
Effects of exploration-exploitation strategies in dynamic Forex markets
The use of Reinforcement Learning in Algorithmic Trading

Serban Mihai-Radu

Supervisor(s): Neil Yorke-Smith, Amin Sharifi Kolarijani, Antonis Papapantoleon

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Serban Mihai-Radu
Final project course: CSE3000 Research Project
Thesis committee: Neil Yorke-Smith, Amin Sharifi Kolarijani, Antonis Papapantoleon, Julia Olkhovskaya

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This paper examines how different exploration
strategies affect the learning behavior and trad-
ing performance of reinforcement learning (RL)
agents in a custom Foreign Exchange (Forex) en-
vironment. By holding all other components con-
stant—including model architecture, features, and
reward function—the study isolates the role of ex-
ploration in deep Q-learning.
Three strategies were compared: Epsilon-Greedy,
Boltzmann, and Max-Boltzmann. The hybrid
Max-Boltzmann approach delivered the most stable
and profitable outcomes, suggesting that weighted,
value-aware exploration can be beneficial in high-
risk domains. The results also highlight the im-
pact of non-Markovian structure in financial envi-
ronments and limitations of equity-based rewards.
Beyond empirical results, this work contributes a
modular, reproducible RL framework for trading,
and opens new questions about the suitability of
exploration techniques in environments with asym-
metric risk and irreversible actions.

1 Introduction
1.1 Context and Motivation
The foreign exchange market (Forex) is one of the most liq-
uid and fast-paced financial markets, with an estimated daily
turnover exceeding $7.5 trillion in 2022 [1]. Its global na-
ture ensures 24-hour trading across major financial centers,
and its high leverage ratios enable significant capital expo-
sure with relatively small investments. These factors attract
a wide spectrum of market participants—from central banks
and multinational corporations to institutional investors and
retail traders.

At the same time, the Forex market is notoriously volatile
and influenced by a wide range of factors, including macroe-
conomic indicators (e.g., interest rates, inflation reports),
geopolitical developments, and unexpected news events. This
complexity makes traditional rule-based or static statistical
models insufficiently responsive to changing market regimes.

The need for adaptive, data-driven approaches has grown
in parallel with advances in computational finance. As al-
gorithmic trading continues to rise in prevalence, there is in-
creasing interest in leveraging machine learning—and partic-
ularly Reinforcement Learning (RL)—to develop agents that
can learn profitable strategies autonomously and respond to
shifting market dynamics. Forex, with its continuous opera-
tion, short reaction windows, and abundant data, presents an
ideal yet challenging domain for testing such intelligent trad-
ing systems. However, as highlighted in recent reviews [8],
applying RL to financial markets remains difficult due to
non-stationary dynamics, partial observability, and the risk
of overfitting to transient market patterns.

1.2 Reinforcement Learning in Trading
Reinforcement Learning (RL), which focuses on learning op-
timal policies through trial-and-error interactions with an en-

vironment, has gained increasing interest in quantitative trad-
ing. In particular, the combination of RL with deep neural
networks, popularized by the Deep Q-Network (DQN) archi-
tecture [7], has shown promise in tackling high-dimensional
control problems. This hybrid has been applied in financial
contexts to learn trading strategies directly from market data.

Carapuço et al. [2] implemented a Deep Q-Network (DQN)
to trade the EUR/USD currency pair and demonstrated that
RL agents could exploit price trends and achieve profitable
returns in backtesting, emphasizing the practicality of neural-
network-enhanced RL in Forex markets. Similarly, Théate
and Ernst [12] showed that deep RL agents trained using his-
torical limit order book data can learn profitable strategies
and adapt to market dynamics, highlighting the feasibility of
end-to-end learning in high-frequency trading settings. These
studies underscore the growing potential of RL in algorithmic
trading and motivate a deeper investigation into the role of ex-
ploration strategies within such frameworks.

1.3 Research Gap
A fundamental challenge remains underexplored in the litera-
ture: the effect of exploration-exploitation strategies on learn-
ing stability and trading performance in non-stationary mar-
kets like Forex. Unlike stationary environments, the Forex
market evolves over time, making naive or fixed exploration
schedules potentially suboptimal.

Huang [5] treated financial trading as a game and showed
that deep RL agents can outperform heuristic-based strate-
gies in simulated environments, reinforcing the potential of
RL for adaptive decision-making in finance. Ghosh et al. [3]
combined deep learning models (LSTMs) with tree-based
methods to forecast price movements for intraday trading,
further illustrating the benefits of model-driven strategies in
volatile markets. However, despite these encouraging results,
the mechanisms through which exploration choices affect
learning dynamics and trading performance—particularly in
non-stationary financial environments—remain poorly under-
stood.

1.4 Research Question and Contributions
This paper investigates the research question: How do differ-
ent exploration-exploitation strategies affect the ability of
an RL agent to balance learning and performance in a dy-
namic Forex market?

To address this, the study examines how exploration de-
sign shapes both learning behavior and trading outcomes un-
der controlled conditions. The following sub-questions are
explored through empirical analysis:

• How do different strategies affect the stability and
convergence of policy learning?

• What impact does exploration design have on prof-
itability and drawdown risk?

• How do agents allocate between long, short, and hold
actions under different exploration schemes?

• What advantages do hybrid exploration methods of-
fer in high-risk decision environments like trading?

In addition to these empirical insights, this study con-
tributes a reusable and extensible framework for financial re-
inforcement learning research.

