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Stellingen

behorende bij het proefschrift:
Computational aspects of biaxial stress in plain and reinforced concrete

van P.H. Feenstra

De reductie van de druksterkte tengevolge van laterale scheurvorming zoals
voorgesteld door Vecchio en Collins is gebaseerd op foutieve experimenten en
onjuiste theorievorming.
FJ. Vecchio en M.P. Collins, The response of reinforced concrete to in-plane
shear and normal stresses. University of Toronto, 1982.

Volgens het kritisch rationalisme van Karl Popper dienen experimenten om een on-
derliggende theorie te falsificeren en niet om deze te verifiéren. De experimenten
door Kollegger en Mehlhorn zijn dus niet vitgevoerd met deze kritisch rationalisti-
sche visie.
J. Kollegger en G. Mehlhorn, Experimentelle Untersuchungen zur Bestimmung
der Druckfestigkeit des gerissenen Stahlbetons bei einer Querzug-
beanspruchung. Deutscher Ausschuf fiir Stahlbeton, 1990.

Stelling 3 van Vonk: "De afschuifscheuren, ... , zijn bepalend voor het bezwijken
van een betonconstructie. De splijtscheuren, ... , modificeren dit bezwijkgedrag”,
ondersteunt de aanname dat het compressiegedrag kan worden beschreven met een
J,-criterium.
R.A. Vonk, Softening of concrete loaded in compression. Proefschrift Technische
Universiteit Eindhoven 1992.

Het is onjuist te veronderstellen dat in een singulier punt van een vloeioppervlak de
consistente tangent operator kan worden vervangen door de continuum tangent
operator.

Het gebruik van de tensorafschuifrek ¢,, in plaats van de ingenieursafschuifrek
Yxy = 2 £y in een eindige-elementenmethode dient nader onderzocht te worden.

Het berekenen van constructies met een niet-lineaire eindige-elementenmethode
heeft als doel constructies minder sterk te maken.

Voor het ontwikkelen van stabiele numerieke mechanicamodellen dienen naast een
gedegen kennis van numerieke methoden en computeraritmetica ook kennis van de
specifieke kenmerken van compilers aanwezig te zijn.

In tegenstelling tot een mechanisch systeem is bij een mens een dieptepunt niet sta-
biel. Het menselijk wezen kan dus niet beschreven worden met een mechanisch
model.

Bij het toekennen van een Europees project dient één van de criteria te zijn dat bij
de deelnemers een minimale kennis van een gemeenschappelijke taal aanwezig is.

Sinds de invoering van het gescheiden inzamelen van huisafval is het straatbeeld
aanmerkelijk vervuild.



11.

12.

13.

14.

De naamgeving onderzoekschool doet vermoeden dat over enige jaren de vraag zal
ontstaan naar een derde fase-opleiding voor zelfstandig onderzoeker.

Gezien het hoge aantal stellingen over het menselijk gedrag mag aangenomen wor-
den dat promovendi beschikken over een brede ontwikkeling op het gebied van de
sociale wetenschappen.

De invoering van een basisinkomen kan waarschijnlijk op een bredere steun rekenen
als het gepresenteerd wordt als een instrument voor fraudebestrijding dan wanneer
het gepresenteerd wordt vanuit een gelijkheidsbeginsel.

Door het hoge aantal fietsendiefstallen staat Nederland hoog in de internationale
misdaadstatisticken. Gezien het feit dat fietsendiefstal in het algemeen gelaten wordt
aanvaard, verdient het aanbeveling om van fietsendiefstal een overtreding te maken
en zo het veiligheidsgevoel te vergroten.
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1. INTRODUCTION

Reinforced concrete is one of the most commonly used materials in civil engineering
with applications into all kinds of structures, such as high rise buildings, cooling towers
and offshore platforms. The design of these structures is usually based on a linear-
elastic analysis to calculate the internal forces in the structure which are then used to de-
sign the reinforcement and the details of the structure using code provisions. These
codes are usually based on an empirical approach, using experimental data, and provide
design rules to satisfy safety and serviceability requirements. Although the design of re-
inforced concrete structures based on a linear-elastic stress analysis is adequate and reli-
able in most cases, for complex structures under complex loading conditions, nonlinear
finite element analyses are often required. With these analyses, information can be ob-
tained regarding the ultimate load capacity and the post-failure behavior of the structure.

The behavior of concrete structures is characterized by a reduction of the load-
carrying capacity with increasing deformations after reaching a certain limit load. This
global behavior is usually caused by a material behavior which is described as strain
softening and occurs in tension and in compression. Due to this softening behavior, the
deformations tend to localize in a small part of the structure which can introduce mesh-
dependent responses in finite element calculations. This deficiency can partially be
solved by relating the constitutive model to a fracture energy and to the geometry of the
finite element mesh via an equivalent length.

In reinforced concrete, the response of the structure is even more complicated. In
general a number of cracks will develop in the structure due to the bond action between
concrete and reinforcement. This results in a redistribution of the tensile load from con-
crete to reinforcement. This phenomenon is called tension-stiffening, because the re-
sponse is stiffer than the response with a brittle fracture approach. The tension-stiffening
is closely related to the tension-softening in plain concrete and the controversy between
tension-softening and tension-stiffening approaches seems to have been exaggerated in
the past. More important in the analysis of reinforced concrete structures is the problem
of multiple equilibrium states during the process of crack formation. The localization
due to the softening behavior induces local maxima in the load-displacement response,
after which the structure unloads. In reinforced concrete, a number of cracks tend to lo-
calize which results in a set of local maxima. This can cause numerical difficulties in the
solution algorithm.

Another issue which can cause numerical difficulties is the biaxial stress state, espe-
cially in tension-compression. The numerical problems are mainly due to the fact that
the nonlinear behavior in tension, viz. cracking, is treated by a different constitutive
model than the nonlinear behavior in compression, viz. plasticity and crushing. These
different constitutive models are treated in different algorithms and a local iteration on a
constitutive level is necessary to meet both the cracking and the plasticity conditions.
This local iteration process can result in an oscillating numerical process if both crack-
ing and plasticity occur in the same integration point. Because tension-compression



stress states often occur in reinforced concrete, this problem is encountered frequently.

The behavior of reinforced concrete is highly nonlinear which is caused by mecha-
nisms such as cracking, crushing, creep and shrinkage of concrete, but also caused by
interaction between reinforcement and concrete. Because all these mechanisms are in-
teracting, it is not realistic to try to formulate a constitutive model which incorporates all
these mechanisms, but a model has to be formulated which adequately describes the be-
havior of a structure within the range of application which has been restricted in ad-
vance. Although the constitutive models which are developed within this phenomeno-
logical approach are usually simplified representations of the real behavior of a material,
it is believed that more insight can be gained by tracing the entire response of a structure
in this manner, than modeling a structure with highly sophisticated material models
which do not result in a converged solution after failure load. Since structural failure
cannot be identified with divergence of the iterative procedure, the principal aim of this
thesis is to develop robust algorithms in order to provide the structural engineer with re-
liable numerical tools.

1.1 Scope and objectives

This study is concerned with nonlinear failure analysis of plain and reinforced concrete
structures which can be approximated as being in a state of plane stress, such as panels
and shear walls. The structures under consideration are subjected to short time, static
loads, which are not necessarily proportional, but the loading regime is such that the
rotation of the directions of the principal strain vector remains moderate. The primary
aim in this study will be the development and the evaluation of a numerical stable algo-
rithm that handles the biaxial stress state in reinforced concrete. The objectives of this
study are:

» to propose a solution technique which is stable and economic in the entire loading
regime of the structure.

« to develop a constitutive model for reinforced concrete which incorporates the
knowledge of nonlinear fracture mechanics used in crack propagation problems.

« to develop a constitutive model for concrete which is stable and robust in tension-
tension, compression-compression and tension-compression stress states.

+ to verify the developed models by comparing the predicted behavior with the behav-
ior observed in experiments on different types of structures. The developed model
should be able to predict the ultimate load and the failure mode within 30 % of the
experimental behavior.

1.2 Contents

In Chapter 2, the fundamentals of the finite element method are briefly described and
the general formulation of the constitutive model will be given. The solution technique



which will be utilized to solve equilibrium during the entire response will be discussed.
The nonlinear system-of-equations which follows from the finite element discretization
will be solved with an incremental-iterative Newton-Raphson method with arc-length
control. The Newton-Raphson method will be enhanced with a line search technique to
improve the global convergence characteristics of this method. The usual application of
the incremental-iterative solution technique is with user-supplied incremental load steps.
This method demands a-priori knowledge about the behavior of the structure to supply
incremental load steps in accordance with the response of the structure. To solve this
problem, a self-adaptive incremental load step procedure will be presented, which
improves the global convergence characteristics considerably.

In Chapter 3, the material model for plain and reinforced concrete will be discussed.
Experimental results indicate that the compressive and tensile behavior of plain concrete
is governed by a similar failure mechanism, viz. cracking at the meso-level of the mate-
rial. The accumulated damage in the material will be represented by two internal dam-
age parameters, one in compression and one in tension. The constitutive model will be
formulated as a relation between an equivalent stress and the internal damage parameter.
The behavior of reinforced concrete under uniaxial tension will be modeled with a
decomposition of the stiffness into the stiffness of the plain concrete, the stiffness of the
reinforcement and an additional stiffness due to the interaction between concrete and
steel after cracking. The tension-compression interaction in reinforced concrete will be
discussed and a proposition will be put forward for the compressive strength reduction
due to lateral cracking.

In Chapter 4, the constitutive model of plain concrete will be discussed. Two differ-
ent approaches will be followed, the presentation of the constitutive model within an
incremental, or rate formulation and the presentation of the constitutive model within a
total formulation. The incremental formulation with a fracture energy-based plasticity
model is considered as the most versatile and will be discussed in detail with respect to
a consistent formulation of the tangential operator and the modeling of the biaxial stress
state. The total formulation will be given merely to show the similarity of the fracture
energy-based plasticity model and the rotating crack model. The behavior of the both
formulations will be compared with a fundamental tension-shear model problem.

In Chapter 5, the developed constitutive models for plain concrete will be applied to
simulate two experiments, a single-edge-notched beam and a pull-out of an anchor bolt,
and to analyze a cylinder splitting test. The last analysis is mainly governed by tension-
compression interaction, whereas the other two analyses are examples of crack propaga-
tion problems in plain concrete.

In Chapter 6, the modeling of reinforced concrete will be discussed. The embedded
formulation of reinforcement will be given, as well as the constitutive model of the rein-
forcing steel. An idealized reinforced panel will be analyzed to examine the differences
between the constitutive models for plain concrete when applied in the analysis of rein-
forced concrete panels. The proposed model for reinforced concrete will be validated
with the analyses of reinforced panels subjected to uniaxial tension and to shear loading.



In Chapter 7, final examples will be presented to show the applicability of the frac-
ture energy-based plasticity model and the model for reinforced concrete. The analyses
concern two deep beams without shear reinforcement and a series of shear wall panels.
For all analyses, the numerical results will be compared with the experimental data to
assess the correlation between experiment and analysis.

In Chapter 8, a summary and final conclusions will be given which can be derived
from this study.

2. FORMULATION AND
SOLUTION STRATEGIES

In this study the finite element method will be adopted to simulate the behavior of struc-
tures. The maximum load capacity of a structure is the first interest in the analysis but it
is also of importance to obtain an idea of the failure mode and the post-failure behavior
of the structure. It has been recognized some years ago that numerical collapse, at which
the iterative solution procedure no longer converges, has no physical meaning with
regard to the real collapse of the structure. It is therefore of utmost importance that the
entire structural response of the structure is traced with a solution procedure that
remains stable even beyond the failure load of the structure.

In a finite element method based on the displacement method the structure is subdi-
vided into elements for which the relation between the nodal forces and the displace-
ments of the elements can be derived. The assembly of elements results in a system of
equations describing the equilibrium of the structure which has to be solved to obtain
the displacements of the structure. The complete response of the structure is calculated
using an incremental analysis in which the total load is applied in a number of steps and
a time variable # is introduced to conveniently describe the loading regime and displace-
ment of the structure. The concept of time is used merely to order the sequence of
events because time-independent behavior will be assumed in this study. Assume that at
time ¢ the equilibrium of the structure is satisfied and that a new load increment has
been applied in a time increment Ar. The equilibrium equations need to be solved at
time ¢ + At. The equilibrium equations are in general nonlinear and an iterative proce-
dure has to be employed to solve this problem. In this fashion, an incremental-iterative
procedure is employed as the solution strategy to solve the equilibrium of a structure
along the complete loading history of the structure. Equilibrium in a time step will be
attained by means of the Newton-Raphson method which linearizes the nonlinear equi-
librium conditions at each iteration. This iteration method has some deficiencies, as no
globally convergent behavior can be established and as the method is unable to over-
come limit points in the load-deformation response. These deficiencies can be remedied
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using special techniques assuring globally convergent behavior of the method. The con-
vergence of the Newton-Raphson method can be improved by using a line-search tech-
nique which calculates an optimal multiplier of the incremental displacement field fol-
lowing from the iterative procedure. An important addition to the Newton-Raphson
method is the constraint of the incremental displacements which results in a constrained
Newton-Raphson method. With this method it is possible to pass extremal points in the
load-displacement response of a structure. The final part of the solution strategy is the
method which is used to assess the load increments. It is seldom recognized in the liter-
ature that the procedure to calculate the load increments may be the most important part
in the incremental-iterative solution strategy.

The main objective of this Chapter is to describe the finite element method and the
solution procedure for a nonlinear continuum. Point of departure will be the virtual
work principle. The general expression of the constitutive model will be given for a
plane-stress situation which is assumed in the structures that will be analyzed in this
thesis. The solution strategy which will adopted will be described in the remainder of
this Chapter, which includes the constrained Newton-Raphson method, the line search
technique and the estimation of the load increments.

2.1 Finite element formulation

Consider the equilibrium of a body B at time ¢ + At expressed in the weak form with the
principal of virtual displacements, see Bathe (1982), as the residual G,

G(u,au)=jaeTadV—jaudeV—_[sufids @1
B B dB

in which u the displacement vector with respect to a reference configuration denoted by
x and Su a kinematically admissible virtual displacement vector. The superscript T
denotes the transpose symbol. As for the structures which will be considered in this
study small displacement gradients will be assumed, the stress vector is given by o and
the linearized strain vector ¢ is defined by

ou’

ox

g'vz"‘l/z(a_"+ y=Lu 22
ox
with L a differential operator. The variation of the strain vector is the denoted by Je.
Furthermore, the loads on the body are given by the body forces b and the the tractions
f defined on a part of the boundary 9B.
The solution of the equilibrium problem G(u,du) = 0 is accomplished by a
Newton-Raphson method, in which a sequence of linearized equations is solved
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until the residual G vanishes within a prescribed accuracy. The notation “**-? denotes a
quantity at equilibrium iteration (i) during load step ¢ + Ar. The displacement vector is
updated with the incremental displacement vector which results in

r+Atu(i+]) - t+Atu(i) + Au(i+l) 2.4)

The left-hand-side of the Newton-Raphson procedure can be elaborated to

at+A: (3] at+At )

aG( t+Atu(i) , 5[‘
a 1+Ar o (i) g t+A2 (1)

(+1)
P dV Au (2.5)

) Au) = ja

Now define the consistent tangent stiffness matrix “** D as

. a +At o_(i)
t+Ar ()
D*¥ = o gl (2.6)

then the Newton-Raphson procedure reads

[oe" “4DO (L AV av = -G("Mu?, 5u) @

The incremental strain vector de¥*V is defined as

d£(i+1) — t+Ar£(i+1) _ r+At£(i) (2.8)

which can be elaborated to

aAu(i+l) aAu(Hl) T
+
ox ox

de®™h = 1y ) = L Au®Y 2.9)

with L the differential operator. The virtual strain vector d¢ is given as
de = &de 2.10

Substitution of eq.(2.1) and eq.(2.10) into eq.(2.7) results in the expression for the equi-
librium equation of the body at 1 + At
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The finite element formulation will be applied at this point to approximate the con-
tinuum displacement field u with the discrete nodal displacements collected in a vector
a. The discrete incremental nodal degrees-of-freedom of an element and the continuum
incremental displacement vector Au are related by an interpolation matrix N which is
dependent upon the specific type of element employed. In general this relation is given
by

Au = N Aa .11

with a interpolation matrix N. The relation between the incremental strain vector and
the displacement increment is in general given by the strain-nodal displacement matrix,
B = L N, which is dependent upon the specific element description via N and the
stress configuration via L. With eq.(2.9) and eq.(2.11) the equilibrium equation reads

j 5Aa” BT "¥DO B Aa™ dV =
B

2.12)

- _[ sAa” BT "Mg0 gy, + j 5AaT NT *%p dv + j sAaT NT "8F 4s
B B JB

Because the equilibrium equation must hold for any virtual displacement increment
SAa, the Newton-Raphson equilibrium iteration in a nonlinear system discretized via
the finite element method is given by

1AL (@) A g 1) = J‘ BT HhgO gy 4 g @.13)
B
with "*¥g the generalized external load vector
g = INT b AV + jNT “AE dS (2.14)
B 3B

and the assembled stiffness matrix given by

A @) J’ BT #&pO B 4v 2.15)
B



2.2 Constitutive model

In the elaboration of the finite element equations, the constitutive model has not yet
been defined. Since the principle of virtual work has been used, eq.(2.12) is independent
of the constitutive model. The mathematical model of a constitutive law should give a
relation between the stress tensor in a material point of the body £ and the deformation
in the actual configuration as a function of the time ¢, see e.g. Becker and Burger
(1972), Willam and Dietsche (1992). The model is given by a functional f which is
dependent upon the relative movement of a material point and all other material points
of the body, or in general

o.1) = Z(x(mt—s) — x(E,t-5); &) 2.16)

neB

in which the material point 7 passes through the complete body. The model gives an
interaction between all material points of the body and is the general description of the
non-local material models. If the functional has the form of an integral, a typical repre-
sentative of this class is the non-local damage model of Pijaudier-Cabot and BaZant
(1987). Because the interaction of material points in a body is usually restricted to the
neighborhood of the material points, the relative deformation is usually approximated
by a truncated Taylor series, resulting in

(.1 = Z(F(é,t—S)'Fz@,t—S),“'FN(f,t—S);f) .17

in which Fy = d"x / 9&". This material model is called a grade-N material and can be
related to the so-called polar continuum models, e.g. the Cosserat continuum, see
Miihlhaus (1989). Most constitutive models used in concrete structures come into the
group of homogeneous, grade-1 materials, for which the stress tensor only depends on
the first deformation gradient, and for which the material properties do not depend upon
the material point &. These models are defined by

o(.n = ?F(f,t—S) (2.18)
5s=0

The time dependent behavior which is still modeled explicitly with this formulation
can be treated in a more convenient manner if the time-dependence is modeled by some
internal variables, collected in a vector g, so that the functional is given by an integral of
the stress rate. In this formulation the material model is given in an incremental formu-
lation as

t t
o(&, 1) = j & dr = _[ D, &, dr @.19)
0 0



with D, the linear-elastic stiffness matrix and the elastic strain rate given by the additive
strain decomposition

8, =6 - &,

The inelastic strain rate £, is assumed to be a function of the total strain rate and the
internal variables, i.e. €. = £&.( £, g ). Material models which comply with this descrip-
tion are for instance the models which are based on the flow theory of plasticity.

Homogeneous, grade-1 materials can also be described with a total formulation in
which the formulation of eq.(2.18) reduces to

o(&) = fF(F(¢)) (2.20)

which can be expressed as

o = D, .21

with again the additive strain decomposition &, = ¢ — €., but with the inelastic strain
vector now determined as a function of the total strain vector, €. = £,.( € ).

Both classes of constitutive models, eq.(2.19) and eq.(2.21), can be defined in a gen-
eral six dimensional stress and strain space, but it is more convenient to define the con-
stitutive model in accordance with the stress situation in the analyzed structure. In a
membrane configuration the stress and strain vectors are assumed to be given by

= oo oo T o

e = { ex &y, €& Vy |}
respectively, where the stress o, is assumed to be zero. The formulation of constitutive
models in a plane-stress situation is possible via two approaches. The first approach is to
omit the constrained stress component in the stress vector and formulate the constitutive
model in a plane-stress situation. The second approach is to expand the strain vector in
the constrained direction, formulate the constitutive model in a plain-strain situation and
finally compress the stress vector such that the constrained condition is enforced rigor-
ously, see De Borst (1991). In this study the latter approach is used because the formu-
lation of the constitutive model based on the plasticity theory is more convenient in an
unconstrained formulation. The linear-elastic constitutive relation in the unconstrained
state is given by

1-v v v 0
D = E v 1-v v 0 22
© T 1+v)(1-2v) v v 1-v 0 ’

0 0 0 YH1-2v)



In the linear-elastic state the strain component in the constrained direction ¢, , is calcu-
lated from the constraint condition o,, = 0 which results in

1%
€pe = — - (Exre + Epye) 2.24)

In the nonlinear state the internal forces are calculated in an incremental-iterative
manner and during this iterative procedure the strain vector is expanded in the con-
strained direction in the beginning of each equilibrium iteration. The updated stress vec-
tor is approximated with a first order Taylor expansion

a 1+Ar O_(i)

AL (i+]) A (&) @) _ t+Ar (i) t+A1 (i) (é+1)
o o +———a O de oV + DY de 2.25)

in which the consistent tangent stiffness matrix " D% can be written as

t+AxD(i) - Dy Dy, (2.26)
Dy Dy
with
Dy Dy Dy
Dy, = | Dy Dy Dy (2.27)
Dy Dy Dy
and
D = Dy ,Dy, , D
31 - { 31 32 34 }T 2.28)
D = { D;3,Dy,Ds5 1}

With this constitutive relation the updated stress vector in iteration (i + 1) is written as

144t z(i+1) 1+ (i) Dy Dg 4y
{ ”A'aii*”} - { HNO'E?} * l: D, D {dsgﬂ)} @2
in which & the constrained stress vector
G ={04,0,,0,}" (2.30)
and d£ the incremental constrained strain vector
d€ = { dey ,de,, , dy, |7 @31

10



Because of the plane-stress condition the incremental strain in constrained direction can
be calculated as

dsgﬂ) - _ ,+A,1D(,') ( r+AtD§i1) dé(iﬂ) + t+Ato.g) ) (2.32)
3

During an iterative process o,, will converge to zero, but during the equilibrium-finding
process. i.e. at non-converged states, the stress in the constrained direction is not neces-
sarily zero and inclusion of "¢ prevents the constrained stress drifting away from
the plane-stress condition during the iteration process. This algorithm fails if Ds; of the
tangent stiffness matrix becomes equal to zero and the constitutive model should always
be analyzed for this limiting case to ensure a numerically stable algorithm. The com-
pression of the stress vector is carried out by substitution of de(;"™ in the updated stress
vector which results in

t+Ar __(i) (GRF0]
: . ; o sy Dy D ;
Al = At =~ -Al 13 ~31 1
A D) o A ) 'D(ll; H,A,Dz(i) l: (3:; _ 5 ]dé(H ) (2.33)
33 D33

The compression of the updated stress vector is performed as a regular static condensa-
tion with an additional correction on the compressed stress vector due to the non-zero
intermediate stress in the constrained direction. Substitution of eq.(2.33) into the equi-
librium condition, cf. eq.(2.13),

J‘ BT gl by
B

results in the Newton-Raphson equilibrium iteration in the constrained stress state

. t+Ar (i)
| 874D Bav Aa™D = g - [ BT { nago _ mapl)  Ju }dv
B B

in which D the statically condensed consistent tangent stiffness matrix

D =| Dy - (239

D 13 D 31
Dy;
The correction on the internal force vector due to the non-zero intermediate stress
#459 disturbs the flow of a finite element calculation in which the internal force vec-
tor is calculated with the updated stress vector at the end of the previous iteration, that is
before the updated tangent stiffness matrix is calculated. It is more convenient to correct
the internal force vector with the tangent stiffness matrix D% and to apply after-
wards a correction vector
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A () J’ B

t+Ar (i) t+At py(i-1)
T { D13 D13
v

— t+Ar _(0)
t+8 DO o DD } oy dV (2.35)

It is important that the correction is indeed applied as has been shown by De Borst
(1991).

2.3 Constrained Newton-Raphson method

In this study, the solution of the equilibrium problem will be accomplished by a New-
ton-Raphson iteration in which the system of equations following from the finite ele-
ment discretization is solved. This system of equations is expressed as ( cf. eq.(2.13) )

t+A:K(i) Aa(i+1) — r+Atg(i)

with K the assembled tangential stiffness matrix, eq.(2.15), and the unbalance force
vector

t+Arg(i) = J'BT r+A:o_(i) dV _ :+Atq
B

The generalized external load vector "**g is as defined in eq.(2.14). The total load vec-
tor is normally applied in a number of loading steps and for each step equilibrium itera-
tions will be performed. The Newton-Raphson method in an incremental-iterative fash-
ion is now rewritten as

s (i) A g1 = t+AxAﬂ(i+l) §+ p(i) (2.36)

with " Au®"D the incremental load factor in iteration (i + 1), related to a reference
external load vector §. The vector p® is defined as

pD = Mg J‘ BT g0 gy (237
B

with ‘4™ the total load factor at the end of the previous time step . The Newton-
Raphson method and the used notation are depicted in Figure 2.1.

A crucial part of the incremental-iterative procedure is that the initial incremental
load factor has to be adapted to the structural behavior. If the initial load factor is cho-
sen properly the convergence behavior of the Newton-Raphson method is in general
quadratic. The standard load control method in which the initial load factor is kept con-
stant during the equilibrium iterations is not very efficient and fails at limit points. To
overcome this deficiency, a constraint equation has to be added to the nonlinear equilib-
rium equations as an additional equation which has the general form

12
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Figure 2.1 Constrained Newton-Raphson method and notation.
f(BAp,a) =0 (2.38)

This technique, introduced by Riks (1970) and by Wempner (1971), gives the possibility
to overcome limit points by iterating in the load-displacement space. The constraint
equation depends upon the updated incremental displacement vector and upon the load
factor via a scalar £, which reflects the influence of the load factor on the constraint.
The factor S can be considered as a scaling factor for which different proposals have
been put forward, Schweizerhof and Wriggers (1986). Crisfield (1981) and Ramm
(1981) have suggested to set the factor equal to zero, thus avoiding the dimensional
incompatibility between the displacements and the load factor. Further analyses in
which the influence of the S-factor has been studied, see Langeslag (1992), showed that
the B-factor hardly affects the convergence characteristics of the calculation. It is there-
fore assumed in this study that the S-factor is equal to zero.

In the incremental displacement vector splitting technique of Batoz and Dhatt
(1979), the incremental displacement vector Aa“" is decomposed into two parts
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Ala®) = g p®

2.39)
Allgith = g g
which results in
A = Alg@) 4 rap ) AT D 2.40)

With the additional constraint equation, eq.(2.38) this method is known as a constrained
incremental Newton-Raphson method. With this technique, introduced by Crisfield
(1981) and by Ramm (1981), the solution algorithm has an appropriate form for finite
element methods.

