
Side-Channel Attacks
using
Convolutional
Neural Networks
Ioannis Petros Samiotis

A Study
on the performance
of Convolutional Neural Networks
on side-channel data

Side-Channel
Attacks
using

Convolutional
Neural Networks

by

Ioannis Petros Samiotis
to obtain the degree of Master of Science

at the Delft University of Technology
to be defended publicly on Thursday April 26, 2018 at 13:00.

Student number: 4504232
Thesis committee: Dr. S. Picek, TU Delft, supervisor

Dr. ir. J.C.A. van der Lubbe, TU Delft
Prof. dr. A. Hanjalic, TU Delft

Abstract

Side-Channel Attacks, are a prominent type of attacks, used to break cryptographic implemen-
tations on a computing system. They are based on information "leaked" by the hardware of a
computing system, rather than the encryption algorithm itself. Recent studies showed that
Side-Channel Attacks can be performed using Deep Learning models. In this study, we ex-
amine the performance of Convolutional Neural Networks, on four different datasets of side-
channel data and we compare our models with conventional Machine Learning algorithms
and a CNN model from literature. We found that CNNs have the potential to achieve high ac-
curacy performance (99.3%), although their capacity is heavily influenced by the use case. We
also found that certain Machine Learning algorithms can outperform CNNs in certain cases,
leaving an open debate on the performance gains of the latter.

iii

Preface

An genuine interest in privacy and classification systems urged me to pursue the topic of this
thesis. It was a challenge which helped me broaden my knowledge on Deep Learning, Machine
Learning, Optimization and of course, Software Development. While studying the limited lit-
erature on the topic, I quickly became curious on the specific performance gains that Convo-
lutional Neural Networks can bring. As such, it became the main premise of this work, where
me and my supervisor Dr. Stjepan Picek tested the efficiency of CNNs in various cases.

Many people have supported me through this study. Many colleagues and supervisors from
the university and the company where I conducted my internship and of course my family and
friends. Naming each and every one would be impossible, but I’m deeply grateful to everyone,
as each helped me in a certain way.

Ioannis Petros Samiotis,
April 2018

v

List of Abbreviations

Abbreviation Meaning

AES Advanced Encryption Standard
ANN Artificial Neural Networks

API Application Programming Interface
ARM32 Advanced RISK (Reduced Instruction Set Computer) Machine 32-bit architecture

CNN Convolutional Neural Networks
DL Deep Learning

DL4J Deeplearning4j
DPA Differential Power Analysis

FPGA Field-programmable Gate Array
GPU Graphics Processing Unit

LR Logistic Regression
LSTM Long-Short Term Memory

ML Machine Learning
MLP Multi-Layer Perceptron

NB Naive Bayes
SCA Side-channel Attacks

SPACE Security, Privacy and Applied Cryptographic Engineering
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
XGB Extreme Gradient Boost

0-RML ZeroR Classifier (Machine Learning)
0-RC N N ZeroR Classifier (Convolutional Neural Networks)

vii

Contents

1 Introduction 1
2 Literature Review 3

2.1 Deep Learning and Convolutional Neural Networks 3
2.1.1 Historical Overview . 3
2.1.2 Basic Structural Elements of Artificial Neural Networks 4
2.1.3 Convolutional Neural Networks . 7

2.2 Breaking Cryptographic Implementations Using Power Consumption Data . . . 9
2.2.1 Overview of Side-Channel Attacks . 9
2.2.2 Few notes on the AES . 9
2.2.3 Power Analysis Attacks . 9

2.3 Using Deep Learning for Side-Channel Attacks 11

3 ResearchMethodology 13
3.1 Approaching the Research Problem . 13
3.2 Research Goals . 13
3.3 System Design . 14

3.3.1 Implementation Details and Frameworks 15
3.3.2 Using Hyper-parameter Optimization 16
3.3.3 System Overview. 18

4 Experimental Setup 21
4.1 Designing the Experiments . 21
4.2 Datasets’ Structures . 22

4.2.1 AES ARM32 . 22
4.2.2 AES FPGA . 22
4.2.3 DPA contest v2 . 23
4.2.4 DPA contest v4 . 23

4.3 Network Architectures . 23
4.4 Detailed Overview of the Experiments . 25

5 Results 27
5.1 Results on DPA contest v2. 27

5.1.1 Comparison between CNN Architectures 27
5.1.2 Comparison between CNN and ML . 31
5.1.3 Results on Random Sample Shuffling 32

5.2 Results on DPA contest v4. 33
5.2.1 Comparison between CNN Architectures 33
5.2.2 Comparison between CNN and ML . 37
5.2.3 Results on Random Sample Shuffling 37

5.3 Results on AES ARM32 . 38
5.3.1 Comparison between CNN Architectures 38

5.4 Results on AES FPGA . 40
5.4.1 Comparison between CNN Architectures 41

5.5 Final Hyper-parameter Ranges . 42

6 Conclusion andDiscussion 44
6.1 Overview of CNN-based Side-Channel Attacks 44
6.2 Recommendations on Future Work . 44

Bibliography 46

ix

1
Introduction

Information and connectivity are two of the main characteristics of our society. Computers
and smart devices have helped connecting people and sharing information between them,
much easier and faster than ever before. Economic transactions and information transfers are
all transmitting important data that need established and safe connections between a sender
and a receiver. In many cases, this can be achieved by using specialized hardware on both
ends, such as smartcards, fingerprint scanners and face recognition cameras. Although cyber
security has progressed a lot in the recent years, no infrastructure can ever be guaranteed to
be totally secure. More and more sophisticated attacks surface and reveal vulnerabilities that
were never thought before.

When describing a cyber security incident, we describe the attempt (succeeded or failed)
to steal data or disrupt an infrastructure (in some cases both). Stealing data can be achieved
through a passive or intrusive way. Passively, an attacker could bypass the defences of a target
and collect the data that are being processed, without leaving any traces of interacting with the
target. Gaining information from a target through such means doesn’t necessarily imply weak-
nesses in the software implementation or the encryption algorithm. An attacker could achieve
a passive intrusion through the hardware implementation of the system. For example, while
one is monitoring the power consumption of a cryptographic device, he could notice differ-
ences between the idle consumption and the consumption when an encryption or decryption
process is performed. Such variations could indicate minor things such as if a device is active,
without any further insight in the implemented algorithm itself. In the case though that an
attacker is able to compare that power consumption with the input/output data, he could pos-
sibly retrieve the encryption keys of that device. This would enable him to monitor the data
transferred through that device in the future.

The above example is a prime example case of a Side-Channel Attack (SCA). SCAs on hard-
ware are being performed and are known since the analog era. Considering they are ignor-
ing the software defences, they are capable of breaking theoretically unbreakable encryption
algorithms, through monitoring the hardware’s activity. They are difficult to trace and since
technology is integrated more and more into our everyday routines, companies are trying to
implement sophisticated hardware countermeasures to ensure the security of their systems.

Due to the nature of the mathematical models, which describe the relations between side-
channel data and the encryption keys, SCAs could be transformed into a classification prob-
lem. Using again the power consumption example, an attacker could collect the power con-
sumption data and relate them, through a model, with appropriate labels. This makes possible
the use of classification models, a powerful tool in the hands of an attacker. Machine Learn-
ing (ML) has developed and increased the performance of statistical models making systems
capable to easily recognize patterns on input data and correlate those with their appropriate
labels.

Recent works in the field have shown that Deep Learning (DL) algorithms can be used in
side-channel data, achieving rather good performance in key retrieval [26] and in classification
accuracy [6]. Through these works, the DL systems demonstrate better performance than ordi-

1

2 1. Introduction

nary attacks, surpassing well established techniques. This made us interested on the use cases
of SCAs that DL could excel and we took a data science approach on the topic. Through this
work, we want to understand the characteristics of the data and why specific DL algorithms
seem to be the most fitted for the problem.

We examined the use of a specific technique, the Convolutional Neural Networks (CNNs),
on side-channel data. CNNs are a Deep Learning technique that in [26] and [6], was found to
achieve the best results among the other DL techniques. In this work we study their perfor-
mance on power consumption traces of four different datasets. In the first chapter, we present
a general introduction to Deep Learning and CNNs especially, as well as an overview of Side-
Channel Attacks, in order to provide all the necessary background on the topic. Continuing the
literature review of this study, we present the related work in the field of SCAs and DL, while
presenting an optimization technique that was at the core of our system’s functionality. After
introducing the main concepts, we show our approach on the problem, the goals we wanted to
reach in our study and the system we implemented to achieve these goals. Having introduced
our goals and the system’s overview, we proceed in explaining our experiments’ design along-
side the data structures and classification algorithms that were used. Finally, we showcase the
results of our experiments and discuss their meaning.

This study was made in conjunction with an industrial internship at Riscure B.V. and the
Computer Science MSc study programme in Delft University of Technology. In later sections
we discuss design choices and experiments that took place during the study as a whole, but we
explicitly remark the parts of the work during the internship. That is due to substantial changes
to the codebase and the overall approach on the research topic, between the two parts of the
study.

2
Literature Review

We start our work with a review of Deep Learning and Side-Channel Attacks. We give an
overview of each respective field, accompanied with descriptions and examples of specific el-
ements which were needed in our study. Finally, we present the work that has been done so
far in the field of Side-Channel Attacks using Deep Learning, alongside a specific optimization
technique that was pivotal to our research. Through this chapter, we present all the relevant
work on which we base our research methodology.

2.1. Deep Learning and Convolutional Neural Networks
Deep Learning is the study and development of neural network architectures for classification
tasks. In our study we used a special type of Neural Networks (NN), the Convolutional Neural
Networks (CNN), following the works of [26] and [6]. We start this section by presenting some
of the research milestones in the field so far, following it with short descriptions of important
elements of NN, that we used in our work. Finally, we describe how Convolutional Neural
Networks work and some of the classification breakthroughs of certain CNN architectures.

2.1.1. Historical Overview
The field of Artificial Neural Networks (ANN) is old, with a lot of research sparking debates
on "thinking machines" and Artificial Intelligence capabilities. In 1943 Warren McCulloch and
Walter Pitts published the first study [27] on how actual neural networks could possibly work
and modeled a simple neural network using electrical circuits. In later years, we have the
first applied artificial neuron ADALINE (ADAptive LINear Element) and artificial neural net-
work MADALINE (Multiple ADAptive LINear Elements) [47], designed by Bernard Widrow and
Marcian Hoff in 1960. Better network architectures were introduced through the years that
followed and in 1986, a team of researchers including David Rumelhart, introduced the back-
propagation technique [37]. This technique, allows classification errors to propagate through-
out the neurons of the network and calculates their error contribution per data batch. This re-
sults in a better classification model but made the networks become "slower learners", needing
more time to train on data.

In the period between the 80s and 2000s, the Artificial Intelligence (AI) research was per-
ceived to be have significantly slowed down. That could be attributed mainly to the low com-
putational capabilities of the available hardware, alongside the high expectations for AI that
were not met yet. Nevertheless, AI systems were more and more integrated into systems of our
every day lives, like banking systems and air traffic control. During that period we had the birth
of many different types of ANN, like Convolutional Neural Networks [22] and Long-Short Term
Memory machines (LSTMs) [15], all important neural network architectures in modern Deep
Learning research.

During 2010s, through conference competitions and hardware advancements, ANN re-
search grew as a field, becoming a dominant pattern recognition practice. Breakthroughs in
image classification (AlexNet [21], GoogleNet [43], VGG-16 [39]) and the integration of GPUs

3

4 2. Literature Review

as computing systems for ANN, brought Deep Learning in the spotlight, leading to numerous
breakthroughs in the pattern recognition field.

2.1.2. Basic Structural Elements of Artificial Neural Networks
In the following parts, we introduce basic concepts of ANN that are being used throughout our
work. Some of them are essential theoretical concepts, while others are practices and tech-
niques that their use is being encouraged in the literature.

