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~ INTRODUCTION

Oscillatory turbulent shear flow is encountered in several im- Gr
portant physical phenomena. Flows like pulsatinq blood flow in

arteries and.the flow pas~ helicopter blades are of this type.

50 is the bottom boundary layer beneath sea water waves. This

report is concerned with the latter phenomenon.

In the largest part of.the water body the wave induced motion

can be treated as a potential flow. The orbital motion can be

determined from first order or higher order wave theories.

Close to the bottom the no-slip condition will retard the

flow and cause a boundary layer to develop. In nature this boun­

dary layer will for most practical purposes be turbulent and the

bed will be rough. Usually the boundary layer is confined to a

thin layer close to the .bed having a typical thickness of 0.2 m

under surface gravity waves. The turbulence intensity in this

rather thin layer can be very high and strongly unsteady.

The understanding of the hydrodynamics of this flow is not

only of great academic/scientific interest. but it has also a

wide range of applications in practical engineering.

I ,
I'

4t An inherent part of a wind wave generation or wave refraction

model is the description of wave attenuation caused by friction

and energy dissipation in the bottom layer. The bottom boundary

layer may be even more important in sediment transport computa­

tions. A popular phrase is that 'the sediment is suspended by

the wave and carried away by the currents·. Detailed knowledge

about the bed friction and eddy viscosity distribution is essen­
tial for the solution of this problem.

Over the years models of varying complexity and level have

been proposed. Simple models consider the flow in each half

period neglecting the memory in the turbulence. Assuming a

logarithmic velocity profile computationally efficient models

can be established using the integrated flow equation. One step

further is to solve the flow equation effecting turbulent clo-
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, i, sure throuqh a prescribed constant or harmonically varyinq eddy

viscosity. Next turbulence modellinq is introduced to improve
the description of the turbulent processes.

I

I
I

I
I
I
1

1-1
!,,

These different approaches may have their individual justifi­

cation ~n practical cases. Dependinq on·the particular phenome­

non that is under consideration the simplest and most efficient

method which qives the required information should be chosen.

SimpIer models can be useful when they are included as parts of

complex models for e.q. sediment transport. For example it would

.be a very computer intensive task to make a sediment transport

.model for the surf zone in which the flow description was ob­

tained usinq a second-order closure model. More advanced models

are on the other hand needed to confirm in which cases simpier

models can be employed and to understand the basic structures in
the flow.

The object of this study is to investigate the use of turbu­

lence modellinq in connection with the turbulent wave boundary

layer. Two theoretical models are established and their results

are checked against available measurements. A third model is

constructed but not implemented so no results are thus being

presented for this model. Finally. the effects of a refined flow

model in connection with sediment transport computations are
considered throuqh a few examples.

I '
I'

• All efforts in this paper are directed towards the pure wave

boundary layer. The important issue of combined wave-current
motion has not been treated.

Followinq this introduction the equations associated with

turbulent boundary layers are compiled in chapter 2. A reyiew of

the ~xisting methods in turbulence modelling is given and the

parameters in the turbulent wave boundary layer are defined.

Chapter 3 is a review of earlier works on oscillatory turbu­

lent boundary layer flow with the purpose of introducing the

reader briefly to the development of this specific topic.

In chapter 4 we discuss the zero-equation model BLOBAK which



7

is the first of the models compiled in this study. Chapter 5

contains a similar discussion of the one-equation model BL1PJ.

whereas chapter 6 is a description of the two-equation model
BL2PJ 'which has not yet been implemented.

An example of application of the models developed in this

report to sediment transport is presented in chapter 7.

Whenever possible figures from thc chapters 4 and 5 have

been enclosed .in a larger format in Appendix G which alzo con­

tains some additional diagrams that arc not included in the
report .

•
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FLOW EQUATIONS AND TURBULENCE MODELS

2.1 Introduction

In this chapter we look at the basis for calculation of

turbulent flows using turbulence modeis. First the flow equa­

tions are derived, then the existing models are described in an

ascending order with respect to the number of equations invol- C
ved. This review is not intended to be exhaustive. but should

provide the reader with a general introduction to the topic. In

addition it constitutes the basis for this work on turbulence

modeis. Special attention has been paid to two-dimensional tur­

bulent shear boundary layers over a plane and rough bed.

The last section is devoted to the definition of the standard

set.of parameters and variables that we will use in this report.

2.2 The flow equations

The general local flow equation, which should be fulfilled in
all points in a flow field is

• (2.1)

where aiJ is the stress tensor. aiJ are the normal stresses.

while the other elements are the shear stresses in the fluid.

The stress tensor is reflecting the dynamics in the flow and is

related to the deformation tensor elj through the expression

(2.2)

In eq. (2.2) p is pressure, 81j is the Kronecker delta and IJ. is

the dynamic viscosity. The relation expresses the physical

requirements in the relation between stresses and deformations

and is often called a constitutive equation. The deformation

tensor is a kinematic quantity and can be found from the veloci­
ty field as



(2.3)

When the equations above are combined the so-called Navier­
Stokes equations are obtained

(2.4)

v is the kinematic viscosity.

The most important assumptions made in the derivation of
.(2.4)are

(i) the fluid is homogeneous and isotropie

(ii) the fluid is incompressible

(iii) elements of the stress tensor and the deformation tensor

are related through linear relationships. A fluid with

this characteristic is often referred to as a 'Newtonian
f Luid ",

•
The equations (2.4)are valid for a laminar flo~. If the flow

is turbulent, the velocities are separated into a mean part and
a fluctuating part

By definition, the time average of Ut is zero

UI =0 (2.6)

Substitution of (2.5) into the Navier-Stokes equations and sub­
sequently time averaging yields

(2.7)

The term including the fluctuating velocity components is called

the 'Reynolds stresses' . These stresses describe the exchange of

momentum bet~een different parts of the fluid that are due to
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the turbulent fluctuations.

(2.8)

In addition to the three flow equations provided by (2.7)

there is also the continuity equation, whicn for an incompres­
sible fluid has the form

·2.3 Eddy viscosity models of turbulence

The problem with the Navier-Stokes equations for the turbu­

lent flow is the modelling of the Reynolds stresses. An exact

solution to (2.7) would require a time and space resolution

which is inachievable even with todays main frame computers

because of the ePU-time and core memory requirements. To over­

come this, the Reynolds stresses are modelled to obtain a

limited number of equations which can be solved. This.procedure

involves the introduction of empirical constants that have to

be verified experimentally. It is known as th'e 'closure prob­
lem'.

Most commonly used has been the eddy viscosity concept which

'was introduced by Boussinesq in 1877. The turbulent stresses are

.. assumed to be proportional to the gradients in the mean velocity
field. The following relation is introduced

; ~6. -
~ '-J (2.9)

€ is the eàdy viscosity and is a function of both tand Xt• k is
the turbulent kinetic energy defined by

(2.10)

It is seen that the second term in (2.9) includes quantities

from the mean flow. The first term is included for consistency

reasons. For the normal stresses (i=j) eq. (2.9) yields

J (2.11)
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It follows from the continuity equation that the sum of the

terms in (2.11) is zero. The inclusion of the first term in
(2.9) makes (2.9) and (2.10) consistent.

The additional term in (2.9) can be interpreted as a pressure

and can be included in the pressure gradient. When (2.9) is

substituted into (2.7), the following form of the Navier-Stokes
equations is obtained

(2.12)

where

p.=p+2k/3 (2.13)

On the upper edge of the boundary layer towards a potential

flow kvanishes and p.=p. It means that the pressure gradient in

(2.12) can be found from the ·ambient flow.

In a two-dimensional shear boundary layer (2.12) is reduced
to

(2.14)• The term

~ [(~~y) ~]

is neglected since the velocity gradient in the y-direction is

~ssumed to be much larger than in the x-direction. On the other

hand, since the velocity in the x-direction is likely to be much

larger than in the y-direction the equation for V is redundant.

Hence the continuity equation can be left out of the analysis.

Considering only flow above a hydraulically rough bed, it can
be assumed that

t:»v

that is to say that the viscous stresses are negligible compared



(2.15),

with the Reynolds stresses. Eq. (2.14) is then reduced to

The pressure qradient is found from the outer velocity

(2.16)

emerqes
If (2.16) is substituted into (2.15) the fOllowinq equation

(2.17)

Takinq the outer flow to be uniform the convective terms in

(2.17) can be neqlected. This yields the ·eQuation for the two­

dimensional turbulent shear boundary layer flow over a hydrauli­
cally rouqh bed

(2.18)

Now, the problem of determininq € remains. In the followinq
sections various mèthods for this are discussed.

2.4 Mixinq-lenqth theory, zero-equation models

A turbulence ~odel that does not include transport eQuations
'for turbulence quantities is called a zero-equation model.

~ithout exception these models employ the eddy viscosity

concept.'The eddy viscosity distribution can be found from

experiments, by sheer quess, or it can be related to the mean
flow throuqh alqebraic formulae.

When dealinq with the oscillatory boundary layer the

constant-eddy-viscosity model has been extensively used durinq

the last decades, as it will be seen in the review presented in

Chapter 3. Such a model can hardly be called a turbulence model.

Since the flow is hiqhly unsteady, it is feIt that the simplest

time-variation expected must be a periodic behaviour of the eddy



(2.2 !

viscosity.

IIn 1925 Prandtl sugges·tedthat the eddy vÎscosity is propor .

tional io a mean fluctuating velocity V and a 'mixing-Iength' :

€ .... VI._ (2.1

This expression was conceived by analogy with the kinetic gas

theory in which the dynamic viscosity is re1ated to the mean

velocity of the molecules V.OI and the 'free paths' of the mol­
cules L

Jj .... LV •• 1

Prandtl took the velocity scale V as

v:: L" I~I
The mixing-Iength is defined as the distance that a fluid lump

has to be displaced by the turbulent motion in the transverse

flow direction from Y1 to yz so that its velocity differs from
the surrounding mean velocity by V.

. Assuming that the constant of proportionality is unity, eqs.
(2.19) and (2.20) can be merged to give

E.=
(2.21

This is the Prandtl mixing-Iength hypothesis. It includes only
one unknown parameter: 1•. In wall boundary layers the mixing­
length

b
I
I

Fig. 2.1 Mixing-length distribution in a wall boundary layer
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is often assumed to be proportic..llalto the distance from the

wall since this distance determines the maximum eddy size. Far

away from the wall 1. can be regarded as being constant. The
variation is depicted in Fig. 2.1.

(2.22)

The boundary layer thickness a is defined e.g. as the distance

from the wall to the point where the velocity has reached 99 %
of the ambient velocity.

It must be emphasized that the distribution of 1. is purely

empirically specified. When a viscous sublayer is present over a

smooth wall the mixing-Iength distribution must be modified .

.Traditionally the van-Driest damping function is used,

A is a function of the pressure gradient.

The mixing-Iength hypothesis has worked weIl in a number of

applications. However, when processes like convective or diffu­

sive transport of turbulence are important it is not appropriate

because it assumes that the turbulence intensity is alocal

phenomena determined only by the l~cal flow parameters. In fact

the zero-equation model assumes local equilibrium in turbulent

kinetic energy as will be shown in chapter S. A further weakness

is that the eddy viscosity vanishes when the mean velocity

gradient is zero. This implies that in the oscillatory boundary

layer the eddy viscosity must be zero twice every periode

To remove the weaknesses of the turbulence model we shall

introduce the transport equation for turbulent kinetic energy in
the next section.

2.5 Transport equation for turbulent kinetic enerqy, one­
equation models

The first important improvement of the mixing-length theory

is to determine tha velocity scale V in (2.19) from a transport
equation rather than from the ~ean flow field.
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It is physically most reasonable to utilize /k as the veloci­

ty scale. k is the turbulent kinetic energy of the turbulent

motion (per unit.mass) defined in eq. (2.10). From this expres­

sion it is seen that k is a direct measure of the intensity of

the turbulent fluctuations in all three directions. Since this

energy is contained.in the large-scale eddies, /Kbecomes a
velocity scale for the large-scale motion.

(2.23)

Now, using·this velocity scale together with a prescribed
length scale 1 the eddy viscosity can be expressed as

t=/J{l

This expression is known as the Kolmogorov-Prandtl relation

because Kolmogorov and Prandtl introduced it independently in

1942 and 1945 respectively. The distribution of k has to be

found from.the solution to a transport equation for k which we
shall derive in the following.

Insert eq. (2.5) into the Navier-Stokes equations (2.4) and
multiply by the veLocit y fluctuation Ui. This leads to

d.../u .~ ) I ~""' :-,t(U:~u..)u. ,,'~ -::= - I,J. • ...l. Ol ~ U.-9. .,.u. V _o~_,,__~__ .
'clt c. (> x...: • c. , ê),c. al( .

J J
(2.24)

It The first term is time-averaged

_
- ~LJ' 'duo - U ~U~ -;-;--.u. ~ 4·u. ~ ....IJ,' ~t T u. . ~ .... V' •' ~t • 1 OI~ • v ~

duou.u· -(, ~ OK­
J (2.25)

Using the continuity equation (2.8) which also halds for the
velocity fluctuation UI we derive

u.u.. dU;
'J d~ - -È._ ( 1. u.u.u.)- 0"" t., ( J

,I (2.26)

Taking advantage dE eqs. (2.25) and (2.26) time-~veraging of
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(2.24) is seen to give

a~ _au;o 1'" - 1" C 1" U.U. ..
~ LJ a-<j

~ ê)2.u.= - J. LA. ~ ot ).) u- Ox.~.
~ t ~ 'J J

which can be rearranged to yield the transport equation for k

U é)koor j~
J

CD ® 0) ® (2.27)

The terms are identified as follows

local time derivative of k

convective transport of k

diffusive transport of k due to
(i) pressure work

(ii) velocity fluctuations

QD: production of k due to interaction between the Reynolds

stresses and the velocity gradients of the mean flow. A

CD:
0:
0:

corresponding dissipation term appears in the energy equatio'

for the mean flow, see e.q. Tennekes and Lumley (44)

G): dissipation term which accounts for the energy that is

dissipated as heat through the cascade process

-tt Unfortunately the exact k-equation (2.27) is not directly appli­

cable since it contains new unknown correlations in the diffu­

sion and dissipation terms. Again, this is the closure problem.

