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Abstract— With robotics rapidly expanding towards new
user-oriented applications, such as agriculture, households,
and classrooms, new tasks and new requirements arise. One
of the ongoing and unsolved problems that comes with the
unpredictable new environments robots find themselves in, is
soft object manipulation. Without assuming the handled object
to be rigid, its behavior under forces is no longer known:
it could break, bend, plastically deform, or be crushed. In
this paper, we propose a method for the identification of the
deformation model of a soft object. We consider a bimanual
robotic system manipulating a deformable object with the
intention of controlling the object’s shape. Since the object’s
deformation parameters are not known in advance, we propose
a learning algorithm for their identification, and we specifically
focus on learning the stiffness distribution along the object. By
using a state space model based on modes of curvature, rather
than a discrete Cartesian state space, we are able to learn the
stiffness distribution of the deformable beam with only a single
experiment. Then, we prove that the proposed method provides
full control over the shape of the beam by performing a control
task in simulation. Given the promising accuracy of the method,
this work provides a solid foundation for future work in the
direction of the fast identification of deformation parameters.

I. INTRODUCTION

As the playing field of robotics expands from the con-
trolled environment of manufacturing towards the unpre-
dictable world of user-oriented applications, its need for
adaptability and compliance increases. With the introduction
of robotics in every-day household appliances [1], class-
rooms [2], and agriculture [3], the need for more intelligent
robots increases. One of the relevant and ongoing problems
that comes with the introduction of robotics into a wider span
of environments is soft object manipulation. The applications
of robotic manipulators that require dynamically manipulat-
ing deformable objects span from small, simple motions,
such as as bending flower stems for cutting [4] or harvesting
orchard crops [5], to large and challenging motions such as
folding a table cloth [6] or spinning pizza dough [7].

The main challenge that arises from the manipulation of
soft objects is the identification of the object’s dynamics. If
the complete dynamic behavior of a deformable object were
to be known, a robotic manipulator would always be able
to predict the object’s deformation under application forces.
This can already be done for, for instance, ideal theoretical
beams; their dynamics are completely known, due to many
simplifications and approximations. However, in real life,
deformable objects are much more complex due to hetero-
geneity, nonlinearity, and geometric complexity. Rarely are
deformable objects simple enough to be approximated by
existing deformation models, and thus the need grows for
more general approaches towards obtaining a soft object’s
dynamics.
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Fig. 1: Schematic overview of the bimanual robot and the
soft object it manipulates. Here, (x0, y0) are the Cartesian
coordinates of the beam at s = 0, (xs, ys) are the Cartesian
coordinates at s = 1, g is the gravity and L is the length of
the beam.

In the last few years, plenty of approaches have been
developed with the intent of manipulating an unknown de-
formable object. Because there is no a priori information on
the deformation behavior of the object at hand, two possibil-
ities arise; firstly, one can learn to grasp and manipulate the
object by trial and error, as done by Lin et al. [8]. However,
in situations where the manipulated object is more delicate,
one might not be able to afford such errors, due to the risk
of breaking or plastically deforming the object. Therefore,
secondly, methods have been developed for the estimation
of the deformation of a deformable object. Using only
kinematic information, this has been done by, for instance,
Jordt et al. [9]. The authors use an RGB-D camera to
observe the deformation of the object and continually update
a 3D model to match the incoming visual data in order to
obtain their deformation data. Alternatively, the physical and
dynamical properties of the deformable object can be used to
obtain certain deformation parameters. By assuming certain
properties, such as considering beams as Euler-Bernoulli
beams or Kirchoff rods, methods have been developed [10]
in which the Young’s modulus and Poisson’s ratio can be
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obtained using analysis by synthesis. Additionally, work has
been done to combine deformable object manipulation with
neural networks. In these approaches, the manipulator’s end-
effector movement is mapped to the soft object’s deformation
[11], [12], eliminating the need for explicit modeling at the
cost of a need for large amounts of data.

Parallel to the field of deformable object modeling, the
field of soft object control has been developing many meth-
ods that are suitable for transfer between the fields. Many
researchers have implemented neural networks in the control
loops of their soft robots [13], [14], [15], in order to success-
fully and accurately actuate their soft robots. Alternatively,
adaptive control loops have been used for soft robots that
operate under some uncertainty; pertaining to, for instance,
the variable stiffness of the robot arm [16], a changing
environment [17], or unknown robot parameters [18].

One of the problems that remains in the state of the art
is the application of the obtained deformation model to the
manipulation and control of the object. While the mentioned
works have provided important and valuable improvements
in their respective fields, most works only focus on the
deformation model itself, without showing how their model
can be applied to a manipulation task. The works that do
explicitly focus on manipulation tasks use a learning strategy,
such as adaptive control or neural networks, thus removing
the intuitiveness that comes with having an analytical model.
Other works that focus on actual control are the works
from the field of soft robotics; however, in this field, the
parameters of the robot are often known in advance, contrary
to the unknown soft object of interest.

