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Abstract. The objective of active power control in wind farms is to provide ancillary grid
services. Improving this is vital for a smooth wind energy penetration in the energy market.
One of these services is to track a power reference signal with a wind farm by dynamically
de- and uprating the turbines. In this paper we present a computationally efficient model
predictive controller (MPC) for computing optimal control signals for each time step. It is
applied in the PArallelized Large-eddy simulation Model (PALM), which is considered as the
real wind farm in this paper. By taking measurements from the PALM, we show that the
closed-loop controller can provide power reference tracking while minimizing variations in the
axial forces by solving a constrained optimization problem at each time step. A six turbine
simulation case study is presented in which the controller operates with optimised turbine yaw
settings. We show that with these optimized yaw settings, it is possible to track a power signal
that temporarily exceeds the power harvested when operating under averaged greedy control
turbine settings. Additionally, variations in the turbine’s force signals are studied under different
controller settings.

1. Introduction

The trend towards clean energy is irreversible [1]. A large part of this clean energy finds its origin
in wind, making the stimulation of wind power penetration in the energy market important.
One bottleneck in this process is the provision of grid facilities such as secondary frequency
regulation by wind farms. Here, the objective is to have the wind farm’s power generation
track a certain demanded power signal generated by transmission system operators (TSOs),
during a time span of several minutes [2]. In wind farms, this objective could be separated into
two tasks: 1) distribution of the wind farm power reference signal to reference signals for the
individual turbines in the farm and 2) tracking of the local references by the individual turbines.
Two common actuation methods to ensure tracking are axial induction and wake redirection
control [3]. An example of axial induction actuation is [4] in which both the distribution and
tracking task are solved using a wind farm controller, which solves a constrained optimization
problem containing wake and turbine models. In [5], no wake model nor constraints have been
taken into account in the controller providing tracking and an uniform reference distribution
mechanism is employed. Other wind farm controllers providing power tracking using axial
induction actuation are presented in [6–9]. The latter controllers are however not tested in a
high-fidelity simulation environment making it difficult to assess if the therein presented results
can be obtained in a more realistic simulation environment or reality. Employing time-varying

http://creativecommons.org/licenses/by/3.0
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yaw actuation in active power control is, to the best of the authors knowledge, not employed yet.
On the other hand, yaw actuation is employed for maximizing the wind farm power production.
In fact, one of the first demonstrations of wake deflection due to a yawed turbine can be found
in [10, 11]. Then in [12], the authors propose to utilize yaw control in a wind farm such that
the wake is deflected in a way that mitigates wake impact on the wind farm performance. The
authors in [13] illustrate that this methodology can increase the wind farm power production
with respect to greedy control when evaluating and applying time-varying yaw settings that are
found employing an adjoint based predictive controller.

A reference tracking solution is proposed in which a model predictive controller (MPC) solves
a constrained optimization problem containing turbine models at each time step. These models
are updated every measurement using the local rotor-averaged wind velocity that depend on
the turbine settings of upstream turbines. The applied reference signal distribution is based on
the yet to be defined instantaneous available power. This results in good tracking performance
for reference signals below the averaged power harvested with greedy control settings. However,
reference signals that are above this limit for a certain time will not be satisfactorily tracked.
For these specific cases, the steady-state wind farm model FLORIS [14] is employed to find
the optimal steady-state yaw angles that increase the available power in the farm using a wind
direction measurement. The proposed general closed-loop control framework in depicted in
Fig. 1.

