in the STOWA dataset is analyzed, followed by the
regional scale analysis of the Rivierenland dataset.

National Scale
The trend of the sill and nugget follows a linear trend, with most of the data points falling within the 95%
confidence interval:

n = α ∗ s = 0.58 ∗ s (4.4)

Because the STOWA database is on a national scale, α is in this case defined as:

α =
σ2
loc

σ2
nat

(4.5)

On a national scale, the variance is indicated by σ2
nat. In the STOWA database, the value of α is 0.58,

which is lower than the recommended value of 0.75 in Rijkswaterstaat (2021).

Regional Scale
The data sampled fromAlblasserwaard, a smaller region (Figure 4.11a), can be considered at a regional
scale. The nugget-sill trend is shown in Figure 4.15b.

n = α ∗ s = 0.83 ∗ s (4.6)
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As expected, the ratio of the local variance to the regional variance is greater than that of the local
and national variance. In this scenario, the value of α is larger than the standard value of 0.75. By
using a larger value of α in Equations 2.8 and 2.10, a smaller standard deviation can be applied in the
probabilistic analysis and a larger characteristic value in the semi-probabilistic analysis.
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(b) Rivierenland dataset.

Figure 4.15: Sill versus nugget for γwet and a fitted trend for the different datasets.

When comparing the differences between national and regional scales, it can be observed that the total
variance is larger for the national database. However, it should be noted that the regional dataset is not
a part of the national dataset. Therefore, part of the variance on the national scale is not caused by the
variance on the regional scale. In the industry, data for stability assessments of a cross-section is often
collected on a waterboard level, which is approximately the same scale as the RL dataset. Therefore,
the analysis with the RL dataset better represents use cases in the industry.

4.3.2. SHANSEP S
Figure 4.16 shows the relationship between sill and nugget for the national scale using the STOWA
database. It can be observed that the values for different soil types are much more varied for S. This
could be due to various factors that influence the variogram’s quality, as discussed in Chapter 5.2.
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Figure 4.16: Sill versus nugget for S.



5
Discussion and Conclusion Data

Analysis

A geostatistical analysis was implemented to explore the spatial variability in two parameters: γwet

and the SHANSEP parameter S. Variograms were constructed for both parameters, and a series of
filters were applied to further investigate the spatial variability. Additionally, vertical variograms were
constructed. For the γwet parameter, variograms were created for the national and regional scale.
The results of these analyses will be discussed in this chapter, and the conclusions will be presented.
Finally, the applicability of using variograms for determining local spatial variability will be discussed
and concluded.

5.1. Volumetric weight
Based on the constructed variograms, it can be seen that the spatial variability varies considerably
with soil type, scale and direction. This paragraph will discuss the main observations, followed by a
comment on the vertical variability. The analysis will conclude with an overview of the key findings.

5.1.1. Discussion Results
After comparing the variograms of γwet for different soil types, it could be seen that the variance due to
spatial variability and total variance is more significant for clay compared to peat. However, when more
soil sub-types are defined, the total variability increases only for silty clay and clayey peat soil types.
This highlights the importance of differentiating between subtypes when incorporating spatial variability
in assessments for these soil types.

Filtering clay for specific depth ranges leads to a more significant variance because of spatial variation.
As a result, the uncertainty of measurements decreases, and the p-s ratio for the averaged values
is also larger. For other soil types, filtering by depth ranges usually increases the variance due to
spatial variation while the general uncertainty decreases. However, the reliability of these parameters
decreases with increasing depth when filtering because of the decreasing number of points.

A comparison was made between the variograms of two datasets, one at a national scale (from the
STOWA database) and the other at a regional scale (Rivierenland (RL) database). Inconsistent results
for the range can be observed across different soil types, making it difficult to draw any conclusions
about the area over which the measurements are correlated. However, the partial sill, nugget, and p-s
ratio are smaller for the RL dataset, indicating a decrease in uncertainty due to spatial variability and
general uncertainty when looking at a smaller area, which is expected.

Most of the time, the ratio of the variance due to spatial variability (p-s ratio) is less than 0.5. This
indicates that other sources of uncertainties contributing to the variance are more significant than the
spatial variability. However, spatial variability still plays an important role in most cases and accounts
for a part of the total variance.
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5.1.2. Vertical Variability in the Horizontal Variograms
It is important to note that the variograms calculated in the horizontal direction ignore the depth location
(z). As a result, samples from the same borehole are assigned a distance of 0m to each other and fall
into the first bin. Even when the horizontal direction is considered, the distances in the z-direction are
so small compared to the x, y-direction that all the distances in the vertical direction are binned together
in the first bin. Therefore, the first bin in the horizontal direction includes the spatial variance present
in the vertical direction to some extent. Due to the large scale of the horizontal variograms, the small-
scale variance could not be adequately captured, and the estimated nugget may be larger than the
actual value present in the data.

Tables 4.1 and 4.5 show the comparison of γwet results in the horizontal and vertical directions in
the STOWA database. An interesting observation from these tables is that the sill value in the vertical
variogram is smaller for nearly all soil types than the nugget value in the horizontal variogram. However,
this could not be observed for the variograms of the Rivierenland database. Therefore, it is unclear how
much vertical variance is incorporated into the horizontal variogram.

5.1.3. Conclusions
From the results and discussion of the variograms for γwet, the following conclusions can be made:

• There is a certain degree of spatial variability in the value of γwet, particularly for clay samples
and when considering only their vertical locations.

• Spatial variability decreases at a regional scale compared to a national scale as the ratio between
spatial variability and total variance decreases.

• It is unclear how much vertical variance is incorporated into the horizontal variogram.

5.2. SHANSEP S
Most variograms for S could not correctly be constructed because they did not show a clear spatial
correlation pattern. The possible reasons behind the low quality are discussed in this paragraph. Nev-
ertheless, the variograms that could be constructed show larger p-s ratios for S, indicating that S exhibits
higher spatial variability than γwet. In general, the variance for peat is smaller than for clay. However,
filtering for sub-soil types or depth ranges does not provide a clearer view of spatial correlation, and no
spatial variability is visible in the vertical direction.

5.2.1. Quality of the Variograms
Most of the constructed variograms for S were either highly discontinuous or could not be computed.
Attempts to filter the data based on depth or subsoil types did not cause significant improvements.
This could be attributed to three possible reasons: (1) there may be no spatial correlation for S; (2) the
quantity of data available for S may not be sufficient; or (3) the quality of the data for S may not be good
enough.

The SHANSEP parameters are related to the soil’s mineralogy (Ajmera et al., 2016). It can be hy-
pothesized that the spatial correlation will not impact the variance. However, the sample variograms
constructed for different soil types (’k’, ’ks’, ’kh’, ’v’ and ’vm’) in Figure 4.14 show an increasing trend in
the first part, which suggests the presence of spatial variability. Even though it is not always a clear con-
tinuous line like the variogram in Figure 4.3b, it can be concluded that in some cases, spatial correlation
may play a role in the total variance.

Around 150 data points and 100 point pairs in each bin are needed to construct a variogram (Webster
& Oliver, 1992). The results presented in Table 4.9 show that most soil types have more than 150
data points available. Furthermore, variograms with more than 100 data point pairs per bin could be
constructed for most soil types. However, the variogram is still scattered and discontinuous even for
soil type ’k’, which has 1442 data points. This would suggest that the amount of data available is not
the primary issue.

The quality of the variogram can be affected by several components, including spatial density and
patterns, outliers, and epistemic uncertainties. These components and some methods to eliminate
their influence will be discussed shortly. It is recommended to investigate the cause of poor variogram
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quality for S using these methods in further research.

Spatial Density and Patterns
The variogram’s accuracy is influenced by data availability, and regions with sparse data are less re-
liable than those with high data density. This results in irregularities in the variogram. The use of
the appropriate sampling scheme can help resolve this issue. Geotechnical designs often use regular
spaced sampling schemes, as recommended by, for example, Eurocode 7 (CEN, 2004). However, the
distances recommended by EC7 (25 - 75m for dams) are not sufficient for studying spatial variability in
soil parameters, as at least 5 points within the range are needed to construct an appropriate variogram
(Oliver & Webster, 2015).

Recent research has been focusing on Bayesian approaches (Wang et al., 2019) and declustering
techniques such as centroidal Voronoi tessellation (Shi et al., 2023) to address the ongoing challenge
of obtaining an effective sampling scheme in three dimensions.

An appropriate sampling scheme can be tested by implementing, for example, a dummy dataset.

Outliers
Filtering outliers is important for stabilizing variograms (Oliver & Webster, 2015). Even though outliers
were removed in the data preparation stage, there were still some outliers visible in the variogram plot
for S compared to γwet (as shown in Figure 5.1). This could be due to possible errors in soil type
classification or in the DSS or triaxial tests used to calculate the values. These outliers can significantly
affect the calculated sample variogram and cause scatter.

It should be noted that since this investigation aims to assess dike stability, the low and high values are
of interest, and removing outliers could be counter-intuitive. However, it is important to remember that
this analysis focuses on investigating spatial variation rather than identifying an appropriate distribution
for soil parameters.

A stricter filtering scheme could eliminate outliers. Cressie and Hawkins (1980), Dowd (1984) and
Genton (1998) also proposed robust variograms against outliers.
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Figure 5.1: Variogram cloud of silty clay (’ks’) of S. It can be seen that there are some outliers above a squared difference of 3.

Epistemic Uncertainties
Schweiger and Peschl (2005) define epistemic uncertainties as: ”the type of uncertainty which results
from a lack of knowledge about a parameter (state of knowledge, subjective uncertainty or ignorance)”.
This differs from aleatoric uncertainty, which originates from inherent variability caused by heterogeneity
or the random nature of the natural processes (Rohmer & Verdel, 2014). While aleatoric uncertainty
can be described using traditional probabilistic theory like a Probability Density Function, epistemic
uncertainty often relies on expert opinions and cannot be properly described using these methods.
The uncertainty related to the definition of S and the inability to identify and quantify a representative
soil strength parameter can cause epistemic uncertainties. The discontinuity of the sample variograms
of S might be explained by the variogram’s inability to model these uncertainties.
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Using Bayesian approaches can help investigate epistemic uncertainties (Loquin & Dubois, 2010).
Handcock and Stein (2022) presents a method that uses this approach, allowing for expert opinions or
previous studies to be incorporated into the a priori distribution. This can help in the evaluation of the
fitted theoretical variogram.

5.2.2. Conclusions
The following conclusions can be drawn from the results of the variograms for S:

• Most variograms for S could not be properly constructed because of their poor quality.
• The variograms show that the variance for clay is higher than for peat.
• No spatial variability is visible in the vertical direction.
• The exact cause of the poor quality of the variograms is unclear, but it is likely due to the poor
quality of the data. The spatial density and patterns found in the data, outliers, and incorrect
inclusion of the epistemic uncertainties can affect the quality of the variogram. Additional research
on this matter is recommended.

• From these results, the hypothesis that S is not spatially correlated cannot be ruled out.

5.3. Applicability of a Variogram
As part of the process of constructing variograms, it became clear that there are certain constraints
to using variograms to determine spatial relationships for soil parameters. This paragraph will discuss
these limitations and give a conclusion on the applicability of using national variograms to determine
local spatial variance.

5.3.1. The Number of Data Points
The construction of the variogram was not possible for some datasets due to a small number of points,
which limited the comparison material, especially for the S analysis.

The accuracy of the variogram is highly dependent on the number of data points in a dataset (Oliver &
Webster, 2015). Here are some guidelines related to the number of points:

• Around 150 points are required to construct a variogram, but more points are preferable when
accurately estimating the sill (Webster & Oliver, 1992) (Webster & Lark, 2013) (Oliver & Webster,
2014).

• Bins in the variogram must have at least 100 pair points. If the histogram shows a decrease below
100 points per bin, the variogram should be cut off at that point.

More data points result in a smaller bin width (∆d), which captures more details and leads to better
estimation of variogram parameters, especially the nugget and range. A smaller bin width will also lead
to a better approximation of the spatial variability on a smaller scale.

5.3.2. Analysis of the Range
The ranges for S and γwet were found to be inconclusive. The values fluctuated, indicating that a
variogram on a national scale is unreliable for determining the horizontal scale of fluctuation θh for a
stability calculation. Although the vertical variograms of clay have similar ranges to those found in
literature (see Table 2.1), the ranges in the horizontal variogram did not match these values.

5.3.3. Wave Shape variograms
In some variograms for γwet, a wave-like pattern can be observed, as shown in Figures 4.3b, 4.5a, and
4.5b. These figures show that the variance initially increases, then decreases after reaching a certain
point, and sometimes, this pattern is repeated several times. However, this pattern is unusual as it is
unexpected that the difference between points decreases when the distance between them increases.

It is worth noting that the decreasing number of points in a bin is not the reason for the decrease in
variance, as most variograms still have a large number of points in the bin at the lag where the variance
decreases again. This is particularly evident when comparing the sample variogram in Figure 4.3b with
the histogram in Figure 4.3a.
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The likely cause of the issue seems to be the presence of clusters. As can be seen from Figure 4.1, the
measurements are distributed across the country in clusters. When considering the distance between
these clusters, it becomes clear that the points within a cluster are compared to one another within a
limited radius. The variance between these points increases with distance. However, beyond a certain
maximum distance, the points between two different clusters are compared, resulting in a decrease
in variance. This suggests that the dataset may not be intrinsically stationary, which is necessary for
creating the variogram.

Intrinsic stationarity refers to the requirement that the increments of a parameter, denoted byX(u), are
second-order stationary. This means that the increments should have the same statistical character-
istics such as mean, variance, autocorrelation, etc. For a more detailed description, please refer to
Chapter 2.2.2 and, for example, in Marchant and Lark (2004).

Figure 3.2 shows the mean and standard deviation for different parts of the Netherlands. Based on
their analysis, Kindermann and Tigchelaar (2022) concluded that the dispersion between the parts
of the Netherlands was not too large, and therefore, it was assumed that the dataset is intrinsically
stationary.

The statement that the dispersion is not large is subjective and can be questioned based on the wave
shape found in the variograms. If the data is not intrinsically stationary, a variogram may not be the
appropriate way to display spatial variation. The wave-like form makes it difficult to fit the theoretical
variogram and read the variogram parameters, which can also affect the accuracy of the calculated
variogram parameters of γwet.

Based on Figure 4.12, it can be observed that the mean and standard deviation of S differ for different
parts of the Netherlands, indicating non-intrinsic stationarity. However, no clear waveform can be seen
for S, likely due to the poor quality of the variograms.

5.3.4. Local and Regional Variance Analysis
When analyzing the value of α in relation to the nugget and sill, it is assumed that the nugget is entirely
caused by small-scale variations that cannot be observed. In this case, the nugget can be defined as
the local variance, denoted as σ2

loc. However, the nugget can be caused by various factors, such as
random noise and measurement errors (Clark, 2010). Assuming that small-scale variations cause the
nugget entirely implies that the variogram created for the smaller, local scale would show zero variance
at zero lag. However, due to sample disturbance, mineralogy, and errors during the testing process, it
is highly unlikely that samples taken at the exact location would have precisely the same value for S or
γwet.

When considering this in the nugget-sill analysis of γwet, the portion of the nugget caused by local
variance decreases, resulting in a decrease in α. In the case of the national dataset, the difference be-
tween the standard value would increase, leading to an increase in the probabilistic standard deviation
and a decrease in the semi-probabilistic characteristic value, thus creating more unsafe designs when
incorporating α = 0.75 compared to this decreased value of α. In the regional dataset, the value of α
would be more similar to the standard value of 0.75, increasing the probabilistic standard deviation and
decreasing the semi-probabilistic characteristic value.

It is worth noting that the current Dutch dike assessments often include the stochastic nature of S but not
for γwet. Instead, the mean of local samples is used in both probabilistic and semi-probabilistic analyses
(Rijkswaterstaat, 2021). When modeling the SHANSEP parameter S, it is important to consider the
spatial variability in either the characteristic value or the standard deviation. Unfortunately, no trend was
identified in the nugget-sill analysis for S. Therefore, the results of γwet provide only a rough indication
of the ratio between local and regional variance. The observed values for α cannot be immediately
applied in the assessments.

5.3.5. Scale Differences
In Table 4.7, it is indicated that the smallest bin width (∆d) for the RL database is 300m and 450m.
Therefore, any point pairs that are closer than 300m apart are considered part of the local scale in this
analysis. For these points, the variance is averaged and represented by the nugget. It is important to
note that the definition of the ”local” scale used in this variogram analysis is much larger than that of
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the ”local” scale used in WBI2017, which is on the scale of a failure surface. According to Calle et al.
(2021), the width of a failure surface is 30 - 70m parallel to the dike and 10 - 20m perpendicular to the
dike. The same applies for the STOWA database, with the minimum ∆d being 450m. This highlights
the difference in scale between the variograms and the definition of local in the dike assessments.

5.3.6. Conclusions
Based on the discussion of the limitations, the following conclusions can be made:

• Some variograms could not properly be constructed due to the limited number of data points.
• The horizontal scale of fluctuation could not be calculated from the range over which parameters
are correlated in the variograms.

• The calculated values for α in the local and regional variance analysis cannot be used in the
stability assessment of dikes.

• Due to some limitations of the use of national variograms, like the requirement of intrinsic station-
arity of the data and the large difference in scale, it cannot be used for determining the local-scale
spatial variability.

5.4. Use of Data in Model
In the following chapter, a model will be set up using some data from the STOWA database. Because
the case study is located in the maintenance area of waterboard Brabanetse Delta, the STOWA data
is filtered and used accordingly. The locations of the data used for this purpose are shown in Figure
5.2. Most data points are located along the dikes on the north side of the maintenance area. In total,
135 data points are used, some of which are from the same borehole, so they have the same x and y
coordinates. Tables D.1 and D.2 in Appendix D show the data that is used as input for clay and peat
respectively.

From the data analysis, it is concluded that the variograms on a national scale are not suitable for
determining the range and scale of fluctuation of the soil. Therefore, these parameters cannot be used
as input for the model.

Figure 5.2: Map with the STOWA database where the data from the maintenance area of water board Brabantse Delta is
highlighted.
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6
Model Setup

This study aims to create a realistic model of the spatial variability in Dutch dikes to investigate its
impact on macro-stability. To achieve this, a Random Finite Element Model (RFEM) is created for a
case study dike. To compare the RFEM model with the WBI2017 method of assessing dike stability
in the Netherlands, the RFEM model will be adapted to a reference D-Stability model. This reference
model was developed for this specific location by Tigchelaar and van Haaren (2022) and is based on
the current requirements of the Dutch guidelines of Rijkswaterstaat (2021). Figure 6.1 provides an
overview of the results of the D-Stability model.

This chapter presents the model’s setup. First, the case study will be introduced. Then, the model’s
inputs will be described in detail. Random Finite Element Method (RFEM) requires three main inputs:
soil parameters, hydraulic conditions, and a mesh. A detailed description of each of these parts will be
given in this chapter.

Figure 6.1: Results of the D-Stability model of the case study dike. Adapted from Tigchelaar and van Haaren (2022).

6.1. Case Study Location
The cross-section to be investigated is situated in the maintenance area of the water board Brabantse
Delta. Specifically, this case study will be focused on dike section 20, which is part of trajectory 34-2
(see Figure 6.2).
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This chapter will describe the starting points of the dike model, including the general geological and
geotechnical layers and the hydraulic conditions.

The Waterlaw has established a probability of failure (signal) norm of 1/1, 000 per year for this dike
trajectory. When considering the length effect, this can be scaled down to a norm of 1/404, 880 per
year for the dike cross-section (Tigchelaar, 2022). When performing a semi-probabilistic calculation,
the norm can be translated into a normative Factor of Safety (FoS), taking into account the model factor
of 1.06 for Uplift-Van, which is the standard model used for Dutch dike assessments (Rijkswaterstaat,
2021). This results in a minimum FoSmin of 1.16 (Tigchelaar, 2022). The probabilistic calculation will
be assessed for the cross-section norm.

Trajectory 34-2 experienced several breaches during the watersnoodramp in 1953, which have since
been repaired. Moreover, the trajectory has been reinforced multiple times, including in the 70s and
2001 (Tigchelaar, 2022).

Figure 6.2: Map of the water board maintenance area with the location of the dike section. The illustrated CPTs are the ones
that are used to determine the scale of fluctuation.

6.1.1. Geotechnical Conditions
The geological and geotechnical conditions of the dike section were studied by Tigchelaar (2018).
Tigchelaar used various resources, including the VNK2 (Veiligheid in Nederland in Kaart) project (VNK2,
n.d.-a) (VNK2, n.d.-b), the stochastic soil model (WTI-SOS) (Hijma & Sun Lam, 2015), and maps from
TNO-NITG (GeoTop) (TNO-NITG, n.d.), and found the following structures:

• The Pleistocene sand layer is located at approximately −8m NAP.
• The Holocene layer consists of formations of Naaldwijk and Nieuwkoop.
• The layers between the Pleistocene and Holocene include formations of Boxtel and Kreftenheye
and the formation of Peize-Waalre.