The key contributions of this work are:
• a modular, Gym-compatible Forex trading environ-

ment that simulates realistic trading mechanics includ-
ing long/short positions, bid-ask spread, and transaction
logic;

• a systematic comparison of exploration-exploitation
strategies for RL agents in financial markets, using DQN
and its extensions;

• an evaluation pipeline that integrates financial metrics
with learning dynamics to provide practical insights into
agent behavior under different exploration schemes;

• extensible code templates for advanced strategies such
as Noisy Networks and Curiosity-Driven Exploration,
supporting future experimentation.

1.5 Paper Structure
The remainder of this paper is structured as follows. Section 2
reviews relevant literature on RL in trading and exploration
strategies. Section 3 describes the architecture of the trading
environment, the RL agents, and the evaluation setup. Sec-
tion 4 presents and compares experimental results. Section 5
discusses implications and limitations. Section 6 outlines re-
sponsible research practices. Section 7 concludes with key
takeaways and directions for future work.

2 Background
2.1 Reinforcement Learning Foundations
Reinforcement Learning (RL) provides a powerful frame-
work for sequential decision-making under uncertainty. An
RL agent learns by interacting with its environment and re-
ceiving scalar feedback in the form of rewards. The standard
formulation is based on a Markov Decision Process (MDP),
defined by the tuple (S,A,P,R, γ) [10], where:

• S is the state space,

• A is the action space,

• P(s′|s, a) is the transition probability,

• R(s, a) is the reward function,

• γ ∈ [0, 1) is a discount factor.

The objective is to learn a policy π(a|s) that maximizes the
expected cumulative discounted reward:

J(π) = Eπ

[∞∑
t=0

γtrt

]
While this framework is mathematically elegant and forms

the foundation of RL research, real-world financial envi-
ronments frequently violate MDP assumptions. In prac-
tice, financial markets are partially observable, exhibit non-
stationary dynamics, and involve delayed or stochastic re-
wards. The environment transition function P(s′|s, a) is not
only unknown but also unstable over time due to regime

shifts, economic shocks, and latent variables. These viola-
tions introduce challenges in applying RL reliably and moti-
vate algorithmic simplifications that increase robustness and
interpretability.

2.2 Deep Q-Networks as a Design Choice
Given these complexities, this study employs the Deep Q-
Network (DQN) algorithm [7] as the base RL agent. DQN is
a value-based method that approximates the optimal action-
value function Q∗(s, a) using a deep neural network. The
network is trained using a temporal difference loss:

L(θ) = E(s,a,r,s′)

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
]

where θ are the current network weights, and θ− are weights
of a target network that is periodically updated for stability.

DQN has several properties that make it particularly suit-
able for controlled studies of exploration strategies:

• It produces deterministic policies at evaluation time
via greedy action selection, enabling stable and repro-
ducible comparisons across strategies.

• It supports built-in exploration mechanisms such as ε-
greedy and Boltzmann sampling without requiring prob-
abilistic policies.

• It has a well-understood empirical behavior and serves
as a baseline in many prior financial RL studies [2] [12].

Although financial decision-making often involves contin-
uous control (e.g., portfolio allocation or position sizing), this
study adopts a discrete action space for both practical and
conceptual reasons. The DQN implementation used in this
work, based on the Stable Baselines3 framework, supports
only discrete actions, since it estimates a separate Q-value for
each action. While more complex algorithms like DDPG or
SAC support continuous action spaces, they also introduce
additional challenges in stability and interpretability. Given
the high complexity and non-stationarity of financial envi-
ronments, this discrete framing is not merely a limitation, but
a deliberate simplification that enables clearer analysis and
more stable learning.

By framing the problem as choosing among a small, inter-
pretable set of actions—such as opening long, opening short,
or holding—we reduce the risk of spurious results driven by
noisy gradients or unstable value estimates in continuous do-
mains. This simplification is particularly justified in the pres-
ence of MDP violations such as partial observability and non-
stationary transitions. Prior work suggests that, in such high-
uncertainty environments, discretizing the action space can
improve policy stability, accelerate convergence, and support
more interpretable exploration dynamics [11]. The resulting
design—combining DQN with a minimal yet realistic action
set—therefore reflects a pragmatic trade-off between repre-
sentational richness and experimental tractability.

2.3 Exploration-Exploitation Strategies
This study investigates how different exploration strategies
influence the learning dynamics and performance of DQN
agents in the Forex market. We focus on three widely dis-
cussed strategies:

Epsilon-Greedy. The ε-greedy strategy is a foundational
exploration technique in reinforcement learning [10]. At each
timestep, the agent selects a random action with probability ε,
and the action with the highest estimated Q-value with prob-
ability 1− ε:

at =

{
random action with probability ε

argmaxa Q(st, a) with probability 1− ε

Typically, ε is annealed over time. While simple and robust,
this approach does not distinguish between poor and moder-
ately promising actions during exploration.
Boltzmann (Softmax) Exploration. Boltzmann explo-
ration improves on ε-greedy by converting Q-values into a
softmax probability distribution:

P (a | st) =
exp(Q(st, a)/τ)∑
a′ exp(Q(st, a′)/τ)

The temperature τ modulates the degree of exploration: high
τ flattens the distribution, while low τ sharpens it. This
method allocates exploration effort more effectively by favor-
ing actions with relatively high value estimates [6].
Max-Boltzmann Exploration. Max-Boltzmann explo-
ration is a hybrid scheme proposed in recent work on deep
recurrent RL [13]. It combines ε-greedy structure with
Boltzmann sampling:

at =

{
sample from softmax(Q(st, ·)) with probability ε

argmaxa Q(st, a) with probability 1− ε

This strategy aims to leverage the smooth preference scal-
ing of Boltzmann while retaining the simplicity and fall-
back of greedy selection. Zangirolami and Borrotti [13]
showed that Max-Boltzmann exploration improves stability
and sample efficiency in uncertain and partially observable
settings—properties often encountered in financial environ-
ments.