Artificial Neurons
Neurons are the core component of an Artificial Neural Network. They are mathematical func-
tions that are inspired from the biological neurons and they are the basic classifying compo-
nents of the network. Mimicking the biological neurons, the artificial neurons are activated if
"stimulated" with the right values. A neuron receives values as input, and outputs values if the
sum of the input exceeds the threshold of the neuron [35].

Figure 2.1: Representation of an Artificial Neuron [9]

As we see in figure 2.1, a neuron assigns weights on each input separately and summarizes
the results. These weights are very important to the network and they are defined by its Cost
function. The weights are being updated through the training process, to reflect the patterns
found in the data that the ANN is classifying. As a rule of thumb, the ANNs seem to perform
better with more data, and if the training process is long enough, the neurons’ weights can
become extremely efficient on the training data. This can lead to overfitting issues, meaning
the ANN has a poor ability to generalize on datasets other than the training data. Later we
discuss how to prevent such issues using regularization. Finally, the sum of the weighted inputs
is used in the neuron’s Activation function to determine if the neuron "activates", meaning
whether it outputs a result or not.

Activation Functions
The type of Activation function, which determines if a neuron activates or not, is the simplest
form of activation function. It is called the Binary Step function [36]. Introducing more states
in the neuron’s activation pattern though, makes the ANN more capable to classify complex
data structures. To achieve such intermediate values in neuron’s activation, we make use of
functions where the neuron’s activation values are bound within the range of a function. A
simple example of such an Activation function, is the Sigmoid function. In the following Table
2.1, we show the Activation functions that were used in our classification system, alongside
their mathematical definitions and graphical representations.

2.1. Deep Learning and Convolutional Neural Networks 5

Table 2.1: Activation functions used in this study

Activation Function Definition Graph

TanH (Hyperbolic Tangent) f (x) = t anh(x) = 2
1+e−2x −1

ReLU (Rectified Linear Unit) [29] f (x) =
{

0 for x < 0

x for x ≥ 0

LeakyReLU (Leaky Rectified Linear Unit) [24] f (x) =
{

0.01x for x < 0

x for x ≥ 0

PReLU (Parametric Rectified Linear Unit) [14] f (α, x) =
{

for x < 0

x for x ≥ 0

ELU (Exponential Linear Unit) [11] f (α, x) =
{

α(ex −1) for x < 0

x for x ≥ 0

SELU (Scaled Exponential Linear Unit) [19] f (α, x) =
{

α(ex −1) for x < 0

x for x ≥ 0
-

Softmax [10] fi (~x) = exi∑J
j=1

e
x j

-

Multilayered networks
A number of neurons in parallel constitute a layer. Feed-forward architectures consist of stacked
layers of neurons, where each neuron of the previous layer is connected with all the neurons
of the next layer. Such networks are also known as Fully-Connected Network. These kind of
networks make no assumptions about the data features and are memory and computationally
expensive, due to the number of connections and weights.

A network of two layers, makes use of an Input layer where the neurons’ input are the val-
ues of the target data and an Output layer where the neurons’ output is the classification result
of the network. In the cases where the network has more than two layers, all the intermedi-
ate layers are called Hidden layers. The values of the Output layer, represent the label that the
network associates with the input data. In the case of a Binary classification, the network out-
puts one of two values, while in Multiclass classification, the network outputs one out of many
values. The classification task in our study is a Multiclass classification problem.

Figure 2.2: Fully Connected Neural Network with 3 Hidden Layers [1]

Cost Functions and Regularization
Due to their mathematical nature, the ANNs performs a nonlinear mapping of the input data
vectors to their corresponding values (labels). Cost functions are being used to update the
network’s weights and their results are an indicator of the network’s overall performance. Their
result is a non-negative value and it measures the inconsistency between the predicted value

6 2. Literature Review

(ŷ) and their ground truth label (y). A Cost function consists of an empirical risk term and
a regularization term which penalizes the wrong predictions of the network (if the ANN uses
regularization). While the ANN is being trained, it tries to minimize the loss value of its Cost
function, in order to increase its classification performance.

Before presenting the specifics of the Cost function used in our study, we will explain the
role of Regularization. As explained before, by using Regularization, the network can avoid
overfitting on the training data and increase its generalization capabilities. Otherwise, the con-
nections between specific neurons in the network become so important for it (high weights on
those connections), that other connections that could associate with different types of data
patterns, are being ignored, lowering its overall performance as shown in Figure 2.3.

Figure 2.3: Green line represents an overfitting classifier and the black line represents a regularized classifier [7]

The Regularization techniques that are relevant to our work, are:

• L1 regularization

• L2 regularization

• Dropout

L1 and L2 regularization techniques, are both targeted to the neurons’ weights; they both
penalize large weight values. Their main difference is that L1 shrinks a weight ω by a constant
value towards 0, while L2 shrinks ω proportionally to its value. To contrast their resulting out-
put, when the magnitude of |ω| is large, L1 shrinks the value much less than L2 and when the
magnitude of |ω| is small, L1 shrinks the value much more than L2. This results in L1 having a
net result of high weighted connections becoming more and more important, while the rest of
the connections are driven to 0.

The L1 regularization update is defined as:

ω→ ω̂=ω− ηλ

n
si g n(ω)−η∂C0

∂ω

and the L2 regularization update is defined as:

ω→ ω̂=ω(1− ηλ

n
)−η∂C0

∂ω

whereλ is the regularization parameter, η is the learning rate (more in ??), C0 is the initial value
of the cost function and n is the total number of neurons in the network. In our work we made
use of L2 regularization instead of L1, as it met our classification needs.

Dropout [41] is a technique which doesn’t modify the Cost function. It instead modifies
the network itself, by modifying its topology. Depending on the magnitude of the Dropout
effect, the ANN temporarily deactivates a number of random neurons in the hidden layers
while training. After the network has parsed through the whole batch of data, the network
reactivates the neurons and randomly selects new ones to deactivate, while recalculating the
weights and biases of the network for the new batch. This technique can be applied to the
convolutional hidden layers as well and the performance gains in our system, were in line with
[41].

2.1. Deep Learning and Convolutional Neural Networks 7

2.1.3. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of networks that are primarily used for image
classification and object recognition. They were inspired by how visual cortex operates in cats
[17] and monkeys [18], where overlapping receptive fields respond to visual stimuli in their
region.

As their name suggests, the network calculates a series of convolutions on the input data.
To achieve this, they use a series of certain filters (n-dimensional arrays), which overlay on the
input data and the product of this convolution is the output of the "neuron". They are Multi-
layered networks, and they mainly use 3 types of layers, Convolutional layers, Pooling Layers
and Fully-connected layers. In the most common architectures, we find a Convolutional layer
as an Input layer, a series of Convolutional and Pooling layers for the Hidden layers and a Fully-
connected layer as Output layer. To better demonstrate how CNNs perform data classification
through these layers, we will use an example on image data.

An digital image is an array of pixel values. Each pixel mainly holds information on color
channels, resulting on images using the RGB color scheme, to be 3 dimensional data. To sim-
plify our example, we assume that the picture is black and white, so each picture can have
one value. In the Input Convolutional layer, there are a certain number of filters (else known as
kernels), whose values will be used for the convolutions. In this example, the filter has 2 dimen-
sions and a square shape and it detects features on the image by applying convolution from left
to right, top to bottom. The size of the step the kernel uses to parse through the image, is called
Stride. The result of the convolutions using this filter, constitute an array called Feature Map
or Activation Map. If the layer utilizes more than one kernels, then the dimensionality of the
layer’s output increases. The volume of the Feature Map is layer’s output depth. Through this
process, the layer has detected the first order features of the image. Each filter applied, detects
different types of features (color value, curvature etc.), so the more filters applied, the more
features that will be detected. Likewise, the more convolutional layers applied, the higher the
level of features detected, as the filters detect patterns on features found by the previous layer.
This has the results of CNN being able to detect faces and objects in images. The Figure 2.4
shows a graphical representation of how the filters are applied on the data.

Figure 2.4: Creation of an Activation Map [30]

The main role of Pooling layers is to down-sample the data between the layers of the CNN.
They apply kernels on the input data, in the same way that convolutional layers do. This time
though, the output of the layer is a smaller version of the input by either summarizing the
input or by considering only the max value of it. An example of the Pooling process using
MaxPooling, can be found in the Figure 2.5.

Through the use of CNN, there were several breakthroughs in image classification tasks.
One of the first breakthroughs was made with LeNet [22]. LeNet is a CNN which can identify
handwritten digits in images, needing only minimal data pre-processing. In Figure 2.6, we
show how an image of a digit is being classified using LeNet.

Typical examples of Convolutional Neural Networks, whose architectures are optimized for
use with GPUs, are the AlexNet which achieved a top-5 error (top-5 label candidates) of 15.3%
[21] and GoogleNet which is a 22 layers deep CNN and set a new state-of-the-art in image
classification, in the ImageNet Large-Scale Visual Recognition Challenge 2014 [38].

8 2. Literature Review

Figure 2.5: MaxPooling output [30]

Figure 2.6: LeNet architecture [31]

Figure 2.7: AlexNet architecture [21]

2.2. Breaking Cryptographic Implementations Using Power Consumption Data 9

2.2. Breaking Cryptographic Implementations Using Power Con-
sumption Data

Throughout this chapter, we will present the necessary background regarding the Side-Channel
Attacks (SCAs) as a field. More importantly, the type of Side-Channel Attack that is more rele-
vant to our work, the Power Analysis Attack. We will explain how the power consumption of a
cryptographic device can be associated with its encryption key and how this type of attack can
be transformed into a classification task.

2.2.1. Overview of Side-Channel Attacks
In order to understand Side-Channel Attacks, we will start by explaining what does the term
"side-channel" stand for. Side-Channel is an unintended interface for monitoring or operating
a device, resulting from its physical implementation. For the SCAs, the attacker needs access to
the hardware of the target device, in order to gather data on unintended information leakage.
These leaked information can be fluctuations of the device’s temperature, electromagnetic ra-
diation, power consumption, etc, that can indicate when the device is performing a certain
process. By combining the leaked information with mathematical models to express this leak-
age, an attacker can retrieve the keys of the encryption algorithm that is being performed on
the target cryptographic device.

Side-Channel Attacks (SCAs) are a serious threat for many cryptographic devices, as they
can compromise them, even if the encryption algorithm is strong. Short-comings on secure
hardware design can lead to powerful SCAs like the most recent security exploits on CPUs’
cache, Meltdown [23] and Spectre [20]. In our specific case study, we focus on SCAs associated
with the power consumption of a target device.

2.2.2. Few notes on the AES
The Side-Channel Attacks which we will focus on this study, all make use of the AES algorithm.
The AES is an encryption standard (as its name suggests, "Advanced Encryption Standard"),
which is widely used to secure digital data. It is a subset of the Rijndael cipher and it has vari-
ations of AES-128, AES-192 and AES-256. The different variations depend on the length of the
key that is being used, and all use blocks of 128 bits. We should mention that the AES is a
symmetric-key algorithm, meaning that the same key is used for encryption and decryption
of the data. As in this study we only classify data where AES-128 was used, we will abbreviate
AES-128 to AES from now on.

More specifics on the AES can be found in the original work of [12]. As the exact functional-
ity of AES is not relevant to our case study, in the following sections we will only refer to certain
parts of AES that are relevant with our work.

2.2.3. Power Analysis Attacks
As previously mentioned, the power consumption of a device can be used in an attack to extract
critical information from a target device. It is an non-invasive type of SCA and the attacker
needs to have access to the device so he can measure power consumption.

The procedure of a power analysis attack starts with an attacker sending data to the cryp-
tographic device, which triggers the execution of the encryption algorithm on the target. The
device then encrypts the input data and ouputs the results. While the encryption takes place,
the attacker measures the power consumption of the cryptographic device through an oscillo-
scope (Figure 2.8). The attack is virtually untraceable, as the encryption device operates as in-
tended and the attacker only measures a side product of the device’s operation. We assume that
the type of encryption algorithm is known to the attacker, who then applies the proper mathe-
matical model (leakage model) to retrieve the encryption key. The attacker needs to combine
theoretical knowledge of the encryption algorithm with the understanding of the specifics of
its implementation in order to apply a proper leakage model to the measured power consump-
tion traces.

