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Abstract: Recently, adaptive platooning strategies to cope with uncertain vehicle parameters
have been proposed. However, in line with most platooning literature, only acyclic graphs have
been considered. This work addresses the merging maneuver in the presence uncertain vehicle
parameters: during this maneuver, a cyclic communication graph is instantiated, which must
be handled in a suitable way. Ideas used to handle this situation and corresponding results are
illustrated using a platoon of three vehicles implementing a merging maneuver.
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1. INTRODUCTION

In automated driving research, a recognized approach for
improving road throughput is grouping vehicles into pla-
toons controlled by one leading vehicle (Günther et al.
(2016)). In Cooperative Adaptive Cruise Control (CACC)
platooning is enabled by inter-vehicle communication in
addition to on-board sensors (Marsden et al. (2001); Li
et al. (2017)). Several studies have been conducted to
develop CACC strategies that guarantee synchronized
behavior of vehicle platoons. Under the assumption of
vehicle-independent driveline dynamics (homogeneous pla-
toon), Ploeg et al. (2014) synthesized a one-vehicle only
look-ahead CACC; Hafez et al. (2015) developed a lon-
gitudinal controller based on broadcasting the leading
vehicle’s acceleration and velocity to all vehicles in the
platoon; Kianfar et al. (2015) integrated safety and physi-
cal constraints in CACC by a model predictive controller.
Recently, communication failures have been addressed in
Acciani et al. (2018), while heterogeneity and uncertainty
have been handled adaptively in Harfouch et al. (2017a).
Reviews on the practical challenges of CACC were con-
ducted by Dey et al. (2016); Larsson et al. (2015). Among
the challenges, a relevant one is how to include merging
maneuvers in the synchronization protocol: in fact, most
works consider operating a platoon under acyclic graphs
(Harfouch et al. (2017b)). However, if a vehicle wants to

� The research leading to these results has been partially funded
by the European Commission H2020-SEC-2016-2017-1, Border
Security: autonomous control systems, under contract #740593
(ROBORDER) and H2020-ICT-2014-1, FIRE+ (Future Internet
Research & Experimentation), under contract #645220 (RAWFIE).
This work is companion with Baldi et al. (2018).

merge in the middle of a platoon, a gap must be created
for it, so that the merging vehicle needs bidirectional (and
thus cyclic) communication for improved safety. Handling
cycles in platooning protocols is difficult, because the input
of a vehicle turns out to depend on the input of the
neighbors (Baldi and Frasca (2018)): this creates algebraic
loops that can make the input not well posed, and that is
usually solved by assigning priorities to remove the cycles
(Wang et al. (2016)). We remark that, differently from con-
sensus/cooperative internal model frameworks Qu (2009);
Azzollini (2018), we are focusing on a distributed input
CACC protocol mutuated from Ploeg et al. (2014), for
which all aforementioned issues are open. Works consider-
ing merging maneuvers include Amoozadeh et al. (2015);
Maiti et al. (2017) (vehicle entry and leaving via finite state
machines); Scarinci et al. (2017) (creating merging gaps for
on-ramp vehicles); Chien et al. (1995) (platoon merge and
split); Rai et al. (2015); Bengtsson et al. (2015); Goli and
Eskandarian (2014) (lane changing, merging and overtak-
ing). Heterogeneity and uncertainty are often overlooked
in the aforementioned works, and the merging maneuver
is not embedded in any synchronization protocol: in this
work we want to tackle these issues by showing that syn-
chronization can be extended to the merging manuevers.
In addition, we show how to exploit the graph structure
to guarantee well posedness of the actual inputs at every
time instant.

2. CACC SYSTEM STRUCTURE

Consider a heterogeneous platoon with M vehicles (Fig.
1), where vi and di represent the velocity (m/s) of vehicle
i, and the distance (m) between vehicle i and its preceding
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is not embedded in any synchronization protocol: in this
work we want to tackle these issues by showing that syn-
chronization can be extended to the merging manuevers.
In addition, we show how to exploit the graph structure
to guarantee well posedness of the actual inputs at every
time instant.

2. CACC SYSTEM STRUCTURE

Consider a heterogeneous platoon with M vehicles (Fig.
1), where vi and di represent the velocity (m/s) of vehicle
i, and the distance (m) between vehicle i and its preceding
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vehicle i − 1, respectively. Let us define SM = {i ∈
N| 1 ≤ i ≤ M} with i = 0 reserved for the platoon’s
desired behavior (virtual leading vehicle). In line with
most CACC literature, we will focus on the longitudinal
dynamics only, while for the lateral dynamics a separate
steering controller is assumed to be in place. The following
longitudinal model, derived by Ploeg et al. (2011), is used

ḋi
v̇i
ȧi


 =



0 1 0
0 0 1
0 0 − 1

τi




︸ ︷︷ ︸
Ai

(
di
vi
ai

)