In this paper, the proposed control frame work is evaluated for one case study in a high-
fidelity simulation environment considering a six turbine wind farm case study. It is organised
as follows. In Section 2, the high-fidelity simulation model will be introduced. In Section 3,
the dynamical models that are employed in the controller are introduced and in Section 4, the
controller itself is introduced. Then in Section 5, simulation results are presented and this paper
is concluded in Section 6.
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Figure 1: General idea of the closed-loop control framework with measurements xk. The signals
P ref
k and P ref

i,k are power reference signals for the farm and individual turbines, respectively. The
control signals are the filtered thrust coefficients ûk and yaw angels γk and σk the external wind
farm perturbation such as, e.g., boundary conditions.
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2. Simulation model

The simulation model employed in this work is the PArallelized Large-eddy simulation Model
(PALM) [15]. The PALM model is based on the filtered incompressible Navier-Stokes equations.
In this work it includes the actuator disk model (ADM) to determine the turbine’s forcing terms
acting on the flow. This turbine model is efficient due its lower requirements of grid resolution
and coarser allowed time-stepping as compared to having to resolve detailed flow surrounding
rotating blades [16]. A consequence of choosing the ADM is that the control signals are the
disk-based thrust coefficient C ′

Ti
(t) following [16, 17]. Simulations are initialized as follows: a

fully developed flow field is generated in the precursor with free-stream wind velocities U∞=8
[m/s] and V∞=W∞=0 [m/s] in the x, y and z-direction respectively and a TI∞ of approximately
6% at hub-height in front of the wind farm. Then, for the specific topology considered in this
work, the flow is propagated 900 seconds in advance with constant control settings so that the
wakes are fully developed. Here, non-cyclic boundary conditions and time-dependent turbulent
inflow data are imposed by using a turbulence recycling method [15]. The flow field obtained
after these 900 seconds is utilized as initial flow field (see Fig. 2) for the simulation results
presented in this work. We assume that the measured variables at time t are 1) the force that
a turbine exerts on the flow Fi(t), 2) the power generated by a turbine Pi(t) and 3) the rotor-
averaged wind velocity vi(t) for i = 1, 2, . . . ,ℵ with ℵ the number of turbines in the farm. The
rotor-averaged wind velocity is in this work assumed to be measured, but could be realized by
employing online estimation of the rotor-averaged wind velocity with techniques as presented
in [18, 19]. This is however outside the scope of this paper.

3. Controller model

A model predictive controller (MPC) is based on the receding horizon principle in which a finite-
time constrained optimization problem is solved at each time step using future predictions of
the system’s state. However, due to nonlinear dynamics and uncertain atmospheric conditions,
it is challenging to obtain a dynamical wind farm model suitable for online control. In this work
we therefore employ wind turbine models with varying dynamical system parameters, since the
measured rotor-averaged wind velocity is a time-varying parameter. This avoids the challenge
of including a wake model in the optimization problem. The turbine models employed in the
controller are based on the actuator disk theory:

Pi(t) =
πD2

8

(

vi(t) cos[γi(t)]
)3

ûi(t), Fi(t) =
πD2

8

(

vi(t) cos[γi(t)]
)2

ûi(t), (1)

τ
dûi(t)

dt
+ ûi(t) = ui(t), (2)

for i = 1, 2, . . . ,ℵ, with Pi(t) the generated power and Fi(t) the axial force belonging to turbine
i, ui(t) = C ′

Ti
(t) the control signal, ûi(t) the first-order filtered control signal, γi(t) the yaw

angle and vi(t) the rotor-averaged longitudinal wind velocity, capturing the wake interaction
between the turbines. We furthermore have τ ∈ R

+, the time constants of the filter that acts
on the control signal. Temporally discretizing (2) at sample period ∆t using the zero-order hold
method, and lifting the state variables of the turbines results in the following state-space model:

xk+1 = Axk +B(vk,γk)uk, yk = xk, (3)
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which is a linear parameter-varying system due to the matrix B(vk,γk), which changes according
to each measured rotor-averaged wind velocity. Furthermore we have:

xk =











x1,k

x2,k

...
xℵ,k











∈ R
3ℵ, xi,k =





Fi,k

Pi,k

ûi,k



 ∈ R
3, A = blkdiag

(

A1, A2, . . . , Aℵ

)

∈ R
3ℵ×3ℵ,

uk, ûk ∈ R
ℵ, B(vk) = blkdiag

(

B1(v1,k, γ1,k), B2(v2,k, γ2,k), . . . , Bℵ(vℵ,k, γℵ,k)
)

∈ R
3ℵ×ℵ,

where blkdiag(·) denotes block diagonal concatenation of matrices or vectors Ai and
Bi(vi,k, γi,k), respectively, for i = 1, 2, . . . ,ℵ.