To better demonstrate a power analysis attack, we will use an example attack on a target
device with an implementation of AES-128 encryption. The encryption key in this example is
constant for the device and it is secret. The AES implementation in our example, is based on

10 2. Literature Review

Figure 2.8: Differential Power Analysis [33]

a key with 16 bytes length K16 ∈ {k1, ...,k16}. The attacker proceeds on sending data D with 16
bytes length {d1, ...,d16}. The data message sent, differs each time. So when the data D are sent
to the device, they trigger the AES encryption process on the target device. The electrical power
that is being consumed for the process, is being measured by the oscilloscope, which produces
a power trace t (Figure 2.10).

The fact that the implementations of AES encryption are taking place per byte of the input
data, allows the attacker to perform the attack per byte of the encryption key. The AES proce-
dure for one byte d1 ∈ D with k1 ∈ K16 are the AddRoundK e y = d1 ⊕k1 and then the S-Box
(substitution box) function which is applied to the result (see Figure 2.9). There are more oper-
ations in AES that could be targeted but in this study we specifically target the S-Box operation.

Figure 2.9: AES-128 encryption of 1-byte data (d1) with 1-byte secret key (k1) (SubBytes Operation)

As mentioned above, each different data D the attacker is sending to the device, results in
a different power trace measured by the oscilloscope. In figure 2.10 we can see a power trace
t that was measured when data D t was sent to the target. In this example, we can observe a
pattern repeating 16 times in the power trace. This pattern is the encryption process for each
byte.

Figure 2.10: Power trace t associated to the AES-128 encryption of each byte of the data Dt ∈ {d t
1 , ...,d t

16}

For the sake of example’s simplicity, we will focus on the first data byte d1 and first key byte

2.3. Using Deep Learning for Side-Channel Attacks 11

k1 for each data D sent. Following the same method, we isolate roughly the first pattern of
the trace, which should contain the power consumption values connected to the encryption
of d1. The resulting Sbox-out of the d1 encryption, is then incorporated in a leakage model. In
our case, we will use the Hamming-weight values of each Sbox-out, as Hamming-weight is an
assumed, common leakage model. In short, Hamming-weight is the amount of 1 in a byte, so
the range of possible values is from 0 to 8. Each Sbox-out thus has a specific Hamming-weight
(HW).

If d t1
1 ∈ D t1 is the first data-byte of the data D t1 ∈ {d t1

1 , ...d t1
16} sent to the cryptographic device

resulting to the first power trace t1 measured, then for each power trace (t1, ...tn) resulted from
sending n different D ∈ {D t1 , ...,D tn }, for the specific first key-byte k1 ∈ K16 of the target we have:

HW (Sbox(d t1
1 ⊕k1))

HW (Sbox(d t2
1 ⊕k1))

...

HW (Sbox(d tn
1 ⊕k1))

With d t1
1 , ...,d tn

1 known and the encryption key fixed in the target device, the attacker calculates
the HW for each of these key-byte values kvi ∈ {0, ...,255} with i ∈ {1, ...,16}. This results in 256
different leakages (L) for each of the possible key-byte values, where each leakage L consists of
Hamming-weight values for a specific d t

1 (Lkvi = [HW0, ..., HW256]) .
In order to find which key-byte value is the best candidate, the attacker proceeds to calcu-

late the correlation of each HW value with the power trace t generated by sending one of the d1

data-bytes (Hamming-weight values are correlated to the power consumption of the device).
If n is the number of traces and s the number of samples, then we calculate the correlation be-
tween the power traces and the Hamming-weight values for the first key-byte k1 ∈ K16. Specif-
ically, for the kv1 = 0 we calculate the correlation of the L0 vector with each of the columns in
Tn,s :

Tn,s =

t1,1 t1,2 · · · t1,s

t2,1 t2,2 · · · t2,s
...

...
. . .

...
tn,1 tn,2 · · · tn,s

 ,&L0 =

HW

d
t1
1

0

HW
d

t2
1

0
...

HW
d tn

1
0

The Lkvi vector that its {HW

d
t1
1

kvi
, ..., HW

d tn
1

kvi
} values had the highest correlation with the

power consumption values in Tn,s , indicate the key-value that is the best candidate for the
first key-byte k1 ∈ K16. The same procedure is taking place to extract the key-byte values of the
rest key bytes ki ∈ K16.

2.3. Using Deep Learning for Side-Channel Attacks
Starting this work, there were only two available research papers on the same topic; the works
of [26] and [6]. Both of the publications became a strong indicator of the path we would follow
in our study.

The two papers showcase two different studies regarding Deep Learning and Side-Channel
Attacks. In [26], the research team introduces the concept of Deep Learning and how SCA could
benefit from it. After an introduction on both fields, the team presents a comparison of 7 at-
tacks on a publicly available dataset, the DPA contest v2. More specifically, they compare the
key recovery results of an Autoencoder, a CNN, a Multilayered Perceptron with PCA, a Multi-
layered Perceptron without PCA, a Random Forest and an LSTM alongside a Template Attack.
The results showed that the CNN model achieved the best key recovery results, significantly
outperforming all the other techniques. The research was published in SPACE (Security, Pri-
vacy, and Applied Cryptography Engineering) Conference on 2017 and they included the CNN
architecture in the publication.

12 2. Literature Review

The work in [6], was conducted by the same research team and it was published in CHES
(Cryptographic Hardware and Embedded Systems) Conference on 2017. In this work, the re-
searchers focused on using a CNN architecture to classify a proprietary dataset and they stud-
ied the influence of data augmentation through adding jitter to the power consumption traces.
The network used in this paper is different from the one they used in the previous publication
but the information that was shared about it was not sufficient to reproduce the model in our
experiments. The CNN architecture they used, achieved good classification performance on
the augmented dataset and utilized more layers compared to the CNN in [26].

While examining the above works, we noticed that they both lacked the reasoning behind
the use of the specific architectures as well as a proper data science approach to the topic. The
first paper didn’t include the classification performance of the models, which fails to indicate
a true comparison of the classification models. Also, on the second paper, the team used only
a proprietary dataset which makes it difficult to replicate the results, especially since the exact
CNN architecture they used, was not shared in the paper. Adding to the above, the use of jitter
to augment the data in that publication, lacked a sufficient reasoning, following mostly the
trends of data augmentation in image classification.

Since the reasoning behind the selection of the specific CNN architectures was not suffi-
cient, we proceeded in experimenting with a variety of different CNN models. As explained
in the following sections, 3.1 and 3.3.2, the work of [4] was catalytic in the above process.
In this work, the research team is suggesting a simple optimization technique for the hyper-
parameters of the ANNs. As ANNs are complex classification functions, they utilize a large
number of parameters as described in section 2.1. By using an optimization technique, the
burden of finding good values for the ANN’s hyper-parameters is alleviated, and a more re-
producible and mathematically sound method is used instead. In this work they show that
Random Search is a more efficient technique compared to Grid Search. That is because in a
high dimensional configuration space, not all the hyper-parameters are important for differ-
ent datasets, as shown in their study. This makes Grid Search a poor optimization choice and
they suggest that Random Search is sufficient to become a benchmark for future optimization
techniques.

The above works were a primary influence in our work. Apart from these, research on CNN
and signal processing were important to draw inspiration from or learn more about a specific
topic of the project. Those studies though were not as catalytic as the ones above, as they didn’t
affect our study’s goals directly. They were rather used in aspects such as the types of hyper-
parameters we used, data preprocessing techniques that we applied or to generally learn more
about the data classification process for the task at hand.

Our classification task could be summarized as follows:

• It is a Multiclass classification of time-series data using Convolutional Neural Networks

• Each power consumption trace is associated with a specific label

• The data labels are generated from the traces using Hamming weight model (labels be-
tween 0 and 8)

• Each classification task is focused on the Hamming weight values for one byte of the
encryption key

3
Research Methodology

3.1. Approaching the Research Problem
Due to the limited research on the field, we based our work mainly on two publications. In [26],
the research team conducted a comparison of different DL techniques against standard types
of SCAs and found that a CNN they created achieved the best performance in key retrieval. This
outcome combined with their second publication [6] where they demonstrated that certain
data manipulations can increase the performance of CNN, pushed our research towards CNNs.

The CNN architectures used in those studies, where either vaguely described or they were
relatively simple architectures. The networks were shallow and the reasoning behind some
of the design choices, was not described at the studies. This made us experiment on CNN
architectures and link our design choices with research outcomes in related fields. First we
tried already established networks such as LeNet [22] and AlexNet [21], both re-purposed for
1-D data. The results of those networks in some preliminary tests, were poor. That was not a
surprise as those networks were optimized for image classification tasks. For our next step, we
sought performance gains in data manipulation, that were used in audio signals’ classification
literature, as audio and power signals share structural characteristics. We quickly found though
that plain implementations of Fast Fourier Transform (FFT) and Short-Term Fourier Transform
(STFT) were not particularly useful, having minimal impact in networks’ performances.

Thus we focused our research on finding CNN architectures that could achieve satisfy-
ing classifying performance, using minimal data pre-processing. To achieve that we had to
test several different CNN architectures, in order to find the most fitting for each of the target
datasets. Since this task would have needed a lot of manual hyper-parameter tuning, it would
have rendered the assignment non-feasible in the time frame of this work. In order to auto-
mate the task, we referred to literature for hyper-parameter tuning and optimization. The sys-
tem that we wanted to build, would have to compete in speed and performance with already
established types of SCAs. The time needed for Grid Search though (as discussed in section
2.3), would not make the system competitive. Random Search [4] though, provided us with
a technique which could produce architectures with good performance, in a relative shorter
time than Grid Search or Genetic Algorithms [28] would. Our results using this optimization
algorithm matched the results in literature [5] in terms of time and performance efficiency.

3.2. Research Goals
With the task at hand, combined with our design patterns and constraints, we formulated our
research questions early in our work. The desired outcome was to test several CNN architec-
tures in a number of different datasets and study their performance and characteristics. Then
we would compare them with literature’s models and other Machine Learning algorithms in
order to investigate their performance, which would lead us in valuable insights on the side-
channel data and the capabilities of CNNs classifying them.

In an attempt to quantify the above research questions, we planned the following research
goals, on which we based all of our experiments:

13

14 3. Research Methodology

1. Measure the performance of Convolutional Neural Networks across different side-channel
datasets.

2. Identify performance differences between different datasets’ sizes.

3. Identify any common structural elements between network topologies of the highest
performing models across the datasets.

4. Analyze the hyper-parameter search space for the side-channel classification problem.

5. Research the role of samples’ topology, in the side-channel classification problem.

We will address each goal separately below.
Regarding our first goal, it was our main focus in this essay. We would like this work to be

a guide for future researchers who will work on the topic, so we conducted a series of experi-
ments on CNNs and side-channel data, to cover as many scenarios as possible. This resulted
in insights which we believe they are valuable for the research in the field as they show the
average expected performance when using CNN on side-channel data.

A general rule of thumb regarding the amount of data needed for ANN classification is "the
more, the better". In the case of SCA though, an attacker might have access to a limited amount
of power consumption traces. Common practices in SCAs so far, show that the more difficult
an encryption implementation is, the more traces are needed. Through our experiments, we
wanted to identify dataset sizes where the CNNs perform the best and the point where any ad-
ditional data won’t affect their performance any more. Thus, we split each dataset in different
sizes and classified each subset separately.

As the datasets are sharing a lot of structural similarities, we expect to find commonalities
between the different optimized CNN architectures. These insights would also help to identify
common structural elements and their association with the type of data that were classified. To
contribute more on this claim, the number of layers in a CNN or the size of its kernels, could be
affected by the type of data at hand. Thus, by studying the classification models that reached
high performance, we sought to identify any common structural characteristics.