To overcome the difficulty model assumptions will be introduced.

The diffusive transport is assumed proportional to the gra­
dient of k and the eddy viscosity

- u. (12 1" .L. u".LA )J <? ! (., (2.28)

where ak is an empirical diffusive constant. At high Reynolds

numbers the dissipation is recog~ized to be independent of

viscosity ànd governed by the large-scale motion which is cha­

racterized by k and 1. Dimensional analysis yields the relation



Ct is an empirical constant to be deter-mined from experiments.

With these modelled terms and using the eddy viscosity ex­
pr-essionfor the Reynolds stresses the k-equation transforms to

(2.30)

It should be recognized that this is in fact a transport equa­
tion for the sum of the three normal stresses aj a •

to
In a two-dimensional boundary layer this expression reduces

(2.31)

The ter-m

d [s:.. ~J
~ Ci"1( ~

has been neglected since the variations in k are assumed to be
mucp lar-gerin the y-direction than in the x-direction. The
production term on the other hand

€. 'aV 'dU
d'ir' a~

has been left out as it is thought to be a higher order term.

When the outer flow is uniform we can neglect the convective
.terms in (2.31) and the simplest form of the k-equation emerges

(2.32)

Tur-bulencemodels that consist of the flow equation, the
transport equation for k, and a specified length scale are
called one-equation models of tur-bulenceand ar-enormally based
on the eddy viscosity concept.

The inclusion oE the memor-yeffect in the turbulence repre­
sents one step forward in comparison with the zero-equation
modeIs. However-,when the effects of convection and diffusion of

17

(2.29)
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the length Bcale are important a transport equation for ei~her

the length scale or a related quantity must be added to the

turbulence model. This may be relevant in recirculatinq flows or,

rapidly changing.flows. Not very many workers in the field do in,

fact have fruitful experience with the use of one-equation

modeIs, e.g. Hanjalic and Launder [12], Rodi (36J. Reynolds

(35). But Reynolds encourages further research into the topic.

The next possibility is a two-equation model ~hich will be dealt
with in the proceeding section.

(2.33)

2.6 Transport equation for rate of dissipation. two-equation
models

The length scale specification inherent in the one-equation

model can be replaced by a transport equation for a turbulent
quantity

z=k·l"

where mand n can be any numbers. Several of these combinations

have been proposed and tried ~o faro Little success has been

given using the length scale itsel~. Instead the isotropic
energy dissipation rate

(2.34)

has been used extensively. The reason for this peculiarity
remains unrevealed.

Appropriate differentiation, multiplication and averaging of

the Navier-Stokes equations will yield the transport equation

for th~ dissipation rate. We shall not carry these calculations

through here, the reader is re~erred to for in~tarice Davidov [7J

or Harlow and Nakayama [14J. Following Hanjalic and Launder [13]
thlS equation reads for high Reynolds numbers

d.2 dU' (d:J' dU' ~Ul dU() _ 2» ~u duo ~u·2')) _(. _' -s-:J + __.

8\ ~= - al\: ê)(. ÖI)' ~c:l.é ~j'~t ~ J

CD ® @
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® (2.35)

The role of the individual terms are

(0
CD

total derivative of z
generation term

these terms should be taken together.~acceunts for the
'generation rate of vorticity fluctuations through the
self-streching action of turbulence.' ~represents the
decay of the dissipation rale ultimately through the
action of viscosity. Together the terms control the
dynamics of the energy cascade process

diffusion of z due to velocity fluctuations
diffusion of z due to pressure fluctuations

When the terms are modelled in a manner similar te the k-equa­
tion we obtain the following equation

The constants C4 ,c, and (1. must beofound from experiments. In
the two-dimensional case a reduced form can be derived

which is further simplified to

(2.38)

when the convective terms are neglected.

A two-equation turbulence model may consist of the flow
equation, the transport equation for the turbulent kinetic ener­
gYt the transport equation for the dissipation rate, and the
Kolmogorov-Prandtl expression to link the quantities together.
Such a model is often referred to as a k-t model in the litera­
ture.

Within the framework of the eddy viscosity concept it is the

19
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most advanced turbulence model that can be established. In many

flows, however, when the individual Reynolds stresses play very

important roles transport equations can be derived that elimi­
nate the need for the eddy viscosity.

2.7 Other turbulence models and their equations

More general than the transport equation for turbulent kine-

tic energy is the transport equations for the six Reynolds

stresses. Exact equations can be derived from the Navier-Stokes

equations, see e.g. Tennekes and Lumley [44] or Hinze (16]. Here
we quote Rodi (36]

u'àü?Ui
L 'ê>J(c

convective

transport

- -~(u u.u)_j_(~u,:p T
~I(.L l c J ~ d<,-

diffusive transportrate of

change

-- @Uj _ Li"""ü. ~4-
- uiu, a~ l J è~

stress production pressure strain

2.))

viscous dissipation (2.39)

The contraction of this equation is seen to yield (2.27)..It
.should be noted that the pressure strain term is not present in
(2.27) because of the continuity.

Modelling of the terms in (2.39) that contain new unknown

correlations has to be introduced. Then a turbulence model in

which one or more of the six equations available in (2.39)

replace the k-equation can be made. An increase in computational

work is inevitable and flows where the length scale determina­

tion is crucial are not better described by this methode

Howaver, in cases where transport of the individual ztresses is

important such a stress-equation model can significantly improve
the results.



Recently a new line of thinking has been introduced in the

field of turbulence modelling. The approach is called Large-Eddy
Simulation (LES). The notion is that only the large-scale mo­
tions that are directly affected by the boundary conditions are
treated by three-dimensional time-dependent numerical computa­
tions. The spatial resolution in this model gives a minimum
scale that can be described. The small~scale motion is assumed
to have a structure so that its statistics and their effects
upon the large scales can be specified by a few parameters. rt
is referred to as the subgrid-scale modelling.

It is not straightforward to use the large-eddy simulation
methode Of course the crucial point is the interaction between
the large- and the small-scale motions.

As this method is mentioned for completeness rather than for
details the reader is referred to reviews by e.g. Rogallo and
Hoin (37) and Ferziger [8J.

2.8 Numerical methods for.boundary layer flows

Given the fact that, to quote Bradshaw [4J, 'for every one ~
person who knows enough about turbulence to produce a plausible .._
set of differential equations to describe it, there are tens and

~ hundreds who know (or can learn) enough about numerical analysis
to solve those equations', we shall not give a discussion of the
methods that are available for the field of fluid dynamics.

Suffice it to give a few of the key references. KeIler (25) has
provided a review paper which describes the current stage of

finite difference methods (FOM) in boun~ary layer problems. Also
Blottner [3J deals with FOM methods for this purpose. Bradshaw,
Cebeci and Whitelaw [5J have dedicated a book to the calculation
of boundary layer flows. Here a wide range of flows are discus­
sed.

When it comes to th~ finite element method (FEH) in connec­
tion with turbul~nt flows the literature is lesD generous. This
method was initially developed in conjecture with solid mecha­
nics. Recently Shen [38] has given an introduction to FEM in
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fluid mechanics. But one will have to revert to research papers

and conference proceedings for detailed information on the
topic.

2.9 Definition of parameters and variables

The definition of a standard set of variables and parameters

seems to be very useful. The object of study in this work is the

oscillatory turbulent boundary layer over a hydraulically rough

.bed. When the 'amplitude Reynolds number' defined by

(2.40)

is-sufficiently large the rough boundary layer can be regarded

fully turbulent. Jonsson (22) suggests the following 'practical
limits'

RE=104

RE=(a/kN )103

for 1<aIkIf00
for 10<a/kN <103

(2.41a)

(2.41b)

Then the flow may be characterized by three parameters

tt kM Nikuradse roughness of bed roughness elements (m) (2.41a)

w cyclic frequency of ambient velocity (radIs) (2.41b)

Ut. velocity amplitude of ambient flow (mIs) (2.41c)

The amplitude of the particle motion in the ambient flow is

a=U1.lw
(2.42)

The parameters above may be joined in one single dimensionless
number characterizing the boundary layer

(2.43)
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which is the amplitude/roughness ratio.

In this work we shall make use of the following basic ways of
non-dimensioning quantities of interest utilizing the parameters
in eq. (2.42)

time (2.44a)

space C2.44b)

.velocity (2.44c)

Further, we will use

shear stress (2.45a)

friction velocity (2.45b)

eddy viscosity (2.45c)

turbulent kinetic energy k· =k/U1• 2 (2.45d)

length scale (2.45e)

displacement thickness (2.45f)

boundary layer thickness (2.45g)

momentum thickness (2.45h)

production, dissipation

and diffusion of t.k.e. (2.45i)
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Fig. 2.2 Definition sketch

Usually the starting point in a practical case will be that a

wave is described by its parameters H, Tand h. Given this the

bottom particle amplitude ean be worked out. From Stokes' theory

is obtained

r"I : J:L _....:.i __
'-'\, 2. slAh ~ (2.46)

Similarly the veloeity amplitude is

(2.47)

• where H is the wave height, k is the wave number and h is the

water depth.

If the convective terms are dropped in the boundary layer

equations first order wave theory ean be adopted. This implies

that only the first term in (2.46) and (2.47) should be re­

tained. The particle velocity at the bottom is then described by

Ub =U1• cos(kx-wt) (2.48)

For simplicity, when the convective terms are neglected in the

governing equations, x will be taken as x=nl(2k). Eq. (2.48) is

then redueed to

(2.49)
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The bottom roughness must also be available. It is traditio­
nally taken as

where d,o is the median grain size of the bottom particles.

To end this section we shall discuss the determination of a

boundary layer thickness. In simple models where the momentum

equation is used with a prescribed velocity profile the boundary

layer thickness enters the problem in a natural way as the upper

.limit of integration. The situation is depicted in Fig. 2.3 with

a solid curve. If we have, instead, a velocity profile like the

dashed curve in Fig. 2.3 it is less obvious how a boundary layer

thickness is defined. One way is illustrated in the figure. Here

~1 is defined as the minimum distance from the bed to a level

where the velocity is equal to the ambient velocity. Such a

definition implies that ~1 can be infinite or very large when

all veloeities are less than the free stream velocity. And it is

not a measure for the region where shear stresses and turbulence

are important, as it would be expected from the boundary layer

thickness. Instead ~O.99 can be defined as the minimum distance

to the level where the velocity is 99 % of the free stream

velocity. It may be argued that this is not a precise quantity

.. if the curvature of the velocity profile is small. As it will be

seen in chapters 4, 5 and 6 we shall use the displacement

thickness and momentum thickness in this report as they are

integral quantities that can be determined independently of the
·difficulties mentioned above.

u
I".Usnu..' A.SUN~D"II.OC'"

lCIO... nMMlC
WLOCITY
m&T ... uflOW

\.. "~ASuaI[D"1I.OCIf'r

I

...... , Ut I

Fig. 2.3 Definition of a boundary layer thickness
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~ REVIEW OF EARLIER WORKS

3.1 Introduction

A natural and necessary part of the present project has been

a study of the available earl ier works within the field of

turbulent oscillatory boundary layers including both theoretical

and experimental material. The literature is. as one would

expect, very extensive due to the great importance of this area

in practical engineering. Despite this fact, the review is. like

chapter 2 not intended to be thorough but to provide a survey of

the different approaches that have been pursued over the last

two decades.

The theoretical developments are naturally divided into four

sections. Then follows a review of experimental works and exis­

ting data from the laboratory.

Review papers have been published by Jonsson (21] and Knight

[27]. Unfortunately these comprehensive works do not give the

latest developments within the field when it comes to inclusion

of turbulence modelling .

• Recently Sleath [41] has written a book devoted to the diffe­

rent processes at the sea bed. Sections on the turbulent boun­

dary layer are also included and constitute the newest review.

3.2 Simple models

Perhaps the most .imple models that can be found are those in

which the form of the velocity profile is prescribed. Freds~e

[9J used a logarithmic velocity profile and by substituting this

into the depth-integrated momentum equation he obtained an ordi­

nary differential equation in the parameter z=U.~/Ut which was

easil~ ~Dlved numerically. The eddy viscosity is not included

directly but can be taken as a function of the instantaneous

friction velocity and boundary layer thickness, both of which
are determined in the model.
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A basic assumption is that the time scale for production and

decay of turbulent kinetic energy is small compared with the

wave periode It follows that the flow can be studied in each

half period star~ing with a water body at total rest thus dis­

regarding the eddies from previous motion.

The advantage of Freds~e's model is its simplicity. Since its

development it has been employed to describe the flow field in

connection with problems like sediment transport in waves,

second-order mass transport in waves, and separation behind
large cylinders at ISVA.

3.3 Kodels with a time-invariant eddy viscosity

Lately, many workers have solved the flow equation using a
time-invariant eddy viscosity distribution incorporating diffe­

rent layers in their modeis. Grant and Madsen [11],

Christoffersen [6] and Myrhaug [32] have solved tbis problem

with the only difference being the prescription of c within the
boundary layer.

•
We shall briefly describe the model by Myrhaug [32] here. It

is, of course, an eddy viscosity model of turbulence which

implies that the linearized flow equation C2.18) is employed. It

is reformulated by introduction of the defect velocity

( 3 • 1 )

to

(3.2)

with the assumption that the defect velocity is a harmonie
function

(3.3)

The ordinary diff~rential equation for the defect velocity

amplitude (3.2) is subject to the usual boundary conditions
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(3.4)

Now, a two-layer variation for t is given

E· l 2= 2" - t (~-~) +ar l!~ 6~Uf Ó,-..
(3.5)

E.. ~ fo" ~>~-:a 2-~U~_....;,
where the distance a is not a boundary layer thi ckness but
apparently a ~tuning parameter' that can be used to fit theore­
.tical findings to experimental data.