The geotechnical soil layers for the dike reinforcement project have been established by Tigchelaar
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(2018) and Tigchelaar and van Haaren (2022) through soil investigations and data from previous dike
reinforcement projects. The dike trajectory consists of both clay and sand dikes, and a peat layer can be
found throughout the trajectory at around −4m NAP, with varying thickness from 1 to 2.5m. In section
20, the dike is made of clay, and the peat layer is located between −4.5 and −7m NAP. According
to the Dutch dike assessment regulations (Rijkswaterstaat, 2021), the impermeable layers beneath
the phreatic surface will be modeled undrained using SHANSEP. Table 6.1 and Figure 6.1 provide an
overview of the layers. The volumetric weight of soil is determined by its relation to a WTI-SOS soil
class.

Table 6.1: Soil layers found in the case study dike section. Based on Tigchelaar (2018) and (Tigchelaar & van Haaren, 2022).
Note that soil type P_Ova_sd will not be modeled due to its significant depth. The volumetric weight of soil is determined by its

relation to a WTI-SOS soil class (Hijma & Sun Lam, 2015).

Nr. Name Soil type Top [m
NAP]

Bottom [m
NAP]

Model γwet

[kN/m3]
1 K4_Cphi Clay sandy Ground level 1 Mohr-

Coulomb
18.8

2 K2_ond_Cphi Clay weakly
silty

1 0 Mohr-
Coulomb

15.9

3 K3_ond_CPhi Clay mod-
erately to
strongly silty

0 −2.5 Mohr-
Coulomb

17.3

4 K2_ond_Su Clay weakly
silty

−2.5 −4.5 SHANSEP 15.9

5 V1-2 Peat low min-
eral content

−4.5 −7 SHANSEP 10.3

6 K2_d_Su Clay weakly
silty

−7 −7.5 SHANSEP 15.9

7 Zand (Rg_z) Sand −7.5 −15 Mohr-
Coulomb

17

8 P_Ova_sd Sand −15 Mohr-
Coulomb

17

Hydraulic Conditions
The hydraulic conditions were also analyzed by Tigchelaar and van Haaren (2022) and Tigchelaar
(2022). They have been based on the guidelines from Rijkswaterstaat (2021) and data from piezome-
ters (TAUW, 2021).

Under normal conditions, the phreatic level is located at −0.68m NAP in front of the dike, while behind
it, in the polder, the phreatic level is regulated at −2m NAP. The phreatic level in the area between
these points bulges to 0m NAP in the dike. The aquifer’s hydraulic head is 0.3m above NAP. Figure
6.3a illustrates the water levels during normal conditions.

During extreme weather conditions, the water level outside the dike can rise to 2.7m above NAP
(Tigchelaar, 2022). This level is called the Waterstand Bij Norm (WBN) in Dutch, and this is the water
level that needs to be evaluated in a semi-probabilistic analysis according to Rijkswaterstaat (2021). A
jump is modeled in the phreatic line through the revetment layer to simulate the transition between the
water level outside and inside the dike. The hydraulic head progresses through the dike and reaches
the water level inside the polder ditch at a depth of −2m NAP. The hydraulic head in the aquifer also
reacts to the increase in water level outside the dike. The hydraulic head in front of the dike is at the
same level as the phreatic surface and decreases to 1.3m in the polder.

This increased water pressure in the aquifer causes water to seep through the clay and peat layer
on top of the sand. The intrusion length, also known as ”indringingslengte” in Dutch, is the vertical
distance at the bottom of the poorly permeable aquitard over which the pore pressure changes with
hydraulic head variations in the aquifer layer, as defined by Rijkswaterstaat (2021). At the top of this
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intrusion zone, the hydraulic head is 0.3m NAP, equal to the hydraulic head in the aquifer during normal
conditions. Figure 6.3b illustrates the water levels in the extreme conditions.

(a) Normal conditions. (b) Extreme conditions.

Figure 6.3: Normal and extreme hydraulic conditions modeled in D-Stability. The blue lines are the water lines and the
reference lines are depicted in green.

6.2. Soil Parameters
The soil parameters are an important input for the model. These parameters are based on a regional
dataset of the maintenance area of the water board Brabantse Delta and can be found in Appendix D.
The dataset was created by Tigchelaar (2018). Please refer to his research for a detailed description
of the field and laboratory tests that were conducted. This dataset was also included in the STOWA
dataset that was investigated in the data analysis in part 1 of this research. For this study, the data was
further analyzed to determine the soil parameters.

In this chapter, the process of determining these parameters will be presented. Four types of analy-
ses will be conducted in this study: deterministic, semi-probabilistic, probabilistic, and Random Finite
Element Method (RFEM) analyses. The point statistics of the dataset will be presented first, followed
by an explanation of how the stochastic soil parameters will be determined in the semi-probabilistic
and probabilistic analyses. After that, the method for the RFEM analysis will be introduced. Finally,
the other parameters will be discussed, where no spatial variability should be considered according
to Rijkswaterstaat (2021). To meet the requirements of Rijkswaterstaat (2021), all parameters will be
modeled using a log-normal distribution.

According to Rijkswaterstaat (2021), it is necessary to consider spatial variability when determining the
SHANSEP parameter S and m and the friction angle ϕ. However, as it is assumed that the FoS is
not significantly impacted bym, no spatial variability is considered when modelingm. After performing
the data analysis, it is concluded that it is challenging to determine spatial correlation for S. Further
research on this assumption is therefore recommended. However, to compare the model results with
the current method, spatial variability is accounted for in S.

These values for S and ϕ are calculated using Equations 2.8, 2.9, 2.10, and 2.4. First, the dataset
in Appendix D was analyzed to determine the mean (µX ) and standard deviation (σX ). These values
were then transformed to fit a log-normal distribution using Equations 2.5 and 2.6. Table 6.3 presents
the resulting values for different soil types.

It is assumed that the sand layer does not affect the dike’s stability, so it is not modeled stochastically.
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Table 6.3: Summary data from dataset Tigchelaar (2018).

Parameter Soil dataset Soil model n µX σX µlnX σlnX

S [-] K2 K2_onder_Su and K2_d_Su 42 0.323 0.045 −1.14 0.14
V2 V1-2 22 0.458 0.053 −0.787 0.115

ϕ [◦]

K2 K2_ond_CPhi 42 36.67 2.05 3.6 0.06
K3 K3_ond_CPhi 13 35.28 3.58 3.56 0.1
K4 K4_CPhi 34 31.94 4.24 3.46 0.13
Zand Zand 5 34.57 - - -

For the semi-probabilistic and probabilistic analyses, the soil will be modeled using different values of
α: α = 1, α = 0.8, the default α = 0.75, and α = 0.5. The student-t factor is the same for the different
values of α and is calculated based on the number of data points as presented in Table 6.3. For each
α value, the mean, standard deviation, and characteristic value for S and ϕ are calculated. The results
are presented in Table 6.5.

When α = 0.5, only the characteristic value is calculated as it is exclusively analyzed in a semi-
probabilistic analysis. It can be observed from Table 6.5 that σX,prob decreases for all soil types as
α increases, whereasXchar increases and becomes more similar to µX,prob as α increases. According
to Equation 2.9, it can be seen that the value of µX,prob is also affected by the value of α through the
value of σlnX,prob. However, the values in the Table show that this influence is minimal and can be
considered negligible in most cases.

Table 6.5: Calculated soil parameters for the probabilistic and semi-probabilistic analyses for different values of α based on
Equations 2.8, 2.9, 2.10, and 2.4. In the table, p and c in the subscript equals prob char in the equations respectively.

α = 1 α = 0.8
Param Soil σlnX,p µX,p σX,p Xc σlnX,p µX,p σX,p Xc

S
K2 0.022 0.32 0.007 0.308 0.067 0.321 0.022 0.286
V1-2 0.026 0.455 0.012 0.436 0.060 0.456 0.027 0.413

ϕ
K2 0.009 36.62 0.321 36.09 0.027 36.63 0.986 35.03
K3 0.03 35.12 1.066 33.39 0.058 35.16 2.025 31.92
K4 0.023 31.67 0.737 30.47 0.065 31.73 2.063 28.44

α = 0.75 α = 0.5

S
K2 0.075 0.32 0.024 0.283 0.27
V1-2 0.065 0.456 0.03 0.409 0.393

ϕ
K2 0.03 36.63 1.091 34.86 33.3
K3 0.063 35.17 2.202 31.66 29.11
K4 0.072 31.74 2.279 28.13 25.23

One of the purposes of the RFEM analyses is to study the effect of spatial averaging, as defined
in Chapter 2.3.2 and Figure 2.7, on the failure probability of a dike. As a result, the soil parameter
distributions should not account for spatial averaging and variance reduction at this stage. Unlike the
(semi-)probabilistic calculations, spatial variability will not be considered when determining the input
mean and standard deviation. However, to account for the limited number of data points, Equations
2.8, 2.9, and 2.10 will be used with α = 0.

When α = 0 in Equation 2.3, the local variance is zero since the regional variance cannot be. In
the WBI2017 method, only the local variance can be averaged out. Hence, no averaging or variance
reduction should be considered in this case. This implies that only the RFEM model itself can account
for any variance reduction based on the configuration of stronger and weaker zones in the model and
the propagation of the failure surface through them.
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The input data required for the RFEM model is presented in Table 6.7.

Table 6.7: Calculated soil parameters for the RFEM analyses based on Equations 2.8, 2.9, and 2.10 with α = 0

α = 0
Param Soil σlnX,RFEM µX,RFEM σX,RFEM ω

S [-] K2 0.144 0.323 0.047 0.023
V1-2 0.109 0.518 0.057 0.043

ϕ [◦]
K2 0.058 36.68 2.111 0.023
K3 0.114 35.33 4.023 0.071
K4 0.138 31.96 4.419 0.029

Some uncertainty should not be averaged out, which is the uncertainty due to the limited number of
samples in a dataset and the regional variance. Therefore, a residual correlation factor (ω) is introduced
in the Auto Correlation Function (ACF) in Equation 6.1. The purpose of this factor is to prevent the
covariance in the random field from going to zero, as seen in Figure 6.4, thereby maintaining a degree
of variance in the random field. For more information about random fields, please refer to Chapter 2.3.

ρ(τ) = ω + (1− ω) exp

(
−2|τ |

θ

)
(6.1)
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Figure 6.4: The used Markov ACF in the vertical direction for the different soil types in the model. The dashed line is the value
for ω for that soil type, which is the asymptote for the ACF.

To determine the value of ω, the ratio between the variance that cannot be averaged out (σ2
no ave) and

the total variance (σ2
tot) is calculated. This can be seen in Equation 6.2.

The WBI2017 method assumes that the local variance can be completely averaged out, while the
regional variance cannot. Therefore, there is no regional variance when using a local dataset, and
α = 1. In this case, only the statistical variance remains, which cannot be averaged out. Conversely,
when α is set to 0, the local variance is zero, and only the regional variance remains in combination
with the statistical variance, which cannot be averaged out in accordance with WBI2017.

The data analysis in part I of this study has shown low partial sill-sill ratios. This indicates that only
a small portion of the total variance is defined by regional variance. As a result, in this research, ω
is defined as the ratio of the measured sample variance when all variance is averaged (σprob,α=1) to
the measured sample variance when no variance is averaged (σprob,α=0). Both include the statistical
variance, so this is the only variance that cannot be averaged in RFEM. This definition allows the
possibility of also averaging the regional variance in the RFEM analysis. The calculated values of ω
are presented in Table 6.7.
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ω =
σ2
no ave

σ2
tot

(6.2)

ω =
σ2
prob,α=1

σ2
prob,α=0

(6.3)

The values for the SHANSEP parameterm are based on recommendations fromRijkswaterstaat (2021).
Also, according to their guidelines, the Critical State Soil Mechanics (CSSM) framework is used to
determine the values for the dilation angle and cohesion. For a more detailed description of CSSM,
please refer to Chapter A.3.3. The drained CSSM analysis uses the non-associative Mohr-Coulomb
model, where the dilation angle (ψ) and cohesion (c) are utilized. No plastic volume changes occur
at the critical state. Therefore ψ = 0◦. The CSSM defines cohesion as a form of over-consolidation,
which does not play a role in the critical state. Therefore, the cohesion can be defined as c = 0kPa.
Young’s modulus (E) and Poisson’s ratio (ν) have been determined based on the values used in the
research of Varkey (2020). Note that the absolute value of E does not affect the ultimate strength, but
it is nonetheless a required input for the model to calculate the strains. Table 6.9 summarizes these
parameters.

It is important to note that only the friction angle (ϕ) and the SHANSEP parameters S andm have been
modeled stochastically, in line with the recommendations of Rijkswaterstaat (2021).

Table 6.9: Additional geotechnical parameters, independent of the soil type, used as input for the model.

Parameter µm σm mchar ψ [◦] E [MPa] ν [-] c [kPa]
Value 0.9 0.03 0.86 0 0.1 0.3 0.01

6.2.1. Scales of Fluctuation
Other important model inputs are the scales of fluctuation (θ) for each soil type in horizontal and vertical
directions. However, due to the lack of laboratory data on a small scale (see the data analysis in part
1), Cone Penetration Tests (CPTs) are used to determine the scale of fluctuation in the vertical direction
(θv). In the horizontal direction, the average distance between the CPTs is 45m, which is larger than
the average θh found in literature (refer to Table 2.1). Therefore, it is impossible to determine θh from
the available data. To investigate its impact, a sensitivity analysis will be conducted for different ratios
between θh and θv, including 10, 15, 20, and ∞.

De Gast et al. (2019) outlined three steps to determine the value of θ from CPTs

1. Eliminate the trend from the CPTs.
2. Using the CPT data, compute the experimental Auto Correlation Function (ACF). The experimen-

tal ACF is the mean of the individual experimental ACFs in case of multiple CPTs.
3. Determine θ by methodically evaluating a theoretical ACF that has been produced using various

θ’s. The θ that results in a theoretical function with the smallest error compared to the experimental
ACF should be selected.

The research follows these steps for the different soil layers defined in Table 6.1. The data is analyzed
individually by subtracting the parts of the CPTs that fall within the depth ranges of the layers defined
in the table. The CPTs used for this analysis are shown on the map of the dike in Figure 6.2. Figure
6.5 displays the cone resistance of the CPTs plotted over the depth. The x-axis shows the different
x-coordinates of the CPTs. The different soil layers are labeled as defined in Table 6.1.

Removing the Trend
One of the requirements for using an ACF is second-order stationarity. The depth trend should be
removed from the CPT data to achieve this. The trend is defined by:
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Figure 6.5: The cone resistance and x-coordinates of the CPTs that were used to determine the scale of fluctuation (θ)

qc = (b+ az) + ε(z) (6.4)

Where:

qc is the cone resistance of a CPT [MPa].
b is the intersect of the depth trend [MPa].
a is the slope of the depth trend [MPa/m].
z is the depth [mathrmm].
ε(z) the spatial variability around the trend as a function of the depth z [MPa].

The spatial variability, denoted by ε(z), should be normalized before use:

U(z) =
ε− µε

σε
(6.5)

Where:
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U(z) is the detrended and normalized spatial variability in qc as a function of the depth z [-].
µε is the mean of ε [MPa].
σε. is the standard deviation of ε [MPa].

Autocorrelation Functions
In the second step of the process, an experimental autocorrelation function, also called the sample ACF
as defined in Equation 2.17, is created. Then, multiple autocorrelation functions are averaged to form
one sample ACF. Next, the average ACF is fitted with a Markovian ACF, as suggested by De Gast et al.
(2019) and defined in Table 2.3. The theoretical ACF, a function of θ, is then fitted by minimizing the
error between the theoretical and the average experimental functions. Figure 6.6 shows an example
of this process for soil type K2_ond_Su.

In Figure 6.6, it can be seen that the experimental ACF can have negative values. In contrast, the
theoretical Markov ACF, defined in Table 2.3, cannot have negative values. The θ value plays a role in
determining how fast the ACF approaches zero (see Figure 2.8). Therefore, to determine θ, it is more
important that the theoretical function matches the first part of the experimental ACF, which in this case
is up to a lag of approximately 0.65m.

The fitted value of θ determines the scale of fluctuation for a particular type of soil. The calculated
values of θv for the clay layers are small compared to the values that could be found in literature. For
the peat layers, θv corresponds to the results of de Gast (2020). A possible reason for the low clay θv
values could be the thickness of the layers being too small to capture the entire θv.

Table 6.11 shows the results for different soil types. The value of θv is adjusted to match the mesh size
of Finite Element Method. A mesh size of 0.1m would be needed to model the scales of fluctuation
accurately, but this would significantly increase computational time. Therefore, a larger mesh size is
selected. Choosing a larger value of θv is considered conservative, as it would result in larger weaker
zones that would have a larger impact on the FoS than smaller stronger zones. In other words, a larger
θv would lead to less averaging and a large mean reduction of the soil strength parameters over the
failure surface, resulting in a more conservative approach. Lastly, it is worth noting that sand (zand) is
not modeled stochastically and thus does not have a θ implemented in the model.
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(a) Experimental autocorrelation functions for the different CPTs and
the average of these experimental autocorrelation functions.
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(b) Theoretical autocorrelation function, fitted to the average
experimental autocorrelation function.

Figure 6.6: Experimental and theoretical Auto Correlation Function (ACF) for soil type K2_ond_Su.
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Table 6.11: The calculated horizontal and vertical scales of fluctuation (θ) in meters. The value of θv has been determined by
fitting ACFs to CPT data, which have then been adjusted to fit the mesh size of the model. However, θh could not be

determined based on CPTs. Therefore, a sensitivity analysis will be conducted with different ratios between θh and θv . It is
worth noting that sand (Zand) will not be modeled stochastically.

Soil θv θv model θh = 10 ∗ θv θh = 15 ∗ θv θh = 20 ∗ θv
K2_ond_Su 0.25 0.3 3 4.5 6
K2_d_Su 0.11 0.3 1 1.5 2
V1-2 0.4 0.4 4 6 8
Zand 0.17 - - - -
K2_ond_CPhi 0.12 0.3 1 1.5 2
K3_ond_CPhi 0.17 0.3 2 3 4
K4_CPhi 0.21 0.3 2 3 4

6.3. Hydraulic Conditions
The RFEM software calculates the pore pressures in the dike by performing a flow calculation. To
carry out this calculation, the permeability is assumed to be equal in each soil type. The input for this
flow calculation is water lines, which are assigned to the bottom and top of each layer to determine
the water pressure. If the water line at the top of the layer differs from the bottom, a hydraulic head
difference occurs, and a flow calculation is performed. When there is no difference in hydraulic head
over the layer, the water pressures are assumed to be hydrostatic. The boundary conditions of the flow
calculations are the hydrostatic layers.

Two water lines are modeled: one for the phreatic surface and one for the hydraulic head in the aquifer.
The phreatic line can be copied from the D-Stability model, but the hydraulic head cannot be immedi-
ately duplicated.

The RFEM code calculates the pore pressures differently from D-Stability. RFEM performs a water flow
calculation, while D-Stability assumes stationary flow. In D-Stability, one can also assume a reference
line, the location on which the assigned hydraulic head is applied, at any location within a soil layer.
However, in RFEM, it is only possible to assign a water line at the border of a layer. This is a problem
for implementing the intrusion length in the RFEM model. An additional layer can be added with the
border on the same location of the intrusion length in D-Stability. However, this causes problems when
generating the random fields in RFEM, which are defined in a specific layer. Therefore, a simplification
has been added to the hydraulic conditions of the RFEM model. The intrusion zone is assumed to
equal the clay layer (K2_d_Su) on top of the aquifer.

To model the intrusion, two flow calculations are needed to model a hydraulic head difference: (1) the
hydraulic head difference between the phreatic line and the hydraulic head in the layers K2_ond_Su
and V1-2 and (2) the hydraulic head difference between the intrusion zone and aquifer. However, there
is no hydrostatic layer in between these flow calculations. And because the flow calculations need
hydrostatic layers as boundary conditions, these two flow calculations cannot be performed. Therefore,
a second simplification is added. The hydraulic head at the top of the deepest clay layer (K2_d_Su) will
serve as the second water line. This line is simplified and represents the hydraulic head at the top of
the intrusion zone instead of the hydraulic head in the aquifer. The flow boundary condition was dealt
with by adopting a hydrostatic gradient in the clay and sand layers.