When we first implemented Random Search optimization, we established a search space
which was large enough, in order to include many possible architectures. That was our ap-
proach on the problem since the impact of each hyper-parameter to the classification perfor-
mance on side-channel data, was not known in the beginning of this work. Once we conducted
all the experiments, we had narrowed the space down to ranges which seemed to produce the
best results. This, narrowed down search space, could be used in future research to help with
further optimizing CNN architectures.

Our last research goal is inspired by CNN’s ability to find associations between features,
based on the data topology. This ability is crucial in object identification problems and is more
obvious when classifying image data. In our case we didn’t know if the topology of the power
consumption samples is indeed a valuable information, thus we conducted extra experiments
for this inquiry.

All of our research goals led to a publication [34], as our performance comparisons and
insights on CNNs, were novel in the field.

3.3. System Design
The design and development of the Deep Learning system was the engineering part of this
work. The system reflects the needs of our study and was developed using core software devel-
oping principles so the final product can have expandable structure and easily maintainable
codebase. It supports automatic CNN creation based on 13 different hyper parameters and
an optimization which can produce an optimized model for a specific dataset. Through the
design of the system, we didn’t try to innovate on CNN architectural elements and propose
new techniques. We rather studied the characteristics of each generated model alongside their
performance and compared them with the characteristics of the target datasets. Through this
process we identified some common patterns on CNN architectures as well as we found ele-
ments of the datasets that were greatly influencing the classification performance.

3.3. System Design 15

3.3.1. Implementation Details and Frameworks
As part of the internship at Riscure, the first version of the Deep Learning system was developed
in Java using the Deeplearning4j framework. The system requirements were to produce a fast
and well performing system which had key recovering capabilities. The codebase had to be
easily maintainable for future use by the company and the development had to take place in a
Windows environment.

Since the end of the internship, we focused on further improving the system without the
above constraints. Moving the development to Python and to the more established Deep Learn-
ing frameworks, Keras and Tensorflow, made the system capable achieving better performance.
Key recovery though was dropped in favour of further experimenting on the classification ca-
pabilities of CNNs.

In the following sections we explain all the advantages and disadvantages of each develop-
ment environment, while going into technical details regarding their differences.

GPUAcceleration
The usage of GPUs (Graphics Processing Unit) for Deep Learning methods is common in our
days. As computational requirements of algorithms rise, researchers need capable hardware to
run their implementations in decent time frames. Deep Learning frameworks, integrate their
functionality with GPU computational libraries in order to harness the high parallelism that
GPU cores offer.

In both developed systems, CUDA parallel computing platform was used in order to in-
crease the computational performance by harnessing the processing power of the GPUs in-
stalled in the development systems. CUDA is a C/C++ library designed and developed by
NVIDIA and is compatible with highly computationaly capable NVIDIA GPUs. Mainly two dif-
ferent GPU cards were used, GeForce 1080Ti on the Windows machine and GeForce 1050Ti on
the Ubuntu machine. Alongside CUDA, the CUDA Deep Neural Network library (cudNN) was
used which provides highly tuned implementations of standard neural network routines such
as convolution and pooling. Both of the deep learning frameworks are compatible with CUDA
and cudNN libraries.

Deeplearning4j
Deeplearning4j [44] is an open source Deep Learning framework, developed and maintained
mainly by a core team from Skymind company. The company develops other open sourced
libraries as well which accompany the Deeplearning4j framework. These include ND4j which
brings n-dimensional array manipulation in Java, DataVec for data vectorization and JavaCPP
for interfacing Java with C++ (mainly for Deeplearning4j-CUDA compatibility).

The developers of the framework are active in their channel in Gitter and help with trou-
bleshooting. At the time of writing, it is in pre version 1.0 (0.9.1 is the stable version). As such,
the framework still has bugs which the community and developers try to fix.

Deeplearning4j has features which make it competitive, such as large scale distributed
Deep Learning network using Hadoop. Also it offers several performance optimization fea-
tures such as scheduling or disabling the Java garbage collector and iterating through datasets
asynchronously through their libraries.

While developing with this framework, the main advantage was apparent. The Java lan-
guage helps for a more structured and easily maintainable code while benefitting from the
multithreading and immutability features of the language. Although these are definitely ad-
vantages from a software developer’s point of view, the language and the framework don’t ap-
pear to help the nature of Deep Learning research. In Deep Learning, researchers need to
quickly test architectures and easily manipulate datasets for experimentation, both of which
are hindered in this case. For example, creating n-dimensional arrays from CSV data and pass-
ing them to CUDA for computations were difficult as this process is not intuitive in Java and
creating your own data loaders was impended by obfuscations that were implemented in the
framework.

As the framework was still in a pre-release version while developing, we faced bugs that
were impossible to fix or needed a lot of system tinkering to resolve. Framework’s documenta-
tion wasn’t helpful in these situations and the user base is relatively small compared to other
Deep Learning frameworks, making debugging even more difficult.

16 3. Research Methodology

Example of such problems was: computer crashes during training, with no log output to
pinpoint the error. That happened when hyper-parameter values were higher than a certain
value and resulted in memory allocation issues due to Java-CUDA incompatibilities. The ex-
ample was not easily reproducible from the framework developers’ side

Lastly, the performance results of this framework’s models were found to be poorer com-
pared to the later Keras’ models performance results. Also, there was inconsistency in the ac-
curacy and loss results between the models running in CPU and GPU, while using Deeplearn-
ing4j. This was a particularly anomalous incident as there shouldn’t be any difference between
the results of identical models, independently from the hardware used for computations.

Keras
Keras [8] is a library for high-level design of neural networks in Python. Its API (Application
Programming Interface) supports Tensorflow [2] which was used in our system, as well as other
frameworks for backends. It allows fast prototyping and supports GPU acceleration libraries
(CUDA, cudNN) as mentioned before. Keras at the time of developing, was in version 2.1.2 and
it is a well established Deep Learning library, benefiting from an extensive documentation and
community support.

Transferring the Deep Learning system from Java to Python was easily achievable due to
the plethora of Python libraries and the more intuitive way of programming in Python. Due
to the excessive documentation of Python’s libraries, debugging the system and adjusting it
for the multiple datasets, was an easier task compared to the developing process of the Java
system. Finally, while using Keras and Tensorflow, we were able to choose from a wider variety
of functions and algorithms for our Deep Learning system, compared to the Deeplearning4j
system.

Comparing the performance of the two systems, we found that in many cases, the produced
models of the Python system needed less epochs to train on a dataset and attained better met-
rics’ performance when compared to the Java system. In section 5.3 we explicitly show the
differences in performance. These differences alongside the ease of development in Python,
urge us to drop the development of the Java system in favour of the Python one.

3.3.2. Using Hyper-parameter Optimization
As explained in section 3.1, we implemented a Random Search optimization algorithm in our
Deep Learning system. Through this search we were able to produce several different archi-
tectures per dataset and compare the models in order to choose the one with the best results.
In order to increase performance, we narrowed down the space each time, close to the model
with best results. This made the Random Search more efficient every time we re-iterated the
search for a dataset, as the hyper-parameter search was narrowed down to a local optimum.

Using this optimization technique, we significantly simplified the building process of neu-
ral networks. Through the Random Search we implemented, a possible user could set the
hyper-parameter ranges and could let the system run and produce multiple models. By the
end of the process, the system would produce scatter plots for each hyper-parameter along-
side the accuracy that was achieved by the model with the specific value at that specific hyper-
parameter. Understanding that the optimization problem is multivariate, shows that a graph
of a single hyper-parameter cannot lead to any meaningful insights. The clusters of models
per plot though, can show a general trend per hyper-parameter and an overview comparison
between the general trends in each plot can be extremely helpful. The researcher can find
the overall ranges which yield better results than others per hyper-parameter and also find a
hyper-parameter’s contribution to the model’s performance (e.g. were the performance results
saturated or did they concentrated on high values for a specific range).

Below we incorporated a general description of the algorithm, with the steps that were fol-
lowed during the optimization:

• Create a set of hyper-parameters for the Random Search

• Set hyper-parameter value ranges

• Leave the system generate models for n number of experiments on the target dataset

3.3. System Design 17

• The user interrupts the search or the system finishes a predetermined number of exper-
iments

• Generate plots of models’ performance per each hyper-parameter

• Identify trends on performance across the different hyper-parameters

• Narrow the search space by:

– Eliminating the hyper-parameters that have small influence in the network’s per-
formance

– Setting hyper-parameters’ ranges around the values of the best performed models

• Repeat process until the differences in results saturate

During the training of all networks, we used Early Stopping to further avoid overfitting by
monitoring the loss on the validation set [13]. Thus every training session is interrupted before
reaching high accuracy on the training datasets. To help the network increase its accuracy on
the validation set, we use a learning rate scheduler to decrease the learning rate depending on
the loss on the validation set. Finally, backpropagation was applied in all the models to help
optimizing the weights in the networks.

In the following table, we show the initial hyper-parameter ranges. In a later section we
show the final ranges as they were formulated after many applications of the Random Search

Table 3.1: Initial Hyper-parameter Ranges for Random Search Optimization

Hyper-Parameter Value Range Constraints

Convolutional Kernel kconv ∈ [2,50] -

Pooling Kernel kpool ∈ [2,50] kpool ≤ kconv

Stride s ∈ [1,10] in pooling layers, s = kpool −1

Number of Convolutional Layers l ayer sconv ∈ [1,8] -

Number of Pooling Layers l ayer spool ∈ [0,8] l ayer spool ≤ l ayer sconv

Number of Fully-Connected Layers l ayer s f c ∈ [0,4] -

Initial number of Activation Maps a ∈ [2,256]
follows geometric progression with ratio r = 2,

for the number of l ayer sconv

Initial number of Neurons n ∈ [64,2048]
follows geometric progression with ratio r = 2,

for the number of l ayer s f c

Convolutional Layer Dropout dr opconv ∈ [0,0.5] -

Fully-Connected Layer Dropout dr op f c ∈ [0,0.5] -

Learning Rate l ∈ [0.001,0.02] a learning rate scheduler was applied

Activation Function
ReLU, ELU, SELU,

LeakyReLU, PReLU
the same for all layers

except the last which uses Softmax

Optimization Algorithm
Adam, Adamax, NAdam, Adadelta,

Adagrad, SGD, RMSProp
-

18 3. Research Methodology

3.3.3. System Overview
The final system that was developed throughout this work, was able to automatically initialize
a Random Search and classification on a given dataset, as well as running the designed exper-
iments. The user’s input is limited on selecting the target dataset and whether they want to
run experiments or Random Search and classification. The system will then proceed to gen-
erate models accordingly and run the appropriate procedures. By automating the processes,
we wanted to achieve our methods and experiments to be the same across all scenarios, to en-
sure reproducibility in our experiments and the same conditions for all the models used in our
study.

In Figure 3.1, we present a flowchart of the main functionality and the order of the pro-
cesses in our system. The user starts by choosing the target dataset and then proceeds to select
whether they want to run the experimental setup or a Random Search on the target dataset.
The system then proceeds to run the processes for the chosen scenario and exports the results
accordingly.

In Figure 3.2, we show in more details, the Random Search and the Deep Learning pro-
cesses through a block diagram. It shows how the main methods interact in the system, along-
side the architectural blocks they belong to. More details on the models used in the study, can
be found in Section 4.3.