In this paper, we combine the advancements made in soft
robotics with the need for deformable object models that are
easily applicable for control. In previous work, Della Santina
[19] and Rus [20] developed a curvature based deformation
model, intended for the control of their soft robot. This
model has great potential to be adopted for the control of an
unknown soft object that resembles a slender beam. However,
we do not know any of the deformation parameters that are
required to complete the deformation model; especially the
stiffness distribution along the slender beam. Therefore, we
propose a learning strategy to obtain the stiffness distribution
along the length of the beam. Once the stiffness function has
been obtained and the deformation model is fully defined, we
apply the model in a simulated environment to show that we
now have full control over the deformation of the slender
beam.

II. THE SOFT OBJECT MODEL

We consider a planar slender beam of length L and
thickness D. A schematic figure of the beam can be found
in Figure 1. Between the base of the beam and the tip of the
beam, we introduce a normalized coordinate s ∈ [0, 1], with
s = 0 at the fixed base of the beam, and s = 1 at the tip
of the beam. The beam is considered to be inextensible, so
the length of the beam remains L as it is being deformed.
Additionally, we assume a constant density ρ along the beam,
but a non-constant stiffness distribution k(s).

A. Kinematics

If we were to assume that the beam would have a constant
curvature along its length, we could fully specify the shape
of the beam using a single value for the beam’s curvature.
This concept can be expanded by extending the curvature
function from constant to affine; now, two values dictate the
shape of the beam: one constant term, and one curvature
term that describes a linear relationship between s and the
curvature. Mathematically, this would look like;

q(s, t) = θ0 + θ1s, (1)

where q(s, t) is the curvature function, and θ0 and θ1 are
the constant and linear curvature coefficients, respectively.
Continuing this trend, we can fully define any beam by
means of an infinite summation of monomials;

q(s, t) =

∞∑
i=0

θi(t)s
i. (2)

Using this relationship between the normalized coordinate
s and the curvature function q(s, t), we can reduce the size of
the state space by using a finite amount of monomials rather
than an infinite sum. This way we can approximate the pose
of the rod using n curvature modes, rather than some spacial
discretization in the Cartesian state space. Additionally, we
can easily convert a modal state space to the local orientation
and subsequently the Cartesian coordinates of a point along
the rod by first integrating the curvature function q(s, t) to
obtain the angle function;

α(v, t) =

∫ v

0

q(s, t)ds =

∞∑
i=0

θi(t)
vi+1

i+ 1
, (3)

and then integrating the sine and cosine of the angle
function to obtain the y and x coordinates, respectively;

x(v, t)

L
=

∫ v

0

cos(α(s, t))ds,
y(v, t)

L
=

∫ v

0

sin(α(s, t))ds.

(4)

B. Dynamics

The dynamics of the slender rod expressed in the curvature
modes are derived in the same manner as [21]. Thus, for
the sake of brevity, the derivations of the inertia matrix,
the Coriolis and centrifugal terms, the input field, and the
damping forces will be omitted in this paper. The elastic
field of the beam, however, is used in the learning strategy
that will be proposed in the next sections. For this reason,
its derivation will be shown explicitly.

The elastic field is obtained by defining the total energy
stored in the rod, and then taking the partial derivative of
the total energy with respect to each mode. In the case of a
rod with a variable stiffness function k(s) along the length
of the rod, the total energy can be expressed as;

UE(t) =

∫ 1

0

k(s)

2
q2(s, t)ds. (5)
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Then, by evaluating the partial derivative with respect to
θi, we arrive at;

GE,j =

∫ 1

0

k(s)
∂

∂θk

1

2
q2(s, t)ds

=

∫ 1

0

k(s)q(s, t)
∂

∂θk
q(s, t)ds

=

∫ 1

0

k(s)

( ∞∑
i=0

θi(t)s
i

)
sjds

=

∞∑
i=0

θi(t)

∫ 1

0

k(s)si+jds.

(6)

Having arrived at an expression for the elastic field in
terms of the modes of curvature, we can see Equation (6)
as a matrix multiplication KΘ, with K being the square
stiffness matrix, equal to the integral of k(s)si+j , and Θ
equaling a vertical array of modal states.

Combining the findings of the elastic field with the deriva-
tions of the other components of the dynamical system as in
[21], we find the following complete dynamical system:

B(Θ)Θ̈ + C(Θ, Θ̇) +GG(Θ, φ) +KΘ +DΘ̇ = Aτ, (7)

where B is the inertia of the rod, C is the Coriolis and
centrifugal terms, GG is the gravitational field, K is the
previously derived stiffness matrix, D is the damping matrix,
and A is the input field that transforms applied forces and
torques to the force and torque acting on each mode.

C. Assumptions and simplifications

In order to isolate the effects of the stiffness profile of
the deformable beam from the dynamical system (7), we
simplify the motion of the beam under perturbation. Firstly,
we assume quasi-static motion, which allows us to assume
the first and second derivative of the modal state to be
zero. Secondly, the beam will only be perturbed in the
plane orthogonal to the gravitational field, causing gravity’s
effect on the motion of the perturbed beam to be negligible.
Following these two simplifications, we can eliminate the
inertial, centrifugal, gravitational and damping terms from
the dynamical system. The dynamics are now;

KΘ = Aτ. (8)

We now rewrite the left side of Equation (8) to obtain an
expression that explicitly contains the stiffness function. To
do so, we acknowledge that KΘ is an alternative expression
for the elastic force field GE . Thus,

∞∑
i=0

θi

∫ 1

0

k(s) si+jds = Aτ. (9)

Lastly, the applied torque on the right hand side of Equa-
tions (7), (8) and (9) will be replaced with an applied force,
since an applied force is much easier to apply and measure.