The difference in pore pressure is assumed to be minimal because the difference in intrusion length is
small, causing only a small decrease in pore water pressure in the undrained layers. Furthermore, it is
assumed that the deepest clay and sand layers do not contribute to the stability of the dike. Therefore,
it does not matter if the pore pressures are changed to hydrostatic conditions. These assumptions were
verified by altering the D-Stability model and checking the difference in FoS.
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6.4. Mesh
The mesh in the RFEM model is based on the D-Stability cross-section. The used elements are 0.3m
wide, except for the layers that will not be modeled stochastically, with an element width of 0.9m to limit
computational time. However, due to the algorithm used to create the mesh, some elements may be
smaller than 0.3m. This can cause issues when small elements are located along the failure surface, as
they can experience much larger strain rates than larger elements. As a result, the FEM program may
converge incorrectly to failure. The distance between the bottom of the ditch and the layer boundary
is 0.2m, which causes the algorithm to create very small elements in this specific location. To avoid
this issue, the bottom of the ditch has been lowered so that it is directly located on the layer boundary
between K3_ond_CPhi and K2_ond_Su.

When comparing the cross-section and mesh used in the RFEM model to the D-Stability model, it is
clear that extra soil layers have been added on the polder-side slope. This is because this research aims
to investigate the effect on the macro-stability of a dike, and only macro-stability should be modeled.
Micro-instability can cause a breach only as part of a progressive failure mechanism, so it will not be
considered. The failure surface that will cause a breach of the dike has been identified by Tigchelaar
and van Haaren (2022) in D-Stability and can be seen in Figure 6.1. To simulate this failure surface in
RFEM, stronger zones were added to the slope on the dike’s polder side. This slope is prone to micro-
stability failures due to its steepness. By adding stronger zones, the possibility of micro-instability
failures is eliminated. These stronger zones were not modeled stochastically and had a consistent
value of ϕ = 35◦ and c = 30kPa, but with the same volumetric weight as the original soil types.

These modifications made to the model, along with the changes in hydraulic conditions, were tested
using D-Stability. The adapted model showed a FoS of 0.98, while the original model had a FoS of 0.97.
This indicates a minimal difference of 0.01 in the FoS, which is considered insignificant.
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Figure 6.7: Cross section as modeled in RFEM.
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Figure 6.8: Generated mesh for RFEM. The elements of the mesh are 0.3m for the layers that will be modeled stochastically
and 0.9m for the other layers.



7
Model Results

In this chapter, the results of the models will be discussed. Firstly, the various scenarios for which the
models have been created will be introduced. Following that, the outcomes of deterministic and semi-
probabilistic scenarios will be presented. Finally, the results of the probabilistic and Random Finite
Element Method (RFEM) scenarios will be shown.

The RFEM code used for this purpose is a TU Delft in-house finite element code (version Dec. 2023),
built upon the finite element library by (Smith et al., 2014), as used in, for example, (Varkey et al., 2023).

7.1. Scenarios
Different cases will be explored to examine the impact of spatial variability on macro-stability. These
scenarios will be calculated using the Finite Element Method (FEM) code of TU Delft, as described
above. The various scenarios are:

0. Deterministic: It is important to note that while a deterministic analysis cannot determine the prob-
ability of flooding (ENW, 2016), it is still performed for comparison purposes. In a deterministic
analysis, only the mean values of the point statistics for S, m, and ϕ are used. This means that
spatial variability and statistical uncertainties regarding the number of samples in the dataset are
not considered. As a result, no random fields need to be created, and only one schematization
is needed, which involves homogeneous layers with values equal to the mean of the dataset.

1. Semi-probabilistic: According to Rijkswaterstaat (2021), it is important to consider the spatial
variability and statistical uncertainty when determining specific soil parameters. In the case of a
semi-probabilistic analysis, characteristic values of S, m, and ϕ should be used for this purpose.
These values should be determined to ensure a calculated reliability of 95% for the dike (Hicks,
2012) and can be calculated using Equation 2.4. To investigate the impact of α, various scenarios
will be examined:

(a) α = 1

(b) α = 0.8

(c) α = 0.75

(d) α = 0.5

The characteristic values are presented in Table 6.5.

A semi-probabilistic analysis differs from a fully probabilistic analysis as it does not require a prob-
ability distribution for the soil parameters. Instead of multiple realizations, a single schematization
with homogeneous layers is calculated per scenario using characteristic values. The characteris-
tic values take into account the spatial variability of the soil.

2. Probabilistic: The probabilistic analyses are performed using Monte Carlo simulation based on
soil parameter distributions, including S, m, and ϕ, with input mean and standard deviation. The

65
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standard deviations and means of the point statistics are modified to incorporate the additional
uncertainty of spatial variability and the limited amount of samples in the dataset. The influence
of α is investigated by considering three cases:

(a) α = 1

(b) α = 0.8

(c) α = 0.75

The spatial variability is modeled by modifying the input standard deviation and mean (see Equa-
tions 2.10 and 2.9 respectively), which are presented in Table 6.5. No random fields are used to
model the spatial variability. The horizontal and vertical scales of fluctuation, θh and θv, are as-
signed a very large value, larger than the problem domain. As a result, each realization consists
of homogeneous layers modeled by a stochastic value of the soil parameters. The Monte Carlo
analysis is carried out with 200 realizations with the RFEM code.

3. RFEM: The RFEM scenario combines the FEM code with random fields. To model the distribution
of the structural response, 200 realizations are calculated. For more information on the random
fields, please refer to Chapter 2.3.

To create the random fields, horizontal and vertical scales of fluctuation (θh and θv) are imple-
mented. Two cases of θh and θv will be investigated:

(a) θh = 20 ∗ θv and θv based on the values as presented in Table 6.11.
(b) θh = ∞ and θv based on the values as presented in Table 6.11. The purpose of this scenario

is to investigate the influence of θh on the calculation.

When creating an RFEM model to analyze the influence of variance and mean reduction, it is
important that the input parameters do not already account for this, like in probabilistic analyses.
To achieve this, an α value of 0 is used to determine the model input, presented in 6.7.

It is important to consider statistical uncertainty to make a meaningful comparison with proba-
bilistic results, it is important to consider statistical uncertainty. This is done by incorporating
a residual correlation factor, denoted as ω, in the Auto Correlation Function (ACF), which was
explained in Chapter 6.2.

See Table 7.1 for a summary of the cases.

Table 7.1: Different Random Finite Element Method (RFEM) cases that will be investigated.

Level Case α θ Number of realizations
0: Deterministic 0 - - 1

1: Semi-Probabilistic

1a 1 - 1
1b 0.8 - 1
1c 0.75 - 1
1d 0.5 - 1

2: Probabilistic

2a 1
θv = ∞

200
θh = ∞

2b 0.8
θv = ∞

200
θh = ∞

2c 0.75
θv = ∞

200
θh = ∞

3: RFEM
3a 0

θv = θv 200
θh = 20θv

3b 0
θv = θv 200
θh = ∞

For each Monte Carlo analysis, 200 realizations are performed. This decision was made based on the



7.2. Deterministic and Semi-Probabilistic Analysis 67

number of realizations in previous studies, such as Arel and Mert (2021), Chen et al. (2020), Pan et al.
(2018), and Zhu and Zhang (2015), and to ensure that computation time remains within practical limits.

7.2. Deterministic and Semi-Probabilistic Analysis
For the deterministic and semi-probabilistic cases, the calculated Factor of Safety (FoS) and failure
surface are presented in Table 7.3 and Figure 7.1. The deterministic case has an FoS greater than 1,
while the semi-probabilistic safety factors are below 1. If only the deterministic case had been consid-
ered, it would have resulted in a false sense of safety. This emphasizes the importance of accounting
for uncertainties. Moreover, the FoS is higher for cases with a higher value of α. This is as expected
because the characteristic value decreases with an increasing α (see Equation 2.4).

The probability of failure of a cross-section (Pf,cs) can be calculated using Equation 7.1 (Kanning et al.,
2017), as explained in Paragraph A.2.1. The model factor for FEM should be γd = 1.06, according to
the WBI2017 (POVM, 2020). Table 7.3 presents the computed failure probabilities. In accordance with
the results of the FoS, it can be seen that the Pf decreases with an increasing value of α.

βcs =

FoS
γd

− 0.41

0.15
(7.1)

Table 7.3: The calculated FoS FEM results of the deterministic and semi-probabilistic analyses.

Level Case FoS Pf,cs with Equation 7.1
0: Deterministic 0 1.025 1.023 ∗ 10−5

1: Semi-Probabilistic

1a (α = 1.0) 0.997 2.022 ∗ 10−5

1b (α = 0.8) 0.984 2.748 ∗ 10−5

1c (α = 0.75) 0.980 3.016 ∗ 10−5

1d (α = 0.5) 0.961 4.653 ∗ 10−5

(a) Deterministic analysis. FoS = 1.025 (b) Semi-probabilistic case 1a. FoS = 0.997

(c) Semi-probabilistic case 1b. FoS = 0.980 (d) Semi-probabilistic case 1c. FoS = 0.961

Figure 7.1: Calculated plastic strain for the deterministic case and semi-probabilistic cases.
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(a) Pore pressure. (b) Vertical effective stress.

(c) Shear stress. (d) Displacements (color) and displaced mesh (scaled by a factor of
300).

(e) Strain rate at failure.

Figure 7.2: Results of case 1b. FoS = 0.98

7.3. Probabilistic and RFEM Analyses
To perform probabilistic and RFEM analyses, 200 realizations were generated. Each realization was
given a distinct group of soil parameters for the homogeneous soil layers in the probabilistic analyses.
While for the RFEM cases, each realization modeled both strong and weak zones. As a result, each
realization in both cases led to different failure surfaces and calculated factors of safety. The soil
parameter S, m and ϕ were modeled with a probability distribution for the respective soil parameter.
This is not the case for θ, which determines the variation of strong and weak zones in the random fields
and remains constant across all realizations. Note that m is not modeled with a random field in RFEM
because it is assumed that the value of m does not significantly affect the FoS.

Some results of the RFEM analysis scenario 3a are displayed in Figure 7.3. Various observations can
be made for the different realizations:

• Realization a: In this case, the deep failure surface propagates through the peat layer to the lower
clay layer. Consequently, it results in a low FoS of 0.9937. One thing to note is that a part of the
active side of the failure surface is located in a relatively weak zone in the peat layer.

• Realization b: This realization has the highest FoS of all the examples with FoS = 1.0406. The
failure surface is shallow and does not propagate through the peat layer.

• Realization c: The failure surface in this example consists of three failure surfaces, two of which
propagate through the peat layer. The middle one is located in a weaker zone in the peat layer.
The FoS of this example is 1.0234.

• Realization d: This realization has a deep failure surface with a part of the active side located in
a weaker zone of the peat layer, which results in the lowest FoS of all the examples with a value
of 0.9906.
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(a) FoS = 0.9937

(b) FoS = 1.0406

(c) FoS = 1.0234

(d) FoS = 0.9906

(e) FoS = 1.0375

Figure 7.3: Results of different realizations of case 3a. Drained layers are represented by a value for ϕ, while undrained layers
are colored by their value of S. The plastic strain rate is depicted in black.
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• Realization e: Some strong zones are located in the peat layers through where the failure surface
cannot propagate. As a result, the failure surface is shallow with a FoS of 1.0375.

It can be observed from Figure 7.3 that the failure surfaces propagate through the dike at a steep angle
in the first 7 meters, crossing both strong and weak zones in this area. This part of the failure surface
appears consistent across all realizations and is primarily influenced by the locations of strong and
weak zones for either ϕ or S. The peat layer seems to have the most significant impact, particularly
since it has larger scales of fluctuation in both the horizontal and vertical directions (θv and θh).

It is worth noting that among the different examples, those with the lowest Factor of Safety (FoS) (a
and d) both have a deep failure surface, where the active side passes through a weaker zone in the
peat layer. However, it is clear from the other 195 realizations that a deeper failure surface does not
always lead to a lower FoS, and a lower FoS is not always associated with a part of the active side of
the failure surface passing through a weak zone in the peat layer. Yet, most shallow failure surfaces
propagate precisely along the boundary between the clay and peat layer, highlighting the importance
of the location of the peat layer. Furthermore, throughout all the realizations, the first 7 meters of the
failure surface are all at the same location. This part does not ”seek out” a weak zone in the soil layer.

The calculated FoS for each calculation can be used to generate a histogram, from which a Probability
Density Function (PDF) and Cumulative Density Function (CDF) can be computed. For scenario 2c,
the results are presented in Figure 7.4. The black dots represent the calculated factors of safety and
their corresponding cumulative density value. Please note that the displayed number of points does not
equal the number of realizations. This is due to the limited precision of the strength reduction algorithm
in FEM. Appendix B describes this in more detail. As only 200 realizations were created, a theoretical
CDF must be fitted to analyze the full CDF. In this case, the normal and log-normal CDFs are fitted
to see which function best fits the lower tail. The lower tail represents the small probabilities of failure
(Pf ), which is interesting for civil engineers as they want to design for a small Pf . The right part of the
plot zooms in on the data in the lower tail. The log-normal function fits these data points somewhat
better, so this function is selected to represent the distribution. The difference between the normal and
log-normal fits is insignificant due to the small standard deviation of the CDF. This process is repeated
for the other scenarios. Figure 7.5 displays the best fit of the CDF for each scenario.
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Figure 7.4: Cumulative Density Function (CDF) of the data and the fitted normal and log-normal functions for the probabilistic
scenario 2c. Please note that the displayed number of points does not equal the number of realizations. This is due to the

limited precision of the strength reduction algorithm in FEM. Appendix B describes this in more detail.

It is important to note that the probabilities of failure determined from the probabilistic and RFEM results
are conditional on the chosen water level. As a result, these probabilities do not represent the full
probability of failure of the cross-section due to macro-stability. To obtain this full probability of failure,
different water levels and their probability of occurrence should be considered. Therefore, the results
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presented in Table 7.5 cannot be compared to the norm for this particular cross-section or the outcomes
of the semi-probabilistic analysis. For simplicity, the conditional probabilities of failure, calculated with
the probabilistic and RFEM scenarios, are referred to as the probability of failure.

Table 7.5: The calculated (conditional) probability of failure Pf and standard deviation of the fitted CDF (σCDF ) of the FEM
results of the probabilistic and RFEM analyses.

Level Case Pf σCDF

2: Probabilistic
2a: α = 1.0 0.024 0.011
2b: α = 0.8 0.117 0.017
2c: α = 0.75 0.192 0.020

3: RFEM 3a: θh = 20 ∗ θv 0.126 0.015
3b: θh = ∞ 0.216 0.019

The full CDF for all the probabilistic and RFEM scenarios is displayed in Figure 7.5. The standard
deviations of the fits are presented in Table 7.5. Scenario 2a with α = 1.0 is the lower limit for the
width of the CDF, as it has the lowest input values for σ, which considers the full averaging of the local
variability. The widest CDF corresponds to scenario 2c, which would result in the safest designs, as
it considers the least amount of local averaging. The CDF of the second probabilistic scenario lies
between the CDFs of scenario 2a and 2c, as the input standard deviations are also between those
input standard deviations.
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Figure 7.5: Cumulative Density Function (CDF) of the fitted functions for the different scenarios.

The RFEM scenario does not consider local averaging in the input distribution, making the input σ larger
than those for the probabilistic cases. This model experiences local averaging by modeling stronger
and weaker zones in the soil layers (see Figure 7.3). Therefore, the CDF should be wider than the
CDF of scenario 2a, where full averaging is assumed. This is true and can also be observed in Figure
7.5 and Table 7.5, where the RFEM CDF of scenario 3a lies between the CDF of scenario 2a and 2b.
In the lower tail, scenario 2c seems to approximate the RFEM result of scenario 3a, while in the upper
tail, scenario 2a is closer.

In scenario 3b, θh is larger than the width of the cross-section (θh = ∞), which is an extreme situation.
This leads to a significant difference between the CDF fits of scenarios 3a and 3b. As a result, the CDF



7.3. Probabilistic and RFEM Analyses 72

becomeswider with a lowermean, as it tends to ”seek out” the weaker zonesmore. This situation is best
described by probabilistic scenario 2c with α = 0.75 in the lower tail, while it approaches probabilistic
scenario 2b with α = 0.8 in the upper tail.

It is observed that the probabilistic scenarios do not perfectly match the scenarios of RFEM in both tails.
This difference is due to the mean reduction of the RFEM cases. As shown in Figure 7.5, the means
of the CDFs are shifted to the left compared to the probabilistic cases. This mean reduction occurs
because the failure surfaces in the RFEM model ”seek out” the weak zones. Even when the underlying
input distribution is identical, the failure surface’s ability to propagate through the weaker zones causes
a decrease in the response’s mean (mean reduction) (Hicks et al., 2019). Scenario 3b shows a lower
mean, indicating that a higher θv leads to a more significant mean reduction. The current model for
probabilistic calculations does not account for this mean reduction. Therefore, with the current method,
no fit that completely aligns with the results of the RFEM scenario could be found.

To ensure the reliability of a dike, it is important to have a low probability of failure. To evaluate this
probability, the lower tails of the Monte Carlo simulations are depicted in Figure 7.6a. A close-up view
around the value of FoS = 1.0 is provided in the figure to investigate differences between scenarios at
the location where the (conditional) probability of failure (Pf ) is calculated. The fits of scenarios 2c and
3a are similar in the lower tail around FoS = 1.0. However, scenario 2c would lead to a slightly safer
design as its data points lie higher than the points of scenario 3a, which can be clearly seen in Figure
7.6b, where the CDF is plotted on a log-scale. Scenario 2b is the scenario that most closely resembles
scenario 3b in the lower tail and is almost equal at FoS = 1.0. However, when the FoS increases, this
scenario becomes less conservative compared to scenario 3b.
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Figure 7.6: Cumulative Density Function (CDF) and their lower tail of the fitted functions for the different scenarios. Please
note that the displayed number of points does not equal the number of realizations. This is due to the limited precision of the

strength reduction algorithm in FEM in Appendix B describes this in more detail.
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7.4. Impact of Changing α to 0.8
The results of the probabilistic and RFEM analysis show that a probabilistic analysis with α = 0.8
(scenario 2b) provides a better fit to RFEM scenario 3a. The alteration of the value for α will influence
the probability of failure of the cross-section (Pf,cs) and, therefore, also the probability of failure of a
dike section (Pf,sec) and trajectory (Pf,traj). This influence will be further investigated in this paragraph.

The dike trajectory’s signal norm is described in Chapter 6.1 and is 1/1000, while the lower limit norm
is 1/300. Following WBI2017, the failure probability budget (faalkansbegroting in Dutch) for macro
stability is 0.04. Using this budget, the norm for the failure mechanism macro stability can be calculated
by multiplying it with the signal and lower limit norms. Therefore, only these norms will be considered
as this research investigates the effect on the failure mechanism macro stability.

First, the influence of Pf,cs is calculated by performing a semi-probabilistic and FORM analysis in D-
Stability with Uplift-Van, where the model factor is also considered. The results are presented in Table
7.7. It is observed that the Pf,cs decreases 40% for the semi-probabilistic analysis, while the conditional
Pf,cs decreases by 17.2% for the probabilistic analysis.

The values for Pf,cs differ significantly between the semi-probabilistic and FORM analyses. This is
because the results for the probabilistic calculation represent the conditional probabilities of failure to
the outside water level. To obtain the full probability of failure for the cross-section with a probabilistic
analysis, probabilities of failure for multiple water levels should be calculated, combined with the prob-
ability of occurrence of this water level. However, due to time constraints, this calculation could not be
performed. The full Pf,cs can be computed from the semi-probabilistic calculation through the calibra-
tion formula. Therefore, the change in Pf,cs by 40% will be used to investigate the effect of different α
values.

Table 7.7: An overview of the calculated probabilities of failure of the case study cross-section (Pf ) and factors of safety (FoS)
with the current method of the WBI2017, performed in D-Stability with Uplift-Van. *The Pf has been obtained via a different

method for the semi-probabilistic analysis compared to the FORM analysis. For the first level, Pf is calculated via the
calibration formula as defined in the WBI2017. For the FORM analysis, Pf is determined by finding the design point. Both

methods consider the model factor.

Level α FoS Pf * β
Semi-probabilistic 0.8 0.936 2.28 ∗ 10−4 3.51

0.75 0.915 3.80 ∗ 10−4 3.37
FORM 0.8 - 4.90 ∗ 10−2 1.66

0.75 - 5.91 ∗ 10−2 1.56

To determine the impact of the change in Pf,cs on the Pf,traj , three different tests are conducted and
compared with the original case (α = 0.75, without reduction of Pf,cs). When assembling the dike
sections for Pf,traj , data from Tigchelaar and van Haaren (2022) and older WBI calculations are used.
The first test involves reducing only Pf,cs for section 20 by 40%. In the second test, only the dike
sections with the same order of magnitude Pf,cs > 1 ∗ 10−5 are reduced by 40%. Finally, in the third
test, the Pf,cs for all dike sections are reduced by 40%.