The inspiration for the quadratic variation of t in the inner

layer and a constant value in the outer layer sterns from the

experiments by Jonsson and Carlsen, cf. Fig. 4.17. A rather

laborious analytical solution to (3.2) can now be obtained.

Fairly good agreement with the experiments is found for veloci­

ties and shear stresses but the model fails to describe the eddy
viscosity in detail.

••
The other models that were mentioned use different profiles

for t in eq. (3.?), many of them employing a linear variation in

the inner layer. Together these models can be used to determine

the bed shear stress and energy dissipation associated with
travelling waves.

3.4 Models with a time-varyinq eddy viscosity

Recently Throwbridge and Madsen [45] published a paper

describing a model containing a time-variant eddy viscosity

distribution instead of the constant r in the models in section

3.3. Now t is assumed to be a sum of a constant part and a

harmonie component. This model is like Myrhauq's a150 a two­

layer model and analytical solutions are developed through

tedious manipulations. The advantage over the r-invariant models

seems to be that a third harmonie in all quantities is also

included. Comparison with the measurements by Jonsson and

Carlsen indicates that this third harmonie is indeed found

reasonably weIl in connection with velocities. Unfortunately no
results for ! and t are presented!
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3.5 Works with turbulence modelling

Turbulence modelling of the turbulent oscillatory flow was

initiated by Bakker [iJ. Assuming a local equilibrium in turbu­

lent kinetic energy he used a mixing-length hypothesis relating

the eddy viscosity to the local mean velocity gradient

(3.6)

1. is the mixing-length, cf. section 2.4. utilizing (3.6) in the

linearized flow equation Bakker formulated a partial differen­

tial equation in an 'internal shear velocity' . Boundary condi-

tt .tions for this problem were implicit since the bed shear stress

was not known a priory. In later publications, Bakker and van

Doorn [2] and van Kesteren and Bakker (47), this formulation has

been retained. In a report by van Doorn (46) the partial dif­

ferential equation was formulated in the local mean velocity
thus simplifying the boundary conditions.

The method has been revised and implemented using a different

numerical approach in this report. The reader is therefore

refered to chapter 4 for a detailed discussion of this zero­
equation model of turbulence.

• Johns (19) effectively maàe the same model as Bakker although

a different formulation and numerical method was employed. Two

years later Johns [20J had made a one-equation model of turbu­

lence Eor the oscillatory flow. This model effects closure at

the level of the turbulent kinetic energy equation and is iden­

tical to the one developed in chapter 5 of this report apart

from the fact that Johns retained the advective terms in the

equations. A hybrid numerical method consisting of bath finite

difference and pseudo-spectral tecniques was used. Johns puts

emphasis on the mass transport in the bottom boundary layer. For

a discussion of the cûlculated variûtions for the turbulent
energy and the eddy viscosity see chapter 5.

To the knowled;e author there exists one example onl~ of

higher closure in connection with turbulent oscillatory boundary

layers. Sheng [39] has used a model which included the k-
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equation, a length-scale transport equation and a transport
equation for the Reynolds stress ~

A detailed evaluation of his results is not really possibly

because only velocities and shear stresses for a/kw=124 CJonsson

and Carlsens experiments) are depicted in the paper. These

quantities are reproduced acceptably weIl even by the constant
eddy viscosity modeis.

water tunnel is uniform. Therefore the advective terms in the
model equations can be neglected.

-

In order to judge the model performance properly computations
for a range of a/kw-values are needed.

3.6 Measurements in a turbulent wave boundary layer

Perhaps the most referenced set of measurements in a turbu­

lent wave boundary layer over a rough bottom is due to Jonsson

[21] and Jonsson and Carlsen [23]. These measurements include

only ensemble-mean values and were obtained by a micro-propeller

in an oscillating water tunnel. Unfortunately the two tests were

made for low values of a/kw equal to 28.4 and 124 respectively. r;
In nature this ratio Is often of the order of 103• The flow in a~

A problem inherent in these experiments is the artificial

bottom roughness as depicted in Fig. 3.1. All theoretical models

make exclusive use of the equivalent sand roughness parameter kw

VElOCITIES MEASUIIED IN THiS L INE

•

Fig. 3.1 Bottom roughness, Jonsson and Carlsen [23].



as it was originally defined by Nikuradse. kN appears in the

usual logarithmic velocity profile which is strongly associated

with a bed that is cov~red with a layer of roughness elements

like sand grains. Such a layer is characterized by the absence

of any directionality whereas the roughness elements used by

Jonsson and Carlsen were triangular rods placed normal to the

flow direction at constant intervals.

Based on these speculations it must be emphasized that the

nature of the bottom roughness elements can have an impact on

the results. Especially at lower a/kN-values, a phenomenon like

vortex shedding may change the flow pattern considerably depen­

ding on the roughness elements. This is said to underline that a

comparison between measurements over an artificial roughened bed

and theoretical models using the traditional roughness concept

cannot be expected to yield perfect results since they may

represent different flow situations. Nonetheless, measurements

are so few at present so that it may be the only possibility.

Apart from velocity profiles and shear stress profiles ob­

tained by integrating the equation of motion, Jonsson and

Carlsen also presented eddy viscosities derived from the other

quantities. € is, however, a difficult quantity to evaluate when

it ia done using the definition

• (3.7)

especially when both the numerator and the denominator are small

quantities. Following this € will be poorly determined far from

the bed where the turbulence intensity is negligible. ~\2J.
(

Introduction of Laser-Doppler Anemometry made direct measure­

ments of the turbulent velocity fluctuations possible. Conse­

quently the Reynolds stresses and the turbulent kinetic energy

can be determined directly. The expression Eor €, eq. (3.7) may
then be more ~seful.

In the rough w~ll case Bakker and van Doorn [2] made mean

velocity measurements whereas Kemp and Simons [26] also included

the fluctuations to obtain the turbulent kinetic energy. But
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only experiments for very low a/kM-values in the order of 1-10

were performed.

For smooth walls two separate works exist. Tanaka et al. [43J

made wind tunnel experiments obtaining an amplitude Reynolds

number (cf. 2.40) of 6.10,10'; Eddy viscosity and TKE distribu­

tions were presented only in cases with combined wave-current

motion. A very comprehensive investigation for pure oscillatory

flow in a wind tunnel has been reported by Hino et al. [15]. An

amplitude Reynolds number of 3.8·10' was attained.

From the available experimental data it seems that theore­

tical models over smooth beds are much easier to check against

measurements at present.

Finally we mention the work by Kamphuis [24] who determined

the f rict ion factor f. in the rough wall case by direct measure­

ment of the bottom shear stress.

No field measurements have been encountered during this

study. f



~ BLOBAK. A ZERO-EOUATION MODEL

4.1 Introduction

In this chapter we shall look at a zero-equation model for
the turbulent wave boundary layer. The method is based on ear­
lier works by Bakker (1), Bakker and van Doorn [2] and van Doorn
(46). But the choice of dimensionless variables is different. In
the present work they are selected as outlined in chapter 2.
Furthermore, deviations are present in the numerical method.

4.2 Construction of model

The flow equation governing the mean velocity field in a
uniform two-dimensional boundary layer flow was established in
chapter 2,

(4.1)

where

u = U(y,t),
t = eCy,t),
U. = U. Ct ) •

Now. define a defect velocity as the difference between the
local mean velocity U and the ambient flow velocity u.

Ud = U -"U.
C4.2)

Eq. (4.1) then simplifies to

C4.3)

In the zero-equation model the eddy viscosity is related to
the mean velocity through an algebraic equation. In this case ~e
use Prandtl's mixlng-length theory.
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(4.4)

where 1. is the mixing-length.

The mixing-length is, usually, assumed to be proportional to

the distanee from the wall beeause the size of the eddies may be

governed by this. In steady boundary 1ayers the constant of pro­

portionality is the von Karman constant, K, which most

frequently is taken as 0.40. Mathematically the mixing-length is

written

1. = "y ( 4 • 5 )

Although there is no certain evidence supporting this simple

variation of the mixing-length in an unsteady boundary layer, we

shall apply (4.5) in this model as a qualified guess. It is

noticed that for large a/kM where the oscillatory wave motion

ean be recognized to attain a quasi-steady behaviour during eaeh

half-period, it is in agreement with a 'steady flow' solution to

preseribe eq. (4.5).

If eqs. (4.4) and (4.5) are substituted into eq. (4.3). we

obtain

(4.6)

This is the governing differential equation for the flow in a

.turbulent wave boundary layer under the given assumptions.

Bakker derived a different version of (4.6) in his earliest work

[1], where he defined an 'interior friction velocity'

(4.7)

Equation (4.6) appeared as

.ae._
at (4.8)

The disadvantage in this for~u1ation is that the boundary

conditions shou1d be given in terms of the shear stress (through
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eq. (4.7» and not in the mean velocity, as is the case with

(4.6). In consequence of this Bakker later [46J reformulated the

problem together with van Doorn to conform to (4.6).
)

Before we can formulate the boundary conditions for (4.6),

the choice of the bed coordinate has to be considered. )

The y-coordinate for the lowermost mesh-point is determined

by analogy with the usual logarithmic velocity profile in a

steady turbulent flow above a rough bed,

(4.9)

where U=O at a distance above the theoretical bed level, cf.

?

I
I
/ U(~)

),

I
/

Fig. 4.1 Definition of bed coordinate

Fig. 4.1~ Normally the boundary condition is

U(y=kN/30)=O (4.10)

From (4.9) we get

(4.11)

and
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(4.12)

It is seen that concordance between (4.9),(4.12) and (4.4),(4.5)

is achieved when the boundary condition is prescribed according

to (4.10). The bed coordinate must be

(4.13)

The boundary conditions associated with eq. (4.6) are the
following

1. The velocity vanishes at the bed due to the no-slip

condition. Prom (4.2) is obtained

(4.14)

2. At the edge of the computational region towards thc ambie

flow the velocity must match with the outer velocity. tha
is

(4.15)

3. Purther, an initial vertical velocity distribution has to

be given. This can either be a stagnant fluid where

u, (y) = 0

zince the ambient flow velocity is zero at the start, or

can he a profile found in e n eerLier run.

4. An arbitrary variation af the ambient flow velocity can bi

prescribed. In tbc present model the situation is

restri ctcd to a pure osci Ll at.ory mot i on character i z ed by

It follows from c q , (4.16) thc t we -mue t require perlodici'l
in the solution

U(y.t+T)=lICY,t)
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When the usual dimensionless quantities defined in Chapter 2

are inserted into eq. (4.6)

Time: t· = 2Jt.t/T= wt (4.17a)

y-coordiante: (4.17b)

Velocities: U· = U/Ui. (4.17c)

the following dimensionless differential equation is found

(4.18)

The initial value problem consisting o~ ~q. (4.18) with the

dimensionless boundary and initial conditions is depicted in

Fig. 4.2.

*U=o. a

.,.
Ud_= 0

•

Fig. 4.2 I~itial value problem for the defect velocity
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The upper limit for the region of computation, Y•• is deter­

mined so that the gradient in the mean velocity vanishes at this

boundary. It follows that also the shear stress and the eddy

viscosity disapp~ar. The adequate value of Y. is found by trial

and error.

4.3 Numerical solution

The only way to solve the initial value problem is to apply a

numerical method of solution. Bakker and van Doorn used a finite

.difference method (FDMl, and we will do the same. The choice is

based on the fact, that FDM must be considered faster to imple­

ment than a similar finite element method (FEM) would beo The

expense may be a longer computer time to obtain the same accura­

cy in the computations.

It seems to be more straightforward to vary the distance

between the mesh points in a single mesh. This can be achieved

either by incorporating a coordinate straining in the differen­

tial equation using an equidistarjtmesh, or by varying the mesh

size in the original coordinate system and take this variance

into account. In this case the cbordinate straining is chosen,

whereas the latter method is applied in the next chapter.

•

In FOM a mesh of points is placed over the region of solu­

tion. To increase the efficiency of the method the mesh is

refined in areas where the solution has the largest variations.

In the present case large gradients in the velocity are antici­

pated close to the bed. Consequent~y the mesh is refined close

to th~ bed. There exists a number of ways to achieve this.

Bakker and van Doorn employed the so-called 'staggered Grid' .

The notion is that an arbitrary number of grids with increasing

fineness are superimposed. As the meshwidth becomes smaller, the

mesh extends less and less from the bed. In this way a refined

~escription of the solution is obtained near the bed without the

expense of an intolerable requirement in CPU-time and memory.



The transformation of the derivative has been used,

(4.22)

Now, the numerical scheme for the solution of (4.21) is set­

up in the mesh shown in Fig. 4.3.

An implicit Crank-Nicolson scheme is applied, see e.g. [25].

Equal weight is given to the previous and the present timestep.

The second order derivative in eq. (4.21) is found by centering

the first order derivatives in points between the mesh points as

shown in Fig. 4.3 and then using central estimates for the

second order derivatives.