3.3. System Design 19

T
ra

in
in

g
T
e

s
ti
n

g
E

x
p

o
rt

re
s
u

lt
s

Ye
s

N
o

F
o
u
n
d

b
e

s
t
m

o
d

e
l

R
a

n
d

o
m

ly
 s

e
le

c
t

H
y
p

e
r-

P
a

ra
m

e
te

r

v
a

lu
e

s

G
e

n
e

ra
te

C
N

N
 m

o
d

e
l

P
re

p
a

re

d
a

ta
s
e

t

T
e

rm
in

a
te

N
o

Ye
s

F
in

is
h

e
d

e
x
p

e
ri
m

e
n

ts

Ye
s

N
o

R
u

n

E
x
p

e
ri
m

e
n

ts

S
ta

rt
C

h
o

o
s
e

d
a

ta
s
e

t

D
a

ta
 1

D
a

ta
 2

D
a

ta
 3

D
a

ta
 4

G
e

n
e

ra
te

 m
o

d
e

l
b

a
s
e

d

o
n

 p
re

d
e

te
rm

in
e

d
 s

e
t
o

f

H
y
p

e
r-

P
a

ra
m

e
te

r
v
a

lu
e

s

T
ra

in
in

g
T
e

s
ti
n

g
E

x
p

o
rt

re
s
u

lt
s

F
ig

u
re

3.
1:

D
ee

p
Le

ar
n

in
g

Sy
st

em
’s

Fl
ow

ch
ar

t

20 3. Research Methodology

F
igu

re
3.2:D

eep
Learn

in
g

System
’s

B
lo

ck
D

iagram

4
Experimental Setup

The experiments we conducted were in line with our research questions, as they were de-
scribed in the section 3.2. Following the topics we wanted to research in this study, we ran
multiple Random Searches to optimize our CNN models and we experimented with differ-
ent dataset sizes and types. We compared the results with our own implementation of a CNN
model from the related literature, alongside ML algorithms in order to benchmark our gener-
ated models. Finally, we conducted a set of experiments to value the influence of data topology
in this classification problem.

All these experiments gave us valuable insights on how CNNs perform on side-channel
data and how CNNs compare to ML techniques. In the following sections we break down the
design process of the experiments and we discuss their details. This chapter is essential for our
discussion on the results, which takes place in the next chapter.

4.1. Designing the Experiments
As explained in the section 3.2, the main focus of our research is to measure the performance
of CNN on multiple side-channel datasets. Thus, we used four main datasets in our work,
2 proprietary and 2 publicly available datasets. These datasets have different characteristics
and differ in their respective implementations. As we value the reproducibility of our exper-
iments, we conducted the main set of experiments on the public datasets. We used Random
Search optimization multiple times, optimizing each time the hyper-parameter search space
as discussed in section 3.3.2. Through the search, we created an optimal CNN for both pub-
lic datasets which, for ease of reference, we will call it SCANet (Side-Channel Attack Network)
for the rest of the study. The public datasets were split into subsets of different sizes, to study
our second research goal of identifying the influence of different dataset sizes on CNN classi-
fication. Once we collected the results of those experiments, we implemented the model from
[26] alongside several ML algorithms, in order to compare the performance of our optimized
model with other classification models. Finally, we conducting experiments on the whole set of
the proprietary datasets, using SCANet and the literature’s model. In order to identify if those
datasets needed a better CNN architecture, we ran a Random Search optimization on both
datasets and we compared the performance of the new optimized models with SCANet and
the literature’s model.

Working towards our last research goal, we conducted a set of experiments on the public
datasets. These experiments were used to give us an indication about the importance of the
signals’ sample topology on this classification problem. We randomly shuffled the samples of
each power consumption signal and we compared the classification results against the perfor-
mance on the original traces.

More specifically, the methodology of our experiments is presented below:

• We selected 4 datasets, two publicly available and two proprietary

• We used Random Search to find the most optimized model for the public datasets

21

22 4. Experimental Setup

• We split the public datasets on subsets of different dataset sizes

• The optimized CNN and the literature model were used to classify the datasets

• We implemented Machine Learning algorithms and compared the results with the mod-
els above

• We conducted classification with the optimized CNN and the literature model on the full
size of the proprietary datasets

• We used Random Search to find if a more optimized CNN architecture exists for the pro-
prietary datasets

• We compared performance of the optimized CNN model on the original and the ran-
domly shuffled samples of the public datasets

4.2. Datasets’ Structures
All the datasets used in our classification task, were time-series data. They represent power
consumption of a cryptographic device and their labels were generated based on a Hamming
weight model (as described in section 2.2.3).

The datasets used are the following:

• AES ARM32: An AES-128 dataset of power consumption, provided by Riscure B.V.

• AES FPGA: An AES-128 dataset of power consumption

• DPA contest v2: An open sourced AES-128 dataset of power consumption, provided by
VLSI research group in COMELEC, Télécom ParisTech University [45]

• DPA contest v4: An open sourced AES-128 dataset of power consumption, provided by
VLSI research group in COMELEC, Télécom ParisTech University [46]

As a first step, we visualized the clustering of the datasets using t-SNE clustering [25], so
we can have an insight on the data structures. In each of the following subsections, we in-
clude the clustering visualizations, alongside a more in depth discussion about each dataset’s
features. We applied minimal data pre-processing, which includes Normalization and Stan-
dardization of the power consumption traces for each dataset. Both techniques were applied
using the Scikit-Learn Python library [32] for the Python system while in the Java system we
only applied Normalization, using the framework’s functionalities. In the Python implementa-
tion, the traces had their magnitude standardized and then normalized using l2 normalization
[16]. We include graphs of how these techniques influenced the power traces for each dataset
accordingly. Lastly, all datasets were in CSV format.

4.2.1. AES ARM32
AES ARM32 is an AES-128 hardware implementation and it was the main dataset used during
the internship in Riscure BV. The dataset contains 10,000 traces of 1,000 samples each. It is a
simple side-channel dataset, where the target didn’t have any sophisticated countermeasure.

4.2.2. AES FPGA
This dataset is an AES-128 FPGA implementation. The leakage model is described below:

Y (k∗) = Cb1 ⊕k∗︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (4.1)

The total number of power consumption traces was 10,000 with 245 samples each.

4.3. Network Architectures 23

4.2.3. DPA contest v2
DPA contest v2, is one of the publicly available datasets. It is an AES-128 hardware imple-
mentation on an FPGA. The dataset has 100,000 traces with 3,253 samples each. Note these
measurements are relatively noisy and the resulting model-based signal-to-noise ratio

SN R = var (si g nal)

var (noi se)
= var (y(t ,k∗))

var (x − y(t ,k∗))
(4.2)

lies between 0.0069 and 0.0096.

Figure 4.1: DPA contest v2 data clustering

4.2.4. DPA contest v4
DPA contest v4, is a software implementation of a masked AES. The mask is known in this
dataset, thus making it equivalent to an unprotected scenario. The SNR here is much higher
and lies between 0.1188 and 5.8577.

Figure 4.2: DPA contest v4 data clustering

4.3. Network Architectures
Due to the nature of the research (explained in the section 3.2), we explored various different
architectures of CNN during the research. From our implementation of Random Search (more
details in the section 3.3.2), we found 3 in total optimized CNN architectures. One architecture

24 4. Experimental Setup

was optimized for the DPA contest v2 and v4 datasets, which we named SCANet for ease of
reference, and one architecture for each of the proprietary datasets.

SCANet is composed of 4 convolutional layers and 4 pooling layers in between, followed
by the classification layer. All convolutional layers use kernel size of 6 and stride 1 creating a
number of activation maps for each layer. The number of activation maps increases per layer,
following a geometric progression with initial value a = 16 and a ratio r = 2 (16, 32, 64, 128). The
number of activation maps was optimized for GPU training. For pooling we use Average Pool-
ing on the first pooling layer and Max Pooling on the rest, using kernel of size 4 and stride 1. The
convolutional layers used "Scaled Exponential Linear Unit" (SELU) activation function, an ac-
tivation function which induces self-normalizing properties and it was first introduced by [19].
In the classification layer, we use Softmax activation function combined with the Categorical
Cross Entropy loss function. Finally, for regularization we use dropout on convolutional and
fully connected layers while on the classification layer we use an activity l2 regularizer. These
regularization techniques help to avoid overfitting on the training set, which in turn help lower
the bias of the model.

Figure 4.3: SCANet architecture

SCANet is being tested on the other datasets as well for comparison reasons. Other net-
works that were used in our work are: our own adaptation of the CNN used in [26] (for ease of
reference we call it SPACE) and an optimized network for each proprietary dataset. As men-
tioned before, SCANet is the optimized network for DPA contest v2 and DPA contest v4, thus
we don’t compare results with another optimized network on those datasets.

Recapping, we compare results of the following architectures:

• SCANet

• SPACE

• "Optimal CNN" (wherever applicable)

Table 4.1: SCANet architecture.

Layer Weight Shape Sub-Sampling Activation

conv(1) 1 x 16 x 6 2 SELU
average-pool(1) - (4), 3 -

conv(2) 1 x 32 x 6 2 SELU
max-pool(2) - (4), 3 -

conv(3) 1 x 64 x 6 2 SELU
max-pool(3) - (4), 3 -

conv(4) 1 x 128 x 6 2 SELU
max-pool(4) - (4), 3 -

fc-output 384 x 9 - Softmax

4.4. Detailed Overview of the Experiments 25

Table 4.2: SPACE architecture.

Layer Weight Shape Sub-Sampling Activation

conv(1) 1 x 8 x 16 1 ReLU
average-pool(1) - (2), 1 -

conv(2) 1 x 8 x 8 1 tanh
fc-output 384 x 9 - Softmax

Table 4.3: Riscure AES Optimized architecture.

Layer Weight Shape Sub-Sampling Activation

conv(1) 1 x 8 x 4 1 ELU
average-pool(1) - (4), 3 -

conv(2) 1 x 16 x 4 1 ELU
average-pool(1) - (4), 3 -

fc 1 x 256 - tanh
fc-output 256 x 9 - Softmax

Table 4.4: Proprietary AES Optimized architecture.

Layer Weight Shape Sub-Sampling Activation

conv(1) 1 x 8 x 7 1 ELU
average-pool(1) - (4), 3 -

conv(2) 1 x 16 x 7 1 ELU
fc 1 x 256 - tanh

fc-output 256 x 9 - Softmax

4.4. Detailed Overview of the Experiments
The experiments were conducted in two main parts: one during an internship in Riscure B.V.
and one during the period after. During the internship, the experiments were based on the
company’s needs and they are not following much the experimental methodology of the rest
of the study.

On the public datasets of DPA contest v2 and v4, we performed the main body of our ex-
periments. We split the datasets into subsets of different sizes and through Random Search
(as explained in section 3.3.2) we produced an optimized CNN model, the aforementioned,
SCANet. We then compared its results with the performance of our implementation of SPACE
architecture. Following our experimental design described in section 4.1, we also classified
these datasets using Machine Learning algorithms. For this specific classification though, we
performed Pearson’s Correlation Coefficient on the data in order to reduce their dimensional-
ity, as the feature space would be vast for the ML algorithms otherwise. In the end, we com-
pared the performance of SCANet and those ML algorithms on classifying the 50 most relevant
features per power trace on the DPA contest v2 and v4 datasets.

On the same datasets, we finally performed experiments to study the importance of sam-
ples’ topology of the power consumption traces. We randomly shuffled the samples of each
signal of the DPA contest v2 and v4 datasets, while keeping intact the association between the
traces and their labels. These experiments were inspired by the fact that the importance of the
samples’ topology is not that intuitive in side channel data, as it might be in audio or image
data. This made us question the importance of the samples’ topology on our datasets; if the
topology mattered, then obviously techniques such as CNN, would be superior to others who
don’t retain the samples’ topology. In the case though that the classification results did not dif-
fer much, then it would be an indicator that samples’ topology might not be that important. It
is a simple set of experiments that while by themselves, cannot prove our research goal, they
can nevertheless act as an indicator for future research on the topic.

