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1.  INTRODUCTION

Oscillatory turbulent shear flow is encountered in several im- Gz
portant physical phenomena. Flows like pulsating blood flow in
arteries and the flow past helicopter blades are of this type.

So is the bottom boundary layer beneath sea water waves. This
report is concerned with the latter phenomenon.

In the largest part of the water body the wave induced motion
can be treated as a potential flow. The orbital motion can be |
determined from first order or higher order wave theories.

Close to the bottom the no-slip condition will retard the
flow and cause a boundary layer to develop. In nature this boun-
dary layer will for most practical purposes be turbulent and the
bed will be rough. Usually the boundary layer is confined to a
thin layer close to the bed having a typical thickness of 0.2 m
under surface gravity waves. The turbulence intensity in this
rather thin layer can be very high and strongly unsteady.

The understanding of,the hydrodynamics of this flow is not
only of great academic/scientific interest, but it has also a
wide range of applications in practical engineering.

An inherent part of a wind wave generation or wave refraction
model is the description of wave attenuation caused by friction
and energy dissipation in the bottom layer. The bottom boundary
~layer may be even more important in sediment transport computa-
tions. A popular phrase is that ‘the sediment is suspended by
the wave and carried away by the currents’. Detailed knowledge
about the bed friction and eddy viscosity distribution is essen-
tial for the solution of this problem.

Over the years models of varying complexity and level have
been proposed. Simple models consider the flow in each half
period neglecting the memory in the turbulence. Assuming a
logarithmic velocity profile computationally efficient models
can be established using the integrated flow equation. One step
further is to solve the flow equation effecting turbulent clo-
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! sure through a prescribed constant or harmonically varying eddy
' viscosity. Next turbulence modelling is introduced to improve
the description of the turbulent processes.

These different approaches may have their individual Justifi-

cation in practical cases. Depending on the particular phenome-
; non that is under consideration the simplest and most efficient
method which gives the required information should be chosen.
Simpler models can be useful when they are included as parts of
complex models for e.g. sediment transport. For example it would |
-be a very computer intensive task to make a sediment transport
.model for the surf zone in which the flow description was ob-
i . tained using a second-order closure model. More advanced models
: are on the other hand needed to confirm in which cases simpler

models can be employed and to understand the basic structures in
the flow.

The object of this study is to investigate the use of turbu-
lence modelling in connection with the turbulent wave boundary
i layer. Two theoretical models are established and their results
are checked against available measurements. A third model is

constructed but not implemented so no results are thus being %
presented for this model. Finally, the effects of a refined flow
model in connection with sediment transport computations are
considered through a few examples.

All efforts in this paper are directed towards the pure wave
boundary layer. The important issue of combined wave-current
' "motion has not been treated.

Following this introduction the equations associated with
turbulent boundary layers are compiled in chapter 2. A review of
the existing methods in turbulence modelling is given and the
parameters in the turbulent wave boundary layer are defined.

Chapter 3 is a review of earlier works on oscillatory turbu-
lent boundary layer flow with the purpose of introducing the

reader briefly to the development of this specific topic.

In chapter 4 we discuss the zero-equation model BLOBAK which



is the first of the models compiled in this study. Chapter 5
contains a similar discussion of the one-equation model BL1PJ,
whereas chapter 6 is a description of the two—-equation model
BL2PJ which has not yet been implemented.

An example of application of the models developed in this
report to sediment transport is presented in chapter 7.

Whenever possible figures from the chapters 4 and § have
been enclosed in a larger format in Appendix G which also con- L
tains some additional diagrams that are not included in the '

report.,
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2. W _EQUATIONS AND TURBULENCE M

2.1 Introduction

In this chapter we look at the basis for calculation of
turbulent flows using turbulence models. First the flow equa-
tions are derived, then the existing models are described in an
ascending order with respect to the number of equations invol- (?
-ved. This review is not intended to be exhaustive, but should
provide the reader with a general introduction to the topic. In

" addition it constitutes the basis for this work on turbulence
models. Special attention has been paid to two-dimensional tur-
bulent shear boundary layers over a plane and rough bed.

The last section is devoted to the definition of the standard
set . of parameters and variables that we will use in this report.
2wl The flow equations ‘ (3‘

The general local flow equation, which should be fulfilled in
all points in a flow field is

| dv; _ D oy
s e L = pg *’a_x;' (2.1)

where o0,, is the stress tensor. 0y3 are the normal stresses,
~while the other elements are the shear stresses in the fluid.

The stress tensor is reflecting the dynamics in the flow and is
related to the deformation tensor e;s through the expression ;

O3 =—pd,, +2ue,, (2.2)

In eq. (2.2) p is pressure, 8:; is the Kronecker delta and u is
the dynamic viscosity. The relation expresses the physical

; ) requirements in the relation between stresses and deformations

‘ and is often called a constitutive equation. The deformation
tensor is a kinematic quantity and can be found from the veloci-
ty field as
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ell=(vlol+v«’v|)/2 (2o3)
When the equations above are combined the so-called Navier-
Stokes equations are obtained
’ 4

vy 19 DV,

SV o - oPp . 2 %

Jt e ox T T Y 3 ax; (2.4)

v is the kinematic viscosity.

The most important assumptions made in the derivation of
(2.4) are

(1) the fluid is homogeneous and isotropic

(ii) the fluid is incompressible

(iii) elements of the stress tensor and the deformation tensor
are related through linear relationships. A fluid with
this characteristic is often referred to as a ‘Newtonian
fluid’.

The equations (2.4) are valid for a laminar flow. If the flow

is turbulent, the velocities are separated into a mean part and
a fluctuating part

vy =U; +uy (2.5)
By definition, the time average of u, is zero
U, =0 : (2.6)

Substitution of (2.5) into the Navier-Stokes euntlons and sub-
sequently time averaging yields '

The term including the fluctuating velocity components is called
the "Reynolds stresses’. These stresses describe the exchange of
momentum between different parts of the fluid that are due to



‘was introduced by Boussinesq in 1877. The turbulent stresses are

ww o= SRS - € (g—% = ﬂJ-J) (2.9)

..--q--------IIlllllllllllllllIlIllIIlIlIllllllll...liiiiiiiiiiﬁii

10:
the turbulent fluctuations.

In addition to the three flow equations provided by (2.7)
there is also the continuity equation, which for an incompres-
sible fluid has the form

au; _
3%, = O (2.8)
- 2e3 Eddy viscosity models of turbulence

The problem with the Navier-Stokes equations for the turbu-
lent flow is the modelling of the Reynolds stresses. An exact
solution to (2.7) would require a time and space resolution
which is inachievable even with todays main frame computers
because of the CPU-time and core memory requirements. To over-
come this, the Reynolds stresses are modelled to obtain a
limited number of equations which can be solved. This procedure
involves the introduction of empirical constants that have to
be verified experimentally. It is known as the ‘closure prob-
lem’

Most commonly used has been the eddy viscosity concept which

assumed to be proportional to the gradients in the mean velocity
field. The following relation is introduced

€ is the eddy viscosity and is a function of both t and X: . k is
the turbulent kinetic energy defined by

L(u-E3E) ‘ (2.10)

It is seen that the second term in (2.9) includes quantities
from the mean flow. The first term is included for consistency
reasons. For the normal stresses (i=3j) eq. €2.9) yields

t_ _ o~ T U, ~— K= 5
= Zc_a—x' y. o e == 3%, ; us-—ze_ e (2.11)>
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It follows from the continuity equation that the sum of the
terms in (2.11) is zero. The inclusion of the first term in
(2.9) makes (2.9) and (2.10) consistent.

The additional term in (2.9) can be interpreted as a pressure
and can be included in the pressure gradient. When (2.9) is
substituted into (2.7), the following form of the Navier-Stokes
équations is obtained

] (2.12)

%%L -y %%_= -_(;- %’* a; - 39“_ [-(EHJ) 332-"
. .where
p* =p+2k/3 (2.13)
on the upper edge of the boundary layer towards a potential
flow k vanishes and p*=p. It means that the pressure gradient in

(2.12) can be found from the -ambient flow.

In a two-dimensional shear boundary layer (2.12) is reduced

to
U ¥
PUE- VYL Bl W] o
. The term

ig:[pa?v) %%%tl

is neglected since the velocity gradient in the y-direction is
assumed to be much larger than in the x-direction. On the other
hand, since the velocity in the x-direction is likely to be much
larger than in the y-direction the equation for V is redundant.
Hence the continuity equation can be left out of the analysis.

Considering only flow above a hydraulically rough bed, it can
be assumed that

E>DV

that is to say that the viscous stresses are negligible compared




with the Reynolds stresses. Eq. (2.14) is then reduced to

3y W _ 4 (e 3y
The pressure gradient is found from the outer velocity
1 - _ BUs _,, U
[ e = Y TS (2.16)

If (2.16) is substituted into (2.15) the following equation
emerges

| U
é%%-+L)%%%-r\':E;

Loy 2 .,.—%(s_%%) (2.17)

Taking the outer flow to be uniform the convective terms in
(2.17) can be neglected. This yields the -equation for the two-
dimensional turbulent shear boundary layer flow over a hydrauli-
cally rough bed

oU = 9Us P (& % (2.18)

ot ot *'2@

Now, the problem of determining ¢ remains. In the following
sections various methods for this are discussed.

2.4 Mixing-length theory, zero-equation models

A turbulence model that does not include transport equations
" for turbulence quantities is called a Zero-equation model.
Without exception these models employ the eddy viscosity
concept. The eddy viscosity distribution can be found from
experiments, by sheer guess, or it can be related to the mean
flow through algebraic formulae.

When dealing with the oscillatory boundary layer the
constant-eddy—viscosity model has been extensively used during
the last decades, as it will be seen in the review presented in
Chapter 3. Such a model can hardly be called a turbulence model.
Since the flow is highly unsteady, it is felt that the simplest
time-variation expected must be a periodic behaviour of the eddy




viscosity.

In 1925 Prandtl suggested that the eddy wiscosity is propor
tional to a mean fluctuating velocity V and a ‘mixing-length’

€ ~ Vl. (2.1
This expression was conceived by analogy with the kinetic gas
theory in which the dynamic viscosity is related to the mean
velocity of the molecules Vae: and the ‘free paths’ of the mol
cules L

ll - Lvnnl

Prandtl took the velocity scale V as

V=L, g—ul (2.2
3

The mixing-length is defined as the distance that a fluid lump

has to be displaced by the turbulent motion in the transverse

flow direction from Y= to y. so that its velocity differs froml,

the surrounding mean velocity by Vv,

Assuming that the constant of proportionality is unity, eqs.
(2.19) and (2.20) can be merged to give

2
£= L g_u (2.2:
3

This is the Prandtl mixing-length hypothesis. It includes only
‘one unknown parameter: 1.,. In wall boundary layers the mixing-
length

L

m

A

y/R,

Ram—

41

Fig., 2.1 Mixing-length distribution in a wall boundary layer
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is often assumed to be proporticial to the distance from the
wall since this distance determines the maximum eddy size. Far
away from the wall 1, can be regarded as being constant. The
variation is depicted in Fig. 2.1,

The boundary layer thickness & is defined e.g. as the distance
from the wall to the point where the velocity has reached 99 %
of the ambient velocity,

It must be emphasized that the distribution of 1, is purely
empirically specified. When a viscous sublayer is present over a
smooth wall the mixing-length distribution must be modified.

‘ Traditionally the van-Driest damping function is used,
2 ]
L, = Ks[ﬁ- e)gp(——ﬂAT (2.22)

A is a function of the pressure gradient.

The mixing-léngth hypothesis has worked well in a number of

applications. However, when processes like convective or diffu-
sive transport of turbulence are important it is not appropriate .
because it assumes that the turbulence intensity is a local
phenomena determined only by the local flow parameters. In fact
the zero-equation model assumes local equilibrium in turbulent
kinetic energy as will be shown in chapter 5. 2 further weakness

" is that the eddy viscosity'vanishes when the mean velocity
gradient is zero. This implies that in the oscillatory boundary
layer the eddy viscosity must be zero twice every period,

To remove the weaknesses of the turbulence model we shall
introduce the transport equation for turbulent kinetic energy in
the next section.

2.5 Transport equation for turbulent kinetic energy, one-
equation models

The first important improvement of the mixing-length theory
is to determine the velocity scale V in (2.19) from a transport
equation rather than from the mean flow field,
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It is physically most reasonable to utilize /K as the veloci-
ty scale. k is the turbulent kinetic energy of the turbulent
motion (per unit. mass) defined in eq. (2.10). From this expres-
sion it is seen that k is a direct measure of the intensity of
. the turbulent fluctuations in all three directions. Since this
energy is contained in the large-scale eddies, /K becomes a
velocity scale for the large-scale motion.

Now, using this velocity scale together with a prescribed
length scale 1 the eddy viscosity can be expressed as

.e=/k1 . (2.23)

This expression is known as the Kolmogorov-Prandtl relation

because Kolmogorov and Prandtl introduced it independently in
1942 and 1945 respectively. The distribution of k has to be
found from.the solution to a transport equation for k which we
shall derive in the following,

Insert eq. (2.5) into the Navier-Stokes equations (2.4) and
multiply by the vz2locity fluctuation u,. This leads to

z cy .
w, &) _ w, ‘é'%? +uS ru Y aa‘%:j). (2.24)
[ % ) J

‘ d.t

The first term is time-averaged

d (Ugs u) Uis 3(U; eu;)
g T B - wy) T
Y Qu =19

Oy, Su-
tUw s v uy s (2.25)

Using the continuity equation (2.8) which also holds for the
velocity fluctuation U; we derive

g u. 2 S (L
4y Y = = (4 Gyl ) (2.26)

Taking advantage of egs. (2.25) and (2.26) time-éveraging of




(2.24) is seen to give

Or%g«-cf uiujg‘—lf+uj-%‘j+3%(§u,u.u-) "

[ |

[

; 2 ; '
= -du e BE |

which can be rearranged to yield the transport equation for k

e . 3 By 17 fu; J
8 uE - FluB ] e B |
® ® ©) @ G (.27

The terms are identified as follows

: local time derivative of k
EE%' convective transport of k
(:): diffusive transport of k due to
(i) pressure work
(ii) velocity fluctuations
(:): production'of k due to interaction between the Reynolds
stresses and the velocity gradients of the mean flow. 1
corresponding dissipation term appears in the energy equatio
for the mean flow, see e.q. Tennekes and Lumley [44]
C): dissipation term which accounts for the energy that is
dissipated as heat through the cascade process

- Unfortunately the exact k-equation (2.27) is not directly appli-
cable since it contains new unknown correlations in the diffu-
sion and dissipation terms. Again, this is the closure problem,
To overcome the difficulty model assumptions will be introduced,

The diffusive transport is assumed proportional to the gra-
dient of k and the eddy viscosity

-u (B4 Lu = £ 2R :
J((’ + & B (2.28)

where o, is an empirical diffusive constant., At high Reynolds
numbers the dissipation is recognized to be independent of
viscosity and governed by the large-scale motion which is cha-
racterized by k and 1. Dimensional analysis yields the relation
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X R
u.

