

10th International Conference on Contact Mechanics

August 30, 2015 - September 3, 2015 | Colorado Springs, Colorado, USA

The influence of friction coefficient and wheel/rail profiles on energy dissipation in the wheel/rail contact

Guillermo Idárraga Alarcón ^{1,2}, Nico Burgelman ², Juan Meza Meza ¹, Alejandro Toro ¹, Zili Li ²

- 1. National University of Colombia, Tribology and Surfaces Group, Medellín, Colombia.
- 2. Delft University of Technology Faculty of Civil Engineering and Geosciences, Railway Engineering, the Netherlands.

*Corresponding author. Tels.: +57 4 4255339, +31 15 27 82325. E-mail addresses: gaidarra@unal.edu.co (G. Idarraga), N.D.M.Burgelman@tudelft.nl (N. Burgelman), jmmezam@unal.edu.co (J. Meza), aotoro@unal.edu.co (A. Toro), Z.Li@tudelft.nl (Z.Li).

INTRODUCTION

This work gives a further explanation of the effect of the friction coefficient in the energy dissipation in the wheel/rail contact. To such an end, several simulations were performed using a multibody model, including the torque of the wheels, and varying the friction coefficient from 0.2 to 0.7.

Previous work:

	Post – Lubricated Condition	Lubricated Condition
Power Measurements Reduction – Field [KW]	9.4%	15.3%
Power Calculations Reduction - Multibody [KW]	21.0%	35.0%
Calculated wear reduction [µg/(m mm²)]	19.8%	36.1%

G. Idarraga et.al. 2015

THE VEHICLE MODEL:

TRACK MODEL:

G. Idarraga et. al. 2015

ENERGY AND WEAR CALCULATIONS:

$$P_{frict} = (T_x \gamma_x + T_y \gamma_y) V$$

Where V is the velocity of the vehicle, T the tangential force, and γ the creepage (normalized slip). When the contribution of spin is included it becomes:

$$P_{frict} = (T_x \gamma_x + T_y \gamma_y + M\varphi)V$$

Where M is the spin moment and φ is the spin creepage.

$$Wear_{Rate} = KT\gamma/A$$

Where, K is a wear coefficient and A is the contact area.

$$Wear_{Rate} = \begin{cases} 5.3I_w & I_w < 10.4 \\ 55.0 & 10.4 \le I_w \le 77.2 \\ 61.9I_w & I_w > 77.2 \end{cases}$$

Where I_w is the wear index.

R. Lewis and R. S. Dwyer-Joyce 2004

EFFECT OF PROFILES ON THE ENERGY DISSIPATION AND WEAR RATES

Couple	Rail profiles	Wheel profiles	Designation
1	Worm CPC-HRC	New Ore S1002	Measured Profiles
2	New UIC 60	New Ore S1002	Standard Profiles

TRACTION MOMENT ON THE WHEELS

$$M=\frac{ma(t)R}{16}$$

m: Vehicle mass R: Wheel radio

a(t): vehicle acceleration

Longitudinal Creepage 0.005 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 -0.005-0.01 Creepage -Outer Wheels -0.015 -Inner Wheels -0.02 -0.025-0.03 -0.035

Creep Force - Lateral

Friction coefficient

$$v_y = -\alpha$$
 $P_{frict} = (T_x \gamma_x + T_y \gamma_y) V$

POWER CALCULATIONS:

WEAR CALCULATIONS:

Wear Rate Outer and Inner Wheels

EFFECT OF THE PROFILES ON THE ENERGY DISSIPATION AND WEAR RATES

EFFECT OF THE PROFILES ON THE ENERGY DISSIPATION AND WEAR RATES

Wheel/rail profiles effect in the total energy dissipation of the first <u>bogie.</u>

	Measured profiles	Standard Profiles
Total Energy [KW]	33.9	9.2

Wheel/rail profiles effect in the wear rates of the first bogie.

	Measured profiles	Standard Profiles
Wear Rate [μg/(m mm²)]	158.1	30.6

CONCLUSIONS AND RECOMMENDATIONS

- The energy dissipation generated by spin increases as the friction coefficient grows.
- It is only recommended to neglect the effect of the spin moment in the energy calculations for low friction coefficient conditions
- As the friction coefficient increases, the inner wheel loses traction while the outer wheel increases it, this condition produces a rotational moment of the wheelset in clockwise direction, reducing the yaw angle of the wheelset.
- The energy consumption increases linearly as the friction coefficient grows
- The results of simulations with different profiles are important since they show the necessity for optimizing profiles and re-profiling procedures. An optimized wheel/rail profile combination greatly reduces the energy dissipation and the wear rates.

ACKNOWLEDGMENTS