4. Control strategy

As described in the introduction, two steps can be distinguished in the controller. Firstly, the
overall wind farm power reference needs to be divided among the turbines and secondly, control
inputs need to be found such that performance specifications are met. The former will be
discussed in §4.1 and the latter in §4.2.

4.1. Reference distribution

The following reference distribution is employed and based on work presented in [20]:

P ref
i,k = min

(

P ref
k

∑ℵ
i=1 P

av
i,k

P av
i,k , P av

i,k

)

, P av
i,k =

πD2

8

(

vi,k cos[γi,k]
)3

ui, (4)

with P av
i,k the instantaneous available power for the i

th turbine, P ref
k the wind farm power reference

signal, P ref
i,k the reference signal for the ith turbine and ui = 2 the maximum value of the control

signals. Note that the definition for available power is different from literature such as [21] in
which the free-stream wind velocity is first estimated from the rotor-averaged wind velocity so
that the former is only a function of the upstream turbines. This estimation is then used in an
optimization algorithm to estimate the therein defined possible power. In this work, P av

i,k is not
only a function of the upstream turbine settings, but also of the settings of turbine i itself. This
is due to the fact that a change in the control signal results in an alteration of the rotor-averaged
flow velocity vi,k that consequently changes the P av

i,k. Additionally, vi,k can of course also vary

due to changes in the upstream turbine settings. An advantage of employing (4) is that only
the rotor-averaged flow velocity is assumed to be measured and no additional estimation of the
free-stream wind velocity and other approximations are required.

4.2. Model Predictive Controller

The MPC, for which stability and performance can be ensured [22], solves the following
optimization problem at time k0 until the prediction horizon Nh:

min
uk

k0+Nh
∑

k=k0

(xk − x
ref
k )TQ(xk − x

ref
k ) + u

T
kRuk + (xk − xk−1)

TS(xk − xk−1), (5a)

s.t. xk+1 = Axk +B(vk0 ,γk0
)uk, x ≤ xk ≤ x, u ≤ uk ≤ u, |uk − uk−1| < du, (5b)

where u = 2, u = 0, du = 1/5 and x,x represent the maximum and minimum bounds on the
control variables, its variation and state (force and power), respectively, and xk0 and vk0 the
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measured state and rotor-averaged wind velocity at time k0, respectively. We furthermore have
the weighting matrices:

R = Iℵ · r ∈ R
ℵ×ℵ, Q = Iℵ ⊗





0 0 0
0 q 0
0 0 0



 ∈ R
3ℵ×3ℵ, S = Iℵ ⊗





s 0 0
0 0 0
0 0 0



 ∈ R
3ℵ×3ℵ,

with ⊗ the Kronecker product and r, q, s ∈ R controller tuning variables. More precisely, by
tuning each weight one can increase or decrease the importance of tracking error, control signal
and variation in the force, respectively. In addition:

x
ref
k =

(

0 P ref
1,k 0 0 P ref

2,k 0 . . . 0 P ref
ℵ,k 0

)T
∈ R

3ℵ,

x =
(

Fmax
1,k0

P av
1,k0

2 Fmax
2,k0

P av
2,k0

2 . . . Fmax
ℵ,k0

P av
ℵ,k0

2
)T

∈ R
3ℵ

x =
(

0 0 0 0 0 0 . . . 0 0 0
)T

∈ R
3ℵ,

and Fmax
i,k0

= πD2/8(vi,k0 cos[γi,k0 ])
2ui. Note that a constraint on the axial force is an indirect

constraint on the control signal since, during the prediction horizon, only the decision variable
uk can be varied. However, the general formulation above allows us to research in possible
future work the effect of imposing, i.e., different axial force constraints on each turbine.