C+ 18 an empirical constant to be determined from experiments,

With these modelled terms and using the eddy viscosity ex-
pression for the Reynolds stresses the k-equation transforms to

3/z

&, & _3[E 2k U au')au-__ &
ﬁ*uaﬁ‘, aﬁ[o’k ,ax]-re 3-;(}‘? ﬂr&;’ 5&:’ C,' L ‘ (2.30)

It should be recognized that this is in fact a transport equa-
tion for the sum of the three normal stresses Os s .

'In a tuo-dimensionalvboundary layer this expression reduces
to

2 -
3R _,12&_\, Ok _ ?TE 8k W\ | k-
The term
21 € 3
>[5

has been neglected since the variations in k are assumed to be
much larger in the y-direction than in the x-direction. The
production term on the other hand

NV Y
&35

has been left out as it is thought to be a higher order term.

When the outer flow is uniform we can neglect the convective
terms in (2.31) and the simplest form of the k-equation emerges

2 3/z
k _ o[ e 9r @),

Turbulence models that consist of the flow equation, the
transport equation for k, and a specified length scale are
called one-equation models of turbulence and are normally based
on the eddy viscosity concept.

The inclusion of the memery effect in the turbulence repre-
sents one step forward in comparison with the zZero-equation
models, However, when the effects of convection and diffusion of
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the length scale are important a transport equation for either
the length scale or a related quantity must be added to the
turbulence model. This may be relevant in recirculating flows or
rapidly changing. flows. Not very many workers in the field do in .
fact have fruitful experience with the use of one-equation
models, e.g. Hanjalic and Launder [12], Rodi [36], Reynolds

(35]. But Reynolds eéncourages further research into the fopic.
The next possibility is a two-equation model which will be dealt

with in the proceeding section.

2.6 Transport equation for rate of dissipation, two-equation
models

The length scale specification inherent in the one-equation
model can be replaced by a transport equation for a turbulent
quantity

z=k" 1 €2:33)
where m and n can be any numbers. Several of these combinations
have been proposed and tried so far. Little success has been
given using the length scale itself. Instead the isotropic
energy dissipation rate

guc, K312 i1 (2.34)

has been used extensively. The reason for this peculiarity
remains unrevealed.

Appropriate differentiation, multiplication and averaging of
the Navier-Stokes equations will yield the transport equation
for the dissipation rate. We shall not carry these calculations
through here, the reader is referred to for instance Davidov [7]
or Harlow and Nakayama (14]. Following Hanjalic and Launder [13]
this equation reads for high Reynolds numbers

dz _ _ _&(&saw %%)_ 22U Su: By;
aE =T o (3¢ 3¢ T 3 By k¥ L o

O op

O S
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du. 78 ' YV 9
2l 2T -2 ]
C) (2.35)

®

The role of the individual terms are
(:) : total derivative of 2z

¢ generation term
EE;&(:): these terms should be taken together.C:Daccounts for the
‘generation rate of vorticity fluctuations through the
self-streching action of turbulence. represents the
decay of the dissipation rate ultimately through the
action of viscosity. Together the terms control the

“ dynamics of the energy cascade process -
(:) ¢ diffusion of z due to velocity fluctuations !
C) : diffusion of z due to pressure fluctuations K

When the terms are modelled in a4 manner similar to the k-equa-
tion we obtain the following equation

3z 9z _ 2 dz 2 U, i)-)au-_ ZVR
FF*UL'E _E\:%E‘T - C"? E_Q%‘;* 3“} 3‘54 C.S_[_LCi (2.36)

The constants c,,cs and 0. must be found from experiments. In
the two-dimensional case a reduced form can be derived

o %z _ D 2
. -gtl *U%Tvgsi =E(§a %g)fc‘g%(%)- <5 erk—c( (2.37)

which is further simplified to
2

% _ 2 (e iz) g (2uU\_ Vie

when the convective terms are neglected.

A two-equation turbulence model may consiest of the flow
equation, the transport equation for the turbulent kinetic ener-
gy, the transport equation for the dissipation rate, and the
Kolmogorov-Prandtl expression to link the quantities together.
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most advanced turbulence model that can be established. In many
flows, however, when the individual Reynolds stresses play very
important roles transport equations can be derived that elimi-
nate the need for the eddy viscosity.

2.7 Other turbulence models and their equations

More general than the transport equation for turbulent kine-
tic energy is the transport equations for the six Reynolds
‘Stresses. Exact equations can be derived from the Navier-Stokes
equations, see e.g. Tennekes and Lumley [44] or Hinze [16]. Here
we quote Rodi [36]

ég%& ¢ 2EN = -__—.(utiu _.__(f_4f3.+ __AJE)

L 31‘
rate of convective diffusive transport
change transport
— U; - du-  ou:
- oy _ .
™ . u‘uJ—a-{- + -E 55 -5‘.:
stress production pressure strain
au
ov DU
ax Q
viscous dissipation (2.39)

The contraction of this equation is seen to yield (2.27). It
- should be noted that the pressure strain term is not present in
(2.27) because of the continuity,

Modelling of the terms in (2.39) that contain new unknown
correlations has to be introduced. Then a turbulence model in
which one or more of the six equations available in (2.39)
replace the k-equation can be made. An increase in computational
work is inevitable and flows where the length scale determina- .
tion is crucial are not better described by this method. f
Howaver, in cases where transport of the individual stresses is :
important such a stress-equation model can significantly improve

Y

the results.
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Recently a new line of thinking has been introduced in the
field of turbulence modelling. The approach is called Large-Eddy
Simulation (LES). The notion is that only the large-scale mo-
tions that are directly affected by the boundary conditions are
treated by three-dimensional time-dependent numerical computa-
tions. The spatial resolution in this model gives a minimum
scale that can be described. The small-scale motion is assumed
to have a structure so that its statistics and their effects
upon the large scales can be specified by a few parameters, It
is referred to as the subgrid-scale modelling,

It is not straightforward to use the large-eddy simulation
‘ method. Of course the crucial point is the interaction between
the large- and the small-scale motions,

As this method is mentioned for completeness rather than for
details the reader is referred to reviews by e.g. Rogallo and
Moin [37) and Ferziger [8].

2.8 Numerical methods for»boundafy layer flows

Given the fact that, to quote Bradshaw (4], "for every one

()

person who knows enough about turbulence to produce a plausible
set of differential equations to describe it, there are tens and
., hundreds who know (or can learn) enough about numerical analysis

to solve those equations’, we shall not give a discussion of the
methods that are available for the field of fluid dynamics.

~Suffice it to give a few of the key references. Keller [25] has
provided a review paper which describes the current stage of
finite difference methods (FDM) in boundary layer problems. Also
Blottner [3] deals with FDM methods for this Purpose. Bradshaw,
Cebeci and Whitelaw [S] have dedicated a book to the calculation
of boundary layer flows. Here a wide range of flows are discus-
sed.

When it comes to the finite element method (FEM) in connec-
tion with turbulent flows the literature is less generous, This
method was initially developed in conjecture with solid mecha-
nics. Recently Shen [38] has given an introduction to FEM in
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fluid mechanics. But one will have to revert to research papers
and conference proceedings for detailed information on the

topic. :
@

2.9 Definition of parameters and variables

The definition of a standard set of variables and parameters
seems to be very useful. The object of study in this work is the
oscillatory turbulent boundary layer over a hydraulically rough
bed. When the ‘amplitude Reynolds number’ defined by

FEE::.E%ﬁE; (2.40)

is sufficiently large the rough boundary layer can be regarded
fully turbulent. Jonsson [22] suggests the following ‘practical

limits”
RE=10* A for 1<a/ky €10 (2.41a)
RE=(a’/ky )103 for 10<a/ky €103 (2.41Db)

Then the flow may be characterized by three parameters

ke Nikuradse roughness of bed roughness elements (m) (2.41a)
w cyclic frequency of ambient velocity (rad/s) (2.41b)
" Uia velocity amplitude of ambient flow (m/s) (2.41c)

The amplitude of the particle motion in the ambient flow is
a=U,./w - (2.42)

The parameters above may be joined in one single dimensionless
number characterlzlng the boundary layer

a/ku=Us e /(wky ) : . , (2.43)
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which is the amplitude/roughness ratio.
)
In this work we shall make use of the following basic ways of
non-dimensioning quantities of interest utilizing the parameters

in eq. (2.42)

time t* =t (2.44a)
space : y* =y/ku (2.44b)
.velocity U* =U/Uy. (2.44c)

Further, we will use

shear stress r'.=r/(pU,.’) (2.45a)
friction velocity Us®*=U; /Uy @ (2.45b)
eddy viscosity €* =¢/(Usuka) (2.45c>
turbulent kinetic energy k* =k/U;.2 (2.454)
length scale 1* =1/ky (2.45e)
'.displacement thickness 8* =8/ku (2.45f)
boundary layer thickness 81* =8, /kn (2.45qg) |
momentum thickness 8* =8/ky (2.45h)

production, dissipation
and diffusion of t.k.e. ¢* =¢/(Uya3/ky) (2.451)
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Fig. 2.2 Definition sketch

Usually the starting point in a practical case will be that a
wave is described by its parameters H, T and h. Given this the
bottom particle amplitude can be worked out. From Stokes’ theory
is obtained

G {

A= 2 STk e 51

Similarly the velocity amplitude is

_ TH i |
U,..=" T (2.47)

where H is the wave height, k is the wave number and h is the
water depth.

1f the convective terms are dropped in the boundary layer
équations first order wave theory can be adopted. This implies
that only the first term in (2.46) and (2.47) should be re-
tained. The particle velocity at the bottom is then described by

Uy =U; « cos(kx-wt) (2.48)
For simplicity, when the convective terms are neglected in the
governing equations, x will be taken as x=n/(2k). Eq. (2.48) is

then reduced to

U5=U1.Sin(wt) ) (2.49)
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The bottom roughness must also be available. It is traditio-
nally taken as

ku=2.5dso . (2.50)
where dso is the median grain size of the bottom particles.

To end this section we shall discuss the determination of a
boundéry layer thickness. In simple models where the momentum
equation is used with a prescribed velocity profile the boundary
-layer thickness enters the problem in a natural way as the upper
limit of integration. The situation is depicted in Fig. 2.3 with
a solid curve. If we have, instead, a velocity profile like the
dashed curve in Fig. 2.3 it is less obvious how a boundary layer
thickness is defined. One way is illustrated in the figure. Here
8: is defined as the minimum distance from the bed to a level
where the velocity is equal to the ambient velocity. Such a
definition implies that 8, can be infinite or very large when
all velocities are less than the free stream velocity. And it is
not a measure for the region where shear stresses and turbulence
are importani, as it would be expected from the boundary layer
thickness. Instead 3.5 can be defined as the minimum distance
to the level where the velocity is 99 % of the free stream
velocity. It may be argued that this is not a precise quantity
if the curvature of the velocity profile is small. As it will be
seen in chapters 4, 5 and 6 we shall use the displacement
thickness and momentum thickness in this report as they are
integral quantities that can be determined iﬁdependently of the
‘difficulties mentioned above.

v
(FREE STREAM) ASSUMED VELOCITY
LOGARITHMIC MEASURED VELOCITY
veLociry —
DISTMBUTION l
1
/
— ASSUMED 3 J(1)
e (ANY Uy)
T 77 cv0s000e02070q0222227 222027222227 VOO0 207 v

BOTTOM ROUGHNESS sb

Fig. 2.3 Definition of a boundary layer thickness
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3. VIEW EARLIER WOR

3.1 Introduction

A natural and necessary part of the present project has been
a study of the available earlier works within the field of
turbulent oscillatory boundary layers including both theoretical
and experimental material. The literature is, as one would
-expect, very extensive due to the great importance of this area
in practical engineering. Despite this fact, the review is, like

19BN T B R A N g L

chapter 2 not intended to be thorough but to provide a survey of
the different approaches that have been pursued over the last 3

two decades.

The theoretical developments are naturally divided into four
sections. Then follows a review of experimental works and exis-
ting data from the laboratory.

Review papers have been published by Jonsson {21] and Knight
[27]. Unfortunately these comprehensive works do not give the _
latest developments within the field when it comes to inclusion 'é
of turbulence modelling. it

Recently Sleath [41] has written a book devoted to the diffe-
rent processes at the sea bed. Sections on the turbulent boun-
dary layer are also included and constitute the newest review,

3.2 Simple models

Perhaps the most simple models that can be found are those in
which the form of the velocity profile is prescribed. Fredsge
[9] used a logarithmic velocity profile and by substituting this
into the depth-integrated momentum equation he obtained an ordi-
nary differential equation in the parameter z2=U, /U,y which was
easily solved numerically. The eddy viscosity is not included
directly but can be taken as a function of the instantaneous
friétion velocity and boundary layer thickness, both of which
are determined in the model.
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A basic assumption is that the time scale for production and
decay of turbulent kinetic énergy is small compared with the
wave period. It follows that the flow can be studied in each
half period starting with a water body at total rest thus dis-
regarding the eddies from previous motion.

The advantage of Fredsge’s model is its simplicity. Since its
development it has been employed to describe the flow field in
connection with problems like sediment transport in waves,
second-order mass transport in waves, and separation behind
-large cylinders at ISVA.