︸ ︷︷ ︸
xi

+




0
0
1
τi




︸ ︷︷ ︸
bi

ui, i ∈ SM (1)

where ai and ui are respectively the acceleration (m/s2)
and external input (m/s2) of the ith vehicle, τi (s) repre-
sents each vehicle’s driveline time constant. Furthermore,
the virtual leading vehicle is defined as

ḋ0
v̇0
ȧ0


 =



0 1 0
0 0 1
0 0 − 1

τ0




(
d0
v0
a0

)
+




0
0
1
τ0


u0


ḋ0
v̇0
ȧ0


 =

(
0 1 0
0 0 1
a01 a02 a03

)

︸ ︷︷ ︸
Am

(
d0
v0
a0

)

︸ ︷︷ ︸
xm

+

(
0
0
b00

)

︸ ︷︷ ︸
bm

r

(2)

where the second equation has been obtained assuming
that the lead vehicle is controlled by a state-feedback
controller u0 = k∗′0 xm+ l∗0r that makes its dynamic stable:
therefore a01, a02, a03 are design parameters selected such
that the matrix Am is Hurwitz. Note that, under the
assumption of a homogeneous platoon, we have τi = τ0,
∀i ∈ SM . In this work, we remove the homogeneous
assumption by considering that ∀i ∈ SM , τi is an unknown
parameters. The motivation is that, in practice, τi sensibly
changes according to vehicle and road conditions.

The main goal of every vehicle, except the leading vehicle,
is to maintain a desired distance between itself and its
preceding vehicle. To this purpose, a constant distance
headway (CDH) spacing policy defines the desired distance
rij(t) between vehicles i and j (rij depends on time
because it can change during the merging manuever).
Then, it is possible to define the state error (spacing
distance, the relative velocity, and relative acceleration)
between the jth and the ith vehicle as:

eji(t) =

(
dj(t)
vj(t)
aj(t)

)
−

(
di(t)
vi(t)
ai(t)

)
+

(
rji(t)
0
0

)
. (3)

The error (3) includes the spacing distance, the relative
velocity, and relative acceleration. Because we consider
platoon formations during merging maneuvers, (3) will be
defined among two adiacent vehicles for which a commu-
nication link is instantiated. The control objective is to

regulate eji to zero for all such adjacent vehicles. In the
next section, we present how rij and the network topology
itself change during the merging manuever.

3. THE SYNCHRONIZATION PROTOCOL

Fig. 2. Communication graph before/during/after merging

To describe the merging manuever, let us consider the
networks in Fig. 2. Three vehicles, denoted with indices
1, 2 and 3, have uncertain dynamics

ẋ1 =A1x1 + b1u1

ẋ3 =A3x3 + b3u3

ẋ2 =A2x2 + b2u2 (4)

where A1, A2, A3 and b1, b2, b3 are unknown matrices
in the form of (1). Vehicle 3 is indicated before vehicle 2
because we aim at merging vehicle 3 in between vehicles 1
and 2. Consider the virtual leader

ẋm = Amxm + bmr (5)

where Am and bm are known matrices in the form of (2).
Fig. 2 shows that, before attempting to merge, vehicle
3 aligns to vehicle 2 (network 1). When the merging
starts (network 2), a cyclic graph appears (bidirectional
link between vehicles 2 and 3) and vehicle 2 increases its
distance from vehicle 1. The bidirectional link between
vehicle 2 and vehicle 3 is used for safety reasons by vehicle
2 to watch the behavior of vehicle 3 and vice versa (as
it happens in merging manuevers operated by humans).
Finally, in network 3, the merging is complete and a
new acyclic directed network is established between the
three vehicles. The following CDH spacing policies are
considered:

• Network 1: r32 = 0 and r21 = ρ for a certain design
parameter ρ;

• Network 2: r21 increases linearly from ρ to 2ρ, r32
decreases linearly from 0 to −ρ, and r31 = ρ;

• Network 3: r31 = ρ and r23 = ρ.

Being the system matrices in (4) unknown, the synchro-
nization task has to be achieved in an adaptive fashion.
The following result, mutuated from (Baldi and Frasca
(2018)), justifies that the adaptive problem is well posed
in the sense of (Tao (2003); Ioannou and Sun (2012)).