Together, these strategies differ in how they inject stochas-
ticity, prioritize uncertainty, and balance risk. Given the
volatility and non-stationarity of the Forex market, under-
standing these differences is critical to developing agents that
are both profitable and adaptable.

3 Methods
This section details the trading environment, data process-
ing pipeline, feature engineering components, reinforcement
learning setup, and experimental protocol. All aspects un-
related to exploration-exploitation were fixed to ensure con-
trolled comparisons across strategies. The full implementa-
tion is available on GitHub [9], with modular code organized
by environment design, feature engineering, and model train-
ing.

3.1 Data and Preprocessing
The historical dataset used in this study consists of EUR/USD
candlestick records retrieved from the Dukascopy public API.
It includes high-resolution bid and ask prices and spans from
January 2, 2022, to May 16, 2025. The data is aggregated at a

fixed 15-minute interval, which balances temporal granularity
with computational efficiency.

To ensure temporal consistency and realism, the raw data
undergoes several preprocessing steps:

• Timestamp alignment and removal of non-trading hours,

• Forward-filling of missing entries,

• Outlier and gap diagnostics,

• Retention of bid/ask OHLC1 prices for accurate execu-
tion modeling.

Each row in the dataset contains synchronized bid and ask
OHLC prices and a volume field (which is unused). The data
is split chronologically into training and evaluation sets using
an 80/20 ratio, with no shuffling, to preserve the temporal
structure and avoid data leakage.

3.2 Feature Engineering Pipeline
Agent observations include both market-derived and agent-
specific features. These are computed using a modular
pipeline with per-step execution and strict chronological or-
dering, ensuring no future leakage. The mathematical defini-
tions of each feature are formally described in Appendix A.

The feature pipeline is implemented in
feature engineer.py, where transformations are ap-
plied using the FeatureEngineer.add() and run()
methods.

Market Features. The following indicators are computed
from historical bid prices:

• Price momentum: percentage change in the bid close
over the last 1 and 5 steps,

• Trend signals: EMA(20) and EMA(50) as ratios of the
current bid close [2],

• RSI(14): normalized to the [0, 1] interval using min-
max scaling [3].

Agent-State Features. Three dynamic indicators reflect the
internal portfolio state:

• Current exposure: (equity − cash)/equity,

• Target exposure: current intended position derived
from the selected action,

• Trade duration: normalized number of steps spent in
the current exposure.

3.3 Trading Environment Design
Trading is modeled as a discrete-time, episodic environment
implemented in forex env.py, built on the OpenAI Gym
interface. Each episode walks sequentially through historical
market data with no random resets or lookahead.

1OHLC stands for Open, High, Low, Close—commonly used
price data points in candlestick charts to summarize trading activity
within a time interval.

Action Space. The agent selects one of three discrete ac-
tions:

• Buy (long): allocate all capital into a long position,
• Sell (short): allocate all capital into a short position,
• Hold (cash): remain fully in cash.
These actions map to target exposures in {−1, 0,+1} and

are executed using real-time bid/ask prices. Trade logic is
implemented in trade.py, using helper methods such as
execute trade() and calculate equity(). Execution is
asymmetric: long positions buy at the ask and sell at the bid;
short positions reverse this relationship.
Reward Function. The agent is rewarded based on the log-
arithmic change in equity:

rt = log(Et)− log(Et−1)

This reward formulation captures risk-adjusted growth, is
scale-invariant, and has precedent in financial RL litera-
ture [5]. It is injected at runtime as a custom reward function
defined in rewards.py.
Constraints. To isolate policy learning, the environment
makes the following assumptions:

• Zero transaction costs and slippage,
• No market impact or latency,
• All-in trading (no fractional allocation),
• Deterministic dynamics (no randomness or noise).

3.4 Reinforcement Learning Setup
Agents are trained using the Deep Q-Network (DQN) algo-
rithm [7]. All hyperparameters are fixed across exploration
variants:

• Two hidden layers with 128 ReLU units,
• Learning rate: 1× 10−4,
• Discount factor: γ = 0.99,
• Batch size: 64,
• Replay buffer size: 50,000 transitions,
• Target network update every 500 steps,
• Training frequency: every 4 steps.
The DQN models are instantiated and trained through the

experimental script RQ5/main.py, which also controls repro-
ducibility, environment setup, and logging.

3.5 Exploration Strategies and Parameter
Selection

We compare three discrete-action exploration strategies:
• Epsilon-Greedy: ε decays linearly from a fixed initial

value to a final value over a defined training fraction,
• Boltzmann Exploration: actions are sampled from

a softmax distribution over Q-values with temperature
τ [6],

• Max-Boltzmann Exploration: with probability ε, ac-
tions are sampled via Boltzmann; otherwise, the greedy
action is chosen [13].

All exploration parameters (e.g., ε schedule, temperature)
are fixed prior to training. The only difference between strat-
egy implementations lies in the action-selection logic. Cus-
tom exploration policies are implemented as subclasses of the
standard DQN in boltzmann dqn.py.

3.6 Training and Evaluation Protocol
Agents are trained for a fixed number of episodes—20 in all
experiments presented in this paper—each consisting of a full
pass through the training set. This limit was chosen based
on preliminary runs showing that agent performance often
began to plateau or overfit after 20–25 episodes. A total of
21 models (including the final post-training model) are saved
per run. The training and evaluation workflow is managed
by train model() and evaluate and analyze model()
in train eval.py.