. 3:3 Models with a time-invariant eddy viscosity

Lately, many workers have solved the flow equation using a
time-invariant eddy viscosity distribution incorporating diffe-
rent layers in their models. Grant and Madsen [113,
Christoffersen [6] and Myrhaug [32] have solved this problem
with the only difference being the prescription of ¢ within the
boundary layer,

We shall briefly describe the model by Myrhaug [32] here. It
is, of course, an eddy viscosity model of turbulence which
implies that the linearized flow equation (2.18) is employed. It
is reformulated by introduction of the defect velocity

Us =U-U, ) (3.1)

Fo

%[e %‘;s]- lwuy = O 3.2
with the assumption that the defect velocity is a harmonic

function '

Ug (y,t)=uy (yler et (3.3)

The ordinary differential equation for the defect velocity
amplitude (3.2) is subject to the usual boundary conditions
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Us (y=kn 730)=0 and u,->0 for y3e (3.4) °

. . . )
Now, a two-layer variation for ¢ is given
e B C Y L S

®wU. & 2 2 \&
S an (3.5)

__&_ - L ‘For 3}6

where the distance & is not a boundary layer thickness but
apparently a ‘tuning parameter’ that can be used to fit theore-
tical findings to experimental data.

" The inspiration for the quadratic variation of ¢ in the inner
layer and a constant value in the outer layer stems from the
experiments by Jonsson and Carlsen, cf. Fig. 4.17. A rather
laborious analytical solution to (3.2) can now be obtained.
Fairly good agreement with the experiments is found for veloci-
ties and shear stresses but the model fails to describe the eddy
viscosity in detail.

The other models that were mentioned use dif ferent profiles
for ¢ in eq. (3.5), many of them employing a linear variation in
the inner layer. Together these models can be used to determine
the bed shear stress and energy dissipation associated with
travelling waves.

3.4 Models with a time-varying eddy viscosity

Recently Throwbridge and Madsen [(45] published a paper
describing a model containing a time-variant eddy viscosity
distribution instead of the constant ¢ in the mbdels in section ‘
3.3. Now ¢ is assumed to be a sum of a constant part and a
harmonic component. This model is like Myrhaug’s also a two-
layer model and analy@ical solutions are developed through
tedious manipulations. The advantage over the €-invariant models
seems to be that a third harmonic in all quantities is also
included. Comparison with the measurements by Jonsson and
Carlsen indicates that this third harmonic is indeed found
reasonably well in connection with velocities. Unfortunately no
results for 7 and ¢ are presented!




359 Works with turbulence modelling

Turbulence modelling of the turbulent oscillatory flow was
initiated by Bakker [1]. Assuming a local equilibrium in turbu-
lent kinetic energy he used a mixing-length hypothesis relating
the eddy viscosity to the local mean velocity gradient

2 2V
L. ‘W - (3.6)

l. is the mixing-length, cf. section 2.4, Utilizing (3:6) in the
linearized flow equation Bakker formulated a partial differen-
tial equation in an ‘internal shear velocity’. Boundary condi-
tions for this problem were implicit since the bed shear stress
was not known a priery. In later publications, Bakker and van
Doorn [2] and van Kesteren and Bakker [47]), this formulation has
been retained. In a report by van Doorn (46] the partial dif-
ferential equation was formulated in the local mean velocity
thus simplifying the boundary conditions.

The method has been revised and implemented using a different
numerical approach in this report. The reader is therefore
refered to chapter 4 for a detailed discussion of this zero-
equation model of turbulence.

Johns [19] effectively made the same model as Bakker although
a different formulation and numerical method was employed. Two
years later Johns [20] had made a one- equation model of turbu-
lence for the oscillatory flow. This model effects closure at
the level of the turbulent kinetic energy eguation and is iden-
tical to the one developed in chapter 5 of this report apart
from the fact that Johns retained the advective terms in the
equations. A hybrid numerical method consisting of both finite
difference and pseudo-spectral tecniques was used. Johns puts
emphasis on the mass transport in the bottom boundary layer. For
a discussion of the calculated variations for the turbulent
energy and the eddy viscosity see chapter S.

To the knowledge author there exists one example only of
higher closure in connection with turbulent oscillatory boundary
layers. Sheng [29] has used a model which included the k-
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equation, a length-scale transport equation and a transport
equation for the Reynolds stress -uv.

A detailed evaluation of his results is not really possibly
because only velocities and shear stresses for a’/k.=124 (Jonsson
and Carlsens experiments) are depicted in the paper. These
quantities are reproduced acceptably well even by the constant
eddy viscosity models.

In order to judge the model performance properly computations
for a range of a/ks-values are needed.

3.6 Measurements in a turbulent wave boundary layer

Perhaps the most referenced set of measurements in a turbu-
lent wave boundary layer over a rough bottom is due to Jonsson
[21] and Jonsson and Carlsen [23]. These measurements include
only ensemble-mean values and were obtained by a micro-propeller
in an oscillating water tunnel. Unfortunately the two tests were
made for low values of a/ks equal to 28.4 and 124 respectively.

In nature this ratio is' often of the order of 10®. The flow in g(:

Rt

water tunnel is uniform. Therefore the advective terms in the

model equations can be neglected.

A problem inherent in these experiments is the artificial
bottom roughness as depicted in Fig. 3.1. All theoretical models
make exclusive use of the equivalent sand roughness parameter k.

2 y

VELOCITIES MEASURED IN THIS LINE

}.—_._.'
THEORETICAL BED LEVEL |
o] x : j
_ - — .
e i
acm|bem|ccm|kem [2-y cm CONCRETE

Test not 1.7 06 | 05| 23 0.2%
Testno2 | 868 | 24 | 20| 63 0.50

Fig. 3.1 Bottom roughness, Jonsson and Carlsen [23].
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as it was originally defined by Nikuradse. ke« appears in the
usual logarithmic velocity profile which is strongly associated
with a bed that is covered with a layer of roughness elements
like sand grains, Such a layer is characterized by the absence
of any directionality whereas the roughness elements used by
Jonsson and Carlsen were triangular rods placed normal to the

flow direction at constant intervals.

Based on these speculations it must be emphasized that the
nature of the bottom roughness elements can have an impact on
the results. Especially at lower a/ky-values, a phenomenon like
.vortex shedding may change the flow pattern considerably depen-
ding on the roughness elements. This is said to underline that a
comparison between measurements over an artificial roughened bed
and theoretical models using the traditional roughness concept
cannot be expected to yield perfect results since they may
represent different flow situations. Nonetheless, measurements
are so few at present so that it may be the only possibility.

Apart from velocity profiles and shear stress profiles ob-
tained by integrating the equation of motion, Jonsson and
Carlsen also presented eddy viscosities derived from the other
quantities. ¢ is, however, a difficult quantity to evaluate when
it is done using the definition

T/e

€ & = (3.7)
2U
oy

especially when both the numerator and the denominator are small
quantities. Following this ¢ will be poorly determined far from
the bed where the turbulence intensity is negligible. (iz
Introduction of Laser-Doppler Anemometry made direct measure-
ments of the turbulent velocity fluctuations possible. Conse-
quently the Reynolds stresses and the turbulent kinetic energy
can be determined directly. The expression for ¢, eq. (3.7) may
then be more useful.

In the rough wall case Bakker and van Doorn (2] made mean
velocity measurements whereas Kemp and Simons [26] also included
the fluctuations to obtain the turbulent kinetic energy. But
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only experiments for very low a/ks-values in the order of 1-10

were performed. )

For smooth walls two separate works exist. Tanaka et al. [43]
made wind tunnel experiments obtaining an amplitude Reynolds
number (cf. 2.40) of 6.10:10%. Eddy viscosity and TKE distribu-
tions were presented only in cases with combined wave-current

motion. A very comprehensive investigation for pure oscillatory
flow in a wind tunnel has been reported by Hino et al. [15]. An
amplitude Reynolds number of 3.8-:10° was attained.

From the available experimental data it seems that theore-
tical models over smooth beds are much easier to check against
measurements at present.

Finally we mention the work by Kamphuis [24] who determined
the friction factor f, in the rough wall case by direct measure-
ment of the bottom shear stress.

No field measurements have been encountered during this
study. ‘ f

&
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4.  BLOBAK, A ZERO-EQUATION MODEL )

4.1 Introduction

In this chapter we shall look at a zero-equation model for
the turbulent wave boundary layer. The method is based on ear-
lier works by Bakker [1], Bakker and van Doorn [2] and van Doorn
(46]. But the choice of dimensionless variables is different. In
-the present work they are selected as outlined in chapter 2.
.Furthermore, deviations are present in the numerical method.

4.2 Construction of model

The flow equation governing the mean velocity field in a
uniform two-dimensional boundary layer flow was established in
chapter 2,

oU _ 3u 2 [ U
i;; = .Eig . | 3y £ EL—) (4.1)

where

c
]

UCy,t),
e(y,t),
U, (t).

U.

Now, define a defect velocity as the difference between the
" local mean velocity U and the ambient flow velocity U,

Us = U - U, (4.2)

Eq. (4.1) then simplifies to

Ua _ 3_( ®U<) .
3 = € By (4.3)
In the zero-equation model the eddy viscosity is related to

the mean velocity through an algebraic equation. In this case we
use Prandtl’s mixing-length theory,
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Z |8y
&= L_ \?9— (4.4)

where 1. is the mixing-length.

The mixing-length is, usually, assumed to be proportional to )
the distance from the wall because the size of the eddies may be
governed by this. In steady boundary layers the constant of pro-
portionality is the von Karman constant, x, which most

frequently is taken as 0.40. Mathematically the mixing-length is

written

l. = ky (4.5)

Although there is no certain evidence supporting this simple
variation of the mixing-length in an unsteady boundary layer, we
shall apply (4.5) in this model as a qualified guess. It is
noticed that for large a/kes where the oscillator? wave motion
can be recognized to attain a quasi-steady behaviour during each
half-period, it is in agreement with a ’'steady flow’ solution to
prescribe eq. (4.5).

If egqs. (4.4) and (4.5) are substituted into eq. (4.3), we
obtain

Ud _ 2 2,2 od | UL

3t =93 ® Yy —ga— —5:"— (4.6)
This is the governing differential equation for the flow in a
“turbulent wave boundary layer under the given assumptions.

Bakker derived a different version of (4.6) in his earliest work

(1], where he defined an ‘interior friction velocity’

P= sagn(f)\/ltl/e' (4.7)
Equation (4.6) appeared as

2
20 o gy Bgagigl)
S

ot (4.8)

The disadvantage ‘in this formulation is that the boundary
conditions should be given in terms of the shear stress (through
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eq. (4.7)) and not in the mean velocity, as is the case with
(4.6). In consequence of this Bakker later [46] reformulated the

s

problem together with van Doorn to conform to (4.6).

Before we can formulate the boundary conditions for (4.6),
the choice of the bed coordinate has to be considered. )

The y-coordinate for the lowermost mesh-point is determined
by analogy with the usual logarithmic velocity profile in a
steady turbulent flow above a rough bed,

U o_ o4 Y
O = Ln'k.,/so (4.9)

where U=0 at a distance above the theoretical bed level, cf.

A
o~
(0]
N

o =

i ‘
\/
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Fig. 4.1 Definition of bed coordinate

Y
Fig. 4.1, Normally the boundary condition is

U(y=ky 730)=0 (4.10)

From (4.9) we get

SU _ UC 1
?G = %y (4.11)
and




3¢
—%U/?—- Uy (4.12)
)
It is seen that concordance between (4.9),(4.12) and (4.4),(4.5)
is achieved when the boundary condition is prescribed according
to (4.10). The bed coordinate must be

E=

Yo =kw /30 (4.13)

The boundary conditions associated with eq. (4.6) are the

following

1. The velocity vanishes at the bed due to the no-slip

condition. From (4.2) is obtained

Ud (Y=YG) - —Uc (4.14)
2. At the edge of the computational region towards the ambie

flow the velocity must match with the outer velocity, tha

is

Us (y=ys ) = 0 _ (4.15)

3. Further, an initial vertical velocity distribution has to
be given. This can either he a stagnant fluid where

Uc(Y) = 0

since the ambient flow velocity is zerc &t the start, or

can be a profile found in an earlier run.
4. 2n arbitrary variation af the ambient flow velocity can b
prescribed. In the present model the situation is

restricted to a pure oscillatory motion characterized by

U (t) = U;. sin(wt) ¢4.1

o

3
’

It follows frem eq. (4.16) that we .must require periodici:
in the solution '

Uly,t+T)=U(y,t)




When the usual dimensionless quantities defined in Chapter 2
are inserted into eq. (4.6)

Time: t* = 2at/T = wt (4.17a)
y-coordiante: y* = y/ku (4.17b)
Velocities: U* = U/U,. (4.17c)

the following dimensionless differential equation is found

-%U:l= xz—a-%([gﬂz%uf\%%\) (4.18)

The initial value problem consisting of eq. (4.18) with the
dimensionless boundary and initial conditions is depicted in
Fig. 4.2.

P Y

. M:x‘&i( 2 DU &) .
Uz o ot R 33\ 9 oy | i
A
2 - - — t
Bb t*‘c U;-.—_' - Uo (t )

Fig. 4.2 Initial value problem for the defect velocity
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The upper limit for the region of computation, y,, is deter-
mined so that the gradient in the mean velocity vanishes at this
boundary. It follows that also the shear stress and the eddy
viscosity disappear. The adequate value of y, is found by trial
and error.

4.3 Numerical solution

The only way to solve the initial value problem is to apply a
numerical method of solution. Bakker and van Doorn used a finite
.difference method (FDM), and we will do the same. The choice is
based on the fact, that FDM must be considered faster to imple-
ment than a similar finite element method (FEM) would be. The
expense may be a longer computer time to obtain the same accura-
cy in the computations.

In FDM a mesh of points is placed over the region of solu-
tion. To increase the efficiency of the method the mesh is
refined in areas where the solution has the largest variations.
In the present case large gradients in the velocity are antici-
pated close to the bed. Consequently the mesh is refined close
to the bed. There exists a number of ways to achieve this.
Bakker and van Doorn employed the so-called ‘Staggered Grid’.
The notion is that an arbitrary number of grids with increasing
fineness are superimposed. As the meshwidth becomes smaller, the
mesh extends less and less from the bed. In this way a refined
description of the solution is obtained near the bed without the

expense of an intolerable requirement in CPU-time and memory.

It seems to be more straightforward to vary the distance
between the mesh points in a single mesh. This can be achieved
either by incorporating a coordinate straining in the differen-
tial equation using an equidistant mesh, or by varying the mesh
size in the original coordinate system and take this variance
into account. In this case the coordinate straining is chosen,

whereas the latter method is applied in the next chapter.

 ixwgryryt 1 G e
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The transformation of the derivative has been used,

d ¢ )
= (4.22)
o  exp(s®) O5°

Now, the numerical scheme for the solution of (4.21) is set-

up in the mesh shown in Fig. 4.3.