Proposition 1. [Distributed matching conditions] For dy-
namics in the form (1) and (2), there exist vectors k∗1 , k

∗
2 ,

k∗3 and scalars l∗1, l
∗
2, l

∗
3 such that

Am = A1 + b1k
∗′
1 , bm = b1l

∗
1

Am = A2 + b2k
∗′
2 , bm = b2l

∗
2

Am = A3 + b3k
∗′
3 , bm = b3l

∗
3. (6)
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vehicle i − 1, respectively. Let us define SM = {i ∈
N| 1 ≤ i ≤ M} with i = 0 reserved for the platoon’s
desired behavior (virtual leading vehicle). In line with
most CACC literature, we will focus on the longitudinal
dynamics only, while for the lateral dynamics a separate
steering controller is assumed to be in place. The following
longitudinal model, derived by Ploeg et al. (2011), is used
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where ai and ui are respectively the acceleration (m/s2)
and external input (m/s2) of the ith vehicle, τi (s) repre-
sents each vehicle’s driveline time constant. Furthermore,
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where the second equation has been obtained assuming
that the lead vehicle is controlled by a state-feedback
controller u0 = k∗′0 xm+ l∗0r that makes its dynamic stable:
therefore a01, a02, a03 are design parameters selected such
that the matrix Am is Hurwitz. Note that, under the
assumption of a homogeneous platoon, we have τi = τ0,
∀i ∈ SM . In this work, we remove the homogeneous
assumption by considering that ∀i ∈ SM , τi is an unknown
parameters. The motivation is that, in practice, τi sensibly
changes according to vehicle and road conditions.

The main goal of every vehicle, except the leading vehicle,
is to maintain a desired distance between itself and its
preceding vehicle. To this purpose, a constant distance
headway (CDH) spacing policy defines the desired distance
rij(t) between vehicles i and j (rij depends on time
because it can change during the merging manuever).
Then, it is possible to define the state error (spacing
distance, the relative velocity, and relative acceleration)
between the jth and the ith vehicle as:

eji(t) =
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dj(t)
vj(t)
aj(t)

)
−

(
di(t)
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)
+
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The error (3) includes the spacing distance, the relative
velocity, and relative acceleration. Because we consider
platoon formations during merging maneuvers, (3) will be
defined among two adiacent vehicles for which a commu-
nication link is instantiated. The control objective is to

regulate eji to zero for all such adjacent vehicles. In the
next section, we present how rij and the network topology
itself change during the merging manuever.

3. THE SYNCHRONIZATION PROTOCOL
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To describe the merging manuever, let us consider the
networks in Fig. 2. Three vehicles, denoted with indices
1, 2 and 3, have uncertain dynamics

ẋ1 =A1x1 + b1u1

ẋ3 =A3x3 + b3u3

ẋ2 =A2x2 + b2u2 (4)

where A1, A2, A3 and b1, b2, b3 are unknown matrices
in the form of (1). Vehicle 3 is indicated before vehicle 2
because we aim at merging vehicle 3 in between vehicles 1
and 2. Consider the virtual leader

ẋm = Amxm + bmr (5)

where Am and bm are known matrices in the form of (2).
Fig. 2 shows that, before attempting to merge, vehicle
3 aligns to vehicle 2 (network 1). When the merging
starts (network 2), a cyclic graph appears (bidirectional
link between vehicles 2 and 3) and vehicle 2 increases its
distance from vehicle 1. The bidirectional link between
vehicle 2 and vehicle 3 is used for safety reasons by vehicle
2 to watch the behavior of vehicle 3 and vice versa (as
it happens in merging manuevers operated by humans).
Finally, in network 3, the merging is complete and a
new acyclic directed network is established between the
three vehicles. The following CDH spacing policies are
considered:

• Network 1: r32 = 0 and r21 = ρ for a certain design
parameter ρ;

• Network 2: r21 increases linearly from ρ to 2ρ, r32
decreases linearly from 0 to −ρ, and r31 = ρ;

• Network 3: r31 = ρ and r23 = ρ.

Being the system matrices in (4) unknown, the synchro-
nization task has to be achieved in an adaptive fashion.
The following result, mutuated from (Baldi and Frasca
(2018)), justifies that the adaptive problem is well posed
in the sense of (Tao (2003); Ioannou and Sun (2012)).

Proposition 1. [Distributed matching conditions] For dy-
namics in the form (1) and (2), there exist vectors k∗1 , k

∗
2 ,

k∗3 and scalars l∗1, l
∗
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∗
3 such that

Am = A1 + b1k
∗′
1 , bm = b1l

∗
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In addition, the signs of l∗1, l
∗
2, l

∗
3 are positive, and there

exist vectors k∗21 = k∗2 − k∗1 l
∗
2/l

∗
1, k

∗
31 = k∗3 − k∗1 l

∗
3/l

∗
1, k

∗
32 =

k∗3 − k∗2 l
∗
3/l

∗
2, k

∗
23 = k∗2 − k∗3 l

∗
2/l

∗
3 and scalars l∗21 = l∗2/l

∗
1,

l∗31 = l∗3/l
∗
1, l

∗
32 = l∗3/l

∗
2, l

∗
23 = l∗2/l

∗
3 such that

A1 = A2 + b2k
∗′
21, b1 = b2l

∗
21

A1 = A3 + b3k
∗′
31, b1 = b3l

∗
31

A2 = A3 + b3k
∗′
32, b2 = b3l

∗
32

A3 = A2 + b2k
∗′
23, b3 = b2l

∗
23. (7)

The adaptive controller is now presented: because the
controller for the acyclic networks 1 and 3 can be easily
derived using the approach in (Baldi and Frasca (2018)),
in the following we will focus on the cyclic network 2.