Introducing the total incremental displacement vector Ad, see Figure 2.1, which is
updated with the incremental displacement vector, Aa*“*", according to

t+AtAd(i+l) - t+AtAd(i) + Aa(i+1) (241)

the constraint equations can be derived from orthogonality principles between the total
incremental displacement vector and incremental displacement vector, see Forde and
Stiemer (1987). The scalar product of these two vectors results in a general expression
for the incremental load factor

RED _ t+A:Ad(i)T Al gD
o AgDT Al gD

148 A ,u(i+l) - (2.42)

Different formulations for the residual R“" in eq.(2.42) have been proposed in litera-
ture but comparison of these methods for a variety of structures shows that the actual
choice of the constraint equation is of minor influence compared with the load estima-
tion algorithm which is used, see Feenstra and Schellekens (1991) and Schellekens
(1992). In this study the constraint method which is based on linearization of a hyper-
surface in the displacement space, the updated-normal-plane method will be applied.
This method, proposed by Ramm (1981), is based on orthogonality between tangent
vector and update vector, i.e. R“*" = 0 and the incremental load factor is given by

t+AtAd(i)T Al gt*h

HALA D o
t+AtAd(i)T All g+

(2.43)

The constrained Newton-Raphson method can further be enhanced with a numerical
relaxation technique which is applied if the incremental load factors are oscillating,
Schweizerhof and Wriggers (1986). The constraint algorithm is oscillating if

( r+A1A#(i+I) _ '+NAﬂ(i) ) ( HA'A;!(O _ H-AlAﬂ(i—]) ) <0 (2.449)
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and

[ t+ArAlu(i+1) _ t+AtAlu(i) [>1 t+ArAﬂ(D _ t+AtAﬂ(i—1) | (2.45)
If this happens, the incremental load factor is calculated as

1+A1Aﬂ(i+l) _ t+AtAﬂ(i) + a ( t+A:A,u(i+1) _ r+AtA#(i) ) (2.46)

The factor « is generally chosen equal to 0. 5, see Schweizerhof and Wriggers (1986).

In case of strong localization, the constrained Newton-Raphson method can still fail
which is caused by the fact that the constraint equation is based on all displacement
degrees-of-freedom. To overcome this problem, De Borst (1986) proposed to confine
the number of degrees-of-freedom in the constraint equation. This indirect displace-
ment control method has been used in analyses which were concerned with crack propa-
gation and with discrete cracking in composite laminates and this method is reported to
be highly successful, Rots (1988), Schellekens (1992). A major draw-back of the
method is the fact that the dominant degrees-of-freedom have to be selected a-priori but
this can be avoided if techniques based on an eigenvalue analysis are used, see
Napoledo, Elwi and Murray (1992). In this study, the indirect displacement control
method will be used with a single degree-of-freedom which is actually the displacement
control method used by Batoz and Dhatt (1979) and Ramm (1981). The displacement
vector in the constraint equation is now given by

Ad = {0,0,0,---,Ad,,---,0,0,0} (247

with Ad » the prescribed displacement increment of the active degree-of-freedom. The
choice of this degree-of-freedom should be made with engineering judgement and
should fulfil the requirement that it is a continuously increasing degree-of-freedom. The
incremental load vector is now given by

1 Gi+1)
A a,

t+AtA (+1) _
ut == ——y
A”agﬂ)

(2.48)

which follows directly from the prescribed displacement which should be constant dur-
ing the iterations, i.e. Aa$™) = 0.

2.4 Line search technique

Application of line search techniques to the solution of nonlinear equations can be a sig-
nificant enhancement of the robustness of the Newton-Raphson method. However, most
studies, Matthies and Strang (1979), Crisfield (1982), Crisfield (1983), Schweizerhof
(1992), report the application of line search techniques to a modified Newton-Raphson
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method which should be regarded as less robust than the full Newton-Raphson method,
or to variable metric methods which in general do not work properly without a line
search technique. In this study the full Newton-Raphson method will be adopted and the
line search technique will be used to enhance the robustness of the iteration of the equi-
librium. Especially if the consistent tangent operator will be used, the full Newton
Raphson procedure with line searches will result in an economic solution procedure,
Crisfield (1987).

The line search technique can be regarded as a minimization of the total potential
energy IT in a given direction n which results in a minimization with respect to the
scalar s,
an

— A (1) \T 77 =0 2 49
g("™a") 3 (249

o _ o 2
ds  da Os

min II —

if the updated displacement vector is given by

t+Ata(i+l) — t+Ata(i) + n(i+1)

and if the arbitrary update direction n*" is a function of the scalar s,, the line search
factor which scales the incremental displacement field. The line search algorithm calcu-
lates the scalar s for which the potential energy of the system is minimum in the direc-
tion n. The condition given in eq.(2.49) is not satisfied exactly because the use of weak
acceptance criteria generally performs better, Dennis and Schnabel (1983). The choice
of the search direction is the critical part of the line search technique, Matthies and
Strang (1979), who use a method based on the BFGS-method to determine the new
search direction. It is not readily possible to implement this method in general purpose
finite element codes like DIANA, because of the specific structure of these programs,
and the search direction used in this study is determined by the incremental displace-
ment vector Aa = K'g. The search vector is now given by

n® = 5 Aa®V = 5, (Ala + A" VA"a) (2.50)

Because the load factor A" is in general a function of the incremental displace-
ment vector, the combination of the line search technique with a constrained Newton-
Raphson method results in load level adjustment during the line searches. This draw-
back can be avoided if the updated-normal-plane constraint is used in conjunction with
the line search algorithm. The residual is then given by

. T .
RED = MAZD 5, Ag™D = 0 @.51)

which results in the updated incremental load factor
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1+ar A DT A1 (i41)
r+AtAﬂ(i+l) - _ Ad A'a

nT ] 2.52)
t+AzAd(l) Al gli+1)

which is indeed not influenced by the line search factor s, and the line search can be
performed on a constant load level. The minimization reduces to the scalar equation

g( ,+A,a(,')+ Sk Aa(i+1) )T Aa(i+1) =0 (2.53)

which will be solved using the regula-falsi method. If the line search algorithm is
applied the additional cost is negligible compared with the calculation of the internal
force vector because the initial energy at s, = 0 is calculated as the inner product of the
incremental displacement vector and the unbalance-force vector from the previous itera-
tion and the energy at s, = 1 is always known by the scalar product because the internal
force vector is always calculated once. The criterion which has to be fulfilled reads

| g( t+Ata(i) + skAa(Hl) )T Aa(i+l) | < n I g( t+Ata(i) )T Aa(i+l) | (254)

with 7 a tolerance factor, which is usually chosen equal to 0. 8 for the Newton-Raphson
method. This slack criterion is usually fulfilled in the first line search. The line search
algorithm is supplemented with a stopping criterion if no significant update is calculated
and if the line search factors are close together. A cut-off criterion is used if an extrapo-
lation is calculated, Schweizerhof and Wriggers (1986).

2.5 Load estimation

The Newton-Raphson method is used within the context of an incremental-iterative pro-
cedure. The load is applied in a number of steps with each incremental load step given
by the user. This method demands knowledge about the behavior of the structure to sup-
ply incremental load factors in accordance with the structural response. Directly related
is the question whether to increment or decrement the load factor when a snap-back or a
snap-through occurs in the load-displacement path. Both issues should be solved to
obtain a stable solution strategy to analyze the nonlinear response of structures.

Different proposals for a self-adaptive loading method have been put forward, see
Clarke and Hancock (1990) for an overview, but in physically-nonlinear analyses a
work-based method shows good performance, see Feenstra and Schellekens (1991). The
work-based method which will be used in this study can be considered as an unscaled
version of Bergan’s stiffness parameter method, Bergan (1982) and Crisfield (1983), and
can be conceived as a measure for external work or strain energy. Suppose, the total
external work at time # is given by

'Wo= 1y "AE® 'AI™T § (2.55)
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with the total incremental displacements ‘Ad‘” at the end of the previous time step with
the corresponding load factor ‘Ax'™. It is now assumed that this work is equal to the
approximated external work in step ¢ + At

WAL o 1y HAA d({))T LN 'u(O) g (2.56)

with "¥AdQ = A LO AT q© this results in

tAﬂ(n) 'Ad(")T g

AL A L (0) N2
A = @57
( M ) A”a(o)T é
The initial load factor in step ¢ + At is given by
ORIV O K
[TAL™ 'Ad™ § |
A O = [ £_2F 9 J 2.58)
IATa®" g |

In order to calculate the the proper approximation of the external work it is necessary to
use the tangent stiffness matrix in the first iteration of the new load increment. When a
modified Newton-Raphson iteration method is used with initially the previous tangent or
even the linear-elastic stiffness matrix, this method may fail due to a severe over-
estimation of the new load factor. In order to circumvent that the load factor becomes
too large or impractically small, the load factor should be bounded between a lower and
an upper bound which will be dependent on the structural behavior, as

Allgin < 1*YAUO | < Apty (2.59)

A major problem of this method is that the calculated load factor will be reduced in time
steps near limit points in the behavior of the structure, but that the load factor is not
increased if the behavior after a limit point is nearly linear. This problem mainly occurs
in geometrically-nonlinear analyses. In physically-nonlinear analyses this problem is
less dominant. Usually only one limit point will be encountered, after which an unstable
branch has to be traced in which small steps are needed anyway to achieve convergence.

The indirect displacement method based on a single degree-of-freedom is in fact a
solution technique in which a displacement is prescribed and the external load factor is
calculated such that during the iterations the prescribed value will be reached. The ini-
tial load factor is now completely defined by the user-supplied value of the prescribed
degree-of-freedom Ad » and the current stiffness of the structure. The initial load factor
in case of an indirect displacement control method is given by

Ad,
Al g)) (2.60)

1+Ar A #(0) _
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The total load factor should be decremented when the response of the structure
shows a global softening response. The sign of the load factor can be determined using
different methods. The first method is that unloading is initiated whenever a negative
pivot is encountered in the triangularized global stiffness matrix. The method fails when
a bifurcation point exists in the load-displacement path and should therefore be used
with care in an application to reinforced concrete structures, but has proved to be suc-
cessful in nonlinear analyses with sharp snap-back behavior due to a discrete failure
mode. The second method is similar to the one used by Crisfield (1981) to determine the
appropriate root of the quadratic equation for the quadratic constraint methods. The total
incremental displacements in step ¢ are given by ‘Ad™ and the appropriate load factor
is chosen which gives a positive value for the vector product of the total incremental dis-
placements in the previous time step and the incremental displacements in the first itera-
tion of the following time step, so

+1ALO | i TAIPTAY GO > 0
r+A1Aﬁ(O) - 2.61)
_IHMALO | f IAgTA O <

Numerous analyses with this method, Feenstra and Schellekens (1991), show that this
method is successful in tracing the complete load-displacement path even with severe
snap-back and snap-through behavior. The method is also used by Bellini and Chulya
(1987) who also claim this method to be highly successful.

2.6 Summary

A formulation of the finite element equations has been given which is derived from the
principle of virtual work without assumptions about the constitutive model. The consti-
tutive models which will be used in this study are based either on an incremental formu-
lation or on a total formulation. The application in membranes justifies the assumption
of a plane-stress condition. However, the formulation of the constitutive models will be
given in an unconstrained situation where the constrained condition is enforced by a
compression/expansion method.

The nonlinear equations which result from the equilibrium condition are solved in
an incremental-iterative procedure by means of the Newton-Raphson method. The tan-
gent stiffness matrix which is necessary in this method has to be calculated consistently
with the Newton-Raphson method in order to retain the quadratic convergence charac-
teristics of the iteration method. To overcome limit points, the Newton-Raphson method
will be used in conjunction with an arc-length technique, the updated-normal-plane
method, which provides a solution strategy which is capable of handling snap-back and
snap-through behavior in the load-displacement. The robustness of the Newton-Raphson
method has been enhanced using a line search technique and a numerical relaxation
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method. The estimation of the increment in a load step is probably the most important
issue and a work-based method has been discussed to assess the load increment. The
loading/unloading criterion can be founded on two mechanism. The first method is
based on the existence of negative pivots in the global stiffness matrix and will be used
if strong localizations dominate the global response. The second method is based on
displacements and it has been shown that this method is stable if the failure mode has a
global character.

The solution strategy which will be adopted in this study is given by the Newton-
Raphson iteration method with a consistent formulation of the tangent stiffness matrix.
The Newton-Raphson method will be constrained with the updated-normal-plane
method in order to overcome limit points. The robustness of the iteration method will be
enhanced with a line search algorithm with a maximum of line searches equal to five
and a convergence tolerance 7 = 0. 8. Numerical relaxation with a factor e equal to 0.5
will be used throughout the analyses. The iteration is assumed to be converged if the
norm of the unbalance force vector is less or equal to 10~ times the norm of the refer-
ence unbalance force vector calculated at the beginning of each load step. The incre-
mental load factor will be calculated using the work-based method with the sign of the
load increment determined with either one of the methods discussed above depending
on the specific application. If converged solutions cannot be reached with this solution
procedure, indirect displacement techniques will be used to ensure converged solution.
When this technique is used, it will be mentioned explicitly.

In the applications which will be presented in this thesis, no attempt will be made to
compare different solution techniques. Because the behavior of these structures is highly
nonlinear, the convergence characteristics are influenced by many factors and an objec-
tive comparison of different solution techniques is hardly possible. The analyses show
that with the proposed solution technique, convergent solutions could be obtained which
indicates that the proposed combination of techniques results in a stable solution proce-
dure.

3. MATERIAL MODEL FOR
PLAIN AND REINFORCED CONCRETE

In experiments on plain concrete, two types of failure are observed which are both char-
acterized by the formation of cracks in the material. When a concrete specimen is
loaded in tension the response is nearly linearly up to the maximum load. At peak load
existing cracks at micro-level due to hydratation and drying shrinkage, see Wittman
(1983), localize in a narrow band and a macro-crack develops in the process zone what
is attended with a decrease of the external load, Hordijk (1991). Recently, also the
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compressive failure of concrete has been recognized to be governed by cracking of con-
crete, Van Mier (1984), Vonk (1992). The crack growth at the micro-level causes the
softening behavior of concrete under compression. Until about 30 % of the maximum
compressive strength the material behaves linear-elastically because pre-existing micro
cracks are stable and do not propagate. These micro cracks start to grow if the specimen
is loaded further and up to the maximum compressive strength the formation of com-
bined mortar and bond cracks have been observed. After the maximum compressive
strength macro cracks develop because the micro cracks localize in narrow bands which
is attended with a decrease of the external applied load.

The behavior of reinforced concrete is also characterized by the formation of cracks
in the material. The major difference with plain concrete is the bond action between
concrete and reinforcement which results in the formation of a number of cracks and a
redistribution of internal stresses from concrete to reinforcement.

The constitutive behavior will be modeled according to a phenomenological
approach in which the observed mechanisms are modeled in such a fashion that simula-
tions with the developed material model are in reasonable agreement with the experi-
ments.

3.1 Discretization aspects

The constitutive behavior of concrete will be modeled with a smeared model in which
the damaged material is still considered as a continuum in which the notions of stress
and strain apply. With this assumption, the localized damage can be represented by an
internal damage parameter, denoted as x, which is related by an equivalent length to the
released energy per unit cracked area, G,. In a finite element calculation this equivalent
length should correspond to a representative dimension of the mesh size, as pointed out
by many authors, see BaZant and Oh (1983), Crisfield (1984), Willam, Pramono and
Sture (1986), Rots (1988) and Oliver (1989). The equivalent length, denoted by 4,
depends in general on the chosen element type, element size, element shape, integration
scheme and even on the particular problem considered. In this study it is assumed that
the equivalent length is related to the area of an element, as follows

ng ny, Wy
h=aVA, = a,,( 3 3 det(d) w, w,,) 3.0
£

=1g=1

in which w; and w, the weight factors of the Gaussian integration rule as it is tacitly
assumed that the elements are always integrated numerically. The local, isoparametric
coordinates of the integration points are given by & and 7. The factor &, is a modifica-
tion factor which is equal to one for quadratic elements and equal to V2 for linear ele-
ments, see Rots (1988). The equivalent length calculated with this formula is accurate
when the mesh is not distorted too much and when most cracks are aligned with the
mesh lines. For most practical applications the formulation for the equivalent length,
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eq.(3.1), gives a good approximation.

The accumulated damage in the material will be represented by an internal parame-
ter © which is assumed to be determined by the inelastic work using a work-hardening
hypothesis. The inelastic work rate W_ is defined by

W, =0"é =d(x)k (3.2)

in which &, the inelastic strain rate vector and &( x ) an equivalent stress as a function
of the internal parameter . The inelastic work g is then defined by the integral

=00 K=00
8 = J W.dr = J‘ 6(x)dx (3.3)
1=0) x=0

Assuming that the inelastic work g is uniformly distributed over the equivalent length,
the relation between the fracture energy G, and the work g/ is given by
Gy

h

8 = (CX)]

This results in a material model which is related to the energy which has to be dissipated
due to the irreversible damage in the material. The concept of an equivalent length has
been used extensively in the analysis of concrete structures. In this study, this concept
will also be used to model the compressive softening behavior of concrete, although it is
recognized that this mechanism is perhaps more related to the volume of the elements
than to a representative length of the elements.

The nonlinear material behavior is now completely governed by an assumed equiv-
alent stress - internal parameter relation, the & — « relation, which will be discussed in
the next paragraph for both tension and compression.

3.2 Uniaxial behavior of plain concrete

The design of concrete structures is usually based on a grade of concrete which corre-
sponds to a specific value of the characteristic compressive strength f, which is deter-
mined with compressive tests on concrete cylinders 150 [mm] in diameter and 300 [mm]
in height, see CEB-FIP model code (1990). A characteristic stress-displacement dia-
gram for concrete loaded in compression is shown in Figure 3.1. For purposes of simu-
lation and for an estimate of other concrete properties, the mean value of the compres-
sive strength f,,, is needed, which is estimated by, see CEB-FIP model code (1990),

fom = Fa + 8 [Nimm®] 3.5
The initial behavior of concrete is modeled using a linear-elastic constitutive model
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Figure 3.1 Concrete specimen under uniaxial compressive loading.

which is completely defined by the Young’s modulus and the Poisson ratio. The
Young’s modulus of concrete is defined as the initial slope of the stress-strain diagram
and depends on the compressive strength and on the type of aggregate. For normal
weight concrete the Young’s modulus can be estimated from the CEB-FIP model code
(1990) recommendation

E, = 10* f% [N/mm®] 3.6)

The Poisson ratio ranges from 0. 1 to 0. 2. In this study a value of the Poisson ratio equal
to 0.15 will be used. Concrete loaded in compression behaves linear-elastically up to
approximately 30 % of the compressive strength and upon further loading a gradual
decrease of the stiffness is observed. If the deformation continues after the maximum
compressive stress, the slope becomes negative and the descending branch of the stress-
deformation curve characterizes the softening behavior of the concrete. The compres-
sion softening behavior of a concrete specimen is highly dependent upon the boundary
conditions in the experiments and the size of the specimen, Van Mier (1984) and Vonk
(1992). It is nevertheless assumed in this study that the compressive softening of con-
crete can be represented by a compressive fracture energy, denoted as G, which is
assumed to be a material parameter. With this energy-based approach the compressive
and tensile softening can be described within the same context which is plausible,
because the underlying failure mechanisms are identical, viz. continuous crack growth
at micro-level. Experimental data of the compressive fracture energy have been pro-
vided by Vonk (1992) who distinguishes a local compressive fracture energy which is
constant and a continuum compressive fracture energy which is increasing with increas-
ing specimen height. The total compressive fracture energy which has been found in the
experiments ranges from 10 to 25 [Nmm/mm?®] which is about 50-100 times the tensile
fracture energy.

The compressive stress-strain behavior has been approximated by different
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Figure 3.2 Compression softening model

functions, see e.g. Vecchio and Collins (1982), CEB-FIP model code (1990), but these
relations are usually no energy-based formulations. In this study, the compressive con-
stitutive model will be modeled either with ideal plastic behavior or with a compression
softening model given by a parabolic equivalent stress-equivalent strain diagram accord-
ing to Figure 3.2, which has been modified for the fracture energy-based model. The
formulation of the equivalent stress reads

2
Tm (1 w4 % _ 3K i <k,
3 K, K2
o = , 3.7
PRSI L. T
(xu_xe)z

The maximum compressive strength will be reached at an equivalent strain «, which is
determined irrespective of element size or compressive fracture energy and reads

4 me
K, = —— 3.8
<7 3E, G
The maximum equivalent strain «,, is related to the compressive fracture energy and the
element size and reads

K = 152 1 (3.9
= 1. - ==K, .
“ hfom 48°

. . . 11
The pre-peak energy has been taken into account with the correction factor 8 in

€q.(3.9). A possible snap-back on constitutive level if the equivalent length becomes too
large, has been avoided by the assumption that the ultimate equivalent strain x, is
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limited by
k, 2 175k, (3.10)

It is noted that the limiting case x, = 1. 75 x, results in a steep descending branch after
maximum stress.

The tensile strength of concrete is in accordance with the CEB-FIP model code
(1990) related to the compressive strength. For the simulations performed in this study,
the characteristic value of the tensile strength has been estimated by the CEB-FIP model
code (1990) relationship

fam = 0.30 2 [N/mm*] G.11)

A characteristic stress-deformation curve for concrete subjected to tensile loading is
shown in Figure 3.3. Up to approximately 90 % of the maximum tensile load, the con-
crete behaves as a linear-elastic material. Then a macro-crack starts to develop and the
stiffness reduces rapidly until the macro-crack cannot transfer any stress anymore. The
released energy is then determined by the area under the stress-displacement diagram,
which is equal to the fracture energy times the crack area. The fracture energy G, is
assumed to be a material parameter and is related to the compressive strength of the
material f,, and the maximum aggregate size d,,,,, according to the CEB-FIP model
code (1990) recommendations which reads

G, = 107 ap £ [Nmmimm®) 3.12)
with the value of o given by Table 3.1.

Table 3.1 Coefficients e for an estimate of G ; ( CEB-FIP model code )

dmax [mm] ar
8 4
16 6
32 10

The material model up to the tensile strength f,, , is assumed to be given by a linear-
elastic model. The material model for tensile behavior after the tensile strength has been
violated is depicted in Figure 3.4 as an equivalent stress - equivalent strain diagram.
The post-peak response is governed by the tensile fracture energy and the equivalent
length. The tensile stress-strain relationship has been approximated by different func-
tions, see e.g. CEB-FIP model code (1990), Hordijk (1991), and is one of the relevant
features of the nonlinear tensile behavior of plain concrete, Rots (1988). In this study
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Figure 3.3  Concrete specimen under uniaxial tensile loading.

f ctm

linear

exponential

Figure 3.4  Tension-softening models

two different softening diagrams will be used, the linear and exponential diagram. For
linear softening the equivalent stress as a function of the internal damage parameter « is
given by

_ K
6= fam(l- K—u) (3.13)

and for exponential softening
G = famexp(—x/x,) (3.19)

The ultimate damage parameter x, is calculated by

Gy

(3.15)
b fom

x, =k

with k = 2 for linear softening and k = 1 for exponential softening. The parameter x, is
assumed constant during the analysis and is considered to be an element-related
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material property which can be calculated from the material properties, the tensile
strength, the fracture energy and the element area represented by the equivalent length
The tensile fracture energy will be released in an element if the tensile strength is vio-
lated and the deformations localize in the element. With this approach the results which
are obtained with the analysis are objective with regard to mesh refinement. It is how-
ever possible that the equivalent length of an element results in a snap-back in the con-
stitutive model and the concept of objective fracture energy which has been assumed is
no longer satisfied. In this case the strength limit has to be reduced in order to obtain an
objective fracture energy by a sudden stress drop, resulting in brittle fracture, see Rots
(1988). The condition of a maximum equivalent length is given by

G E
h<k—L (3.16)
fam
If the condition of eq.(3.16) is violated, the tensile strength is reduced to
v
G,E\"
Jeam = ( fT) G.17

3.3 Biaxial behavior of plain concrete

The constitutive behavior of concrete under biaxial states of stress is different from the
constitutive behavior under uniaxial loading conditions. The influence of the biaxial
stress state has been investigated up to peak stress to provide a biaxial failure criterion,
where it becomes evident that the tensile strength of concrete is influenced by the lateral
stress state. The experimental data of concrete subjected to proportional biaxial loading
is shown in Figure 3.5, Kupfer and Gerstle (1973). The maximum compressive strength
increases approximately 16 % under conditions of equal biaxial compression, and about
25 % increase is achieved at a stress ratio of o, / , = 0. 5. A lateral compressive stress
decreases the tensile strength, which can be explained that a lateral compressive stress
introduces tensile stresses at the micro-level due to the heterogeneity of the material,
which increases the process of internal damage, Vonk (1992). A lateral tensile stress has
no major influence on the tensile strength. The increase in the compressive strength
under biaxial compression can be explained by internal friction and aggregate interlock.
The failure envelop which can been derived from the data of Kupfer and Gerstle is also
valid for nonproportional loading because the strength envelop seems to be largely inde-
pendent of the loading path, Nelissen (1972), which confirms the notion that softening
due to compressive or tensile external loadings has the same underlying failure mecha-
nism, i.e. continuous crack growth at the microlevel. Experimental data on the soften-
ing behavior of concrete under biaxial stress conditions is scarce but there is a
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Figure 3.5  Biaxial strength of plain concrete, Kupfer and Gerstle (1973)
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consensus of opinion that the softening of concrete is influenced by a biaxial stress state.
For a multi-axial stress state it has been shown that softening is very sensitive for a con-
fining pressure but in a biaxial stress state the concrete can always fail in the third direc-
tion which reduces the sensitivity of the softening to the confining pressure compared
with the triaxial experiments, Vonk (1992).

3.4 Uniaxial behavior of reinforced concrete

The uniaxial compressive behavior of reinforced concrete is usually modeled with the
compressive material model for plain concrete which has been discussed previously.

The tensile behavior of reinforced concrete is not fundamentally different from plain
concrete and is also governed by cracking in the concrete. A characteristic stress-
displacement diagram of a tension test is depicted in Figure 3.6. The existing cracks at
the micro-level localize in a narrow band and a number of primary macro-cracks will
develop. But due to bond between concrete and reinforcement, a gradual redistribution
of internal forces from concrete to reinforcement is possible under the formation of sec-
ondary cracks until a stabilized crack pattern has developed. It is clear that the stiffness
of the tension member is increased with reference to the reinforcing bar by the stiffness
of the concrete. This effect is usually referred to in the literature as the tension-stiffening
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Figure 3.6  Reinforced concrete tensile member.

effect. Different formulations have been put forward for this tension-stiffening phe-
nomenon, but in most formulations no reference has been made to the fracture energy
which is actually released in the material.