The Pf,cs provides a starting point for calculating the probabilities of failure for the cross-section (Pf,sec)
and the trajectory (Pf,traj) of the dike. The Pf,sec can be calculated from Pf,cs by factoring in the length
effect in the dike section. Each section can be assigned a category, defining the safety level of that
section. The Pf,traj can be calculated by assuming that all dike sections are independent, multiplying
the probabilities of failure of all dike sections. To determine the safety level of the dike trajectory, the
Pf,traj value is compared to the signal value and the lower limit norm value of the dike trajectory for
macro stability. This process is described in more detail by Diermanse (2021). The results for this case
study are presented in Table 7.9. Please note that there is a slight difference between the original Pf,cs

in Table 7.9 and the semi-probabilistic calculation with α = 0.75 in Table 7.7. This is due to a small
difference in the model of the dike, which is not relevant to the purpose of these tests.
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Table 7.9: An overview of the influence of adopting another value of α on the probability of failure of dike section 20 in
trajectory 34-2 for different tests. Data used for this calculation is based on Tigchelaar and van Haaren (2022).

Case Pf,cs Pf,sec Category
section

Pf,traj Category
trajec-
tory

Original 3.02∗10−4 5.4 ∗ 10−4 Vv 9.87∗10−3 D
Test 1 (section 20) 1.81∗10−4 3.2 ∗ 10−4 Vv 9.66∗10−3 D
Test 2 (same order of magnitude) 1.81∗10−4 3.2 ∗ 10−4 Vv 5.94∗10−3 D
Test 3 (all sections) 1.81∗10−4 3.2 ∗ 10−4 Vv 5.93∗10−3 D

From the results of these tests, a few observations can be made regarding the stability assessment of
the dike:

• It was found that the probability of failure of dike section 20 decreased by 40.74% across all tests
compared to the original case. However, it is worth noting that the safety category for this section
remained the same as in the original case.

• The probability of failure of the dike trajectory also decreased, with a reduction of 2.13% in the
first test, and 39.65% and 39.72% in the second and third tests, respectively. Again, the safety
category for the trajectory did not change from the original case.

• The small difference between the probability of failure in the second and third tests highlights the
impact of dike sections with a higher probability of failure on the overall probability of failure of a
dike trajectory.



8
Discussion and Conclusion Modeling

The purpose of using Random Finite Element Method (RFEM) for modeling the spatial variability is to
create a model that closely approximates reality by simulating the spatial variability of soil using random
fields. The aim is to compare these results with the results of (semi-)probabilistic analyses based on
the Legal Assessment Instrument (Wettelijk BeoordelingsInstrumentarium) (WBI) 2017 guidelines in
the Netherlands. This primarily focuses on investigating the influence of variance and mean reduction.

The study conducted four different analyses to compare the results. These analyses included a deter-
ministic analysis, four semi-probabilistic scenarios, three probabilistic scenarios, and two RFEM sce-
narios. The (semi-)probabilistic scenarios differed based on different input values that were determined
by considering different ratios between local and regional variance (α). The current method assumes
that local variance can be fully averaged out (Calle et al., 2021), and the parameter α determines
which part of the sample variance can be averaged out. A higher value of α results in a lower input
standard deviation for the probabilistic analysis and a characteristic value that is closer to the mean in
the semi-probabilistic analysis.

This chapter discusses the results of the different types of analyses to draw conclusions about modeling
spatial variability.

8.1. Deterministic and Semi-Probabilistic Analyses
In order to arrive at a conclusion regarding the deterministic and semi-probabilistic analyses, a compar-
ison of various scenarios is conducted. Additionally, three factors that have an impact on the results
produced by the analyses are investigated and discussed in this paragraph. Based on this, at the
end of the paragraph. a conclusion can be drawn regarding the influence of spatial variability in semi-
probabilistic analyses.

8.1.1. Discussion Results
From the calculated FoS, it can be observed from Table 7.3 that the FoS decreases with decreasing
values of the ratio between local and regional variance (α). To quantify the influence of incorporating
spatial variability, the relative changes in FoS and Pf compared to the standard calculation (scenario 1c
with α = 0.75) can be calculated. The maximum relative change can be found for the scenario 1d where
a decrease of 1.94% and an increase of 54.28% can be calculated for the FoS and Pf , respectively.

According to a study by Teixeira and Wojciechowska (2023), a significant change in the failure proba-
bility ranges from a factor 10 to 1, 000. As a result, it can be argued that the change in the probability
of failure due to a different value of α may not be significant. In Chapter 7.4, the impact of changing
α from 0.75 to 0.8 on the probability of failure of a dike trajectory due to macro-stability was analyzed.
The results showed that the safety category of both the dike section and trajectory, based on the com-
parison to the norm, did not change. This further demonstrates that the influence is not significant. It
is important to note that although it was concluded that the impact does not alter the safety category of
the dike for macro stability, this study was only conducted for one dike trajectory. Therefore, for other

75
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sections of the dike, with varying datasets, soil types, geometries, and hydraulic conditions, there is a
possibility that the impact may be more significant.

8.1.2. Comparison FEM and D-Stability
To be able to compare the RFEM results with the WBI2017 method that uses Limit Equilibrium Method
(LEM), it is important to validate the RFEM outcome. For this purpose, a comparison is made between
the semi-probabilistic results obtained with LEM and Finite Element Method (FEM), with the aim of
investigating the differences.

The Factor of Safety (FoS) for scenario 1b is the same as the result obtained from the reference D-
Stability model (see Chapter 6.4). Figure 8.1 shows the failure surfaces and the stresses calculated
along the failure surface to further investigate any differences. The calculated Factor of Safety (FoS) is
directly related to the shear strength of the material along the failure surface as shown in Figure 8.1c.
The shear strength calculation is performed by rotating the vector so that it is parallel to the failure
surface at all points depicted in the figure. The shear strength value obtained through FEM corresponds
to the D-Stability shear strength value, resulting in an identical FoS value for both methods.

The shear strength in the undrained layers is calculated using the SHANSEP framework (see Appendix
A.3.3) with Equation A.14. The vertical effective stress (σ′

v) and the Over-Consolidation Ratio (OCR)
are essential in this shear strength formulation. Therefore, they are also shown in Figure 8.1a and 8.1d,
respectively. It can be observed that both the σ′

v and the OCR differ from coordinate (220, −4) to (223,
−2), corresponding to the passive part of the failure surface. In D-Stability, σ′

v has a smaller value than
in FEM, while the OCR is much larger. Since the strength increase component m is less than 1 (0.86),
the more significant increase in OCR is not directly translated to an equal increase in τ . This effect is
then canceled due to the D-Stability model’s decrease in σ′

v.

The effective stress is calculated using the total and pore pressure (p). The pore pressure is illustrated
in Figure 8.1b and does not show any differences in the passive zone of the failure surfaces. There-
fore, the differences in the calculation procedure of the stresses are the most probable reason for the
difference in σ′

v.

In D-Stability, the user defines the OCR or another form of pre-consolidation input in the form of a
state point. These can be defined anywhere in the geometry to define the loading history. In this layer,
Tigchelaar and van Haaren (2022) defined a Pre-Overburden Pressure (POP) of 14.77kPa. The OCR
is then calculated by this input and taking into account the daily conditions of the dike. In contrast, in
FEM, the state of the soil is only defined by the daily conditions and then calculated using Equation
2.27. It can be seen that FEM calculates OCR = 1 in all elements in the cross-section. This means
that the maximum effective stress equals the calculated effective stress in the element. This difference
in formulation causes the difference in values.

It is clear from Figure 8.1 that FEM calculates a second sliding surface that is deeper than the shallow
sliding surface calculated by D-Stability. Unlike D-Stability, FEM can generate multiple failure surfaces.
To investigate the impact of the secondary sliding surface on the FoS, the two deepest soil layers in
FEM are made very strong so that the failure surface cannot propagate through these layers. The
results of this calculation are shown in Figure 8.2, where only a shallow failure surface is calculated.
The resulting FoS value is 0.988 with the strong layers, which is only 0.008 larger than the original result
for scenario 1b (refer to Table 7.3). Therefore, it shows that the difference is minimal, and the deeper
failure surface does not significantly affect the stability of the dike.
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Figure 8.1: Comparison of the results of scenario 1b (α = 0.75) for the FEM and D-Stability calculations.

Figure 8.2: Calculated strain rate for scenario 1b, where the deepest layers are modeled very strongly to investigate the effect
of the deeper failure surface. The calculated FoS = 0.988.

8.1.3. Difference of using Vertical or Principal Stresses in FEM
In FEM, the undrained shear strength is typically calculated with the major principal effective stress,
following Equations 2.26 and 2.27 in Chapter 2.3. Appendix A.3.4 discusses how the major and minor
principal stresses rotate along the failure surface. From this, it can be seen that the direction of the
major principal stress does not remain vertical along the failure surface.

D-Stability (van der Meij, 2023) follows the original formulation of Ladd and Foott (1974), where the
undrained shear strength is calculated via Equation A.14. In this formulation, the vertical effective
stresses define the shear strength. However, because of the rotation of major principal stress along
the failure surface, it is not equal to the vertical effective stress.

The influence of this definition on the FoS is tested by changing the formulation in the FEM code. The
result can be seen in Figure 8.3. The calculated FoS is 1.072, which is approximately a 9% increase
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compared to the reference D-Stability calculation of FoS 0.98.

Since this research aims to compare the current practice to a realistic case, and the current practice is
to use D-Stability, the formulation as defined in D-Stability (van der Meij, 2023) in Equation A.14 is used
in FEM. However, because of the calculated difference in this research, this effect should be further
investigated in other cross-sections.

Figure 8.3: Calculated strain rate for scenario 1b, where the shear strength is calculated using the major principal effective
stress instead of the vertical effective stress. The calculated FoS = 1.072.

8.1.4. Influence of SHANSEP m
When creating the input for the models, it was assumed that the strength increase component of the
SHANSEP model (m) does not have a significant influence on the calculated FoS or Pf . Therefore, the
characteristic value was not further reduced, and the input standard deviation was not increased to con-
sider additional statistic uncertainty and spatial variability in this parameter during (semi-)probabilistic
calculations. In the RFEM calculations, ω was set to 1.0, which prevented the creation of random fields
form. To validate this assumption, a sensitivity analysis formwas performed to investigate its influence
on the calculated FoS in semi-probabilistic analyses.

According to Rijkswaterstaat (2021),m ranges between 0.5 and 1.0. Therefore, 15 values in this range
were implemented in both FEM and D-Stability calculations. Just as in the original model, m is the
same for all undrained soil types (see Table 6.1). The results can be seen in Figure 8.4.

For the FEM model, all calculated FoS values are equal, as the calculated OCR is 1, causing m not to
influence the FoS. For the D-Stability model, the FoS increases as m increases. The FoS values with
m between 0.714 and 0.857 are lower than the other results due to a consistently different shape of the
failure surface. Here, the failure surface has a shorter horizontal part, and the active side of the failure
surface is larger, causing a decrease in strength and, therefore, a decrease in FoS.

For the whole range of m, it can be observed that the FoS has a variation of 0.151 which ranges
from 0.901 to 1.052. Based on a mean value of µm = 0.9 and a standard deviation of σm = 0.03
(Rijkswaterstaat, 2021), the 95% confidence interval for m is between 0.841 and 0.960. If only the
values within this interval are considered, instead of the entire range, the FoS ranges from 0.98 to 1.04.

It should be noted that the conducted sensitivity analysis did not consider a large number of values for
the parameter m. Therefore, it is recommended to perform this analysis with a larger number of data
points in future studies, especially to investigate the changes in the shape of the failure surface and
the sudden jump in the values of the FoS.
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Figure 8.4: The results of a sensitivity analysis for SHANSEP m.

8.1.5. Influence of the Location of the Peat Layer
In Paragraph 7.3, it was noted that for the RFEM scenarios, the shallow failure surfaces often seek
out the boundary between the clay layer and the top of the peat layer. To investigate the impact of the
location of the peat layer, a sensitivity analysis is performed. The CPTs for the dike section indicated
that the top of the peat layer could be situated somewhere between −6 and −3m NAP. Therefore, 15
values within this range are tested in semi-probabilistic calculations using FEM and D-Stability. The
parameter input is based on scenario 1b. The results of this analysis are presented in Figure 8.5.

The FEM results show that when the peat layer starts at the most shallow depth (−3m NAP), the FoS
is low. However, it increases when the peat layer becomes deeper, reaching a maximum when the
top of the layer is located around −4.71m NAP and then decreases again until it reaches the same
minimum when the top is at −6m NAP. All shallow failure surfaces follow the top of the peat layer, as
depicted in Figure 8.6. In cases where the top of the peat layer is located between −3 and −4.29m
NAP, it is observed that deep failure surfaces that propagate horizontally through the deepest clay layer
are dominant, as seen in Figure 8.6a. This type of failure is often combined with a secondary shallow
failure surface that follows the top of the peat layer. The more shallow the peat layer, the lower the
calculated FoS. From the point where the top of the peat layer is located at −4.71m NAP and onwards,
shallow failure surfaces become more dominant, as shown in Figures 8.6b and 8.6c. In this case, the
FoS decreases as the peat layer is located deeper in the subsurface.
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(b) FEM and D-Stability results.

Figure 8.5: Calculated FoS for different locations of the top of the peat layer in FEM and D-Stability semi-probabilistic
calculations.
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(a) Top peat layer at −3m NAP. (b) Top peat layer at −4.71m NAP.

(c) Top peat layer at −6m NAP.

Figure 8.6: Failure surfaces of FEM calculations with different depths of the top of the peat layer.

On the other hand, the results of the D-Stability analysis, as shown in Figure 8.5b, are inconclusive.
No trend or pattern can be observed in this case. When examining the calculated failure surfaces, it
can be seen that they often propagate through the middle of the peat layer. The comparison between
FEM, where the failure surface follows the boundary of the peat layer, indicates that because of the
constrained shape of the failure surfaces in D-Stability with the Uplift-Van model, the model cannot
properly follow the top of the peat layer. The Spencer model in D-Stability allows for a more flexible
failure surface shape compared to other models. This could potentially allow it to more accurately follow
the peat layer boundary. However, this was not investigated in this study. Therefore, it is recommended
to further investigate this behavior, together with a sensitivity analysis with more data points.

A comparison between sensitivity analysis for the parameterm and the location of peat can be used to
examine their impact on the FoS. In this case study, changing m within its 95% percentile results in a
FoS difference of 0.118, while changing the location of the peat layer by 3m results in a FoS difference
of 0.019. These findings suggest that, for this particular case study, the effect of m is more significant
than the location of the peat layer. However, because this case study considers a relatively strong peat
layer it is recommended to investigate the impact of the location of a weaker peat layer on FoS to gain
a more comprehensive understanding of its influence.

8.1.6. Conclusions
The following conclusions can be drawn from the semi-probabilistic analyses:

• By increasing the α value, the FoS increases, and Pf decreases. The maximum change in Pf is
54.28%.

• When α changes from 0.75 to 0.8, the probability of failure of a dike cross-section changes de-
creases with 40% when calculated with a semi-probabilistic calculation in D-Stability. The safety
category of a dike trajectory due to macro-stability does not change. When this is translated into
the probability of failure of a dike section and trajectory, it can be seen that the safety category
does not change. Therefore, it can be concluded that the change in α does not have a significant
impact on the safety level of dike trajectory 34-2 and its dike section 20.

• A comparison between FEM and D-Stability shows that FEM can be used for evaluating the
stability of Dutch dikes when performing a semi-probabilistic analysis. However, it was found
that the vertical effective stress must be adopted when calculating the shear strength in layers
modeled by SHANSEP.

• Considering the influence of m and the location of the peat layer on the FoS, it is observed that
changing m results in a higher difference in FoS than changing the location of the peat layer.
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Therefore, for this case study, it can be concluded that the influence ofm is more significant than
the location of the peat layer.

• The sensitivity analysis of the location of the peat layer indicates that the Uplift-Van model in
D-Stability does not follow the top of the peat layer because of its constrained shape.

8.2. Probabilistic and RFEM Analyses
In this paragraph, the outcomes of both the probabilistic analysis and RFEM analyses will be discussed.
The impact of incorporating spatial variability on the resulting distribution will be investigated, along
with the influence of the horizontal scale of fluctuation and statistical uncertainty on the results. Finally,
the conclusions on the influence of spatial variability on the calculated Pf in probabilistic and RFEM
calculations will be presented.

8.2.1. Discussion Results
First, the results of the probabilistic analyses will be discussed followed by the results of the RFEM
analyses.

Probabilistic Analyses
Similar to the semi-probabilistic analyses, it can be observed that the Pf decreases with decreasing
values of the ratio between local and regional variance (α). The results in Table 7.5 show that the Pf

for α = 1.0 compared to α = 0.75 decreases with 87.5%. Please note that these Pf are conditional
probabilities of failure based on one water level and can therefore not be compared to the Pf calculated
a semi-probabilistic calculation.

When comparing the first two moments (µ and σ) of the fitted CDF, the amount of mean and variance
reduction can be quantified. From the relative change in σCDF , it can be seen that variance reduction
increases with an increase in α, due to the decreasing standard deviation of the soil parameter input.

RFEM Results
The results of the RFEM analysis, compared to the probabilistic scenario 2c (α = 0.75), show that
the variance reduction decreases with an increase in θh (a decrease of 25.0% in σCDF for scenario 3a
compared to 5% for 3b), whereas the mean reduction increases with an increase in θh (a decrease of
0.05% in µCDF for scenario 3a compared to 0.26% for 3b). This results in an increase in the probability
of failure by 12.5% for θh = ∞ while it decreases by 34.38% with θh = 20 ∗ θh. These observations
highlight the influence of the horizontal scale of fluctuation, which will be explored in more detail in
section 8.2.3.

The current model assumes that the local variance, defined as the variance at the scale of a failure
surface, is fully averaged out. However, based on the results presented in Figure 7.5 and Table 7.5, it
is clear that the fit of the CDF in scenario 3a has a larger standard deviation as compared to scenario
2a. In scenario 2a, the value of α is 1.0, which implies that the input for the standard deviation in this
analysis is only the result of statistical uncertainty, as explained in Chapter 2.1.5. Therefore, it should
be considered as the minimum width of the distribution of the results. On the other hand, scenario
3a includes the reduction of local variance through the failure surface, having to pass both strong and
weak zones in the random field. A larger standard deviation of the results of scenario 3a indicates that
with the scales of fluctuation used in this case study, not all local variance can be averaged out.

As dikes are designed for a low probability of failure, the lower tail of the CDF is important. Out of all the
possible scenarios with different values of α, the scenario where α = 0.8 is closest to the first RFEM
scenario in the lower tail, while using α equal to 0.75 is over-conservative with the given values of θ.
However, the probabilistic scenario with α equal to 0.75 approximates the extreme RFEM scenario with
θh = ∞ most closely.

Additionally, it can be observed that in the lower tail, themean reduction does not significantly impact the
fitted probabilistic scenarios. However, it should be noted that entirely fitting the probabilistic function
with only adjusting α is not possible due to the mean reduction.
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8.2.2. Influence ω
As discussed in Chapters 2.3.2 and 6.2, an ω is introduced in the correlation function in RFEM when
generating random fields. This is done to consider the statistical uncertainty described by van den
Eijnden and Hicks (2019). When excluding this type of uncertainty, all of the variance can be averaged
out when a small enough scale of fluctuation compared to the problem size is selected. van den Eijnden
and Hicks (2019) found that even small amounts of systematic uncertainty can significantly impact the
estimated probability of failure. This research tests this influence by adding a third RFEM scenario with
ω = 0 and comparing the results with the other RFEM results.
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Figure 8.7: CDFs of the RFEM scenarios to investigate the influence of ω on the results.

Based on the results in Figure 8.7, it can be seen that applying ω = 0 results in a narrower distribution
of results, with σCDF = 0.012. This is due to the fact that a larger portion of the variance can be
averaged out, leading to a larger amount of variance reduction. When ω = 0 is adopted, the value of
Pf = 0.063, which is 50% smaller compared to the Pf when ω is used. This highlights the importance
of incorporating statistical uncertainty through ω in RFEM calculations.

In order to determine the value of ω for scenarios 3a and 3b, the ratio between the variance, determined
with α = 1 and α = 0, is used, as shown in Equation 6.3. This determination of ω was based on the
assumption that the regional variance is small compared to the total variance, as could be observed
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from the results of the data analysis. However, it should be considered that the regional variance might
not be negligible. This would lead to an increase in the value of ω and a wider CDF. Consequently, the
calculated values of Pf with the current values of ω would be less conservative. To further investigate
the impact of incorporating regional variance into the determination of ω on the distribution of the results,
it is recommended to perform such an analysis as a part of future research.

8.2.3. Influence Horizontal Scale of Fluctuation
In Chapter 6.2.1, it was discussed that the horizontal scale of fluctuation (θh) could not be determined
with the available data. To further investigate the influence of the horizontal scale of fluctuation, a
sensitivity analysis was performed for three different ratios between θh and θv: 10, 15, and 20. The
results are presented in Figure 8.8.