3.1 The adaptive controller

The synchronization of vehicle 1 to the reference model
is the well-known model reference adaptive control (Tao,
2003, Chap. 4): it amounts to the controller

u1(t) = k′1(t)x1(t) + l1(t)r(t) (8)

and to the adaptive laws

k̇′1(t) =−γkb
′
mPe1(t)x1(t)

′

l̇1(t) =−γlb
′
mPe1(t)r(t) (9)

where e1 = e10 = x1 − xm, k1, l1 are the estimates of k∗1 ,
l∗1, the scalars γk, γl > 0 are adaptive gains, and P is a
positive definite matrix satisfying

PAm +A′
mP = −Q, Q > 0. (10)

The following result holds.

Theorem 1. Consider the controller

u2(t) = k′21(t)
x1(t)

2
+ k′23(t)

x3(t)

2
+ k′2(t)

e21(t) + e23(t)

2

+l21(t)
u1(t)

2
+ l23(t)

u3(t)

2
(11)

and the adaptive laws

k̇′21(t) =−γkb
′
mP (e21(t) + e23(t))x

′
1(t)

k̇′23(t) =−γkb
′
mP (e21(t) + e23(t))x

′
3(t)

k̇′2(t) =−γkb
′
mP (e21(t) + e23(t))(e21(t) + e23(t))

′

l̇21(t) =−γlb
′
mP (e21(t) + e23(t))u1(t)

l̇23(t) =−γlb
′
mP (e21(t) + e23(t))u3(t) (12)

where k21, k23, k2, l21, l23 are the estimates of k∗21, k
∗
23, k

∗
2 ,

l∗21, l
∗
23 respectively. Also, consider the controller

u3(t) = k′31(t)
x1(t)

2
+ k′32(t)

x2(t)

2
+ k′3(t)

e31(t) + e32(t)

2

+l31(t)
u1(t)

2
+ l32(t)

u2(t)

2
(13)

and the adaptive laws

k̇′31(t) =−γkb
′
mP (e31(t) + e32(t))x

′
1(t)

k̇′32(t) =−γkb
′
mP (e31(t) + e32(t))x

′
2(t)

k̇′3(t) =−γkb
′
mP (e31(t) + e32(t))(e31(t) + e32(t))

′

l̇31(t) =−γlb
′
mP (e31(t) + e32(t))u1(t)

l̇32(t) =−γlb
′
mP (e31(t) + e32(t))u2(t) (14)

where k31, k32, k3, l31, l32 are the estimates of k∗31, k
∗
32, k

∗
3 ,

l∗31, l
∗
32 respectively. Then, provided that the inputs are

well defined at very time instant, vehicle 2 synchronizes to
vehicles 1 and 3, while vehicle 3 synchronizes to vehicles 1
and 2 (i.e. merging is achieved in network 2).

Proof 1. Proving synchronization exploits the Lyapunov
function V1 + V231 + V321, where

V1 = e′1Pe1 + tr

(
k̃′ik̃i
γk |l∗i |

)
+

l̃2i
γl |l∗i |

V231 = e′231Pe231 + tr

(
k̃′21k̃21
γk |l∗2|

)
+ tr

(
k̃′23k̃23
γk |l∗2|

)

+tr

(
k̃′2k̃2
γk |l∗2|

)
+

l̃221
γl |l∗2|

+
l̃223

γl |l∗2|

V321 = e′321Pe321 + tr

(
k̃′31k̃31
γk |l∗3|

)
+ tr

(
k̃′32k̃32
γk |l∗3|

)

+tr

(
k̃′3k̃3
γk |l∗3|

)
+

l̃231
γl |l∗3|

+
l̃232

γl |l∗3|
. (15)

and the error dynamics, as depicted in Fig. 3 are

ė1 =Ame21 + b1(k̃
′
1x1 + l̃1r)

ė231 =Ame231 + b2(k̃
′
21x1 + k̃′2e21 + l̃21u1)

+b2(k̃
′
23x3 + k̃′2e23 + l̃23u3)

ė321 =Ame321 + b3(k̃
′
31x1 + k̃′3e31 + l̃31u1)

+b3(k̃
′
32x2 + k̃′3e32 + l̃32u2) (16)

where e231 = e21+e23 and e321 = e31+e32. Using standard
Lyapunov arguments and the Barbalat’s lemma we can
show V̇1 + V̇231 + V̇321 → 0 as t → ∞ and hence all errors
go to zero. �

Fig. 3. The synchronization errors

Theorem 1 assumes that the inputs are well defined at very
time instant. Therefore, the presence of a cycle in network
2 requires us to find some well-posedness conditions on the
input, as discussed in next section.