The total amount of released energy at stabilized cracking is determined by the frac-
ture energy of a single crack G, and the average crack spacing /. The transition
between plain and reinforced concrete can be obtained by assuming that the released
energy is equal to the fracture energy of the material if the average crack spacing is
equal to infinity. In general, the dimensions of the finite elements in simulations of rein-
forced concrete structures, and thus the equivalent length 4, are much larger than the
average crack spacing, I, and therefore it is assumed that the released energy can be
determined by

h
Gf = Gf(1+l—) (3.18)

with G ; the fracture energy of a single crack, 4 the equivalent length and I, the average
crack spacing. This average crack spacing is a function of the bar diameter, the concrete
cover and the reinforcement ratio according to the CEB-FIP model code (1990), which
reads

I, = 2/3ls,maz = 2/3(280 +

) (3.19)

5

with 5, the minimum bond length, ¢, the diameter of the reinforcement, a factor a equal
to four for deformed bars and & equal to two for plain bars and the reinforcement ratio
p; given by

o

= == 3.20
Ps A, (3.20)

with A; the total area of reinforcement and A, the cross area of the tensile member. The
minimum bond length s, is usually taken equal to 25 [mm] in the absence of more
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precise data. A comparison of 132 experiments on tensile members, Braam (1990),
showed that the average crack spacing given by eq.(3.19) is a good approximation of the
experimentally observed crack spacing.

The formulas given in the previous paragraph are all related to the crack spacing in
reinforced tensile members. Now, attention will be focused on the approximation of the
released energy in plane two-dimensional structures like panels, reinforced with a rein-
forcing grid in two orthogonal directions. The crack spacing in panels is usually deter-
mined by treating a panel as a tensile member by the definition of an effective reinforce-
ment ratio. If the reinforcement is supplied with a layer of a reinforcing grid, the aver-
age crack spacing is calculated with a modified expression of eq.(3.19),

I, = W3l e = H3(250 + i ) (321
o p:,eff

with the effective reinforcement ratio p; . determined by

A
Ac,eﬁr

P = (3.22)

The effective tension area, A, ;g = heg b, is estimated according to the CEB-FIP rec-
ommendations with the relation

hey = min{2.5(c+¢2ﬂ) , -;*}

with ¢ the concrete cover on the reinforcement, ¢,, the equivalent bar diameter of the
reinforcement and ¢ the thickness of the structure. These geometrical properties are
shown in Figure 3.7. The effective tension area is calculated with the equivalent bar
diameter of the reinforcing grid which is determined by

_ 9Pt 4P
Py + Pq

Peq (3.23)

with the reinforcement ratios p, and p, in the p- and g-directions of the reinforcing
grid, respectively. The diameter of the reinforcement is given by 4, and ¢, in the p- and
g-direction. The average crack spacing can now be calculated in the two directions of
the reinforcing grid. The crack spacing given by eq.(3.21) is based on the fact that the
cracks form at right angles to the reinforcing direction. When the cracks form at
inclined angles with the reinforcing directions this identity cannot be used to estimate
the crack spacing. In these cases, the average crack spacing is calculated with the fol-
lowing expression according to the CEB-FIP model code (1990),
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Figure 3.7 Concrete slab with two layers of reinforcement. Effective tension area
according to CEB-FIP model code.

(Icosal Isinal]'1
|, = + (324
Lp lsq

where a denotes the angle between the reinforcement in the p-direction and the direc-
tion of the principal tensile stress at incipient cracking. The crack spacings predicted
with eq.(3.24) are theoretically reasonable. For a structure reinforced equally in the p-
and g-directions subjected to a pure shear loading, the cracks are forming at 45° to the
p-direction and the crack spacing is 1,V2 times the crack spacing in the p- or g-
direction. If the structure is only reinforced in the p-direction, the crack spacing for ten-
sion in the p-direction is equal to the value given by eq.(3.21). For tension in the g-
direction the predicted crack spacing is equal to infinity, which implies that only one
crack is formed in the structure. Comparison of the theoretical crack spacing with the
experimental results of one-directionally reinforced structures shows that the trend of
the crack spacing with increasing angle « is predicted correctly, but that the crack spac-
ing is usually underestimated, Bhide and Collins (1987). This is due to the fact that only
primary cracks have been observed with the secondary cracks being ignored. The
expression of eq.(3.24) may be used according to the CEB-FIP model code (1990) when
a more advanced model is not available.

As indicated in Figure 3.7, the reinforcement is usually applied in more layers with
an arbitrary direction through the thickness of the structure. The average crack spacing
of the structure is then determined by the smallest average crack spacing of all reinforc-
ing grids. The average crack spacing in the case of different reinforcing grids with arbi-
trary directions will be given by by a modification of eq.(3.24),

-1
i, = (at + ay) (3.25)

in which the factors a, and a, are determined by
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a; = max(—

5.0j .
J=1, 0 ngy (3.26)

a, = max(———
I .
5,97
with &; the angle between the reinforcement p-direction and the direction of the princi-
pal tensile stress at incipient cracking. It has tacitly been assumed that the cracks propa-
gate through the entire thickness of the structure with no localization in the thickness
direction. With this approach, the fracture energy in reinforced concrete can be assessed
on the basis of the fracture energy of concrete, the reinforcement properties and the
angle between reinforcement and the principal stress at incipient cracking. In this fash-
ion, the tension-softening of reinforced concrete has been formulated in a rational fash-
ion.

7\

tension-stiffening

tension-softening

reinforcement

- £

Figure 3.8  Constitutive model of reinforced concrete. Schematical representation.

After a stabilized crack pattern has developed, stresses are still transferred from rein-
forcement to concrete between the cracks due to the bond action which increases the
total stiffness of the structure, see Figure 3.6. In this study it is therefore assumed that
the behavior of cracked, reinforced concrete loaded in tension can be considered as the
superposition of the stiffness of plain concrete, a stiffness of the reinforcement and an
additional stiffness due to bond between concrete and reinforcement which is referred to
as the tension-stiffening component. This leads to the following summation of stress
contributions

o =0, + 0, + 0, G271

with o, the stress contribution of the concrete, o, the contribution of the reinforcing
steel, and o;, the interaction stress contribution due to tension-stiffening, see Figure 3.8.

32



Figure 3.9 Tension-stiffening model.

The additional stress due to tension-stiffening is assumed to be given as a function of
the strain in the direction of the reinforcement and will be active on the effective tension
area defined in Figure 3.7. The interaction stress is assumed to be given by a tri-linear
function according to Cervenka, Pukl and Eligehausen (1992) which is depicted in Fig-
ure 3.9. The interaction stress is only active if the strain in the reinforcement is larger
than £, which is determined by

£ = —/ COs" @ (3.28)

with « the angle between the direction of the reinforcement and the direction of the
principal stress at incipient cracking. The factor ¢, is determined by the crack spacing,
the equivalent length of the element and the fracture energy of the concrete and is given
by

rc

e, = kcos’a —L 3.29
o B foom ¢

with k equal to one for exponential softening and & equal to two for linear softening.
The constant part of the diagram is a fraction of the tensile strength of the concrete with
the factor ¢, as a rough approximation equal to the tensile strength, i.e a,, =1.0. The
tension-stiffening component is reduced near the yield strain of the reinforcement &, in
order to avoid an artificial increase of the yield stress of the reinforcement. The strain at
which the tension-stiffening component is reduced is given by

s ferm

(3.30)
p:,zﬁ' E:

£, = £y =

This tri-linear function will be used in this study, but further research to the actual func-
tion is necessary.
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3.5 Biaxial behavior of reinforced concrete

The biaxial failure surface of plain concrete is also applicable to reinforced concrete,
because the reinforcement is usually not activated in the linear-elastic state. The tension-
tension behavior is not affected by the biaxial stress state and will be modeled with the
uniaxial behavior in both directions. The compression-compression behavior will also
be modeled with the uniaxial model. The compression-tension behavior of reinforced
concrete is usually modified after cracking, because it is assumed that the compressive
strength of concrete is affected by cracking in the lateral direction. Vecchio and Collins
(1982) analyzed the results of their experiments and found that the compressive strength
should be reduced as a function of the lateral tensile strain down to 20 %. The large dis-
crepancy between the proposal of Vecchio and Collins and the usual reduction up to
20 %, see for an extensive literature survey Kollegger and Mehlhorn (1990a), was the
starting point of a comprehensive experimental study by Kollegger and Mehlhorn at the
University of Kassel. The experimental study concerned 47 panels with dimensions
500 x 1000 [mm?] and a thickness of 100 [mm] loaded in a tension-compression state,
see Figure 3.10.

F
=(

Figure 3.10  Experiment Kollegger and Mehlhorn (1990a).

The study concerned five series of tests with different reinforcement geometry and rein-
forcement directions. An influence of the reinforcement properties could not be deter-
mined in the study, and a reduction of the compressive strength up to 20 % as a function
of the transverse tensile stress was proposed. The experimental results of all panels are
given in Figure 3.11 in which the compressive strength of the panels is plotted against
the lateral stress. It is clear that the stresses in the panels are compressive in the direc-
tion of the tensile loading. These compressive stresses result from prevented lateral
strain by the reinforcement in the tensile direction and is calculated by

F
o = "A_l - a:(gl)'pl
c
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Figure 3.11  Biaxial strength of reinforced concrete, Kollegger and Mehlhorn (1990a).

with F; the tensile force, A, the concrete area and o, the stress in the reinforcement as a
function of the strain component &; which is measured on the panel surface. The rein-
forcement ratio in the lateral direction is denoted by p,. However, when Figure 3.11 is
examined in more detail, it is not obvious that the compressive strength is a function of
the transverse stress, since we observe a constant reduction of the compressive strength.
If the compressive strength is depicted as a function of the transverse strain, see Figure
3.12, it is even more pronounced that a reduction of the compressive strength as a func-
tion of the lateral strain cannot be observed, but that the apparent compressive strength
of the panels is approximately 70 % of the mean compressive strength. The compres-
sive strength has been determined with compression tests on concrete cubes
200 x 200 x 200 [mm?] and the differences between the cube compressive strength and
the apparent compressive strength of the panels has been explained by Kollegger and
Mehlhorn as the influence of the manufacturing of the panels, eccentricities and the non-
linear relation between the mean compressive strength and the biaxial stress state in the
panels. The compressive strength of two panels which have been loaded in compression
without tensile loading have been given with a solid dot in Figures 3.11 and 3.12. These
two panels have been reinforced only by four rebars with a diameter of 6. 5 {mm] in the
corners and also for these two panels a reduction of the compressive strength is
observed of approximately 70 %. These panels can be considered as plain concrete and
it is obvious that also for these panels the apparent compressive strength is reduced
when compared with the cube compressive strength. A possible explanation for this
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Figure 3.12 Compressive strength as a function of the transverse strain, Kollegger
and Mehtlhorn (1990a).

phenomenon is that the compressive strength of concrete is highly influenced by the
boundary conditions and the size of the specimen, see van Mier (1984), Vonk (1992).
The size effect and the effect of the boundary conditions should result in a constant
reduction of the compressive strength of all panels with or without reinforcement which
is indeed observed. Further investigations should give more insight in the mechanisms
of strength reduction, size effect and boundary conditions in compressive tests. For the
moment it is assumed in this study that the compressive strength of concrete is reduced
by a constant factor of approximately 20 %.

3.6 Summary

The failure mechanism of concrete loaded in tension or compression is essentially the
same, viz. crack growth at the microlevel of the material. The experimental results of
triaxial test show a clear transition point between the brittle failure mechanism which is
associated with cracking, and a ductile failure mechanism which is associated with
crushing. But in biaxial tests, these failure mechanisms are not clear because the mate-
rial can fail in the unconstrained direction which prevents a ductile behavior of concrete
in compression. However, it is assumed that two failure mechanisms can be distin-
guished, one associated with a localized fracture process and one associated with a more
distributed fracture process which can be termed as crushing of the material. It is
assumed that the internal damage due to these failure mechanisms can be represented
with two internal parameters x and xy for damage in compression and tension respec-
tively, which are in general related to the inelastic strain.

The behavior of plain and reinforced concrete in tension is governed by the same
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failure mechanism but the total internal damage in concrete with reinforcement is in
general larger because of the formation of secondary cracks. It is assumed that the
increase of the internal damage can be estimated by the average crack spacing which is
a function of the reinforcement properties. It is also assumed that the behavior in com-
pression of plain and reinforced concrete can be modeled with the same approach. The
reduction of the compressive strength of reinforced concrete due to cracks in the lateral
direction could not be observed, but the compressive strength will be reduced with a
constant factor which reflects the effect of different boundary conditions and the size
effect.

The formulation of the constitutive model for plain concrete which will be devel-
oped in the next Chapter should have the ability to model the damage in the material
with internal parameters, which are in general functions of the inelastic strain. These
inelastic strains result from a dissipative process in which fracture energy is released
during the process of internal fracture.

4. MODELING OF PLAIN CONCRETE

The mathematical description of material behavior is commonly named a constitutive
model. In this study, two different types of constitutive models will be used for the
description of plain concrete, firstly constitutive models based on an incremental or a
rate formulation, and secondly constitutive models based on a total formulation. The
advantages of the first model are that the model allows for a transparent combination
with other nonlinear phenomena, such as creep, shrinkage and thermal loading, and that
it incorporates path-dependent behavior which allows for non-proportional loading. The
advantage of the second model is the conceptual simplicity.

A well established incremental formulation is the fixed multi-directional crack
model, De Borst and Nauta (1985), Rots (1988), which allows for a number of non-
orthogonal cracks. In this model, a crack is formed perpendicular to the direction of the
major principal stress if this stress violates the tensile strength. After the first crack,
another crack is allowed to form if the tensile strength is again violated by the major
principal stress, and if the angle between the existing crack and the direction of the
major principal stress exceeds a certain value, the threshold angle. Usually, this thresh-
old angle is set equal to 30° which implies a maximum number of cracks which are
allowed to form of six. However, numerical difficulties have been reported when state
changes occur, Crisfield and Wills (1987). To analyze structures which are in a state of
compression-tension, e.g. shear wall panels, the crack model can be combined with a
plasticity model to describe crack formation and plasticity, De Borst and Nauta (1985),
but this combination has been reported to result in numerical difficulties, Wang, Van der
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Vorm and Blaauwendraad (1990). Because the major goal of this study is the develop-
ment of stable numerical tools to analyze reinforced concrete structures, a different
model has been formulated to solve both the problem of overestimation of the failure
load with the fixed smeared crack model, Rots (1988), and the numerical problems in
the tension-compression region. A constitutive model has been developed which
describes the formation of cracks within the framework of plasticity. The theory of plas-
ticity is well established and sound numerical algorithms have been developed, see for
instance Simo, Kennedy and Govindjee (1988).

The rotating crack model is usually presented in a total strain formulation, see
Willam, Pramono and Sture (1987), and this model has been used in the analyses of
reinforced concrete structures, Crisfield and Wills (1987), Kollegger (1988). If the Pois-
son effect is neglected after cracking, the model is probably the most appealing
approach for engineers to describe the nonlinear behavior of concrete in tension and
compression. A nonlinear compressive behavior is easily implemented in such model,
because the algebraic formulation can be extended with a compressive branch. The sec-
ond model within a total strain formulation which will be considered is the Rankine
yield criterion based on the deformation theory of plasticity. This model will be dis-
cussed merely to show the analogy with the rotating crack model, because it is difficult
to modify the Rankine model based on a deformation theory to allow for unloading.
Even for monotonic proportional loading, local unloading is possible on integration
point level, and for this reason the deformation plasticity model is not considered as an
alternative for the rotating crack model.

4.1 Incremental formulations

A constitutive model formulated in an incremental form gives the possibility to model
the history of the material implicitly with the definition of internal variables. If an addi-
tive decomposition of the strain rate vector & is assumed into an elastic, reversible part
&, and an inelastic, irreversible part £,

& =&, + & @.1)

the basic formulation is given. The elastic strain rate vector determines the stress rate
vector through the elastic stiffness matrix D,

6 =D, é, 42)

The evolution of the inelastic strain is dependent upon the assumption of the constitutive
model and is in general a function of the stress and strain vector and the internal vari-
ables. The inelastic strain will now be determined with an incremental formulation
based on the flow theory of plasticity.

A fundamental notion of plasticity theory is the existence of a yield function
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which depends on the stress vector &, the back-stress vector 7, which allows for a kine-
matic hardening behavior, and on a number of scalar-valued internal variables, con-
veniently collected in a vector g. The evolution of the inelastic strain rate is given by
the associated flow rule

£, = A0,f 4.4

where the notation d, f is used to denote the derivative of the yield function f with
respect to the stress vector o. The rate of the inelastic multiplier A has to comply with
the Kuhn-Tucker conditions

120
f <0 .5
Af=0

The evolution of the back stress is assumed to be given by a generalization of Prager’s
kinematic hardening rule with the direction of the back stress rate determined by a load-
ing function g

1= 1-y)E 10,8 (4.6)

in which E, the kinematic tangential hardening modulus and y the proportion of
isotropic and kinematic hardening, y = 0 implying full kinematic hardening and y =1
setting the other limiting case of pure isotropic hardening. The evolution of the internal
variable vector is assumed to be given by a general evolutionary equation

g =4h(o,n.q) @7

The evolution equations given above can be regarded as strain driven in the sense
that the total strain vector, the inelastic strain vector and the internal variables are known
at time ¢ and that the incremental strain vector Ae“*V follows from the loading regime.
The basic problem in computational elasto-plasticity is that the elasto-plastic constitu-
tive equations have to be updated in a consistent manner

(ta. , ’g , t,’ , rq ;Ag(iﬂ) ) - ( r+Aza(i+]) , t+A1£(i+1) , t+At,’(i+1) , r+Azq(i+l) )
By applying the fully implicit Euler backward algorithm this problem is transformed

into a constrained optimization problem governed by discrete Kuhn-Tucker conditions
as shown by Simo, Kennedy and Govindjee (1988). It has been shown in different
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studies, e.g. Krieg and Krieg (1977), Schreyer, Kulak and Kramer (1979), Ortiz and
Popov (1985), Simo and Taylor (1986), that the implicit Euler-backward algorithm is
stable and accurate for J,-plasticity. But even when the yield surface is highly distorted
the Euler-backward algorithm is unconditionally stable, Ortiz and Popov (1985), and
accurate, De Borst and Feenstra (1990), Schellekens and De Borst (1991). Application
of the Euler-backward algorithm results in a discrete set of equations

") =t 4 AgED
o.(i+l) = De ( S(H-I) _ E‘(:i-t-l))

Eﬁ‘i+1) = rsc + Aﬂ.(iﬂ) adf(H-l) (4.8)
q(i+l) — tq + Aﬂ.(iﬂ)h(iﬂ)

,'(i+1) = tﬂ + Al(iﬂ) (1 —7) Eks aag(i+1)

with E,; the secant hardening modulus. The superscript ¢ + At has been dropped for
convenience. The discrete Kuhn-Tucker conditions are given by

AZED > 0
(o™, gD, gt < g “9)
Al‘l.(i+1) f( O_(H-l) , '](i‘f‘l) s q(i+1) ) - 0

Because the algorithm is considered within an elastic predictor-plastic corrector algo-
rithm an elastic trial state is introduced as

e = ‘e, + Ae™D
Op = D¢ €
(4.10)
n = 'n
G = 'q

which can be obtained by freezing inelastic flow during the time step.
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Figure 4.1 Mohr’s circle.

4.1.1 The Rankine yield criterion

The maximum tensile stress criterion of Rankine can be used to determine the tensile
strength of concrete. Consider a plane-stress situation in which the major principal
stress g, and the minor principal stress ¢, are defined by means of a Mohr’s circle, see
Figure 4.1. The hardening behavior is assumed to be described by two internal vari-
ables «, and x, which govern the corresponding principal stresses. The yield functions
are then given by the principal stress o; and an equivalent stress G; as a function of an
internal variable «; according to

fi

oy — Gy(xy)

@.11)

f2

0y — 0y(ky)

The yield surface is depicted in Figure 4.2 in the principal stress space. The problem
which occurs with the two yield functions is that the transformation between the stress
space and the principal stress space has to be defined uniquely for two yield functions
with different hardening models. This concept has been used in infinitesimal plasticity,
Simo (1992), where it is assumed that the directions of the principal stresses in the trial
elastic state coincide with the directions of the principal stresses in the final state. How-
ever, it is difficult to distinguish already in the trial state which principal stress will be
the major and minor principal stress and the corresponding equivalent stresses &; and &,
in the final state. This problem can probably be solved using a strain-based plasticity
model, see e.g. Naghdi and Trapp (1975), which is formulated in the principal strain
space. In this study the formulation will be given by a single stress-based function
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Figure 4.2 Rankine yield surface in the principal stress space.

which is governed by the first principal stress, and with an equivalent stress which
describes the hardening behavior of the material. The assumption of isotropic hardening
is not completely valid for a material such as concrete which can be loaded to the tensile
strength even if in the perpendicular direction the stress has been reduced due to soften-
ing of the material. This problem can partially be solved using a kinematic hardening
model in which the yield surface is shifted in the direction of the first principal stress.

In a plane-stress configuration the major principal stress will be expressed in terms
of the stress vector with the aid of Mohr’s circle. This results in a yield function with
mixed hardening which reads

f=(hEPEY + Vox & - a(yxr) 4.12)

with the reduced stress vector & = o — 77 and the equivalent stress & as a function of the
internal parameter x7. The yield surface is depicted in Figure 4.3. The projection matrix
P and the projection vector x are given by

%, - 0 0
P = _lg 1/3 g g @.13)
0 0 0 2
and
x=1{1,1,0,0})7 @.14)

respectively. The equivalent stress &(yxy) is the uniaxial tensile strength which is
assumed to be given by one of the tension-softening models given in eq.(3.13) and
€q.(3.14). The incremental back-stress vector has been defined in eq.(4.8) as
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Figure 4.3 Rankine yield surface with iso-shear stress lines.

An = AA(1-y) E; 3,8""

in which the direction of the incremental back-stress vector is determined by the
derivative of a loading function g with respect to the stress vector at the final stress. If it
is assumed that the direction of the incremental back-stress vector is given by the major
principal stress direction at the final stress, the loading function can be determined. Con-
sider the following expression in which the stress vector o is expressed as a transforma-
tion of the principal stress vector

O cos® ¢ sin? ¢ 0 -2singcosg (o
S sin® ¢ cos® ¢ 0 2singcosg o
o, 0 0 1 0 o3
Oy singcos¢ —singcosg O cos’g—sin’g 0

which results in an expression of the stress vector in terms of the principal stresses and
the angle ¢

cos® ¢ sin® ¢ 0
_ sin” ¢ cos® ¢ 0

o = 0} 0 + 0, 0 + O3 1 4.15)
sin ¢ cos ¢ —sing cos ¢ 0

The direction of the incremental back stress vector is now assumed to be given by the
direction vector which is related to the major principal stress o, so
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cos’ ¢
sin? @
0
sin ¢ cos ¢

An = AA(1—y) Ey 4.16)

which can be expressed in terms of the gradient to the yield function d,, f. The gradient
of the yield surface is given by

Pg

__1s Ly 4
20hETP Y “n

aaf =

which can be expressed in terms of the angle between the normal directions and the
principal directions,

Y, + Yycos2¢ cos? ¢
Yy — lfycos2 in”
9, f = g 02 cosegl Sn:) ’ (4.18)
sin2¢ 2sin ¢ cos ¢

The definition of the angles are given in Mohr’s circle depicted in Figure 4.1. The
derivative of the loading surface g with respect to the stress vector can be expressed in
terms of the gradient to the yield function because

cos® ¢ 1000 cos’ ¢
9, si'e [ _[0 100 sin” ¢
o8 = 0 “loo1 o0 0
sin ¢ cos ¢ 0 0 0 ¥ {[2singcosg
= Ay o, f 4.19)

The incremental back stress vector is finally given by
Anp = AA(-p)Ex, Ay o, f (4.20)

which is a convenient formulation since the yield function and the loading function are
equal.

It is assumed that the internal damage in the material is reflected in the internal
parameter k7 which is governed by a work-hardening hypothesis. For a work-hardening
hypothesis the internal variable is determined by the inelastic work rate W, defined by

W, = & & = 6(rxr) kr @.21)

With the application of Euler’s theorem this can be elaborated as
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kr = A (4.22)

The assumption of a work-hardening hypothesis results in a linear relation between the
inelastic multiplier A and the internal parameter i which has previously been defined
by the general evolutionary equation, eq.(4.7), but can now be simplified as

ArftD = AZUD 4.23)

in the case of the Rankine yield criterion.

The updated stress vector o“*" and the updated back stress vector n“*! are
obtained by substituting eqs.(4.10), (4.17) and (4.20) into the discrete set of equations,
€q.(4.8). This results in a mapping procedure given by

(i+1)

ot = o Al(lﬂ) é(H—l) _ IlelUH) D, x
@i+1) (i+1) A (i+1) 1 (i+1)
n = g + Ad (1- )E,u § + 1HAZ A-E,=x
with the denominator ¥ defined as

W o= (Y EEDTp gy 4.24)

The updated stress vector and the updated back-stress vector are now obtained by solv-
ing the following system of equations

O'(H” A“ AIZ Op — 1/2A2,(H'1)De n

— (4.25)
7@ Ay Ap ng+%HAI"Y A-y) Ey 7

with the matrices

A/{(i-ﬁ-l)
A, =1+ D, P
11 PN e
Al(i‘ﬂ)
Ap = -—~——D,P
12 29 e
A(H»l]
Ay = - o (A -7) ExAyP
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@i+1)

2¥

Ap =1+ (-7 ExAyP

Eq.(4.24) for ¥ is not very convenient because the updated stress in eq.(4.25) is then
not related linearly to the trial state. To arrive at a more suitable form we express the
denominator ¥ in terms of the inelastic multiplier by pre-multiplication of o“*" and
7" with the vector #7 ( cf. De Borst (1993)) which results in

6™ = alop - A"V 2" D, x
4.26)
2 = 2T + A (U -y) 2" Ep x
because z7 D, P = 07. The denominator now reads
¥ = 6(rxp) — tha'(og — 1g) @27)

+ Y AL ( (1-7) Ey )

E
—_———— +
(1+v)1-2v)

Now, ¥ is expressed solely in terms of the variables in the trial state and the inelastic
multiplier. Accordingly, q.(4.25) is a linear system of equations in the unknowns o*b
and ”(i+l)'

The matrix defined in eq.(4.25) will henceforth be denoted as the mapping matrix.
The calculation of the mapping matrix can result in numerical problems because the
sub-matrices of the mapping matrix are calculated with a division by ‘. This factor
becomes equal to zero in the corner of the yield surface. If ¥ is equal to zero, the
inverted mapping matrix is, however, still defined which can be shown if a spectral
decomposition of the sub-matrices is applied, Simo and Taylor (1986), Matthies (1989).
The algorithm for the regular region of the yield surface will be derived in the next para-
graph whereafter the corner regime will be discussed.