To perform this replacement, the following relationship is
used;

τ = J(sa)>Fa, (10)

where J(sa)> is the transpose of the Jacobian, evaluated
at the point of application in terms of s. Since the Jacobian
describes the relationship between the rate of change of
Cartesian states and modal states, we do not need the
transformation matrix A that was previously used to obtain
the torque expressed in modal coordinates. The final dynamic
relationship to be used for the estimation of the stiffness
function is thus;

∞∑
i=0

θi

∫ 1

0

k(s) si+jds = J(sa)>Fa. (11)

III. LEARNING ALGORITHM

A. Approximation Functions
We’ve now arrived at a notation that describes a relation-

ship between applied forces, observed beam states, and the
stiffness function. Since the goal of the learning algorithm
is to regress a continuous stiffness distribution, we need to
introduce a family of approximation functions to parametrize
k(s). Once parametrized, we solve for the parameters of
the approximation function to obtain the sought stiffness
function.

The simplest family of approximation functions is the
polynomial family, whose coefficients serve as the param-
eters to be learned. A second, more complex option is to
use a sum of m amount of Gaussians, placed at equidistant
fixed locations between s = 0 and s = 1. In this context, the
heights of the Gaussians are the parameters to be learned.
Each family has an advantage over the other: polynomials
have the advantage of being computationally inexpensive
due to the trivial integral that arises with the substitution of∑m

w=0 αws
w into Equation (9), and sums of Gaussians have

the advantage of being less restrictive in shape, allowing for
a more nuanced approximation.

However, when both of the mentioned approximation
functions are given the same amount of free parameters (for
example, a second order polynomial and a sum of three
Gaussians) the Gaussians will approximate the same function
shape as the polynomial. Likewise, the sum of two Gaussians
will approximate an affine function, and the sum of four
Gaussians will approximate a cubic function. However, the
polynomial approximation function has the disadvantage of
growing towards ±∞ beyond s ∈ [0, 1], while Gaussians can
take constant values near s = 0 and s = 1. For this reason,
only Gaussian approximation functions will be considered
from this point onwards.

B. Linear Regression
First, we evaluate the resulting expression when substitut-

ing a general polynomial into Equation (9):

∞∑
i=0

θi

∫ 1

0

m∑
w=0

αws
w si+jds = J(sa)>j Fa. (12)
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Since the polynomial coefficients are not functions of s,
we can separate these terms:

m∑
w=0

αw

∞∑
i=0

θi

∫ 1

0

si+j+wds = J(sa)>j Fa. (13)

And, when solving the definite integral, it becomes appar-
ent we have created a linear relationship between the states
θ, the stiffness function parameters α, and the applied torque
τ .

m∑
w=0

αw

∞∑
i=0

θi
i+ j + w + 1

= J(sa)>j Fa. (14)

Similarly, we can substitute the function template for a
Gaussian distribution into Equation (9):

∞∑
i=0

θi

∫ 1

0

m∑
w=0

βwΠG,w(s) si+jds = J(sa)>j Fa,

where ΠG,w =
1

σ
√

2π
e

−1
2 ( s−µσ )

2

(15)

where each Gaussian FG,w is centered at a different s-
coordinate, and βw denotes the weight of each Gaussian.
We can now, again, separate the weights from the integral;

m∑
w=0

βw

∞∑
i=0

θi

∫ 1

0

ΠG,w(s) si+jds = J(sa)>j Fa, (16)

but, in the case of the Gaussian approximation function,
the integral cannot be as compactly evaluated as in the case of
the polynomial approximation function. The linear structure
of the regression, however, will be exactly the same. In
matrix form, the general problem looks as follows;

n∑
i=0

θi

∫ 1

0
Πa(s) si+jds


 γ0

...
γm

 =

J(sa)>j Fa

 , (17)

where γ is a generic function parameter and Πa is a
generic approximation function. In Equation (17), the w-
index increases with each column, the j-index increases
with rows, and the i index serves as a third dimension over
which we sum each matrix after multiplying with θi. We
can now obtain the approximation function parameters γ
by inverting Equation (17). For brevity, we write Equation
(17) as Xγ = Y , where X =

∑n
i=0 θi

∫ 1

0
Πa(s) si+jds and

Y = J(sa)>j Fa. Since X and Y have as many columns as
observations, and can therefore be assumed to not be square,
we need to invert (17) using a pseudo-inverse. Thus, we find

γ = (X>X)−1X>Y, (18)

which results in a least-squares solution for the function
parameters γ of the stiffness function.