4. WELL-POSEDNESS OF THE INPUT

By considering network 2 in Fig. 2, the inputs to the three
vehicles can be written as

u1(t) = k′1(t)x1(t) + l1(t)r(t)

2u2(t) = k′21(t)x1(t) + k′2(t)(x2(t)− x1(t)) + l21(t)u1(t)

+ k′31(t)x3(t) + k′2(t)(x2(t)− x3(t)) + l23(t)u3(t)

2u3(t) = k′31(t)x1(t) + k′3(t)(x3(t)− x1(t)) + l31(t)u1(t)

+ k′32(t)x2(t) + k′3(t)(x3(t)− x2(t)) + l32(t)u2(t).
(17)
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or, in a more compact matrix form[
1 0 0

−l21 2 −l23
−l31 −l32 2

]

︸ ︷︷ ︸
U

[
u1

u2

u3

]
=

[
k1x1 + l1r

(k21 − k2)x1 + 2k2x2 + (k31 − k2)x3

(k31 − k3)x1 + (k32 − k3)x2 + 2k3x3

]
.

Even though the vehicles do not need to invert U to obtain
their inputs, if we want to guarantee that u1, u2, and
u3 are well posed at all time steps, we need the matrix
U to be invertible. To this purpose, let us calculate the
determinant of U , so as to obtain

det

[
1 0 0

−l21 2 −l23
−l31 −l32 2

]
= 4− l23l32. (18)

In the ideal case (with the actual parameters from Propo-
sition 1) l∗23l

∗
32 = 1, giving an ideal determinant equal to 3.

However, in the actual case with the estimated parameters,
the determinant of U can take arbitrary values and even
result equal to 0. This would make the inputs u1, u2, and
u3 not well posed at all time steps. A simple approach to
guarantee well posedness of the inputs at all time steps is
to allow vehicle 2 and vehicle 3 to exchange their estimates
l23(t) and l32(t). This way it is possible to project the
estimates in such way that l23(t)l32(t) �= 4 and the matrix
U is always invertible. The following assumption is made.

Assumption 1. The actual parameters l∗23 and l∗32 are
known to reside in a convex compact set (call it Ωl) that
does not contain the set l∗23l

∗
32 = 4.

An example of Ωl (among infinite other choices) is l∗23 ≥ 0,
l∗32 ≥ 0, l∗23 ≤ −l∗32 + 3.99 as represented in Fig. 4. In
general, the set Ωl can be written as

Ωl = {l23, l32 | g(l23, l32) ≤ 0} (19)

for some appropriate vector function g(l23, l32). The fol-
lowing main result follows.

Theorem 2. Consider the merging phase described by net-
work 2 in Fig. 2. Under Assumption 1, consider the three
vehicles described by (4) and the leading vehicle described
by (5), the controllers (8), (11), (13) and the adaptive laws
(9), (12), (14) with the following modifications

l̇23(t) = PΩl
[−γlb

′
mP (e21(t) + e23(t))u3(t)︸ ︷︷ ︸

δl23(t)

] (20)

=

{
δl23(t) if l23(t) ∈ Ωl, or

l32(t) ∈ δ(Ωl) with δl23∇g ≤ 0
0 otherwise

l̇32(t) = PΩl
[−γlb

′
mP (e31(t) + e32(t))u2(t)︸ ︷︷ ︸

δl32(t)

]

=

{
δl32(t) if l32(t) ∈ Ωl, or

l32(t) ∈ δ(Ωl) with δl32∇g ≤ 0
0 otherwise

where PΩl
has been defined as a projection operator in the

set Ωl. In particular, δ(Ωl) is the border of Ωl and ∇g is
the derivative of g with respect to l23 or l32. Then, merging
is achieved in network 2, i.e. e1, e21, e23, e31, e32 → 0.

Proof 2. The proof exploits again the Lyapunov function
(15), and it follows the same lines as adaptive control
designs with parameter projection (Ioannou and Sun,
2012, Sects. 6.6 and 8.5). In fact, we have

V̇1 + V̇231 + V̇321 ≤ −e′1Qe1 − e′231Qe231 − e′321Qe321 + Vp

where

Vp(t)





= 0 if l23(t), l32(t) ∈ Ωl, or
l23(t) ∈ δ(Ωl) with δl23∇g ≤ 0, or
l32(t) ∈ δ(Ωl) with δl32∇g ≤ 0

≤ 0 otherwise

i.e. Vp is a term that due to the convexity of the projection
set Ωl verifies Vp ≤ 0. Therefore, Vp can only make
the derivative of the Lyapunov function more negative
(Ioannou and Sun, 2012, Sects. 6.6 and 8.5). Hence,

V̇1 + V̇231 + V̇321 ≤ −e′1Qe1 − e′231Qe231 − e′321Qe321

and stability follows from Barbalat’s lemma as in Theo-
rem 1. The details are left to the reader for lack of space.
�

Remark 1. Theorem 2 basically states that the structure
of the network can be exploited to implement appropriate
projection laws (cf. (21)) that make the input well posed at
every time instant, even in the presence of cycles.