Because of the assumption of isotropic elasticity, the linear-elastic stiffness matrix
D, and the projection matrix P have the same eigenvector space, which means that the
spectral decomposition is given by the same transformation matrix, according to

D, =QA 0 (428)
and
P=0A 0 (4.29)

with the orthogonal matrix
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1 -1 1
- —= —= 0
6 2 3
11 1 0
0 = g 2 «j1§ 4.30)
— 0 = 0
% & v
0 0 O 1
which satisfies Q™! = Q7. The diagonal matrices A, and Ap are given by
E E E E
= di , , , 4.
Ao = diagl o T U2y 204w | @3
and
Ap = diag[0,1,0,2] (4.32)

respectively. Because the linear-elastic stiffness matrix and the projection matrix have
the same eigenvectors, the matrices A; simplify to

@+1)

Ay =011+ X7 ApAp 107
A/Il(i-i—l)
Ap = - p 0 ApAp QT
ALED ;
Ay = - T (1-9)E,QAu Ap O
(i+1)
Ay = Q1+ (1-7) ExAyAp 107
2¥
Setting,
Az(t}l)
A, =T+ ApA
1 P pip
A/{(i’fl)
Ap =~ o ApAp
Al(i+l)
Ay = - p (A=) Exs Ay Ap
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@+1)

2y

Ap =1+ (1-7) E,Aulp

the mapping matrix can be written as

Ay Ap 0 0] An A ][ Q" O
= (4.33)
Ay Ap 0 Q|| Au Ay 0o o
The inverted mapping matrix is calculated as
-1 -1
Ay Ap g 04 Ay Ap o' o
= 4.34)
Ay Ap 0 0|l Ay Ap 0o O
with the inverted tri-diagonal matrix given by
Ay Ap ] (A1Azn = ApA) " Ap  —(AnAg — AphAy) ' Ap
- (4.35)
Ay Ax ~(ArAy - ApAy) Ay (AnAn - ApAy) Ay
The matrix product (A;; Ay, — Aj,Ay) ™" can be computed explicitly as
. -1
ALY ApAp  AAED (1-y) By AyA
(Auhy —ApAy)™ = I: I+ P PP, ¢ 2}:1), ks TMTP 1 @36)

With this procedure the return-mapping algorithm has been given and the updated stress
vector and the updated back stress vector are both expressed in terms of the inelastic
multiplier and the trial state variables. This provides a scalar expression in the inelastic
multiplier which has to be determined by enforcing the constraint condition

f( o_(i+l) , "(H-l) , x¥+l)) - f( AA(H”) =0 (437)

which can be solved with a local Newton-Raphson iteration where the updated inelastic
multiplier is calculated as

JAL9) (A2HY — AAD)Y = — f(ALD) 438)

The gradient J = d,; f is difficult and expensive to calculate and is therefore replaced
by a secant Newton-Raphson method which needs only a few scalar evaluations to
approximate the derivative by the secant stiffness
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Figure 44  Local secant Newton-Raphson procedure.
_ DYy _ e AL®
J(AAD)y = flar” ) - f(AAT) (4.39)

AL — AQD
The local secant Newton-Raphson iteration for the inelastic multiplier has been depicted
in Figure 4.4.

The initial gradient is calculated from the development of the yield function in a
Taylor series. Neglecting second and higher order terms in the inelastic multiplier we
obtain

flopnexe) — AA93,, fT D, 9, f + 3, f7 An® + 3, f Axp” = 0
With the relations

An® = AA® (1-7) E,9,¢

AR = AA®

a,,f = _aaf
the initial gradient J is given by

JO = -9, fT D, 0, f - M-y Ey + 0, f (4.40)

The algorithm results in the final stress on the yield surface and the elastic strain vector
is calculated with the elastic compliance matrix, C,, as

£ = ¢, oY 4.41)
The inelastic strain increment is finally calculated as

49



Ae®D = gp — €HD 4.42)

The solution of the nonlinear equations following from the finite element discretiza-
tion will be solved using the Newton-Raphson method as has been discussed in Chapter
2. The nonlinear problem is then linearized in a sequence of iterations until the problem
is converged. The linearization of the equations results in the tangent stiffness matrix
which plays a crucial role in the performance and robustness of the Newton-Raphson
method. It has been emphasized in the classical paper about consistent tangent operators
for mathematical plasticity, Simo and Taylor (1985), that the crucial point is that the tan-
gent stiffness matrix must be obtained by consistent linearization of the stress resulting
from the return-mapping algorithm. The consistent tangent stiffness matrix has to be
derived from the updated stress at the end of iteration (i + 1)

o™ = D, [ "V - Te, — ALV, f ] (4.43)
which is linearized by calculating the total derivative

do™) = D, [de™ —~ did,f — AA¥V 3 f da™V ] 4.44)
With the consistency condition which has to be enforced at (i + 1)

df = 9,f"do + 9,fTdn + 9, fdx =0 (4.45)

this can be written as

. . 1 .
do“*V = H [de™) - 7 90/ % ffde™ ] (4.46)

with the hardening parameter

E, = -0d.f + (I-nE 447
and the modified stiffness matrix

H=[C, + A"Y3 17" (4.48)

The consistent tangent stiffness relation is finally obtained with the use of the Sherman-
Morrison-Woodbury formula and reads

HOo,fd,fTH

- gt o | gg¥h 4.49
E.+o,/THa.f | ¢ @49

do™V = ‘:H

The Rankine yield criterion has been discussed so far without special attention for
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the apex of the yield surface. The yield surface, depicted in Figure 4.3, shows a corner at
the stress point £, = £,,, £,, = 0 which may cause numerical difficulties because ¥
is equal to zero at the apex. Difficulties associated with corners in yield surfaces have
been dealt with for the Mohr-Coulomb criterion, De Borst (1986), Crisfield (1987),
Pankaj (1990), where the Euler backward algorithm has been applied to obtain a stable
return-mapping procedure. The consistent tangent stiffness matrix has also been derived
for the Mohr-Coulomb criterion, Crisfield (1987), where it has been shown that the con-
sistent tangent stiffness matrix reduces to the null-matrix at the apex.

The stress update in the apex regime of the Rankine yield surface can be treated
without modifications of the return-mapping procedure given in eq.(4.25) with the
explicitly computed inverted mapping matrix given in eq.(4.34). The inverted mapping
matrix is always determined even if the factor ¥ is equal to zero. Without loss of gener-
ality it is shown here for isotropic hardening that the mapping procedure is uncondition-
ally stable in the singular region of the yield surface. The matrix product
(A Ay — AjpAy) ! now reduces to ( cf. eq.(4.36) )

-1
AL ApAp ]

ApAp —A = T+
(AnAgn —AphAy) |:I p

and the inverted tri-diagonal matrix becomes

M1 ‘(1)’ 0 0 0 OG 0 0 7
Al
0 0 _—
0 ¥ +ALG 0 Y+ALG 0 0
Lo T g 0 0 0 0
A Ap
= ((; g ((: ‘*’+€lG 0 g g ‘F+81G
1
Ay Ay
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
L0 0 0 0 0 0 0 1 ]

with G = E /2(1 + v). Transformation from the eigenvector space to the stress space
results in the limit

[ 1/2 s 0 0 ]/2 -1 0 0]
Y, Y 0 0 =% ¥ 0 0
. 0o 0 1 0 0 0 0 0
o [ An Au] | o 0o 0o 0 0o 0 0 1 50
¢50| Ay Ap 0O 0 0 0 1 0 0 0
o 0 0 0 0 1 0 0
o 0 0 0 0 0 1 0
.0 0 0 0 0 0 0 1]
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so that the update of the stress vector is given by

Hb ¥ 0 0

: y 0
ol = /g ; (1) 0 {og -~ hAA D, z }

0 0 0 O

see Figure 4.5. The return-mapping procedure is stable even in the corner-regime where
the stress is returned to the yield surface in approximately 10 iterations with an accuracy
of 107 with respect to the initial equivalent stress. The calculation of the mapping
matrix is also possible with a numerical scheme, e.g. GauB-decomposition, which
results already in the limit of eq.(4.50) even if the factor A1 / 2¥ is equal to 10. For this
factor, with a Young’s modulus equal to 30000 {N/mm?] and a Poisson ratio equal to
0. 15, the mapping matrix is given by

. 5.000e—01 5.000e—01 0.000e+00 0.000e+00
[1+£DP} _ | 5.000e-01 5.000e—01 0.000¢+00 0.000e+00
¥ 0.000e +00 0.000e+00 1.000e+00 0.000e+ 00
0.000e+00 0.000e+00 0.000e+00 3.833¢—06

which can be considered as accurate. The calculation of the inverted mapping matrix
can now be performed with a numerical scheme in which the factor A4 / 2 should be
less or equal 10. The calculation of the inverted mapping matrix with a numerical
scheme is accurate even if the Poisson ratio is equal to 0. 49, Groen (1993).

The next issue which has to be treated for the apex is the modified stiffness matrix,
€q.(4.48), which is not defined in the apex of the yield surface. We first consider the sec-
ond derivative of the yield function

82f=£ P§§TP

- 4,
A Y 4y3 “sh

This expression indeed becomes singular if ¥ = [ Y%, P& 1" equals zero. Substitution
of the second derivative in the expression for the modified stiffness matrix H, eq.(4.48)
results after some algebraic manipulations in

-1
H=|C, + Ak P Lot 4.52
= ., o ss 4.52

with s = P £. We now introduce the normalized vector § such that
s =IPENS = (ETPPEY 5 = (BETPEY 5 = W28 5 4.53)

with |l [l the symbol designating the L,-norm. For the Rankine criterion S equals
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Figure 4.5  Return-mapping of the trial stress to the apex.

= 1+2& /sTs. With .(4.53), the modified stiffness matrix becomes
X €q

-1
A2 AT
H—[Ce+2—q—l(P—ﬂss ))} 459

The apex of the yield surface is determined by the condition &, = &,y; £, = 0. Then the
stress vector § reduces to the null-vector and the limit of the modified stiffness matrix in
the apex is given by

-1
lim H = i C +MP = AT’ D 455
g T M| G 2P T e @.33)

because of the assumption of isotropic elasticity. The gradient of the yield surface is
also not defined for the apex, but it is assumed that the gradient is given by

o0,f ="h\2x (4.56)

with the factor 14V2 to obtain a consistent length of the gradient vector in the apex.
Whereas the return-mapping algorithm is unconditionally stable even if the apex is
encountered, the modified stiffness matrix cannot be calculated without a numerical
approximation of the apex regime. It is therefore assumed in the algorithm for the calcu-
lation of the tangent stiffness matrix that a stress point lies within the apex region of the
yield surface if the factor ¥ becomes less than 107 times the initial equivalent stress.

For the corner regime, the tangent stiffness relation, eq.(4.49) is computed with the
limit of the modified stiffness matrix, eq.(4.55) and the limit of the gradient vector
assumed to be given by €q.(4.56). For E; = 0 then the tangent stiffness matrix can then
be elaborated as
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do = de

O O O Q0
[« i I o]
S O o O

omM oo

This tangent stiffness matrix may result in numerical difficulties because mechanisms
are likely to occur, but the expansion-compression algorithm does not fail because of
dividing by zero, and the compressed tangent stiffness matrix for the plane-stress condi-
tion, eq.(2.34), is given by

D =

o O O
o O O
o O O

4.1.2 A composite yield criterion

The return-mapping algorithm described in the previous paragraph is also applicable to
a situation where the constitutive model consists of two different yield surfaces, one
bounding the tensile stresses, the other applicable in the compressive region, which can
be represented by

H=0
4.57)

=0

In hardening plasticity with negative hardening moduli it is complicated to identify
whether only one, or whether both surfaces are active. The location of the intersection
between the two yield surfaces is unknown in the beginning of the step and the initial
configuration cannot provide a sufficient criterion for determination which surface is
active at the end of the time step. Simo, Kennedy and Govindjee (1988) proposed an
algorithm in which the assumption is made that the number of active yield surfaces in
the final stress state is less than or equal to the number of active yield surfaces in the
trial stress state. Each active yield surface is deactivated when the corresponding inelas-
tic multiplier turns out to be negative. The opposite approach has been proposed by Pra-
mono and Willam (1989) in which each active yield surface is evaluated one by one.
The most dominant active yield surface is chosen and the trial stress is mapped back
onto the yield surface. If the stress state also violates the second yield surface, the
return-mapping from the trial stress state is repeated with both yield surfaces active. In
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Figure 4.6  Comparison of a Rankine-Von Mises yield surface with experimental
data of Kupfer and Gerstle (1974). 61 = f,, , 62 = 1.1 fon

this study a direct approach is applied to solve the return-mapping to the combined yield
surface. In the trial state, the yield functions are both linearized to obtain the initial
Jacobian which is used to iterate with a local Newton-Raphson iteration to the final
stress state for which the discrete Kuhn-Tucker conditions hold

A 20
fj( a(i+1) , n(i+1) , K§i+l)) <0 j=1,2 (4.58)
Al?“) f,-( o ,,(i+1) , K,(-M)) =0

Comparison with the experimental data of Kupfer and Gerstle (1974) indicates that a
composite yield contour can be defined such that a Rankine yield criterion is used to
model the tension-tension region and a Von Mises yield function models the compres-
sive stress states, Figure 4.6. The formulation of the composite yield criterion is given
by the function of the Rankine yield function which has been discussed in the previous
paragraph and by the function for the Von Mises yield criterion in the stress space,
which results in
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fi = (LEPEY: + ha & - &,(rxp)

(4.5%9)

(Yo" P, 0)" - Gy(xc)

L2

with a mixed hardening rule for the Rankine criterion and an isotropic hardening rule
for the Von Mises criterion. The Von Mises yield function is determined by the projec-
tion matrix

2 -1 -1 O
-1 2 -1 0

P, = 1 41 20 (4.60)
0 0 0 6

and the equivalent stress 6, which is the uniaxial compressive strength of the material.
The composite yield surface is shown in Figure 4.7 with iso-shear stress lines in the
stress space.

The inelastic strain rate is determined by Koiter’s rule, Koiter (1953), which allows
for a summation of the inelastic strain of each yield function according to

€. = €, + By = 410 fi + 420,12 @4.61)

The damage in the material is reflected in the two internal parameters, one for damage
in tension, xy, and one for the damage in compression, xc. For a work-hardening
hypothesis, the internal parameters are determined by the inelastic work rate for the two
respective yield functions, i.e.

Wc,]

T - 6-1 T - - .
§ &+ (in 5, o' é., = oy(yxr) Kr
2
4.62)

Oy(x¢) k¢

]
It

: . O .t .

Weo =0 &5 + 0 — & &y
4

with scalars ¢, and {,; which represent the coupling of the damage in the materials in

tension and compression. With the application of Euler’s theorem eqs.(4.59)-(4.62)
result in the following expression for the evolution of the internal parameters

kr =4 + {uk
4.63)

b Ay + 4

Kc
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Figure 4.7  Composite yield surface with iso-shear stress lines.

With

.| kr )1 K
el el e

€q.(4.63) can formally be expressed as
Gg=A b + ik (4.65)

Because the hardening functions are given by a scalar expression, the incremental inter-
nal parameter vector is determined by

Aq(m) - Ai(li“) B+ Algﬂ) h2 (4.66)
for a coupled system of two yield surfaces.

The return-mapping procedure described in the previous paragraph is now extended
. and reads
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o_(i+l} = 0p - A/l(liﬂ) De aa fl(i+l) _ Aﬂ(ziﬂ) De aa f2(i+l)
4.67)
n(u—l) - ”E + A}.({H) (1 _ 7) Eksaa g(;+])

The updated stress and the updated back stress are now given by the solution of the fol-
lowing system of equations

oD Ay Ay 7 oe - 1%040"D, =
= (4.68)
7 Ay Ap ng+ AL 1-7) Ey &
with the matrices
A j'(l.'+1) (2i+1)
A, =I+——D,P, + D,P
1 2y, e 2w, e 2
ALED
A, = -——D.P
12 2y, e 1
A,l(iﬂ)
Ay = — 2&,' (1=7) ExAuP,y
@i+1)
Ay =T+ 24,1 (1-7) ExcAuP,
The denominators ¥, and ‘¥, are given by
¥, = &(rxp) - Ya (60— 7™Y)
4.69)
¥, = &ilxc)

which is again not very convenient because the updated stress cannot be related linearly
to the trial state. To arrive at a more suitable form we multiply oV and ™" with the
vector z7 so that
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@+
2 a™ = zlop — KA ™D, £ ~ 22 z'D, P, 6“V

o
2 @.70)

g™ = aTag ~ AU -y) 2 E, 7

because 7D, P, = 0”. The factor #77 is now expressed in terms of the trial variables
and the plastic multiplier AZ;, but the factor #” & is still a function of the final stress
because z'D,P, = 2G {1,1,-2,0} # 07 with G the linear-elastic shear modu-
lus. Substitution of this relation into eq.(4.70) results in

2 o™ = 2Tap — HAM* 2D, &

A G . 2A08Y G
_ 2_ ”T o,(l+1) + _2 0.§1Z+l)

@71
gy o)
The return-mapping of the stress in the z-direction is given by (cf. eq.(4.67) ),
. : E
(i+1) - _ A/l(u»l) v
Tz = Ouk L d+v)(1-2v)
(i+1) (i+1)
+ A'lz_ G 27 gD _ 2A4;,°G o_gn) @712

0, 0,

(i+1)

The factor #7 6*" is obtained by substituting eq.(4.72) into eq.(4.71) which results in

& +2AM280 G

T __(+1) _
T o =
G +3A1" G

(zr oz - A" aTD, x )

2A48Y G

. E
—_ O - A/’L('H) ——L—— ) 4.73)
5, +3AM5V G ( @k '

+v)1-2v)

With this result the denominators are solely expressed in terms of the trial state variables
and the inelastic multipliers.

With the spectral decomposition described in the preceding section, the matrices are
expressed as

D, =QA, 0"
P, = QAp Q7 (4.74)
P, = QAp QT
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with the diagonal matrices

_E E__E E
Ao = diagl T Taw) (=20 201+ 0) )
Ap, = diag[0,1,0,2] @75
Ap, = diag[3,3,0,6]

and the orthogonal matrix Q as given by eq.(4.30). We can now elaborate A; as

Aﬂ(liﬂ) (2i+1)
Ay = QLI+ 7w, ADAP1+2—‘FZ‘ADAP2]QT
Al(iﬂ)
A, = ——— 0 ApAp, O
12 2\},] D4rp1
Al(l"“) ) 4.76)
Ay = - (1-7)E,Q AyAp O
21 2\{,1 ks MiApPl
(i+1)
Ap = QUI+—G—(-NExAuApn 10"
1

The mapping matrix can be inverted using eq.(4.34) with the inverted tri-diagonal
matrix given by eq.(4.35). The matrix product (Ay; Az, — AjAy Y is now computed
explicitly as

. . : -1

_ A AL AR ALY ApAp AP (1-y) B AuA

(ApAg —AphAy)! = |:I+ . 2‘{‘lD Pl 222 2‘PZD L 7, ke TMTAL

Upon substitution of 6" and 7" as given in eq.(4.68), we observe that the yield

functions are now solely expressed in terms of the inelastic multipliers A4, and A4,.
The constraint equations

et il AATTY A5y = 0
@77
e f( AR, A5y = 0

have to be solved to obtain the final stress state. This is done using a local Newton-
Raphson iteration with a Broyden update of the Jacobian, see Dennis and Schnabel
(1983). The scalars ¢, and c, are equal to one when the corresponding yield function is
active, else the scalars are equal to zero. The initial Jacobian is determined from the lin-
earization of both yield functions in the trial state
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) 2
0 = o E AL DAL, e+ A xr )
J (4.78)
) 2
5 = fop T A DA, f; , xcp + Axe)
J

which results in the following system of equations
JO s, = = f(xp) (4.79)
with the initial Jacobian

(0)
Jui

0, fI D, 3, fi — (1-7) Exs + 0y fl by

J}g) _aa’flT De aafZ + aqflThZ

(4.80)

t

I = —8,f] D, 3, fi + 0,01 hy
JQ = ~0,/1 D, 3,f, + 3,f{hy

and the vectors

s@ = (a2, a0y
(4.81)
f(o) = { c1 fi{Oe, M. K7.8) » C2f2(08, K k) }T

Initially the constraints are determined by the violation of the yield criterion in the trial
state, i.e.

e =1 if fi(ogMexrp) >0

Cy 1 if f2(O'E, KC,E) >0

During the return-mapping the active yield functions are determined with conditions

;=1 if AN >0 else ¢; =0
With this algorithm it is possible to return to a single active yield surface within a maxi-
mum of approximately 10 iterations in most cases, even if in the trial state both yield
conditions are violated.

The consistent tangent stiffness matrix for the Newton-Raphson iteration is again
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most conveniently derived from the updated stress at time (i + 1)
c@V = D, [ ™V - 'g, — AR, £, — AATTB, 1,1 4.82)
The total derivative then reads
do®? = D, [de™ - d4,3,f - AA{™D, fi do™? “83)
- d1,0, f, — AASVAL, f, do™) ]
which is written as
do®™V = H [de™) - dA,0,f; — dA:0,f, ] (4.84)

Applying the general formulation of Riggs and Powel (1990), the tangent stiffness
matrix is written as

do®™ = H[de®™ - U da] 4.85)

with the matrix U given by
U= [ €195 f1 » €204 13 ] (4.86)

and the vector dA in which the plastic multipliers are collected, i.e. d4 = { d4, , d4, 3T
The modified stiffness matrix H is given by

H = [C, + A3, f; + AV fr17 87)

The consistency conditions determined by the active yield surfaces, give the relations
for the inelastic multipliers

¢ (3,fTdo + 3,fTdn + d,fldg) + (1 - ¢,)d4; = 0 (4.88)
and
€2 (9,f7do + 9,f7dg) + (1 — ¢;)dA; = 0 (4.89)

If the relations dg = ¢, h;dA, + ¢, hydA, and dnp =¢; d4, (1 —y) E; d, g, are substi-
tuted, the consistency conditions are expressed in the following system of equations

di = E'VT do (4.90)
with
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—Cy aqflThl +a1-1E  + (1-c¢p) —Cy €2 aquThZ
E =
—€; € aqurhl —C3 aqurhz + {(1-¢)

and

ClaaflT
vl =
CZBafZT

Substituting eq.(4.90) into eq.(4.85) results in
{H*‘ + UE*VT ]da“*" = dg®™V @91

The consistent tangent stiffness matrix can be calculated with the application of the
Sherman-Morrison-Woodbury formula which results in

do®™? = [H - HU(E +VTHUY'V'H }de”*” “.92)

It is noted that if the yield functions are coupled through the hardening functions given
in eq.(4.64), the tangent stiffness matrix is in general non-symmetric.

The corners in the composite yield surface require special attention since they may
cause numerical difficulties. The apex of the composite yield surface is completely gov-
erned by the Rankine yield function and the analysis of the apex given in the previous
paragraph remains valid for the composite yield surface.

The second possible situation which may cause numerical problems is the situation
where the equivalent stress of the Von Mises yield function has been reduced to zero
and the yield surface has shrunk to a single point in the origin of the stress space. If the
equivalent stress of the Von Mises yield function is equal to zero, it implies that the fac-
tor ¥, is equal to zero, cf. eq.(4.69). Suppose that only the Von Mises yield function is
active, then the matrices A; of the mapping matrix are given by

AA
Ayn = I+ 2—?22‘ ApAp;
AlZ =0
(4.93)
Az] = 0
Ay =1

and the matrix product (A, Ay — ApAy) ™" is equal to
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-
Ad, ApA

(AuAp —ApAy)™ = | 1+ =222
2%,

Substitution of these expressions in the inverted tri-diagonal matrix results in

[ #

¥, +3A4, G
_ ¥
\Pz + 3A/12 G

A Ap
= \}‘2
Ay Ay ¥, +3A4, G

with G = E / 2(1 + v). Transformation from the eigenvector space to the stress space
results in the limit

i)

Fyy, 3 5 0 0 0 0 O
Y Yy Y5 0 0 0 0 0
» Y ¥ 0 0 0 0 O
o | A Aw |00 0 0 0 0 0 O wse)
¥,-0| Ay Ap 10 0 0 0 1 0 0 O '
0 0 0 0 0 1L 0 O
0 0 0 0 0 0 1 O
| 000 0 0 0 0 1|

The return-mapping procedure of the stress vector is then given by

1 5 0
; I 15 0
G+) 373183
’ oy o0 |
6 0 0 O

which is a return-mapping onto the hydrostatic axis in the stress space. Also in this case
a numerical scheme can be utilized to calculate the mapping matrix.
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The next situation which has to be treated is the situation in which both yield func-
tions are active and both ¥, and ‘¥, are equal to zero. In this case, the mapping proce-
dure is determined by the full expression of eq.(4.68) for which the different matrices
are given by, restricting for simplicity sake the analysis to the case of isotropic harden-
ing,

Al AA
Ay = I+ Ex?]lADAPl + Z—TZADAP:
AA
Ap = 2_\1,: ApAp
4.95)

Ay =0

Ap =1
The matrix product (A;; A, — AjAy ) is then equal to

A AZ -

(AjAg — ApAy)™! = l: I+ ﬁ;_ ApAp + ﬁ ApAp, (4.96)

Substitution of eqs.(4.95) and (4.96) in the inverted tri-diagonal matrix results in
¥, + 344, G

‘PI\P2
¥V, + ¥,04, G +3¥ AL, G

l

-1
All A12
= ¥ ¥,
Ay Ap Y\, + WAL G +3¥,A4, G

1

_ b

with G = E/2(1+v). The limit of the mapping matrix, ¥, - 0 and ¥, — 0, for
isotropic hardening is given by
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s ¥ Y5 0 0 0 0 O
s Y3 45 0 0 0 0 O
B Yy Y4 ¥4 0 0 0 0 O

lim[A., A,z} | 000 00 0 00 won
v,-0| Ay Ay 0 00 01 0 0 0
¥220 00 0 0 0 1 0 O
0 00 0 0 0 1 0
00 0 0 0 0 0 1|

which is again the return-mapping to the hydrostatic axis of the stress space. The
return-mapping algorithm has been found to be stable although the number of local iter-
ations increases if the trial stress violates the yield function severely in the vertex region
of the yield surface. If only the Von Mises yield surface is active the return to the yield
surface is achieved in a single iteration which is a property of J,-plasticity in a square-
root formulation, De Borst (1986), De Borst and Feenstra (1990).