An implicit Crank-Nicolson scheme is applied, see e.g. [25].
Equal weight is given to the previous and the present timestep.
The second order derivative in eq. (4.21) is found by centering
the first order derivatives in points between the mesh points as
.shown in Fig. 4.3 and then using central estimates for the
second order derivatives.

Using first order difference approximations the following
difference equation is obtained (¥, which indicates dimension-

less quantaties are omitted from this point to the end of the
section),

_ 2
(UMY a ®e at [, ! . T
g.i - (U - ) Ri 2a%es(§) [{-1 eP{£( %53 } XS

QU= ud) Tug™-uel = (U-uc) | ugsm-ugs )|}

| e { X ( il £f ‘.,_\"‘
-{{ e {E(E 5003 E a5% {(U& -US) UL -Ue™

¥ (U:"J‘ u:",j-‘) \ Ui-uj_ U&“-. \}1 , i= Z_,‘ .. '/N?{ (4.23)

" Since eq. (4.21) is nonlinear, eq. (4.23) is the same. The N
équations contained in (4.23) can generally be formulated as N
nonlinear equations with N unknowns

£, (2)=0 , J=2,...,N+#1 (4.24)
where
.£={2"°‘°'2"“}={U¢"’,..’.,U,"""}

are the N unknowns. The system is solved using Newton’s itera-
tive method, see e.g [30)] and [48].
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At a given stage in the iteration procedure a residual vector

can be written
fr={f, 28 )}

The residual vector for the next iteration step can be expanded

as a Taylor series

nrl N+«2 u"\ el "
C *Z(E) ('&’L -2‘)-\-”_, 3 3= 23.4. , N+2 (4.25)
(=2
-where
» av Qggg.‘)
'.\ 32) oz,

The aim is to have f"**=0, An approximation to this is found
from (4.25) by truncating the series after the shown term, and

solving the resultant system of linear equations

(2t -z" )=-£° (4.263

-
AQl = 8 k (Zﬁ)
The partial derivatives in A are found from (4.23). Defining

z C At

CJ— ®, 2 o ee(s)

(4.27)

and
’ 2

S= [_{ e {Jz_&j* T 3] Ag* (4.28)

we find that

a%ff;: = - 25C sign (UE-uge™) (ug -ugy (4.29)
d

25+ 25¢ sign(ug-ud) (U -UET)

IV
+ 29,G sign (U ’5"—L&3)(U;*’"-Ue‘(j) (4.30)




o .28 <, sign ULt Uy (U= psd (4.31)
S i g~ (U= Uz’ ) (U™ U3)

All other elements irniLare zero. The system (4.26) is of the
tridiagonal type

(U ) + BN (U e« B (GRTRU0) = 6 aaasa

where the coefficients Dj" , E:,! and F} are given by (4.29) -
.(4.31) and the right-hand side is

Gg'=‘f4" (4.33)

Egqs. (4.32) are solved by the so-called Double-Sweep-Method, as
it is described in e.g. [33] and [48]. It is noticed that if the
mesh points had been equidistant in the original coordinate
system, then the system of equations (4.32) would have had a
symmetric coefficient matrix. Generally we have for the coeffi-

cients
Ej":l-Dgn"F’. (4.34)

No special attention has been paid to the issue of stability.
The timestep has been decreased until a stable solution was
reached. In practice this has always been the case when 800 C@:
timesteps were used during one period. Because of coordinate
" straining the Crank-Nicolson scheme can not be expected to be
'unconditionally stable, as would have been the case with a
uniform mesh.

The mesh has been refined by an increased straining and
additional mesh points until the numerical solution remained
invariant to further refinements. Henceforth the sclution has
been accepted. All iteration cycles are controlled by an accura-
cy parameter related to the relative change in the solution from
one iteration step to the next. When a certain atcuracy has been
reached in all points, the iteration is stopped. Typically a
relative change of 10°% to 10-¢ has been demanded.
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The periodicity condition for U is not directly included in
this solution procedure. When the specified initial velocity
distribution is not from a periodic solution it contains a
transient part which has to be damped out through a number of
periods of calculations. This issue is discussed in section 4.6.

4.4 Implementation

The zero-equation model is implemented through the programme
BLOBAK (Boundary Layer 0-Equation Bakker). The structure and
operation procedure for BLOBAK are discussed in Appendix A.

4.5 Quantities derived from the zero-equation model

From the solution to eqg. (4.1) a number of quantities can be
derived. In connection with an eddy viscosity model the shear

stress is defined by
— 2U .
T/e = € Sy (4.35)

If (4.4) and (4.5) are inserted for €, 1t becomes

‘Z/p (23) (—?—) (4.36)

In the transformed coordinate system and in dimensionless ver-
sion eq. (4.36) has the form

o xz D_ e‘?(g.)} 2\ l'éujl (4.37)

where (4.20) and (4.22) have been used. The derivatives are
approximated by central differences in the numerical metheod.

The bed shear stress can not be determined from (4.37) since
the derivative can not be found numerically. The bed shear
stress is therefore taken as the extrapolated value of the shear
stress in the two adjacent mesh points. The friction velocity is
defined as
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‘ -
UC = \“'Z;l Sign (T;) (4.38)
The friction factor £, is found as
o - .
2
£,=2 (Uﬁ-u) (4.39)
The eddy viscosity is determined from (4.35)
+_ exp(8) & .
. =0 (4.40)
X
When the velocity gradient vanishes, ¢*=0. The displacement
thickness 3* is found as
. =) ,
~ t 3 %
§=-— Je""c(?) (U™-y;)ds (4.41)
S J,e
%

while the momentum thickness 8* is
2~ 9
% » = s
e=—($) J%‘%& U*(U-U, ) 4s (4.42)
7S
Lundgrens wave viscosity is found from the definition [29]
*
L L- lt*‘ dt
(RS
e 12

where the integrals are determined over one period giving a

7

% ex

=" ¢

(4.43)

vertical profile for n.,*.

The mean specific energy loss E over one period is given by

m

= U (4.44)

In order to relate the energy loss to a general parameter the
energy loss factor f, is defined by

E = '3T P 'Fe qu (4.45)
see Jonsson [21]. f. is important in connection with wave atte-

nuation since a paramount fraction of the energy is lost due to
dissipation processes in the nearbed turbulent boundary layer.




4.6 Presentation of results

This section is a discussion of the results that have been
compiled us@ng the zero-equation model.

As mentioned in the introduction to this chapter this model
has been implemented earlier. It is natural to compare the
results obtained from the two different implementations of the
same theoretical model. Calculated velocity profiles for the two
cases where the ambient velocity is zero and a maximum are shown
in Fig. 4.4. Close agreement is observed. To remove the effects

"Fig. 4.4 -Comparison with van Doorn [46], a/ku=4.47
’ SOORAL-4 1.

of a transient component in the solution due to the initial con-
ditions five periods have been used to reach an almost periodic
solution. It follows from the nature of the mathematical problem
that each half period must yield the same results except for
possible opposite signs. In Fig. 4.5 we have plotted the maximum
velocity coinciding with zero ambient velocity over 10 half
periods of calculation. It is seen how the values for the last
two half periods diverge approx. 1 % from each other. Further it
can be seen that the transient part is damped out even if the
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process becomes more and more slow. All further results in this
chapter are based on the fifth period of calculation. Often the
mean of the values from the ninth and tenth half period has been
used. It Has been customary to run four periods without detailed
output storing the solution in an external file and then run the
fifth period with a detailed output from BLOBAK. A list of the
completed runs with BLOBAK is enclosed in Appendix A. Typical
running. times for BLOBAK on the IBM computers at NEUCC were 20-
30 seconds per period using 3 iterations at each timestep.

.‘ 0.32 9

0.29

0.28

0.27 A

Fig. 4.5 Development of solution, a/ks«=10

A standard mesh containing 43 interior points has been used
in all runs except for a/kes-values larger than 10® where pcints
were added to facilitate a non-vanishing solution further away
from the bed. The strain factor c in eq. (4.19) has been taken
as ¢c=2000. The edge of the computational region was at y/ks=1000
for N=43 and y/k«=8200 for N=52.

These requirements were determined by trial and error. The
process has been aiming at a good numerical solution. For conve-
nience it was decided that the same mesh was to be used for as

wide a range of a’/ku-values as possible even if this would not
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be economically sound.

The basic idea in the following will be that we go through
the different results that can be found from the model for the
a/kuw -value 124 which is also the value in TEST 1 of Jonsson and
Carlsen [23] so that results can be compared. Additional dia-
grams for a/ku=1000 can be found in Appendix G. The test data
from Jonsson and Carlsen have been processed using the programme
JONCAR enclosed in Appendix D.

Velocity field

Velocity profiles are shown in different ways In Fig. 4.6.
From Fig. 4.6 (a) and (b) it is seen that close to the bed there
is good agreement between theory and measurements. When the
experimental results from opposite phases are averaged it is
seen that further away from the bed there is a depression in the
profiles which is not described by the theory.

The well-known overshoot, which occurs when the fluid par-
ticles close to the bed areas.accelerated by the pressure
gradient at an earlier stage than further away from the bed
because of the lower velocities, is described well when the
ambient velocity is zero. The overshoot is less accurate when

the free stream velocity is a maximum.

_ It is very important to notice that a logarithmic velocity
"profile is always found very close to the bed. The presence of
this phenomenon is generally recognized and confirmed by the
measurements. Often theoretical models include a logarithmic
velocity profile close to the bottom. It is referred to as the
law of the wall. Here it is inherent in the numerical solution.

Another way of looking at the velocity field is to determine
the velocity amplitude as a function of the distance from the
bed. As seen from Fig. 4.7 (a) the general shape compares well
with experiments but the curve is shifted upwards. The phase lag
between the maximum local velocity and the maximum free stream
velocity is depicted in Fig. 4.7 (b)., Discrepancies are ﬁresent
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a. linear plot

b. log. plot

c. linear plot, measured

values averaged over

two half periods
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(c)

Fig. 4.6 Velocity profiles for a/kse=124
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once more. It may be useful to compare these results with those
of Myrhaug [32] who used a two-layer time-invariant eddy visco-
sity model, cf. chapter 3, to attack the same problem. His
curves are shown in Fig. 4.8. The two-layer model yields the
same results with respect to the velocity amplitudes whereas the
phase shift description is better than that of BLOBAK. This
feature may not be an important measure since the phase shift in
the experiments was determined from velocity measurements that
were 15 degrees apart over the period. An accuracy of less than
perhaps 5 degrees can therefore not be expected and this is more
-than the differences between calculations and measurements.

Calculations have been made for a number of a/ke-values. In
Table 4.1 the maximum overshoot in the velocity profile is shown
as a function of a/ke. Also the phase shift between the maximum
defect velocity at the bed and U,, is included.

a/kw Usax /Usa ¢
100 1.072 35.2
103 : 1.052 28.8
102 : 1.041 21.6
103 1,032 16.2
10* 1.027 12.6

Table 4.1 Maximum velocity overshoot and phase shift between
max. defect velocity at bed and max. outer velocity.

Both the velocity overshoot and the phase angle are seen to
decrease with increasing amplitude/roughness ratio.

Shear stresses,

Computed and measured shear stress profiles‘are shown in Fig,
4.9. Obviously the discrepancies between theory and measurements
that were found with respect to the velocity field are also

present here. The general shape, however, is reproduced fairly
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Fig. 4.9 Computed and measured shear stresses.

well. Special attention has been paid to the bed shear stress as
this quantity is important when evaluating the energy loss and
the friction factor. As previously described the bed shear
stress is determined by linear extrapolation from the two mesh
points adjacent to the bed. To check this procedure it was
investigated whether the result was consistent with the law of
"the wall. Knowing the velocity in the points near the bed a
number of values for U, can be calculated using eq. (4.9). If
the velocity profile is logarithmic the same U, will be found in
all the points. A few examples showed that the same bed shear
stress value was found from the two different methods. This also
confirmed that the numerical mesh was adequately detailed near
the bed. In Fig. 4.10 we have plotted the bed shear stress as a
function of time. Jonsson and Carlsen determined 7z, in two ways.
One was to assume a logarithmic velocity profile (l.p.) close to
the bed as described above. The other was to integrate the flow
equation (f.e.) so that




|-I-—q----I-ll-llIIllllllllllIllllllllllllllllllllllllIlllllllllllllllllllllllqmgq!

™/ PU‘u
0.018

~———— BLOBAK 52
~——w— TEST 1 Le.

0.010 — --9- TEST 1 Lp.

0.005 -

0.000 -

-0.010 *§_¢J

-0.015 . T . . . .
0.00 1.57 314 T O a2

Fig. 4.10 Computed and measured bed shear stress

0

T_b=J = (U,-V) oy (4.46)
¢ Re/20

The upper limit of integration is in practice finite since the
defect velocity vanishes at a given level. Both curves are shown
in Fig. 4.10. The best agreement is found using the law of the
wall. This is not surprising because the numerical differentia-
tion contained in the integrand of eq. (4.46) can be a delicate
affair.

The friction factor f, can easily be determined from the bed
shear stress variation. Fig. 4.11 shows a number of different
results for f,. Results are included from both BLOBAK and
Bakker., Fredsge’s simple model and Myrhaug’s two-layer model are
shown. Experimental results by Jonsson and Carlsen and Kamphuis
[24] are also depicted. The discrepancies between Bakker’s
results and the present results are significant especially for
decreasing a/ks -values. It should be noted that comparison was
bnly possible in a limited interval for a/ke due toc the amount
of data given by Bakker. Referring to the discussion above
concerning the bed shear stress it is believed that the present
results are the most reliable. Generally all theoretical models
fail to describe the variation of f. when a/ky is less than,
say, 10. In this regime vortex shedding behind the individual
roughness elements becomes important. These effects are not in-
cluded in the present type of models. It should also be expected
that the type of roughness elements used in the
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experiments has a substantial influence on the results obtained.
We shall revert to this aspect later. For larger a/ky -values the
variation of f, found from the present model fits quite well
with the experimental results.

The friction factor is often used instead of the energy loss
factor f.. This factor has been evaluated numerically and the
variation is depicted in Fig. 4.12. Comparison with Fig. 4.11
shows that the two quantities f, and f. vary in the same wvay
qualitatively. Table 4.2 shows the ratio f./f. for different
-a/kuw -values as found from BLOBAK. Good agreement with the ex-
.perimental results is observed.

a’/ku £. £s £ 7Ea

10° 0.154 0.136 1.13

10t 0.0489 0.0453 1.08

102 0.0193 0.0188 1.027

103 0.00935 0.00933 1.002

10¢ 0.00528 0.00533 0.992

28.4 0.0310 0.0290 1.07 theory
0.0395 0.0379 1.04 exp.