5. NUMERICAL EXAMPLE

Table 1. Vehicles parameters and initial conditions

Vehicle i τi xi(0)

Vehicle 1 0.5 [-2,1,0]
Vehicle 2 0.33 [-15,2,1]
Vehicle 3 0.2 [-20,2,1]

The parameters of the reference model are taken as: a01 =
−4, a02 = −6, a03 = −4, and b00 = 1, while the dynamics
of the vehicles in (1) are unknown. Table 1 shows the
parameter used to simulate each vehicle i, together with
their initial conditions. The reference signal r is taken to
be a ramp. The simulations are carried out at low speed
(around 2.5m/s) only to better visualize the gaps between
vehicles : we have verified that the proposed approach
works also at higher speeds. The design parameter are
taken as: Q = diag(1, 1, 5), ρ = 7m, the adaptive gains
γk = 0.005, γl = 0.001, and all coupling gains, ki, kij , li,
lij , are initialized to 0. The maneuver is organized as:

– 0-30 s: vehicle 3 aligns with vehicle 2, while vehicles
1 and 2 achieve the initial formation.

– 30-50s: vehicle 2 creates an increasing gap for vehicle
3, while vehicle 3 starts the merging.

– 50-60s: the final formation is achieved.
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Fig. 4. Singular set (red curve) and projection set (shaded
blue area)

or, in a more compact matrix form[
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−l31 −l32 2
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U
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u1

u2

u3
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k1x1 + l1r

(k21 − k2)x1 + 2k2x2 + (k31 − k2)x3

(k31 − k3)x1 + (k32 − k3)x2 + 2k3x3

]
.

Even though the vehicles do not need to invert U to obtain
their inputs, if we want to guarantee that u1, u2, and
u3 are well posed at all time steps, we need the matrix
U to be invertible. To this purpose, let us calculate the
determinant of U , so as to obtain

det

[
1 0 0

−l21 2 −l23
−l31 −l32 2

]
= 4− l23l32. (18)

In the ideal case (with the actual parameters from Propo-
sition 1) l∗23l

∗
32 = 1, giving an ideal determinant equal to 3.

However, in the actual case with the estimated parameters,
the determinant of U can take arbitrary values and even
result equal to 0. This would make the inputs u1, u2, and
u3 not well posed at all time steps. A simple approach to
guarantee well posedness of the inputs at all time steps is
to allow vehicle 2 and vehicle 3 to exchange their estimates
l23(t) and l32(t). This way it is possible to project the
estimates in such way that l23(t)l32(t) �= 4 and the matrix
U is always invertible. The following assumption is made.

Assumption 1. The actual parameters l∗23 and l∗32 are
known to reside in a convex compact set (call it Ωl) that
does not contain the set l∗23l

∗
32 = 4.

An example of Ωl (among infinite other choices) is l∗23 ≥ 0,
l∗32 ≥ 0, l∗23 ≤ −l∗32 + 3.99 as represented in Fig. 4. In
general, the set Ωl can be written as

Ωl = {l23, l32 | g(l23, l32) ≤ 0} (19)

for some appropriate vector function g(l23, l32). The fol-
lowing main result follows.

Theorem 2. Consider the merging phase described by net-
work 2 in Fig. 2. Under Assumption 1, consider the three
vehicles described by (4) and the leading vehicle described
by (5), the controllers (8), (11), (13) and the adaptive laws
(9), (12), (14) with the following modifications

l̇23(t) = PΩl
[−γlb

′
mP (e21(t) + e23(t))u3(t)︸ ︷︷ ︸

δl23(t)

] (20)

=

{
δl23(t) if l23(t) ∈ Ωl, or

l32(t) ∈ δ(Ωl) with δl23∇g ≤ 0
0 otherwise

l̇32(t) = PΩl
[−γlb

′
mP (e31(t) + e32(t))u2(t)︸ ︷︷ ︸

δl32(t)

]

=

{
δl32(t) if l32(t) ∈ Ωl, or

l32(t) ∈ δ(Ωl) with δl32∇g ≤ 0
0 otherwise

where PΩl
has been defined as a projection operator in the

set Ωl. In particular, δ(Ωl) is the border of Ωl and ∇g is
the derivative of g with respect to l23 or l32. Then, merging
is achieved in network 2, i.e. e1, e21, e23, e31, e32 → 0.