Using first order difference approximations t.he following

difference equation is obtained (*, which indicates dimension­

less quantaties are omitted from this point to the end of the

section),

{ (U~'I- U~~)\ ui·' - ~~\ -te (ut'j+'_ uf-C,i) \ uá-4·j·' - U:t·j"Ü
---.~...;_~~~12 { f( i~ U ij-I) IUi J" ut-,j-t \
e.ocp H (îi ~~.i-')1 J" A5%. l. Ucl. - ~ ei. - (i

+ (U~-\j-tt-\j4) \ ~- •.i:ui'''-'1]] J J~ 2;", ',N..~ (4.23)

Since eq. (4.21) is nonlinear, eq. (4.23) is the same. The N
equations contained in (4.23) can génerally be formulated as N

nonlinear equations with N unknowns

f , (~)=O , j=2, •.• ,N+l (4.24)

where

:!:....= {Z2 , •••• ZN • 1 } = { Ud I • 2 , • ; • ,11d I • N • 1 }

are the N unknowns. Th~ system ~s solved using Newton's itera­

tive method, see é.g [30] and [48].
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At a given stage in the iteration procedure a residual vector

can be written

The residual vector for the next iteration step can be expanded

as a Taylor series

(4.25)

A(zn + t -z" )=-fn (4.26)

.where

The aim is to have 1.:·'=0. An approximation to this is found

from (4.25) by truncating the series after the shown term, and

solving the resultant system of linear equations

=-

where

(4.27)

The partial derivatives in ~ are found from (4.23). Defining

.and

~ J2 ~
e-<p Ltt fi + 5;,-,)1 ~3~

we find that

(4.28)

_ C)_,.t·!...- . lUc(i,.j I ,'..j-I,\ (Ui,j UL,j_')) = - e. S·C. S,C>1 -1...Jó.) d. - J,.'clUJ..)" J J .J
(4.29)

~ + 2. S~c.. SiS" (U:{J- U~4·')(U~/J- UJi-t)
J J.

t 2 ~.I ei SiS" (uJs·'-llcij )lu~t'_u}i) (4.30)
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(4.31)

All other elements in A are zero. The system (4.26) is of the

tridiagonal type

(4.32)

where the coefficients Dl, Ej and Ff are given by (4.29) -
(4.31) and the right-hand side is

(4.33)

Eqs. (4.32) are solved by the so-called Double-Sweep-Method, as

it is described in e.g. (33] and [48]. It is noticed that if the

mesh points had been equidistant in the original coordinate

system, then the system of equations (4.32) would have had a

symmetric coefficient matrix. Generally we have for the coeffi­

cients

(4.34)

, :
No special attention has been paid to the issue of stability.

The timestep has been decreased until a stable solution was

reached. In practice this has always been the case when 800 @
timesteps were used during one periode Because of coordinate

straining the Crank-Nicolson scheme can not be expected to be

unconditionally stabie, as would have been the case with a

uniform mesh.

The ~esh has been refined by an increased straining and

additional mesh points until the numerical solution remained

invariant to further refinements. Henceforth the solution has

been accepted. All iteration cycles are controlled by an accura­

cy parameter ieiated to the relative change in the solution from

one iteration step to the next. When a certain accuracy has been

reached in all points, the iteration is stopped. Typically a

relative change of 10-5 to 10-6 has been demanded.



(4.35)
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The periodicity condition for U is not directly included in

this solution procedure. When the specified initial velocity

distribution is not from a periodic solution it contains a

transient part which has to be damped out through a number of

periods of calculations. This issue is discussed in section 4.6.

4.4 Implementation

The zero-equation model is implemented through the programme

-BLOBAK (Boundary 1ayer Q-Equation ~akker). The structure and

_operatien procedure for BLOBAK are discussed in Appendix A.

4.5 Quantities derived from the zero-equation model

From the solution to eq. (4.1) a number of quantities can be

derived. In connection with an eddy viscosity model the shear

stress is defined by

If (4.4) and (4.5) are inserted for e, T becomes

• (4.36)

In the transformed coordinate system and in dimensionless ver­

sion eq. (4.36) has the form

(4.37)

where (4.20) and (4.22) have been used. The derivatives are

approximated by central differences in the numerical method.

The bed shear stre~s can not be determined from (4.37) since

the derivative can not be found numerically. The bed shear

stress is therefore taken as the extrapolated value of the sh~ar

stress in the twö adjacent mesh points. The friction velocity is

defined as



(4.38)

The friction factor f. is found as

(4.39)

The eddy viscosity is determined from (4.35)

~
'dU"
ä""f

When the ve10city gradient vanishes, (·=0. The disp1acement

(4.40)

thickness a· is found as
«)

.ó·= - ~ J eJ(.pJ~.)(u*-U:) & ft
Uo ,;

while the momentum thickness 8· is

2 00

GO= - (0:) S~e.<pJ~~U~lU·-Uo·)J.J*

(4.41)

(4.42)

Lundgrens wave viscosity is found from the definition [29]

1'1~= ~.ott'(~.) ~.I1;"\ clt*

(_w C IT. ,~ I dJ:."
where the integrals are determined over one period givinq a

vertical profile for ~••.

/

(4.43)

• The mean specific energy 10ss E over one period is qiven by

(4.44)

In order to re1ate the energy loss to a genera1 parameter the

energy loss factor f. is defined by

- 2 ru:!>E = - p Te iM ( 4•45)3't'1'

see Jonsson [21]. f. is important in connection with wave atte­

nuation since a paramount fraction of the energy is lost due to

dissipation processes in the nearbed turbulent boundary layer.
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Presentation of results

This section is a discussion of the results that have been

compiled using the zero-equation model.

As mentioned in the introduction to this chapter this model

has been implemented earlier. It is natural to compare the

results obtained from the two different implementations of the

same theoretical model. Calculated velocity profiles for the two

cases where the ambient velocity is zero and a maximum are shown

in Fig. 4.4. Close agreement is observed. To remove the effects

Fig. 4.4 Comparison with van Doorn [46]. a/kN=4.47

SOORAL-4 1.

of a transient component in the solution due to the initial con­

ditions five periods have been used to reach an almost periodic

solution. It follows from the nature of the mathematical problem

that each half period must yield the same results except for

possible opposite signs. In Fig. 4.5 we have plotted the maximum

yelocity coinciding with zero ambient velocity over 10 half

periods of calculation. It is seen how the values for the last

two half periods diverge approx ..1 % from each other. Further it

can be seen that the transient part is damped out even if the



process becomes more and more slow. All further results in this

chapter are based on the fifth period of calculation. Often the

mean of the values from the ninth and tenth half period has been

used. "It has been customary to run four periods without detailed

output storing the solution in an external file and then run the

fifth period with a detailed output from BLOBAK. A list of the

completed runs with BLOBAK is enclosed in Appendix A. Typical

running. times for BLOBAK on the IBM computers at NEUCC were 20-

30 seconds per period using 3 iterations at each timeDtep .

• Fig. 4.5 Development of solution, a/kN=10

A standard mesh containing 43 interior points has been used

in all runs except for a/kN-values larger than 103 where points

were added to facilitate a non-vanishing solution further away

from the bed. The strain factor c in eq. (4.19) has been taken

as c=2000. The edge of the computational region was at y/kN=1000

for N=43 and y/kN=8200 for N=52.

These requirements were determined by trial and error. The

process has been aiming at a good numerical solution. For conve­

nience it was decided that thi same mesh was to be used for as

wide a range of a/kN-values as possible even if this would not
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be economically sound.

The basic idea in the following will be thBt we go through

the different results that can be found from the model for the

a/kN-value 124 which is also the value in TEST 1 of Jonsson and

Carlsen [23] 50 that results can be compared. Additional dia­

grams for a/kN=lOOO can be found in Appendix G. The test data

from Jonsson and Carlsen have been processed using the programme

JONCAR enclosed in Appendix D.

Velocitv field.

Velocity profiles are shown in different ways In Fig. 4.6.

From Fig. 4.6 Ca) and Cb) it is seen that close to the bed there

is good agreement between theory and measurements. When the

experimental results from opposite phases are averaged it is

saen that further away from the bed there is a depression in the

profiles which is not described by the theory.

The well-known overshoot. which occurs when the fluid par­

ticles close to the bed areas.accelerated by the pressure

gradient at an earlier stage than further away from the bed

because of the lower velocities. is described weIl when the

ambient velocity is zero. The overshoot is less accurate when

the fr~e stream velocity is a maximum.

. :

It is very important to notice that a logarithmic velocity

.profile is always found very close to the bed. The presence of

this phenomenon is generally recognized and confirmed by the

measurements. Often theoretical models include a logarithmic

velocity profile close to the bottom. It is referred to as the

law of the wall. Here it is inherent in the numerical solution.

Another way of looking at the velocity field is to determine

the velocity amplitude as a function of the distance from the

bed. As seen from Fig. 4.7 (a) the general shape compares weIl

with experiments but the curve is shifted upwards. The phase lag

between the maximum IOCDl veloc~ty and the maximum free stream

velocity is depicted in Fig. 4.7 (b). Discrepancies are present
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Fig. 4.7 Velocity amplitudes and phases. a/kN=124
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once more. It may be useful to compare these results with those

of Myrhaug [32] who used a two-layer time-invariant eddy visco­

sity model, cf. chapter 3, to attack the same problem. His

curves are shown in Fig. 4.8. The two-layer model yields the

same results with respect to the velocity amplitudes whereas the

phase shift description is better than that of BLOBAK. This

feature may not be an important measure since the phase shift in

the experiments was determined from velocity measurements that

were 15 degrees apart over the periode An accuracy of less than

perhaps 5 degrees can therefore not be expected and this is mDre

than the differences between calculations and measurements.

Calculations have been made for a number of a/kN-values. In

Table 4.1 the maximum overshoot in the velocity profile is shown

as a function of a/kN. Also the phase shift between the maximum
defect velocity at the bed and Ui. is included.

100

101

102

10.J

1O~

U••• / Ui •

1.072 35.2
1.052 28.8
1.041 21.(, : :;

, .
1.032 16.2

: -1.027 12.6

Table 4.1 Maximum velocity overshoot and phase shift between

max. defect velocity at bed and max. outer velocity.

Both the velocity overshoot and the phase angle are seen to

decrease with increasing amplitude/roughnees ratio.

Shear stresses.

Computed and measured shear stress profiles are shown in Fig.

4.9. Obviously the discrepancies between theory and measurements

that were found with respect to.the velocity field are also

present here. The general shape, however, is reproduced fairly
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Fig. 4.9 Computed and measured shear stresses.

weIl. Special attention has been paid to the bed shear stress as

this quantity is important when evaluating the energy loss and

the friction factor. As previously described the.bed shear

stress is determined by linear extrapolation from the two mesh

points adjacent to the bed. To check this procedure it was

investigated whether the result was consistent Yith the law of

the wall. Knowing the velocity in the points near the bed a

number of values for U, can be calculated using eq. (4.9), If

the velocity profile is logarithmic the same U, yill be found in

all the points. A few examples showed that the same bed shear

stress value was found from the two different methods. This also

confirmed that the numerical mesh was adequately detailed near

the bed. In Fig. 4.10 we have plotted the bed shear stress as a

function of time. Jonsson and Carlsen determined Tb in two ways.

One was to assume a logarithmic velocity profile (l.p.) close ·to

the bed as described above. The other was to integrate the flow

equation (f.e.) so that
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Fig. 4.10 Computed and measured bed shear stress

c::c-1 * (UQ-U)~
R../30

(4.46)

The upper limit of integration is in practice finite since the

defect velocity vanishes at a given level. Both curves are sho~n

in Fig. 4.10. The best agreement is found using the la~ of the

wall. This is not surprising because the numerical differentia­

tion contained in the integrand of eq. (4.46) can be a delicate

affaire

The friction factor f. can easily be determined from the bed

shear stress variation. Fig. 4.11 shows a number of different

results for f.. Results are included from bath BLOBAK and

Bakker. Freds~e's simple model and Myrhaug's tyo-layer model are

shown. Experimental results by Jonsson and Carlsen and Kamphuis

[24] are also depicted. The discrepancies bet~een Bakker's

results and the present results are significant especially for

decreasing a/kN-values. It should be noted that cornparison was

only possible in a limited interval for a/kM due te the arnount

of data given by Bakker. Referring to the discussien abeve

concerning the bed shear stress it is believed that the present

results are the most reliable. Generally all theoretical models

fail to describe the variation of f. when a/kN' is less than,

say, 10. In this regime vor.t.ex shedding behind the individual

roughness elements becomes important. These effects are not in­

cluded in the present type of modeis. It should also be expected

that the type of roughne~s elements used in the
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experiments has a substantial influence on the results obtained.

We shall revert to this aspect later. For larger a/kN-values the

variation of f. found from the present model fits quite weIl
with the experimental results.

The friction factor is often used instead of the energy 108s

factor f•. This factor has been eva1uated numerically and the

variation is depicted in Fig. 4.12. Comparison with Fig. 4.11

shows that the two quantities f. and f. vary in the same way

qualitatively~ Table 4.2 shows the ratio f./f. for different

a/kM-values as found from BLOBAK. Good agreement with the ex­
.perimental results is observed.

a/kM f. f. f./f.

10° 0.154 0.136 1.13
10i 0.0489 0.0453 1.08
102 0.0193 0.0188 1.027
103 0.00935 0.00933 1.002
104 0.00528 0.00533 0.992

28.4 0.0310 0.0290 1.07 theory
0.·0395 0.0379 1.04 exp.

124 0.0179 0.0175 1.022 theory
0.0200 0.0197 1.02 exp.

Table 4.2 Computed values of f., f. and f./f••
Experiments by Jonsson and Carlsen.

Apparently this discussion is the first attempt te calculate

f./f. theoretically without any assumptiens on the variation of

r. A discussien of the topic is given by Skovgaard et al. (40).

Boundarv laver extension.

The time-variation of the displacement thickness is depicted

in Fig. 4.13 (a) while the momentum thickness appears in Fig.
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4.13 (b). The variation of both quantities is sliqhtly different

during the two half periods shown. The difference is explained ~

by the remaininq transient part of the solution. Worst affected~

is the momentum thickness. To facilitate compari$on with other

theories and experiments we have listed the results at ~t=Ä/2 as

a function of alk" in Table 4.3. Values are also included for

the boundary layer thickness ai defined as the minimum distance

between the wall and the level where the velocity equals the

ambient flow velocity when this is a maximum. For comparison the

results by Freds~e [9] are included as well.