124 0.0179 0.0175 1.022 theory
0.0200 0.0197 1.02 exp.

Table 4.2 Computed values of f,, f. and fe /£fa <
' Experiments by Jonsson and Carlsen.

Apparently this discussion is the first attempt to calculate

f./f. theoretically without any assumptions on the variation of
7. A discussion of the topic is given by Skovgaard et al. [40].

Boundary layer extension,

The time-variation of the displacement thickness is depicted
in Fig. 4.13 (a) while the momentum thickness appears in Fig.

r-'.--_—_—-____*__'m'
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Fig. 4.13 (a) Variation of displacement thickness for a’/ke =124
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Fig. 4.13 (b) Variation of momentum thickness for a/ke=124
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4.13 (b). The variation of both quantities is slightly different
during the two half periods shown. The difference is explained
by the remaining transient part of the solution. Worst affected
is the momentum thickness. To facilitate comparison with other
theories and experiments we have listed the results at wt=n/2 as
a function of a/ks« in Table 4.3. Values are also included for
the boundary layer thickness &, defined as the minimum distance
between the wall and the level where the velocity equals the
ambient flow velocity when this is a maximum. For comparison the

results by Fredsge [9] are included as well.

e G

@ a/ku 8/kn 5/a 8y /kn 8/ku 3, /a
10° 0.0507 0.0507  0.229  0.015 -0.182
10° 0.130  0.0130  0.078°  0.044 0.074
102 0.395  0.00395 0.036  0.155 0.039
10 1.456  0.00146 0.021  0.641 0.025
10¢ 6.412  0.000641 0.014  0.197 0.017
124 0.0341  0.197 theory
0.0210 exp.

Table 4.3 Displacement, boundary layer and momentum thick-
nesses. Rightmost column shows Fredsge’s theory.

Eddy viscosities

For applications like sediment transport computations the
eddy viscosity distribution in the turbulent wave boundary layer
is very important. An example of such an analysis is given in
chapter 7. Here we shall discuss the results obtained from
BLOBAK. | '

As a start consider the eddy viscosity profiles computed at
different timesteps during one period. In Fig. 4.14 it can be
seen how the eddy viscosity reaches a peak close to the bed. It.
then drops to a very small value before there is an increase
again. For sufficiently large values of y/ks the eddy viscosity



Fig 4.14 Profiles for the eddy viscocity, a/ks =124

vanishes as there is no turbulence present. The definition
equation for €, eq. (4.4), states that when there is a vertical
tangent to the velocity profile the eddy viscosity is zero. If
the profiles in Fig. 4.14 are compared with the velocity
profiles in Fig. 4.6 it becomes clear that the eddy viscosity
does not becomé exactly zero when it should according to the
velocity profiles. The reason for this inacciuracy is the
numerical discretization which is causing the peaked profiles

-]

shown in Fig. 4.24 as well,

The timeseries for eddy viscosities in specified levels above E;
the bed are probably more useful. They are presented in Fig.
4.15 and four different a/ks-values are included. The vertical
levels have been chosen in terms of y/ks so that they are
physically the same independently of a/ks. Another possibility
~would have been to use y/a as the coordinate since the boundéry
'layer extends further away from the bed with increasing a/ku-
ratios. The figure shows that the overall time variation is the
same in all levels. Twice every period the eddy viscosity at-
tains a minimum value of zero. It then increases rapidly to
reach a maximum value whereafter there is a decrease to the next
minimum value. This variation can also be found from simple
models like Fredsge's. But since they take ¢ as being propor-
tional with U, the eddy viscosity will vanish in all levels
simultaneously when U; is zero. We see from Fig. 4.15 that the
results from BLOBAK contain a phase shift between zero-values of
¢ in different levels, |
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BLOBAK compares with the experimental results and with the time-
invariant eddy viscosity distribution that Myrhaug [32] used in
his two-layer model. These variations are depicted in Fig. 4.17.
In all cases there is good agreement close to the bed. Further
away it appears that BLOBAK overestimates the mean eddy visco-
sity in comparison with measurements whereas it is close to
Myrhaug’s (solid line). The results from BL1PJ are discussed in

section 5.5.

2 x 1]
EDOY VISCOSITY, ¢ 10" H])

Fig., 4.17 Comparison of mean eddy viscosity with Myrhaug

Consequently it is justified that the two models yield approxi-
mately the same velocity field as was noticed previously.

To end the discussion of the eddy viscosity the wave visco-
sity distribution for a/ks«=124 is shown in Fig. 4.18 together
with the results found by Lundgren [29]. It is seen how good
agreement is found for very small values of Y/ku . Thereafter
BLOBAK overestimates 7, substantially. Adain it may be
questionable whether the experimental data are reliable. ¢ is
determined as the ratio betweenAtwo very small quantities when

the .shear stress becomes small.
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Fig. 4.18 Wave viscosity profile for a/ke=124
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Da BL1PJ, A ONE-EQUATION MODEL

5.1 Introduction

In order to compensate for the shortcomings of the mixing-
length theory a one-equation model is developed in this chapter.
Such a model includes the calculation of the energy of the
turbulent velocity fluctuations from the transport equation for
-turbulent kinetic energy. The eddy viscosity is no longer taken
as a function of the mean velocity field. Consequently the eddy
viscosity does not necessarily vanish, when the mean velocity
gradient is zero. Further, the transport equation for TKE will
model the memory in the turbulence together with diffusion
processes. These effects are not comprised in the mixing-length

theory, where local equilibrium in TKE is assumed.

5.2 Construction of model

5.2.1 The equations

As was the case with the zero-equation model ., the flow equa-
tion for the mean velocity field is

U _ U U
'gT" ?Eeef-éag(g-ag) (5.1)

The flow is assumed to be uniform. The ambient flow is described
by first order theory. Hence the convective terms can be neglec-
ted. The eddy viscosity ¢ is expressed as a product of a velo-
city scale and a length scale

E=\Vr' L (5.2)

in which k is the turbulent kinetic energy defined as

R =

o~

W, . (5.3)

and 1 is the length scale. Close to the wall in a rough boundary
layer 1 behaves as
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l'—'C:Y (5.4)

while 1 further away often is taken to be constant. cy is a
constant which is evaluated later. In this model (5.4) is used
to describe 1 throughout the boundary layer.

To solve eq. (5.1) the k-distribution must be known. It is
determined from the solution to the transport equation for the
turbulent kinetic energy. From chapter 2 it is known that this

-equation in a two-dimensional shear boundary layer has the fornm

3/
R _ @[;g . B ﬂf- < ko 1853
3t Oy | 6 3y oy v
Rate of = DIFF + PROD - DISS
change '

The convective terms have been neglected in accordance with eq.
(5.1). In eq. (5.5) o, and c, are empirical constants, the
values of which will be enumerated la;er.

It should be mentioned that if the diffusion term in eq.

(5.5) is neglected, then the partial differential equation is <§§E
reduced to an ordinary differential equation, 3

5.2,2 Boundary conditions

The equations (5.1) and (5.5) are two coupled second order

- partial differential equations in U and k. To form a solvable
'problem proper boundary and initial conditions must be speci-

fied. The same conditions are associated with the flow equation
as in the preceeding chapter.

(i) At the bed the no-slip condition applies, i. e.
UCy=ys )=0 (5.6)
The bed coordinate is chosen according to the ideas

outlined in chapter 4. y» 1s taken as
Y., =kn /30.




(ii) At the upper boundary of the region of computation is the

velocity equal to that of the ambient flow
U(y=y. )=U, (5.7)

Y. must be large enough to ensure that all turbulent
quantities vanish at the boundary towards the ambient
potential flow,

(iii) The initial velocity distribution can be either a stag-
nant flow or a distribution obtained in a previous run.
Since we only consider a periodic ambient velocity.
Hence it is required that the solution has this periodi-
city, i.e.

U(y,t+T)=U(y,t)

The velocity of the ambient flow is according to the first
order theory given by

U, (£)=Usasin(uwt) ' (4.11)

Associated with the k-equation are the following initial and
boundary conditions.

(i) The turbulent velocity fluctuations are mot vanishing at
a hydraulically rough bed as would be the case with a
smooth wall, where the viscous stresses transfer the
Reynolds stresses through the viscous sublayer. Close tc
the wall the Reynolds stresses are nearly constant. In
this region diffusion can be neglected. When k is assu-
med to attain a quasi-static value at the wall, local
equilibrium prevails., It follows that t ~ k, cf. section-
5.2.3. Hence in this model we apply the following boun-
dary condition for k at the wall

Ry= | 7o Z¢] _ (5.8)

-



See e.g. Rodi [36] for a discussion of this boundary
condition.
(ii) At the top of the computational region the turbulent
quantities disappear. For k this means
k(y=y, )=0 (5.9)
(iii) The initial k-distribution must match with the given
initial distribution for the velocity.
5.2.3 Local equilibrium in TKE
If production is equal to dissipation eq. (5.5) reduces to
2 3/z
(8L = ¢ =& (5.10)
dy vl

Taking advantage of eq. (5.2) we obtain
2
2 [ U z
€ (9—3) = ck (5.11)

When ¢ is substituted for k the following egquatiom emerges
analogous to the mixing-length theory

=4 2laU

Agreement between eqg. (5.12) and the mixing-length theory, eq.
(4.4), is achieved when

: 4
Cy = ae.\/ ¢, (5.13)

Rearranging eq. (5.11) gives

R-_-\/-_—c‘_:r— 3 ‘%—gl ~ \fcb/¢| (5.14)
To summarize, it has been shown that the assumption of local
equilibrium of TKE in the boundary layer is equivalent with the
mixing-length theory. Furthermore, according to eqg. (5.14) k and
T are proportional in a local equilibrium layer. By neglecting
the time derivative of k and the diffusion term in eq. (5.5) the
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BL1PJ model is similar to the BLOBAK model discussed in chapter
4.

$.2.14 The choise of empirical constants

The present turbulence model contains three empirical
constants c; ,c3 and o.. c, appears in the dissipation term.
According to Launder and Spalding [28] we use

c,=0.08 ' (5.15)

The value of c; is determined given the requirement that the
one-equation model should be reduced to the mixing-length model
in the simple case. It follows from eq. (5.13) that

C3= ©.40 ~\yo.08 = 0O.243 » (5.16)

ox is contained in the diffusive term and.is effectively pro-
portional to the inverse of a diffusion constant. Hanjalic and
Launder [13] have optimized o«x so that the best possible agree-
ment between calculations and experimental results was achieved
for a number of different flows. Their results give o. the value

ox =1.25 (5.17)

Later Launder and Spalding [28] make reference to the paper by
Hanjalic and Launder and give the similar value of

“ox=1.0 (5.18)

Reynolds [35] gives a description of the well known STANS boun-
dary layer flow model. In this o, is taken as

or=2.37 ' ' (5.19)

The value is obtained by matching results of a zero-equation and
a one-equation model.

In BL1PJ the value stated by Launder and Spalding (5.18) is
used since it is the commonly accepted value.




Sensibility studies have not been performed in order to see

consequences of small changes in the values of the empirical

constants.
5.3 . Numerical solution
5.3.1 Strateqy for the numerical solution

An analytical solution to egs. (5.1) and (5.5) and the asso-
ciated conditions cannot be found. Consequently a numerical
‘solution is sought. In analogy with the zero-equation model a :
finite difference method is applied. él

The flow equation and the transport -equation for TKE are
coupled and should be solved simultaneously. However, results
from the zero-egquation model indicate that variations in the
eddy viscosity are less important for the velocity distribution

than the opposite. The k-equation is nonlinear and requires an

iterative solution procedure at each timestep. These two effects
are combined to form the solution procedure at the timestep t,

as depicted in Fig. 5.1.

-———————————————————————————— -

————————————————

Fig. 5.1 Solution procedure
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In the proceeding sections it is outlined how the equations
are solved independently given the distribution of the ’‘oppo-
site’ quantity. For instance the solution of the flow equation
with a known distribution of TKE.

Both initial value problems are illustrated in Fig. 5.2.
5.3.,2 ion of the flow eguation
The flow equation

gg= aalio - %(E %{,l) (5.1)

is a second order partial differential equation of the parabolicgv

type like for instance the well known diffusion equation.

The solution to (5.1) together with the Boundary conditions
derived in section 5.2.2 is found using the finite difference
method. The principles are discussed elsewhere in this report.
As eq. (5.1) is linear with a given e-distribution also the

resultant difference equation will be linear. Hence the solutioné

is found directly from the system of linear difference equa-

tions.

The mesh points in the computational region are distributed
using the transformation (4.19) to give the smallest mesh size
close to the solid boundary. In BLOBAK the equations are solved
in the transformed coordinate system. In this case we shall
operate in the original system taking into account the varying
~mesh size. The mesh is shown in Fig. 5.3. Notice the small
differences in e.qg. fhe numbering between Figs. 4.2 and 5.3.

The individual terms in the differential equation are
approximated by

%LCJ‘ s (U} -uj) (5.20)

U. A
aat = TL(Uo} = Mazas (5.21)

ol - | 7
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z—€ & e — (Ui"-V!)-€= u!-u! (5.22)
as 33 é(ﬁg,ﬂ?éﬁs) ¢ 63”‘( ¢t Ul) (2 BB; ( ) U‘ )
where '
BE_ A gl & eito (gl gin
e*= 2 (& +€!) i1 (g)v ) (5.23)

It is possible to determine (5.21) exact as

% = o cos(wt) (5.24)
ot : : .

since the ambient flow velocity is given by eq. (4.11). However,

the use of (5.21) ensures consistency between the differential

equation and the difference equation. The right-hand side of
(5.1) is weighed between the timesteps t,., and t; according to

HS=(1-a)HS; - 4 +aHS; (5.25)




a=0 corresponds to an explicit method of solution,

whereas a=1

yields a fully implicit method. When a=0.5 eq. (5.25) is similarg

to the Crank-Nicolson method, see e.g. [33].