Proof 2. The proof exploits again the Lyapunov function
(15), and it follows the same lines as adaptive control
designs with parameter projection (Ioannou and Sun,
2012, Sects. 6.6 and 8.5). In fact, we have

V̇1 + V̇231 + V̇321 ≤ −e′1Qe1 − e′231Qe231 − e′321Qe321 + Vp

where

Vp(t)





= 0 if l23(t), l32(t) ∈ Ωl, or
l23(t) ∈ δ(Ωl) with δl23∇g ≤ 0, or
l32(t) ∈ δ(Ωl) with δl32∇g ≤ 0

≤ 0 otherwise

i.e. Vp is a term that due to the convexity of the projection
set Ωl verifies Vp ≤ 0. Therefore, Vp can only make
the derivative of the Lyapunov function more negative
(Ioannou and Sun, 2012, Sects. 6.6 and 8.5). Hence,

V̇1 + V̇231 + V̇321 ≤ −e′1Qe1 − e′231Qe231 − e′321Qe321

and stability follows from Barbalat’s lemma as in Theo-
rem 1. The details are left to the reader for lack of space.
�

Remark 1. Theorem 2 basically states that the structure
of the network can be exploited to implement appropriate
projection laws (cf. (21)) that make the input well posed at
every time instant, even in the presence of cycles.

5. NUMERICAL EXAMPLE

Table 1. Vehicles parameters and initial conditions

Vehicle i τi xi(0)

Vehicle 1 0.5 [-2,1,0]
Vehicle 2 0.33 [-15,2,1]
Vehicle 3 0.2 [-20,2,1]

The parameters of the reference model are taken as: a01 =
−4, a02 = −6, a03 = −4, and b00 = 1, while the dynamics
of the vehicles in (1) are unknown. Table 1 shows the
parameter used to simulate each vehicle i, together with
their initial conditions. The reference signal r is taken to
be a ramp. The simulations are carried out at low speed
(around 2.5m/s) only to better visualize the gaps between
vehicles : we have verified that the proposed approach
works also at higher speeds. The design parameter are
taken as: Q = diag(1, 1, 5), ρ = 7m, the adaptive gains
γk = 0.005, γl = 0.001, and all coupling gains, ki, kij , li,
lij , are initialized to 0. The maneuver is organized as:

– 0-30 s: vehicle 3 aligns with vehicle 2, while vehicles
1 and 2 achieve the initial formation.

– 30-50s: vehicle 2 creates an increasing gap for vehicle
3, while vehicle 3 starts the merging.

– 50-60s: the final formation is achieved.
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Theorems 1 and 2 do not consider switching topologies (cf.
Fig. 2). During the different merging phases changes, vehi-
cles 2 and 3 end up having a different number of neighbors,
which require to implement a different controller, one for
each different topology. Therefore, a switching controller
scheme, shown in Fig. 5, and resembling the multiple
model control architecture (Hespanha et al. (2003); Baldi
et al. (2010)) will be used in this work.

Fig. 5. The switching adaptive control for vehicle k

Note that vehicles 2 and 3 have: one neighbor in network
1 (vehicle 1 and vehicle 3, respectively); two neighbors
in network 2 (vehicles 1 and 3 and vehicles 1 and 2,
respectively); one neighbor in network 3 (vehicle 3 and ve-
hicle 2, respectively). Therefore, three adaptive controllers
are possible for vehicle 2 and vehicle 3, whose activation
depends on the active communication graph during the
merging phase (cf. Fig. 2). It was demonstrated that each
standalone networked adaptive controller (the two ones
derived from (Baldi and Frasca (2018)) for the acyclic
networks 1 and 3, and the one derived from Theorem 2 for
the cyclic network 2) is stable. The stability of the resulting
controller in the presence of switching will be the subject of
further studies, using tools from adaptive switched control
(Sang and Tao (2012); Yuan et al. (2017)). Such literature
has shown that when switching among stable adaptive
systems occurs, there exists a dwell time for which stability
can be derived. The simulation in the next section are per-
formed to show the stability of such switched architecture:
note that the proposed merging maneuver has a dwell time
of 20 s.

Fig. 6. The position response

Figs. 6, 7, 8, and 9 show the response of pi, vi, ai, and
ui, respectively. In Fig. 6, we can observe, in the interval
0-30 seconds (network 1), that vehicles 2 and 3 are at
a distance ρ from vehicle 1, at the same time vehicle 1
synchronize to reference model. Then, in the interval 30-
50 seconds (network 2), vehicle 2 makes a gap by increasing
the distance with vehicle 1 in order to allow vehicle 3 to
merge in between vehicle 1 and vehicle 2. Finally, in the
interval 50-60 seconds (network 3), vehicle 3 is located at

Fig. 7. The velocity response

Fig. 8. The acceleration response

Fig. 9. The input response

a distance ρ from vehicle 1 and vehicle 2 is located at a
distance 2ρ from vehicle 1.