The split we performed on the DPA contest v2 and v4, followed the subset pattern bellow:

26 4. Experimental Setup

1. Subset 1: 1,000 traces

2. Subset 2: 10,000 traces

3. Subset 3: 50,000 traces

4. Subset 4: 100,000 traces

beginning from the first trace to the full size of the dataset’s size category.
Continuing our study on the rest of the datasets, we conducted experiments on the two

available proprietary datasets. Regarding the AES ARM32 dataset, we showcase two different
sets of experiments. The first set is the performance achieved by an optimized CNN model,
using the Deeplearning4j framework. We then showcase the performance results of SCANet,
SPACE and an optimized CNN we produced after running Random Search optimization with
the Python system. This demonstrates the differences in performance achieved between the
two frameworks and provides a further insight into the classification capabilities of different
CNN architectures on different datasets.

For the AES FPGA dataset, we followed the same methodology we applied with the AES
ARM32. The main difference is that all experiments we performed using the Python frame-
work. In this case, we ran a Random Search for the dataset and compared the results of the
optimized model with the performance of SCANet and SPACE architectures.

Finally, following the Machine Learning practices, after shuffling the traces per dataset, we
split each of them into Training, Validation and Testing sets. In our experiments, we chose to
use ratios of 0.65, 0.2 and 0.15 respectively.

All these experiments, give us an intuition on how the same CNN architectures perform dif-
ferently in each side channel dataset. Thus we can study the architectural differences of those
models and identify common elements, if any exist. Furthermore, they enable us to examine
if we actually benefit from using complex classification models such as CNNs, when simpler
and less computationally expensive ML techniques exist. Finally, through the random sample
shuffling, we learn more about the characteristics of the side channel datasets, by studying the
importance of their samples’ topology. We believe that through these experiments we overall
gain some important insights on CNN classification capabilities on side channel data, while
simultaneously learning more about the very nature of the data we try to classify.

To summarize the types of experiments, we have the following list which references the
experiments’ steps, based on the dataset used:

• DPA contest v2 and v4:

– Performed Random Search using Keras/Tensorflow and produced SCANet

– Split the datasets into different size subsets

– Compared classification results of SCANet with SPACE and ML algorithms

– Shuffled the samples per power trace and compared the new performance of SCANet
with the performance on the original signals

• AES ARM32:

– Performed Random Search using Deeplearning4j and produced an optimized ar-
chitecture

– Performed Random Search using Keras/Tensorflow and produced an optimized ar-
chitecture

– Compared results between the optimized architectures of the two frameworks

– Compared results between the Keras/Tensorflow optimized architecture with SCANet
and SPACE

• AES FPGA:

– Performed Random Search using Keras/Tensorflow and produced an optimized ar-
chitecture

– Compared results between the Keras/Tensorflow optimized architecture with SCANet
and SPACE

5
Results

In this section we go through the results of our experiments. The experiments were designed in
regards to our research goals as discussed in the previous chapter 4. We first show the results
on the public datasets, DPA contest v2 and v4. These experiments were the primary set of
experiments that bear the most insights on CNNs’ performance on side-channel data. Also, as
they are publicly available, these experiments can be reproduced and researchers can compare
their results with ours.

We showcase the results, following the categories in the section 4.4. For the public datasets,
we show a performance comparison between our optimized CNN (SCANet) and the literature
architecture (SPACE), in each size subset of the datasets. We proceed to present the results of
ML algorithms compared to SCANet and we finally show the performance of SCANet on the
original power consumption signals in contrast to the random sample shuffling.

We then proceed on the proprietary datasets where we first present the results on AES
ARM32. After showing a performance comparison between the different frameworks, we present
the results of SCANet, SPACE and an optimized CNN that we found when we applied Random
Search on AES ARM32. Following the same methodology, we showcase a performance com-
parison of SCANet, SPACE and the corresponding optimized CNN for AES FPGA.

The main metrics we chose to use in order to measure the classification performance, are:
accuracy and loss. It was found that the accuracy performance results, didn’t differ significantly
from recall, precision or f1 score. When a model would achieve high accuracy, the rest of those
metrics were also satisfyingly good.

5.1. Results on DPA contest v2
The DPA contest v2 dataset (DPA v2), was one of the most difficult to classify. Our optimized
network, SCANet, couldn’t achieve better results than what appears to be random classifica-
tion. As explained in section 4.2, one of the reasons the classification was hindered, was the
high overlap between the traces of different classes. The data didn’t seem to be easily distin-
guishable by the CNNs, as even though we run Random Search for DPA v2, none of the gener-
ated models had better performance than SCANet. Thus, regardless of SCANet being optimized
for DPA contest v4, we used it as our proposed model, to classify and compare the results on
DPA v2.

5.1.1. Comparison between CNN Architectures
A first sight on the results of Table 5.1, shows that both SCANet and SPACE achieve near random
performance (for a 9 class problem). When going through the individual graphs of Accuracy
and Loss though, we can get more insights on the networks’ behaviour. Overall, SPACE seems
to achieve better performance during training than SCANet in this dataset.

27

28 5. Results

Table 5.1: Testing results, DPA contest v2

Dataset SCANet SPACE

1,000 0.253 0.253
10,000 0.275 0.277
50,000 0.244 0.262
100,000 0.271 0.237

On 1,000 traces
Beginning with 1,000 traces, both CNNs achieve the same accuracy score in the test set. The
main difference between the two models becomes more apparent in the graphs of training
accuracy (Figure 5.1) and loss (Figure 5.2). SCANet exhibits a random behavior while training,
where the score in the validation set seems to achieve a random score and remain unchanged
during the whole training process.

SPACE’s graphs on the other hand, show that, even though the final score of the model is not
good, it achieves better training throughout the epochs. Accuracy and loss seem to gradually
increase throughout training for SPACE but still, the model achieves bad results in the test set.
The most possible explanation for this behaviour, could be the low amount of data and the
fact that SPACE model is a rather shallow network. Thus, due to the high class overlap in DPA
contest v2, SPACE seems to be learning the noise of the data, rather useful patterns that would
increase its performance.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.1: Models’ accuracy in DPA contest v2, 1k scenario

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.2: Models’ loss in DPA contest v2, 1k scenario

5.1. Results on DPA contest v2 29

On 10,000 traces
On the subset of 10,000 traces, we observe the same that SPACE is more capable to classify the
data, compared to SCANet (see Figures 5.3 and 5.4). Although SCANet’s learning behaviour
seems more erratic, SPACE is still not capable to achieve good overall classification results. We
see that the training and validation accuracy curves of SPACE are smoother than in the 1,000
traces’ case, which can be attributed to the 10 times more available data for the classification.

With more traces, the model is capable to find relevant features more easily, but due to the
difficulty of this dataset, the scores are still low, achieving high loss values. Even though the
performance scores are higher than before, the SCANet appears to be even more inconsistent.
This can be ascribed on the high class overlap and the still low availability of data. As SCANet is
more complicated as a model compared to SPACE, with so little data it is not capable to learn
from the data and distinguish the relevant features from noise.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.3: Models’ accuracy in DPA contest v2, 10k scenario

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.4: Models’ loss in DPA contest v2, 10k scenario

On 50,000 traces
In Figures 5.5 and 5.6, we observe that the SPACE’s performance difference between the train-
ing set and validation set is higher than in the previous scenarios. The graph on validation set,
never approaches the performance on the training set, increasing the difference through the
epochs. This change is natural if we think that SPACE is a low complexity model. With more
traces available, the noise in the data and the class overlap become more pronounced, leading
the SPACE model on a decreased performance as it overfits on the noise of the training set,
rather being capable to generalize on new data.

30 5. Results

Although SCANet’s accuracy performance is still random, a quick view on the loss graph
shows that SCANet is less prone to errors and achieves lower loss than SPACE. Regardless
though of its lower loss during training, SCANet fails to achieve better accuracy on the given
data. The reason of this, becomes more obvious in the next scenario of 100,000 traces.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.5: Models’ accuracy in DPA contest v2, 50k scenario

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.6: Models’ loss in DPA contest v2, 50k scenario

On 100,000 traces
In this scenario, we see a clear different behavior of SCANet, achieving a far better performance
compared to SPACE and compared to previous scenarios. The Figures 5.7 and 5.8, show a con-
stant decline of loss for the SCANet model and a clear increase in accuracy after the 40th epoch.
Due to SCANet’s higher complexity compared to SPACE, in this scenario where more traces
were available, the model is more capable generalizing the learned features from the training
set thus increasing its performance. The higher accuracy score on the test set, shows also that
the learned features are relevant to the particular characteristics of this dataset’s traces. Even
though the score is lower than the scenario with the 10,000 traces (27,5% compared to 27,1%
in this case), we can deduct more useful insights in the model’s performance as the behavior is
less random, with a lower loss throughout the training.

In the case of the SPACE model, we see that once we were increasing the amount of the
input data, the model became more and more prone to error and low accuracy performance.
The model loses its capability to generalize the learned features in the training set and this
problem amplifies in this scenario. As a simpler architecture, SPACE seems to overfit on the
training set, meaning that it fails to model the class overlap and the data noise. This makes

5.1. Results on DPA contest v2 31

it unable to learn appropriate features that could be found in newly introduced traces of the
dataset. Due to the larger amount of data in this scenario, SPACE is "learning" the noise of the
training data, making it to recognize features that are not (or less) present in the validation and
test sets.

We hypothesize, based on the SCANet’s increased performance in this scenario, that by in-
troducing more traces, SCANet could achieve a higher performance, as it would have sufficient
input data to learn features that characterize this dataset.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.7: Models’ accuracy in DPA contest v2, 100k scenario

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.8: Models’ loss in DPA contest v2, 100k scenario

5.1.2. Comparison between CNN and ML
In this comparison, we have to remind that as explained in section 4.2, each trace is made out
of 50 features, all calculated after applying Pearson Correlation Coefficient. Thus the amount
of noise was reduced, alongside the dimensionality of the data. SCANet’s performance did not
change much in this scenario, except the slight increase in performance on the 50,000 and
100,000 traces’ datasets. As shown by the random classifier 0 − RC N N , SCANet is unable to
meaningfully classify the data (the model classifies the data in the two most populated classes,
4 and 5).

SVM and LR achieve the greatest performance in this dataset. Their higher performance,
may still be perceived low though but this fact can be attributed on the high class overlap, class
imbalance and noise in the traces. Although surpassing SCANet’s classifying capabilities, both
SVM and LR fail to surpass in accuracy the random classifier 0−RML .

32 5. Results

As a final remark for DPA contest v2 dataset, we found that simple ML models or conven-
tional CNN architectures are not able to classify the data with high fidelity. The same type of
performance is found in ARM FPGA dataset as well, leading us to acknowledge the limitations
of such statistical models in this type of problems, with highly noisy and imbalanced datasets.

Table 5.2: Testing results, DPA contest v2, 50 features

Dataset 0−RML NB LR MLP SVM XGB 0−RC N N SCANet

1,000 0.308 0.131 0.308 0.271 0.308 0.267 0.253 0.253
10,000 0.282 0.067 0.282 0.269 0.282 0.277 0.275 0.275
50,000 0.274 0.116 0.274 0.271 0.274 0.273 0.267 0.267
100,000 0.274 0.108 0.273 0.273 0.274 0.273 0.273 0.273

5.1.3. Results on Random Sample Shuffling
As the DPA contest v2 dataset is a difficult target for SCANet, when we conducted the experi-
ment with the random sample shuffling, the results were not convincing. The network’s per-
formance is still seemingly random as shown in Figures 5.9 and 5.10. Thus we can’t conclude in
any meaningful insights through this experiment, other than that the performance remained
the same.

(a) Shuffled samples (b) Original signal

Figure 5.9: SCANet performance comparison in shuffled and original samples from DPA contest v2, 10k scenario

(a) Shuffled samples (b) Original signal

Figure 5.10: SCANet loss comparison in shuffled and original samples from DPA contest v2, 10k scenario

5.2. Results on DPA contest v4 33

5.2. Results on DPA contest v4
Looking at the data clustering of DPA contest v4 in Figure 4.2, we expected to have better clas-
sification results compared to DPA contest v2 dataset. Indeed the results were far better with
SCANet achieving high accuracy performance and outperforming (in cases, significantly) other
classification models. The results in this dataset were encouraging on the use of CNN for clas-
sifying Side-Channel data, making more prominent the fact that datasets such as the v2 version
of the contest, can significantly hinder the performance of CNNs.