The final issue which has to be treated is the modified stiffness matrix H for the
composite yield function. The case that only the Rankine yield function is active and ‘¥,
is equal to zero has been discussed previously. If only the Von Mises yield function is
active and ‘¥, — 0, the yield surface reduces to the volumetric stress in the uncon-
strained stress space and to a single point in the constrained stress space. The limit of
the combined yield surface when both yield functions are active is equal to the limit of
the single active Von Mises yield function, which has also been shown for the limit of
the mapping matrix. Following the same considerations as for the Rankine criterion, the
limit of the modified stiffness matrix H for the Von Mises criterion is given by

1110
E |[1110
. —- - _.l _
gm H = lim A1 De = 35755101 1 1 0 @99
0000

The consistent tangent stiffness matrix for the limit of the combined yield surface has to
be calculated with the limit of the gradient to the yield surface which is not determined.
Because the equivalent stress has reduced to zero if the factor ¥, is equal to zero and
consequently d& / dx also equals zero, the consistency condition reduces to

df, = 3, f1do = 0

The gradient to the yield surface is always expressed as a vector in the deviatoric plane
for associated plastic flow and reads

9,/ = B Ppo (4.99)
with the matrix
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2 -1 -1 0
-1 2 -1 0
Po=l 4 4 2 o
0 0 0 3

and the scalar £ such that a consistent length of the gradient vector is obtained. The
total derivative of the updated stress is calculated as

do™Y = H [de™) - dA,0,f,]
Since the product H d, f, vanishes in the limit, the consistent tangent is given by
d o,(i+1) = H de®V (4.100)

Clearly, the expansion-compression algorithm does not fail because of dividing by zero,
but the tangent stiffness matrix for plane-stress conditions is given by

D =

o O O
o O O
OO O

Of course, use of this tangent stiffness matrix may result in numerical difficulties
because of the possibility of mechanisms.

4.2 Total formulations

The fundamental difference between the total formulation of the constitutive model and
the incremental formulation discussed in the previous paragraphs is the formulation in
strains rather than in strain rates. If again an additive decomposition of the total strain
vector is assumed into an elastic, reversible part £,, and an inelastic, irreversible part £,
the strain vector is given by

£ =&, + g (4.101)
The stress vector is given in the final state

oc=D,¢, (4.102)
with D, the linear-elastic stiffness matrix. The inelastic strain vector is dependent upon
the assumption of the constitutive model and is in general a function of the strain vector.

In this study two types of total formulations will be used, the deformation theory of
plasticity and the elasticity-based total strain crack models.
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4.2.1 Deformation theory of plasticity

The fundamental notion of the existence of a yield function is also used in the deforma-
tion theory of plasticity and the basic difference with the flow theory is the assumption
that the plastic strain vector is given by a total rather than by a rate formulation, i.e.

g =Ad, f (4.103)

with the plastic multiplier 4 to be determined by satisfaction of the Kuhn-Tucker condi-
tions

A20
flo.n,q) <0 (4.104)

Aflo.n,q) =0

The internal variables are again collected in a vector g and evolve according to the gen-
eral hardening law

q = A h(o,n,9) (4.105)

The system of equations which is obtained after applying the Euler-backward algorithm
reads

e(i+l) — t£ +A£(i+1)
oY = D, (™M - Egﬁ-l))
££i+l) = A6 9, f(i+1) (4.106)

q(i+l) - ﬂ,(iﬂ]h([ﬂ)

n(i+l) = ,-L(i+1) (l _ 7/) Ek: adg(i-ﬂ)
with E,; the secant stiffness modulus. The discrete Kuhn-Tucker conditions are given by
'{(H-]) >0

f(a(”]) , q(i+l) , q(i+1) y<0 4.107)

A(i+l) f(cr("”) , ,’(M) , q(i+l) Yy=10
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If the algorithm is again considered within an elastic predictor-plastic corrector algo-
rithm the elastic trial state is assumed as

e = ‘'€ +AeSD
or = D&
4.108)
. = 0
9: = 0

with the elastic trial strain vector £; now given by the total strain at time (i + 1) and the
assumption that the internal variables, collected in the vector g, and the back-stress vec-
tor 7 are equal to zero, which implies that the nonlinear behavior is completely deter-
mined in the considered time step. In the algorithm the total, updated strain vector is
applied as the incremental strain vector without updating of the internal variables and
the plastic strain vector. Formulated in this fashion, the deformation type plasticity mod-
els can be analyzed without major modifications of the algorithm described for the flow
theory of plasticity. The only modification is a different definition of the trial state.

The damage in the material is reflected in the internal parameter x which can be
derived from the assumption of work hardening

W, = f'e. = 6(yx)x
which can be elaborated as

A=x
The tangent stiffness matrix is again developed from the updated stress at (i + 1)

™) = p, [ ¥V - 1%Dg_ £ (4.109)
The total derivative then reads

do™? = D, [de"" - d19,f - A“V 3, f do™P ] 4.110)
During the process of plastic loading the consistency condition has to be satisfied

df = 9,f"do + 9,f"dn + 9,f7dg = 0

which can be elaborated to
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1 .
di = = 9, fTda®™V (4.111)

with the hardening parameter
E, =-9,fTh + (1-y) E, @.112)

The consistent tangent stiffness matrix is finally obtained by substituting eq.(4.111) into
€q.(4.110) and reads

. HO,f 3, fTH ;
Gy o | g - ——2e) "ol 7T | geglith 4.113
de [ E,+0,fTHo,f | © @1

with the modified stiffness matrix
H=I[C, + A%V _f17! 4.114)

The limit of the consistent tangent stiffness matrix discussed for the models based on
the flow theory of plasticity is also valid for deformation type plasticity, because the
structure of the yield function remains unaltered.

4.2.2 Co-rotational formulation

The co-rotational formulation is usually related to the elasticity-based rotating crack
model, Willam, Pramono and Sture (1986), Rots (1988), Crisfield and Wills (1989). In
this study the co-rotational formulation is used with the assumption that the local consti-
tutive model which describes the relation between the local stress vector and the local
strain vector, is transformed into the global coordinate system with a transformation
matrix which is determined by the principal directions of the strain vector. The strain
vector in the global coordinate system & is updated as

e = g 4 AgED (4.115)

which is transformed to the strain vector in the local coordinate system &, with the
strain transformation matrix 7'(¢)
e(m) = T(9) PRGY 4.116)

n,s

with
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cos® ¢ sin® ¢ 0 singcos¢
<2 2 «
sin cos 0 -—singcosg
e = 0 ’ 0 ’ 1 0

—2singcos¢ 2singcosg O cos®g—sin’¢

The constitutive model has to be formulated in the local coordinate system and should
give a relation between the local strain vector ¢, and the local stress vector g, . In an
unconstrained stress situation the general format reads

oV = D(e,,) en) @.117)

ns n,s
The updated stress vector in the global coordinate system is then given by

oV = T(p) gtV 4.118)
This general formulation does not necessarily maintain co-axiality, because the principal
axes of stress do not need to coincide with the principal axes of strain. The formulation
presented here is merely a framework for the treatment of the rotating and the fixed
crack models within a total strain formulation, in order to compare the incremental and
total approaches.

The constitutive model before cracking is usually assumed to be governed by a
linear-elastic model with a Young’s modulus and a Poisson ratio unequal to zero. After
crack initiation the Poisson effect is usually neglected and the Poisson ratio is set equal
to zero. The post-crack behavior is then described by an orthotropic, uncoupled stiffness
matrix, i.e.

O E,(em) O 0 0 Enn
o, | _ 0 E (&) 0 0 Egs
o, [ 0 0 Ef(ey) O £n
O 0 0 0 BG | 7.

Although the assumption of zero Poisson ratio after cracking is generally accepted in
the literature, it seems rather arbitrary. The usual engineering approach to the problem is
to define the stresses directly as a function of the strain components with an equivalent
uniaxial stress-strain model, Crisfield and Wills (1989), Cervenka, Pukl and Eligehausen
(1990), but with this approach a comparison between the different formulations would
not be sensible. Therefore it is assumed in this study that the Poisson effect remains
after cracking as has also been assumed for the incremental formulations.

The constitutive model based on a total formulation is most conveniently developed
with the assumption of a bounding surface for each stress component which reads

f =0, - & @.119)
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Figure 4.8  Failure surface in principal stress space

in which &; the equivalent stress. This formulation allows for a consistent treatment of
the Poisson effect after crack initiation without difficulties in a multi-axial strain situa-
tion. The formulation results in an algorithm which is equivalent to the return-mapping
procedure used in the mathematical plasticity theory. The stress state is bounded by
seven independent functions, three in tension, three in compression and one in shear, i.e.

( fl = O — 61 = 0
f2 = O — 62 =0
fro= 6y —03 = 0
9 f;; = IO'MI - 04 = 4] 4.120)
f5 = ~Op — 6-5 0
Jo = -0, — G 0
\ fs = -0, —07; = 0

The behavior in shear is assumed to be equal in positive and negative shear stresses. The
resulting failure surface is depicted in Figure 4.8 for a principal stress space. The total
formulation has a draw-back that unloading and reloading cannot be modeled by in a
plasticity-like format. Although this study does not consider cyclic loading, where it is
of utmost importance to model the hysteresis, Hordijk (1991), it is still possible that at a
local level unloading takes place due to redistribution of the stresses in the structure.
However, it is relatively simple to model unloading and reloading in a total strain
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secant unloading

elastic unloading

> £,

Figure 4.9  Unloading models.

formulation with unloading constraints based on the maximum strain in the direction
which is considered. Because the loading/unloading conditions are a function of the
updated strain components, the conditions are known before the calculation of the
updated stress vector which implies that unloading can be taken into account by a modi-
fication of the equivalent stress &;. In this study two types of unloading will be consid-
ered, i.e. secant and elastic unloading, see Figure 4.9, which can be considered as the
two extremes of the true unloading model, Rots (1988). Introducing the vectors

vv={1,0,0, 0}
0

vw=1{0,1,0, 0)7
vy={0, 0,1, 0}
ve={0,0,0, 2=y

101
vs ={-1, 0,0, 0}
ve ={ 0,-1,0, 0}

v, ={0,0,-1, 0}
the general definition of the bounding surfaces is given by
fi = vio. - 6i(x;, &) @.121)

With this notation, secant unloading can be modeled with the modification of the equiv-
alent stress given by

T, .max (i+1)
G =& (:‘+|)) 1- v (Ens — Ens')
j = 0(K; j T

Vi

4.122)

max
Ens

and elastic unloading can be modeled with the relation
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i E :
- _ = (i+1) [ T +1
G; = 6,(x;") | 1= 1) —— vy (& - e @.123)
o(x;7")

The maximum strain components £, are determined by the unloading constraints r;
which are defined by

0 if  1EFV > e
r; = (4.124)
1 i e < e

The equivalent stress &; is now considered as a function of an internal parameter x; and
of the total strain vector in the local coordinate system &,,. The nonlinear material
behavior due to internal damage of the material is then assumed to be governed by seven
internal damage parameters, collected in a vector ¢ = {Kx,x;, -, k;}7 which are
also assumed to be a function of the total strain vector in the local coordinate system,
given by the relation

g = M 4.125)

with £ the maximum strains in the local coordinate system. The coupling between
damage in different directions is now possible in a transparent manner by setting the off-
diagonal terms in matrix M unequal to zero. In case of no coupling the matrix M is
given by

r1 0 0 0 0 0 017

¢ 1 0 0 O O O

6 01 0 0 0 O

M= 0 0 0 1 0 0 O
6 0 0 0 -1 0 O

0 06 0 0 0 -1 O

L0 0 0 0 0 0 -1J

The evolution of the internal parameters is now expressed as
¢ = W i)

in which the matrix W = M U with
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r1-r; 0 0 07

0 1-r, 0 0

0 0 1-r; 0

U= 0 0 0 1
1—rs 0 0 0

0 1-rg 0 0
L o 0 1-r, 0]

The updated stress vector can be calculated using a return-mapping algorithm if the
active failure surfaces have been determined. The updated stress vector is given by

ol = D, &) = D, (e8P ~ £l)) (4.126)

en,s ns Ecns

in which the inelastic strain vector £%/!) is determined by the summation of the inelastic

strain vectors of the different active directions,

7 7
i+1) (i+1) — (i+1)
el = Z}Cj A;7 0. f; = _Zlcj S v, @.127)
7= J=

with ¢; the constraint which is equal to one if the failure surface is active else the con-
straint is equal to zero. The updated stress vector is then given by

. . 7 A
ol = DelV - 2‘{ ¢; 4D, v, 4.128)
=

The inelastic multipliers A; are calculated by substituting the updated stress vector into
the formulation of the bounding surface, eq.(4.121) which results in

7
o uT Ty LD G+1) T
c.fi = cviDeys’ — Y cic; A v; Dov;
=

which is a linear set of equations

Ax = b (4.129)

>
\

CiCj v,»TD,vj
x; = A
T -
Ci( Vi Desn..f - a-i(’(i ] en,s) )

>
|

from which 4; can be solved. The updated stress vector afl‘:l) can be calculated with

€q.(4.128) by substituting the inelastic multipliers 4;.
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The tangent stiffness matrix is derived consistently with the Newton-Raphson itera-
tion scheme for obtaining global equilibrium starting from the updated stress vector in
the global coordinate system

o,(i+1) = T(¢)To,’('l‘-;|)
The total derivative of the updated stress is given by
do®? = d(T(¢)" ) &tV + T(¢)" dotiV (4.130)

With the angle ¢ = ¢(&) this can be written as

T T (i+1) @i+1)
aon = | STOY jan 90, T(¢)" %, ———ae":s de®V
a¢ s Qetith asf,';l) deli+h

The strain vector in the local coordinate system has been defined previously as
& = T(9) e
so that

de,; _ OT(p) 9¢”
de 75 de + T

Substituting this relation into the tangent stiffness relation results in

. it | TGy .. 9" 1. .
do'l = [ T(p)" aé{:“ T(p) st(‘”) + [ —————a(Z) oD —_—aez”) de®

+ (4.131)

[ T aa:::; IO oy 907 }dsﬁ“)
o€, s d¢ delih

The first term of the tangent stiffness matrix is equal to the tangent stiffness matrix in
the local coordinate system transformed into the global coordinate system and can be
considered as the material tangent stiffness matrix. The second and third terms are due
to the spin of the local coordinate system. If the total strain model is considered as a
fixed crack model, the transformation matrix is no longer a function of the strain vector
in the global coordinate system and the second and third term of the tangent stiffness
matrix vanish.

The local material tangent stiffness matrix is derived consistently from the updated
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local stress vector
i i+1 z (i+1)
o) = D, el - Zl c;A; ' D, v, 4.132)
=
The total derivative is given by

. : 7 -
Gols? = D,aely) - 3,41 0,

The consistency condition df; = O gives the final relation between the variation of the
inelastic multiplier d4 and the strain variation

df; = ¢, (vIda®V + 0, fTdg™ + 9, fTdelP) = 0 (4.134)

Substitution of eq.(4.133) results in
. 7 . . .
¢ (viD, deliY v ¥ ¢; dif;m D, v;+0,fTdg™ + 9, fdel’}V ) = 04.135)
j=1

which can be solved to obtain the variation of the inelastic multipliers dA;. The total
derivative of the internal parameters is given by the relation

dq(i+l) - W def,‘:l) (4.136)

because the matrix W is a constant matrix. Substitution of eq.(4.136) into eq.(4.135)
results in the system of equations

Ax = b (4.137)

= ¢ viTDevj
;o= d4,
i (viD, + 0, fT W + a.f7 )delt"

S &
[l

which can be solved for d4;. The variation of the inelastic multipliers is now given by
+1) : -1
d}. j = kz‘; A Jjk bk

which can be substituted in eq.(4.133) resulting in the local tangent stiffness matrix
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X 7 7 ,
do@®tV = {De - }:l ¢; D, vjlg cr Ay (v[ D, + 9,f] Wo.f{ )] deh
e -

which is in general nonsymmetric.
In case of secant unloading the derivatives of the functions with respect to the inter-
nal parameters and with respect to the strain vector are given by

36,(xy) vies”
O fi = - % (1=r) + 1y VTens (4.138)
and
- | Vi ]
O fi = —Gu(ki) 1 o (4.139)
vken,s

respectively. If elastic unloading is assumed, the derivatives are given by

O fe = - a&s(qu) (4.140)
and

O.fi = —r E. v | 4.141)
respectively.

The second term in the tangent stiffness matrix, eq.(4.131), can be elaborated for the
coaxial rotating crack model by the calculation of the partial derivative of the transfor-
mation matrix T to the rotating angle ¢

~sin2¢ sin2¢ 0 —2cos2¢
TT in2¢ -—sin2¢ O 2cos2

a__ _ sin 2¢ sin2¢ cos2¢ @142

d¢ 0 00 0

cos2¢ —cos2¢ O -2sin2¢

in which the angle ¢ is given by the coaxiality condition
_1 Yo
¢ = 5 atan( —=—) (4.143)
£y — &y

The partial derivative of the angle ¢ to the global strain vector is given by
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_llzyxy
(Exx - eyy)z + 7,%:

llzyxy
¥ _ ) Camepltry @.144)
Je 0 '

1/2(€xx - gyy)
(6x — &yl + 75 )

Because the shear stress in the local coordinate system o, is equal to zero by definition,
the second term of the tangent stiffness matrix, eq.(4.131), can be expressed as

sin2¢ —sin2¢ O -—cos2¢

T T iV —o,,) | —sin2¢ sin2¢ O cos 2¢
@) 3| _ Yoty (‘frm2 g 2) (4.145)
a¢ ' Be (exx_gyy) +7xy 0 0 0 )
cos” 2¢
—cos 2
cos2¢ cos2¢ O sin2e

This equation is not very convenient in a finite element program where it is more appro-
priate to develop the tangent stiffness matrix in the local coordinate system and then
transform the matrix to the global coordinate system. Using multiple-angle transforma-
tions, it follows that

Y. - -

ey (Omn — 05 ) o O —O
xy nnz 55 ; — 1/2 sin 2¢ nn 55

( Exx — &y ) + yXy Enn — Egs

and the second part of the tangent stiffness matrix, eq.(4.131), is finally written as

00 0 O
T@' 9 | . |0 000
[ 3 Ons 5p =T (¢) 000 0 T(¢) (4.146)
0 0 0 w
with
o = iy I s
Epn — Egs

which has also been given by BaZant (1983), Willam, Pramono and Sture (1987), Rots
(1988), Crisfield and Wills (1989).
The third part of the tangent stiffness matrix , eq.(4.131),
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d0,, dT(¢) d¢"

T ——
T 3., 96 € o

can be reduced in the same manner. We firstly apply the multiple angle transformations
to the matrix-vector product

0
@) 0
= < 4 (4.147)
o9 0 ,
& +
~2cos 2¢( » )t
Ex — Eyy
o 3¢’ :
Multiplication with the vector B then results in
0 0 0 0
8T(¢) 8¢ 0 6 0 0
= 4.148
o0 o 0 00 0 @148
sin2¢ sin2¢ 0O -—cos2¢
which is equal to
0 00 O
0 00 O
T(¢) = -LT .
000 0 (9) (#) (4.149)
0 0 0 -1

with the diagonal matrix L = diag [0,0,0,1]. The consistent tangent stiffness
matrix is now completely defined as

nl

do®? = [ T(®)" 8’” (I-L)YT@) + T(®) o LT(g) |de®V (4.150)

These derivations are valid if the strain transformation matrix T'(¢) is indeed a func-
tion of the total strain vector and if we assume a coaxial rotating crack model. For the
fixed crack model, the consistent tangent stiffness matrix is simply given by

oV = [ T(9) 8"‘ T() } de®*? @15h

n.s

and the reduced shear stiffness SG is determined by a function which is in general a
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function of the normal and shear strain component. In this study it is assumed that the
shear retention factor remains constant after the tensile strength has been violated.

4.3 Tension-shear model problem

The fundamental differences of the formulations discussed in this Chapter will be dis-
cussed with an elementary problem proposed by Willam, Pramono and Sture (1986), in
which a plane-stress element with unit dimensions is loaded in biaxial tension and shear.
This causes a continuous rotation of the principal strain axes after cracking, as is typical
of crack propagation in smeared crack finite element analysis. The element is subjected
to tensile straining in the x-direction accompanied by lateral Poisson contraction in the
y-direction to simulate uniaxial loading. Immediately after the tensile strength has been
violated, the element is loaded in combined biaxial tension and shear strain, see Figure
4.10. The ratio between the different strain components is given by
Aéy : Agy, 1 Ay, = 0.5:0.75: 1. The material properties are given in Table 4.1.
The analyses of Rots (1988) of this problem with the multi-directional crack model
show that the shear response becomes softer with decreasing threshold angle, resulting
in the limiting case of the rotating crack model with zero threshold angle as the most
flexible response.

Table 4.1 Material properties tension-shear model problem.
concrete
E. 10000 [N/mm?]
v 0.2 [-]
fotm 1.0 [N/mm?]
Gy 0.1510° " [Nmmimm?]

1) linear softening

The behavior of the different formulations for smeared cracking which have been
given in this study can be studied in detail with this problem. The constitutive behavior
will be compared with respect to the shear stress - shear strain behavior and the normal
stress - normal strain behavior in the x- and y-directions. Particularly the shear stress -
shear strain response gives a good impression of the behavior of the model when
applied to the analyses of structures. The first issue which will be treated is the different
behavior of the models formulated in the total strain concept. The comparison between
the rotating crack model and the fracture energy-based Rankine model with isotropic
and kinematic hardening should elucidate if the fracture energy-based plasticity model
is capable to predict a flexible shear stress - shear strain response. The second issue is
the comparison of the rotating crack model and the fracture energy-based plasticity
model within an incremental formulation. Because the response of models with a total
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Figure 4.10  Tension - shear model problem: (a) tension up to cracking; (b) biaxial
tension with shear beyond cracking.

0.20 -
initial shear modulus
§ rotating crack model
= 0.10- Rankine isotropic
o fixed crack model ( § = 0.05)
0.0 4
Rankine kinematic
‘0, 10 T L] T 1
0 0.5 1.0 1.5 2.0
Y [107]

Figure 4.11  Total formulation of the constitutive models. o, — ¥, response.

formulation is in general more flexible than the response of models with an incremental
formulation, we expect that the Rankine plasticity model with an incremental formula-
tion shows a less flexible shear stress - shear strain response, but the comparison should
provide insight if this less flexible response is still acceptable.

4.3.1 Comparison of the total formulations

The shear stress - shear strain response for the different models described in a total for-
mulation is shown in Figure 4.11. The fixed crack model has been used with a shear-
retention factor equal to 0.05 which results in a constant increasing shear stress with
increasing shear strain. The rotating crack model shows an implicit shear softening
behavior which has been observed previously by Willam, Pramono and Sture (1985) and
Rots (1988). It is interesting that the same behavior occurs for the fracture energy-based
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Figure 4.12  Total formulation of the constitutive models. o,, — €,, response.
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§ Rankine kinematic
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0.4 4 fixed crack model

Rankine isotropic
0.2
0.0 Y — . \
05 00 1.0 2.0 3.0

£, [107]
Figure 413  Total formulation of the constitutive models. 5, — &,, response.

plasticity model with isotropic and kinematic hardening. The two formulations are in
fact indiscernible until the shear stress has almost softened completely. Then the
isotropic and the kinematic hardening models yield different responses which is due to
the fact that with isotropic hardening it is impossible for the shear stress to become neg-
ative for positive increments of the shear strain component of the strain vector. It is
obvious from Figure 4.11 that the differences between the rotating crack model, except
for the fixed crack model, are very small.

The o0,.-¢,, response depicted in Figure 4.12 shows that the input stress-strain soft-
ening diagram is exactly reproduced by the fixed crack model. This is logical, since the
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softening has been monitored in the fixed crack directions which are aligned with the x-
y-axes. The behavior of the other models shows an implicit normal stress-shear stress
coupling. The Rankine plasticity model with isotropic hardening shows an increasing
degradation of the stiffness when the stress has been decreased until approximately
50 % which is attended with a zero shear stress. At this stage the apex of the yield sur-
face has been reached and the stress components in x and y-direction are softening in
the direction of the origin. The response in the lateral y-direction is shown in Figure
4.13 which shows the formation of a secondary crack perpendicular to the first crack for
the fixed crack model which again reflects the input softening diagram. The rotating
crack model and the Rankine plasticity model with kinematic hardening show a gradual
degradation of the stiffness in the y-direction. This can also be observed for the Rankine
plasticity model with isotropic softening until the shear stress becomes equal to zero and
the stress in y-direction begins to soften linearly which is in accordance with the input
softening diagram.

The performance of the constitutive models based on a total formulation has been
shown with the elementary tension-shear model problem. The formulation of a maxi-
mum principal stress criterion within the framework of elasticity or within the frame-
work of plasticity does not result in major differences. In particular, the elasticity-based
rotating crack model and the fracture energy-based Rankine plasticity model with kine-
matic hardening show an almost identical behavior. The behavior of the Rankine model
with isotropic hardening is identical to the behavior of the Rankine model with kine-
matic hardening until the shear stress is equal to zero. At that stage the apex of the yield
surface has been reached for the isotropic hardening model and the shear stress is equal
to zero.

4.3.2 Comparison of incremental formulations with the rotating crack
model

The limiting case with no softening ( G; = oo ) confirms that the different formula-
tions within the total strain concept result in a similar behavior. The shear stress-shear
strain responses of the rotating crack model and the Rankine plasticity model are shown
in Figure 4.14. The response is identical for all models with a total formulation. It is
clear from this figure that although no softening has been assumed, the shear stress-
shear strain response shows an implicit softening behavior. Also depicted in Figure 4.14
is the response of the Rankine model formulated within an incremental concept, which
shows a shear stress-shear strain response that is less flexible, but still shows an implicit
shear softening. The coincidence between the rotating crack model and the Rankine
plasticity model based on the deformation theory when compared for ideal plasticity has
also been shown by Crisfield and Wills (1989). The plasticity model based on an incre-
mental formulation has also been applied to the tension-shear model problem with the
material properties given in Table 4.1 and compared with the rotating crack model in the
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Figure 414 Gy =o0. 0, — ¥,, response.
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ES Rankine kinematic
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Figure 4.15  Tangential formulations and the rotating crack model. o,, - 7,, response.

following figures. The first interest concerns the behavior in shear which is depicted in
Figure 4.15. It is clear from Figure 4.15 that the rotating crack model has the most flexi-
ble response in shear, but the differences between the rotating crack model and the frac-
ture energy-based plasticity model are minor. Again, the Rankine plasticity model with
isotropic hardening results in a shear stress equal to zero when the apex of the yield sur-
face has been reached.

The normal stress-strain response in the x-direction, see Figure 4.16, again shows an
implicit normal stress-shear stress coupling for the models based on an incremental for-
mulation, with an even more pronounced coupling for the fracture energy-based plastic-
ity model.
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Figure 416 Tangential formulations and the rotating crack model. o,, — £, response.
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Figure 4.17  Tangential formulations and the rotating crack model. o,, — £,, response.

The normal stress-normal strain response in the lateral direction, depicted in Figure
4.17 shows a similar behavior as for the models based on the total formulation, given in
Figure 4.13. The response for the Rankine plasticity model with isotropic hardening
again shows the linear softening relation when the apex of the yield surface has been
reached. The response of the Rankine plasticity model with kinematic hardening shows
a gradual degradation of the stiffness in the y-direction.
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4.4 Summary

It has been shown that fracture energy-based plasticity models and the rotating crack
model have a strong correlation. The Rankine model within an incremental formulation
shows a similar behavior as the rotating crack model, which indicates that this model
can be used to model crack formation in concrete. The differences between the Rankine
model with kinematic and isotropic hardening are surprisingly small in the case of pro-
portional loading. In the next Chapter, the rotating crack model and the fracture energy-
based plasticity model with isotropic and kinematic hardening will be applied in the
analysis of plain concrete structures to further compare the different approaches.