C. Hyperparameter Selection

When considering Gaussian approximation functions, the
two contributing factors to the accuracy of the stiffness
function estimation are the number of modes n used to
approximate the beam shape, and the number of equidistant
Gaussians placed along the length of the rod m. Since the
optimal values for these two parameters is not immediately
obvious, a hyperparameter optimization is performed, based
on the Bayesian Information Criterion (BIC):

BIC = k ln(N)−A ln(L). (19)

The BIC acts as a measurement of model quality, and
considers the accuracy of the model while penalizing the
complexity of said model. In (19), k is the number of
parameters of the model, N is the number of observations,
A is a weighing constant and L is, in this application, the
error of the model.

In the context of this research, k is the sum of n and m; N
is the amount of data points collected during an experiment;
and L is the error of the model, which will be defined in
Section IV.

Firstly, we define a maximum amount of modes z that
can be evaluated. Given that we observe the shape of
the beam through positional tags, as will be discussed in
Section IV-A, we can only evaluate as many modes as there
are observations due to the inverse kinematics. Since each
tag gives information on both the x-coordinate and the y-
coordinate of a specific point, the upper limit on z is two
times the amount of tags.

Due to the nature of the linear regression, the problem
becomes underdefined when m > n. Therefore, we iterate
over m ∈ [2, z] for each value of n. We exclude m = 1
because a sum of a single Gaussian would just be another
Gaussian, which is too limiting as an approximation function.
Consequently, we exclude n = 1, since the only valid value
for m in this configuration would be m = 1.

Finally, we obtain the optimal values of n and m by
analyzing the BIC of every model and choosing the model
with the lowest BIC:

(n̂, m̂) = argmin
n,m

k ln(N)−A ln(L)

n ∈ [2, z]

m ∈ [2, n].

(20)

This optimization will be performed on the training data,
after which the obtained stiffness function will be used for
the validation data to verify the results.

IV. EXPERIMENTS

First, the experiment setup will be shown, and the reason-
ing behind certain design choices will be discussed. Then,
since the process required to transform real-life experiment
data to modal states and forces is not trivial, we will elabo-
rate on the designed data pipeline. Finally, the perturbation
strategies will be explained.
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Fig. 2: Experiment setup. Visible are the Franka Emika Panda
robot, the silicone beam, and the recording device attached
to a tripod.

A. Experiment Setup

Since the relationship we last arrived at, shown in Equation
(8), relates the modal states and the stiffness function to the
applied forces, we will need an appropriately large set of
data containing both positional and force data. To obtain this
dataset, an experiment setup has been designed in which the
Franka Emika Panda robot acts as the manipulator. In the
experiment, a silicone beam will be secured on one end,
while the robot applies a force on the other end. While this
force is being exerted, a camera setup records the motion
of the perturbed beam using AprilTags [22]. AprilTags are
small two-dimensional barcodes for which a robust library of
detection software is built, which allows for spacial tracking
of the tags using any ordinary recording device. By recording
the forces that are being exerted onto the beam, as well as the
deformation of the beam as an effect of the applied forces,
we can build the dataset we need for the regression of the
stiffness function.

B. Beam Design

The design of the beam is an essential factor for the
successful execution of experiments. Firstly, the choice of
material needs to be correct; if the material is too stiff, the
manipulating robot will not be able to exert the required
forces to deform it, and if the material is not stiff enough,
the forces required for deformation will be too small to be
accurately read. Additionally, if the material is too hard, the
beam might break before it shows any significant deforma-
tion at all. After some trial-and-error, choosing a pourable
silicon with a hardness of 30 on the Shore hardness scale
proved to be the optimal choice.

Secondly, the geometric design of the beam is of impor-
tance. While the ideal way of creating a beam with variable
stiffness would be to use silicones of varying stiffness along
the length of the beam, this is highly impractical. A more
practical alternative is to vary the width of the beam along its

(a) Beam design with a linear
width function.

(b) Beam design with a
quadratic width function.

(c) Beam design with a cubic
width function.

Fig. 3: 3D-models for the molds of the beam designs.

length, since the bending stiffness of a beam is dependent on
its moment of inertia, thus its cross-sectional area, according
to the Euler-Bernoulli equation;

M = EI
d2w

dw2
. (21)

Therefore, three different beam designs have been created,
each with a unique stiffness function along its length. In
Figure 3, the molds for each of the three beam shapes can
be seen. The intention behind the designs of the beams is
two-fold: firstly, each beam has a width function modeled
after a unique order of polynomial. This is done so that the
linear, quadratic and cubic beam should each yield a stiffness
function of increasing polynomial complexity. Secondly, the
beams have been designed so that the point along the rod
where the stiffness function is lowest is different for each
beam. The linear beam, seen in Figure 3a, has its structurally
weakest point at its base, the quadratic beam as seen in
Figure 3b has its weakest point halfway along the length
of the beam, and the cubic beam as seen in Figure 3c has its
weakest point near the tip of the beam. This design choice
has been made to ensure that the motion of the beams under
deformation will differ from one another as much as possible,
providing a good foundation for the validation of the method.