8 Ik" a, la

100

10'

102

103

1 O~

0.0507

0.130

0.395

1.456

6.412

0.0507 0.229

0.0130 0.078

0.00395 0.036

0.00146 0.021

0.000641 0.014

124 0.0341

0.0210

0.015

0.044

0.155

0.641

0.197

.0.182

0.074

0.039

0.025

0.017

0.197 theory

expo

Table 4.3 Displacement, boundary layer and momentum thick­

nesses. Rightmost column shows Freds~e's theory.

Eddy viscosities

For applications like sediment transport computations the

eddy vis~osity distribution in the turbulent wave boundary layer

is very important. An example of such an analysis is qiven in

chapter 7. Here we shall discuss the results obtained from

BLOBAK.

As a start consider the eddy viscosity profiles computed at

different timesteps during one periode In Fig. 4.14 it can be

seen how the eddy viscosity reaches a peak close to the bed. It

then drops to a very small valu~ before there is an increase

again. For sufficiently large values of y/kN the eàdy viscosity
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Fig 4.14 Profiles for the eddy viscocLty , a/kN=124

vanishes as there is no turbulence present. The definition

equation for €, eq. (4.4), states that ~hen there is a vertical

tangent to the velocity profile the eddy viscosity is zero. If

the profiles in Fig. 4.14 are compared ~ith the velocity

profiles in Fig. 4.6 it becomes clear that the eddy viscosity

does not become exactly zero when it should according to the

velocity profiles. The reason for this inaccuracy is the

numerical discretization which is causing tbe peaked profiles-.'shown in Fig. 4.24 as well.

The timeseries for eddy viscosities in specified levels above

the bed are probably more useful. They are presented in Fig.

4.15 and four different a/kN-values are included. The vertical

levels have been chosen in terms of y/kN sa that they are

physically the same independently of a/kN. Another possibility

would have been to use y/a as the coordinate since the boundary

layer extends further away from the bed with increasing a/kN-

ratios. The figure shows that the overall time variation is the

same in all levels. Twice every period the eddy viscosity at­

tains a minimum value of zero. It then increases rapidly to

reach a maximum value whereafter there is a decrease to the next

minimum value. This variation can also be found from simple

models like Freds.e"s. But since they take E as being propor­

tional with Ut the eddy viscosity will vanish in all levels

simultaneously when U~ is zero. We see f ronu Fig. 4.15 that the

results from BLOBAK contain a phase shift between zero-values of
c in different levels.
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BLOBAK compares with the experimental results and with the time­

invariant eddy viscosity distribution that Myrhaug [32] used in

his two-layer model. These variations are depicted in Fig. 4.17.

In all càses there is good agreement close to the bed. Further

away it appears that BLOBAK overestimates the mean eddy visco­

sity in.comparison with measurements whereas it is close to

Myrhaug's (solid line). The results from BL1PJ are discussed in
section 5.S.

.'"'f' l'~
10 I

/ 2.S

SO i' .1/
BLOBAJt// 2.0;.:-: .

i &0

~.. 1.5

I10

I
'.0..I20

0.5I'

!'--~II"-----:!=ltI---:lO!:--,----:'!&O"-__' 0.0
lDO'r YI$COSIfY. • . ..,'",•

Fig. 4.17 Comparison of mean eddy viscosity with Myrhaug

Consequently it is justified that the two models yield approxi­

mately the same velocity field as was noticed previously.

To end the discussion of the eddy viscosity the wave visco­

sity distribution for a/kH=124 is shown in Fig. 4.18 together

with the results found by Lundgren [29J. It is seen how good

agreement is found Ior very small values of y/kH• Thereafter

BLOBAK overestimates ~. substantially. Again it may be

questionable whether the experimental data are reliable. e is

determined as the ratio between two very small quantities when
the.shear stress becomes smalle
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~ BL1PJ. A ONE-EQUATION MODEL

5.1 Introduction

In order to compensate for the shortcomings of the mixing­

length theory a one-equation model is developed in this chapter.

Such a model includes the calculation of the energy of the

turbulent velocity fluctuations from the transport equation for

turbulent kinetic energy. The eddy viscosity is no longer taken

as a function of the mean velocity field. Consequently the eddy

viscosity does not necessarily vanish, when the mean velocity

gradient is zero. Further, the transport equation for TKE will

model the memory in the turbulence together with diffusion

processes. These effects are not comprised in the mixing-Iength

theory, where local equilibrium in TKE is assumed.

5.2 Construction of model

5,2,1 The eguations

As was the case with the zero-equation model, the flow equa­
tion for the mean velocity field is

au _
at - (5.1)

The flow is assumed to be uniform. The ambient flow is described

by first order theory. Hence the convective terms can be neglec­

ted. The eddy viscosity € is expressed as a product of a velo­
city scale and a length scale

(5.2)

in which k is the turbulent kinetic energy defined as

(5.3)

and I is the length scale. Close to the wall in a rough boundary
layer I behaves as

62 I;'
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(5.4)

while 1 further away often is taken to be constant. C3 is a

constant which is evaluated later. In this model (5.4) is used
to describe 1 throughout the boundary layer.

To solve eq. (5.1) the k-distribution must be known. It is

determined from the solution to the transport equation for the

turbulent kinetic energy. From chapter 2 it is known that this
.equation in a two-dimensional shear boundary layer has the form

aR. ~[E é)R]~ ë.(~~t lri!.3/2.
(5.5)- C'Lat el;! (Ïn, ë>!j

Rate of = DIFF + PROD DISS
change

The convective terms have been neglected in accordance with eq.

(5.1). In eq. (5.5) a. and Ct are empirical constants, the

values of which will be enumerated later.

It should be mentioned that if the diffusion term in eq.

(5.5) is neglected, then the partial differential equation is
reduced to an ordinary differential equation.

5,2.2 Boundary conditiohs

The equations (5.1) and (5.5) are two coupled second order

partial differential equations in U and k. To form a solvable

problem proper boundary and initial conditions must be speci­

fied. The same conditions are associated with the flow equation
as in the preceeding chapter.

(i) At the bed the no-slip condition applies, i. e.

(5.6)

The bed coordinate is chosen according to the ideas
outlined in chapter 4, Yb is taken as
Yb =kN /30,



(ii) At the upper boundary of the region of computation is the

velocity equal to that of the ambient flow

Uf y= y, )=Uo (S.7)

Y. must be large enough to ensure that all turbulent

quantities vanish at the boundary towards the ambient
potential flow.

(iii) The initial velocity distribution can be either a stag­

nant flow or a distribution obtained in a previous run.

Sinee we only eonsider a periodie ambient velocity.

Henee it is required that the solution has this periodi­
city, i.e.

U(y,t+T)=U(y,t)

The veloeity of the ambient flow is aeeording to the first
order theory given by

U.(t)=U1• sin(wt) (4.11)

Assoeiated with the k-equation are the follow~ng initial and
boundary eonditions.

(i) The turbulent velocity fluetuations are n:ot vanishing at

a hydraulieally rough bed as would be the case with a

smooth wall, where the viseous stresses ~ransfer the

Reynolds stresses through the viseous sub·layer. Close te

the wall the Reynolds stresses are nearly' constant. In

this region diffusion ean be neglected. When k is assu­

med to attain a quasi-statie value at the wall, loeal

equilibrium prevails. It follows that ~ - k, cf. section'

5.2.3. Henee in this model we apply the following boun­
dary eondition for k at the wall

(5.8)
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See e.g. Rodi [36] for a discussion of this boundary

condition.

k(y=y. )=0 (5.9)

(ii) At the top of the computational region the turbulent

quantities disappear. For k this means

(iii) The initial k-distribution must match with the given

initial distribution for the velocity_

5.2.3 Local equilibrium in TKE

If production is equal to dissipation eq. (5.5) reduces to

(5.10)

Taking advantage of eq. (5.2) we obtain

c. ~z.
1 (5.11)

When € is substituted for k the followinq equatiom emerges

analogous to the mixing-length theory

(5.12)

r
Agreement between eq. (5.12) and the mixinq-lenqth theory. eq.
(4.4), is achieved when

(5.13)

Rearranging eq. (5.11) gives

(5.14)

To summarize, it has been shown that the assumption of local

equilibrium of TKE in the boundarx layer is equivalent with the

mixing-length thaory. Furthermore, according to eq. (5.14) k and

rare proportional in a local equilibrium layer. By neglecting

the time derivative of k and the diffusion term in eq. (5.5) the
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BL1PJ model is similar to the BLaBAK model discussed i~ c~apter

4.

5.2.4 The choise of empirical constants

The present turbulence model contains three empirical

constants C1, CJ and (11l. C1 appears in the dissipation term.

According to Launder and Spalding [28) we use

C1 =a . a 8 ( 5 • 15 )

The value of CJ is determined given the requirernent that the

one-equation model should be reduced to the mixing-length model

in the simple case. It follows from eq. (5.13) that

c;= O.'tO "Vo.oe':. O.2.{3 (5.16)

(11l is contained in the diffusive term and·is effectively pro­

portional to the inverse of a diffusion constant. Hanjalic arid

Launder [13] have optimized (11l so that the best possible agree­

ment between calculations and experimental results was achieved

for a number of different f10ws. Their results give (1. the value

(5.17)

.. Later Launder and Spa1ding [28] make reference to the paper by

Hanjalic and Launder and give the similar value of

(111=1•a (5.18)

Reynolds'(35) givés a description of the weIl known STANS boun­

dary layer flow model. In this ak is taken as

(5.19)

The value is obtained by matching results of a zero-equati~n and
a one-equation model.

In BL1PJ the value stated by.Launder and Spalding (5.18) is

used since it is the commonly accepted value.

I I
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Sensibility studies have not been performed in order to see

consequences of small changes in the values of the empirical

constants·.

5.3 . Numerical solution

5.3.1 Strategy for the numerical solution

An analytical solution to eqs. (5.1) and (5.5) and the asso­

ciated conditions'cannot be found. Consequentlya numerical

solution is sought. In analogy with the zero-equation model a

finite difference method is applied.

The flow equation and the transport -equation for TKE are

coupled and should be solved simultaneously. However. results

from the zero-equation model indicate that variations in the

eddy viscosity are less important for the velocity distribution

than the opposite. The k-equation is nonlinear and requires an

iterative solution procedure at each timestep. These two effects

are combined t~ form the solution procedure at the timestep ti
as depicted in Fig. 5.1.

I::~:::~:-~:~-~=-:~~-~=::~:~~:~I
--------------][--------------

~------------------~::~::-~=e~::~::~I

I~~~~~~~~~~~~~~~~I

~~-I~~:::~:~~:~~;~~~~~~~~~~~:~~:~::::~:~I
I::~~~~::_:~_~J

Fig. 5.1 Solution procedure
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Fig. 5.2 (a)

R=O

Initial value problem for U

k= 0

Fig. 5.2 (b) Initial value problem for k
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In the proceeding sections it is outlined how the equations

are solved independently given the distribution of the 'oppo­

site' quantity. For instance the solution of the flow equation
with a known distribution of TKE.

The flow equation

~~- ~~o~ ~(E~~) (5.1)

Both initial value problems are illustrated in Fig. 5.2.

5.3.2 Solution of the flow equation

is a second order partial differential equation of the parabolic

type like for instance the weIl known diffusion equation.

The solution to (5.1) together with the boundary conditions

derived in section 5.2.2 is found using the finite difference

method. The principles are discussed elsewhere in this report.

As eq. (5.1) is linear with a given c-distribution also the

resultant difference equation will be linear. Hence the solution

is found directly from the system of linear difference equa­
tions.

(5.20).

•
The mesh points in the computational region are distributed

using the transformation (4.19) to give the smallest mesh size

close to the solid boundary. In BLOBAK the equations are solved

in the transformed coordinate system. In this case we shall

operate in the original system taking into account the varying

mesh size. The mesh is sho~n in Fig. 5.3. Notice the small

differences in e.g. the numbering between Figs. 4.3 and 5.3.

The individual terms in the differential equation are
approximated by

au. I\. .0( Cu U )"* - ~'é Ol - ~i-i
J

(5.21)
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Fig. 5.3 FDM-mesh

where

(5.23)

It is possi~le to determine (5.21) exact as

(5.24)

since the ambient flow velocity is given by eq. (4.11). Howeverr

the use of (5.21) ensures consistency between the differential

equation anQ the difference equation. The right-hand side of

(5.1) is weighed between the timesteps ti-1 and ti according to

(5.25)
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a=O corresponds to an explicit method of solution, ~hereas a=l
yields a 'fully implicit methode When a=O.5 eq. (5.25) is similar
to the Crank-Nicolson method, see e.g. [33].

~{

The difference approximation to (5.1) in the point (YJ,t,) is
in the usual dimensionless variables found as

+
'.1.r~é:.
t

(5.26)

Together the eqtiationsfor all the interior mesh points form a
system of linear equations of the tridiagonal type

+ BU!, J
j= \ ..••~ (5.27)

The coefficients AJ BJ CJ and DJ are given by, ,

~
~ 0(. ~-~ .i,=- ~ (ou. T.t.~.) , ~.
"'j.' J. :l

(5.28)

B.l=~ ~ +a. At (5.29)

(5.30)

~~-«) [ ~'l
.i,I UJ

€_jat Uj H 1
+ Ui-! - .-4 - t.~4 - Uc"-t Ji (A~ -.A'3) '-I ~. ,-I AU.

J". . J J~ ""J

.- ...--., -

(5.31)
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The explicit solution for U is used as a first guess for the
solution to a timestep and is given by

5,3,3 Solution of the k-equation

~ Like the flow equation the transport equation for turbulent
kinetic energy

J/z
k.- c-

1 l
is also of the parabolic type, FOM is used to find the solution
in the same region as Eor the flow .equation. No~, since the

differential equation is nonlinear the corresponding difference
equation contains nonlinearities as weIl.

The diffusive term can be elaborated to yield

The time derivative is approximated as usually

(5,34)

while the remaining derivatives are substituted by

(5.35)

:: A~, (5,36)



fk: = 0J j'-=~ .... I\l
J )

.
J (5.39)

The system of linear equations contained in Newton's method
is

(5.40)

where the coefficients can be derived from (5.39) by partial
differentiation. They are given by

(5.41)

(5.42)

(5.43)

and

-
As a first guess at the solution to the k-equation in the point

(YJ,t,) is used the explicit solution which follows from (5.38)
when a=O.