The generated CDFs do not differ significantly. This, combined with a Monte Carlo of only 200 real-
izations, makes fitting a theoretical function difficult, providing no further insights into the differences
between the results. Therefore, it is not included in the figure. However, it can be observed that the
standard deviation of the CDF increases a bit with an increasing θh-θv ratio. However, this is not signif-
icant. It was observed that a higher value of θh results in an small increase of the probability of failure,
based on a slight difference in distribution.

As could be observed from Figure 7.5, more significant differences between the values of θh have a
more substantial effect, as seen in Figure 7.5, where the θh = ∞ results are modeled.

It is possible that the minor difference in distribution can be explained by θh values in the sensitivity
analysis falling below a certain threshold value of θ. From this threshold value onwards, θh may have a
greater impact on stability, similar to the influence of scenario 3b. This concept is related to ”worst-case
θ,” as explained in Chapter 2.2.1 and defined by Fenton and Griffiths (2003). While Ali et al. (2014) has
researched the ”worst-case” value of θv in a spatially variable hydraulic conductivity in a dike, no study
has yet been conducted to determine the ”worst-case θh” for soil strength parameters. Therefore, it is
recommended to investigate the value of θh at which the probability of failure would start to be more
significantly affected.

It should be noted that these results have been generated with a smaller σRFEM than the other RFEM
scenarios 3a and 3b. Therefore, the CDFs of the sensitivity analysis cannot be compared with the other
RFEM CDFs.

Furthermore, the horizontal scales of fluctuation calculated for Dutch soil by de Gast (2020) were
smaller than found in the literature overview in Table 6.11. He concluded that this was caused by
the loading and deformation of the soil underneath the dike caused by its weight. Furthermore, he
found that θx (direction perpendicular to the dike) is smaller than θy (direction parallel to the dike). The
first of these two scales of fluctuation has been considered (θx) in this research.

In de Gast (2020), a ratio between θh and θv of 1 to 8 could be found for Dutch soils. This is lower than
the assumed θh = 20 ∗ θv in this study. This means that the actual θh in this case study, and in general
in the Netherlands, is probably closer to θh = 20 ∗ θv than θh = ∞ for this case study.
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Figure 8.8: The results of a sensitivity analysis for θh: CDFs of different θv and θh.
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From Figure 8.7, it can be observed that the differences between the distributions for scenarios 3a
and 3c are greater than those for 3a and 3b. The difference between the distributions of 3a and 3b
highlights the effect of θh on the Pf , which increases with 71.43%. The Pf decreases with 50% when
the ω = 0, demonstrating the impact of incorporating statistical uncertainty. From the relative changes
in Pf , it can be seen that the influence of θh on the Pf is greater than the influence of ω.

8.2.4. Approximation of the Probability of Failure
As a Monte Carlo analysis only approximates the actual probability of failure, it is not 100% precise.
The approximations are presented in Table 8.1. The more realizations are performed, the higher the
accuracy of the approximation of Pf . Furthermore, the lower the calculated Pf , the larger the uncer-
tainty about the value of Pf . This can be quantified by defining a standard deviation for Pf (Fenton &
Griffiths, 2008):

σPf
=

√
Pf (1− Pf )

n
(8.1)

This can be scaled relative to the mean of Pf to form the coefficient of variation of Pf :

CoVPf
=

√
1− Pf

nPf
(8.2)

Table 8.1: The calculated probability of failure Pf and its CoVPf
of the FEM results of the probabilistic and RFEM analyses.

Level Case Pf CoVPf

2: Probabilistic
2a (α = 1.0) 0.024 0.450
2b (α = 0.8) 0.117 0.194
2c (α = 0.75) 0.192 0.145

3: RFEM
3a (θh = 20 ∗ θv, ω) 0.126 0.186
3b (θh = ∞, ω) 0.216 0.135
3c (θh = 20 ∗ θv, ω = 0) 0.063 0.273

The calculated values of the CoVPf
are presented in Table 7.5. As expected, the calculated CoVPf

is
higher for a lower Pf . For case 2a, σPf

is almost half of the calculated Pf , which is substantial. The
accuracy of these calculated failure probabilities can, therefore, be doubted.

A CoVPf
of maximally 0.1 is often preferred. The maximum Pf that has a CoVPf

< 1.0 with 200 realiza-
tions can be calculated through Equation 8.2. This results in a value of 0.33 and is illustrated in Figure
8.9. This highlights the inaccuracy of the calculated Pf in combination with 200 realizations.
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Figure 8.9: The distributions of probabilistic and RFEM Monte Carlo results. In grey, the probabilities of failure, which cannot
be calculated with a CoVPf

< 0.1, are highlighted.

To compare the results obtained from the probabilistic and RFEM calculations, a D-Stability FORM
analysis that employs the same input as in scenario 2c can be used. By doing this, a (conditional)
probability of failure of 0.0292 has been determined. This value is 84.79% lower than the probabilistic
scenario 2c and lower than all other failure probabilities for both probabilistic and RFEM scenarios. It is
important to note that the difference between the calculated probabilities of failure could be caused by
the limited number of realizations or difference in the calculation methods, which is LEM in combination
with FORM versus FEM in combination with Monte Carlo. Therefore, it is recommended to investigate
this in further research to determine the applicability of probabilistic FEM can be used to assess Dutch
dikes. Furthermore, it should be noted that no model factor is considered in the D-Stability analysis, to
be able to compare the results.

The results of the probabilistic analysis cannot be compared to the results of other dike stability assess-
ments in the Netherlands because, in this calculation, only the conditional probability of failure for one
outside water level is computed. This gives an incomplete picture of the full Pf of a dike. Further re-
search is recommended to provide a comprehensive understanding of the influence of spatial variability
in probabilistic calculations.

8.2.5. Conclusions
The following conclusions were drawn from the probabilistic and RFEM analyses:

• An increase in α results in a decrease in Pf for probabilistic analyses. The difference in Pf

compared to the current method with α = 0.75 is 85.5%.
• Increasing α leads to an increase in variance reduction of up to 45% compared to the current
method with α = 0.75 for the probabilistic calculations.

• A probabilistic analysis with α = 0.8 is a better fit to reality than with α = 0.75, as concluded from
the comparison with the probabilistic and RFEM results.

• With the used scales of fluctuation in RFEM, it can be concluded that with the used values of θ,
not all local variance averages out because the realistic RFEM CDF (scenario 3a) has a width
that is larger than the probabilistic scenario with α = 1.0, which considers full local averaging.

• The probabilistic method does not consider mean reduction, whereas the RFEM results conclude
that mean reduction does happen when strong and weak zones are modeled. The mean is
reduced by 25% when comparing the current method (scenario 2c) with RFEM scenario 3a. How-
ever, in this case study, excluding the effect of mean reduction does not lead to a lower Pf .

• The statistical uncertainty should be accounted for in RFEM by incorporating an ω factor in the
autocorrelation function. Excluding this could result in less conservative values of Pf .

• The used value of ω
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• A small change in the value of θh in RFEM analyses does not significantly influence the results.
However, when θh approaches infinity, the Pf increases. Underestimating the horizontal scale of
fluctuation could, therefore, result in less conservative results of Pf .

• Based on a comparison with values from literature, it can be concluded that a ratio between θh
and θv of 20 is more realistic for Dutch soils than θh = ∞.

• In this case study, the influence of the horizontal scale of fluctuation on the Pf is larger than the
incorporation of statistical uncertainty.

• When performing a Monte Carlo analysis to assess Pf , it is typically preferred to have a maximum
coefficient of variation (CoV ) of 0.1. However, if the analysis only includes 200 realizations, the
lowest value of Pf that can be accurately determined with this maximum CoV is 0.33, which is
much larger than most of the required failure probabilities in the Netherlands.

• It could be seen that the probabilistic scenario 2c results in a 84.79% higher (conditional) Pf than
when using the same input for a FORM analysis in D-Stability. Further research is recommended
to investigate this difference.

• The computed probabilities of failure in the probabilistic and RFEM analyses are conditional prob-
abilities based on one outside water level only. They can, therefore, not be compared with the
norm or the Pf calculated from a semi-probabilistic analysis.
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Discussion

This study on the impact of spatial variability was divided into two parts. Firstly, a data analysis was
conducted to investigate national and regional spatial correlation. The analysis used data collected
by STOWA, and variograms were constructed to quantify the spatial variability per soil type and soil
parameter.

The second part involved conducting a Monte Carlo simulation in combination with random fields to
investigate the response of a case study dike in a probabilistic manner (conditional to the outer water
level). The assumptions of mean and variance reduction within the WBI2017 methodology were inves-
tigated by comparing this with the Random Finite Element Method (RFEM) model (which approximates
reality better).

The findings of the individual parts were discussed separately in Chapters 5 and 8. As a result, this
chapter will focus on discussing the limitations of the methodology and a discussion on the generaliza-
tion of the results.

9.1. Limitations
It can be observed that the results of the data analysis do not highly influence the setup of the RFEM
model. Some of the reasons for this are already discussed in Chapter 5. To highlight their influence on
the RFEM input, a brief overview will be given:

• The wave shapes in the variograms, as discussed in Chapter 5.3.3, suggest that the data is not
intrinsically stationary. As this is a variogram requirement, it is not appropriate to use a variogram
to visualize spatial variation in this case. The wave-like shape makes it difficult to fit the theoretical
variogram, affecting the accuracy of the conclusions about the spatial variability from the data
analysis. This could have caused the other limitations of the data analysis that will be presented
in the next points.

• As discussed in Chapter 5.3.2, the variograms could not accurately calculate the range, and
hence no values for the horizontal and vertical scale of function for the RFEM model could be
calculated. Therefore, assumptions on the horizontal scale of fluctuation needed to be made in
the setup of the model. For the vertical scale of fluctuation (θv), CPTs had to be used to determine
this value instead of laboratory tests.

• No useful approximation could be made in Chapter 5.3.4 for the value of α from the nugget-sill
analysis. Therefore, the influence of an altered value of α could not be tested in RFEM.

• As discussed in Chapter 5.2, the variograms for the SHANSEP parameter S were highly discon-
tinuous and with a lot of scatter. Therefore, no conclusions about the spatial correlation could
be made from the data analysis. These conclusions, which could have been tested in the RFEM
analysis, did, therefore, not give any additional insights.

Additionally, due to a limited amount of data and time constraints, only the spatial correlations of S
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and γwet were investigated. If this analysis was also performed for the friction angle ϕ and SHANSEP
parameterm, the difference in α for different parameters could have been investigated and modeled. In
that case, the assumption of equal α values for different soil parameters could have been investigated.
The findings in Chapter 8.1.4 suggest that m has an influence on the stability of a dike. It can be
assumed that the incorporation of random fields form could lead to larger mean and variance reduction
due to the modeling of stronger and weaker zones for both m and S. This assumption could have
been tested in combination with the insights from the data analysis into the spatial correlation structure.
However, it should be noted that in this case study, the FEM code calculates an OCR = 1 throughout
the entire dike cross-section. For m to have an influence in RFEM, it is recommended to test this in a
cross-section where the OCR has a larger influence on the undrained shear strength.

Furthermore, the SHANSEP parameters are related to the soil’s mineralogy. It can be hypothesized
that spatial correlation will not impact the variance of S because the mineralogy is mainly related to
the soil type. Yet, spatial correlation was observed in the constructed variograms. However, these
variograms were highly discontinuous, and therefore the quality of these results can be questioned. If
no correlation could be assumed for S, the correlation function in RFEM would be 0 for all distances,
corresponding to full spatial averaging along the failure surface of the sample variance, reducing the
width of the CDF of the results and creating the possibility for more economical designs. Therefore, it is
recommended to further investigate the spatial correlation in S because there is room for optimization
if this hypothesis turns out to be correct.

A limitation of using 2D RFEM is that it does not account for the influence of the horizontal spatial
variability in the direction parallel to the dike. The current method used by WBI2017 accounts for this
by following the model explained by Calle et al. (2021). The model assumes that true finite failure can
only occur in a longitudinally unstable zone, where the average soil strength in the longitudinal direction
along the failure surface is below the required stability limit. As a result, no averaging is considered in
the horizontal direction since the scale of fluctuation in that direction is often larger than the width of
the failure surface. However, Hicks and Spencer (2010) found that the ratio between θy and the slope
length affects the probability of dike failure, which contradicts the assumption of the current Dutch
assessment method. Therefore, it is recommended to investigate the influence of θh in the direction
parallel to the dike on the probability of dike failure, specifically focusing on its relation to the current
assessment method in the Netherlands.

9.2. Generalization
It is important to note that the study examined a single case study dike. However, there are two main
points that need to be taken into consideration before generalizing the findings. Firstly, although the
calculated shear stresses were equal in both the FEM and D-Stability calculations, the calculated verti-
cal effective stresses and OCR were observed to be different. The differences cancel each other out in
this particular case. However, it is possible that in other dike cross-sections the results could be differ-
ent. Therefore, it is recommended to conduct further research about differences between D-Stability
and FEM calculations before generalizing the findings of this study to other dike sections. Secondly,
the found probabilistic fit with α = 0.8 is only valid for cases where θh is less than or equal to 20 times
θv. Even though it can be argued that the scenario where θh = 20∗ θv is a more realistic approximation
of θh in the Netherlands, the results in the RFEM analysis for θh = ∞ highlight the influence of θh
on the probability of failure of a dike. Therefore, caution should be applied when doing this, and it is
recommended that the value for θ is investigated for the specific dike section to investigate dissimilarity
to the values used for this case study.
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Conclusion

Spatial variability in soil has a significant impact on the failure mechanism macro-stability. However,
the current approach for incorporating spatial variability into dike stability calculations has limitations.
It assumes that variance reduction along the failure surface should be accounted for while it neglects
the additional effect that the failure surface ”seeks out” the weak zones, leading to mean reduction.
Additionally, a default value of the ratio between local and regional variance (α) is set to 0.75, which
lacks empirical evidence. The impact of these assumptions on failure probability estimation is unknown,
which highlights the need for a better understanding of the issue. Although the sophisticated approach
called the Random Finite Element Method (RFEM) can address this issue, its computational complexity
makes general implementation in dike stability assessments impractical. Therefore, the objective of
this research is to create a methodology that accounts for the spatial variability of soil properties in
dike stability assessments. This will be done by answering the following research question and sub-
questions:

RQ What is an effective approach for incorporating spatial variability in soil into dike stability calcula-
tions?

SQ1 How do different soil characteristics correlate in the spatial domain?
SQ2 What is the number and distribution of measurements on a local scale needed to accurately

model the spatial variability in the soil?
SQ3 How does soil spatial variability on a regional scale influence the different steps involved in

the schematization of dike stability calculations?
SQ4 How important is the spatial variability in the soil compared to other uncertainties?

The investigation of spatial variability consisted of analyzing data and creating an RFEM model. The
data analysis involved constructing variograms to quantify spatial variability per soil type and parameter.
Answers to the first and second sub-research questions can be found in the results for the first part.
The second part can answer the third and fourth sub-questions, where an RFEM model is created for a
case study dike and compared to the current methodology to investigate the assumptions made. Monte
Carlo simulations are used to calculate the probability of failure.

This chapter will answer the sub-research questions based on the conclusions drawn from the data
analysis and RFEM modeling. The answer to the main research question will follow this. Finally, the
chapter will end with a summary of recommendations.

10.1. Data Analysis
In this section, a summary of the results obtained through a geostatistical analysis focused on investi-
gating the spatial variability is presented for two important parameters: γwet and SHANSEP ’s S. This
is done to provide answers to the first and second sub-research questions. To achieve this goal, var-
iograms were created at a national level with data from the STOWA dataset, and various filters were
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applied to explore the structures of spatial variability. Additionally, regional-scale variograms were con-
structed for γwet from a Rivierenland (RL) dataset to gain further insights. For an overview of all the
conclusions that could be drawn from the data analysis, please refer to chapter 5.

SQ1: How do different soil characteristics correlate in the spatial domain?
The resulting variograms indicated that γwet had less spatial variability than S, with peat having a smaller
variance than clay. Additionally, the variograms for S were highly discontinuous and scattered, possibly
due to poor data quality or the parameter not being spatially correlated.

Furthermore, the study compared the ratio between variance due to spatial variability and the total vari-
ance for variograms carried out on both national and regional data. The findings showed that spatial
variability decreases at a regional scale compared to a national scale. However, due to uninvestigated
assumptions and the poor quality of the variograms for S, an appropriate value for α for the soil param-
eters could not be found through the construction of the variograms.

It was observed from the variograms of γwet that the ratio between local and regional variance is likely
to be higher than 0.75, mainly if data is collected at a smaller scale than the maintenance area of a
water board.

Lastly, the study showed that the calculated ranges of correlation in the horizontal direction were inac-
curate, making the variogram on a national scale unreliable for determining the scale of fluctuation on
a smaller scale.

SQ2: What is the number and distribution of measurements on a local scale needed to accurately
model the spatial variability in the soil?
According to the data analysis results, it is impossible to use the STOWA dataset to determine local-
scale spatial variability through the construction of a variogram. Although this study did not further
investigate the reasons for this limitation, some potential causes were identified based on existing
literature. Considering these factors when designing a soil investigation plan to study local spatial
variability is also important. Therefore, this section gives an outline of the key points.

Small-scale variance cannot be analyzed with variograms based on the national STOWA dataset be-
cause spatial variability falls in the first bin and is averaged with other uncertainties. Additionally, the
first bin in all the constructed variograms was much larger than the definition of ”local”, as described in
WBI2017, which is at the level of a failure mechanism. Investigating local variability requires local data
with a high enough density and accuracy in the research area.

The accuracy of the variogram also depends on the number, distribution and quality of data points:

• Around 150 data points are required to create a reliable variogram.
• Each bin in the variogram should contain at least 100 point pairs. If the histogram shows a de-
crease below 100 points per bin, the variogram could be cut off at that point.

• The reliability of a variogram also depends on the density and distribution patterns of data. Areas
with fewer data points are less reliable. At least five points are required within the variogram
range to study the spatial variability in soil parameters.

• Outliers should be filtered before performing geostatistical analyses to estimate the spatial vari-
ability.

• When using variograms to define spatial variability, it is important to consider that only intrinsically
stationary data should be used. This means that the statistical properties of the data, such as its
mean and variance, remain constant in space.

10.2. Modeling
The soil parameter input for part two can be calculated from the national STOWA dataset used in the
data analysis. Part two involves using Random Finite Element Method (RFEM) for a case study dike
located within the maintenance area of water board Brabantse Delta. The RFEM model simulates the
soil’s spatial variability by modeling strong and weak zones in the soil through Monte Carlo simulations
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with random fields. The results obtained from the RFEM model are then compared with the results of
probabilistic analyses with FEM to answer the main research question.

The study conducted multiple analyses to investigate the impact of variance and mean reduction. Var-
ious (semi-)probabilistic scenarios were created based on different input values for α. The first two
RFEM scenarios generated random fields with two different values for the horizontal scale of fluctua-
tion (θh). The third RFEM scenario was created to evaluate the results without accounting for statistical
uncertainty. A summary of the factors of safety (FoS) and (conditional) probabilities of failure (Pf ) is
presented in Table 10.1.

Table 10.1: An overview of the calculated probabilities of failure (Pf ) and factors of safety (FoS) from the model results. *The
Pf has been obtained via a different method for deterministic and semi-probabilistic analyses compared to the probabilistic and

RFEM analyses. For the first two levels, Pf is calculated via the calibration formula defined in the WBI2017. For the
probabilistic and RFEM analyses, the conditional Pf is determined at FoS = 1.0 at the CDF from the results. The first method
also considers the model factor, while the second does not. Because of the differences in the methods and the fact that for the

last two methods, Pf is conditional, the absolute values of Pf should not be compared.

Level Scenario FoS Pf *
Deterministic 0 1.025 1.023 ∗ 10−5

Semi-probabilistic

1a (α = 1.0) 0.997 2.022 ∗ 10−5

1b (α = 0.8) 0.984 2.748 ∗ 10−5

1c (α = 0.75) 0.980 3.010 ∗ 10−5

1d (α = 0.5) 0.961 4.653 ∗ 10−5

Probabilistic
2a (α = 1.0) - 0.024
2b (α = 0.8) - 0.117
2c (α = 0.75) - 0.192

RFEM
3a (θh = 20 ∗ θv, ω) - 0.126
3b (θh = ∞, ω) - 0.216
3c (θh = 20 ∗ θv, ω = 0) - 0.063

SQ3: How does soil spatial variability on a regional scale influence the different steps involved
in the schematization of dike stability calculations?
The current WBI2017 method considers spatial variability by only including the regional variance and
averaging the local variance entirely (Calle et al., 2021). Increasing the value of the ratio between local
and regional variance (α) allows a larger portion of the sample variance to be averaged out before using
it as input for the calculation. As the dike assessments in the Netherlands can be performed through
two reliability levels, the conclusions will be presented separately.