During training:
• Model checkpoints are saved after each episode,
• Evaluation is performed on the full test set using deter-

ministic policies (no exploration),
• Logged outputs include episodic rewards, equity pro-

gression, and action usage statistics.
To compare performance across strategies, we compute a

set of standard financial metrics:
• Sharpe Ratio: return per unit of volatility,
• Maximum Drawdown: worst historical peak-to-trough

drop in equity,
• Total Equity Change (%): net percentage growth in

portfolio value,
• Profit Factor: ratio of gross profits to gross losses,
• Winning Rate (%): percentage of trades yielding posi-

tive return.
These metrics are computed consistently across agents us-

ing a unified analysis pipeline. Mathematical definitions are
provided in Appendix B.

4 Results
This section presents and compares the performance of
three exploration strategies—Epsilon-Greedy, Boltzmann,
and Max-Boltzmann—within the custom Forex trading envi-
ronment. All hyperparameters, market conditions, and eval-
uation procedures were held constant to ensure that observed
differences stem solely from the exploration mechanism.

4.1 Epsilon-Greedy Results
The Epsilon-Greedy agent was trained using an exploration
fraction of 0.8. Evaluation results indicate limited learning
and inconsistent profitability. While the agent occasionally
achieved modest returns in intermediate checkpoints, its final
performance failed to generalize reliably.

Across 21 training episodes, total evaluation returns mostly
remained negative, with drawdowns frequently exceeding
$2,000. Sharpe Ratios fluctuated heavily—many episodes
yielded values between –6 and 0, with only a few check-
point models briefly entering positive territory. Profit Factors

stayed close to 1.0, indicating minimal edge over random-
ness.

The final trained model underperformed in every major
metric:

• Sharpe Ratio: –0.24,

• Profit Factor: 0.995,

• Equity Gain: –177.99,

• Max Drawdown: –1318.03,

• Total Trades: 1.

Notably, the agent executed only one trade during evalu-
ation—an extreme case of policy collapse—suggesting that
the learned strategy avoided the market altogether in its final
state.

Figure 1: Equity OHLC for Epsilon-Greedy agent (evaluation). Up-
trend followed by sharp retreat and stagnation.

Figure 2: Final evaluation metrics for Epsilon-Greedy agent.

Despite brief moments of promise in mid-training
episodes, the Epsilon-Greedy agent ultimately failed to learn
a robust trading policy. Its reliance on uniform exploration
and lack of value-aware sampling likely hindered conver-
gence in the highly stochastic and non-stationary Forex en-
vironment.

4.2 Boltzmann Results
The Boltzmann agent, which samples actions via
temperature-scaled softmax, showed slightly better trade bal-
ance but similarly struggled with performance degradation.
Although it achieved a higher win rate than Epsilon-Greedy
(53.3%), evaluation results were disappointing overall:

• Sharpe Ratio: –0.14,

• Profit Factor: 0.99,

• Equity Gain: –45.35,

• Max Drawdown: –363.28,

• Total Trades: 1380.

Figure 3: Equity OHLC for Boltzmann agent (evaluation). Volatile
behavior with minimal long-term gain.

Figure 4: Final evaluation metrics for Boltzmann agent.

Despite occasional improvements during training, the
agent failed to consistently capitalize on market structure.
Sharpe ratios for training models ranged widely (as low as
–7), with no sustained positive trajectory.

4.3 Max-Boltzmann Results

The Max-Boltzmann agent, combining greedy exploita-
tion with occasional Boltzmann sampling, demonstrated
markedly improved learning behavior. From mid-training on-
ward, both train and evaluation metrics exhibited sustained
improvement:

• Sharpe Ratio: 1.04,

• Profit Factor: 1.02,

• Equity Gain: 641.19,

• Max Drawdown: –550.11,

• Total Trades: 843.

Figure 5: Equity OHLC for Max-Boltzmann agent (evaluation).
Clear upward trend and risk-controlled behavior.

Figure 6: Final evaluation metrics for Max-Boltzmann agent.

Sharpe and profit factors improved steadily over the course
of training, with the final evaluation achieving the highest sta-
bility and reward efficiency. The agent also executed a bal-
anced mix of long and short trades, suggesting an adaptive
policy that responds to market regime shifts.

4.4 Learning Curves and Metric Progression
We assess how each strategy evolves during training by track-
ing the Sharpe Ratio across evaluation checkpoints. While all
agents followed the same training protocol, their learning tra-
jectories diverged notably.

Figure 7: Sharpe Ratio progression — Epsilon-Greedy. High vari-
ance and no stable trend.

The Epsilon-Greedy agent exhibited noisy and unstable
performance, oscillating between profitable and loss-making
policies without converging. Despite occasional peaks, no
sustained learning was observed.

Figure 8: Sharpe Ratio progression — Boltzmann. Slight improve-
ment, but high volatility persists.

Boltzmann exploration showed mild upward movement in
Sharpe Ratio early on, but failed to consolidate gains, with
later episodes regressing or plateauing.

Figure 9: Sharpe Ratio progression — Max-Boltzmann. Clear and
consistent learning trend.

In contrast, the Max-Boltzmann agent showed consistent
improvement, eventually stabilizing at a positive Sharpe Ra-
tio. This confirms its superior ability to learn and retain prof-
itable trading behavior across episodes.

4.5 Summary and Interpretation
The empirical results highlight the advantages of structured
exploration in non-stationary environments:

• Epsilon-Greedy yielded poor learning signals and high
variance, likely due to under-exploration of nuanced
trade opportunities.

• Boltzmann offered slightly better trade distribution but
failed to translate into performance gains.