Appendix: Axisymmetrical formulation of the composite yield criterion

The composite yield contour which is composed of a Rankine criterion and a Von Mises
criterion which has been formulated previously shows a reasonable agreement with
experimental data on biaxial loaded specimen. The behavior of concrete loaded in a tri-
axial stress state is, however, different from the behavior in biaxial stress states and is
dominated by two mechanisms, firstly the behavior is pressure-sensitive in compression
and secondly, the behavior is dilatant. This cannot be modeled with the composite yield
criterion which has been discussed in the previous paragraph.

In order to remedy these deficiencies, an axisymmetrical formulation of a composite
yield contour will be proposed which is defined by the Rankine yield criterion which
bounds the in-plane tensile stresses and a non-associative Drucker-Prager yield criterion
which is applicable in the compressive region. The tensile stress in the axisymmetrical
direction will be bounded by a tension-cut-off criterion. The composite yield criterion is
then given by

fi = (hWETP EY + Yom] £ - Gy(yxp)
fr= (ho"Py0)" + apm) 0 — Gy(xc) (A1)
fi = 7 0 - G3(x3)

with again a mixed hardening rule for the Rankine criterion and an isotropic hardening
rule for the Drucker-Prager criterion. The equivalent stress &, is the uniaxial tensile
strength as a function of the internal parameter x7. The equivalent stress &; is also the
uniaxial tensile strength, but now as a function of the internal parameter x; which allows
for a different hardening behavior in-plane and in the axisymmetrical direction. Finally,
the equivalent stress & is determined by the material properties, the cohesion ¢ and the
angle of internal friction ¢, according to
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6 cosg

Gy(x2) = c(xc) 3= sing

in which only the possibility of cohesion hardening is considered. The factor a; is given
by

2sing
=32 sing

The projection vectors are given by

n ={ 1,1,0,0 )
n = { 1,1,1,0 (A.2)
x = ( 0,0,1,0 }7

respectively.

The inelastic strain rate is again determined by Koiter’s rule, Koiter (1953), which
allows for a summation of the inelastic strain of each yield function according to

b= b + €y + €y = A0Sy + A3 0,8 + 430, (A3)

in which the plastic potential function for the Drucker-Prager yield criterion g, is given
by

& = (ho'P, )" + ag:rzr o — G,(k¢c) (A.4)

The plastic potential function differs from the yield function as the factor e, which is a
function of the angle of internal friction ¢, is replaced by a factor &, which is now a
function of the dilatancy angle y, according to

_ 2siny
£ 7 3 _ siny
The damage in the material is now reflected in three internal parameters, one for dam-
age in in-plane tension, x7, one for the damage in compression, x¢, and one for tensile
damage in the axisymmetrical direction k3. For a work-hardening hypothesis, the inter-
nal parameters are determined by the inelastic work rate for the three respective yield
functions, i.e.
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T T . 1T . _ = ,
Wei=8& 8¢, +8n—0 €5+ {30 é.3=06(ykr)kr
() O3
. o 0:
T . 2 T - 2 T - - .
{ Wep =0 €5 + Oy 3 $ é1 t+ (n 5.9 &3 = G(kc) k¢ (A.5)
1 3
. o 0
T . 3 ,T . 3 T . - 5
Wes =0 é.53 + Oy 7 & &, + in 5 o' ¢, = 03(K3) &y
1 2

with scalars {3, {13, $215 $23, £31 and &5, which represent the coupling of the damage in
the material. With the application of Euler’s theorem the eqs.(A.1)-(A.S) result in the
following expression for the evolution of the internal parameters

kr = Ay + {pdy + L ds

Cudy + Ay + L ks (A.6)

Kc

Ky = O Ay + $ndy + 4y

With
K7 1 $ia {13
q =4 k¢ hy =4 &y hy, =41 hy =< {5 (A7)
K3 <Y $n 1

eq.(A.6) can formally be expressed as

G =A h + iy hy + Ashy (A.8)

Because the hardening functions are given by a scalar expression, the incremental inter-
nal parameter vector is determined by

AgV = ALV Ry + AASTV Ry + AASTD by A9
for a coupled system of three yield surfaces.

The return-mapping procedure described in the previous paragraph is now extended
and reads

o-(“'l) = o - Ali(li“)D, aafl(iﬂ) _ All(ziﬂ}De aag(ziﬂ) _ A/lg+‘)De aaf3(i+1)
(A.10)
7“0 = g+ APY (1-y) Eyo, gV

and the updated stress and updated back stress are again given by the solution of the
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following system of equations

0'(i+1) A” AlZ - of —VzAZ(l”l)De " - agAAgM)De ny — Aﬂ.gﬁl)De s

7@ Ay Ap | (e +%BAAT (1-9) Ey xy

with the matrices A; again given by

A;L(liﬂ) (2i+1)
=I+——D,P, + —2—D,P
All + 2\},] De 1 + 2\},2 el 2
A}.‘{"‘”
A, = - D
12 2\{,1 ePl
Al(iﬂ)
Ay = ———(1-y) E,AyP
21 Z\Pl ksApM L1

(i+1)

I+ 2\;1 (1-7) ExAuP,

Ap

The denominators ‘¥, and ¥, are now given by

¥, = &(rer) - l/zﬂlr( oY - fl(m))
(A.11)
¥, = &y(xc)—a;moth

which is again not very convenient because the updated stress cannot be related linearly
to the trial state. To arrive at a more suitable form we first multiply o“*" with the vec-
tor #7 so that

L oY = zlop — LA™ &ID, 7,
- o, A 27D, x, (A.12)
4 2 2%e
- AV 21D, =

because xiD,P, = 0" and z]D,P, = 0". The denominator ‘¥, can now be
expressed solely in terms of the trial state variables and the inelastic multipliers
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AA, E 3a0,Al, E Al E
L g2 3 ) (A.13)

¥, =6 - Tor + +
2 = %K)~y mop+ay ( -2 (-2 (-2
In order to calculate ¥;, we multiply both 6*" and 7*" with #7 which results in

z] 6"V = xloy

AASTD

D, P, 6™V - agAﬁ,g”)x,TD, ,
¥,

(A.14)

AT D, =,

z 1@ = xln, KA~ y) 2T Ey 7y

The factor #x'o is stil a function of the final stress because
#TD,P, =2G{1,1,-2,0} # 07. Substitution of this relation into eq.(A.14)

results in

xl 0@V = alop — HhAX2]D, x, - 2,025V 2ID, x, - AASVA] D, =,

(A.15)
@+ (i+1)
_ AJ'Z G ﬂ,T o,(i+1) + 2 A}”Z G O'(i+l)
\{,2 1 lPl 2z
The return-mapping of the stress in the z-direction is given by (cf. eq.(A.10) ),
o) = o AN VE e APV E AT (L-0)E
“ =E T 1+v)(1-2v) (1-2v) (1+v)(1-2v)
(A.16)

@+ @i+
AEYG o oy 288G
y, 7% T Ty, C=

The factor #7 6™ is finally obtained by substituting eq.(A.16) into eq.(A.15) which
results in
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T o V22886 [ AVE 265V E 2AKTVE

i e3al G| ETUrn-n T a-)  (+nd-w)
(A.17)

+ _Z_Aﬂ'&_ o A;V(liﬂ) vE _ agA,lgH) E A,{gﬂ) (1-)E

¥ +3A00 G | TFET - (-2 (+wv(I-2)

With this result the denominators are solely expressed in terms of the trial state variables
and the inelastic multipliers.

Because the mapping matrix is equal to the return-mapping matrix given in the pre-
vious paragraph, the spectral decomposition discussed there can be applied without fur-
ther modifications.

Upon substitution of a“*"” and 7" as given in eq.(A.10), we observe that the yield
functions are now solely expressed in terms of the inelastic multipliers AZ;, A4, and
AZ;. The constraint equations

clfi( AR ARG ARV ) = 0

Cafo AAED ALY AASTY Yy = 0 (A.18)

e f( A AASTY LAYy = 0
have to be solved to obtain the final stress state. This is again done using a local New-
ton-Raphson iteration with a Broyden update of the Jacobian. The scalars ¢y, ¢, and c3
are equal to one when the corresponding yield function is active, else the scalars are

equal to zero. The initial Jacobian is determined from the linearization of the yield func-
tions in the trial state

) 3
fl(H'I) = fl( op — Zl Aﬂ_io) Deadfj s NEg + A" » KT E + AKT )
j=

. 3
D = fop— X AN D, f; kep+Axc) (A.19)
j=1
X 3
D = f(op - X AL D3, f; , kg + Axs)
L j=

which results in the following system of equations
JO sy = - f(x0) (A20)

with the initial Jacobian given by
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P ==08,fT D, dsf; + 3,1 k; (A21)
except for J ﬁ) which is given by

I ==0,f Dedsfi = 1=7) Ex + 3,/ hy a22)
The vectors s and f© are given by

sO = (AP, 029, A1 Y
(A.23)

O = {cifiloene.kr.p) » C2f (08, Kcg) » €3f3(0p, K3 6)}

Initially the constraints are determined by the violation of the yield criterion in the trial
state, i.e.

¢ =1 if fl(O'E,TIE,K'T_E) >0
Cy = 1 if fZ(GE’ KC,E) >0
c; =1 if fi(og, Ks,E.) >0

During the return-mapping the active yield functions are determined with conditions

— : @i+1) —
c; =1 if Aﬁ.j > 0 else cj—O

The consistent tangent stiffness matrix for the Newton-Raphson iteration is again
most conveniently derived from the updated stress at time (i + 1)

oV = D, [e“0~ e, — XV, f, — AAFTVD,8, — AL, 1]
The total derivative then reads

do™" = D, [de“D —~ da,9,f; — AV @2, £, da®™D

~ dA; 9,8, — AAYV 2,8, doY (A24)
- di39,f3]
which is written as
do™V = H[de™ - dA,0,f, — dA, 0,8, — dA3 0, f3 ] (A25)

with the modified stiffness matrix H again given by
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H=1[C, + M2 fi + AMA§V 2 g1

where it is noted that 02, g, = 02, f>. Applying the generalized directional matrix U, see
Riggs and Powel (1990), eq.(A.25) is formally written as

de®™" = H [de®™) - U da] (A.26)
in which the matrix U is given by

U= [cl 051 1€2 0582, €3 9513 ] A2
The plastic multipliers are collected in the vector dA = { d4;,dA;, d4, }T. The con-

sistency conditions determined by the active yield surfaces, give the relations for the
inelastic multipliers

¢, (3,fTdo + 9,fldn + 9,f{dg) + (1-c;)dA; =0 (A28)
¢ (9, f1do + 9,f7dgq) + (1-c;)dA;, = 0 (A29)
3 (9, f7do + 9,f3dg) + (1-c3)da; = 0 (A.30)

If the relations

dq=C1 hldll + C hzdlz + C3 h3d/13

and
dp=c,di; (1-7) E, 9,81

are substituted, the consistency conditions result in the following system of equations

dA = E'V'deo (A31)
with
—ct O fi by + i (1-7)Ex+(1-¢y) —cy ¢ 9, f{ by —cy ¢3 9, f{ b3
E = ~c1 €3 03 by =3 0gf1 by + (1-¢2) —c3 €3 043 hs
~c1c39,f1h —c3¢30,f1h 30, fThy+(1—
c1¢39,f3 by 2 €3 0,f3 hy €3 0,f3 b3 + (1 —c3)
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and
¢1 9, f; 1T
v = 2 aafZT
C3 aaf3T
Substituting eq.(A.31) into eq.(A.26) results in

[H“ + UE'VT ] do®™ = dgtth (A.32)

The consistent tangent stiffness matrix can now be calculated with the application of the
Sherman-Morrison-Woodbury formula, which results in

do®b = [H - HU(E + VCHU ' VT H]de(”” (A.33)

Again it is noted that if the yield function are coupled through the hardening functions
given in eq.(A.7), the tangent stiffness matrix is in general nonsymmetric.

The corners in the composite yield surface in a axisymmetrical situation require also
special attention since they may cause numerical difficulties. Now also two possible sit-
uations are possible, firstly the situation where ¥, = 0 and secondly the situation where
¥, = 0. Both situations have been treated in the previous paragraph and do not need any
further discussion.

5. APPLICATION TO PLAIN CONCRETE

The objective of this Chapter is to compare the incremental formulation of the fracture
energy-based plasticity model and the rotating crack model in applications to plain con-
crete structures. It will be shown that the fracture energy-based plasticity model is well
capable to simulate crack propagation in plain concrete. The results will be presented
with a load-displacement diagram of a representative degree-of-freedom and the pattern
of active cracks, which are defined as the cracks at the integration points in which the
internal parameter x is equal or greater than half x,. If it is necessary to assess the
behavior of structure, the total displacement will also be given.
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Figure 5.1 Single-edge-notched beam. Finite element mesh. Measures in [mm].

5.1 Single-edge-notched beam

The single-edge-notched geometry of the Iosipescu beam has been used in experiments
on concrete beams for the first time by Arrea and Ingraffea (1982). The experiments
show a curved crack propagating from the tip of the notched to the opposite side of the
loading platen. The experiments on the SEN-specimen have been simulated extensively
during the last decade, see De Borst (1986), Rots (1988), Rots (1992), Schlangen
(1993). RILEM committee 89-FMT has also proposed an experimental round robin
using the SEN-specimen to study the mixed-mode fracture process. The proposed
experimental set-up has been improved such that the experiments could be performed
without friction in the roller bearings, see for more details Schlangen (1993). The scatter
of the experimental results is small which makes the experiments very suitable for
numerical simulation. The stress state in the specimen is mainly tension-shear with
small compressive stresses. The objective of the analyses presented here is to simulate
curved mode I fracture propagation with the rotating crack model and the fracture
energy-based plasticity model with isotropic and kinematic hardening in an incremental
formulation.

The SEN-specimen are 400 X 100 x 100 [mm®] with a notch of 5 x 20 [mm?]. The
distance between the inner supports is equal to 40 [mm] and the distance between the
outer supports is equal to 400 [mm]. The specimen has been discretized with 1655
three-noded plane-stress elements with a single integration point and a very dense distri-
bution of elements around the tip of the notch, see Figure 5.1. The distribution of the
loads has been modeled as described by Schlangen (1993), with F| = 10/11 F at the
center loading platen and F, = 1/11 F at the outer loading platen, with F the total load.
Only the center loading platen has been modeled because only this platen has an
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Figure 5.2 Single-edge-notched beam. Load-cmsd diagram.

Table 5.1 Material properties single-edge-notched beam.

concrete
Sem 36.5 [N/mm?)
E. 35000 [N/mm?)
v 0.15 -
fetm 2.8 [N/mm?]
Gy 0.07" [Nmm/mm?]

1) exponential softening

influence on the stress distribution. The middle support has been fixed in the vertical
direction and the outer support has been fixed in vertical and horizontal directions. The
experiments on the small beams with normal weight concrete, maximum aggregate
8 [mm], have been chosen for the numerical simulation, with the material properties
given in Table 5.1. The analyses have been performed using the solution technique
which has been discussed in Chapter 2. The convergence characteristics of the calcula-
tions are good, although for the rotating crack model a number of line searches were
necessary. The comparison of the experimental result and the numerical simulations
focuses on the crack-mouth-sliding-displacement (cmsd) versus the total load which
should be considered as a representative measure of the nonlinear behavior of the struc-
ture. The total load-cmsd diagram, Figure 5.2, shows a pre-peak behavior
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Figure 5.3  Single-edge-notched beam. Active cracks at final load.

which s a little too stiff for all models and a failure load which is in accordance with the
experimental result. The post-peak behavior is simulated within acceptable boundaries
for all models. It appears that the different formulations of the constitutive models do
not differ very much, Neither of the models is capable to predict a genuine separation
with a full softening behavior which has been found in the experiment. An analysis with
a discrete crack model, Rots (1988), of a similar beam shows a full softening behavior,
but the analyses with other smeared crack models show the same tendency. At peak
load the crack has been initiated at the right-hand-side of the notch with a direction of
approximately 45° which has also been observed in the experiments, Schlangen (1993).
At the final load the crack is propagated through the specimen from the notch to the
right-hand-side of the loading platen which is shown in Figure 5.3 for the analysis with
the Rankine model with isotropic hardening. The crack pattern of the analysis with
kinematic hardening or the rotating crack model is almost equal to the crack pattern of
the Rankine model with isotropic hardening. The differences between the models is
small and only perceptible in the final load stage.

5.2 Pull-out of an anchor bolt

The pull-out analysis of an anchor bolt has been proposed by RILEM-committee
TC90-FMA as a round-robin analysis in order to compare the different analytical and
numerical methods. The geometry and material properties of the first proposal for the
round-robin, Elfgren (1990), have been used to simulate the pull-out with the standard
smeared crack models for both the plane-stress and the axisymmetrical case, Feenstra,
Rots and De Borst (1990). The second, revised invitation also concerned the experimen-
tal analysis of the proposed geometry for both the plane-stress and axisymmetrical case
with an embedded depth of 50, 150 and 450 [mm] respectively. In the Stevin Laboratory
at Delft University of Technology experiments have been carried out on a plane-stress
specimen with an embedded depth of 100 [mm], Vervuurt, Schlangen and Van Mier
(1993). These experiments have been used in this study to investigate the behavior of
the fracture energy-based plasticity model and the rotating crack model.
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Figure 5.4 Pull-out of an anchor bolt. Finite element model. Measures in [mm].

Table 5.2 Material properties pull-out of an anchor bolt.

concrete
fom 35.0 [N/mm?)
E. 37000 [N/mm?]
v 0.15 -
Jem 2.5 [N/mm?)
Gy 0.09" [Nmm/mm?*]
G. 5.0 [Nmm/mm*)

1) exponential softening
2) parabolic softening



experiments Vervuurt, Schlangen and Van Mier (1993)

30 - )
rotating crack model

load F [kN]

Rankine kinematic
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Rankine isotropic
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0 0.5 1.0
displacement upper edge anchor [mm)

Figure 5.5 Pull-out of an anchor bolt. Load - displacement diagram.

The finite element discretization is given in Figure 5.4. Only the half of the speci-
men has been discretized with 402 six-noded plane-stress triangles with a seven-point
integration. The anchor has been modeled using 13 four-noded plane-stress elements
with a four-point integration. The material properties are given in Table 5.2. The analy-
ses have been performed under the proposed solution strategy. The sign of the initial
load increment has been determined using two methods. In the pre-peak regime, the
sign has been determined using the displacement-based method of Crisfield. After the
failure load the sign has been determined using the pivot method. The latter method
could not be used in the pre-peak regime because one negative pivot occurred at a load
of approximately 25 [kN], which caused spurious unloading. A possible descending
branch could not be found at this point.

The results are given as the load versus the displacement of the upper-outer edge of
the anchor head and the crack pattern at different stages of the calculation. The load
displacement diagram is given in Figure 5.5 for the different constitutive models. Analy-
ses with the composite yield surface show that the influence of the compressive nonlin-
earity on the load-displacement curve is negligible and these diagrams are not shown in
Figure 5.5. The predicted failure load is approximately 20 % too high when compared
with the experimental results, but the post-peak behavior is predicted in agreement with
the experimental response. It is remarkable that the failure load is almost equal for all
constitutive models but that the post-peak behavior shows substantial differences. The
Rankine model with kinematic hardening shows a more ductile response than the Rank-
ine model with isotropic hardening. These differences cannot be explained by a differ-
ent failure mode because the crack pattern is almost equal for all analyses.
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Pullout of an anchor bolt. Active cracks (a) just before maximum load ;

(b) just after maximum load ; (c) final crack pattern
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Figure 5.6
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Pullout of an anchor bolt. Total displacements. (a) just before maximum
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load ; (b) just after maximum load ; (c) at final load.

(a)
The rotating crack model results in a load-displacement diagram which is between the

other two curves. The calculations of the rotating crack model have been terminated at
an early stage because convergence could no longer be achieved. The failure mode is a

Figure 5.7



sudden crack propagation which is clearly shown by the crack pattern of the Rankine
model with isotropic hardening which is shown in Figure 5.6. Just before the maximum
load the cracks localize in a small region around the anchor head and after the maxi-
mum load the crack propagates horizontally through the specimen which is accompa-
nied with a decreasing load. When the crack has grown towards the support it branches
into two cracks, one propagating in the direction of the support, and one propagating
downwards. This crack branching has also been observed in the experiments where it is
even more pronounced because the crack pattern in the specimen is nonsymmetric, see
Vervuurt, Schlangen and Van Mier (1993). The crack propagating downwards is, how-
ever, the active crack which can be seen from the displacements plotted in Figure 5.7 for
three different load stages. This analysis shows that the constitutive models which have
been developed are capable to predict the failure load, the post-peak behavior and the
failure mode accurate enough to be used in the analysis of a design problem which is
formulated by RILEM-committee TC30-FMA as one of the goals.

5.3 Cylinder splitting test

The cylinder splitting test is often used as an indirect test for determining the tensile
strength of concrete. However, the tensile strength which can be derived from this test
is considerable influenced by the boundary conditions and failure is often induced by
compressive softening under the loading platen, see Hannant, Buckley and Croft (1973).
Although the stress state under the loading platen is considered to be triaxial, this exam-
ple has been chosen to analyze the capability of the developed models to predict the fail-
ure mode in a tension-compression test. The geometry of the cylinder splitting test has
been taken from a similar analysis of Saourides and Mazars (1989) who analyzed this
example with a local and nonlocal damage model. Their conclusion was that it is not
possible to obtain a splitting type of failure with a traditional local approach because
damage localizes under the loading area. The fracture-energy based models which will
be used in this study can provide a solution as will be shown in the following analysis.

The specimen which will be analyzed is a cylinder with a length of 160 {mm] and a
cylinder radius of 40 [mm]. Only a quarter of the specimen is discretized because of
symmetry conditions, with 105 six-noded plane-stress elements with a 7-point integra-
tion. The loading platen has been modeled with one 8-noded plane-stress element with
a 9-point integration. The finite element discretization is shown in Figure 5.8 and the
material properties which have been used are given in Table 5.3. The load versus the
displacement of the loading platen is depicted in Figure 5.9 in which the influence of the
compression softening is clearly shown. If no compression softening is modeled, the
analysis does not show a limit load, but is monotonically increasing. The differences
between the Rankine plasticity model with isotropic or kinematic hardening and the
rotating crack model are negligible which is not surprising because the crack can be
considered as a pure mode-I crack which does not rotate after cracking.
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Figure 5.8  Cylinder splitting test. Finite element mesh.

Table 5.3 Material properties cylinder splitting test.

concrete
Fom 30.0 [N/mm?)
E, 37700 [N/mm?]
v 0.15 -]
Fotm 3.0 [N/mm*]
Gy 0.10" [Nmm/mm?]
G 5.0 [ Nmm/mm?]

c

1) exponential softening
2) parabolic softening

If compression softening is taken into account the situation differs considerably. The
ultimate load is smaller than the ultimate load of the composite yield function which is
because of the different failure mechanism. The failure mechanism of the rotating crack
model is completely governed by compression softening. On the other hand , a splitting
crack is observed for the composite yield function and the biaxial stress state under the
loading platen is clearly shown by the principal inelastic strain vectors which are plotted
in Figure 5.10 at the maximum load and at the final state. At the maximum load the
stress state under the loading platen is mainly mode-I compression with a starting split-
ting crack in the middle of the specimen. This crack propagates in the vertical direction
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Figure 5.9  Cylinder splitting test. Load - displacement diagram.
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Figure 5.10  Cylinder splitting test. Principal plastic strain. (a) at maximum load ; (b)

at final load.

what is attended with a descending load-displacement curve. The total displacements of
the specimen, depicted in Figure 5.11, show clearly the crack in the middle of the speci-
men and the inelastic deformations under the loading platen. It is clear that the constitu-
tive model which is used to analyze the cylinder splitting test is of utmost importance
for the calculated response. If the nonlinear behavior due to compression softening is
neglected, no limit load will be found, see also Labbane, Saha and Ting (1993).
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Figure 5.11  Cylinder splitting test. Total displacements. (a) at maximum load ; (b) at
final load.

6. MODELING OF REINFORCED CONCRETE

The modeling of reinforcement in a finite element method is possible via three ways
which have been used extensively during the last decades. A distributed representation
of the reinforcement is probably the most frequently used method. In this approach the
reinforcement is assumed to be distributed over the concrete element with a particular
orientation angle. In slabs and shells, but also in panels, this method is implemented in a
layered element where some layers represent the reinforcement and it is assumed that a
state of plane-stress exists in each layer. An embedded formulation is often used in con-
nection with iso-parametric elements, such that the displacements of the reinforcing
bars or grids are the same as the displacement of the parent-element. Finally, a discrete
representation of reinforcement is also possible. Uniaxial elements are superimposed to
the elements representing the concrete with rigid connections or with interface elements.
With the latter approach, bond slip between the concrete and the reinforcement can be
modeled explicitly. With the two previous approaches it is generally assumed that per-
fect bond exists between concrete and reinforcement. In this study, an embedded formu-
lation of reinforcement will be used with the assumption of perfect bond between con-
crete and reinforcement.

The reinforcement in concrete structures is usually applied in differently orientated
layers of reinforcing grids. Because of the one-dimensional character of these grids, it is
generally not necessary to introduce multiaxial constitutive models for the reinforcing
steel, Chen (1982), and the experimental stress-strain curve for axial loading is idealized
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as a uniaxial elasto-plastic constitutive model with work-hardening. The behavior in
compression and tension is considered to be equal because buckling under compressive
forces is prevented by the concrete cover.

In this Chapter, the embedded formulation of reinforcement will be discussed briefly
and the constitutive model of reinforced concrete will be formulated and tested against
some experimental data.

6.1 Embedded formulation

The numerically integrated, iso-parametric elements which are used to model the con-
crete structure are conveniently combined with an embedded formulation of the rein-
forcing elements. The reinforcing bars are considered to be uniaxial elements built into
the iso-parametric parent-element, such that the displacements of the reinforcing bar are
consistent with the displacements of the parent-element which implies the assumption
of perfect bond between reinforcement and concrete.

The continuum incremental displacement vector Au® has been given by eq.(2.11)

Au® = N° Aaf

with the superscript e to indicate the reference to the parent-element. The nodal incre-
mental displacement vector with the nodal degrees-of-freedom of the parent-element is
represented by the vector Aa®. The continuum incremental displacement vector for the
reinforcement is now interpolated with the same interpolation matrix resulting in

Au" = N°¢ Aa° 6.1)

with N° depending upon the iso-parametric coordinates of the integration points of the
reinforcement. The incremental strain vector of the reinforcement is given by

Ag” = B" Aa* (6.2)

with the strain-discrete displacement matrix B’. This matrix has to be calculated with
the iso-parametric coordinates of the integration points of the reinforcement which in
general do not coincide with the integration points of the parent-element.