This study found that this results in a higher Factor of Safety (FoS) in semi-probabilistic calculations.
The probability of failure (Pf ) can be calculated from the Factor of Safety (FoS) via the calibration
formula. It was found that an increase in α from 0.75 to 0.8 resulted in a decrease of 32.96%. From
a comparison with a reference D-Stability calculation, it can be concluded that Finite Element Method
(FEM) can only be used to assess the stability of a Dutch dike when adopting the vertical effective
stress in the calculation of the undrained shear strength via SHANSEP. Because FEM often uses the
major principal stress in the calculation, which is different than the definition of SHANSEP in WBI2017.
This difference resulted in 9% higher FoS when using the major principal effective stress in this case
study.

Monte Carlo simulations were used with homogeneous soil layers in FEM to calculate the conditional
probability of failure to one outside water level for probabilistic calculations. This results in a Cumulative
Density Function (CDF) of calculated factors of safety. The comparison of the different CDFs shows
that a higher α gives a smaller Cumulative Density Function (CDF) of the results without reducing the
mean. For this case study, implementing a higher value of α results in a maximum reduction of 87.5%
in conditional Pf compared to the current value of 0.75. The probabilistic results should only be com-
pared with the other FEM results because the calculated probability of failure differs significantly from
a probabilistic calculation in D-Stability and because it is a conditional probability, not a total probability
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of failure of a cross-section.

SQ4: How important is the spatial variability in the soil compared to other uncertainties?
The research investigated the impact of four uncertainties on the resistance against dike instability:

1. A sensitivity analysis was conducted to test the assumption that the SHANSEP parameter m
would not significantly impact the model.

2. The location of the boundary of the peat layer was studied as the failure surface often propagated
along it in the RFEM results.

3. Statistical uncertainty was incorporated in both the current WBI2017 method and RFEM to com-
pare their outcomes. Afterwards, its influence on the RFEM results is investigated.

4. The horizontal scale of fluctuation could not be determined from the data analysis. Therefore, dif-
ferent values were assumed for the model setup. A sensitivity analysis was performed to evaluate
the impact of this assumption on the Pf .

Because the first two factors are investigated through semi-probabilistic calculations, while the last two
are investigated through RFEM calculations, they will be presented separately.

Value of m and the Location of the Peat Layer
Through separate sensitivity analyses for different values of m and different locations for the bottom
of the peat layer, it can be concluded that both influence the FoS. When altering the value of m within
the 95% confidence interval of its distribution, the difference between FoS is 0.118. When changing the
location of the top of the peat layer with 3m, the difference between FoS is 0.019. Therefore, it can be
concluded that for this case study, the value of m has a larger impact on the strength of the dike than
the location of the peat layer.

Statistical Uncertainty and the Horizontal Scale of Fluctuation
In the RFEM analyses in this research, statistical uncertainty is included through a residual correlation
factor (ω). The purpose of defining ω is to consider part of the soil parameter variance, which is the
variance due to statistical uncertainty, that is not susceptible to averaging. This results in a wider CDF
with a reduced mean, leading to a 50% increase in conditional Pf . The sensitivity analysis on the
horizontal scale of fluctuation (θh) showed that a small variation of this value has a minor impact on
the resulting distribution. However, when θh is increased to infinity, indicating that the soil strength only
fluctuates vertically, it leads to a larger variance and mean reduction, which causes an increase of the
conditional Pf by 71.43%.

Therefore, it can be concluded that including statistical uncertainty and accurately determining the
horizontal scale of fluctuation are critical when conducting RFEM analyses. Excluding these factors
can result in less safe outcomes. When comparing the impact of these two factors, it can be concluded
that the vertical scale of fluctuation significantly influences the conditional probability of failure in this
case study.

10.3. Answer to the Research Question
The impact of the assumptions in the WBI2017 model and the answer to the research question can be
found by comparing the probabilistic analysis and RFEM analysis results. They can only be compared
if the RFEM calculation uses the vertical effective stress in calculating the undrained shear strength and
considers the statistical uncertainty through incorporating a residual correlation factor in the creation of
the random fields.

The failure surfaces in RFEM did not show a clear pattern, but the mean reduction caused by the
propagation of the failure surface through weak zones was evident in the resulting CDF. The horizontal
scale of fluctuation significantly influences the amount of mean reduction. Investigating its influence is
important because it is difficult to determine this value in practice, as seen in this study’s data analysis.
Furthermore, the RFEM scenario does not show full spatial averaging of local variance as the CDF is
wider than a probabilistic calculation with α = 1.0, where full spatial averaging is accounted for in the
input parameters. This leads to a higher probability of failure by 88.9% than a probabilistic analysis
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with α = 1.0. Therefore, assuming complete averaging of local spatial variance without considering
regional variance underestimates the probability of failure.

In a comparison between the RFEM and probabilistic calculations, it was found that using a value of
α = 0.8 in the probabilistic calculations closely matches the RFEM scenario (where θh = 20 ∗ θv) in the
lower tail. Therefore, it is concluded that probabilistic calculation with α = 0.8 is a better fit to reality
than α = 0.75. Moreover, it was observed that the mean reduction does not significantly impact the
fitted probabilistic scenarios for determining the probability of failure. The results of the probabilistic
scenarios showed that increasing the α value to 0.8 leads to a decrease in the probability of failure (Pf )
by 39%.

To investigate the importance of this finding, the effect of incorporating α = 0.8 in the WBI2017 method
of assessing dike stability was studied. The outcome of the study revealed that the probability of failure
for dike trajectory 34-2 was reduced by 39.72% (see Table 10.3). However, the (macro-stability) safety
category of the dike trajectory remains unchanged.

Table 10.3: An overview of the influence of adopting another value of α on the probability of failure of dike section 20 in
trajectory 34-2 when applying a decrease in Pf,cs for all cross-sections in the trajectory.

Case Pf,cs Pf,sec Category
section

Pf,traj Category
trajectory

Original 3.02 ∗ 10−4 5.4 ∗ 10−4 Vv 9.87 ∗ 10−3 D
Decrease of Pf,cs in all sections 1.81 ∗ 10−4 3.2 ∗ 10−4 Vv 5.95 ∗ 10−3 D

To conclude, after investigating the influence of variance and mean reduction by approximating the
reality with RFEM, this research has shown that, for the case study, a probabilistic calculation with a
value for the ratio between local and regional variance (α) of 0.8 better approximates reality, particularly
in the lower tail of the distribution of the results, compared to the default value of α = 0.75. Since dikes
are designed for a low probability of failure, a correct fit in the lower tail is important. When implementing
a value of α = 0.8 instead of 0.75, following the WBI2017 guidelines, the probability of failure for this
cross-section and dike trajectory will decrease by approximately 40%. Because the (macro-stability)
safety category of the dike trajectory remains unchanged, it can be concluded that adopting α = 0.8
in Dutch dike stability assessments does not significantly influence the safety of a dike trajectory. The
answer to the question What is a practical approach for incorporating spatial variability in soil
into dike stability calculations? is, therefore, that when considering the computational requirements
of RFEM, it is more effective to keep using the WBI2017 approach of implementing spatial variability
into the input parameters of (semi-)probabilistic calculations with α = 0.75.

10.4. Recommendations
In this research, two procedures for integrating spatial variability into dike stability calculations have
been compared. The first method is currently being used for dike stability assessments in the Nether-
lands, according to the guidelines of WBI2017. The second method, RFEM, models both strong and
weak zones and will be used as a model for reality. This study has shown that both methods involve
multiple assumptions. To further investigate these assumptions, some recommendations will be pre-
sented for future research. As the previous chapters have discussed most of these recommendations,
this paragraph will present only a brief overview. Finally, one additional recommendation is highlighted.

The following topics are recommended for investigation in future research:

• The parameter S of SHANSEP exhibits highly discontinuous and scattered variograms, making
it challenging to identify spatial correlations. Therefore, it is important to investigate the root
cause of this issue. Although no spatial correlations were observed nationally, it is advisable to
analyze the spatial correlations locally with high-density and quality data. This approach will help
to gain a better understanding of the underlying factors contributing to the observed behavior of
the parameter S. Furthermore, it is hypothesized that S has no spatial correlation because it is
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only related to the mineralogy of the soil. Investigating this hypothesis could potentially lead to
more cost-effective designs.

• Since different soil parameters have different spatial correlation patterns, it is advisable to inves-
tigate whether different values of α can be used for each parameter.

• It is not recommended to use the national STOWA database to determine local-scale spatial
variability. Instead, a (multi)fractal analysis could be more useful to determine local variability
from larger-scale databases. Further research on this is recommended.

• The calculation of undrained shear strength is different for D-Stability and FEM because they use
a different stress component, resulting in a 9% difference in FoS. The effect of this difference
should be studied for other cross-sections as well.

• A sensitivity analysis of the SHANSEPm parameter showed a sudden increase in the calculated
FoS due to a change in the failure surface shape. An additional sensitivity analysis with more
values for m is recommended to better quantify the impact of m on the FoS. Furthermore, it is
recommended to investigate the influence of random fields for m in an RFEM analysis.

• The sensitivity analysis of the location of the peat layer revealed that the calculated failure sur-
faces in FEM follow the top boundary of the peat layer, which could not be modeled in D-Stability.
It is assumed that this is caused by the limited shape of the Uplift-Van model. This assumption
should be further investigated, and the results should be compared with models that allow more
freedom in determining the failure surface, such as the Spencer model.

• The influence of a weaker layer of peat should also be studied since it is expected to significantly
impact the FoS.

• Possible methods for incorporating mean reduction in the current probabilistic method model
should be investigated since the RFEMmodel showed a mean reduction in the CDF of the results.

• The difference between the calculated probability of failure from the D-Stability FORM calculations
and the Monte Carlo FEM analysis is quite significant. Further investigation is recommended to
determine the cause of these differences.

• The impact of the change in α from 0.75 to 0.8 was tested in semi-probabilistic and FORM calcu-
lations in D-Stability. The FORM calculation considered only a single water level. This resulted
in an incomplete representation of the probabilistic Pf . Therefore, conducting a full probabilistic
calculation is recommended to thoroughly assess the impact of changing α. This will also help
with determining if Monte Carlo in combination with FEM is suitable for dike stability assessments
in the Netherlands.

• The RFEM models used values of vertical scales of fluctuation that were higher than the scales
of fluctuation found in the CPT analysis due to computational constraints. An RFEM analysis with
the true values should be performed to quantify its influence on the probability of failure.

• The current research incorporates only statistical variance in determining the value of the residual
correlation factor (ω). This is based on the assumption that regional variance is relatively small
compared to total variance. However, the WBI2017 method also considers regional variance,
which cannot be averaged out. Therefore, exploring the possibility of including regional variance
in determining ω in future research is important.

• The sensitivity analysis of the horizontal scale of fluctuation (θh) showed that only a large change
in this value affects the probability of failure. Further investigation is necessary to determine the
value of θh at which the probability of failure would start to be significantly affected. Additionally,
spatial variability in 3D should be further investigated, including the direction parallel to the dike.

• As the Monte Carlo analyses were performed with a small number of realizations (200), the ac-
curacy of approximating the conditional Pf from these results is limited. Therefore, further inves-
tigation is needed to determine how the results would change when the number of realizations
increases to achieve a CoV of Pf smaller than 0.1.

• It is important to note that the study is carried out on a single dike section focused on one water
level and specific values for the scales of fluctuations. However, to obtain a comprehensive
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understanding of the impact of spatial variability in dike assessments, it is highly recommended
to extend the research to multiple dike sections across the Netherlands.

Furthermore, the term ”local” has been widely used in this research. In the context of WBI2017, it
refers to the scale of a failure surface. However, the official documents such as Rijkswaterstaat (2021)
and the theoretical background in Calle et al. (2021) do not clearly define this term. As a result, ”local”
can be interpreted differently, leading to a possible misunderstanding that it refers to, for example, the
scale of a dike section. Such misinterpretation may result in assuming that all variance at this scale
can be averaged out, which is incorrect in many dike sections. To avoid such misunderstandings, it is
recommended to clearly state the definition of ”local” in the guidelines.
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A
Supplementary Literature

A.1. Reliability Analysis Theory
Reliability refers to the ability of structures and elements to function without failing to maintain accept-
able risk levels. Risk is determined by the probability of occurrence multiplied by its potential conse-
quences. Reliability assessment ensures that the design meets acceptable risk levels and can with-
stand various loads and conditions (Fenton & Griffiths, 2008).

The limit state function specifies the relationship between the Load (L) acting on the structure and its
Resistance (R):

Z = R− L (A.1)

When the limit state function, also known as the Z-function, has a negative value, it indicates structural
failure. The limit state function (also Z(X)) includes all variables and factors contributing to the struc-
ture’s strength and the load it experiences, which can be combined in the vectorX (ENW, 2016). Note
that in geotechnical engineering, the loading and resisting components are not distinctly separable, and
it is difficult to separate them as independent variables.

The definition of the probability of failure (Pf ) is the probability that the limit state function is lower than
zero (Schweckendiek et al., 2017).

Pf = P (R < S) = P (Z(X) < 0) (A.2)

Parameters defining the strength and load of a dike (X) are represented by their Probability Density
Function (PDF). These PDFs describe the parameters’ uncertainty or (spatial) variability. The joint
probability density function (fx) can be obtained by combining all the individual PDFs together, as
shown in Figure A.1. This joint probability density function can be used to calculate the probability of
failure (Pf ):

Pf =

∫
Z(X)<0

fx(x)dx (A.3)

The reliability index defines the reliability of a dike and is a function of Pf .

β = Φ−1(1− Pf ) (A.4)
Pf = Φ(−β) (A.5)

Where Φ is the cumulative distribution function of a standard normal distribution.
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A.1.1. Reliability Analysis Levels
There are four levels used to assess the reliability and failure probability of a dike cross-section:

0. Deterministic method;
1. Semi-probabilistic method;
2. Probabilistic approximations;
3. Probabilistic method.

In probabilistic calculations, the joint probability density function is determined through analytical for-
mulations, numerical integration, a First Order Reliability Method (FORM), or a Monte Carlo analysis
(Jonkman et al., 2015).

The First Order Reliability Method is commonly used as an approximation of probabilistic methods. It
involves linearizing the failure probability function (Limit State Function Z) using a Taylor expansion
at the design point. The design point represents the most probable failure location, with the highest
probability density along the limit state (Z = 0). The precise location of the design point is determined
through an iterative process in the FORM analysis.

In a semi-probabilistic calculation, design values are used in failure mechanism models. These design
values combine a characteristic value of a parameter with a safety factor (ENW, 2016) (see Figure
A.2). The characteristic value should be determined so that the calculated reliability of the geotechnical
structure is 95% (Hicks, 2012).

The deterministic method is unsuitable for determining the probability of flooding (ENW, 2016). It re-
lies on single values for strength, resistance, and a global (empirical) safety factor to quantify safety
(Jonkman et al., 2015).

Figure A.1: The joint probability density function of the Resistance (R) and Load (L), with the Limit State Function (Z) (ENW,
2016).
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Figure A.2: The probability density function of the Resistance (R) and Load (L) of a dike. Here, the determination of the
design values for a semi-probabilistic approach is illustrated. (ENW, 2016)

A.2. Current Method: Dike Trajectory Subdivision
Rijkswaterstaat (2021) has established a specific procedure to determine the subdivision of a dike
trajectory into dike sections, which must be evaluated separately for each failure mechanism:

1. The first step involves creating a dike trajectory using a global SOS segment. The Stochastische
Ondergrondschematisatie (SOS) is a stochastic subsurface schematization developed by Hijma
and Sun Lam (2015). It defines different scenarios, each with its probability of occurrence, to pro-
vide an initial indication of the various geotechnical conditions that must be assessed in different
dike sections.

2. As more localized data on soil layering becomes available, such as CPTs and boreholes, the
trajectory can be divided into initial sections, and scenarios can be adjusted if, for example, the
thickness of layers varies significantly.

3. The next step involves investigating the geotechnical conditions of the layers to refine the subdi-
vision further. If there are significant changes in the geotechnical conditions, separate sections
can be defined.

4. The final step involves considering other factors when defining dike section boundaries. Rijkswa-
terstaat (2021) identifies several factors:

• The boundary between different types of flood defenses (e.g., dike and dune);
• A significant change in hydraulic conditions;
• Differences in geometry such as height, width, and slope angle of the dike or the presence
of a berm;

• The identification of a weak zone during site investigation;
• Changes in dike body material;
• The presence of constructional elements like sheet piles.

It is important to note that the process of defining dike sections is iterative and may involve defining
multiple representative cross-sections for each dike section. These cross-sections should then be
evaluated separately.

A.2.1. Calculation of Pf

The Water Law (Waterwet) states the failure probability requirement (Pf,req) for each primary dike tra-
jectory in the Netherlands. When considering the length effect, this can be translated to a requirement
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on a cross-sectional level. Only the failure probability of a cross-section due to macro-stability (Pf,cs)
will be investigated as this research does not discuss the length effect.

The conditional probability of failure (Pcs) is the outcome of a probabilistic or FORM analysis, while for
a semi-probabilistic analysis, it is a Factor of Safety (FoS). The Pcs can be calculated from the FoS
using a calibration formula. This formula relates the reliability index (see Appendix A.1) with a target
reliability-dependent safety factor (γn).

A study by Kanning et al. (2017) determined the current calibration formula for macro-stability, used
in the WBI2017 Rijkswaterstaat (2021), based on 34 cases from different locations in the Netherlands.
In this study, the Pf,cs was calculated using a FORM analysis and compared with the calculated FoS.
This resulted in the calibration formula in Equation A.6.

γn = 0.150 ∗ βreq,cs + 0.410 (A.6)

This calibration formula can be used to obtain the reliability index of a cross-section. For example,
Equation A.6 can be re-formulated as:

βcs =

FoS
γd

− 0.41

0.15
(A.7)

Where γd is the model factor, which is 1.06 in the case of Uplift-Van and FEM (POVM, 2020; Rijkswater-
staat, 2021). By using the reliability index, the probability of failure of a cross-section can be determined
using Equation A.5.

A.3. Macro-Stability
Spatial variability is an important driving factor in failure due to macro-stability next to the load and
geometry (ENW, 2016). This paragraph will describe the failure mechanism and its calculation tech-
niques.

A.3.1. Mechanism
Macro-stability impacts both the dike body and the soil foundation underneath it. As defined by ’t Hart
et al. (2016) (translated from Dutch): “Macro-instability occurs when large sections of a soil mass shear
along straight or curved deep shear planes. Shallow shear (shear plane up to about 1 m below ground
level) is addressed under dikes and/or micro-instability.” Together with internal erosion, instability of a
dike has been identified by Jonkman and Schweckendiek (2015) and ENW (2016) as one of the primary
causes of past flooding events.

Instability within a dike occurs when the equilibrium cannot be maintained. The weight of the dike body
is a critical factor in both driving and resisting an instability where the active side acts as a load, while
the passive side serves as resistance to sliding. Shear forces along the shear plane play an important
role in the resistance against a slip plane. Figure A.3 shows a graphical representation of this failure
mechanism.

A high water level will raise the water head and phreatic level by infiltration into the dike body, causing
an increase in water pressures in the dike. This reduces effective stress, the primary driver of shear
strength, and subsequently decreases the mobilized shear strength of the soil. A failure surface will
propagate through the plastic zone in the dike where the shear strength is exceeded. This will ultimately
cause the soil mass to slide and can trigger a dike breach (see Figure A.4). The failure is mainly
triggered by the decrease in resisting forces rather than an increase in overturning forces due to the
higher load from the rising water level, as is often the case with other failure mechanisms (’t Hart et al.,
2016).

Several factors that will influence the (rate of the) rise in water head and phreatic level:

• The dike material and the presence of impermeable layers between the aquifer influence the rate
of adaption of water head and phreatic level inside and under the dike. For example, when faced
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Figure A.3: Macro-instability of the inner slope of a dike. Adapted from ’t Hart et al. (2016).

with high outside water levels, a more permeable, sandy dike will experience a faster increase in
pore pressures inside the dike compared to a dike with a clay cover.

• The distance between the outside water level and the dike also plays a role. The greater the
distance, the slower water will penetrate through the soil and affect the water pressures inside
the dike.

• While large amounts of precipitation can increase the phreatic level, the infiltration rate is consid-
erably lower than in the case of wave overtopping (’t Hart et al., 2016).

The high hydraulic head in the aquifer can cause the impermeable layer on top of the aquifer to be
uplifted, which decreases the shear strength further (BOI, 2023). When the pressure gets too high,
water can seep through the impermeable layers, causing a blowout and reducing the shear stresses to
zero.

After the initial sliding of the slope, subsequent mechanisms can contribute to breaching the dike. The
causes and consequences of instability are depicted in Figure A.4.

A complete breach of the dike occurs only when there is displacement over the entire width of the crest,
allowing water to flow freely to the other side. It takes time, ranging from an hour to several days, for
a new equilibrium to be established (’t Hart et al., 2016). The soil maintains some residual strength
during sliding, leading to a new equilibrium between resisting and overturning forces. In many cases,
the sheared zone displaces only 1 or 2meters under the original crest (’t Hart et al., 2016). If part of the
crest remains intact after slope sliding, a breach occurs only after subsequent slides when the entire
crest is demolished.