• Max-Boltzmann achieved clear, stable improvement
across metrics, demonstrating the value of blending
stochasticity and exploitation.

In summary, the Max-Boltzmann strategy not only outper-
formed both baselines in absolute metrics but also exhibited
desirable convergence patterns over time. These findings sug-
gest that hybrid exploration policies may offer a practical ad-
vantage in real-world financial RL settings.

Additional plots, including action histograms and episode-
wise breakdowns, are available in Appendix C.

5 Discussion
The results presented in Section 4 offer empirical evidence of
how exploration strategies critically influence learning behav-
ior in RL-based financial agents. This section interprets those
results in light of RL theory and financial decision-making,
and reflects on broader methodological and practical implica-
tions.

5.1 Exploration in Financial Contexts
A central insight of this work is that exploration strategies in-
teract differently with financial environments than with typ-
ical benchmark tasks (e.g., Atari or robotics). In financial
domains, many actions can result in severe and irreversible
penalties—such as capital loss or drawdown—making uni-
form exploration strategies especially hazardous.

The Epsilon-Greedy strategy, though popular, exemplifies
this risk. Its uniform sampling from all non-greedy actions
treats the second-best action the same as the worst one. In the
context of trading, where certain actions (e.g., opening a short
position in an upward-trending market) can be catastrophi-
cally wrong, such uninformed randomness leads to unstable
learning and erratic performance.

In contrast, the Max-Boltzmann strategy mitigates this
weakness by attaching meaningful probabilities to each ac-
tion through softmax sampling over Q-values. Poorly ranked
actions receive exponentially less probability mass, thereby
reducing the likelihood of collapse-inducing decisions. This
property is particularly valuable in financial RL, where:

• The action space is small but asymmetric,

• The cost of poor decisions can dominate long-term re-
turns,

• Recovery from missteps is non-trivial due to position ir-
reversibility and compounding losses.

These challenges reflect structural features of financial en-
vironments that depart from standard RL assumptions, such
as the Markov property and ergodicity. As highlighted by
Hambly et al. [4], financial tasks often involve partial ob-
servability, regime switches, and noisy, path-dependent out-
comes—all of which amplify the importance of informed and
cautious exploration.

This result suggests that hybrid strategies like Max-
Boltzmann are not merely marginally better—they may
be fundamentally more appropriate for domains where ac-
tion missteps carry disproportionate penalties.

5.2 Empirical Interpretation of Results
The Max-Boltzmann agent outperformed its counterparts
across Sharpe Ratio, Profit Factor, and equity growth. Its
convergence trajectory was both smoother and more stable,
suggesting better policy generalization. The stochasticity in-
troduced by Boltzmann sampling allowed it to explore mean-
ingfully, while the fallback to greedy selection preserved per-
formance under uncertainty.

By contrast, the Boltzmann-only strategy struggled to
maintain stable returns. Despite its value-aware formulation,
it lacked the decisive exploitation behavior needed to consol-
idate learning in later stages. This supports the interpretation

that exploration alone is not sufficient—exploration must
also be risk-aware and anchored by strong exploitation
mechanisms.

Epsilon-Greedy, while occasionally showing intermediate
gains, produced erratic behavior and collapsed to nearly inac-
tive policies in some cases. The agent’s indifference to action
quality during exploration phases led to excessive volatility
and poor final performance, despite prolonged training.

5.3 Methodological Reflections
This study deliberately fixed all variables unrelated to ex-
ploration—such as architecture, reward structure, and fea-
tures—to ensure that outcome differences were solely at-
tributable to the strategy under test. This constraint strength-
ened the validity of comparisons but may have limited the
agent’s capacity to co-adapt more holistically to market dy-
namics.

The choice to evaluate each checkpoint separately also
proved informative. Several agents showed mid-training
peaks, underscoring the importance of tracking learning pro-
gression over time, rather than relying solely on final models.
This is especially relevant in non-stationary domains where
the environment itself may shift during training.

5.4 Key Takeaways Across Strategies
• Max-Boltzmann exhibited the most consistent and

profitable behavior. Its softmax-driven stochasticity pro-
tected against catastrophic choices while maintaining di-
rected exploration. The results align with prior findings
on hybrid exploration improving robustness [13].

• Boltzmann failed to deliver meaningful improvements
over Epsilon-Greedy. Its inability to consolidate gains
highlights the need for balanced exploitation in addition
to exploration.

• Epsilon-Greedy produced unstable results. Its naive
random exploration exposed the agent to high-risk de-
cisions, confirming that uniform randomness is par-
ticularly ill-suited to asymmetric environments like
trading.

5.5 Broader Implications
The findings of this study suggest that domain-aware explo-
ration strategies may offer advantages in high-uncertainty
environments such as financial markets. In particular, strate-
gies that assign action probabilities based on value esti-
mates—rather than selecting randomly among all non-greedy
options—appear to mitigate risk more effectively and pro-
duce more stable policies.

While this intuition is grounded in the context of trad-
ing, it may extend to other domains with similar character-
istics: environments where actions can have irreversible con-
sequences, where risk is asymmetric, or where poor decisions
can lead to severe penalties. Examples include medical treat-
ment planning, autonomous vehicle control, and resource al-
location under uncertainty.

These results do not imply that hybrid strategies like Max-
Boltzmann are universally superior, but rather that their struc-
tural properties warrant further exploration in domains where

naive exploration could be especially costly. RL practitioners
may benefit from evaluating such strategies in settings where
safety, interpretability, and stability are key concerns.

6 Responsible Research
This section outlines the ethical considerations and repro-
ducibility practices adopted in this study, in accordance with
the principles of transparent, responsible, and replicable sci-
entific research.