The constitutive relationship of the reinforcement is evaluated in the local coordinate
system, i.e.

0,4 = D(&,,) 8,4 (6.3)
The incremental strain vector in the local coordinate system Ag), , is calculated with the

transformation of the strain vector A’ in the element coordinate system. This transfor-
mation is given by
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L 4

Figure 6.1 Element with embedded reinforcement in a plane-stress configuration

Ae,, = T(w) Ae’ ©4

with y the angle between the local element coordinate system and the local reinforce-
ment coordinate system, see Figure 6.1. The strain transformation matrix 7'(y) in a
plane-stress configuration is given by

cos’y sin® y siny cos
Ty) = sin® cos? y —siny cos y
—2siny cosy  2siny cosy cos? y —sin’ y

The internal force vector f due to the stresses in the reinforcement is given by the
relation

o = I(T(;//) B )Y a® av; 6.5)
B;

and an additional term to the stiffness matrix, eq.(2.15)

KO = [(Tw) B Y D, (Tw) B) dV; ©6)
B

In conclusion, the embedded formulation of reinforcement results in the calculation
of the element strain-nodal displacement matrix B" for each integration point of the
reinforcement, which is transformed to the reinforcement directions by a transformation
matrix T as a function of the angle between the local element coordinate system and the
local reinforcement coordinate system. This angle y is assumed to be constant because
of the assumption of perfect bond which also implies that the direction of the reinforce-
ment does not shift within the element.
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6.2 Constitutive model of reinforced concrete

The behavior of reinforced concrete loaded in tension has been considered as the super-
position of a material model for plain concrete, a material model for reinforcement and
an additional stiffness which is referred to as the tension-stiffening component. The
constitutive model for plain concrete, discussed in Chapter 4, has been derived as a frac-
ture energy-based tension-softening model. The amount of fracture energy of a single
crack has been assumed to be dissipated over an equivalent length which is related to
the element size. In reinforced concrete usually a number of cracks develop during the
process of loading until the cracking process stabilizes and no further cracks develop in
the structure. The crack spacing at stabilized cracking is determined mainly by the
amount of reinforcement. It is assumed in this study that the material model for plain
concrete, based on fracture energy, can be applied to reinforced concrete with the total
amount of fracture energy dissipated over the equivalent length. Because the fracture
energy is assumed to be a material parameter, only the average crack spacing has to be
determined.

The constitutive model of the reinforcement is assumed to be given by an elasto-
plastic model with a linear-elastic stiffness matrix given by

prE; 0 0
D, = 0 p.E; O 6.7
0 0 o0

in which p, and p, the reinforcement ratio in the p- and g-direction respectively and E,
the Young’s modulus of the reinforcement. The shear stiffness of the reinforcing grid is
assumed to be equal to zero.

In general, bond is assumed between reinforcement and concrete which is of funda-
mental importance for the constitutive model of reinforced concrete. Due to the bond
action a series of cracks will develop in a reinforced member subjected to a tensile load-
ing. The average crack spacing is in general a function of the amount and distribution of
the reinforcement, concrete cover on the reinforcement and the tensile strength of the
concrete. At a certain load stage the crack spacing will stabilize and a subsequent
increase of the load no longer results in additional cracking. It is observed that also after
stabilized cracking, the cracked reinforced concrete is still capable to carry stresses
between two adjacent cracks which increases the overall stiffness of the structure. This
phenomenon is called tension-stiffening and is related to the direction and properties of
the reinforcement. In this study, the additional stiffness will be modeled with a constitu-
tive model which describes the additional stiffness as a function of the strain in the
direction of the reinforcement as discussed in Chapter 3 with a stiffness matrix given by
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E,, 0 0
D,=| 0 E, 0 6.8)
0 0 0

in which E, , and E, , the bond stiffness in the p- and g-direction of the grid respec-
tively. The constitutive model for tension-stiffening is in general a function of the rein-
forcement ratio, the diameter of the reinforcement and the average crack spacing.

The shear resistance of cracked reinforced concrete is determined by a combination
of aggregate interlock, dowel action and the axial restraint stiffness of the reinforcement
crossing a crack, see Walraven and Reinhardt (1981), Gambarova (1987), Vecchio and
Nieto (1991). The resulting shear stress-shear strain response of aggregate interlock and
dowel action shows a similar behavior, but in general it is assumed that aggregate inter-
lock dominates over dowel action at small crack widths. The aggregate interlock models
generally result in quite complex formulations even if the models are implemented in
interface elements in which the constitutive relations are described in terms of crack
opening and crack sliding, see e.g Feenstra, de Borst and Rots (1991a, 1991b). Imple-
mentation in a smeared approach, in which average strains and stresses are considered,
is not readily possible because a simple, mathematical model defined in terms of the
strain vector is not available. It is therefore assumed that the shear stiffness of the inter-
action model is equal to zero.

As discussed in Chapter 3, the constitutive model of cracked reinforced concrete
will be given by the superposition of the constitutive models of the plain concrete, the
reinforcement and the interaction between concrete and reinforcement. In this manner,
we have a phenomenological description of the material behavior of a composite mate-
rial by describing the material models of the constituent materials and their mutual
interaction in a separate manner.

6.3 Constitutive model for reinforcing steel

The material properties of reinforcing steel are well known in contrast to the material
properties of concrete which are still a matter of debate. The reinforcing steel is usually
classified on the basis of the geometrical properties, such as size and surface characteris-
tics, and on the mechanical properties, such as characteristic yield stress and ductility,
see CEB-FIP model code (1990). The material properties are defined on the basis of a
standard tension test and the stress-strain diagram of the test is replaced by an idealized
characteristic diagram according to Figure 6.2. The constitutive model of the reinforce-
ment is assumed to be an elasto-plastic model with hardening. This idealized relation is
equal in tension and compression with elastic unloading and reloading. The uniaxial
elasto-plastic constitutive model can be derived from the muiti-axial constitutive model
described in Chapter 4. If an incremental formulation is used with a strain decomposi-
tion according to
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Figure 6.2 Uniaxial constitutive model of the reinforcement

£ =8, + &, (6.9)
the stress rate in the reinforcement is given by
6 =p,E ¢, (6.10)

with p, the reinforcement ratio. The uniaxial formulation of the plasticity model is
given by

f=101" - 6(x) @.11)
with the equivalent stress G(x) being the yield stress f,, of the reinforcing steel as a

function of the internal parameter x. The evolution of the plastic strain is given by the
associated flow rule

) i
é,= A0, f = —o (6.12)
o
With the assumption of work hardening the evolution of the internal variable is given by
k=41 6.13)

The return-mapping algorithm is now given by the scalar equation

(+1) _ 4
o"h = (—_—&+M(”"psE, )aE (6.14)

which can be solved with a local Newton-Raphson procedure.
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The consistent tangent stiffness matrix is derived from the updated stress
o@D = E [ @D - e, BYVICIE IS 6.15)
with the derivative given by
do®™V = E [de¥V - dAd,f — ALYV, f do“V ] (6.16)

The consistency condition df = d, f do + 0, f dx = 0 then results in the relation

1
di = —o,fdo ©6.17)
E,

with the hardening parameter E, = d,6. Because the second derivative of the yield
function with respect to the stress is equal to zero, the consistent tangent stiffness matrix
is identical to the continuum tangent stiffness matrix which reads

} E,0,f 0,f E .
do®V = | E, — 2= 27 & | qg&D (6.18)
E,+0,f E;d,f

6.4 Constitutive model for plain concrete

The constitutive model for plain concrete has been discussed in preceding Chapters,
where it became clear that in applications to plain concrete the fracture energy-based
plasticity model gives good results. The constitutive model for the tension-softening
component of reinforced concrete is again assumed to be given by either the incremental
or the total formulation.

node 3

Figure 6.3 Idealized reinforced panel. Finite element configuration.
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Figure 6.4 Idealized reinforced panel. Comparison of different concrete models.

Table 6.1 Material properties idealized panel.

,concrete

E. 20000 [N/mm?]

v 0.0 -]

Sotm 0.0 [N/mm?]
Gy 0.0 [ Nmm{mm’]

reinforcement
f sy 500 [N / mmz]
E, 200000 [N/mm?]

The different constitutive models haven been applied to an idealized panel proposed by
Crisfield and Wills (1987) in order to determine whether the same conclusion can be
drawn regarding the constitutive model of plain concrete. The analysis concerns a single
element, dimensions 10 x 10 [mm?] with a thickness of 1 [mm], reinforced with one
layer of a reinforcing grid. The finite element configuration is been shown in Figure 6.3.
The reinforcement ratio in the p-direction is equal to 0.04232 and in the g-direction
equal to 0. 00768. The analysis concerns a no-tension analysis with linear-elastic behav-
ior in compression which results in a limit analysis with the exact failure load. The
material properties are given in Table 6.1. The panel is loaded in a combined biaxial
tension-shear loading with f,, = f,, =2.5u [N/mm?®] and fo=5.0u [N/mm?*] with
the loading parameter which is equal to one at the exact collapse load which is associ-
ated with yielding of the reinforcement, see Crisfield and Wills (1987). The results of
the analyses is shown in Figure 6.4, where the loading parameter is plotted against the
x-displacement of the upper-right node of the element. The comparison of the different
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formulations of the constitutive model for plain concrete shows that the formulation is
important even if the tensile strength is equal to zero and no tension-softening descrip-
tion is used. The interaction between the reinforcement and the concrete compressive
struts after cracking results in different responses. The fixed crack model shows a col-
lapse load which is too high, irrespective of the magnitude of the shear retention factor
B. The rotating crack model and the plasticity-based models approximate the exact fail-
ure load. The responses of the rotating crack model and the Rankine plasticity model
based on a deformation theory are identical, see also Crisfield and Wills (1987).

The choice of the constitutive model for plain concrete can be based on the funda-
mental difference which has been shown with this example. If the fixed crack model is
adopted, the failure load will often be too high which has also been shown by Crisfield
and Wills (1987) with the analyses of seven reinforced concrete panels tested by Vec-
chio and Collins (1982). The rotating crack model on the other hand gives failure loads
which are in better agreement with the experimentally observed collapse loads. A defi-
ciency of a total formulation, like the rotating crack model, is that a transparent combi-
nation with other nonlinear phenomena is often difficult and an incremental formulation
is therefore preferred. The Rankine plasticity model with an incremental formulation
shows a behavior which is quite similar to the behavior of the rotating crack model and
can be used to model plain concrete. Because the Rankine model with isotropic harden-
ing has shown to be accurate and stable in the previous Chapter, this model will be used
in the remainder of this study.

6.5 Validation of the tension-stiffening model

The tension-stiffening effect is usually referred to in literature as the ability to gradually
redistribute the load in a structure from concrete to steel under the formation of primary
and secondary cracks. In this study however, the tension-stiffening effect is only used to
define the additional stiffness due to the interaction between concrete and reinforcement
whereas the formation of primary and secondary cracks has been modeled with the con-
stitutive model of plain concrete, the tension-softening model.

The tension-stiffening model has been validated with experiments on reinforced
concrete panels subjected to in-plane shear and normal loading. The loading regime and
the properties of the reinforcement of the experiments are designed such that no rotation
of the principal strain occurs after cracking. Only the model which describes the ten-
sion-stiffening effect is utilized and the dowel action is not activated. The panels are
890 x 890 [mm?] with a thickness of 70 [mm], reinforced with two layers of a reinforc-
ing grid. The cover of the reinforcing grids is equal to 6 [mm] for all panels which have
been analyzed. The finite element idealization for the analyses consists of a four-noded
element with four integration points for both the reinforcement and the concrete, see
Figure 6.5. The reinforcement in the panels is represented by the angle y between ele-
ment x-axis and main reinforcement p-axis and the reinforcement ratio in p- and g-
direction.
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Figure 6.5  Finite element model of the reinforced concrete panels.

The tension-softening of the concrete has been applied with a linear diagram and the
additional stress due to the tension-stiffening effect has been applied with the diagram
given in Chapter 3.

The first analyses concern the panels of Bhide and Collins (1987) who tested a
series of thirty-one, uniaxially reinforced concrete panels subjected to various combina-
tions of tension and shear. For the validation of the tension-stiffening model two panels,
panels pb13 and panel pb25, have been selected. Both panels have approximately the
same material properties, but the reinforcement ratio of panel pb25 is twice the rein-
forcement ratio of panel pbl3. The panels are both loaded in uniaxial tension in the
direction of the reinforcement.

The reinforcement in panel pb13 is applied in two grids with a reinforcement ratio
given by p,=0.01085 and p,=0.0 and an angle w =0° The diameter of the
deformed bars ¢, is equal to 6.55 [mm]. The material properties of panel pbl3 are
given in Table 6.2. The mean compressive strength of the concrete has been taken from
the report of Bhide and Collins (1987) and the other material properties have been
derived from this value with the formulas given in Chapter 3. The effective tension area
determined by the geometrical properties of the reinforcement is equal to 23.2 [mm]
and the average crack spacing is equal to 100 [mm]. Compared with the experimental
stabilized crack spacing of approximately 111 [mm], the calculated value of the average
crack spacing is reasonably accurate. The nominal tensile stress-strain diagram of panel
pbl3 is shown in Figure 6.6. The influence of the tension-stiffening component in the
constitutive model is obvious from this diagram. The calculated force at cracking of the
panel is too high which indicates that the tensile strength of the concrete is overesti-
mated. This also influences the tension-stiffening effect which has been chosen with a
value equal to one.
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Figure 6.6 Influence of tension-stiffening on panel pb13 of Bhide and Collins.

Table 6.2 Material properties panel pb13.

concrete

Fom 23.4 [N/mm?]
E. 26000 (N/mm?)

v 0.15 -]

Setm 1.85 (N/mm?)
Gy 0.06" [Nmm/mm®)]

reinforcement
fo 414 [N/mm?]
E, 210000 [N/mm?]

1) linear softening

Panel pb25 has been designed to study the effect of the amount of reinforcement and
this panel is the companion specimen of panel pbl3. The reinforcement ratio of panel
pb25 is twice the reinforcement ratio of panel pb13, ie. p, =0.02170 with the same
angle ¥ =0° and a diameter ¢, =6.59 [mm]. The reinforcement in the g-direction is
again equal to zero. The material properties of panel pb25 are given in Table 6.3. The
effective tension area determined by the geometrical properties of the reinforcement is
equal to 23.2 [mm] and the average crack spacing equal to 66.5 [mm]. Compared with
the experimental crack spacing of approximately 81 [mm], the calculated value of the
average crack spacing is quite accurate. The nominal tensile stress-strain diagram of
panel pb25 is shown in Figure 6.7. It is obvious from this diagram that the tension-
softening component is more dominant for this panel than for panel pb13. The tension-
stiffening is less important and has been modeled close to the experimental behavior.
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Figure 6.7  Influence of tension-stiffening on panel pb2S of Bhide and Collins.

Table 6.3 Material properties panel pb25.

concrete

fcm 20.0 [N/mmz]

E, 26000 [N/mm®]

v 0.15 [-]

Jetm 1.6 [N/mm?)]
Gy 0.06" [Nmm/mm?]

reinforcement
Fsy 414 [N/mm?]
E 210000 [(N/mm?]

$

1) linear softening

The influence of the angle between a crack and the reinforcement has been studied
with the analyses of two panels tested by Kollegger (1988). It concerns two panels with
the same material properties and equal reinforcement, but with a different reinforcement
angle y. Panel pk03 has an angle ¢ equal to 0°, whereas panel pk04 has an angle 45°.
The material properties are given in Table 6.4. The reinforcement ratio in p- and g-
direction is equal to 0. 0106 with a diameter of 6.5 [mm]. The effective tension area is
equal to 23.1 [mm] and the average crack spacing equal to 100 [mm] for panel pk03
and an average crack spacing equal to 70 [mm] for panel pk04 which is in agreement
with the experimental value of the stabilized crack spacing. The nominal stress-strain
response in the x-direction of panel pk03 has been depicted in Figure 6.8 and of panel
pk04 in Figure 6.9.
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Figure 6.8  Influence of tension-stiffening on panel pk03 of Kollegger.
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Figure 6.9  Influence of tension-stiffening on panel pk04 of Kollegger.

The assumption that the tension-stiffening component acts in the direction of rein-
forcement is supported by the analyses of the panels which show that the calculated
behavior is close to the experimental behavior. The conclusion of Kollegger and
Mehlhorn (1990b) that the influence of the angle between crack and reinforcement is
negligible for the tension-stiffening model is confirmed by these analyses.
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Table 6.4 Material properties panel pk03 and pk04.
concrete

fom 20.0 [N/mm?]

E, 26000 [N/mm?]

v 0.15 [-]

foom 1.6 [N/mm?]
Gy 0.06" [Nmm/mm?)

reinforcement
foy 700 [N/mm?}
E, 210000 [N/mm?)

1) linear softening

Finally, panel pv4 of Vecchio and Collins (1982) loaded in pure shear has been ana-
lyzed. Because of the isotropic reinforcement, the directions of the principal strain vec-
tor do not rotate and the behavior is completely determined by the tension-softening and
tension-stiffening models. This panel is reinforced with two layers with a reinforcement
ratio given by p, = p, = 0.01056 with a diameter ¢, = ¢, = 3.45 [mm]. The angle y
between the reinforcement and the element axis is equal to 0°. The material properties
of panel pv4 are given in Table 6.5. The effective tension area is equal to 19.3 [mm]
and the average crack spacing equal to 44.8 {mm]. The nominal shear stress-strain
strain response of panel pv4 is shown in Figure 6.10. The calculated behavior of the
panel is in close agreement with the experimental behavior which shows yielding of the

reinforcement in both directions.

Oy [N/mm?]

Figure 6.10
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Table 6.5 Material properties panel pv4.

concrete

fcm 26.0 [N/mmz]

E,. 30000 [N/mm?]

v 0.15 -]

Fotm 2.0 [N/mm?]
Gy 0.06Y [Nmm/mm?)

reinforcement

foy 242 [N/mm?]
E, 210000 [N/mm?)

1) linear softening

The following analyses will concern reinforced panels of Vecchio and Collins
(1982) which are anisotropically reinforced. Due to this anisotropy, the direction of the
principal strain will change after crack initiation. The degree of anisotropy is defined by
the ratio of the potential yield loads of the reinforcement, Crisfield and Wills (1989), as

o, = 27 P (6.19)

The analyses are performed with the finite element configuration shown in Figure 6.5
and all panels are loaded in pure shear.

The first analysis concerns panel pvl1 with a reinforcement ratio in the p-direction
equal to 0. 01785 with a diameter of 6.35 [mm] and in the g-direction equal to 0.01306
with a diameter of 5.44 [mm]. This results in an anisotropy factor of the reinforcement
o, =1.37. The reinforcement properties result in an effective tension area of
22.9 [mm] in the p-direction and 21.8 [mm] in the g-direction. The average crack
spacing is equal to 51.5 [mm] which is smaller than the experimentally observed crack
spacing of 75 — 100 [mm]. The material properties are given in Table 6.6. The nominal
shear stress-shear strain response is given in Figure 6.11. The agreement between anal-
ysis and experiment is reasonable if the tension-stiffening effect is taken into account.
The tensile strength of 1.2 [N/mm?] which has been estimated by eq.(3.11) is lower
than the experimentally observed tensile strength of approximately 1.6 [N/mm?®]. It is
obvious in this case, with an anisotropy factor @, = 1. 37 that ignoring the shear resis-
tance of the reinforced concrete is permitted.
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Figure 6.11 Influence of tension-stiffening on panel pv11 of Vecchio and Collins.

Table 6.6 Material properties panel pv1l1.

concrete

fom 16.0 [N/mm?)

E, 25000 [N/mm*]

v 0.15 (-]

Jetm 1.2 [N/mm?]
Gy 0.06" [Nmm/mm?)

reinforcement
fo 235 (N/mm?)
E, 210000 [N/mm?}

1) linear softening

The next panel concerns panel pv10 with an anisotropy factor @, = 1.79. The rein-
forcement ratio in the p-direction is equal to 0. 01785 with a diameter of 6. 35 [mm] and
in the g-direction equal to 0. 00999 with a diameter of 4.70 [mm] which results in an
effective tension area of 22.9 [mm] in the p-direction and 20. 8 [mm] in the g-direction.
The average crack spacing is equal to 51. 4 [mm] which is in agreement with the experi-
mentally observed crack spacing of 50 — 75 [mm]. The material properties are given in
Table 6.7. The nominal shear stress-shear strain response is given in Figure 6.12. The
comparison of the analysis with the experiment shows that the tensile strength is again
estimated too low, but that the resemblance is reasonable. The influence of the tension-
stiffening component is small because the amount of ultimate crack strain is almost
equal to the failure strain of the element.
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Figure 6.12  Influence of tension-stiffening on panel pv10 of Vecchio and Collins.

Table 6.7 Material properties panel pv10.

concrete

fcm 14.4 [N/mmz]

E, 24000 [N/mm®]

v 0.15 -

Fotm 1.0 [N/mm*]
G, 0.06Y [Nmm/mm?)

reinforcement

Fo 276 [N/mm?]
E, 210000 [N/mm?)

1) linear softening

The next panel concerns panel pv19 where the anisotropy factor , is equal to 3. 83
which is large, considering the pure shear loading. The reinforcement is applied in two
layers of reinforcing grids with a reinforcement ratio in the p-direction equal to
0.01785 with a diameter of 6.35 [mm] and in the g-direction equal to 0.00713 with a
diameter of 4.01 [mm]. These properties result in an effective tension area of
22.9 [mm). The average crack spacing is equal to 51.4 [mm] which is in agreement
with the experimentally observed crack spacing of 50 — 75 [mm]. The yield stress of
the reinforcing steel is different in the p- and g-directions, see Table 6.8. The nominal
shear stress-shear strain response given in Figure 6.13 shows that the agreement with the
experimental response is quite accurate, considering that the shear resistance is
neglected.
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Figure 6.13  Influence of tension-stiffening on panel pv19 of Vecchio and Collins.

Table 6.8 Material properties panel pvi9.

concrete

fem 19.0 [N/mm?]

E, 26000 [N/mm?*]

v 0.15 [-]

fcr,m 1.5 [Nlmmz]
G; 0.06" [Nmm/mm?*]

reinforcement

Fow 458 [N/mm?)
foa 299 [N/mm?]
E, 210000 [N/mm]

1) linear softening

The final panel which will be analyzed is panel pv12 which has a large anisotropy
factor @, = 6.98. This large anisotropy factor produces a significant change in the prin-
cipal strain directions. The reinforcement is applied in two layers of reinforcing grids
with a reinforcement ratio in the p-direction equal to 0.01785 with a diameter of
6.35 [mm] and in the g-direction equal to 0.00446 with a diameter of 3. 18 [mm].
These properties result in an effective tension area of 22.4 [mm]. The average crack
spacing is equal to 51.4 [mm] which is in agreement with the experimentally observed
crack spacing of 50 — 75 [mm]. The yield stress of the reinforcing steel is different in
the p- and g-direction, which are given in Table 6.9.
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Figure 6.14  Influence of tension-stiffening on panel pv12 of Vecchio and Collins.

Table 6.9 Material properties panel pv12.

concrete

Jem 16.0 [N/mm?]

E, 25000 [N/mm?]

v 0.15 -]

Fetm 1.2 [N/mm*]
G; 0.06" [Nmm{mm?)

reinforcement

fsy,p 469 [N/mmz]
Sova 269 [N/mm?]
E, 210000 [N/mm?)

1) linear softening

The nominal shear stress-shear strain response is given in Figure 6.14. It is clear from
the analysis of panel pv12 that the shear resistance of the cracked reinforced concrete
becomes more important if the directions of the principal strain vector change signifi-
cantly. However the ultimate failure load is not affected if the failure mode is governed
by yielding of the reinforcement.

It is concluded that neglecting the shear resistance of the cracked reinforced con-
crete is allowed as long as the anisotropy of the reinforcement is less than five and the
loading is such that rotation of the principal directions can be expected. In cases where
the structure is reinforced only in one direction, the Rankine model should be used with
care, because the analysis might show a much too brittle response due to continuously
rotation of the principal stress.
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7. APPLICATION TO REINFORCED CONCRETE

The previous Chapters have been addressed the two major problem areas in the model-
ing of reinforced structures, i.e. the development of a numerically stable algorithm
which deals with the biaxial stress states and the rational modeling of the tension-
stiffening concept. In this Chapter, two typical engineering problems will be presented
which show the range of application of the developed models. The first example con-
cemns the analyses of two deep beams without shear reinforcement which are designed
to fail in compression. The proper modeling of the biaxial stress state is important for
these type of structures. The second example concerns the analyses of shear wall panels
in which both the biaxial stress state problems and the tension-stiffening problems will
be encountered.

7.1 Analysis of deep beams

The analysis of deep beams is usually performed using an approach in which the struc-
ture is modeled using compressive struts and tensile ties. The experimental research pro-
gram of Lehwalter (1988) was mainly concerned with the carrying-capacity of the com-
pressive struts in this truss-model approach. The program consisted of two series of
tests, the first series consisting of deep beams without shear reinforcement and the sec-
ond series consisting of deep beam with shear reinforcement. The beams have a densely
reinforced layer at the bottom of the beams which is designed such that the beams fail
due to compressive failure without yielding of the reinforcement. Two beams of the first
series have been selected, beam v023 with a depth over span ratio of 0.5, and beam
v121 with a depth over span ratio of 1. 0. Both beams have a thickness of 250 [mm].

The first analysis concerns beam v023 with a depth of 360 [mm] and a span of
720 [mm]. Only a half of the specimen has been modeled using 400 four-noded plane-
stress elements with a 4-point integration scheme. The reinforcement with a total area
A, = 1020 [mm? has been modeled using embedded bar elements. The developed
model for the reinforced concrete has not been used in this analysis since it is believed
that the concrete-reinforcement interaction does not have a large influence on the ulti-
mate failure load of the structure. These examples have been selected merely to indicate
the importance of the modeling of the biaxial stress state. The support platen has been
modeled with eight four-noded plane-stress elements also with a four-point integration
scheme. The finite element mesh is shown in Figure 7.1 and the material properties are
given in Table 7.1. The analyses have been performed with the solution strategy which
has been proposed in Chapter 2 without any modification. The sign of the initial incre-
mental load factor has been determined in the pre-peak regime with the displacement-
based method, because negative pivots are expected in the range where the bending
cracks tend to localize. After the cracks have developed, the sign of the initial load
increment has been determined with the pivot-based method.
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Figure 7.1 Deep beam v023 Lehwalter. Finite element mesh. Measures in [mm].
Table 7.1 Material properties deep beam v023.
concrete
fem 20.0 [N/mm*]
E, 30000 [N/mm?*]
v 0.15 [-]
Form 2.0 [N/mm?]
Gy 0.10Y [Nmmimm?*}
G, 10.07 [Nmm/mm?)
reinforcement
fo 420 - 500 [N/mm?*)
E, 210000 [N/mm?)