One observable sign of a developing failure surface is the creation of large cracks parallel to the dike’s
crest. In the plastic zone, these cracks can develop when the mobilized shear strength just counteracts
the development of the failure surface. The presence of a sandy top layer on the dike results in smaller
deformation until failure, but the time between crack creation and failure is shorter compared to a top
layer of clay, which is more prone to creep (’t Hart et al., 2016). Cracks do not necessarily lead to failure
if appropriate measures are taken for repair. They can also indicate dehydration of a clay dike, which
may trigger horizontal sliding (’t Hart et al., 2016).

As explained above, determining the probability of dike failure due to macro-stability depends on sev-
eral factors, including the soil’s strength. Since there are often significant uncertainties in this regard,
probabilistic methods are frequently used to assess the probability of failure. Please refer to Appendix
A.1 for the definition of the probability of failure and an outline of the various reliability analysis levels
used to determine it.

A.3.2. Calculation Techniques
Various techniques exist to evaluate the stability of a dike. Each approach varies in its assumptions,
for example, about the shape of the failure surface: (multi)planar, circular, or non-circular. However, in
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Figure A.4: Events that cause a breach of a dike after an instability. Adapted from ’t Hart et al. (2016).

reality, the failure surface varies widely in form and is predominantly influenced by factors such as the
geometric model, hydro-geological conditions, and the geological environment (Sharp et al., 2013).

Two main categories of dike assessments will be discussed: numerical and Limit Equilibrium Method
(LEM). Within LEM, three specific methods exist: Bishop (Bishop, 1955), Uplift-Van (Van, 2001), and
Spencer (Spencer, 1967). These methods are the most commonly used methods in Dutch practice
and can be modeled using the widely used software D-Stability (van der Meij, 2023).

LEM is a widely used technique to assess the stability of dikes under static conditions. It assumes that
a dike will fail if a potential slip plane’s horizontal, vertical, or moment equilibrium is disturbed. LEM is a
simple method, yet it can model detailed soil profiles, seepage, and various loading scenarios (Sharp
et al., 2013). It is also limited as it can not model deformation-dependent soil behavior (Jonkman et al.,
2021).

When using numerical models, also known as the Finite Element Method (FEM), the choice for the
constitutive model is highly flexible. Additionally, it is also capable of modeling groundwater flow and
soil-structure interaction. However, due to the complexity of the FEM, input errors aremore easily made,
and the calculations are more computationally intensive and time-consuming than the LEM (Jonkman
et al., 2021). A more detailed explanation of the theory behind this method will be provided in Chapter
2.3.1.

Bishop
Bishop (1955) assumes a circular slip surface divided into slices. Themethod calculates the equilibrium
of forces on each slice, as shown in Figure A.5, and the Factor of Safety (FoS) can be calculated by:

FoS =
Mr

Ms
(A.8)

The resisting moment, denoted byMr, is determined by the sum of the moments caused by the shear
stress along the slip surface and the weight of the soil on the passive side of the failure surface. On
the other hand, the driving momentMs is determined by the weight of the soil and any additional loads
on the active side (Jonkman et al., 2021).

Uplift-Van
The method proposed by Van (2001) is an extension of Bishop’s method (Bishop, 1955) that incorpo-
rates a horizontal and a second circular part to account for uplift effects. When high water pressures
occur on one side of a dike, water can flow through the aquifer to the other side. An impermeable
blanket layer can limit the water from flowing to the surface. However, pore pressures may increase
under this blanket layer, significantly reducing the effective stress and shear strength (Jonkman et al.,
2021). Since Dutch dikes often feature a blanket layer over an aquifer (Jongejan, 2017), this method
is the default for Dutch dike assessments (Rijkswaterstaat, 2021). By applying the horizontal forces
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Figure A.5: Schematic representation of a slip circle as modeled with methods of slices such as Fellenius or Bishop (Jonkman
et al., 2021).

Figure A.6: Schematic representation of the Uplft-Van model with a horizontal element in between two circular segments (one
on the active side, one on the passive side) (Jonkman et al., 2021).

equilibrium on the horizontal part, the factor of safety (FoS) can be calculated. See Figure A.6 for an
illustration of the method.

D-Stability identifies the normative failure surface by iteratively testing surfaces within a user-defined
search area. The surface with the lowest FoS is the normative one.

Spencer
The Uplift-Van and Bishop method is limited as it assumes the shape of the failure surface. However,
the Spencer method (Spencer, 1967) overcomes this limitation by defining the failure surface with an
entrance and exit point and some points in between. These points are connected by linear lines, as
shown in Figure A.7.

Previously, determining the failure surface was a manual task that required engineering experience
(Jonkman et al., 2021). However, as implemented in D-Stability, the Spencer-van der Meij method uses
a genetic algorithm to automate this process. This method is based on the concept of genetic survival
of the fittest. van der Meij (2023) describes the algorithm as: ”In a genetic algorithm, a population of
candidate solutions (individuals) to an optimization problem is evolved toward better solutions. Each
candidate solution has a set of properties. In the case of this kernel, a set of properties that describe
the slip plane. These properties evolve over several generations towards an optimal solution.”

Figure A.7: Schematic representation of the Spencer model with piece-wise linear elements (Jonkman et al., 2021).
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Figure A.8: The red line crossing the top of the Mohr circle, which represents the critical state line, can be transformed into the
blue line that touches the Mohr circle at the point of contact, known as the failure envelope. Adapted from van Duinen (2014).

A.3.3. Critical State Soil Mechanics
Large strains are needed to achieve macro-instability that mobilizes the strength over the entire failure
surface (BOI, 2023). Rijkswaterstaat (2021) has determined that the appropriate way to analyze macro-
stability is through the concept of Critical State Soil Mechanics (CSSM) (Schofield &Wroth, 1968). This
approach focuses on critical state shear strength rather than peak shear strength. The critical state is
where the soil no longer changes its volume during shearing. All soils ultimately reach the critical state
line, regardless of their initial conditions. As shown in Figure A.8, the top of the Mohr circle represents
a point on the critical state line.

The critical state line can be better visualized in Figure A.9 by plotting the half of the deviator stress t
against the average effective principal stress s′.

t =
1

2
(σ′

1 − σ′
3) (A.9)

s′ =
1

2
(σ′

1 + σ′
3) (A.10)

Where σ′
1 and σ′

3 are the major and minor principal stresses, for more information about the principal
stresses, please refer to Paragraph A.3.4. The failure envelope in Figure A.8 is positioned at an angle
known as the critical state friction angle (ϕ′cs). In the s′, t-space, this angle can be defined as follows:

tmax = s′ sin (ϕ′cs) (A.11)

Where tmax is the maximum mobilized shear strength [kN/m3] at 25% axial strain. van Duinen (2012)
recommends determining ϕ′cs from multiple anisotropically loaded undrained triaxial tests on normally
consolidated soils.

Stress Paths in the CSSM Framework
The stress paths in the CSSM framework are shown in Figure A.9. These stress paths indicate the
shear strength t that can be mobilized based on the stress and drainage conditions at the beginning of
the stress paths. The initial stress conditions are determined by the effective stress s′ and its relative
position to the pre-consolidation stress (σ′

p). The stress paths in triaxial tests are divided into four
categories, illustrated in the figure.

1. Drained versus undrained shearing: When soil shearing occurs under undrained conditions, ex-
cess loads are transferred to the pore water because the water cannot flow away, generating
excess pore water pressure. This usually happens in soils when the applied load is faster than
the consolidation rate. In dikes, rapidly occurring shear is typical for macro-stability (Rijkswater-
staat, 2021). The Dutch guidelines require modeling undrained layers for impermeable soils like
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Figure A.9: In the Critical State Soil Mechanics (CSSM) framework, the behavior of soil can be analyzed in terms of drained
(dashed lines) and undrained behavior. Three lines describe the behavior of different types of soils. The yellow line represents
Normally Consolidated (NC) or lightly Over Consolidated (OC) soils with an Over-Consolidation Ratio (OCR) range of 1 to 2.

For these soils, the soil will contract upon undrained shearing. The green line represents OC soils with an OCR range of 2 to 3,
which will not contract or dilate upon undrained shearing. Finally, the blue line represents OC soils with an OCR greater than 3,

which will contract upon undrained shearing. Adapted from Rijkswaterstaat (2021).

peat and clay under the phreatic line. In the next paragraphs, additional information will be given
about the drained and undrained modeling of layers in the CSSM framework.

In Figure A.9, the difference between the drained (dashed lines) and undrained (continuous lines)
stress paths is the generated excess pore water pressure.

2. Normally consolidated or lightly over-consolidated soils: When the current effective stress is lower
than the pre-consolidation stress, the soil will contract upon shearing (see Figure A.10). This
happens when the soil is normally consolidated or lightly over-consolidated (1 ≤ OCR ≤ 2). This
contraction will cause excess pore water pressure to be generated. At the critical state during
undrained shearing, the stress path will reach the critical state line at a smaller shear strength t
than in the drained case.

In Figure A.9, this case is illustrated by the yellow lines.
3. Medium over-consolidated soils: When the OCR is between 2 and 3, the soil neither contracts

nor dilates, and the drained stress path will end up at the same shear strength t at the critical
state line.

In Figure A.9, this case is illustrated by the green lines.
4. Highly over-consolidated soils: When the soil is highly over-consolidated (OCR > 3), it will dilate

upon shearing (see Figure A.10). This dilation generates under-pressures in the pores, increasing
the soil’s effective stresses. Therefore, in the critical state, the undrained soil has a higher shear
strength t than the undrained case, as shown by the blue lines in Figure A.9.

All samples start on theK0 line due to anisotropic consolidation with no radial strain. In over-consolidated
soils, the undrained stress path approaches the peak strength before ending up at the critical state line.
Figure A.10 also illustrates this extra mobilized peak strength.

The amount of over-consolidation is important because it determines whether the soil has extra strength
during undrained shearing, as explained in the fourth case. According to Rijkswaterstaat (2021), the
Holocene layers in the Netherlands play a significant role in macro-stability assessments. These
layers were formed after the ice ages and have not been subjected to heavy ice loads. Their over-
consolidation, which typically ranges with an OCR from 1 to 5, is mainly caused by factors such as
creep, variations in water levels in the polder, weather conditions, biochemical activity, etc. (Rijkswa-
terstaat, 2021) and can therefore vary significantly.
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Figure A.10: Shear stress versus shear displacement for loose, medium, and dense soils (Das, 2019).

Drained Modeling in the CSSM Framework
The non-associative Mohr-Coulomb drained model should be used to model permeable layers such as
sand and the layers above the phreatic line, as required by Rijkswaterstaat (2021). Since water can
flow freely, any generated excess pore pressures can dissipate, and the effective stresses determine
the shear strength of the soil:

τ =
(c+ cosϕ+ σ′ sin phi) cosψ

1− sinψ sinϕ
(A.12)

Where:

τ is the drained shear strength [kPa].
c is the cohesion [kPa].
ϕ is the friction angle [◦].
σ′ is the normal effective stress [kPa].
ψ is the dilation angle [◦].

The dilation angle (ψ) is a measure of the increase in volume of a compact material during shear defor-
mation. In the context of CSSM, there is no change in volume at the critical state, so ψ = 0◦. Addition-
ally, in the CSSM framework, cohesion is defined as added strength resulting from over-consolidation.
However, at the critical state, initial conditions such as over-consolidation no longer have any effect,
so c = 0kPa. This simplifies Equation A.12 to:

τ = σ′ sinϕ (A.13)

Undrained Modeling in the CSSM Framework: SHANSEP
Two studies, conducted by van Duinen (2013) and van Duinen et al. (2009), examined failed and stable
dikes during high water conditions in the Netherlands. The studies found that the shear strength was
significantly overestimated when undrained layers were modeled with a drained Mohr-Coulomb model.
They concluded that a drained model would be more suitable for the soil’s behavior. As a result, the
Stress History and Normalized Soil Engineering Property (SHANSEP) model, developed by Ladd and
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Foott (1974), has been used since 2017 to determine the strength of undrained layers in the Dutch
primary dikes. This model is related to the CSSM framework as it can describe the added strength
during undrained shearing in the case of highly over-consolidated soils. Ladd and Foott (1974) found
that cohesive soils with equal OCR display similar stress-strain behavior when normalized over the
vertical effective stress. They defined a relationship between the undrained shear strength of the soil
and the vertical effective stress σ′

v:

su = S ∗ σ′
v ∗OCRm (A.14)

Where:

su is the undrained shear strength [kPa].
S is the normally consolidated undrained shear strength ratio [-].
σ′
v is the effective vertical stress [kPa].
OCR is the overconsolidation ratio of the sample [-].
m is the strength increase exponent [-].

The OCR can be determined by:

OCR =
σ′
p

σ′
v

(A.15)

Where σ′
p is the pre-consolidation stress [kPa].

SHANSEP S
The normally consolidated undrained shear strength ratio (S) is a measure of the undrained shear
strength su of a sample regarding its consolidation stress. This ratio considers the pore pressures and
frictional forces generated during undrained shearing (Rijkswaterstaat, 2021).

To determine S, it is important to test the sample at ”large” strains. This corresponds to a 25% axial
strain in a triaxial test for clays and sands. A 40% shear strain should be used for peat during a Direct
Simple Shear test. Both tests should be consolidated anisotropically, performed in a single stage and
at a constant height (van Duinen, 2012).

SHANSEP m
The undrained shear strength of soil is affected by changes in the effective stress due to variations in
the pore pressure. This sensitivity is defined by the SHANSEP parameter m (Rijkswaterstaat, 2021).
m should preferably be determined based on Oedometer and Constain Rate of Strain (CRS) tests.

To explain the influence of m, two cases are highlighted:

• When m equals 1: a decrease in effective stress caused by increased pore pressure does not
affect the undrained shear strength. This is because the decrease in σ′

v is compensated by an
increase in the OCR, also defined by σ′

v. Since m equals 1, the increase in the OCR is fully
incorporated into the undrained shear strength, keeping it constant.

• When m equals 0.5: a decrease in σ′
v will cause the same increase in OCR, but this time the

OCR is not fully incorporated into the undrained shear strength. Instead, it is incorporated with
an exponent of 0.5. Therefore, a decrease in σ′

v will not be canceled out by the increase in OCR,
causing the undrained shear strength to decrease.

Preconsolidation Stress
As explained in the description of the different stress paths, the level of over-consolidation is a crucial
factor in the CSSM framework as it determines the soil’s additional strength during undrained shearing.
To determine the OCR, the ratio between the current effective stress and the pre-consolidation stress
should be analyzed.

The pre-consolidation level in Holocene layers is caused by various processes and is, therefore, highly
variable. Next to the OCR and σ′

p, it can also be defined by the Pre-Overburden Pressure (POP)
[kN/m3]:
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POP = σ′
v(OCR− 1) (A.16)

Oedometer tests can be conducted to determine the pre-consolidation stress. However, it is important
to ensure that the sample is not disturbed.

A.3.4. Principal Stresses along the Failure Surface
Consider the stresses acting on a soil element as depicted in Figure A.11. The principal stresses are
the maximum normal stresses that can act on the component. The soil element can be rotated at a
certain angle (known as the principal angle, θp) so that no shear stress is exerted on the sides of the
element. The normal stresses acting on this principal plane are the principal stresses. These principal
stresses can be defined in three dimensions: σ1, σ2, and σ3, respectively called the major, intermediate,
and minor principal stress.

Figure A.11: Stresses on a soil element. The vertical stresses are depicted in blue, and the horizontal stresses in green.

In the case of a dike, the intermediate principal stress is somewhere between σ1 and σ3, and it always
acts in the out-of-plane direction. Suppose the major and minor principal stresses, along with the
principal angle, are known. In that case, the horizontal and vertical stresses can be calculated (and
vice versa) by using the following formula (Verruijt, 1983) (only major and minor principal stress):

σx = σ1 sin
2 θp + σ3 cos

2 θp (A.17)
σy = σ1 cos

2 θp
2 + σ3 sin

2 θp (A.18)
τxy = σ1 sin θp cos θp − σ3 cos θp sin θp (A.19)

Where the shear stress in the x, y-plane is denoted by τxy. These equations are based on the Mohr
circle, a graphical method for presenting stress transformations.

In a triaxial compression test, the major principal stress (σ1) acts in the vertical direction, while the minor
principal stress (σ3) acts horizontally. In this case, the intermediate principal stress (σ2) equals σ3. In
a triaxial extension test, the principal planes are flipped compared to the compression test: the major
principal stress acts horizontally.

Figure A.12 illustrates the rotation of the principal stresses along the failure surface. At the entry point
of the failure surface, the major principal stresses act vertically, corresponding to the relatively large
vertical compression stresses that occur in this location of the slope. This is similar to the conditions in a
triaxial compression test. As the exit point is approached, on the passive side of the failure surface, the
vertical stresses will be smaller than the horizontal compressive stresses, and the major principal stress
direction will be horizontal, corresponding to triaxial extension. Between these zones, the governing
stress will be the shear stress, corresponding to a state similar to a Direct Simple Shear (DSS) test.
Here, the principal stresses rotate with the angle of the failure surface.
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Figure A.12: Rotation of the principal stresses along the failure (Sadrekarimi, 2016).

A.4. Variogram Construction
To create a variogram and determine its parameters, the following steps should be performed:

1. Detrending: This step is optional since a variogram can be developed when the data is intrinsically
stationary. However, trends make it harder to interpret the variogram parameters. A parameter with
a trend is defined as the sum of the trend, residual, and noise. Where the residual is a zero-mean,
second-order process and the noise a zero-mean, uncorrelated noise process. Detrending is often
performed numerically by polynomial fitting or linear regression. However, since these functions
involve estimating the trend, they introduce additional errors. Therefore, detrending should only be
applied when the trend can be reliably estimated; otherwise, estimation errors can become signifi-
cant. After detrending, the remaining data is second-order stationary, characterized by the sum of
the residual and the noise.

2. Creating a Variogram Cloud: To create a variogram cloud, plot the squared differences versus the
distance between all pairs of data points. The squared difference s2ij between the value of data point
i and data point j is defined as:

sij
2 = {x(ui)− x(uj)}2 (A.20)

3. Binning the Variogram Cloud: Group the distances between data pairs into bins with a bin width,
∆d. Calculate the average squared differences of data pairs within each bin, representing that
bin’s semivariance. The sample variogram is constructed by plotting the semivariance of every bin
against the bin’s center. The semivariance γ̂ of bin Bi can be calculated as:

γ̂(di) =
1

2Ni

∑
||ui−uj ||∈Bi

sij
2 (A.21)

Where:

Ni is the number of data pairs in bin Bi.
di is the center of bin Bi [m].

4. Selecting an Appropriate Bin Width: The bin width is crucial as it influences the scale over which
squared differences are averaged, impacting the variogram’s accuracy and resolution. A wide bin
width averages out more measurement uncertainty but may lose information about small-scale vari-
ability. A narrow bin provides more information but retains more measurement uncertainty. An
optimal bin width should be selected to balance uncertainty and detail (Oliver & Webster, 2015). In
literature, guidelines about the number of pairs in each bin are given: 100 - 200. The number of
points in each bin can be evaluated by using a histogram.
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5. Select Appropriate Cutoff Value: To simplify variogram interpretation and limit uncertainty, a cutoff
value for the lag axis should be chosen. Typically, the number of data pairs decreases as the dis-
tance between pairs increases. Therefore, a maximum distance exists beyond which the calculated
semivariance becomes less reliable. The cutoff should be set in the variogram at the point in the
histogram where the number of pairs in each bin begins to decrease. Set the cutoff at the point in
the histogram where the number of pairs in each bin begins to decrease.

6. Fitting Theoretical Functions: A range of theoretical functions (see Table 2.4) can be fitted to the sam-
ple variogram (γ̂) using Weighted Non-Linear Least Squares (WNLS). WNLS optimizes variogram
parameters using non-linear regression by minimizing the sum of squared differences between sam-
ple variogram points and theoretical variogram fits. Additionally, it applies weights to the data points
in the sample variogram with more reliability. It is defined as:

n∑
i=1

wi{γ̂(di)− γ(di|Θ)}2 = min (A.22)

Where:

Θ is the set of all model parameters Θ = (n, s, r).
γ is the variogram.
wi is the weight for bin Bi.

For the weight, which determines the reliability of each bin, various options can be used:

wi =
ni
d2i

(A.23)

wi =
ni

γ̂(di)2
(A.24)

wi = ni (A.25)

wi = Var[γ̂(di)]
−2 (A.26)

Where ni is the number of point pairs in bin Bi.
7. Selecting a Theoretical Function: To determine the semivariogram parameters, the optimal theo-

retical function should be selected. This can be based on criteria such as the lowest WNLS value.
Furthermore, it should be noted that Gaussian variograms are only suitable for modeling extremely
smooth, continuous data.