6.1 Ethical Considerations
The use of reinforcement learning (RL) agents in algorithmic
trading presents several ethical challenges. While the agents
developed in this study were created solely for academic pur-
poses and evaluated exclusively in backtesting settings, the
potential for real-world application warrants careful reflec-
tion.

Algorithmic trading systems can impact market dynam-
ics by increasing volatility, exacerbating liquidity fragmen-
tation, or creating unfair advantages when deployed without
sufficient oversight. In particular, RL-based agents—when
trained in non-stationary or poorly understood environ-
ments—may learn unstable or risky policies that could lead
to significant financial losses, or contribute to systemic mar-
ket instability if scaled improperly.

To mitigate such risks, this research emphasizes that RL
agents trained under experimental assumptions—such as per-
fect execution, no market impact, and idealized bid-ask
spreads—should not be considered deployable without exten-
sive validation in production-grade environments. Deploy-
ment would require robust safeguards, including:

• Rigorous stress testing across volatility regimes,

• Transparent documentation of risk controls and decision
boundaries,

• Alignment with regulatory and compliance frameworks.

This study does not involve any personal, private, or user-
generated data. All experiments are conducted using pub-
licly available historical Forex data from the Dukascopy API.
The dataset includes only price and volume information and
is ethically neutral. Furthermore, no sentiment analysis, so-
cial data, or external signals were used, eliminating potential
bias from exogenous sources.

6.2 Reproducibility
Ensuring reproducibility was a central goal of this work. All
code, experiments, and analyses were implemented in Python
using open-source libraries such as gymnasium, numpy,
and stable-baselines3, with modular design enabling
reusability and auditing.

The following reproducibility practices were implemented:

• All hyperparameters—including those governing explo-
ration strategy, learning rate, reward function, and train-
ing duration—are explicitly documented in Section 3.

• A fixed random seed was used for all stochastic compo-
nents to facilitate deterministic runs and result replica-
tion.

• No future data leakage is present: all features are com-
puted sequentially and strictly adhere to causal ordering.

• Model checkpoints are saved after every training episode
to enable per-episode evaluation and performance track-
ing.

• Financial metrics such as Sharpe Ratio and Maximum
Drawdown are computed using standard definitions de-
tailed in Appendix B.

• All pipeline components—from feature engineering to
training—are encapsulated in independently testable
modules.

To ensure focused analysis, all experimental conditions un-
related to the core exploration strategy (e.g., environment de-
sign, architecture, reward formulation) were held constant.
This controlled setup enhances interpretability but limits the
scope of optimization—a trade-off further discussed in Sec-
tions 5 and 7.

All source code, configuration files, and analysis note-
books are available on GitHub [9]. A reproducibility check-
list is provided in Appendix D.2 to guide future researchers.

7 Conclusions and Future Work
This thesis investigated how different exploration-
exploitation strategies influence reinforcement learning
(RL) performance in a dynamic Forex trading environment.
Specifically, it evaluated Epsilon-Greedy, Boltzmann, and
Max-Boltzmann strategies within a unified and reproducible
training framework. All other components—reward function,
state representation, model architecture—were fixed to
isolate the impact of exploration.

7.1 Conclusions
Several key insights emerge from this study:

• Exploration is a core design decision. The choice of
exploration strategy significantly shaped agent behav-
ior, learning stability, and financial performance. Max-
Boltzmann consistently outperformed the other meth-
ods, achieving superior Sharpe ratios, smoother equity
curves, and lower drawdowns.

• Weighted exploration prevents catastrophic mis-
takes. A critical insight of this work is that in
domains like trading—where selecting a poor action
(e.g., a badly-timed trade) can lead to large and irre-
versible losses—simple exploration mechanisms such as
Epsilon-Greedy may be ill-suited. Because they assign
equal probability to all actions during exploration, they
risk sampling catastrophic ones too often. In contrast,
hybrid strategies like Max-Boltzmann apply a softmax
distribution that emphasizes better actions even when
exploring. This nuanced weighting appears vital in en-
vironments where the difference between the worst and
second-best actions is large and consequential.

• Intermediate evaluation matters. Analyzing perfor-
mance across saved checkpoints showed that final mod-
els were not always the best. Some agents peaked mid-
training, highlighting the need for periodic evaluation

and model selection based on learning curves, not just
endpoint metrics.

Taken together, the findings suggest that hybrid explo-
ration is especially effective in high-risk domains like trading,
where naive or flat exploration can expose agents to ruinous
decisions.

7.2 Limitations
While this research carefully isolated exploration strategies,
several constraints affect generality:

• Frozen pipeline. By fixing reward functions, input fea-
tures, and network architectures, this study eliminated
many confounding variables but also limited overall per-
formance and flexibility.

• Non-Markovian structure. Like most financial envi-
ronments, the Forex market violates Markov assump-
tions. Latent factors—such as macroeconomic events or
institutional order flows—are unobserved, reducing the
effectiveness of standard RL formulations.

• Simple reward signals. The agent was rewarded solely
on log equity deltas, ignoring factors such as trade dura-
tion, drawdown risk, or volatility-adjusted returns. This
may have incentivized overly aggressive behavior.

These limitations should be addressed in future extensions
that aim to improve generalization or production viability.

7.3 Contributions
Despite its constraints, this work makes several notable con-
tributions:

• A custom RL trading environment, including a dis-
crete action space, bid-ask spread modeling, and modu-
lar reward pipeline.

• A reproducible experimental pipeline, supporting
per-episode checkpointing, batch evaluation, and per-
strategy comparison.