5. Simulation results

The PALM simulation results are all of a neutral atmospheric boundary layer and will be
discussed in this section. Firstly, in §5.2, a simulation case is presented in which the controller is
working under yawed conditions that, as will be shown, increases the set of trackable wind farm
reference signals. In §5.3, we study the effect of the controller on the variation of the axial force.
In all cases, the controller is applied to a wind farm with specifications as described in Table 1.
See Fig. 2 for the initial longitudinal flow field at hub height. Note that the topology under
consideration contains heavily waked wind turbines due to the fact that turbines are aligned
with the mean wind direction. Although farms are designed such that the occurrence of this
situation is minimized, it remains an interesting case study to investigate farm dynamics in these
worst case scenarios.

Table 1: Summary of the simulation set-up.

Lx × Ly × Lz 15.3 × 3.8× 1.3 [km3] D, zh 120, 90 [m]
∆x×∆y ×∆z 15× 15× 10 [m3] Turbine spacing 5D × 3D [m]
∆t 1 [s] U∞, V∞,W∞ 8, 0, 0 [m/s]
N, τ,Nh 900,5,10 [s] TI∞, 6%
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Figure 2: Initial longitudinal flow velocity component at hub-height. The flow is going from
west to east and the black vertical lines represent the wind turbines.

5.1. Performance measures

In order to evaluate the controller performance under different settings, two criteria are
introduced.

||ek||2 =

(

||P ref
k −

∑ℵ
i=1 Pi,k||2

ebase
− 1

)

·100 %, dFi =

(

∑N
k=1(Fi,k − Fi,k−1)

2

dFi,base

− 1

)

·100 %, (6)

with dFi,base =
∑N

k=1(Fi,k − Fi,k−1)
2 and ebase = ||P ref

k −
∑ℵ

i=1 Pi,k||2 for s = 0. Note that
a negative ||ek||2 indicates improved tracking and a negative dFi indicates decreased force
variations over the complete simulation time with respect to the s = 0 case.

5.2. Active power control with different yaw settings

In this section, the proposed MPC is evaluated under zero yaw and yaw settings for maximal
power capture in steady-state. The wind farm power reference signal is defined as:

P ref
k = 0.8P greedy + 0.3P greedyδPk, (7)

with δPk a normalized “RegD” type AGC signal [23] coming from an operator, and P greedy ≈
7.5 [MW] the time-averaged produced wind farm power under greedy control, i.e., with ui,k = 2
and γi,k = 0 over the complete simulation horizon. Note that, for a short period, more power
is demanded from the farm than the averaged power harvested under greedy control. The
simulation results are obtained with controller parameters q = 104, r = 103, s = 0 that are
found after tuning and are presented in Fig. 3. The top plot in Fig. 3 illustrates that the
power reference can not be tracked without an undesired error for a period between 300 and
600 seconds. This is due to a demanded power larger than the previously defined available
power in the farm under the imposed reference distribution (see (4)). The authors in [24]
already illustrate that redirecting the wake can be beneficial during active power control when
demanding more power from the farm than available under non-yawed turbines. Following this
idea, optimal steady-state yaw settings are imposed during the complete simulation. These
settings, γk = γ