The difference approximation to (5.1) in the point (y, ,t,) isé

in the usual dimensionless variables found as

___ j {
'Fuj (U UJ ) ( Ol.-1 VZ(A‘jr\ bﬂ) \

U -ul, g U!..-U.‘::}
({ O() [E 8954 ecl'-q oy;

Wk L) 1 - Ut
X [aj."—U—LL = ei’f—u—] 3§t
(5.26)

5 [4
a4, Ay

Together the equations for all the interior mesh points form a

system of linear equations of the tridiagonal type

. '_‘ . H - H .
A‘U‘.J' + B‘LJ‘.J + JU" =D . s=t.N

J

The coefficients A‘, B, C' and D! are given by

; : -t i

ANee—1 gl

& (aﬂi.."ASj_) ¢ wj

(e &
Bl L o [ght ., it d )
a at i (A J."AS ) 6: &y, ¢ 8y

Cl=- ! give

2oy ~29) 89,

(5

(5.

(5.

(5.

(3.

.27)

28)

29)

30)

31)
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Due to straining of the wall coordinate the coefficient matrix
in (5.27) will not be symmetric. The equations are, nonetheless,
solved efficiently using the tridiagonal-algorithm also used in

The explicit solution for U is used as a first guess for the
solution to a timestep and is given by

M,

; Ny J ) j >4
3 J _at |t U‘- -Ui-c_ B Ue--Ui-c
U[ = U('-« T (Uo,c‘ = Uﬂ,c‘-' ) * t(%““vAgJ-) ‘%., [‘.. = 49')-” é;:: &y _l( 5. 32)

3

5.3.3 Solution of the k-equation

Like the flow equation the transport equation for turbulent
kinetic energy

. /2
(e ak] B_U)a_ s
%"33[0;33 +€(93 < {

is also of the parabolic type. FDM is used to find the solution
in the same region as for the flow equation. Now, since the
differential equation is nonlinear the corresponding difference
equation contains nonlinearities as well,

The diffusive term can be elaborated to vield

2

ok ¢ 2k 2L oYR ok &] w¥ g
a—e—?k[‘ﬂ:'@ﬂ;; + oy *‘\(?lat’z ’E(E)-C‘T €5.33)

The time derivative is approximated as usually

%a‘ - (wI- &) | (5.34)
while the remaining derivatives are substituted by

+1 ) J )=t .
2k [ - R - & }._ J
OR .~ L + - = F (5.35)
% 2{ “jes by ‘

AT I i .

ok a -y _ K-k } =AY (5.36)
oyt A CTRRTS) B &Y;




'Fk'- =0

s ;0N (5.39)

The system of linear equations contained in Newton’s method

is
AT (’F{-'""“'*%J-L"") * B () - C (& -e™) = D (5.40

where the coefficients can be derived from (5.39) by partial
differentiation. They are given by

- al) i {
J —— —
- \[‘;. Zay, {(E d "’ (‘j h.'j z lj z ("‘iin vqj)}

(5.41)

" —
Ao = R,

n_ kR | e e _1_i) Nl 8 .f__(__-i)
G=ad =-% *n.,c-g{e % (asﬁ'* REACT) R-A vl

x { L lj[(ﬁ)j]_gc Vel } (5.42)

* 3
R 2 h.;J N ‘ L)
n k. a o - | 3(.) ¥ i
=2 - Q & —_ age..| 28 | S — (5.43)
Cj "" k\, inkij &9_:.. {(ggi* ‘J h‘.l N al:l t!\b‘ijq'ésj)
and
D} =-£k} (5.44)

As a first guess at the solution to the k-equation in the point
(ys ,t¢) is used the explicit solution which follows from (5.238)
when a=0.

= B! . Q 4
k}!_ k‘_‘ ?TN at { [Cs LJ -Jt R}, 4 A“ ]

* 6 ((%’:l)l 12' < ‘% }

(5.45)




5.3.4 Implementation

The one-equation model is implemented through the programme
BL1PJ (Boundary Layer 1-Equation Peter Justesen). The structure A
of and operation procedure for BL1PJ are discussed in Appendix
B.

95.3:5 Stability and accuracy of numerical scheme

The discussion in Chapter 4 concerning the Zero-equation
model applies also here. Practical details are described in
section 5.5.6.

5.4 Quantities derived from the one-equation model

From the velocity and TKE distribution a number of characte-

ristic properties of the boundary layer flow can be derived. The
eddy viscosity is found directly using the Prandt-Kolmogorov

relation |
€=V U : (5.41)5,
Given ¢* the shear stresses are defermined as |

7%= g° %" (5.42)%

The bed shear stress 7,* is taken as the value found from 1inear§
extrapolation of the shear stress in the two mesh points adja- '
cent to the bed point in the FDM-mesh. The friction velocity

then becomes '

U; = Sisn('r‘)‘JI'c“l | (5.43)

The friction coefficient £, and the energy loss factor f., are
determined as described in chapter 4,

By definition the displacement thickness is given by

6"= J (1- UH:') dy* (5.44)



while the momentum thickness is expressed by

g'= j({ U, _‘ (5.45)

In the programme BL1PJ these two integrals are evaluated by
numerical integration employing the trapezoidal rule.

L 4 Ne{ J:" U.:‘ -

) =§{({- %)f(q-ﬁ:)]. ay; /2  (5.46)
Nel -1 U J “

6= 2 (- 3+ )i e
3= 9 % ot -

The wave viscosity was defined by Lundgren [29]

. = (5.48)

Until now all quantities could be found also in the zero-
equation model. The inclusion of a transport equation for the
turbulent kinetic energy allows us to study the budget for TKE
within the boundary layer. For this purpose the terms in (5.5)
are evaluated. The production term is given by

2 .
)
PROD = &(%f) (5.46)
and the dissipation is
ez*]ya
DISS = C (5.47)

KL’

while diffusion is found as

DIFF = = [OE. 2;] (5.48)

To determine the diffusive fluxes of TKE we must reach back
to the k-profiles. The model assumption is that the flux of k is
proportional to the negatlve gradient of k and the eddy
viscosity. This is expreseed as

= - £ 38
Q. = & X

X




Q,= -%% (5.50

where Q, and Q, are fluxes of k in the x- and y-directions
respectively. Reference is made to eq. (2.28). It is straight-.
forward to find the vertical diffusive flux Q, from the k-
profile. In the derivation of the k-equation the horizontal CEE
diffusion was neglected as it was considered negligible. Even sofv
we shall estimate it from the k-field. Consider a wave of :
constant form travelling at the velocity c. A new space Gariableg
§ can be defined as :

g=x-ct (5.51)

In the system (¢,y), which is in fact a frame of reference that _
is moving along with the wave form, the flow is steady. From eq.g
(5.51) we deduce that :

9 __ 4193 ~ (5.52)

DX C ot

The horizontal diffusive flux can then be estimated as

=1 & R 5
Q.= 2 o ot - (5.53)
which can be rearranged

/0= ks Unm € 1 3
Q; U«u a. c Uq..hchh w U.f_ a‘t (5.54)

The wave celerity is made nondimensional with the ambient
velocity amplitude. This parameter U,.,/c is a function of the
wave height. In this work the wave motion is described by first
order theory which is only valid for small amplitude waves. As a 5
consequence U,,/c is much smaller than unity. Further, if the :
advective terms had been retained in the equations the parameter f
Usa /c would have been necessary. | :

The calculation of Q, and Q, takes place in a computer
programme TKECIR which at the same time produces automatic plots
of the circulation of TKE by means of arrows. The source
programme is enclosed in Appendix C.
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5.5 Results from the one-equation model
5.5.1 Local equilibrium in TKE

In section 5.2.3 it was shown how the one-equation model
could be reduced to the zero-equation model compiled in chapter
4. The first step in the testing procedure for BL1PJ was
therefore to verify that these two models yielded the same
results within the range of discrepancy that should be antici-
pated due to the differences in the numerical methods. Indeed,
relative deviations of less than 1 % were found on the velocity
field and shear stresses. It was concluded on this basis that
.the local equilibrium option in the programme BL1PJ was working.

5.5.2 Velocities and shear stresses

Velocity amplitudes and phase shifts for a’/ks =124 are shown
in Fig. 5.4. The numerical details for this and other
computations are discussed in a later section. A comparison of
the graphs in Fig. 5.4 with the similar results from BLOBAK
shown in Fig. 4.7 reveals that the velocity amplitude is exactly
the same whereas the phase shift is slightly smaller. The
maximum overshoot and the phase shift between the maximum defect
velocity at the bottom and the maximum ambient velocity for
different a/ks-values are listed in Table 5.1. Generally the

a/ku U.../U1. ¢

10° 1.054 35.1
101 1.047 27.9
102 1.038 21.2
10% 1.031 15.8

Table 5.1 Maximum velocity overshoot and phase shift between
max. defect velocity at bed and max. amb. velocity.

overshoot is less than found from BLOBAK. Similarly, the phase (79
shift is smaller although only slightly. The same decrease in
both overshoot and phase shift for increasing a/k, is observed.
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For all practical purposes it can be concluded that the two
models yield the same velocity fields.

Next we will consider the shear stresses. The shear stress
amplitudes in the case where a/kuy =124 are depicted in Fig. 5.5.
The values are consistently smaller than those by BLOBAK. The
bed shear stress is some 3-4 % less. The general variation of =t

N,

is the same. From the bed shear stress variation the friction 8\:
factor can be determined. In Table 5.2 the results from BL1PJ

are shown. The energy loss factor and the ratio f,/f., are

included as well. The smaller shear stress values affect both

a/ku fe | 9 Eo L E,
100 0.149 0.132 1.32
10t 0.0468 0.0441 1.06
102 0.0186 0.0182 1.02
103 0.00903 0.00906 1.00
28.4 0.030 0.029 1.04
124 0.0172 0.0170 1.02
Table 5.2 Computed values for f,, f, and Ee F'E, &

- £, and f, whereas the ratio fo /Ta
cf. Table 4.2.

fits well with experiments,

5.5.3 Boundary layver extension

The variation of the displacement thickness and the momentum
thickness correspond to those obtained from BLOBAK. The
explanation is, of course, the similarity in the velocity fileds
from which both 8 and 6 are determined. In Tahle 5.3 we give the
values for both these quantities at wt=n/2.
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Fig. 9.5 Shear stress amplitudes for a/ks=124
a/’/kw 5/ku 0/kn
10° 0.045 0.012
10! 0.119 0.036
102 0.366 0.127
103 1.366 0.540
Table 5.4 Displacement and momentum thicknesses.
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5.5.4 Budget for turbulent kinetic energy

The major improvement in a one-equation model of turbulence
is the ability to describe the generation, circulation and
dissipation of the turbulent kinetic energy contained in the
turbulent velocity fluctuations.-ln the mixing-2ength theory the
TKE was ssumed to be in local equilibrium while a redistribution
both in the time and space domain can now take place.

An example of calculated profiles for the turbulent kinetic
-energy for a/kes=1000 is depicted in Fig. 5.6. Close to the bed
the k-distribution resembles the shear stress distribution
since the TKE is in a quasi-equilibrium state in that region.

This can be seen from Fig. 5.7 (a) where we have plotted the
variation of the four terms in the k-equation, eq. (5.5), for
four different phases during one half period. In all cases the
production and dissipation terms are dominant very close to the
wall. At wt=0(n), when the ambient flow velocity is zero, all
terms small, and of equal magnitude. In the accelerating flow at
wt=n/4 the turbulence is spreading from the bed area via the
diffusion process. This continues well into the deccelerating
part of the period where the boundary layer expands under
influence of the adverse pressure gradient. From wt=n/2 where
the pressure gradient is zero to wt=3r/4 the diagrams show that
the production and dissipation profiles are getting more flat
which indicates the expansion of the boundary layer. Note that
in all cases except when the flow is retarding at wt=3ax/4 there
is a level in which the production is zero due to a vanishing
velocity gradient. Similar diagrams for a/k« =100 are shown in
Fig. 5:7 (b). Here almost the same picture is recognized, the
difference being that the activity is closer to the bed.

Although the strength of the individual terms in the k-
equation reflects the energy exchange in the boundary layer it
is instructive to consider the diffusive fluxes of TKE. Plots of
the circulation of TKE have been produced using the computer
code TKECIR. First, in Fig. 5.8 (a) the case a/ke=10° and
Uia/c=0.353 is shown. This choice of parameters corresponds to a
situation where H=5.2 m, T= 8 sec., h= 20m and ky= 0.005 m - a
typical situation in Danish waters. Only the area up to 25 ke or
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Fig. 5.6 Caiculated profiles for turbulent kinetic energy,
a/kw=10°

0.125 m above the bottom is included in the figure. The wave on
top of the diagram shows the variation of the surface elevaton
and the ambient velocity at the bottom over one wave length. The
flux is shown as vectors indicating direction and magnitude.
Virtually all transport is in a vertical direction which means
that the neglect of the advective terms and horizontal diffusion

is apparently justified.

Just before the ambient velocity is a maximum the production
is highest (cf. Fig. 5.6) and there is a significant outward
flux of TKE. It is seen how this energy is gradually moving away
towards areas with less production and available energy. The
memory effect plays an important role in this exchange since
energy is not only moved away from highly productive areas near
the bed in a vertical direction but is also retained from times
with higher production to the period of flow reversal where it
is then dissipated. Around wt=0(n) there is a small flux of TKE
towards the bed. The explanation can be found in Fig. 5.6 which
shows that the production has a minimum equal to zero close to

the bed at this instant.
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In Fig. 5.8 (b) the case a/ks =10 is depicted.

To present the variation of k in a different and perhaps more
comprehensive way contour plots are shown in Fig. 5.9 for the

same two values of a’/ks, 10 and 103 . They were produced by the :
programme TKECON, see Appendix C. The considerations above are @ ‘
here confirmed. It is seen how a combination of wvertical .
diffusion and the memory effect give rise to a phase shift for

the extreme values for k up through the boundary layer. As will

be discussed later in connection with the eddy viscosity this

phase shift is most pronounced for small a’/ke -values. This is

due to a more even ratio between the period of oscillation and

the time scale for the decay of turbulence. A decreasing }
variation over the period for the level of k at a given distance
from the bed is found for smaller a/ks -values.

Unfortunately no experimental data are available to
facilitate an evaluation of the results for k in the rough wall
case. The balance for TKE obtained is in good principal
agreement with both theoretical and experimental results
presented by Hanjalic and Launder [12] in a sfeady flow. One of
their illustrations is reproduced in Fig. 5.10.