5.2.1. Comparison between CNN Architectures
As shown in Figure 5.3, SCANet outperforms the suggested SPACE model. This was to be ex-
pected as SCANet was the product of Random Search optimization on DPA contest v4 dataset,
leading to an architecture that was highly efficient on this dataset. There is a clear performance
difference in both networks, when we used 50,000 traces, compared the other scenarios. We
further look into the models’ performances in the coming sections, where we examine this
difference alongside the effects of each set size to the classification performance.

Table 5.3: Testing results, DPA contest v4

Dataset SCANet SPACE

1,000 0.720 0.573
10,000 0.947 0.927
50,000 0.993 0.984
100,000 0.988 0.977

On 1,000 traces
In the case of 1,000 traces, we can observe that both models start to overfit early in their training
process. The Figures 5.11 and 5.12 show that in both models, the curves of validation accuracy
and loss begin to deviate from the training ones in an early point, leading the models in a lower
performance on newly introduced traces. That can be attributed to the fact that the amount of
training data is low compared to the complexity that both models can represent. That increases
the variance of the model, as it identifies random noise fluctuations in the training data, as
significant features for classification, leading to poor results when those random fluctuations
are not present on new data (in validation and test sets).

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.11: Models’ accuracy in DPA contest v4, 1k scenario

34 5. Results

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.12: Models’ loss in DPA contest v4, 1k scenario

On 10,000 traces
The problems with overfitting seem to already not be apparent in SCANet, when using 10,000
traces. The model has a significant increase in accuracy compared to the previous scenario, as
the Figures 5.13 and 5.14 show. SPACE on the other hand, is still not as capable to attain high
performance, which can be attributed once more, on the combination of lacking enough data
and the lower complexity of SPACE compared to SCANet. As a model, SPACE is still "suffering"
of overfitting on the training set, with the difference of training and validation values to deviate
noticeably after a certain amount of epochs.

SPACE’s lower performance compared to SCANet though, does not change the fact that
both models, seemed to benefit from the increase of available data in this scenario. Both of the
models achieved accuracy higher of 90% and loss lower than 0.7. This can be perceived as an
indicator already, that this dataset is far easier to classify compared to DPA contest v2.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.13: Models’ accuracy in DPA contest v4, 10k scenario

5.2. Results on DPA contest v4 35

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.14: Models’ loss in DPA contest v4, 10k scenario

On 50,000 traces
In this scenario, SCANet achieves the highest performance results. With an accuracy of 99,8%
on the test set, SCANet achieves the highest accuracy of all the classification models we used in
this dataset. In Figures 5.15 and 5.16, we can see that the model has low difference between the
performance on the training and validation set, with the training process halting only because
of our training criteria of stoping the training after no significant drop in the model’s loss.

SPACE achieves comparable performance but with a higher difference between the perfor-
mance in the training and validation set, compared to SCANet. This indicates that SPACE is
slightly overfitting on the given data, not being able to further generalize as well as SCANet.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.15: Models’ accuracy in DPA contest v4, 50k scenario

36 5. Results

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.16: Models’ loss in DPA contest v4, 50k scenario

On 100,000 traces
In the 100,000 traces scenario, the results on the test set and the Figures 5.17 and 5.18 show that
both CNNs interestingly, don’t benefit much from the more provided data. We can observe that
SCANet minimizes the performance gap between training and validation set but this doesn’t re-
flect on the test set performance. This could be attributed on the fact that we introduced more
data to the model, thus increasing the size of training set, making the model more sensitive on
random fluctuations of the DPA contest v4 dataset. The performance difference on the test set
though is 0.5%, making it too small to derive more a concrete indication on whether more data
actually hindered SCANet’s performance.

We see that SPACE on the other hand, is not affected much in the training process by pro-
viding more data. Regardless of this observation, SPACE’s performance on the test set is still
lower compared to the previous score, although by a small margin (0.7%). Both models seem
to benefit the most in the 50,000 traces scenario, but don’t show clear losses in this scenario
that could help to further examine the effects of doubling the data in this scenario.

(a) SCANet’s Performance (b) SPACE Performance

Figure 5.17: Models’ accuracy in DPA contest v4, 100k scenario

5.2. Results on DPA contest v4 37

(a) SCANet’s Loss (b) SPACE Loss

Figure 5.18: Models’ loss in DPA contest v4, 100k scenario

5.2.2. Comparison between CNN and ML
By lowering the samples per trace, we can observe that SCANet was heavily hindered. It fails
to achieve previous performances and it is not able to reach 90% accuracy. This is a clear in-
dication that the model’s architecture was optimized on the whole number of traces, finding
relevant features which possibly are not prominent on the 50 features that were extracted after
Pearson correlation coefficient.

Simpler classification models manage to achieve better accuracy performance (MLP, SVM
and XGB surpass SCANet). SVM performs the best yet again, showing that Side-Channel data,
after a certain data pre-processing, can be sufficiently classified for the purposes of our prob-
lem.

Table 5.4: Testing results, DPA contest v4, 50 features

Dataset 0−RML NB LR MLP SVM XGB 0−RC N N SCANet

1,000 0.297 0.639 0.477 0.834 0.823 0.725 0.267 0.693
10,000 0.272 0.669 0.557 0.867 0.924 0.886 0.268 0.811
50,000 0.275 0.654 0.601 0.866 0.955 0.913 0.273 0.851
100,000 0.274 0.662 0.607 0.866 0.960 0.916 0.269 0.845

5.2.3. Results on Random Sample Shuffling
In DPA contest v4, we have meaningful results that can help examining our hypothesis. SCANet
performance appears to not be hindered by the random sample shuffling and in this case it
even achieves better accuracy. We believe that the increase in accuracy isn’t an indication that
randomly shuffling the traces’ samples will result in better results, as it is only one case which
was not further studied as it was out of our research goals.

The fact though, that SCANet’s performance wasn’t affected negatively in both datasets (v2
and v4), is a good indicator that the sample topology of Side-Channel traces, is not a big factor
in the CNN classification process. This could be used as an encouragement to future research
on the topic, to explore other types of neural networks that don’t necessarily retain the input’s
topology [34].

Table 5.5: SCANet testing results, DPA contest v4, Random shuffling

Dataset Random
Shuffling

Original
Signal

10,000 0.966 0.947

38 5. Results

(a) Shuffled samples (b) Original signal

Figure 5.19: SCANet performance comparison in shuffled and original samples from DPA contest v4, 10k scenario

(a) Shuffled samples (b) Original signal

Figure 5.20: SCANet loss comparison in shuffled and original samples from DPA contest v4, 10k scenario

5.3. Results on AES ARM32
As mentioned in chapter 4.2.1, we conducted a separate set of experiments for the AES ARM32
dataset. As this dataset was used during an internship with Riscure B.V., we classified the data
with an optimized model using the Java implementation (Deeplearning4j framework), an op-
timized network using the Python 3 implementation (Keras/Tensorflow backend) and SCANet.
Through this set of experiments, we determined differences in frameworks’ capabilities as well
as the type of architecture that could classify the data with the highest possible accuracy.

5.3.1. Comparison between CNN Architectures
In the Table 5.6, we see that the performance of the three models, differ a lot compared to each
other. The optimized model using the Deeplearning4j (DL4J) framework, achieved the low-
est performance, while the optimized model using the Python implementation, achieves the
highest. Even though SCANet’s performance is not that high, it achieves a better than random
performance, higher than the DL4J model.

Table 5.6: Testing results, AES ARM32

Dataset
(10,000)

DL4J
(Opt-model)

Keras
(SCANet)

Keras
(Opt-model)

1st keybyte 0.325 0.501 0.902

5.3. Results on AES ARM32 39

We can only speculate for the low performance of the DL4J model. The implemented sys-
tem was the same between Java and Python, where the Random Search optimization was im-
plemented the same way. As mentioned though in the subsection 3.3.1, during implementing
our system, the DL4J framework was still in a pre-1.0 version. This means that the framework
was still in development and its implementation was still not stable.

Looking into the Figures 5.21 and 5.22, we can see that the DL4J model needed much longer
time to train, with the first ∼ 150 epochs being abnormal. The model exhibits a very erratic
training behavior regarding its accuracy performance during those epochs. Its loss also is not
decreasing significantly during that period. The reasons for this kind of performance are un-
known and since is wasn’t present in the other models, we speculate that it was a kind of the
framework’s deficiency.

Figure 5.21: Model’s performance in AES ARM32, DeepLearning4j

Figure 5.22: Model’s loss in AES ARM32, DeepLearning4j

40 5. Results

As we can observe in the Figures 5.23 and 5.24, the Keras/Tensorflow CNNs achieve far bet-
ter performance compared to the Java CNN. The abnormalities found in the previous model’s
first epochs, are not apparent in these models and the training took much less time (30 to 40
compared to over 500 epochs). SCANet appears to overfit more compared to the optimized
CNN, which is apparent on its test set accuracy (50.1%). The optimized CNN achieves far bet-
ter results compared to the other models. It exhibits litte overfitting and it achieves low loss
and high accuracy.

(a) SCANet’s Performance (b) Opt-model Performance

Figure 5.23: Models’ accuracy in AES ARM32, Keras/Tensorflow

(a) SCANet’s Loss (b) Opt-model Loss

Figure 5.24: Models’ loss in AES ARM32, Keras/Tensorflow

The AES ARM32 dataset was a relatively easy Side-Channel target. That being said, the low
performance of the DL4J framework compared to the combination of Keras/Tensorflow, shows
that Deeplearning4j was not yet ready for reliable experiments. The training time was much
longer and the classification results (even after Random Search optimization) were really low
compared to the Keras/Tensorflow CNNs. As it was the first framework where we ran experi-
ments (during the internship in Riscure B.V.), once the Python implementation was ready and
we witnessed the difference in the results, we switched our focus on Keras/Tensorflow which
were used for the main work of this study.

5.4. Results on AES FPGA
The AES FPGA dataset, was a rather difficult target for classification. Even after Random Search
optimization, the optimized model barely achieved better accuracy than SCANet or SPACE.
The results resemble a lot the results found in DPA contest v2. That could be attributed on the

5.4. Results on AES FPGA 41

fact that both datasets share some common implementation characteristics.

5.4.1. Comparison between CNN Architectures
None of the models were able to achieve high classification performance in this dataset (Ta-
ble 5.7). SCANet and the optimized model achieved almost the same accuracy, but there is a
clear difference in the learning process between the two models. The optimized model had a
less random behavior compared to SCANet, which showed an erratic accuracy and loss perfor-
mance (see Figures 5.25 and 5.26). SCANet’s results could be perceived as totally random due
to the non-stable learning performance.

SPACE model is obvious that overfits on the training set, since the training and validation
performance gaps are too wide. This could again be attributed on the model’s simpler architec-
ture, which makes it highly sensitive in random fluctuations and unable to generalize outside
the input training data.

Table 5.7: Testing results, AES FPGA

Dataset SCANet SPACE Opt-
model

10,000 0.261 0.244 0.265

(a) SCANet’s Performance (b) SPACE Performance

(c) Opt-model Performance

Figure 5.25: Models’ accuracy in AES FPGA, 10k scenario

42 5. Results

(a) SCANet’s Loss (b) SPACE Loss

(c) Opt-model Loss

Figure 5.26: Models’ loss in AES FPGA, 10k scenario

5.5. Final Hyper-parameter Ranges
For each of the datasets, we used Random Search optimization before conducting each of the
experiments. Once our experiments had finished, we finalized a range of values for each hyper-
parameter we used in the search. We found that the search space could be narrowed from the
initial ranges (see Table 3.1) into a search space that could yield optimized models for all the
target datasets. The new value ranges of the hyper-parameters can be found in the Table 5.8.