C. Data Pipeline

Once the experiments have been performed, a significant
amount of processing is required to prepare the gathered data
for the linear regression. The data pipeline can be divided
into three subsections: obtaining positional data through
tag detection, timestamp matching, and inverse kinematics.
Positional data is obtained through the use of four AprilTags:
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one mounted at the base, acting as the origin, and three along
the length of the beam, roughly equally spaced at s = 1

3 ,
s = 2

3 , and s = 1. By analyzing each frame of the recorded
video, we can determine the relative positioning of the three
tags with respect to the origin tag in terms of pixels. Then, by
comparing the real-life size of a tag with the pixel-size of a
tag, we can establish a millimeters-per-pixel ratio that we can
use to transform the pixel distances to Cartesian distances.

Additionally, since we need pairs of states and forces at
each timestep, a timestamp needs to be assigned to each
measurement of Cartesian distances. By storing the exact
starting point of the video, given that the frame rate of the
video is known and constant, we can obtain the timestamp
of each frame using t = tstart + nf , where tstart is the
stored starting time, n is the number of frames that have
passed since the first, and f is the frame rate of the video.
Similarly, the force exerted by the robot is also stored along
with timestamps. However, because the frequencies at which
the robot stores data is not equal to the frame rate at which
the video records, and the starting times are not equal due
to both recording media being started manually, the data
needs to be aligned after the experiment. This is done by
looping over both the force data and the positional data
simultaneously, and storing a data pair when the difference
between the timestamps of two measurements is smaller than
some margin of error ε.

Lastly, since all dynamics are expressed in modal states θ,
the Cartesian positional data needs to be converted to modal
states. This is done using the Newton-Raphson method;

θk+1 = θk + J+(ym − yg)k, (22)

where θ is the set of modal states, k is the iteration step,
J is the Jacobian, ym are the measured marker positions,
and yg is the transformation of the modal states to Carte-
sian coordinates at s ∈ [ 1

3 ,
2
3 , 1] using Equation (4). This

algorithm allows us to use the positional data of the three
recorded markers simultaneously to find the set of modal
states that minimizes the error between the virtual beam
and the experimental markers. As a result, we now have
a timestamp-matched set of force-state pairs, which can be
used for the linear regression problem that was created in
Equation (17).

D. Perturbation Strategies

In order to obtain a reliable insight into the effectiveness
of the method, both a set of training data as well as a set
of validation data will be gathered. The training data will
be a single experiment in which the beams are perturbed at
their tips in a slow and controlled fashion. An example of a
beam being perturbed at its tip can be found in Figure 4a.
For the validation data, three different experiments will be
executed: firstly, one in which the perturbation trajectory is
executed 2 to 3 times as fast, which means that fewer data
points will be collected in the timespan of the experiment.
Secondly and thirdly, experiments will be executed where the
robot applies a force at s = 0.8 and s = 0.6. An example of

(a) Linear beam being per-
turbed at s = 1.

(b) Linear beam being per-
turbed at s = 0.6.

Fig. 4: Frames of the captured video data.

a beam being perturbed at a lower value of s can be found in
Figure 4b. A consequence of applying the force away from
the tip is that information is lost on the deformation behavior
near the tip of the beam. The limitations implemented in the
validation experiments are designed with the intent of testing
whether the stiffness function obtained with the training data
is accurate enough to support the manipulation of the beams
in other ways than the one used in the training experiments.

E. Error definition

In order to be able to compare and validate results, we
need to define a measure of quality, or, more specifically, a
measure of error. We can do so by comparing the motion of
the experiment beam with the motion of a simulated beam
that is assigned the estimated stiffness function. The quality
of the estimated stiffness function can then be defined by
the error between the motion of the experiment beam and
the motion of the simulated beam. In Figure 5, the order of
operations can be seen for the the assessment of the quality
of the stiffness function. Although the most straightforward
comparison seems to be between the modal states of the
experiment beam and the simulated beam, this is not the
most accurate comparison. This is because the modal states
of the experiment beam are an approximation of true modal
states of the experiment beam, derived from the observed
tags. Therefore, the modal states might be more accurate
for n = 5 than for n = 2, which in turn means that for
low values of n, the modal states of the simulated beam
might be ”equally bad” as the modal states of the experiment
beam, resulting in a deceivingly high accuracy. It is therefore
more reliable to compare the true observations, the observed
tags, with specific points along the simulated beam. We will
therefore define the accuracy of the hyperparameter values
as the RMS of the difference between the observed tags and
the Cartesian coordinates over time, obtained at the same
s-coordinates along the simulated beam.
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Observed tags

Modal states of
experiment beam

Stiffness function using
linear regression

Modal states of
simulated beam

Cartesian coordinates at
same s-coordinates as

markers

Error
calculation

Fig. 5: Order of operations for the assessment of the quality
of the stiffness function.

V. RESULTS

To show the effectiveness of the method, the performance
of the algorithm on the training data will first be shown.
Then, the validation sets are used to analyze whether the
stiffness function estimation was successful.