∗
k = (-24.3 -24.3 -16.2 -16.2 0 0)T [deg], are found using the wind farm

optimization tool FLORIS [25]. In here, the steady-state wind farm model FLORIS is utilized
to predict and maximize the steady-state power production for different yaw settings. The
bottom plot of Fig. 3 illustrates that better tracking is ensured when the turbines are set to
their optimal yaw settings with respect to the case when γi,k = 0. This is due to the increase of
available power when controlling under optimal yaw settings and consequently, reference signals
with higher amplitudes can be tracked. Instead of yawing the turbines, it could also be possible
to increase the available power by imposing a different distribution than presented in (4). This
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idea is however not further investigated in this work. The tracking results of the individual
turbines can be found in Fig. 4 and Fig. 5 and the control signals of the yawed case in Fig. 6.
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Figure 3: Wind farm tracking results of the controller with γi,k = 0 (above) and optimized
settings γ∗

k = (-24.3 -24.3 -16.2 -16.2 0 0)T [deg] (below).
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Figure 4: Turbine tracking results of the controller with γi,k = 0. The black arrow on the left
of the figure indicates the wind direction.
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Figure 5: Turbine tracking results of the controller with γ
∗
k = (-24.3 -24.3 -16.2 -16.2 0 0)T [deg].

The black arrow on the left of the figure indicates the wind direction.
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Figure 6: Turbine thrust coefficients with γ
∗
k = (-24.3 -24.3 -16.2 -16.2 0 0)T [deg]. Note that

the control signals are similar though not equivalent.

5.3. Active power control while minimizing the axial force variation

This section studies the effect of the controller tuning parameter s (see (5)). This weight acts
on the axial force variation and an increasing s makes the optimization penalize the variation
in the force more. One could consider this variation as a measure for turbine fatigue and it is
therefore interesting to minimize this quantity, possibly expanding the turbine’s lifetime. The
following wind farm power reference signal is applied:

P ref
k = 0.7P greedy + 0.2P greedyδPk. (8)

Note that here, the reference signal is not exceeding greedy power, which makes it an less
challenging tracking task than presented in Section 5.2. In total, four simulations are performed
with each a different value for s, but under constant q = 104, r = 103 that are found after tuning
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the controller. Table 2 gives the performance measures that corresponds to the different values
of the weight s.

Table 2: Weight s on the variation of the force, with corresponding performance measures as
given in (6). During all simulation scenarios presented here we have γi,k = 0.

s ||ek||2 [%] dF1 [%] dF2 [%] dF3 [%] dF4 [%] dF5 [%] dF6 [%]

50 0.94 -4.38 -1.82 -2.26 1.89 -2.43 1.82
250 -2.91 -1.95 -2.22 -0.91 -0.14 -5.94 5.28
500 1.06 -4.42 -1.86 -2.29 1.86 -2.44 1.78
1000 -2.72 -2.01 -2.28 -0.97 -0.18 -5.96 5.23

From Table 2 it can be concluded that an increasing weight s results in an overall decrease in
the force variation over the complete simulation horizon, which is expected and desired since the
penalty on this quantity is increased. An additional consequence is the relatively small change
in the tracking behaviour.

0 100 200 300 400 500 600 700 800
3.5

4

4.5

5

5.5

6

6.5

7

Figure 7: Wind farm tracking results of the MPC for two different weights s. The power signal
∑

i P
∗
i,k is obtained with s∗ = 0 and

∑

i P
†
i,k

with s† = 103.

6. Conclusions

We developed and tested a constrained model predictive controller (MPC) in the high-fidelity
PArallelized Large-eddy simulation Model (PALM). The MPC provides secondary frequency
regulation while minimizing axial force variations using the thrust coefficient. It has been
illustrated that a wind farm power reference signal that exceeds for a certain period the averaged
greedy power, tracking can not be ensured. Therefore, an additional loop has been proposed
that takes the current wind direction and optimizes for yaw settings such that the available
power increases and consequently, a broader class of reference signals can be tracked. This
has been illustrated in one case study. Additionally, different controller settings are compared.
During each forward prediction in the MPC, the instantaneous available power is considered
constant although this quantity depends on the power production of upstream and local turbine
settings. This dependency is not taken into account in the optimization, but could be included
by incorporating a wake model in the MPC.
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