(5.45)
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5.3.4 Implementation

• ,r;-;t" •E :: l~ l (5.41)

The one-equation model is implemented through the programme

BL1PJ (Boundary ~ayer l-Equation feter Justesen). The structure

of and operation procedure for BL1PJ are discussed in Appendix
B.

5.3.5 stabilitv and accuracv of numerical scheme

The discussion in Chapter 4 concerning the zero-equation

model applies also here. Practical details are described in
section 5.5.6.

5.4 Ouantities derived from the one-equation model

From the velocity and TKE distribution a number of characte­

ristic properties of the boundary layer flow can be derived. The

eddy viscosity is found directly using the Prandt-Kolmogorov
relation

Given ë- the shear stresses are determined as

(5.42)

The bed shear stress Tb- is taken as the value found from linear

extrapolation of the shear stress in the two mesh points adja­

cent to the bed point in the FDM-mesh. The friction velocity
then becomes

(5.43)

The friction coefficient f. and the energy 105s factor f. are
determined as described in chapter 4.

By definition the displacement thickness is given by

lf

Ó :: (5.44)



while the momentum thickness is expressed by

100 ...

elf= ( t - .u.) uaf d.~"
1/30 Uo ~o

In the programme BL1PJ these two integrals are evaluated by

numerical integration employing the trapezoidal rule.

(5.45)

(5.46)

(5.47)

The wave viscosity was defined by Lundgren [29]

~ ..I ,,-I rlJt
L-J~ dt
now all quantities could be found also in the zero-

(5.48)

Until

equation model. The inclusion of a transport equation for the

turbulent kinetic energy allows us to study the budget for TKE

within the boundary layer. For this purpose the terms in (5.S)

are evaluated. The production term is given by

(5.46)

• and the dissipation is
3/2

n,ss - c.1 MC·
while diffusion is found as

DI;::ç' - d [€~ê>k-]- a" 0: ~.!!.~ ~-
(5.48)

(5.47)

To determine the diffusive fluxes of TKE we must reach back

to the k-profiles. The model assumption is that the flux of k is

proportional to the negative gradient of k and the eddy

viscosity. This is expressed as

(5,49)
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profile. In the derivation of the k-equation the horizontal

where Q. and Qy are fluxes of k in the x- and y-directions
respectivelv . ReJerence is made to eq. (2.28). 1t is straight-.
forward to find the vertical diffusive flux Qy from the k-

:, .
. I

~ can be defined as

~=x-ct
(5.51) :

In the system (~,y), which is in fact a frame of reference that
is moving along with the wave form, the flow is steady. From eq.
(5.51) we deduce that

= -
(5.52 )

The horizontal diffusive flux can then be estimated as

(5.53)

which can be rearranged

(5.54)

The wave celerity is made nondimensional with the ambient
velocity amplitude. This parameter Ut./c is a funciion of the
wave height. In this work the wave motion is described by first
order theory which is only valid for small amplitude waves. As a
consequence Ut./c ~s much smaller than unity. Further, if the
advective terms had been retained in the equations the parameter
Ut./c would have been necessary.

The calculation of Q. and Qy takes place in a computer

programme TKECIR which at the sa~e time produces automatic plots .
of the circulation of TKE by means of arrows. The souree
programme is enclosed in Appendix C.

J
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Results from the one-equation model

5.5,1 Local equilibrium in TKE

In section 5.2.3 it was shown how the one-equation model

could be reduced to the zero-equation model compiled in chapter

4, The first step in the testing procedure for BL1PJ was

therefore to verify that these two models yielded the same

results within the range of discrepancy that should be antici­

pated due to the differences in the numerical methods. Indeed,

relative deviations of less than 1 % were found on the velocity

field and shear stresses. It was concluded on this basis that

_the local equilibrium option in the programme BL1P3 was working.

ê I

5,5,2 Veloeities and shear stresses

Velocity amplitudes and phase shifts Eor a/kN=124 are shown

in Fig. 5.4. The numerical details for this and other

computations are discussed in a later section. A comparison of

the graphs in Fig. 5.4 with the similar results from BLOBAK

shown in Fig. 4.7 reveals that the velocity amplitude is exactly

the same whereas the phase shift is slightly smaller. The

maximum overshoot and the phase sh~ft between the maximum defect

velocity at the bottom and the maximum ambient velocity for

different a/kN-values are listed in Table 5.1. Generally the

= ,

10°

10'

102

103

U••• IU, •

1,054 35.1
1.047 27.9
1,038 21. 2
1.031 15.8

Table 5.1 Maximum velocity overshoot and phase shift bet ween

max. defect velocity at bed and max. ambo velocity.

overshoot is less th~n found from BLOBAK. Similarly, the phase

shift is smaller although only slightly, The same decrease in

both overshoot and phase shift for increasing a/kN is observed.
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Fig .. 5.4 Velocity amplitudes and phase shifts, a/kN=124
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For all practical purposes it can be concluded that the two

models yield the same velocity fields.

80 ·.1

Next we wi11 consider the shear stresses. The shear stress .'

amplitudes in the case where a/kM=124 are depicted in Fig. 5.5.

The values are consistently smaller than those by BLOBAK. The

bed shear stress is some 3-4 % less. The general variation o'f

is the same. From the bed shear stress variation the friction

factor can be determined. In Table 5.2 the results from BL1PJ

are shown. The energy loss factor and the ratio f./f. are

included as weIl. The smaller shear stress values affect both

e a/kM f.. f. f..If.

100 0.149 0.132 1.12
101 0.0468 0.0441 1.06
102 0.0186 0.0182 1.02
10J 0.00903 0.00906 1.00

28.4 0.030 0.029 1.04
124 0.0172 0.0170 1.02

Table 5.2 Computed values for f.., f. and f_/f••

• f , and f , whereas the rat i 0 f..I f , fits we11 w ith exper iments,
cf. Table 4.2.

5.5.3 Boundary lover extension

The variation of the displacement thickness.and the momentum

thickness correspond to those obtained from BLOB~K. The

explanation is, of course, the similarity in the velocity fileds

from which both Band 8 are determined. In Tahle S.3 we give the
values for both these quantities at wt=n/2.

T

@
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Shear stress amplitudes Eor a/kM=124

5.0

a/kM DlkH D/kM

100 0.045 0.012
10' O. 119 0.036
102 0.366 0.127
10J 1.366 0',540

Table 5.4 Displacement and momentum thi cknesses.



5.5.4 Budget for turbulent kinetic energy

The major improvement in a one-equation model of turbulence

is the ability to describe the generation. circulation and

dissipation of the turbulent kinetic energy contained in the

turbulent velocity fluctuations. In the mixing-length theory the

TKE was ssumed to be in local equilibrium wbile a redistribution

both in the time and space domain can now take place.

An example of calculated profiles for the turbulent kinetic

energy for a/kH=1000 is depicted in Fig. 5.6. Close to the bed

the k-distribution resembles the shear stress distribution

since the TKE is in a quasi-equilibrium state in that region.

This can be seen from Fig. 5.7 (a) where we have plotted the

variation of the four terms in the k-equation, eq. (5.5), for

four differ~nt phases during one half periode In all cases the

production and dissipation terms are dominant very close to the

wall. At wt=O(~), when the ambient flow velocity is zero, all

terms small, and of equal magnitude. In the accelerating flow at

wt=~/4 the turbulence is spreading from the bed area via the

diffusion process. This continues weIl into the deccelerating

part of the period where the boundary layer expands under

influence of the adverse pressure gradient. From wt=~/2 where

the pressure gradient is zero to wt=3~/4 the diagrams show that

the production and dissipation profiles are getting more flat

which indicates the expansion of the boundary layer. Note that

in all cases except when the flow is retarding at wt=3x/4 there

is a level in which the production is zero due to a vanishing

velocity gradient. Similar diagrams for a/kN=100 are shown in

Fig. 5:7 (b). Here almost the same picture is recognized, the

difference being that the activity is closer to the bed.

Although the strength of the individual terms in the k­

equation reflects the energy exchange in the boundary layer it
is instructive to consider the diffusive fluxes of TKE. Plots of

the circulation of TKE have been produced using the computer

code TKECIR. First, in Fig. 5.8 (a) the case a/kN=103 and

Ut./c=O.353 is shown. This choi~e of parameters corresponds to a

situation where H=5..2 m, T= 8 sec., h= 20m and kM= 0.005 m - a

typical situation in Danish waters. Only the area up to 25 kw or

82
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Fig. 5.6 Calculated profiles for turbulent kinetic energy,

alk ..=103

0.125 m above the bottom is included in the figure. The ~ave on

top of the diagram shows the variation of the surface elevaton

and the ambient velocity at the bottom.over one ~ave length. The

flux is shown as vectors indicating direction and magnitud9.

Virtually all transport is in a vertical direction which means

that the neglect of the advective terms and horizontal diffusion

is apparently justified.

Just before the ambient velocity is a maximum the production

is highest (cf. Fig. 5.6) and there is a significant outward

flux of TKE. It is seen how this energy is gradually moving away

towards areas with less production and available energy. The

memory effect plays an important role in this exchange since

energy is not only moved away from highly productive areas near

the bed in a vertical direetion but is also retained from times

with higher production to the period of flow reversal where it

is then dissipated. Around wt=OCn) there is a small flux of TKE

towards the bed. The explanation ean be found in Fig. 5.6 which

shows that the production has a minimum equöl to zero close to

the bed at this instant.
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Fig. 5.8 (b)
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In Fig. 5.8 Cb) the case a/kM=10 is depicted.

To present the variation of k in a different and perhaps more

comprehensive way contour plots are shown in Fig. 5.9 for the

same two values of a/kM, 10 and 103• They were produced by the

programme TKECON, see Appendix C. The considerations above
are @!.here confirmed. It is seen how a combination of vertical

diffusion and the memory effect give rise to a phase shift for

the extreme values for k up through the boundary layer. As will

be discussed later in connection with the eddy viscosity this

phase shift is most pronounced for small a/kN-values. This is

rlue to a more even ratio between the period of oscillation and

the time scale for the decay of turbulence. A decreasing

variation over the period for the level of k at a given distance
from the bed is found for smaller a/kM-values.

Unfortunately no experimental data are available to

facilitate an evaluation of the results for k in the rough wall
case. The balance for TKE obtained is in good principal

agreement with both theoretical and experimental results

presented by Hanjalic and Launder [12] in a steady flow. One of
their illustrations is reproduced in Fig. 5.10.
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Fig. 5.10 Energy balance from Hanjalic anti Launder (12)
Steady turbulent flow in a channel.
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F~nally the turbulence intensity is considered. In some

applications it might be useful to have information about the

intensity of turbulent ve~osity fluctuations relative to the

mean veloeities. One example is the flow description around a

seabed pipeline. Under certain conditions vortex shedding takes

place which causes the pipeline to vibrate. But very high

turbulence intensity in the boundary layer could affect the

mechanism of vortex shedding and possibly reduce i~s effect.

Naturally we cannot give the magnitude of the three veloCity

fluctuations from the present model. The turbulent kinetic

energy k can however provide a rough estimate.

Assume that the turbulence is isotropie even if we know from

experiments that this is not correct. It follows from eq. (5.3)
that

In Table 5.4 this estimate is given as a function of a/kM and in·
four different levels.

a/kM y/kM =1130 yIkM =1.13 yIk,. =11.7 y Ik,. =122

100 0.419 0.072 0 0• 101 0.178 0.095 0.002 0
102 0.110 0.092 0.043 0
103 0.076 0.073 0.059 0.016

Table '5.4 Turbulence intensity found from BL1PJ

An extremely high intensity is present at the bed for alk" =1
according to the results from BL1PJ.



------------------------------------~II....

5.5.5 Eddy viscosities

As a consequence of the improved modelling of the turbulent

kinetic energy conditions in the boundary layer a better

description of the eddy viscosity variations must be antici­

pated. To get this confirmed we first look at the eddy viscosity

profiles for different a/k..-values. Fig. 5.11 shows a picture

which is very different from that in Fig. 4.14. The vertical

variation is smoother and there is no snip following from a zero

velocity gradient. The time vaiiation is affected by this to

give smaller fluctuations_over the per-iod.For alk ..=1 it is seen

that due to the transient part in the solution the eddy visco­

sity is steadily increasing and influencing areas further away

from the bed where the solution on the other hand is seen to be
weIl determined.

In order to investigate the variation of € further timeseries

for the eddy viscosity are depicted in Fig. 5.12 Eor a number of

a/k..-values. Once again the difference from the BLOBAK-results

in Fig. 4.15 are remarkable. As a result of the inclusion of the

memory effect in the turbulence c does not come down to zero

twice every period. There i~ on the contrary a mean value about

which c is fluctuating. The magnitude of this fluctuating part

is cl~arly seen to be a function of both a/kM as weIl as the

distance from the bed. For small a/k..-values the amplitude is

.. much less than for large values. Here the time-scale for decay

of TKE compared with the period in the ambient oscillatory

motion is decisive. For the relatively slowly varying flows at

large a/k..-values there is a possibility for the energy to

dissipate around the time of flow reversal. Hence the k-level

drops and consequently smaller t-values are found. As opposed to

this Eor relatively high frequency oscillations at small a/kH-

numbers the time-scale for decay of TKE is comparabIe with the

oscillation period which permits the flow to maintain an almost

constant level of turbulence during the periode

To illustrate the relation between alk..and the magnitude of

fluctuation for c in a given level results for c••• It. i ft are

presented in Fig. 5.-13. 8 different levels in terms of ylkN are

included and a very consistent picture supporting the

---------------------------------
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speculations above appears.