A. Training Data

Performing the hyperparameter optimization on the train-
ing data yielded the error data as can be seen in Tables I,
II an III. For brevity, the beam with a linear width function
will be referred to as the linear beam, and similarly for the
quadratic and the cubic beams. During the hyperparameter
optimization, we iterate through n ∈ [2, z], where we limit
z at 5 due to computational limitations at higher amounts of
modes.

The results for the linear beam, as seen in Table I, vary the
most in quality. The optimal combination of hyperparameter
is therefore very clearly n = 4,m = 4. Using this set of
hyperparameters to estimate the stiffness function yields the
stiffness function as shown in Figure 6a. Here, a clear section
of low stiffness can be seen between s = 0 and s = 0.3,

TABLE I: RMS of errors of the linear beam.

Params M1 [m] M2 [m] M3 [m] BIC
n = 2,m = 2 0.0026 0.0026 0.0204 6.13
n = 3,m = 2 0.0040 0.0071 0.0070 5.47
n = 3,m = 3 0.0035 0.0087 0.0367 6.73
n = 4,m = 2 0.0051 0.0044 0.0155 5.92
n = 4,m = 3 0.0014 0.0050 0.0067 5.23
n = 4,m = 4 0.0025 0.0029 0.0034 4.74
n = 5,m = 2 0.0047 0.0082 0.0059 5.51
n = 5,m = 3 0.0024 0.0068 0.0096 5.59
n = 5,m = 4 0.0026 0.0063 0.0045 5.20
n = 5,m = 5 0.0029 0.0070 0.0039 5.29

TABLE II: RMS of errors of the quadratic beam.
Params M1 [m] M2 [m] M3 [m] BIC

n = 2,m = 2 0.0012 0.0010 0.0022 4.10
n = 3,m = 2 0.0013 0.0011 0.0021 4.10
n = 3,m = 3 0.0012 0.0011 0.0021 4.09
n = 4,m = 2 0.0016 0.0014 0.0020 4.16
n = 4,m = 3 0.0013 0.0013 0.0021 4.13
n = 4,m = 4 0.0010 0.0014 0.0021 4.08
n = 5,m = 2 0.0010 0.0012 0.0023 4.12
n = 5,m = 3 0.0025 0.0023 0.0036 4.69
n = 5,m = 4 0.0011 0.0023 0.0030 4.45
n = 5,m = 5 0.0059 0.0129 0.0228 6.39

TABLE III: RMS of errors of the cubic beam.
Params M1 [m] M2 [m] M3 [m] BIC

n = 2,m = 2 0.0010 0.0035 0.0066 5.11
n = 3,m = 2 0.0013 0.0030 0.0066 5.09
n = 3,m = 3 0.0203 0.0450 0.0682 7.53
n = 4,m = 2 0.0011 0.0040 0.0065 5.14
n = 4,m = 3 0.0014 0.0057 0.0078 5.38
n = 4,m = 4 0.0195 0.0390 0.0695 7.50
n = 5,m = 2 0.0010 0.0035 0.0065 5.10
n = 5,m = 3 0.0010 0.0036 0.0065 5.12
n = 5,m = 4 0.0126 0.0248 0.0369 6.93
n = 5,m = 5 0.0095 0.0205 0.0348 6.82

after which the stiffness increases. Near the end of the
beam, it can be seen that the stiffness of the beam decreases
again, which contradicts with the original hypothesis of
correlation between beam width and stiffness. This counter-
intuitive phenomenon can be explained by the high sensi-
tivity for inaccuracies the algorithm has near the tip of the
beam.

The estimation of the stiffness function for the quadratic
beam has a very high quality for almost every combination
of hyperparameters, as can be seen in Table II. From the
calculation of Q, it can be seen that the hyperparameters
n = 4,m = 4 have a marginally better BIC than the rest of
the hyperparameter combinations. Additionally, the stiffness
function that is produced using these hyperparameters fol-
lows the width function along the length of the beam well:
the stiffness is high at the base and the tip, and low in the
middle of the beam.

Lastly, the quality index for the cubic beam is found at
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n = 3,m = 2, which is a combination of hyperparameters of
much lower complexity than the quadratic and linear beam.
The estimated stiffness function using these hyperparameters
can be found in Figure 3c, where it can be seen that the
stiffness is high around s = 0.25, and decreases afterwards.
This function follows the shape of the cubic beam well.

From Tables I, II, III, it can be seen that the magnitude of
the error is in the order of millimeters. Generally, the error
is largest at the third marker, which is placed at the tip of
each beam. This can be explained by the fact that the tip of
the beam generally experiences the largest deflection when a
force is applied to the tip. However, although the low errors
for the training data are a positive results, no conclusions
on the accuracy of the found stiffness distributions can be
drawn before some proper validation tests.

B. Validation

As explained in Section IV-D, we aim to validate the re-
sults that were found using the training data by using experi-
ment data collected with different perturbation strategies. For
these validation sets, we use the stiffness distributions found
using the training set, assign these stiffness distributions to
a simulated beam, and apply the same forces as measured
from the validation experiments to analyze the error between
the simulated and experiment beams once again. We do so to
verify that the found stiffness distributions are not overfitted
to the training data, but are indeed accurate estimations of
the stiffness distributions of the true beams. In Tables IV, V,
and VI, the results of these comparisons can be found.