5.5. Final Hyper-parameter Ranges 43

Table 5.8: Final Hyper-parameter Ranges for Random Search Optimization

Hyper-Parameter Value Range Constraints

Convolutional Kernel kconv ∈ [3,8] -

Pooling Kernel kpool ∈ [3,4] kpool ≤ kconv

Stride s ∈ [1,3] in pooling layers, s = kpool −1

Number of Convolutional Layers l ayer sconv ∈ [2,4] -

Number of Pooling Layers l ayer spool ∈ [1,3] l ayer spool ≤ l ayer sconv

Number of Fully-Connected Layers l ayer s f c ∈ [0,2] -

Initial number of Activation Maps a ∈ [8,16]
follows geometric progression with ratio r = 2,

for the number of l ayer sconv

Initial number of Neurons n ∈ [256,512]
follows geometric progression with ratio r = 2,

for the number of l ayer s f c

Convolutional Layer Dropout dr opconv ∈ [0.05,0.08] -

Fully-Connected Layer Dropout dr op f c ∈ [0.10,0.13] -

Learning Rate l ∈ [0.001,0.009] a learning rate scheduler was applied

Activation Function
ReLU, ELU, SELU,

LeakyReLU, PReLU
the same for all layers

except the last which uses Softmax

Optimization Algorithm
Adam, Adamax, NAdam, Adadelta,

Adagrad, SGD, RMSProp
-

6
Conclusion and Discussion

Side-Channel Attacks oppose a real threat for the security of our computing systems in our
everyday lives. With smartcards and micro-controllers being the primary targets, the attackers
have the potential to decipher encrypted transaction data, commit identity theft and other
types of malicious attacks. Through this study, we examined how SCAs can be performed and
how Deep Learning could potentially enhance them. By surveying the available literature, we
found two available works [6, 26] on the topic, where Convolutional Neural Networks were
introduced as an obvious candidate for such types of attacks. Being such a novel topic though,
we questioned CNNs’ capabilities and in order to further study their performance, we applied
them in four different datasets.

6.1. Overview of CNN-based Side-Channel Attacks
Through our experiments, we wanted to cover a variety of classification scenarios in order to
study CNNs’ performance on side-channel data. By splitting each dataset into sets of different
sizes, we could examine how the amount of data influences the classification process. Along-
side the application of various Machine Learning algorithms, we observed how CNNs com-
pare to conventional ML techniques leading to a more objective view of CNNs efficiency in
Side-Channel Attacks.

Due to the nature of side-channel data, the datasets suffer from high class imbalance, mak-
ing the classification process even more difficult. In all of our classification scenarios using
CNNs, we used the raw power usage traces of the targets, without applying any pre-process
that would change the type of input representations. That ensured that we study CNN perfor-
mance, without using techniques that could potentially enhance their classification capabili-
ties.

We found that CNNs are a formidable type of SCA, for certain types of targets. In the cases
where noise was relatively low and the data could be clustered more easily, CNNs excelled by
achieving high accuracy and outperforming other Machine Learning techniques. That was
not always the case though; in specific datasets such as DPA contest v2, simple ML models
(e.g. SVM) outperformed CNNs, showing that further research is needed to find the proper
classification technique for different types of targets.

By studying the experimental outcomes and comparing them with the available literature,
we believe that there is a big research potential on other types of Deep Learning and Machine
Learning algorithms. The field is relatively new to have definitive answers on the best classifi-
cation technique, leaving room for experimentation.

6.2. Recommendations on Future Work
As explained in section 4.2, the only publicly available datasets at the time of study, were from
the DPA contest. DPA contest has in total 4 dataset versions, with the latest one still having
an open challenge since July 9, 2013 [46]. When studying the classification models and pos-
sible use cases, the lack of publicly available datasets can hinder the research potential. As

44

6.2. Recommendations on Future Work 45

such, we believe that people in the field should contribute on open data for Side-Channel At-
tacks, to help the research continue. By using proprietary datasets, the experimental results of
new studies cannot be reproduced, leaving the outcomes disputable and scientifically ques-
tionable. Following the same paradigm, we would encourage future researchers, to make their
classification models more available, to further support reproducibility and fair comparisons.

Through this study, we found that CNNs are not the best option for every classification sce-
nario with side-channel data. Further experiments with the topology of the traces, indicated
that the order of samples in the time domain, is not strongly correlated to the characteristics of
each trace. By randomly shuffling the samples of each trace, we questioned the importance of
keeping their topology intact (a prime characteristic of CNNs) thus leaving an open research
question. We believe that through our study, we showed that future research should study
other types of ANN and ML models and compare their results with CNNs as a benchmark.
This would lead in more concrete correlations between types of SCA targets and classification
models, thus helping establishing the field.

Data pre-processing is a part of the classification process that we didn’t explore in this work.
Using normalization and standardization on the power traces was the minimum pre-process
that could be used, without changing the input representation. Common signal processing
techniques such as Fast Fourier Transform (FFT) and Short-Time Fourier Transform (STFT),
which are being used in other similar classification problems, could be explored in later re-
search. Also, techniques such as data augmentation have already been shown to improve the
classification [6].

Finally, there are many optimization algorithms that are being used in the Machine Learn-
ing. In our study we used Random Search which is a simple optimization algorithm but yields
much better results than Grid Search or Manual tuning. The research on optimization algo-
rithms is rich and implementations of more complex techniques such as Bayesian Optimiza-
tion [40], Reinforcement Learning [42] and Genetic Algorithms [3], show great advantages. We
believe that by exploring these techniques in a future work, the field could benefit greatly by
generating even better classification models than the existing ones.

As a final note, we believe that Deep Learning could potentially enrich Side-Channel At-
tacks. Simple and conventional implementations of Convolutional Neural Networks, as the
ones in our study, can already perform in a high classification standard. As deeper and more
complex networks have been shown to solve hard classification problems [38], we believe that
research should examine integrating Deep Learning into the Side-Channel Analysis field, to
harness its potential. Not all the use cases are good targets for DL-based Side-Channel At-
tacks though and researchers should avoid using them as a default approach. As we found in
this study, in certain cases, simple Machine Learning algorithms can already outperform the
CNN implementations. Thus, we believe future research should focus on identifying scenarios
where we truly benefit by the use of Deep Learning.

Bibliography

[1] Fully Connected Neural Network. https://math.stackexchange.com/questions/
2048722/a-name-for-layered-directed-graph-as-in-a-fully-connected-neural-network,
2017. [Online; last accessed 19-March-2018].

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

[3] Christine M Anderson-Cook. Practical genetic algorithms, 2005.

[4] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in neural information processing systems, pages
2546–2554, 2011.

[6] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural networks
with data augmentation against jitter-based countermeasures. In International Confer-
ence on Cryptographic Hardware and Embedded Systems, pages 45–68. Springer, 2017.

[7] Chabacano. Overfitting. https://commons.wikimedia.org/wiki/File:
Overfitting.svg, 2008. [Online; last accessed 19-March-2018].

[8] François Chollet et al. Keras. https://github.com/keras-team/keras, 2015.

[9] Chrislb. Artificial Neuron Model. https://commons.wikimedia.org/wiki/File:
ArtificialNeuronModel_english.png, 2015. [Online; last accessed 19-March-2018].

[10] M Bishop Christopher. PATTERN RECOGNITION AND MACHINE LEARNING. Springer-
Verlag New York, 2016.

[11] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[12] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.

[13] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Hagan. Neural network
design. Martin Hagan, 2014.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[16] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 1990.

46

https://math.stackexchange.com/questions/2048722/a-name-for-layered-directed-graph-as-in-a-fully-connected-neural-network
https://math.stackexchange.com/questions/2048722/a-name-for-layered-directed-graph-as-in-a-fully-connected-neural-network
https://www.tensorflow.org/
https://www.tensorflow.org/
https://commons.wikimedia.org/wiki/File:Overfitting.svg
https://commons.wikimedia.org/wiki/File:Overfitting.svg
https://github.com/keras-team/keras
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

Bibliography 47

[17] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154,
1962.

[18] David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture of mon-
key striate cortex. The Journal of physiology, 195(1):215–243, 1968.

[19] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. arXiv preprint arXiv:1706.02515, 2017.

[20] Paul Kocher, Daniel Genkin, Daniel Gruss, Mike Haas, Werner an d Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Sc hwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. ArXiv e-prints, January 2018.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[22] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[23] Moritz Lipp, Michael Schwarz, Daniel Gruss, Tho mas Prescher, Werner Haas, Stefan Man-
gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. ArXiv
e-prints, January 2018.

[24] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neu-
ral network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[25] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[26] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic
implementations using deep learning techniques. In International Conference on Security,
Privacy, and Applied Cryptography Engineering, pages 3–26. Springer, 2016.

[27] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[28] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[29] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807–814, 2010.

[30] Michael Nielsen. Neural Networks and Deep Learning. http://
neuralnetworksanddeeplearning.com, 2017. [Online; last accessed 19-March-2018].

[31] PaddlePaddle. LeNet. http://www.paddlepaddle.org/docs/develop/book/02.
recognize_digits/index.html, 2017. [Online; last accessed 19-March-2018].

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12:2825–2830, 2011.

[33] Mark Pellegrini. Differential Power Analysis.

[34] Stjepan Picek, Ioannis Petros Samiotis, Annelie Heuser, Jaehun Kim, Shivam Bhasin, and
Axel Legay. On the performance of deep learning for side-channel analysis. Cryptology
ePrint Archive, Report 2018/004, 2018. https://eprint.iacr.org/2018/004.

[35] Raúl Rojas. Neural networks: a systematic introduction. Springer Science & Business Me-
dia, 2013.

http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
http://www.paddlepaddle.org/docs/develop/book/02.recognize_digits/index.html
http://www.paddlepaddle.org/docs/develop/book/02.recognize_digits/index.html
https://eprint.iacr.org/2018/004

48 Bibliography

[36] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and or-
ganization in the brain. Psychological review, 65(6):386, 1958.

[37] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533, 1986.

[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–
252, 2015.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[40] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[42] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convo-
lutions. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[44] Deeplearning4j Development Team. Deeplearning4j: Open-source distributed deep
learning for the jvm. URL http://deeplearning4j.org. Apache Software Foundation
License 2.0.

[45] TELECOM ParisTech SEN research group. DPA Contest (2nd edition), 2009–2010. http:
//www.DPAcontest.org/v2/.

[46] TELECOM ParisTech SEN research group. DPA Contest (4th edition), 2013–2014. http:
//www.DPAcontest.org/v4/.

[47] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron,
madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

http://deeplearning4j.org
http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/
http://www.DPAcontest.org/v4/

	Introduction
	Literature Review
	Deep Learning and Convolutional Neural Networks
	Historical Overview
	Basic Structural Elements of Artificial Neural Networks
	Convolutional Neural Networks

	Breaking Cryptographic Implementations Using Power Consumption Data
	Overview of Side-Channel Attacks
	Few notes on the AES
	Power Analysis Attacks

	Using Deep Learning for Side-Channel Attacks

	Research Methodology
	Approaching the Research Problem
	Research Goals
	System Design
	Implementation Details and Frameworks
	Using Hyper-parameter Optimization
	System Overview

	Experimental Setup
	Designing the Experiments
	Datasets' Structures
	AES ARM32
	AES FPGA
	DPA contest v2
	DPA contest v4

	Network Architectures
	Detailed Overview of the Experiments

	Results
	Results on DPA contest v2
	Comparison between CNN Architectures
	Comparison between CNN and ML
	Results on Random Sample Shuffling

	Results on DPA contest v4
	Comparison between CNN Architectures
	Comparison between CNN and ML
	Results on Random Sample Shuffling

	Results on AES ARM32
	Comparison between CNN Architectures

	Results on AES FPGA
	Comparison between CNN Architectures

	Final Hyper-parameter Ranges

	Conclusion and Discussion
	Overview of CNN-based Side-Channel Attacks
	Recommendations on Future Work

	Bibliography