Simpier models that include a time-invariant eddy viscosity

will,'of course, all be on the line c••• h:.tM=l in Fig. 5.13.
Consequently they seem to be most relevant for small values of

the amplitude/roughness ratio when it comes :to describing the

eddy viscosity. At the other extreme we have models like

Freds0e's which assume a logarithmic velocity profile. For very

large a/kN -values they may be auc cess f ulLy applied. In the

important 'transition' range between, aoy , 5 and 103 it is

imperative to include the transport equation for turbulent

kinetic energy in the model in order to cchLe ve c good desc.rip­

tion of the eddy viscosity. For the time-invariant-c models it

must be remembered that the flow may be expected to change its

character for very small a/kN-values due to vortex shedding

behind the individual roughness elements. From Flg. 5.9 (a) it

appears that most of the turbul ent reg ion ca m be f ound in a

region less than one roughness from the bed.

To facilitate a comparison with experiments Fig. 4.17

includes the rnean eddy viscosity profile for a/kN=124 Eound Erom

BL1PJ. The wave v i scosi t.y a s .defined by l.undgren determincd In

BL1PJ has been added te Fig. 4.18. Close to ~he bed thcrc is

agreement between BLOBAK and SL1PJ. This is ~n the region ~here

loc~l equilibrium in TKE prevails ~ccording te the observationstt in ~ection 5.5.4.

5'·.S. 6 Numerical a~pccts

The consideratians about t.hG numericnl mcthod that wer~ put

forward in section 4.6 concerning RLODAK apply here as w011. The

meshes have been used for the same a/kN-values nnd 800 ti~esteps

per period were used In all cases. a=O.5 corresponding ta thc

Crank-Nicol.son metod h.:.tE. 1:!8fHI ua ed throughout. the 'ztlldy. It ha s

been checked that the di[ference equations are fulfi11ed in all

po ints using a 2.pecio; procedure EHRORV 1 n E;L 1PJ. "J'l'"IE:'fJ the 1oce I
equ i 1ibr i um 0 1=;t i (,ï. WQS .:.heek ed.) ga i TlS t BLOD1...K. F0 11o t..' i ng th is i-t

was observed that BL1PJ yielded veJocity prc:files that were loga-
r i t.hm i c close t o t h e b e d ,
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But before a solution of the Eull system of equations could

be determined it was found necessary to compute a few perfods

assuming local equilibrium in TKE. In thfs way a hot start using

initial profiles for both U and k could be performed. Otherwfse

the numerical solution did not converge and negative values of k

were obtained in the vicinity of the bed. This is due to the

nonlinearity and coupling in the equations. In practice four

perieds were run using the reduced model. Herenfter two initial

periods with the full system of equations were cempleted with a

minimum of output thus providing a solution which could be

stored on an external file Qnd reused. All results presented in

this chapter were obt~ined during the third peried with the
complete model.

In some of ths diagrams presented trace~ ef the transient

component have been visible. In practice it i3 a sign of a

soLut i on which is not in equilibrium. But it was decided that.

the main conclusions and a large majority oE the cesults in

general were only slightly affected by this transient EO that it

could not be justified to spend additional computer efforts on

refining the computation~ through extra perioda.

A typical running time for BLIPJ per peried was 80 - 100

seconds on the IBM computers at NEUCC using a mesh with 43 peint~

Every timestep the flow equation was solved 8 times whereaz the

k-equation required 15 times of solution. The time required

depends on alk .... he soLut i on is most ees i Ly founà for small va ï us

of alk ... }; list of ::-,è complet.ed runs with BL1P,J is enc Lo sed in
Appe nd I.x B.



~ BL2PJ. A TWO-EOUATION MODEL

6.1 Introduction

To investigate the importance of the length scale in the

oscillatory turbulent boundary layer a two-equat10n model of

turbulence is developed in this chapter. The analytical work as

weIl as the numerical method are outlined.

6.2 Construction of model

6.2.1 The eauations

The transport equation for the dissipation rate reads

according to chapter 2

( 6. 1)

where z is the dissipation rate
~I..~ ...

-l (6.2)

and the length scale is now a function of both space and time.

The Prandtl-Kolmogorov relation ror the eddy viscosi~y is

(6.3)

Insertion of eq. (6.3) into eq. (6.1) gives

( 6.4 )

Take the length seale 1 as

'!Iz
c~
1ë (6.5)

Then eqs. (6.4) and (6.5) together with the flow equation

(2.18), the transport equation for turbulent kinatic energy, and
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the Prandtl-Kolmogorov relation constitute a two-equation model

of turbulence for the flow in a two-dimensional oscillatory

boundary layer flow over a rough bed. In the literature the

model is often referred to as a k-t model, where c means

dissipation of TKE.

6,2,2 Boundary conditions

The following boundary conditions are associated with eq.

(6.4)

(i) Near the bed we assume that local equilibrium in TKE

prevails. Recalling a logarithmic velocity profile it iSI

found that 1

:\
{ c, r ~U 2 Ur Urë- C - :=. - - - : U - :t -, a c, e- d~ ç' 4(~ lf~

At the level where the velocity vanishes we require

(6.6)

(ii) At the free boundary the rate of dissipation is zero

z Cy, )=0 (6.7)

(iii) The initial profile oE z is a distribut ion that

corresponds to the giverf profiles for k and U,· cf.

5.2,2.

(iv) The periodicity condition applies to the dissipation

rate as weIl as to k and U,

The boundary and initial conditions for the two other equations

are described in 5.2,2.

6,2,3 Constants in the z-eguation

In the transport equation for the dissipation rate three

empirical constants have to be ~numerated. Frt.m considerations



about the decay of turbulence behind a grid. Rodi [36] comes to

the result that based on experimental evidence Cs can be taken
as

c, = C2 ( =1 • 92 (6.8)

where Clf is from [28].

The value of the diffusive constant ar was found from

computer optimization by Hanjalic and Launder [13] and

referenced by Launder and Spalding [28] as

(6.9)

The constant Cl, can be related to c, and a, when local

equilibrium in TKE is assumed to exist. It is found that

(6.10)

(6.11)

(6.12)

tt Neglecting the rate of change of z in eq. (6.4) and utilizing
the relations above we arrive at

_~ (U;è(~ ...!:t_)... _, . Z U/ f U: VC; =
. C>~ \ <72 'l..jz. C'1vc: 4 ~~t - CsC; 7!} u/ 0

After some rearrangements this expression cen be reduced to

(6.13)

This equation fixes the value of the constant y when the other

constants have been chosen. In the present case we get

(6.14)

Apparently Rodi and Launder & Spalding took the ven Karman
constant as

~.
lOl}":' 1. ;1



Je=O.423

in order to obtain

C4 =1.44

This value of Je sternsfrom a paper by Patankar and Spalding

[33]. Here we shall use (6.14) since JC=O.40 is prescribed

throughout this report.

6.3 Numerical solution

6.3.1 General procedure

The solution procedure is similar to the one used for the

one-equation model. The equations are solved sequentially star­

ting with the z-equation then the k-equation and finally the

flow equation. Knowing the solution to the z-equation the length

scale land its derivative can.be d~termined as
J],/~

l = <T

•
3/~

'dL ~ .rr: èlft ~ 3/1. ~ c f (3 .rtr d~ R..)
ê>!j = c., e: V ft.. ~~ '2 - ~7 c., : ~ z: V R ~~ - a

In this way an easy connection to the one-equation is available •

6.3.2 Solution of the z-eguation

The numerical solution procedure adopted to the transport

equation for z is similar to the one used ror the k-equation,

cf. chapter 5.

The first order difference approximations are

d!! (j" j j ~J.-')~ .L ~. -Zo è - . G!' , + . , =~ t.
~

Au. ~. ,
.,IJ.' J

. ( J~ I
ë·J z! - 2..1-' )=èr~ ~ H~I ë -

~~
~ t !

.:-(~ ... -) \ A~j'" . AI.1.j t
- WJ'" -)

(6.15)

(6.16)

(6.17)
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C6.18)
utilizinq the approximations and weighinq the solution in the

time domain according to (5.25) yields the following difference
approximation in dimensionless form

[ J [2~t
.

] Gf_,
. . a. c. ~ ~-~, ( , ,-t(z. :Ir -- (2~-~~) 1" - ({_~ ,

z)J é , ,... ~ 2:~ 0"2
'·f ,,-.

+ c, (tl,f \-li ... c c [~dUy 1~~(z,.!, {- ]
i!') o: i -\ 'I 1 '~. R ,1
'-1 = L-t ._,

ct { C ~J [2~y- Ie.J ]G}o: I ,
t+ -

'2~t,. Z;J ~ , e

C1 ~J Hl ~ c, c, [~~Jyr-c.M } . j={""I'"T
~~ . ~ ~J J (6.19)'g~ <ri! ,, , .

Again in this case we use Newton's method to solve the system of

nonlinear equations.given by (6.19). The coefficients are found
to be (cf. eq. (4.26»

.
fJ. =,

~ =,

(6.20)

(6.21 )

(6.22)

(6.23)
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6.3.3 Implementation

The model has not been implemented.

6.4 Assessment of model capabilities

As the model has not yet been implemented as a computer

programme na results are available. Assessment of BL2PJ compared

with BL1PJ and BLOBAK is therefore not possible. However, it is

believed that there will be na significant change in the result~

as long as we have a uniform ambient flow. [nclusion of the advec

tive terms in the governing equations and second order wave theot
I

may change this picture since gradients will then be present aLs c
j

v
in the x-direction.

•
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~ APPLICATION OF BLOBAK AND BL1PJ TO SEDIMeNT TRANSPORT

CALCULATIONS

7.1 General

In order to evaluate the sediment transport in the sea kTlowledge

about the vertical distribution of suspended sediment in waves is

required. Here we will consider the situation where the bed is

plane since possible ripples are normally washed away at times

with large sediment transport rates under severe storm conditions

in nature. The flow regime is assumed to be fully turbulent and

with a rough bed.

The sediment description in this work follows that of Freds~e

et al .. [lOl, closely. But whereas they used Freds_e's simple

boundary I'aye r model, cf. section 3.2, to d e scra he the flow we

shall emp10y the turbulence models developed in this report. Ths

purpose is t.oget an evaluation of the Lmport an c e of these

models in a sediment transport context.

7.2 Short theoretical introduction

The theory behind the calc~lation of the vertical concentra-

• tion profiles for sediment in waves can naturally be s.p Lit, int.o

two parts. One is the description of the flow. Th8 other is the

modelling of the sediment suspe nz i on ç iven -!:he flow conditions.

These topics will be dealt with in a reverse order.

The vertical distributiCln of su~penried sedim~nt is usually

described by the diffusion equation

(7 • 1)

wh~re c is the concentration by volume, w is the fall velocity

of suspended sediment and c. is tha turbulent exchange factor

f 0r sus pended sedl ITient. I n Aq. ( 7 . 1) the her iz0n t aid i f f u .si0n
term i s neg 1ected s ince i t is assumed that the VE' rt ica 1 c rad ient.
of concent rat i on is much lerqor t hun the cc.r-r-e ap o nd inç !t~,'cizontC\l



gradient. The advective terms are omitted as ~ell.

A problem is to give a value for the fail velocity. In this

case ~e ~ill make a comparison ~ith experiments in which w ~as

determined. But in practical cases it may be very difficult to ~

evaluate ~. Another problem is Es. This quantity is not the eddy

viscosity but rather a turbulent exchange factor for sediment.

Very often the particles are assumed to follow th~ eddies and

consequentl y Cs is 9iven as

Cs=' (7.2)

In reality, larger particles might have an inertia which causes ê

phase lag bet.veen big e= ve Lues and the diffusion of the grains.C§

Ho~ever, such a discussion is beyond the scope of the present

st.udy , Presently eq. (7.2) is used for c....

The boundary conditions·are as follo~s

(i) The instantaneous concentration at the bed is assumed

to be a function of the instantaneous bed shear stress.

Several formulae exist but we use the same ae in (10].
~ is then a function of the dimensionless bed shear

stress e

•
in which e is defined as

In eq. (7.3) "tb is the bed shear stress, p 1S the fluid
density, s is the relative density of the grains, g is

thc acceleration due to gravity. and d is the mean

grain diameter. 6 is called Shields parameter. Using

the functional r-e lat i onnh ip between rb and eb from [10]
the lower boundary condition ror eq. (7.1) is

specificd.

( r i ) Toeards the water surf ace i t is demandf-'d that
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(iii) The time variation must be periodie since the 'drivinq

force' is periodic. In a mathematical formulation this
is equivalent to

c(t,y)=cCt+T,y) (7.5)

Now, the idea oE this study is to see thc effect of ineluding

the memory in the turbulence. The flow model used in [10] is

ft therefore replaced by either SLOBAK or BL1PJ. From these mode 1.::; u«

get a timeseries for the friction veloci t.y , Ut, and the eddy

v:scosity field during one half period.

!t is no~ possible to solve eq. (7.1) numerically. We shall

not discuss the details here; reference is made to [10].

7.3 Model implementation

The present turbulence models have been interfaced with an

already existinq programme P20S developed earlier, see [10], T~e

modifications made in P20S are as follows. Routines have been

4t made to read Uf and € from from an external file created by

either BLOBAK or BLIPJ. Usually these data are not given in the

s~mc levels as used by P20S due to a different coordinate 3tral-

·ning. Therefore an interpol~tion pr'ocedurewas constructed to fine

l~termediate values in the proEiles provided in thc file. In the

mei n program the velues of t: and Ut ealculated by P20S were re-

pIaced by the new va1ues. Large parts of the ori ginal program wet't'
retained since this procedure caused the least problems even if a

big number of dummy statement3 thcn e~isted in ·the programme. T~e

changed and new modules are enclosed in Appendix E.
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7.4 Theoretical results and comparison with measurements

To facilitate a comparison with both the theoretical results

in [10] and the measurements in [42] we have chosen to perrorm

two computations using BLOBAK and BL1PJ for the parameters

a/kN=124, w/U1.=O.018, and O.~x=1.45 which corresponds to d=O.19

mm, s=2.65, a=1.86 m, and T=9.1 sec in the experiments. The grain
diameter is related to kN through eq. (2.50).