It can be seen that for all experiments, the error measure-
ments for each marker remained in the order of millimeters,
confirming that the stiffness distributions found using the
training data are generally valid and not overfitted. Some
bias was introduced, however, in the measurements for the
experiments using lower points of application for the force
in case of the quadratic and the cubic beam. Because these
beams are stiff near the base, a disproportionately large
force was needed in order to produce enough motion, which
the robotic manipulator was not able to provide. Therefore,
the motion of the beam during these experiments was very
shallow, whereas most of the error occurs at large deflections.
As a consequence, the error is inherently lower compared to
an experiment in which a large deflection was achieved; how-
ever, since the errors are low for all validation experiments,
we can assume that the estimated stiffness distributions are
accurate.

To provide a more intuitive insight into the accuracy of
the method, the final positions of the experiment motions
have been plotted for each beam, along with the position
of the simulation beam that has been assigned the learned
stiffness function. As can be seen in Figure 7, the shapes
of the observed beams and the simulated beams match are
very similar, implying that the stiffness function is accurate
enough to obtain robust control over the deformation of the
beam. To give an indication of the range of accuracies found
in the validation experiments, the worst performance, best
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(a) Estimated stiffness function of the linear beam.
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(b) Estimated stiffness function of the quadratic beam.
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(c) Estimated stiffness function of the cubic beam.

Fig. 6: Estimated stiffness function of each of the beam
designs.
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Algorithm 1: Iterative algorithm for determining the
force required to move a specific point along the
beam to a desired location.

1 while norm(∆) > ε do
2 Θk+1 = K−1JΘ(sa)Fa,k

3 xsim = h(Θk+1, sa)
4 ∆ = xgoal − xsim

5 Fa,k+1 = Fa,k + γJ+
F (sa)∆

6 k = k + 1
7 end

performance, and an example of an average performance
have been plotted.

TABLE IV: RMS of errors: validation set of linear beam.
Strategy M1 [m] M2 [m] M3 [m]

Fast 0.0008 0.0016 0.0038
sapp = 0.8 0.0002 0.0015 0.0035
sapp = 0.6 0.0014 0.0040 0.0069

TABLE V: RMS of errors: validation set of quadratic beam.
Strategy M1 [m] M2 [m] M3 [m]

Fast 0.0005 0.0017 0.0039
sapp = 0.8 0.0005 0.0021 0.0049
sapp = 0.6 0.0008 0.0022 0.0033

TABLE VI: RMS of errors: validation set of cubic beam.
Strategy M1 [m] M2 [m] M3 [m]

Fast 0.0012 0.0023 0.0039
sapp = 0.8 0.0006 0.0015 0.0032
sapp = 0.6 0.0005 0.0016 0.0032

C. Manipulation task

To support the claim of being able to control the de-
formable beam using the obtained stiffness distribution, a
set of manipulation tasks is performed in simulation. For
each beam, we will show that, given a desired location for
a specific point along the beam, we can calculate the force
required for that location to reach its desired location.

Assuming that the beam needs to be in equilibrium upon
reaching its desired location, we can eliminate all derivatives
from Equation (7) and arrive at

KΘ = JΘ(sa)>Fa, (23)

Where JΘ is the Jacobian between the Cartesian and
modal state descriptions, K is the stiffness matrix, sa is a
normalized location along the beam, and Fa is the applied
force. However, we cannot directly solve for the applied force
Fa, since the desired modal states are unknown. Although
a single desired location is known, many combinations of
modal states could place the point of interest at its desired
location, and only one of those combinations can be reached
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(a) The s = 0.6 strategy applied to the linear beam yielded the
least accurate results.
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(b) The fast strategy applied to the cubic beam yielded averagely
accurate results.
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(c) The s = 0.6 strategy applied to the cubic beam yielded the best
results.

Fig. 7: Three results of the validation experiments are shown,
where the measured markers are compared to a simulated
beam that is assigned the learned stiffness distribution. To
give an indication of the range of the quality of the results,
the worst, best, and average results are shown.
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by the beam due to its unique stiffness distribution. There-
fore, an iterative approach needs to be implemented to find
the applied force Fa that places the point of interest at its
desired location. During the iterative approach, we aim to
incrementally adjust the applied force in the direction that
decreases the error between the point of interest and its
desired location. Therefore, we set up a gradient descent
method, for which we need the gradient from the applied
force Fa and x. We can find this gradient by first creating
an explicit relationship between Θ and Fa using (23):

Θ = K−1JΘ(sa)>Fa. (24)

Then, by using the forward kinematics as shown in Section
II-A, we can define the point of interest x as x = h(Θ), with
h(·) being the forward kinematics. The Jacobian of x with
respect to Fa is then;

JF =
∂h(Θ)

∂Fa
=
∂h(K−1JΘ(sa)>Fa)

∂Fa
. (25)

By implementing the found Jacobian JF into the gradient
descent method, we arrive at Alg. 1.