Unin

14 1 1 1 !
[} 02 04 06 (2] 19

/D
FicTnz 3. Turbulence energy balance in AqmnmLh_ml flow. —, predictions.
Experiment: O. —dU,dz)Dju},: x, - (d}(wua)ids)Djul, : @, Dfu?, .

Fig. 5.10 Energy balance from Hanjalic and Launder [12)
Steady turbulent flow in a channel.




Finally the turbulence intensity is considered. In some
applications it might be useful to have information about the
intensity of turbulent velosity fluctuations relative to the
mean velocities. One example is the flow description around a
seabed pipeline. Under certain conditions vortex shedding takes
place which causes the pipeline to vibrate. But very high
turbulence intensity in the boundary layer could affect the
mechanism of vortex shedding and possibly reduce its effect. <§E
Naturally we cannot give the magnitude of the three velocity
fluctuations from the present model. The turbulent kinetic

energy k can however provide a rough estimate.

Assume that the turbulence is isotropic even if we know from f
experiments that this is not correct. It follows from eq. (5.3)
that

Vwe ~ (2R3 (5.55)

In Table 5.4 this estimate is given as a function cf a’ks and in
four different levels.

a/ku y/kn=1/30 y/ka=1.13 y/ka=11.7 Y/ke =122
199 0.419 0.072 0 0
101 0.178 0.095 0.002 Q
102 0.110 0.092 0.043 o

103 0.076 0.073 0.059 0.016

Table 5.4 Turbulence intensity found from BL1PJ

An extremely high intensity is present at the bed for a’/k. =1
according to the results from BL1PJ.
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5,5.5 Eddy viscosities

As a consequence of the improved modelling of the turbulent
kinetic energy conditions in the boundary layer a better
description of the eddy viscosity variations must be antici-
pated. To get this confirmed we first look at the eddy viscosity
profiles for different a/kx -values. Fig. 5.11 shows a picture
which is very different from that in Fig. 4.14. The vertical
variation is smoother and there is no snip following from a zero
velocity gradient. The time variation is affected by this to
give smaller fluctuations over the period. For askuw=1 it is seen
that due to the transient part in the solution the eddy visco-
sity is steadily increasing and influencing areas further away
from the bed where the solution on the other hand is seen to be
well determined.

In order to investigate the variation of & further timeseries
for the eddy viscosity are depicted in Fig. 5.12 for a number of
a/ku -values. Once again the difference from the BLOBAK-results
in Fig. 4.15 are remarkable. As a result of the inclusion of the
memory effect in the turbulence ¢ does not come down to zero
twice every period. There is on the contrary a mean value about
which ¢ is fluctuating. The magnitude of this fluctuating part
is clearly seen to be a function of both a/ke as well as the
distance from the bed. For small a/k.-values the amplitude is
much less than for large values. Here the time-scale for decay
of TKE compared with the period in the ambient oscillatory
motion is decisive. For the relatively slowly varying flouws at
‘large a/ky-values there is a possibility for the energy to
dissipate around the time of flow reversal. Hence the k-level
drops and consequently smaller e-values are found. As opposed to
this for relatively high frequency oscillations at small a/ky -
numbers the time-scale for decay of TKE is comparable with the
oscillation period which permits the flow to maintain an almost
constant level of turbulence during the period.

To illustrate the relation between a’/ks and the magnitude of
fluctuation for € in a given level results for Caax /€Eain are
presented in Fig. 5.13. 8 diffepent levels in terms of y/k. are
included and a very consistent picture supporting the
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speculations above appears.

Simpler models that include a time-invariant eddy viscosity
will, of course, all be on the line €uus/€ein=1 in Fig. 5.13.
Consequently they seem to be most relevant for small values of
the amplitude/roughness ratio when it comes +to describing the
eddy viscosity. At the other extreme we have models like
Fredsge’s which assume a logarithmic velocity profile. For very
large a/kws -values they may be successfully applied. In the
important ‘transition’ range between, 3ay, 5 and 10° it is
imperative to include the transport equation for turbulent
kinetic energy in the model in order to achiave a good descrip-
tion of the eddy viscosity. For the time-invariant-¢ models it
must be remembered that the flow may be expected to change its
character for very small a/ky-values due to -sortex shedding
behind the individual roughness elements. From Fig. 5.9 (a) it
appears that most of the turbulent region cam be found in a

region less than one roughness from the bed.

To facilitate a comparison with experiments Fig. 4.17
includes the mean eddy viscosity profile for a’kn =124 found from
BL1PJ. The wave viscosity as defined by Lundgren determined ‘in
BL1PJ has been added tc Fig. 4.13. Close to “he bed therec is
agreement between BLOBZK and BL1PJ. This is in the region where
local equilibrium in TKE prevails according %o the observations
in section 5.5.4.

5,5.6 Numerical aspects

The considerations about the numerical me thod that were put
forward in section 4.6 concerning BLOBAK aprrly here as wall., The
meches have been used for the same a/ke-values and 200 timesteps
per period were used in all cases. a=0.5 corresponding to the
Crank-Nicolson metod has heen used throughout the study. It has
been checked that the difference equations are ftulfilled in all

points using a special procedure ERRORV 1n E.LIPJ. Then the local

s

v

2d
equilibrium opticn was checked against BLOBAK. Follecwing this 1¢
was obegerved that BLIPJ yielded velocity prcfiles that were loga-

rithmic close o the bed.
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But before a solution of the full system of equations could
be determined it was found necessary to compute a few periods
assuming local equilibrium in TKE. In this way a hot start using
initial prcfiles for both U and k could be performed. Otherwise
the numerical solution did not converge and negative values of k
were cbtained in the vicinity of the bed. This is due to the
nonlinearity and coupling in the equations. In practice four
periods were run using the reduced model. Hereafter two initial
periods with the full system of equations were completed with a
minimum of output thus providing a solution which could be
stored on an external file and reused. All results presented in
this chapter were obtained dUring the third period with the

complete model.

In some of the diagrams presented traces of the transient
component have been visible, In practice it is a Sign of a
solution which is not in equilibrium. But it was decided that
the main conclusions and a large majority of the results in
general were conly slightly affected by this transient o that it
could not be justified to spend additional computer efforts on

refining the computations through extra periods.

A typical running time for BL1PJ per pericd was 80 - 100
seconds on the IBM computerz at NEUCC using a mesh with 43 roints
Every timestep the flow equation was solved 8 times whereas the
k-equation required 15 times of solution. The time required
depends on a/kw . he solution is most easily found for small value
of a/ke. L list of the2 completed runs with BELIPJ is enclosed in
Appendiz B,



6, BL2PJ, A TWO-EQUATION MODEL
6.1 Introduction

To investigate the importance of the length scale in the
oscillatory turbulent boundary layer a two-equation model of
turbulence is developed in this chapter. The analytical work as

well as the numerical method are outlined.

6.2 Construction of model

he egquations

o
(3]
[N

The iransport equation for the dissipation rate reads

according to chapter 2

3z _ .3 Eoe>+CaE/5U2 Ve

St _33 KC'Z - r\—ag) - G, 2cC, —L . (6.1)

where z is the dissipation rate
32

Z=C, T (6.2)

‘ and the length scale is now a function of both space and time.
The Prandtl-Kolmogorov relation for the eddy viscosity is

2
g_=\/EL=c1% (6.3)

Insertion of eq. (6.3) into eq. (6.1) gives

2 oS >
sz _ 9 (ck o= W) _ . &

Take the length scale 1 as
/2
1 =z (6.5)

Then egs. (6.4) and (6.5) togetner with the flow equation

(2.18), the transport equation for turbulent kinetic eneragy, and
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the Prandtl-Kolmogorov relation constitute a two-equation model
of turbulence for the flow in a two-dimensional oscillatory
boundary layer flow over a rough bed. In the literature the
model is bften referred to as a k-¢ model, where & means
dissipation of TKE.

6.2.2 Boundary conditions ;

The following boundary conditions are associated with eq.
(6.4)

(i) Near the bed we assume that local equilibrium in TKE
prevails. Recalling a logarithmic velocity profile it is]
found that !

. :

3
3 c, ¥ 2 2 Up Ue
L) 3

v & Cﬁ"aﬂ
At the level where the velocity vanishes we require
3

Z (3,7 ku/zo) = —2%"— (6.6)

(ii) At the free boundary the rate of dissipation is zero
z2(y, )=0 (6.7

(iii) The initial profile of z is a distribut ion that
corresponds to the given profiles for k¥ and U, cf.

Yadqils

(iv) The periodicity condition applies to the dissipation
rate as well as to k and U,

The boundary and initial conditions for the twoc other equations
are described in 5.2.2.

6,2,3 Constants in the z-equation

In the transport equation for the dissipation rate three

empirical constants have to be enumerated. Frem considerations




about the decay of turbulence behind a grid, Rodi [36] comes to
the result that based on experimental evidence cs can be taken

as
Cs =C2¢=1.92 (6.8)
where c,. is from [28].

The value of the diffusive constant o0, was found from
computer optimization by Hanjalic and Launder [13] and

referenced by Launder and Spalding [28] as

0. =1.3 ' (6.9)

The constant c. can be related to cs and 0. when local
equilibrium in TKE is assumed to exist. It is found that

e U

- = _ £

Fr O =gy | (6.10)
3

e _ _ U (6.11)

Sy xy®

e=Us ky (6.12)

Neglecting the rate of change of z in eq. (6.4) and utilizing
the relations above we arrive at
4
a/Uacg }& & U KB U;\J.
o QJ_'(j ST ;ri-_—i = %3
= Ay Xy
After some rearrangements this expression can be reduced to
4
C, = G - ==X (6.13)

This equation fixes the value of the constant c, when the other

constants have been chosen. In the present case we get

2
Q40
- 192 — _ - (6.14)
Q=12 - 52 - 4

Apparently Rodi and Launder & Spalding took the von Karman
constant as
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x=0.423
in order £o obtain
c, =1.44

This value of x stems from a paper by Patankar and Spalding
[33]. Here we shall use (6.14) since x=0.40 is prescribed
throughout this report. L

6.3 Numerical solution

6,.3.1 General procedure

The solution procedure is similar to the one used for the
one-equation model. The equations are solved sequentially star-
ting with the z-equation then the k-equation and finally the
flow equation. Knowing the solution to the z-equation the length

scale 1 and its derivative can.be determined as

3z
- c R”
é-ciz
3¢
L. o~ 3 R 4 _ R C.‘S_«(Z\/-{_a_‘?___‘i_z) (6.15)
Dy S zVk 3¢ Z Ty g WE 9 Z

In this way an easy connection to the one-eguation is available.

6.3.2 Solution of the z-eguation
The numerical solution procedure adopted to the transport
equation for z is similar to the one used for the k-equation,

cf. chapter 5.

The first order difference approximations are

__52 2
=
S
-
D2 A




Eg. (6.4) can be rewritten as

A 2ec, 2R 3z _ K ax oK 5% U at
oz _ L g _ 1 1 + —_—
ot 20, °4 9y Z*g, 3y T zg, o Sk s) "S e
(6.18)

Utilizing the approximations and weighing the solution in the
time domain according to (5.25) yields the following difference
approximation in dimensionless form

fz = '%( ;\ ) (" {33 o, [2 (\gg) %‘1—] GaJ-—i

-t

&&‘«)’H'ﬂc [@}) 1 Cs(a'..*) }

l“

T @)+

b" ' ‘zJ_ .
* C-e s R+ <6 [ g;})] :(b;) } i LN 6.19)

Again in this case we use Newton’ s method to solve the system of
nonlinear equations. given by (6.19). The coefficients are found
to be (cf. eq. (4.26))

i fz: Q c, k! 'z 4 ‘ZJ i A
A= 22 Q. : - + R — (6.20)
¢ an ' kN E‘J O’ZAS) 33 ¢ & Z‘J ¢ %' k A\};u‘ AsJ)

j2 9% 4 a [eri fe [*«.-J‘-(ak ] i_TorY ( wil
%’"a—zg"'?*E“ayT?? =) Q'*[Jh)'l%?.i‘

P ] IRt L )
—— - -_—— ~ T —— | — . — - C
[Agi 84, 2! Hi kl) i(“%,," 295) \ 25, 24 = (6.21)

Ki)Li 2l . ~ ) (6.22)

D) = -Czj(zif‘) (6.22)



6.3.3 Implementation

The model has not been implemented.

6.4 Assessment of model capabilities

As the mcdel has not yet been implemented as a computer
programme no results are available. Assessment of BL2PJ compared
with BL1PJ and BLOBAK is therefore not possible. However, it is
believed that there will be no significant change in the results
as long as we have a uniform ambient flow. Inclusion of the advec
tive terms in the governing equations and second order wave theor
may change this picture since gradients will then be present als%
in the x-direction. '

v



7. APPLICATION OF BLOBAK AND BL1PJ TO SEDIMENT TRANSPORT
 CALCULATIONS

7:1 General

In order to evaluate the sediment transport in the sea knowledge
about the vertical distribution of suspended sediment in waves is
required. Here we will consider the situvation where the bed is
plane since possible ripples are normally washed away at times
‘with large sediment transport rates under severe =torm conditions
in nature.'The flow regime is assumed to be fully turbulent and

with a rough bed. 3

The sediment description in this work follows that of Fredsge
et al.,, [10], closely. But whereas they uzed Fredsge’'s simple
boundary layer model, cf. section 3.2, to describe the flow we
shall employ the turbulence models developed in this report. The
purpose is to get an evaluation of the importance of these

models in a sediment transport context.

7.2 Short theoretical introduction

The theory behind the calculation of the vertical concentra-
tion profiles for sediment in waves can naturally be split intec
two parts. One is the description of the flow. The other is the
modelling of the sediment suspension given *he flow conditions.

These topics will he dealt with in a reverse order-.

The vertical distribution of suspended se2diment is usually
described by the diffusion equation

oc ¢ P 3¢

— - ! . (7.1)
ot w';gfég es-;g .

where ¢ is the concentration by volume, w is the fall velocity
of suspended sediment and ¢, is the turbulent exchange factor
for suspended sediment. In eq. (7.1) the herizontal diffusion
term 1¢ neglected since it 12 assumed that the vertical cradientc

of concentration 1is much larger than the cerresponding hoerizontal
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gradient. The advective terms are omitted as well.