• A new interpretation of exploration strategy effec-
tiveness, demonstrating that weighted hybrid methods
like Max-Boltzmann can substantially reduce the risk of
catastrophic trades while still enabling policy improve-
ment.

• Early implementation of curiosity and NoisyNet ex-
ploration strategies, available in code form for future
tuning and investigation.

7.4 Future Work
Building on this foundation, several promising directions re-
main:

• Joint optimization. Future experiments can tune explo-
ration in tandem with reward shaping, state design, or ar-
chitecture—e.g., adding attention mechanisms or mem-
ory models (e.g., LSTM).

• Risk-aware reward functions. Introduce asymmetric
or utility-based reward signals that account for draw-
down sensitivity, regime switching, or risk-adjusted per-
formance.

• Handling market uncertainty. Explore partially ob-
servable or Bayesian RL techniques, or incorporate tools
like Thompson Sampling and UCB to adapt exploration
based on epistemic uncertainty.

• Cross-asset evaluation. Validate the generality of Max-
Boltzmann on other currency pairs, commodities, or
stocks under varied volatility regimes.

• Market impact simulation. Extend the environment
with multi-agent or order book mechanics to study strat-
egy robustness under realistic trading constraints.

• Fine-tuning advanced strategies. This work also
provides early implementations of two additional ex-
ploration strategies—Noisy Networks and Curiosity-
Driven Exploration—which, although not yet yield-
ing strong results, are included for future develop-
ment. Noisy Networks introduce trainable noise into
the Q-network’s weights to produce stochastic poli-
cies without relying on external schedules. Curiosity-
driven exploration rewards the agent for visiting novel
or unpredictable states, based on internal prediction er-
ror. The modules noisy dqn.py, curiosity.py, and
train eval.py offer modular starting points for ex-
tending and tuning these approaches in financial RL set-
tings.

In summary, this study shows that exploration is not merely
a hyperparameter tweak—it is a structural decision. In do-
mains like trading, where bad actions can be disastrous, hy-
brid strategies that combine curiosity with caution—such as
Max-Boltzmann—offer a compelling path forward. This bal-
ance may well be the key to stable and profitable RL-based
financial agents.

A Mathematical Definitions of Engineered
Features

This appendix provides the precise mathematical definitions
of all features used by the agent, grouped by category.

A.1 Market Features
Let Pt be the closing bid price at timestep t.

Price Momentum.

Momentum1(t) =
Pt − Pt−1

Pt−1

Momentum5(t) =
Pt − Pt−5

Pt−5

Exponential Moving Averages (EMA). Let EMAk(P)t be
the EMA of P at time t over a span k (calculated recursively).
We define normalized EMAs as:

EMAnorm,20(t) =
EMA20(P)t

Pt
− 1

EMAnorm,50(t) =
EMA50(P)t

Pt
− 1

Relative Strength Index (RSI). Using the standard RSI
calculation over window N = 14:

RSI14(t) = 100 ·

1− 1

1 +
AvgGain14(t)
AvgLoss14(t)

To normalize it:

RSInorm(t) = 2 ·
(

RSI14(t)− 0

100− 0

)
− 1

A.2 Agent-State Features
Let: - Ct: cash at timestep t - St: number of shares held at t
- Bt, At: bid and ask prices at t
Equity.

Et = Ct + St ·
{
Bt if St ≥ 0

At if St < 0

Current Exposure.

Exposuret =
Et − Ct

Et

Target Exposure.

Targett ∈ {−1, 0,+1} (based on action)

Trade Duration. Let dt be the number of steps since the
last change in target exposure. Then:

Durationt =
dt
dmax

where dmax is a fixed normalization constant or the maximum
episode length.

B Evaluation Metrics
This appendix defines the primary evaluation metrics used in
this study.
Sharpe Ratio. The Sharpe Ratio measures the agent’s av-
erage return relative to its volatility:

Sharpe =
E[rt]
σ[rt]

where rt is the per-step reward (or return), E[·] is the mean,
and σ[·] is the standard deviation. A higher Sharpe ratio indi-
cates more consistent returns.
Maximum Drawdown. Maximum drawdown (MDD)
quantifies the worst historical loss from peak equity:

MDD = min
t

(
Et −maxτ≤t Eτ

maxτ≤t Eτ

)
where Et is the equity (portfolio value) at time t.
Total Equity Change (%). This metric measures the rela-
tive change in portfolio equity over the evaluation horizon:

∆Etotal =
ET − E0

E0
· 100%

where E0 is the initial equity and ET is the final equity.

Profit Factor. Profit Factor is the ratio of cumulative gains
to cumulative losses:

PF =

∑
i∈W ri∣∣∣∑j∈L rj

∣∣∣
where W and L are the sets of winning and losing trades re-
spectively.

Winning Rate (%). Winning rate is the proportion of
trades with positive return:

Win Rate =
|{i : ri > 0}|
|{i : ri ̸= 0}|

· 100%

where ri is the return of trade i.

C Additional Visualizations

While the main results section presents core performance fig-
ures, the following supplementary plots offer deeper insight
into each agent’s behavioral patterns and market interactions.
Visualizations are grouped by exploration strategy.

C.1 Epsilon-Greedy

Figure 10: Action distribution histogram for Epsilon-Greedy agent.
Long trades dominate behavior.

Figure 11: Action selection timeline for Epsilon-Greedy agent. Dis-
plays irregular policy switching.

C.2 Boltzmann

Figure 12: Action distribution histogram for Boltzmann agent.
Shows more balanced action spread.

Figure 13: Action selection timeline for Boltzmann agent. Reveals
reactive, less structured patterns.

C.3 Max-Boltzmann

Figure 14: Action distribution histogram for Max-Boltzmann agent.
Balanced strategy across all actions.