In total, 6 different manipulation tasks have been per-
formed; two for each beam, where the first task revolves
around the tip of the beam, and the second revolves around
a point in the middle of the beam. The objective of both
tasks is to move the point of interest to a desired location.
In Figure 8, the final positions of each beam, along with
periodic snapshots of the intermediate beam positions, can
be seen. Although all manipulation tasks were performed
with an error of 1 millimeter or less, these tasks are more so
a prove of concept than to be used as a measure of accuracy.
Using these results, the strategy for obtaining the required
applied force can be transferred to a real life setting, where a
measure of accuracy would be more valuable. However, due
to restrictions in the capabilities of the robotic manipulator
at hand, this could not be done during this research.

VI. DISCUSSION

A. Performance
The results that were shown in Section V showed that

the RMS of the errors ranged between 2 mm and 3 mm
for the training data. Given that the force measurements
were not as accurate as they could have been, it can be
said that a portion of that error is due to a difference in
force applied to the experiment beam and the simulated
beam. When constantly applying the exact same force to
both the experimental and the simulated beam, the errors
between them ranged between 0.1 mm and 0.5 mm, while
the length of the beams is 150 mm. The small size of these
errors shows the accuracy of the estimated stiffness function.
Additionally, the errors were comparably small for the set of
validation experiments, indicating that the obtained stiffness
functions in the training data were not overfitted, and are a
good estimate of the true stiffness functions of the beams.
For most manipulation tasks, performing within the shown
error range is more than accurate enough, which allows us to
conclude that the performance of the method is satisfactory.

B. Shortcomings

The main shortcoming in this method is the inaccuracies
in the force measurement of the Franka Emika Panda robot.
Because the robot is not equipped with a true force sensor,
it estimates the force on its manipulator internally. However,
this estimation is noisy and biased, and required post-
processing before use. By applying low-pass filters and fitting
smooth functions over the raw data, most of the noise could
be eliminated, but it remains a weak spot in the method.

Secondly, the method is sensitive to inaccuracies when
estimating the stiffness near the tip of the beam. This is
because an applied force at the tip creates the largest moment
near the base of the beam and the smallest moment at the
tip of the beam. Thus, when the tip of the beam seems to
deform even slightly due to inaccuracies in the tag detection,
when in reality it does not deform, the algorithm infers that
the stiffness of the beam near the tip must be very low: after
all, even the small moment at the tip is able create a local
deformation. While this sensitivity cannot be eliminated, it
can be reduced by using higher definition video data or more
accurately placed detection tags.

Additionally, a more thorough validation set could have
been gathered. Due to practical restrictions, the data obtained
in the validation experiments in which the force was applied
at various locations was not as convincing as it could have
been. When applying a force to a point in the middle of the
beam, the manipulator would occlude one or more of the
detection tags, rendering the video data unusable. Thus, an L-
shaped tool had to be held by the gripper of the manipulator
in order to apply the force to the middle of the beam, but
the gripper could not grasp with enough force to apply the
required force onto the beam.

Lastly, the manipulation tasks were limited to a simulated
environment due to the restrictive capabilities of the Franka
Emika Panda. Since this robot is only able to estimate the
reactive force at the end-effector, and is not able to exert a
specific force on command, it was deemed to not be fit for
manipulation tasks.

C. Future Plans

This work can be extended in multiple ways. Firstly,
one could remove one or more of the assumptions made
regarding the dynamics of the system. For instance, it would
be interesting to research the possibility for a simultaneous
estimation of the stiffness function and the density function.
This can be done by removing the assumption of zero-
gravity, and standing the beam upright during experiments.
Additionally, the clamping of the beam could be replaced by
a true second manipulator, to create a more life-like experi-
ment environment. Doing so would open up possibilities for
perturbation techniques, and possibly improve the accuracy
and speed of the method. Lastly, due to restrictions regarding
the available robotic manipulator, it was not possible to
verify the accuracy of the manipulation task on a real-life
experiment setting. It would be valuable to see whether the
proposed methods are viable in a real-life setting.
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(b) Linear beam, POI at s = 1.
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(c) Quadratic beam, POI at s = 1.
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(d) Cubic beam, POI at s = 1.
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(e) Linear beam, POI at s = 0.5.
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(f) Quadratic beam, POI at s = 0.5.
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(g) Cubic beam, POI at s = 0.5.

Fig. 8: Visualisations of the manipulation tasks that were performed in simulation. For each beam, it can be seen that the
point of interest is succesfully placed at the desired position.

VII. CONCLUSION

In this paper, a method has been presented in which the
unknown deformation parameters, specifically the stiffness
distribution, of a deformable beam are learned using a
single experiment. Using a training-validation data split, we
verified that the obtained stiffness distribution is an accurate
estimation of the true stiffness distribution of the experiment
beam. Subsequently, the learned deformation model is used
to prove that the shape of the soft object can now be
controlled in simulation. Future work includes (i) expanding
the linear regression towards estimating both the stiffness
function as well as the density function of the deformable
beam, (ii) performing experiments using a true bimanual
manipulator, and (iii) performing control tasks in a real-life
experiment setting.
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