A problem is to give a value for the fall wvelocity. In this
case we will make a comparison with experiments in which w was
determined. But in practical cases it may be very difficult to Q;
evaluate w. Another problem is &, . This quantity is not the eddy
viscosity but rather a turbulent exchange factor for sediment.
Very often the particles are assumed to follow the eddies and

consequently € is given as
€s =€ (7.2)

In reality, larger particles might have an inertia which causes &
phase lag between big e-values and the diffusion of the grainsl@%
However, such a discussion is beyond the scope of the present
study. Presently eq. (7.2) is used for e..

The boundary conditions-are as follows

(1) The instantaneous concentration at the bed 1s assumed
to be a function of the instantaneous bed shear stress.
Several formulae exist but we use the same as inm [10].
co i3 then a function of the dimensicnless bed shear

stress @
Cp =Cp (e)

in which 8 is defined as

%o

Sm
Ty (7.3)

In eq. (7.3) s 1is the bed shear stress, p 1s the fluid
density, s is the relative density of the grains, g is
the acceleration due to gravity, and 4@ is the mean
grain diameter. 6 1s called Shields parameter. Using
the functional relationship between 7, and c, from [10]
the lower boundary condition for eq. (7.1) is
specified.

Towards the water surface 1t 13 demarnded that

~
—

[
~




c(t,y)>0 for yr= (7.41{}/ i
e

(iii) The time variation must be periodic since the ‘driving
force’ is periodic. In a mathematical formulation this
is equivalent to

c(t,y)=c(L+T,y) (7.5)

Now, the idea of this study is to see the effect of including
the memory in the turbulence; The flow model used in [10] is
therefore replaced by either BLOBAK or BL1PJ. From these models we
get a timeseries for the friction velocity, U,, and the eddy
viscosity field during one half period.

It is now possible to solve eq. (7.1) numerically. We shall
not discuss the detailis here, reference is made to {10].

7.3 Model implementation

The present turbulence models have been interfaced with an
already existing programme P20S developed earlier, see [101. The
mcdifications made in P20S are as follows. Routines have been
made to read U, and ¢ from from an external file created by
either BLOBZK or BL1PJ. Usually these data are not given in the
sazme levels as used by P20S due to a different coordinate strai-
‘ning. Therefore an interpolation procedure was constructed te fina
irntermediate values in the profiles provided in the file. In the
main program the values of ¢ and U, calculated by P20S were re;
piaced by the new values. Large parts of the original program were
retained since this procedure caused the least problems even if o
big number cf dummy statements then existed in the programme. The
changed and new modules are enclosed in Appendix E.
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7.4 Theoretical results and comparison with measurements

To facilitate a comparison with both the theoretical results
in [10] and the measurements in [42] we have chosen to perform
two computations using BLOBAK and BL1PJ for the parameters
a’ksn =124, w/U,.=0.018, and 0..,.=1.45 which corresponds to d=0.19
mm, s=2.65, a=1.86 m, and T=9.1 sec in the experiments. The grain

diameter is related to ks« through eq. (2.50).

The instantaneous sediment concentration found using BLOBAK
is depicted in Fig. 7.1. Seven different levels are included.
The corresponding diagram showing the results from BL1PJ is

given in Fig. 7.2 whereas the theoretical results in [10] are
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Fig. 7.3 Instantaneous sediment concentrations,

from [10]




reproduced in Fig. 7.3. The general variation in the three cases :
1s quite simifar. The sediment is suspended when the bed shear
stress is largest some time before the outer velocity is a
maximum, The phase angle ¢ is indicated in the diagrams. The
concentration is largest close to the bottom and the maximum
concentration lags more and more behind the maximum bed shear
stress as the distance from the bed increases. The minimum conce
tration has a similar rhase shift one quarter of a period before 
It is perhaps instructive to reach back to the contour plots for
the turbulent kinetic energy that were shown in Fig. 5.9. Here
there are similar phase conditions for the k-level,

Note that the neglect of eddies formed in earlier half
paricde gives ize v u drop in tne concentrations in the
beginning of the period in Fig. .3. When the memory in the
turbulence is modelled more sediment is kept in suspension at
the time of flow reversal. Around wt=n/2 where the ambient
velocity is a maximum there is little difference between the

results.,

BLOBAK

BL1PJ

cImiim?

s»10° o’ 02

Fig. 7.4 Mean concentration profile,



Apparently BLOBAK yields higher concentrations than BL1PJ.

This trend is confirmed when we look at the mean concentration
profile in Fig. 7.4. Both predictions are, however, higher than
the measured profiles. The explanation could be that we take

€, =¢ 1in eq. (7.1) whercas there might be a diffusion constant
which should be applied. Such a constant may be estimated by
tuning model results to the experimental data. But other major
uncertainties are connected to this model so that different
reasons can be responsible as well. In the model a sediment
containing a spectrum of different diameters i1s regarded as a
homogeneous material consisting of grains with the median dia-
meter. The fall velocity w is affected by great uncertainty. No
field measurements are available for w.

The variation of the concentration relative to the mean
concentration is depicted in Fig. 7.5 in the level y/ka=37.9,
The inclusion of the memory of turbulence improves this
variation compared to the results from (10]. The amplitude is now
closer to the measurements whereas there is still a phase shift

between the measured and predicted maximum concentration.

To documentate further that the variations predicted by these
improved models may be reproducing experimental results we
finally include an example of measdrements by Horikawa et al.
[(17]. The experiment parameters can be seen in the figure
caption in Fig. 7.6. This example of measurements of the time
variation of ¢ in a number of levels is similar to the
diagrams 7.1 to 7.3.

Although we have not made calculations for thig case a
prelimenary evaluation is that the phase shifts predicted here
are closer to the measured than those found in [10]. The
variations of c over the period scem to be hetter modelled as

well,
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Fig. 7.5 Variation of relative concentration
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Cose 1-8

(a)

Measured variation of concentration with rhase ano
from [17}. a/k.=1140, z:=2 .66, d=N_ 20 mn,
a: w/Us;.=0.020

b: w/U,.-0.024

18]
(5]
)



8, CONCLUSIONS

The purpose of this work was to investigat.e the effects of th
inclusion of turbulence modelling in the description of the roug
turbulent oscillatory boundary layer. Three clifferent models of
increasing complexity were considered. Firsﬁ, the mixing-length
theory was used to construct the zero-equation model BLOBAK.
Yodelling of the turbulent kinetic energy buciget was improved by
inclusion of a transport cquation for turbulent kinetic energy
which gave the one-equation model BIL1PJ. Finzlly a two-equation
model EL2PJ which also has a transport equation for the dissipa-

tion rate has been outlined but it has not been implemented.

No general evaluation of the use of these advanced models
rather than simpler models can be mada. Deperding on which
pheriomenon: 12 considered simpler models might. yield results that
arc acceptable for practical purposes. We shall therefore dis-

uss some of the applications briefly below.

It can be conciuded that the description of the velocity {i1elr
in an oscillatory boundary layer can he obtained from BLOBEK or
BL1PJ as w

Myrhaug [32]. The latter model reguires, however , that £he Loun-
a

1
:11 as from a constant oddy viscosity model I:kc¢ that

ayer thickness is known a priory, cf. section 2.3,
whereas the present models do not have this Zimitation.

& distinet feature which acems inhorent in almost any
ex1sting model is the underczatimation of the friction factor f,
in comparinen with the measurement o by Jonsson and Carlsan Ta3].
Thies one-sidednecss ir the theoretical predictions may ke
explained by the sothod of Simulaling the natural bottom
roughness in the laboratcry. The discrepancy 1s most prornounced

- 1

or smaller aSXe values which supports the smeculations in

rr,
4
$

iwn
n
-

‘tion 3.6,

In the theoretical mcdels it has been pPos:zible to determine

or £, . The relative strawmagbth. of £, *o fF. is

P
]
rt

the euergy loss fac
an anteresting guantity in connection with woive aamping. We have
o

calciulated the ratio f, /78, and good aqgraement with experimental




data is observed. This applies to BLOBAK as well as to BL1PJ,
the latter model yielding slightly better results,

Perhaps the most important topic in this report is the calcu-
lation of the turbulent kinetic energy conditions in the boun-
dary layer. Using the model BL1PJ it has been innvestigated how '
energy is produced, diffused, dissipated, anc preserved from i
times with a production surplus to later times where dissipation .
is high. The calculations show that the production is very high ’
just before the maximum ambient velocity culminates. This sur-
plus of energy is then preserved in the turbulent motions and is
spread towards areac in which the energy level is lower. The
turbulent motions are of course sustained throughout the period
of oscillation. The model shows that this effect is most pro-
nourced for low values of a/ke. The time scale for the decay of
turbulent energy is then comparable with the period of oscilla-

tion.

Unfortunately we have not bcen able to check the theoretical
findings against measurements due to the lacé of experimental
data. Hino et al. [15] made tests with a smoath hied, 2
preliminary evaluation shows that the same tendencies with
respect to the k-distribution in the houndary layer as predicted

by BL1PJ in the rough bed case are present In these exzperiments.

The main implication of Lhe improved descraiption of the
turbulent kinetic energy circulation is that the eddy viscosity
is now related to the turbulent kinetic enerzy, k, rather than to
-the mean velority field., ¢ behaves qualitatively like k when 1t i=o
modelled by BLIPJ. The ability to model the memory in the turbu-
lence has created an improved basis for gs iment trancport caleu-
lations in waves. We have uszed a newly devel cped model to invecti-
gate this issue. Calculations ¢f the concantration cof suspended
sediment were made in three caszes. One was to uze an eddy viescce-
sity distribution as given from a cimple mocdi:l. Anocthar was to
include the eddy viscoszities from BLOBAK. Tho dif ferer.ce hetween
those two distributions 15 the ptiase shifts. Tne last was to use
the resuits from RLIPJ in which the memoery 12 t..ien intu account. .
Given the uncerfaintices with roaspect to fall velaetty, =o2diment

gradation, and the turbulent exchange factor irwerent in cediment




transport calculations the general trend is that the more advanc:

models yield a better prediction of the tendencies whereas quantA

tative discrepancies do exist,

In practice it may often he sufficient to use a constant eddy.

viscosity model when a’/ke is close to unity while a simple modell

like Fredsge’s can be applied in the case of very high a/k, -

values., This is depending on the relative strength of the time

scale for decay of turbulence to the period of oscillation,

But & very important range for a/ky still exists where the

advanced models have an advantage in the refined description cf

the eddy viscosity,

The practical implications of the nodels developed in the
present work are believed to be limited due to the computer
facilities that these models require. They are, however,
Justified in the sense that simpler models can be checked
against them,

Finally we shall outline a few of the topics that woula he
relecvant to investigate further in the future. Tho effects ¢of

variable length-scale can be ctudied if the model BL2PJ is

implemented. It may perhaps not represent as big a step forwar
14

as the inclusion of the memory in the turbulence Hut some

d

changes could be found. Tt should be more infercsting to modify

1

the present models to treat the cmooth wall case. The viscous

SUblayer can be included by matching a logarjthmic velocity

profile in +his layer to the numerical solution in the out.:r
1

~laver. It zeems to be straightforward arnd would tacilitate g

u
comparison with +he comprehensive ¢Xperimental daa by liine ot

[N

al. Another interest ng extension of tha pPresent models would

the incluzion of a

m

teady current so that & combined wave-
ni

current motion in the u idirectional case could he considered,

he
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Symbol

Explanation

coefficients
coefficients
coefficients
coefficients
coefficients
coefficients

coefficients

LIST OF SYMBOL

in
in
in

in

in

in

solution of
solution of
solution of

solution of

solution of

solution of

coefficient matrix in system of equations

U-equation
k-equation
k-equation
U-equation

k-equation
U-equation

right-hand side, solution of k-equation

right-hand side,

coefficient
energy loss
coefficient

coefficient

solution of U-equation

matrix

matrix

matrix

coefficients in solution of k-equation

right-hand side in system of egs.

approximation in z-eq.

wave height

approximation in z-eq.

right-hand s

ide

coefficients in solution of

coefficients in solution of

free pathe of molecules

coefficients

in solution of

number of equations

coefficients

in solution of

number of timesteps

k-equation

k-equation

k-equation

k-cquation

diffusive flux in x-direction

diffusive flux in y-direction

amplitude Reynolds number

constants

period of ambient flow

turbulent. kinetic energy, k

horizontal mean velocity

defect veloc

ity

Eq.

(4.26
(5.28
(5.41
(5.42
(5.29;
(4.27
(5.43
(5.30
(5.44
(5.30
(4.32
(4.44
(4.32
(4.32

(6.17
(5:.2%5.
App. 1
App. ¥

e

App.




Uy
U,
U,

a 0 oo

(]

Ci
Ca
Cs
Cs

C2¢

e

fe
t.
fk
fz

[

WO,

=

m 9 wvw 3

ot

friction velocity

mean velocity in x, -direction
ambient flow velocity

ambient velocity amplitude
vertical mean velocity

velocity scale

amplitude in ambient oczc. flow
straining factor

wave celerity

sediment concentration by volume

empirical constant

empirical constant

grain diametler
deformation tensor
residual vector

energy loss factcr
friction factor

residual vector

residual vector
acceleration due to gravity
index

imaginary unit

index

turbulent kinetic energy
wave number

Nikuradse roughnezs
length-scale

index

mixing-langth

index

pressure

internal fricticn velocity
relative grain donsity
time

horizontal velocity fluctuation

(2.20)

(4.19)

(7.1)
(5.15)
(5.1¢)
(6.133
(6.8)
(6£.8)

(4.4%)
(4.29)
(5.282

(6.12)

(2.:0)



Uy

a weighing factor in implicit scheme
Oi; Kronecker delta
0 displacement thicknecs
04 boundary layer thickness
J0.99 boundary layer thickness
£ eddy viscosity
£ turbulent exchange factor
K von Karmans constant (=0.40) .
N wave viscosity
b4 pli, constant
0 fluid density
v kinematic viscosity
u dynamic viscosity
w angular frequency of osc. flow
¢ phase shift
£ strained vertical coordinate
4 shear stress
Ty, stress tensor
o empirical censtant, one-eq.-model
J, empirical constant, two-eq.-model
8 momentum thickness
Shields parameter
Superscripts: « - dimensionless quantity
Subscripts: b -  hed quantaty

defect velocity amplitude

turbulent velocity fluctuation in x, —direction

vertical velocity fluctuation

local velocity

fall velocity

horizontal coordinate

space coordinate

vertical coordinate

dissipation rate

vector containing unknowns

Im - ambient quant ity

0 - upper cdge of computational redgicn