B
Precision RFEM

The study conducted Monte Carlo analyses for the probabilistic or Random Finite Element Method
(RFEM) scenarios, where a total of 200 realizations were performed. The empirical Cumulative Density
Function (CDF) of the calculated factors of safety (FoS) was constructed (see Equation ...), resulting in
200 data points. However, in scenario 3a, multiple points were found to be stacked on top of each other,
indicating that the precision of the determination of the FoS in the FEM code is not high enough. This
is primarily due to the precision of the strength reduction algorithm, which first reduces the Strength
Reduction Factor (SRF) with steps of ∆SRF = 0.1 until failure is achieved. After this, the algorithm
refines the value of SRF iteratively by halving ∆SRF : ∆SRFi = ∆SRFi−1/2 and SRFi = SRFi− 1±
∆SRF where i is the iteration step in the algorithm. The minimum value of ∆SRF is 0.0015, which,
combined with a narrow distribution of the factors of safety, results in the calculation of the same FoS
multiple times, as illustrated in Figure B.1a. Note that, although not tested in this research, the precision
of the strength reduction algorithm can be adjusted. However, this will result in a longer computation
time.

To accurately model the probability of the occurrence of a particular value of FoS, only the top of the
stacked points at a specific FoS should be used in the CDF, as this results in the determination of
P (X < FoS). This results in the CDF as depicted in Figure B.1b.
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(a) CDF with 200 points.
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(b) CDF with only the relevant points.

Figure B.1: CDFs for RFEM scenario 3a, plotted with 200 points or only the relevant points.
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Extra Results Data Analysis

C.1. Volumetric Weight
C.1.1. Results Depth Range Analysis

Table C.1: Variogram parameters for the different depth ranges in the Applied Water Management Research Foundation
(Stichting Toegepast Onderzoek Waterbeheer) (STOWA) database for the volumetric weight.

Soil Depth
range [m]

Nr. of
points N

Bin width
∆d

Eff. range
r′ [m]

Range r
[m]

P. sill p Sill s Nugget n Ratio p/s

k

0.0-2.0 18 2000 19835.63 14679.15 1.10 3.24 2.13 0.34
2.0-4.0 27 1300 21774.47 15518.40 1.41 3.27 1.86 0.43
4.0-6.0 18 1700 25179.77 25179.77 1.17 2.52 1.35 0.46
6.0-8.0 9 3500 12840.27 9210.38 0.84 2.63 1.78 0.32
8.0-10.0 11 2000 19715.73 19715.73 1.33 2.63 1.30 0.51
10.0-12.0 12 5000 31924.50 31683.95 0.61 2.46 1.85 0.25
12.0-14.0 8 20000 83368.41 79272.85 1.06 2.81 1.75 0.38
14.0-16.0 3 50000 No fit
16.0-18.0 2 100000 No fit
18.0-20.0 0 100000 No fit

ks

0.0-2.0 10 5000 No fit
2.0-4.0 9 3500 20050.06 12328.64 1.34 2.76 1.42 0.48
4.0-6.0 15 2000 No fit
6.0-8.0 10 3000 11488.49 11132.30 0.66 1.90 1.23 0.35
8.0-10.0 5 25000 No fit
10.0-12.0 3 100000 No fit
12.0-14.0 2 100000 No fit
14.0-16.0 0 100000 No fit

ks2

0.0-2.0 13 4000 No fit
2.0-4.0 13 3000 7339.21 2446.40 1.32 1.92 0.60 0.69
4.0-6.0 6 25000 154787.08 77393.54 3.11 4.47 1.36 0.70
6.0-8.0 9 8000 21456.71 10728.35 1.22 1.45 0.23 0.84
8.0-10.0 3 50000 No fit
10.0-12.0 3 100000 0 0 0 0.89 0.89 0
12.0-14.0 2 100000 No fit
14.0-16.0 0 100000 No fit

kh

0.0-2.0 18 2000 31551.88 15775.94 1.62 3.71 2.09 0.44
2.0-4.0 18 2000 21175.96 16001.40 1.52 3.29 1.78 0.46
4.0-6.0 12 600 3748.69 2571.10 0.73 1.97 1.24 0.37
6.0-8.0 5 4000 15897.64 15897.64 2.14 2.78 0.64 0.77
8.0-10.0 10 6000 11410.50 9390.95 0.83 2.34 1.51 0.36
10.0-12.0 4 25000 45266.85 36983.38 0.30 2.05 1.75 0.15
12.0-14.0 3 80000 No fit
14.0-16.0 2 100000 No fit
16.0-18.0 0 100000 No fit
18.0-20.0 2 100000 No fit

kh1

0.0-2.0 20 1500 No fit
2.0-4.0 27 1500 24827.71 17677.55 1.28 2.40 1.12 0.53
4.0-6.0 10 600 4705.61 4705.61 0.97 1.48 0.51 0.65
6.0-8.0 6 5000 17641.22 10590.54 1.17 1.92 0.74 0.61
8.0-10.0 9 22000 63376.18 63376.18 0.63 1.95 1.31 0.32
10.0-12.0 3 40000 78672.18 78672.18 0.93 2.31 1.38 0.40
12.0-14.0 4 50000 No fit
14.0-16.0 2 100000 No fit
16.0-18.0 0 100000 No fit

v

0.0-2.0 10 5000 19043.70 16616.45 0.08 0.44 0.36 0.19
2.0-4.0 33 3000 4167.31 4167.31 0.03 0.42 0.39 0.08

Continued on next page
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Table C.1 – continued from previous page
Soil Depth

range [m]
Nr. of
points N

Bin width
∆d

Eff. range
r′ [m]

Range r
[m]

P. sill p Sill s Nugget n Ratio p/s

4.0-6.0 17 3000 13942.10 13681.84 0.07 0.33 0.26 0.21
6.0-8.0 10 6000 8386.69 8386.69 0.18 0.34 0.17 0.51
8.0-10.0 10 20000 29688.84 29688.84 0.19 0.33 0.14 0.58
10.0-12.0 4 50000 No fit
12.0-14.0 3 100000 No fit
14.0-16.0 2 100000 No fit
16.0-18.0 0 100000 No fit

vk

0.0-2.0 6 800 3997.38 3997.38 0.27 0.53 0.26 0.51
2.0-4.0 4 500 899.20 899.20 0.18 0.32 0.14 0.57
4.0-6.0 7 2400 9111.23 6964.58 0.09 0.34 0.25 0.26
6.0-8.0 4 12000 22651.03 18802.39 0.12 0.45 0.33 0.27
8.0-10.0 3 40000 No fit
10.0-12.0 1 100000 No fit
12.0-14.0 0 100000 No fit

vk1

0.0-2.0 29 1700 No fit
2.0-4.0 5 1000 2190.08 1749.69 0.14 0.26 0.12 0.54
4.0-6.0 6 3500 15202.29 7601.14 0.08 0.13 0.05 0.62
6.0-8.0 3 12000 12496.83 10048.42 0.24 0.48 0.24 0.51
8.0-10.0 1 100000 No fit
10.0-12.0 0 100000 No fit
12.0-14.0 1 100000 No fit

C.1.2. Vertical direction Rivierenland Dataset
Table C.2: Variogram parameters for vertical direction in the Rivierenland (RL) database for the volumetric weight.

Soil Number
of
points
N

Bin
width
∆d

Effective
range r′
[m]

Range r
[m]

Partial
sill p

Sill s Nugget
n

Ratio
p/s

k 1226 0.50 6.03 6.03 1.08 2.50 1.42 0.43
ks 584 1 5.24 2.62 0.68 1.50 0.82 0.45
ks2 285 2 5.15 2.58 0.85 1.33 0.48 0.64
kh 484 2 5.32 3.82 0.76 1.84 1.08 0.41
kh1 206 2 0 0 0 0.95 0.95 0
v 989 0.50 1.27 1.27 0.02 0.18 0.16 0.11
vk 240 5 No fit
vk1 198 5 No fit

C.2. SHANSEP Parameter S
C.2.1. Results Depth Range Analysis

Table C.4: Average variogram parameters over the different depth ranges in the STOWA database for the SHANSEP
parameter S.

Soil Average
effective
range r′ [m]

Average
range r [m]

Average
partial sill p

Average sill
s

Average
nugget n

Ratio
pavg/savg

k 28695.29 26996.39 0.02 0.09 0.07 0.18
kh 9471.26 7938.10 0.00 0.08 0.08 0.05
kh1 1935.16 1659.72 0.01 0.02 0.01 0.40
v 6931.79 6594.66 0.03 0.03 0.00 0.92
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Table C.6: Variogram parameters in the Applied Water Management Research Foundation (Stichting Toegepast Onderzoek
Waterbeheer) (STOWA) database for the SHANSEP parameter S in the vertical direction and for specific depth ranges.

Soil Depth
range
[m]

Nr. of
points
N

Bin
width
∆d

Eff.
range
r′ [m]

Range
r [m]

P. sill p Sill s Nugget
n

Ratio
p/s

k

0.0-2.0 10 6000 30282.01 30282.01 0.05 0.18 0.13 0.27
2.0-4.0 6 17000 0.58 0.58 0.00 0.08 0.08 0.00
4.0-6.0 5 20000 58139.28 58139.28 0.01 0.07 0.06 0.11
6.0-8.0 10 10000 26359.27 19563.68 0.01 0.01 0.01 0.52
8.0-10.0 7 30000 No fit
10.0-
12.0

5 30000 No fit

12.0-
14.0

2 200000 No fit

14.0-
16.0

0 100000 No fit

16.0-
18.0

2 100000 No fit

kh

0.0-4.0 7 6000 0 0 0 0.15 0.15 0
4.0-8.0 6 17000 No fit
8.0-12.0 5 17000 18942.53 15876.19 0.01 0.01 0.00 0.73
12.0-
16.0

2 200000 No fit

16.0-
20.0

0 200000 No fit

kh1

0.0-4.0 10 1000 No fit
4.0-8.0 4 1000 1935.16 1659.72 0.01 0.02 0.01 0.40
8.0-12.0 4 60000 No fit
12.0-
16.0

1 200000 No fit

v

0.0-4.0 16 1000 6931.79 6594.66 0.03 0.03 0.00 0.92
4.0-8.0 3 50000 No fit
8.0-12.0 3 100000 No fit
12.0-
16.0

2 200000 No fit

C.2.2. Vertical direction STOWA Dataset
Table C.7: Variogram parameters for the vertical direction in the Applied Water Management Research Foundation (Stichting

Toegepast Onderzoek Waterbeheer) (STOWA) database for the SHANSEP parameter S.

Soil Number
of
points
N

Bin
width
∆d

Effective
range r′
[m]

Range r
[m]

Partial
sill p

Sill s Nugget
n

Ratio
p/s

k 1142 1 0 0 0 0.03 0.03 0
ks 377 1 No fit
ks2 154 1 0 0 0 0.02 0.02 0
kh 997 1 0 0 0 0.04 0.04 0
kh1 607 1 No fit
v 340 1 0 0 0 0.00 0.00 0
vk 28 1 No fit
vk1 15 3 No fit



D
Data Case Study

Table D.1: Clay data from the STOWA database for water board Brabantse Delta which is used for the case study.

Boring ID γwet [kN/m3] S [-] ϕ [◦] x-coordinate y-coordinate
B101_St7 17.8 0.480 30.44 76464.3 404735.8
B101_St14 18.1 0.331 34.32 76464.3 404735.8
B101_St15 18.3 0.384 37.95 76464.3 404735.8
B101_St15-2 20.1 0.672 34.57 76464.3 404735.8
B101_St26 19.5 0.792 34.34 76464.3 404735.8
B101_St27 18.5 0.342 33.96 76464.3 404735.8
B102_St15-2 19.6 0.771 34.49 76457.8 404734.2
B102_St15-1 18.7 0.634 32.68 76457.8 404734.2
B102_St30 17 0.342 34.49 76457.8 404734.2
B102_St31 14.5 0.232 29.88 76457.8 404734.2
B103_St11 17.9 0.281 34.39 76440.5 404716
B103_St13-1 17 0.303 34.23 76440.5 404716
B103_St13-2 16.3 0.327 39.99 76440.5 404716
B103_St14 15.5 0.232 36.04 76440.5 404716
B103_St15 15.9 0.262 37.77 76440.5 404716
B103_St16 16.6 0.296 36.27 76440.5 404716
B103_St20 19.9 0.247 21.54 76440.5 404716
B103_St21 20 0.371 30.79 76440.5 404716
B104_St13-1 17.4 0.338 36.39 76443.7 404714.3
B104_St13-2 16.8 0.251 32.46 76443.7 404714.3
B104_St14 17 0.225 35.31 76443.7 404714.3
B104_St16 16.7 0.384 38.07 76443.7 404714.3
B104_St21 19.1 0.352 29.59 76443.7 404714.3
B104_St22 20.1 0.249 21.82 76443.7 404714.3
B2_St13 14.1 0.279 46.69 91240.5 411132.6
B2_St14 14.5 0.235 33.83 91240.5 411132.6
B2_St15 15 0.314 38.56 91240.5 411132.6
B201_St7 17.9 0.318 29.02 90445.5 411545.8
B201_St9 17.5 0.286 29.39 90445.5 411545.8
B201_St14 16.3 0.313 34.24 90445.5 411545.8
B201_St15 15.7 0.249 34.13 90445.5 411545.8
B201_St24 16.4 0.305 36.11 90445.5 411545.8
B201_St30 16 0.296 36.76 90445.5 411545.8
B201_St32 17.2 0.280 35.89 90445.5 411545.8
B202_St9-2 18.8 0.405 31.79 90448.8 411543.8

Continued on next page
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Table D.1 – continued from previous page
Boring ID γwet [kN/m3] S [-] ϕ [◦] x-coordinate y-coordinate
B202_St9 18 0.340 31.56 90448.8 411543.8
B202_St14 15.7 0.327 39.73 90448.8 411543.8
B202_St17-2 16.1 0.295 34.85 90448.8 411543.8
B202_St17 16.2 0.333 38.10 90448.8 411543.8
B202_St23 16.2 0.292 34.54 90448.8 411543.8
B202_St24 16.7 0.374 35.81 90448.8 411543.8
B203_St7-1 16 0.343 36.63 90426.4 411511
B203_St7-2 15.8 0.291 35.40 90426.4 411511
B203_St8-2 16.5 0.390 37.10 90426.4 411511
B203_St8-1 15.7 0.312 37.51 90426.4 411511
B203_St15-2 14.3 0.283 37.82 90426.4 411511
B203_St15 14.3 0.288 39.77 90426.4 411511
B203_St22 15.4 0.301 36.76 90426.4 411511
B204_St6-1 17.3 0.513 40.83 90426.4 411511
B204_St6-2 15.5 0.309 34.18 90426.4 411511
B204_St8 15.3 0.324 36.74 90426.4 411511
B204_St15 13.9 0.289 40.96 90426.4 411511
B301_St6 18.3 0.386 31.65 95103.9 410439.4
B301_St11 16.3 0.289 34.00 95103.9 410439.4
B302_St13-2 18.2 0.426 34.11 95107.9 41039.5
B302_St13 17.9 0.436 34.88 95107.9 41039.5
B302_St15 16.8 0.318 34.76 95107.9 41039.5
B302_St16-2 16.6 0.313 34.80 95107.9 41039.5
B302_St18-2 18.9 0.691 33.46 95107.9 41039.5
B302_St19 18 0.369 33.80 95107.9 41039.5
B302_St20 17.3 0.340 37.92 95107.9 41039.5
B302_St23 15.4 0.286 33.94 95107.9 41039.5
B303_St5-1 16.1 0.300 36.64 95104.9 410406
B303_St5-2 16.5 0.414 38.21 95104.9 410406
B303_St6 17.5 0.441 42.05 95104.9 410406
B304_St4 16.6 0.370 36.60 95108.6 410406.2
B304_St5 15.5 0.382 37.44 95108.6 410406.2
B401_St19 15.6 0.362 38.91 107658.9 414174.1
B401_St20-1 15.8 0.349 36.42 107658.9 414174.1
B401_St20-2 15.8 0.335 37.41 107658.9 414174.1
B401_St21-2 14.6 0.321 37.26 107658.9 414174.1
B402_St17-2 16.2 0.372 37.81 107661.3 414177.3
B402_St17 15.5 0.318 38.46 107661.3 414177.3
B601_St6 18 0.262 25.72 121474 414020.3
B601_St8-2 20 0.470 34.31 121474 414020.3
B601_St8 19.7 0.502 34.38 121474 414020.3
B601_St10 19.8 0.551 33.90 121474 414020.3
B601_St11 19.8 0.528 33.13 121474 414020.3
B602_St5A 18.3 0.285 25.05 121477.4 414017.9
B602_St5 18.2 0.204 20.35 121477.4 414017.9
B602_St8 19.8 0.619 33.18 121477.4 414017.9
B602_St8A 19 0.604 34.82 121477.4 414017.9
B602_St13-2 18.4 0.360 36.09 121477.4 414017.9
B602_St13-1 18.4 0.357 33.16 121477.4 414017.9
B701_St8 18 0.370 32.93 115758.7 413046
B701_St9 18.8 0.596 34.62 115758.7 413046
B701_St13-2 16.4 0.347 38.79 115758.7 413046
B701_St13-1 16.7 0.361 37.85 115758.7 413046

Continued on next page
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Table D.1 – continued from previous page
Boring ID γwet [kN/m3] S [-] ϕ [◦] x-coordinate y-coordinate
B702_St5 16.6 0.416 37.53 115766.7 413045.7
B702_St9-2 18.5 0.414 33.64 115766.7 413045.7
B702_St9 17.7 0.429 34.53 115766.7 413045.7
B702_St13-2 15.7 0.339 38.46 115766.7 413045.7
B702_St13-1 14.6 0.357 40.73 115766.7 413045.7

Table D.2: Peat data from the STOWA database for water board Brabantse Delta which is used for the case study.

Boring ID γwet [kN/m3] S [-] ϕ [◦] x-coordinate y-coordinate
B102_St24 11.0 0.473 38.50 76457.8 404734.2
B103_St9-2 10.2 0.537 53.54 76440.5 404716
B103_St9-3 10.1 0.519 50.10 76440.5 404716
B104_St10-2 10.1 0.492 45.17 76443.7 404714.3
B104_St10-1 10.2 0.505 55.95 76443.7 404714.3
B201_St26-1 10.4 0.423 34.03 90445.5 411545.8
B201_St26-2 10.4 0.446 35.37 90445.5 411545.8
B201_St26-3 10.4 0.425 34.45 90445.5 411545.8
B201_St26-4 10.3 0.470 36.37 90445.5 411545.8
B202_St26 10.6 0.403 34.02 90448.8 411543.8
B202_St27 10.3 0.414 34.24 90448.8 411543.8
B203_St10-1 10.1 0.633 58.72 90426.4 411511
B203_St10-2 10.4 0.536 52.06 90426.4 411511
B203_St25 10.4 0.479 46.43 90426.4 411511
B204_St10-1 10.2 0.489 42.97 90426.4 411511
B204_St10-2 10.0 0.434 35.40 90426.4 411511
B204_St25 10.4 0.469 52.83 90426.4 411511
B301_St27-1 10.6 0.460 41.82 95103.9 410439.4
B301_St27-2 10.6 0.455 38.87 95103.9 410439.4
B302_St27-1 10.9 0.448 43.78 95107.9 41039.5
B302_St27-2 10.7 0.512 46.93 95107.9 41039.5
B302_St30-1 11.4 0.357 39.39 95107.9 41039.5
B302_St30-2 12.1 0.347 38.73 95107.9 41039.5
B303_St9-1 10.3 0.583 59.31 95104.9 410406
B303_St9-2 10.2 0.483 43.65 95104.9 410406
B303_St9-3 10.0 0.546 42.81 95104.9 410406
B303_St10 10.0 0.389 32.02 95104.9 410406
B303_St11 10.5 0.448 41.28 95104.9 410406
B304_St10 10.2 0.479 35.25 95108.6 410406.2
B304_St11-3 10.1 0.563 60.70 95108.6 410406.2
B401_St22 9.8 0.520 39.50 107658.9 414174.1
B401_St23-1 9.9 0.489 39.67 107658.9 414174.1
B401_St23-2 9.9 0.478 39.50 107658.9 414174.1
B402_St20 9.6 0.497 41.04 107661.3 414177.3
B402_St21-1 10.3 0.465 39.47 107661.3 414177.3
B402_St21-2 10.3 0.501 41.75 107661.3 414177.3
B403_St7-1 10.0 0.505 45.14 107695.8 414150.1
B403_St7-2 10.0 0.582 51.16 107695.8 414150.1
B403_St8-2 9.8 0.561 52.58 107695.8 414150.1
B404_St8-2 9.7 0.546 53.82 107698.1 414153.3
B404_St8-3 10.1 0.535 47.45 107698.1 414153.3
B404_St8-1 10.1 0.545 47.83 107698.1 414153.3
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