Figure 15: Action selection timeline for Max-Boltzmann agent.
Suggests stable and cyclical policy.

Note: The histogram shows the number of times each action
was taken across all timesteps. In contrast, the trade statistics
in the main text group consecutive identical non-zero actions
into a single trade. For example, 50 consecutive +1 actions
correspond to 1 long trade but 50 histogram counts. This dis-
tinction explains why the histogram totals are higher than the
number of trades reported in the analysis table.

C.4 Market Context

Figure 16: Close prices of EUR/USD market during evaluation.
Shared across all agent evaluations.

D Research Integrity and Reproducibility
D.1 Use of Generative AI
During this project, generative AI tools (specifically Chat-
GPT by OpenAI) were used in a responsible and support-
ive capacity throughout the writing and development process.
Their role included:

• Paraphrasing and editing text to improve clarity, fluency,
and academic tone;

• Refining structure, transitions, and formatting to align
with research writing standards;

• Providing second-opinion validation on technical
choices, phrasing, and analytical interpretations;

• Suggesting alternative formulations or perspectives for
discussion points, based on user-provided context.

All core scientific content—including the problem formu-
lation, experimental design, implementation, and empirical
analysis—was developed independently by the author. No
original ideas, hypotheses, or research directions were gener-
ated by AI. Instead, generative AI served as an assistive tool

to refine articulation, validate reasoning, and improve the pro-
fessionalism of the written work.

D.2 Reproducibility Checklist
This checklist summarizes the key practices followed to en-
sure reproducibility:

• Environment: Modular Gym-compatible trading envi-
ronment with strict chronological feature computation
(no future leakage).

• Codebase: Modular structure for training, evaluation,
and feature engineering. All components are cleanly
separated and independently testable.

• Determinism: Fixed random seed applied to all training
and evaluation routines.

• Hyperparameters: All learning and exploration param-
eters are explicitly reported in the Methods section.

• Model Checkpoints: Saved after every training
episode, enabling stepwise performance analysis and ex-
ternal verification.

• Evaluation: Metrics computed using standard financial
definitions (Appendix B); evaluation is decoupled from
training.

• Access: Full source code, configuration files, and anal-
ysis notebooks are available at [9].

References
[1] Bank for International Settlements. Triennial Cen-

tral Bank Survey: Foreign Exchange Turnover in April
2022. Bank for International Settlements, October 2022.

[2] João Carapuço, Rui Neves, and Nuno Horta. Reinforce-
ment learning applied to forex trading. Applied Soft
Computing, 73:783–794, Dec 2018.

[3] Pratik Ghosh, Ariel Neufeld, and Jajati Keshari Sahoo.
Forecasting directional movements of stock prices for
intraday trading using lstm and random forests. arXiv
preprint arXiv:2004.10178, 2021.

[4] Ben Hambly, Renyuan Xu, and Huining Yang. Recent
advances in reinforcement learning in finance. Mathe-
matical Finance, 2023.

[5] Chien-Yi Huang. Financial trading as a game: A
deep reinforcement learning approach. arXiv preprint
arXiv:1807.02787, 2018.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A survey, 1996.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, Feb 2015.

[8] Tidor-Vlad Pricope. Deep reinforcement learning in
quantitative algorithmic trading: A review. arXiv
preprint arXiv:2106.00123, 2021.

[9] Radu Serban, Robert Mertens, Finn van Ooster-
hout, Justas Bertasius, and Yavuz Hancer. Tud-
cse-rp-rlinfinance: Reinforcement learning for trad-
ing in forex markets. https://github.com/Fo3nix/
TUD-CSE-RP-RLinFinance.git, 2025.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 2 edition, 2018.

[11] Yunhao Tang and Shipra Agrawal. Discretizing contin-
uous action space for on-policy optimization, 2020.

[12] Thomas Théate and Damien Ernst. An application of
deep reinforcement learning to algorithmic trading. Ex-
pert Systems with Applications, 173, 2021.

[13] Valentina Zangirolami and Matteo Borrotti. Dealing
with uncertainty: balancing exploration and exploita-
tion in deep recurrent reinforcement learning, 2024.

https://github.com/Fo3nix/TUD-CSE-RP-RLinFinance.git
https://github.com/Fo3nix/TUD-CSE-RP-RLinFinance.git

	Introduction
	Context and Motivation
	Reinforcement Learning in Trading
	Research Gap
	Research Question and Contributions
	Paper Structure

	Background
	Reinforcement Learning Foundations
	Deep Q-Networks as a Design Choice
	Exploration-Exploitation Strategies

	Methods
	Data and Preprocessing
	Feature Engineering Pipeline
	Trading Environment Design
	Reinforcement Learning Setup
	Exploration Strategies and Parameter Selection
	Training and Evaluation Protocol

	Results
	Epsilon-Greedy Results
	Boltzmann Results
	Max-Boltzmann Results
	Learning Curves and Metric Progression
	Summary and Interpretation

	Discussion
	Exploration in Financial Contexts
	Empirical Interpretation of Results
	Methodological Reflections
	Key Takeaways Across Strategies
	Broader Implications

	Responsible Research
	Ethical Considerations
	Reproducibility

	Conclusions and Future Work
	Conclusions
	Limitations
	Contributions
	Future Work

	Mathematical Definitions of Engineered Features
	Market Features
	Agent-State Features

	Evaluation Metrics
	Additional Visualizations
	Epsilon-Greedy
	Boltzmann
	Max-Boltzmann
	Market Context

	Research Integrity and Reproducibility
	Use of Generative AI
	Reproducibility Checklist