1) exponential softening
2) parabolic softening
3) hardening of steel with £, = 0.079 [-]
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Figure 7.2 Deep beam v023 Lehwalter. Load - displacement diagram.
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Figure 7.3  Deep beam v023 Lehwalter. Difference in the displacement of the
midspan top and bottom of the beam.

The vertical displacement of the loading platen has been plotted against the load in
Figure 7.2 in which the influence of compressive softening on the structural behavior is
evident. If only cracking is taken into account, the analysis clearly shows first cracking
and finally yielding of the reinforcement. The kinematic or isotropic hardening models
give identical responses. The analysis with a composite yield surface shows that the
nonlinear compressive behavior under the loading platen dominates the structural
response. The failure load which has been obtained in the analysis with a composite
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Figure 7.4 Deep beam v023 Lehwalter. Crack pattern. (a) at maximum load ; (b) at
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Figure 7.5  Deep beam v023 Lehwalter. Compressive principal plastic strain. (a) at
maximum load ; (b) at final load

yield surface is in good agreement with the experimental failure load. The experimental
load-deformation response has not been plotted because the measured response was
inaccurate due to deformation of the supports, see Lehwalter (1988) and Walraven
(1993). Only the experimental failure load has been depicted in Figure 7.2. The crack
pattern which have been obtained with the composite yield surface is depicted in Figure
7.4. The distributed crack pattern around the reinforced area localizes in a dominant
vertical crack. At a later stage the diagonal, densely cracked region develops. The crack
pattern at the final stage shows that the diagonal cracks are closing while a vertical crack
starts to develop above the support which has also been observed in the experiment. The
compressive principal inelastic strain vectors depicted in Figure 7.5 shows that the fail-
ure mode is a local, compressive type of failure due to nonlinear compressive behavior.
This is also clear from Figure 7.3 in which the difference between the displacement of
the top and bottom at the midspan of the beam has been plotted. The load-displacement
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curve shows a monotonically increasing behavior, whereas the load-displacement curve
of the loading platen, depicted in Figure 7.2, shows a snap-back behavior. The structure
unloads at the final stage, but the difference between the displacements under the load-
ing platen and the bottom of the beam shows that we have an increasing deformation
under the loading platen. The analysis of beam v023 shows that the behavior of the
beam is governed by bending cracks and compression-shear cracks in the pre-peak
regime. The ultimate failure mechanism is dominated by compressive softening under
the loading platen, which results in a very brittle failure mechanism which is indicated
by the snap-back in the load-displacement diagram. If only cracking is modeled, the
ultimate failure mechanism is dominated by yielding of the reinforcement with an over-
estimation of the ultimate load with approximately a factor equal to 2, and results in a
too ductile failure mechanism.

The second analysis concerns beam v121 with a depth of 930 [mm] and a span of
930 [mm]. Only half of the structure has been modeled using 220 four-noded plane-
stress elements with a four-point integration scheme. The reinforcement has been mod-
eled using embedded bar elements. The support platens have been modeled with four
four-noded plane-stress elements also with a four-point integration scheme. The finite

load F
loading platen 232/2 x 40

"
930
4
70 1
! PR - ~— support platen 232 x 40
) axis of symmetry
L 93072 L 195
| >1 —
Figure 7.6 Deep beam v121 Lehwalter. Finite element mesh. Measures in [mm].
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Figure 7.7  Deep beam v121 Lehwalter. Load - displacement diagram.
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Figure 7.8 Deep beam v121 Lehwalter. Difference in the displacement of the
midspan top and bottom of the beam.

element mesh is depicted in Figure 7.6, and the material properties are equal to the
material properties of beam v023 which have been given in Table 7.1. Again, the verti-
cal displacement of the loading platen has been plotted against the applied load in Fig-
ure 7.7 in which the influence of compressive softening on the structural behavior is
even more evident than for the previous structure. If only cracking is taken into account,
the analysis shows a decrease in the stiffness due to cracking and finally yielding of the
reinforcement. The analysis with a composite yield surface shows that the nonlinear
compressive behavior under the loading platen results in a large decrease of the
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Figure 7.9  Deep beam v121 Lehwalter. Crack pattern (a) at maximum load ; (b) at
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Figure 7.10  Deep beam v121 Lehwalter. Compressive principal plastic strain. (a) at
maximum load ; (b) at final load

maximum load and that it is important to incorporate compressive softening in order to
accurately predict the failure load of these types of deep beams. The calculated failure
load is in good agreement with the experimental failure load which have been plotted in
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Figure 7.7. Again, only the maximum experimental failure load has been plotted, since
the load-deflection curve which has been measured is inaccurate because of displace-
ments of the supports. The difference between the displacement of the loading platen
and the deflection of the midspan of the beam is shown in Figure 7.8. The calculated
crack pattern which is shown in Figure 7.9, indicates that the structure is mainly sub-
jected to a compression-shear loading, because the bending cracks are less dominant
than in the previous structure. At the maximum load we observe some small bending
cracks in the middle of the structure with a dominant shear-type crack pattern in the
compressive strut. The failure mode is governed by the compressive softening under the
loading platen which is shown in Figure 7.10. This local failure mechanism causes an
unloading of the structure which has also been observed in the previous example.

The two analyses of the deep beams show the major influence of compressive soft-
ening on the structural failure mechanism.

7.2 Analysis of shear wall panels

The analysis of shear wall panels is a good example of the possible application of the
developed models. The stress state in the panels can be considered to be in tension-
compression. The panels are usually reinforced by a reinforcing grid which makes the
examples also a good indicator for the influence of the tension-stiffening on the behav-
ior of the panels. The panels which will be presented in this study have been tested at
the E.T.H. of Ziirich by Maier and Thiirlimann (1985) and have been analyzed before
with the finite element package DIANA by Wang, Van der Vorm and Blaauwendraad
(1990). The constitutive model which has been used in that study is a combination of a
fixed crack model to describe the tensile stress state and a Mohr-Coulomb plasticity
model to describe the compressive stress states, see for details about this constitutive
model Van der Vorm (1988). However, the combination of cracking and plasticity
resulted in convergence problems if a large region existed in which both the cracking
and the plasticity model became active. These numerical problems were solved by
defining two areas in which either only the cracking model or only the plasticity model
could become active. The solutions which were obtained with this approach are in good
agreement with the experimental results which indicates that the method is rather effec-
tive. The arbitrariness of defining the regions a-priori is a major draw-back of this
method and the analyses with the combined yield surface presented here will show that
the convergence problems are avoided if a stable algorithm is used to describe the con-
stitutive behavior. The experimental program of Maier and Thiirlimann (1986), con-
cerned a series of 10 shear wall panels with flanges and panels without flanges. The pan-
els are all loaded initially by a vertical compressive force, and then loaded by a horizon-
tal force until the experiment became unstable and the failure load had been reached.
The experimental set-up is shown in Figure 7.11, with the panels supported on a base
block and loaded through a thick top slab.
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Figure 7.12  Finite element discretization panels Maier and Thirlimann (1985).
a) panels S1 and S2 ; b) panels S4 and S10

Four panels from the experiments, S1, S2, S4 and S10, have been analyzed with the
composite plasticity model and the influence of the tension-stiffening component on the
behavior has been examined. The material properties have been averaged from the
experimental data of the four panels provided by Thiirlimann and Maier (1986) with a
reduction of the compressive strength of 20 %. The material properties which have
been used in the analyses are given in Table 7.2. The material properties have been
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averaged in order to simulate the behavior of the panels in a qualitative manner. In this
way, it is better possible to study the influence of the different reinforcement ratio, ini-
tial vertical stress and geometry. The reinforcement is applied by reinforcing grids in
two directions with a diameter of 8 [mm] and a clear cover of 10 [mm]. The reinforce-
ment ratios and the initial vertical force are given in Table 7.3.

Table 7.2 Material properties panels Maier and Thiirlimann (1985).

concrete

fom 27.5 [N/mm?)

E,. 30000 (N/mm?*]

v 0.15 [-]

fem 2.2 [N/mm*]
G, 0.07" [ Nmm/mm?]
G, 50.0% [Nmm/mm*]

reinforcement
foy 574 —764Y [N/mm?%]
E, 200000 [N/mm?]

1) linear softening
2) parabolic softening
3) hardening of steel with ¢, = 24.6 107 [-]

Table 7.3 Reinforcement and vertical load of panels Maier and Thiirlimann (1985).

Panel py (1071 p, (1071 pp[107]  F, [kN]
S1 10.3 11.6 11.6 —433
S2 10.3 11.6 11.6 —1653
S4 10.3 10.5 10.5 —262
S10 9.8 10.0 57.17 —262

1) additional reinforcement in tension area over 197 [mm]

The finite element discretizations of the panels are depicted in Figure 7.12 with
quadratic plane-stress elements with a nine-point Gaussian integration for both the rein-
forcement and the element. The reinforcement has been applied in two layers of a rein-
forcing grid. The top slab has been modeled with linear-elastic elements without rein-
forcement, whereas the supporting block has been replaced by fixed supports in the x-
and y-direction. The additional reinforcement in panel S10 has not been applied in an
area of 240 [mm] as in the experiments, but has been applied in the first element at the
tension side, i.e. over a length of 197 [mm].

The horizontal and vertical load have been applied as a uniformly distributed ele-
ment load as indicated in Figure 7.12. The horizontal displacement u, of the top slab
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has been monitored and compared with the experimental load-displacement curves. Ini-
tially, the solution technique with the constrained Newton-Raphson iteration with line
searches has been applied to analyze the panels. It happened that it was not possible to
achieve converged solutions after the maximum load and therefore the indirect displace-
ment control method without line searches has been used to analyze these panels. The
displacement in the horizontal direction u, has been chosen as the active degree-of-
freedom with load steps of approximately 0.2 [mm]. With this solution technique, con-
verged solutions could be obtained in the complete loading regime.

The first panel which will be presented is a panel with flanges which will be denoted
as panel S1. This panel is subjected to an initial vertical load of
433 [kN]=2.5 [N/mm?] which results in an initial horizontal displacement of
0.06 [mm] in the experiment. The calculated initial displacement is equal to
—80- 107 [mm] which indicates a possible eccentricity in the experimental set-up. After
the initial vertical load, the horizontal load is applied with indirect displacement control.
The load-displacement diagram of panel S1 is shown in Figure 7.13, which shows a rea-
sonable agreement between experimental and calculated response. The influence of the
tension-stiffening component on the load-displacement diagram is small, but inclusing
of the tension-stiffening avoids some numerical difficulties which are related to local
maxima due to crack localization in the pre-peak regime. The results of the analysis will
be presented by plotting the active cracks, the integration points which are in a compres-
sive plastic state and the principal stresses which are in general compressive.

1000 4
tension-stiffening included
only tension-softening

Fy [kN]

e experiment

0 — —

0.0 20 40

horizontal displacement u), [mm]

Figure 7.13  Panel S1. Load - displacement diagram.
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Figure 7.14  Panel S1. Results of the analysis at a displacement of 10 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.
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Figure 7.15  Panel S1. Results of the analysis at a displacement of 30 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

The active cracks are defined as those cracks for which the internal parameter x7 is
equal or greater than 0.5 x,,. The results for panel S1 at a displacement of the top slab of
10 [mm] are shown in Figure 7.14. The panel is densely cracked with plastic points in
the bottom-left corner of the panel. The concrete in the bottom-right corner does not
transfer any stress anymore as can be seen from Figure 7.14(b). The load carrying
mechanism through a compressive strut can clearly be observed from the principal
stresses. The results of panel S1 at the final displacement of 30 [mm] show the failure
mechanism which is governed by compressive softening of the concrete and yielding of
the reinforcing steel both in tension and compression, see Figure 7.15. In the ultimate
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state, the concrete in the bottom-left corner transfers no stress anymore, which is in
agreement with the experimentally observed failure mechanism where the concrete was
crushed in the bottom-left corner of the panel and in the flange at the compression side.

Panel S2 is identical with the previous panel, but the initial vertical load is approxi-
mately four times the initial stress in panel S1, which increases the ultimate load of the
structure but decreases the ductility of the panel dramatically, see Figure 7.16. The
agreement between the ultimate load of the experiment and the calculated maximum
load is good. The influence of the additional stiffness if the tension-stiffening compo-
nent is included is small. The experimental initial displacement of the experiment is
quite large, which could not be simulated. The experimental failure mechanism was
rather explosive and caused a complete loss of load-carrying capacity which can be
explained by the brittle behavior of the panel after maximum load, see Figure 7.16. The
results of the analysis at a displacement u,, equal to 5 [mm], see Figure 7.17, shows that
the panel is densely cracked with plastic points in the bottom-left corner of the panel
and in the compressive flange. The results of panel S2 at the ultimate displacement u,, of
15 [mm] are shown in Figure 7.18 in which the redistribution of internal forces in the
panel can clearly be observed. The complete loss of stiffness in the bottom of the panel
can be seen from Figure 7.18 which is combined with yielding of the reinforcement in
compression. The reinforcement in the tension flange also yields, but this is less domi-
nant.

tension-stiffening included
1000 4

Fy [kN]

500 -
only tension-softening

e experiment

0 y J
0.0 10 20

horizontal displacement u, [mm]

Figure 7.16  Panel S2. Load - displacement diagram.
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Figure 7.17  Panel S2. Results of the analysis at a displacement of 5 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.
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Figure 7.18  Panel S2. Results of the analysis at a displacement of 15 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

Panel S4, which will be analyzed next, is the equivalent of panel S1 without flanges.
The initial vertical force of 262 [kN] results in approximately equal vertical stresses as
in panel S1. The load-displacement diagram is given in Figure 7.19 which shows again
a reasonable agreement between the ultimate load in the experiment and in the analysis.
The influence of the tension-stiffening component is more dominant and results in a
more stable numerical solution than if the tension-stiffening component is neglected. In
this case convergence could only be achieved with small steps in the ascending branch
until a stabilized crack pattern has been achieved. The panel behaves in a rather
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Figure 7.19  Panel S4. Load - displacement diagram.
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Figure 7.20  Panel S4. Results of the analysis at a displacement of 5 [mm)]. (a) active
cracks and plastic points ; (b) principal stresses.

ductile manner after peak-load which has also been observed during the experiment
where the horizontal displacement could be increased approximately 30 % after the ulti-
mate load had ben reached. The results of the analysis are shown in Figures 7.20 and
7.21 at a horizontal displacement u, of 5 [mm] and 20 [mm] respectively. The experi-
mentally observed failure mode is related to crushing of the concrete in a region in the
bottom-left part of the panel. This failure mechanism can also be observed from Figure
7.21(a) and (b), because the principal stresses at the bottom-left corner of the panel are
almost reduced to zero.
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Figure 7.21  Panel S4. Results of the analysis at a displacement of 20 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.

The final panel which will be analyzed, is a panel with a "hidden tensile flange". In
the tension side of the panel, additional reinforcement has been applied which increases
the ultimate load, compared with panel S4, but results in a less ductile behavior, see Fig-
ure 7.22. The agreement between the experimental and calculated ultimate load is quite
reasonable, but the calculated initial stiffness exceeds the experimental initial stiffness
with approximately a factor equal to two. Also the displacement at the failure load is
too small compared with the experimental displacement.
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Figure 7.22  Panel S10. Load - displacement diagram.
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Figure 7.23  Panel S10. Results of the analysis at a displacement of 5 [mm]. (a) active
cracks and plastic points ; (b) principal stresses.
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Figure 7.24  Panel S10. Results of the analysis at a displacement of 20 [mm]. (a)
active cracks and plastic points ; (b) principal stresses.

The results of the analysis of panel S10, given in Figures 7.23 and 7.24, show the differ-
ences with the results of panel S4, mainly in the post-peak regime. The active cracks
and plastic points as well as the direction of the principal compressive strut are almost
equal for both panel S4 and S10, compare Figure 7.20 and Figure 7.23. The results at a
displacement of 20 [mm] show a considerable different behavior between panel S4 and
panel S10. The part of panel S10 in which the stresses are reduced to zero is much
larger than the region in panel S4 which has also been observed in the experiments.

In conclusion, it has been shown that the agreement between the experimental and
numerical results is good, and that the failure mechanism can be simulated. The
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influence of the modeling of the tension-stiffening component on the load-displacement
curve is in general small, but inclusion of it can result in a more stable iterative proce-
dure in the pre-peak regime.

8. SUMMARY AND CONCLUDING REMARKS

The structural engineer more and more needs reliable numerical tools to analyze the
post-failure behavior of structures in order to assess the structural safety. In general, a
reliable tool consists of an accurate material description in combination with a robust
solution strategy. In this study an attempt has been made to provide such a tool for the
analyses of reinforced concrete structures.

A solution technique to solve the equilibrium problem has been proposed which
consists of the combination of a constrained Newton-Raphson method with a line-
search technique and a self-adaptive incremental load estimator based on external work.
The proposed solution strategy has been used throughout this study and it has proven to
meet the need of a robust solution. The convergence characteristics of the calculations
presented in this study are satisfactory. The application of an indirect displacement con-
trol is essential to obtain converged solutions in the post-failure regime of the shear wall
panels. With this method, which is in fact a combination of a constrained Newton-
Raphson method and a load incrementation method, it is possible to control the calcula-
tion with the displacement of a single, dominant degree-of-freedom.

A material model for plain and reinforced concrete in a plane-stress situation has
been discussed. It is assumed that the failure mechanism of concrete loaded in tension
and compression is governed by crack growth at the micro-level. Furthermore it is
assumed that the internal damage caused by these micro-cracks can be modeled using
internal parameters which are related to a fracture energy in tension and to a compres-
sive fracture energy. The material properties have been estimated using CEB-FIP rec-
ommendations which are based on the compressive strength of the concrete. The com-
parisons between numerical analyses with material properties based on these recom-
mendations and experiments show that estimated material properties are adequate. The
biaxial behavior of concrete is assumed to be governed by the failure surface of Kupfer
and Gerstle with a tension-softening and a compression-softening constitutive behavior.
The mechanical response of reinforced concrete is assumed to be given by a superposi-
tion of the elasto-plastic behavior of the reinforcement, the tension-softening behavior
of the plain concrete and an additional stiffness due the interaction between concrete
and reinforcement. The total amount of fracture energy due to distributed cracking is
assessed using the average crack spacing based on CEB-FIP recommendations. For the
biaxial behavior of reinforced concrete the biaxial loaded reinforced panels of Kollegger
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and Mehlhomn have been used. It is not obvious from these experiments that the com-
pressive strength should be reduced as a function of lateral cracking, since a constant
reduction can be observed. This phenomenon is possibly a result of the size effect and
the influence of different boundary conditions in the standard compression test and the
actual experiment.

The constitutive model of plain concrete can be formulated in an incremental fash-
ion or within a total strain concept. The rotating crack model falls within the latter cate-
gory. In the former group of models, two fracture energy-based plasticity models have
been presented, the Rankine plasticity model with mixed hardening and a composite
yield function which governs the entire range of biaxial stress states. For all models,
special attention has been given to the consistent formulation of the tangent stiffness
matrix and the treatment of singularities in the formulations. The models have been
compared with a fundamental tension-shear model problem which indicates that the
constitutive behavior of the Rankine plasticity model and the rotating crack model show
much resemblance. The models have been applied to different structures and a compari-
son between the numerical and experimental results indicates that the most promising
material model for concrete is the fracture energy-based plasticity model. Application of
the plasticity model to reinforced concrete structures in which biaxial stress states are
prominent, shows that the plasticity model results in a stable and accurate algorithm.
The entire pre- and post-failure regime can be traced in a stable manner, which gives a
good impression of the failure characteristics of these type of structures.

The reinforcement has been modeled using an embedded formulation in which the
displacements of the reinforcement are consistent with the displacement of the parent-
element. In this approach, perfect bond is assumed. The constitutive model for the rein-
forcing steel is given by an elasto-plastic uniaxial model. The constitutive model for
plain concrete is given by the fracture energy-based plasticity model. The proposed
model for reinforced concrete is a superposition of the stiffness of the reinforcement, the
stiffness of the plain concrete and an additional stiffness due to the interaction between
concrete and reinforcement. In this approach, the shear stiffness of the cracked, rein-
forced concrete has been neglected. The model has been validated with single-element
simulations of experiments which show a good agreement between the numerical and
experimental behavior as long as the anisotropy of the reinforcement is less than five.
The average crack spacing based on CEB-FIP recommendations can be estimated within
acceptable limits. Analyses of shear wall panels with the proposed model show in gen-
eral a good agreement with the experimental results, but the pre-failure response is
slightly too stiff which might be caused by an overestimation of the total amount of
fracture energy.

In retrospect, a feedback can be made to the four objectives which were defined at
the beginning of this study in section 1.1.

Regarding the first objective, to propose a solution technique which is stable and
economic in the entire loading regime of the structure, it can be concluded that this
objective is attained. The examples presented in this study are all calculated with the
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proposed solution algorithm. Although sometimes difficulties are encountered, the solu-
tion algorithm has shown to be stable and general applicable which is a major advantage
for the development of a numerical tool for structural engineers.

The second objective, to develop a constitutive model for reinforced concrete which
incorporates the knowledge of nonlinear fracture mechanics used in crack propagation
problems, is also achieved. The proposed model for reinforced concrete is based on a
decomposition of the stiffness in a contribution of the plain concrete, a contribution of
the reinforcement and an additional contribution due to the interaction between concrete
and reinforcement. The model which describes the behavior of the concrete is based on
the total amount of dissipated fracture energy at stabilized cracking which is determined
by the average crack spacing. The additional stiffness contribution due to the interaction
between concrete and reinforcement is based on the tensile strength of the material and
on the effective tension area. In this manner, the behavior of reinforced concrete is based
on a rational modeling.

The third objective, to develop a constitutive model for concrete which is stable and
robust in all stress states, is achieved with the development of a composite plasticity
model based on an incremental formulation. The model shows a behavior which is simi-
lar to the behavior of the rotating crack model in tension. In compression, the nonlinear
behavior due to crushing of the material is also described. Furthermore, the interaction
between the behavior in tension and the behavior in compression can be taken into
account, The algorithm which has been developed has proven to be stable in all stress
situations which have been encountered in the example calculations.

The last objective, the developed model should be able to predict the ultimate load
and the failure mode within 30 % of the experimental behavior, is also achieved which
is demonstrated by the analyses of experiments in Chapter 5 and Chapter 7.
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SAMENVATTING

NUMERIEKE ASPECTEN VAN TWEE-ASSIGE SPANNINGSTOESTANDEN IN
ONGEWAPEND EN GEWAPEND BETON

Er bestaat een groeiende behoefte in de constructiepraktijk aan betrouwbare numerieke
gereedschappen om het na-critische gedrag van constructies te kunnen bepalen teneinde
de veiligheid van de constructie te kunnen inschatten. In het algemeen kan gesteld wor-
den dat een betrouwbare rekentechniek bestaat uit een nauwkeurige materiaalbeschrij-
ving in combinatie met een robuuste oplosmethodiek. In deze studie is een verdere stap
gezet om een dergelijk numeriek gereedschap te ontwikkelen.

Een oplosmethodiek om het evenwichtsprobleem op te lossen wordt voorgesteld die
bestaat uit een Newton-Raphson iteratieprocedure in combinatie met een
booglengtemethode. Daarbij is het convergentiegedrag verbeterd met behulp van een
line-search techniek en een schattingsmethode voor het belastingincrement. De laatste
verfijning is waarschijnlijk de belangrijkste verbetering van het convergentiegedrag.

Een materiaalmodel voor ongewapend en gewapend beton is eveneens gefor-
muleerd. De belangrijkste aanname daarbij is dat de bezwijkmechanismen van beton
zowel in trek als in druk bepaald worden door scheurgroei op microniveau. Voorts is
aangenomen dat de interne beschadiging veroorzaakt door deze microscheuren kan wor-
den gemodelleerd door gebruik te maken van interne parameters die gerelateerd kunnen
worden aan een breukenergie in trek en een overeenkomstige energie in druk. De mate-
riaaleigenschappen van het beton zijn gerelateerd aan de druksterkte door gebruik te
maken van de CEB-FIP bepalingen. De overeenstemming tussen experimentele en
numerieke resultaten toont aan dat de materiaaleigenschappen, geschat op basis van
deze aanbevelingen, nauwkeurig zijn. Het gedrag van gewapend beton is beschreven
met behulp van een superpositie van het elasto-plastische gedrag van het wapen-
ingsstaal, het softening gedrag van het beton en een additionele stijfheid tengevolge van
de interactic tussen beton en wapeningsstaal. De totale hoeveelheid breukenergie
tengevolge van de uitgesmeerde scheurvorming in gewapend beton is bepaald aan de
hand van de gemiddelde scheurafstand op grond van CEB-FIP aanbevelingen.

Het twee-assige gedrag van ongewapend beton is gemodelleerd met een gecombi-
neerd plasticiteitsmodel: een hoofdspanningscriterium voor de trekspanningen en een
Von Mises plasticiteitsmodel voor de drukspanningen. Het gecombineerde vloeiopper-
vlak vertoont een overeenstemming met de experimentele bezwijkomhullende van
Kupfer en Gerstle. Bijzondere aandacht is gegeven aan de consistente formulering van
de tangentiéle stijfheidsrelatie en een consistente behandeling van de singuliere punten
van het vloeioppervlak. Het gedrag van dit plasticiteitsmodel is vergeleken met het
gedrag van het roterend scheurmodel waarbij duidelijk is geworden dat het gedrag van
beide modelleringen sterke overeenkomsten heeft. De combinatie van trek-
drukspanningstoestanden, die in het verleden tot numerieke problemen leidde, kan nu
stabiel en nauwkeurig worden beschreven en geanalyseerd. Het twee-assige gedrag van
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gewapend beton, met name de trek-druk interactie, is bestudeerd aan de hand van twee-
assig belaste, gewapend betonpanelen van Kollegger en Mehlhorn. Het is niet duidelijk
aantoonbaar dat de druksterkte van het beton wordt beinvloed door laterale scheurvor-
ming. Echter, een constante reductie van de druksterkte ten opzichte van de kubusdruk-
sterkte kan worden geobserveerd, wat waarschijnlijk meer een gevolg is van de verschil-
lende randvoorwaarden en proefstukgrootten dan van de laterale scheurvorming.

150



CURRICULUM VITAE

Naam

21 september 1962
1978

1978-1981
1981-1983
1983-1988

27 oktober 1988
november 1988 - april 1989

april 1989 - oktober 1993

Peter Hendrikus Feenstra

Geboren te Sittard

MAVO-diploma te Heerlen

MTS te Heerlen

HTS te Heerlen

Studie Civiele Techniek aan de Technische Universiteit te
Delft. Onderwerp van het afstudeerproject : numerieke
plasticiteitstheorie. Het afstudeerwerk is verricht bij TNO-
Bouw, afdeling Numerieke Mechanica

Diploma van civiel ingenieur ( met lof )

Wetenschappelijk medewerker TNO-Bouw, afdeling
Numerieke Mechanica

Werkzaam aan de TU-Delft, faculteit der Civiele Techniek
voor onderzoek van de Stichting voor de Technische
Wetenschappen ( STW)

151