•
The instantaneous sediment concentration found using BLOBAK

is depicted in Fig. 7.1. Scven different levels are included.

The corresponding diagram showing the results Erom BL1PJ js

given in Fig. 7.2 whereas the theoretical results in [10) are
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reproduced in Fig. 7.3. rhe general variation in the three cases;

is quite similar. rhe sediment is suspended ~hen the bed shear

stress is largest some time before the outer velocity is a

maximum. rhe phase angle ~ is indicated in the diagrams. The

concentration is largest close to the bottom and the maximum

concentration lags more and more behind the maximum bed shear

stress as the distance Erom the bed increases. rhe minimum conce

tration has a similar phase shift one quarter of a period before

It is perhaps instructive to reach back to the contour plbts Eor
the turbulent kinetic energy that were shown in Fig. S.9. Here
there are similar phase conditions for the k-level.

Note that the neglect of eddies formed in earlier half

• !=,e!':"'.:!.c dc ~ i';;;,:; r i se :..u Wo UL-U.!J in t ne concentrat ions in the

beginning of the period in Fig. 7.3. When the memory in the

turbulence is modelled mor-esediment is kept in au spenaion at

the time of flow reverzal. Around wt=n/2 where the amLient

veloCity is a maximum there is little difference bet~een the
results.

c Im'/m'lO:5.~10~·'~--~~n~·J~--~----------------------'_'_~n-·z~-- ~ __'___~

, .

Fig. ï.4 Hean con~entration profile.



Apparently BLOBAK yields higher. concentrations than BL1PJ.

This trend is confirmed when we look at the mean concentration

profile in Fig. 7.4. Both predictions are, however, higher than

the measured profiles. The explanation coulà be that we take

€s=€ in eq. (7.1) wherca~ there might be a diffusion constant

which should be applied. Such a constant may be estimated by

tuning model results to the experimental data. But other major

uncertainties are connected to this model so that different

reasons can be responnible as weIl. In the model a sediment

containing a spectrum of different diameter& is regarded as a

homogeneous material consisting of grains with the median dia­

meter. The fall velocity w is affected by great uncertainty. No
.. field measurements are available for w.

The variation of the concentration relative to the mean

concentration is depicted in Fig. 7.5 in the level y/kN=37.9.

The inclusion of the memory of turbulence improves this

variation compared to the results Erom (10]. The amplitude is now

closer to the measurements whereas there is still a phase zhift

between the measured and predicted maximum concentration.

To documentate further that the variations predicted by these

improved mode 1s may be r eproducing oxpe rime n tal r-esu1ts we
finally include an example of measurements by Horikawa et al.

[17). The experiment parameters can be seen in thc figura

caption in Fig. 7.6. This example of measurements of the time

variation of c in a number of levels is similar te the
diagrams 7.1 to 7.3.

J.lthough we have not made calculations Eor t.h i ss case a

pre 1imenary eval UCJ.t1 Of) is that t.ho pha se eh i fts pred icted here

are closer to the measured than those found in [10J. The

variations of cover the period seem to be rro t ter- modelled as
weIl.
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~ CONCLUSIONS

The purpose of this work was to investigate the effects of th

inclusion of turbulence modelling in the description of the roug.

turbulent ûscillatory boundary layer. Three different models of

increas ing compl ex i ty we re COllS idered. First , the mi ie ing-Iength

theory was used to construct the zero-equation model BLOBAK.

Xodelling of the turbulent kinetic energy budget was improvcd by ,

inclusion of a transport equation for turbulent kinetic energy

vh i ch (;ave the one-equation model fH.1PJ. Fin.:.lly a two-t-~quation

model BL2PJ which also has d transport equation for the dissipa­

tion rate has been outlincd but it has not been implemented.

No general evaluation of the us~ of these advanced models

rather t ha n simpler models cc n he mL1c1~.Depending on which

phenomenon· is considered simpier mode1s might. yi~ld results that

arc acccptabic Eer practical purpose3. We shall therefore dis-

cusc come of t he epp Li cet i ons briefly be Loc ,

It can he concLud ed that Uw descr rpt t on of the velocity fielt:

1 n an Cleci 11.:, :. 0 ry b 0 U T: tiar y .lClYerc':lTl bP 0 bta:l. ne d fr 0 m BLO Eo t.K "r

BL1!'J ':""\3 weIl as Erom á. coneto nt ,~ddy vIaco s i.ty model i i. kc thi:1t;

~!yrha\.lg[32J. Thc: latter model re qu i r-ee , howf:.:'i~r.tbat t_!"J(\ .i.Joun-

dery la y er- th i cknoas is knovn a pri.ory, cf .. ~;:;ecti.on3.3,

wh~reas the present models do not have this limit.ation.

existing model is the under0stimation of the friction factor f.

Th i e /)!'"J0'-::'lè.eènP.é:~·. .i r: t hc thC"~;r('U("al predicti0Tï~. me y be

<-':':Iilaili(:d by t hc ;;'i!ttwd of C:.i;:lu~dLin':i'Lh e nat.ural ho t;t 01:1

roughnesD in the ]~boratory. The discrepancy is most pronounced

t'n' sfI1cdl,:'r Ct/;';" .._·;~tllJf-':,; vh i ch cuppo rt s the S;;)€-culations in
se c t i (I)i 3.6.

In the theoretlcal medels it has been pos2ible to determine

~(rl r nt c r e st i r.ç C!ll<':lDtit:l i n c ourre c ti o n '.lit.h \0):;'/( (!(dnrJing. WE' hûVt:.

r:,'llcIJl,::tedt he ro t t o f... /t~ ,)!,d Ijood ':.tgl'i:emen:~ with c)q:JerimeT,tal



data is observed. This applies to BLOBAK as ~ell as to BL1PJ,

the latter model yielding slightly better results.

Pcrhaps the most important topic in this report is the calcu­

lation of the turbulent kinetic energy conditions in the boun­

dary layer. Using the model BL1PJ it has been innvcstigated how

energy is produced, dif[used, dissipated. and preserved from

times with a production surplus to later times where dissipation

is high. The calculations show that the prodLlction is very high

just before the maximum ambient velocity cul~inates. This sur­
plus of energy is then preserved in the turhul~nt motions and is
spread towards ar eaa in vh i ch tlH~ enerqy l evoI is lower. The

lurbul ent mot i ons are of course s usta i ned throughout the peri od

of oscillation. The model shows that this efEcct is most pro­

nounccd for low values of a/kN• The time scale for the decay of

turbulent cnergy is thcn comparable with the pe~iod of oscilla­
tion.

Unfortunately we have not been able to chEck the theoretical

findings againsl measurcmcnts duo to thc lack of experimental

data. Hino et al. [lS] modo testc v i t h a crno o t.h hed .. '1\

preliminary eva Lua t i on shows .thót th e ;,;·:tme t e nde n cLs s with

respect to the k-distribution in the boundary layer as predicted

by SLiPJ in t he r ouç h bed cc se (trI': present i. r~ these e xjier t me nts ,

0Ye The ma i n i mpli cat i on of Uw iJlI;I["ovcddeser 1pt. i on of the
turbulent kinctic encrgy circulation in that the cddy visconity

i s no o related to t.he turbulent. k i rieti c ene r ç y , J., r a t.h e r- t.na n to
-ths mean velocity field. E behaves qualitatively like k whcn lt is

mod eLl ed by BL1PJ. Th e ubility t.o mcde I the memo r v In t.h e t ur bu-

lenc0 has created _an improved L~S13 fo~ sediment tran~port calcu-

lations in waves. We have used a newly developcd model tG inv~~ti­

gate this issue. Calculations of the conc2ntratlon of sunpcnded

sediment ~ere mnde in three rases. One was to uze ~n ~ddy viscc-

s it y dis tri bIJ r_ i 0 11 <.:t S Iji ven f r (jm ,~ c imp 1e m0 d o l. 7\not h 2 r' wa .c t,0

i nc 1ud e t.h e eddy v r s c os i t i (~S f ro m BLOBAK . n".:~ cl i f f (-'reLCE' b(~t~een

t.hose t wo dis tr i but 1ons iz - the ptl':1.se eh i [ts. Tn.,:Lost w"üs to uee
t.n ere s u ~tsIr 0 rn Po L 1 r.1 i n wh 1eh, t rJ e Inemor'y i:.:', t . _;.;e ft i n t. o ,l CC0un t. _
Givcn t he unt:err",.int_ll:::> v i th r-:;;~pect ti) t alI V(:1'-'Clty. sed ime n+

gradat.ion. ond trJt'" turbulent exchanço [.:'lctorir ·;t-rent in :-,cdiment
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transport calculations the general trend is that the more advanc:

models yield a better prediction of the tendencies wherea~ quant]
tative discrepancies do exist.

•

In practice it may aften be sufficient to use a constant eddy:

viscosity model when a/kN is close to unity while a simple model I

like freds.e's can be applied in the case of very high a/kN-

values. This is depending on the relative strength of the time

scale for decay of turbulence to the period of oscillation.

But a very important range Eor a/kN still exists where the

advanced models have an advantage in the re~ined description cf
the eddy viscosity.

The practical implicatlons of the models developed in the

present work are believed to be limited due to the computer

facilities that these models rsquire. They ~re, however.

justifieLl in the sense that simpIer models can be :::hecked
against thema

Finally we shall outline a few of the topics that would be

relevant to inveBtigate further in the future. Thc effects of a

variabIe length-scale can he ~tudied if the model DL2PJ is

implemented. It may perhap.s not re1Jn~scnt as big d .3tep ro:-war.:-d,
as the inclusion of lhe memory in lhe turbulence but some

changes could be found. Tt should be more interc8~ing to modifye the present mode 1~',to t ree t the r:.moothwa11 case. The v iscous
sublayer can be lncluded by matching a logarJthmic velocity

profile in t.h i s layer te> t.he numo ri ca j solutio:"! in the OULT

.luyer. It seem3 to ba ~traightforwQrd and wauld facilitate Q

compclrison v i th t:"hecouq::rc;J.:.:nsivnexperimentul rt":-.::-.a by Ji i r«: 2t

aL, Another interesting extension of tbc pr'2ncnt: mo do ls t.Joüldhe

the incluzion of a steëldy c:urrE:TJ"t. so t.hat. a combt ne d \.UtVe­

current motion in the unidirectional c~se could be considered.
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~ LIST OF SYMBOLS

coefficient matrix in system of equations
cOf'fficients in solution of U-equation
coefficients in nolution of k-equation
coefficients in solution of k-equation
coeff,icients in solution of U-equation
coefficients

coefficientn in solution of k-equation

Symbol Explanation

A

D. "
E

E. "

- "jj

t:' j
• 1

H
~ j.1.
lIS

K, J

I...
MI J

Eq.

coefficients in solution of U-equation

right-hand side, 301ution of k-equation

right-hand side. solution of U-equation
coefficient matrix

energy loss

coefficient matrix

coefficient matrix

coefficients in solution of k-equation

right-hand side in system of eqs.

approximation in z-eq.

wave height.

approximation in z-eq.

right-hand sidc

coefficients in solution of k-equation

coefficients in solution of k-equation

[ree paths of molecules

coefficients in solution of k-equation

(4.32
(6.16

(6.17

(5.25:

App.

App.

l\.pp.
N numher of equations

N!j coefficients in solution of k-cquation
NT number of timesteps

Q. diffusive flux in x+d ircct i on
Qy diffusive flux in y-direction

RE amplitude Reynolds number
SI con~tants

TKE
T period of ambient flow

turbulent. kinetlc. energy. k (2.10)
IJ horizontal mean velocity

u, defect velocity



u, friction velocity
Ut mean velocity in Xi -direction
U. ambient flow velocity
Ut. arnbient velocity amplitude
V vertical mean velocity
V velocity scale (2.20)

a amplitude in ambient 03C. flow
straining factor

wave celcrity

sediment concentration by volume
empirical constant

(7 .1 )

(5.15)
(5.16)
(G.l.1i
( 6.8 )
(6,8)

c (4.19) ,
c
c

emp ir ical con sta.n t
d grain diameler'

eij deformation tensor

f residual vector

f. energy loss fa.ctcr

friction factor

residual ve ct or'

residual vector

acceleration due to gravity
index

imaginary unit

(4.45)

(4..31))f.
fk
Ez

9
i

i

(5.38)

(6.1'))

j

k turbulent kinetic energy (2.:C)
·k wave number

kH Nikuradse roughnezs

1 length-scale

1 index

1. mixlng-length

n index

p pressure
p internal frictien velocity

relative grain donnity
t.ime

·t,

u horizont.:tl 'lelociry fluctuat.ion



Ud defect velocity amplitude

UI turbulent velocity fluctuation in XI -direction
v· vertical velocity fluctuation

VI local velocity

w fall velocity

x horizontal coordinate

Xi space coordinate

y vertical coordinate
z
z

dissipation rate

vector containing unknowns

a weighing factor in implicit scheme
01J Kronecker delta

ÖD • 99

displacement thickness

boundary layer thickness

boundary layer thickness

eddy viscosity

turbulent exchange factor

K von Karmans constant (=0.40)

ijw wave viscosity

n pi, constant

p fluid density

v kinematic viscosity

u dynamic viscosity

angular frequency of osc. flow
phase shift

strained ve~ticQl coordinQte

w

r shear stress

alJ stress tensor

8
8

emp ir i ce1 ccnst.ent., one- eq .-mode 1

empirical constant, two-eq.-model

rnomentum·thickness

Shield3 parameter

Superscripts : ol(

Subscript::;: h

lm e mb i c nt. quo n i.j ty

o uppe r cd(jé n r c omput;a t. i0n·J.l r291 CTi

(2.J~)

(7 . : )

( 6.9)

(7.3)