6. CONCLUSIONS

While most platooning literature has focused on acyclic
graphs, the merging maneuver requires to handle a cyclic
graph. This makes synchronization more difficult, because
the input of a vehicle depends on the input of the neighbors
which might create not well-defined inputs. In this work
we have shown that it is possible to exploit the graph
structure to implement appropriate parameter projection
and guarantee well posedness of the actual inputs. Fu-
ture work will include considering unmatched uncertain-
ties (Lymperopoulos and Ioannou (2016); Romagnuolo
(2018)). Furthermore, to overcome the technical issues
that come from switching (Section 5), it might be inter-
esting to consider smoothing/mixing mechanisms (Kuipers
and Ioannou (2010); Baldi and Ioannou (2016)).

REFERENCES

Acciani, F., Frasca, P., Stoorvogel, A., Semsar-Kazerooni,
E., and Heijenk, G. (2018). Cooperative adaptive
cruise control over unreliable networks: an observer-
based approach to increase robustness to packet loss.
In 16th European Control Conference (ECC 2018).

Amoozadeh, M., Deng, H., Chuah, C.N., Zhang, H.M.,
and Ghosal, D. (2015). Platoon management with
cooperative adaptive cruise control enabled by VANET.
Vehicular Communications, 2(2), 110 – 123.

IFAC NecSys 2018
Groningen, NL, August 27-28, 2018

152

Azzollini, I.A. (2018). Adaptive Synchronization
over Uncertain Multi-Agent Systems: A distributed
homogenization-based approach. Master’s thesis, Delft
University of Technology, Delft, The Netherlands.

Baldi, S., Battistelli, G., Mosca, E., and Tesi, P. (2010).
Multi-model unfalsified adaptive switching supervisory
control. Automatica, 46(2), 249 – 259.

Baldi, S. and Frasca, P. (2018). Adaptive
synchronization of unknown heterogeneous
agents: an adaptive virtual model reference
approach. Journal of The Franklin Institute. doi:
https://doi.org/10.1016/j.jfranklin.2018.01.022.

Baldi, S. and Ioannou, P.A. (2016). Stability margins in
adaptive mixing control via a Lyapunov-based switching
criterion. IEEE Transactions on Automatic Control,
61(5), 1194–1207.

Baldi, S., Rosa, M.R., and Frasca, P. (2018). Adaptive
state-feedback synchronization with distributed input:
the cyclic case. 7th IFAC Workshop on Distributed Es-
timation and Control in Networked Systems (NecSys18).

Bengtsson, H.H., Chen, L., Voronov, A., and Englund,
C. (2015). Interaction protocol for highway platoon
merge. In 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, 1971–1976.

Chien, C., Zhang, Y., Lai, M., Hammad, A., and Chu, C.
(1995). Regulation layer controller design for automated
highway system: Platoon merge and split controller
design. In D. Schaechter and K. Lorell (eds.), Automatic
Control in Aerospace 1994 (Aerospace Control ’94), 357
– 362. Pergamon, Oxford.

Dey, K.C., Yan, L., Wang, X., Wang, Y., Shen, H.,
M.Chowdhury, Yu, L., Qiu, C., and Soundararaj, V.
(2016). A review of communication, driver charac-
teristics, and controls aspects of cooperative adaptive
cruise control (cacc). IEEE Transactions on Intelligent
Transportation Systems, 17, 491–509.

Günther, H.J., Kleinau, S., Trauer, O., and Wolf, L.
(2016). Platooning at traffic lights. IEEE Intelligent
Vehicles Symposium (IV), 1047–1053.

Goli, M. and Eskandarian, A. (2014). Evaluation of lateral
trajectories with different controllers for multi-vehicle
merging in platoon. In 2014 International Conference
on Connected Vehicles and Expo (ICCVE), 673–678.

Hafez, M., Ariffin, M., Rahman, M.A., and Zamzuri,
H. (2015). Effect of leader information broadcasted
throughout vehicle platoon in a constant spacing pol-
icy. IEEE International Symposium on Robotics and
Intelligent Sensors, 132–137.

Harfouch, Y.A., Yuan, S., and Baldi, S. (2017a). Adaptive
control of interconnected networked systems with appli-
cation to heterogeneous platooning. In 13th IEEE In-
ternational Conference on Control Automation (ICCA),
212–217.

Harfouch, Y.A., Yuan, S., and Baldi, S. (2017b). An adap-
tive switched control approach to heterogeneous pla-
tooning with inter-vehicle communication losses. IEEE
Transactions on Control of Network Systems. doi:
10.1109/TCNS.2017.2718359.

Hespanha, J.P., Liberzon, D., and Morse, A. (2003).
Hysteresis-based switching algorithms for supervisory
control of uncertain systems. Automatica, 39(2), 263
– 272.

Ioannou, P. and Sun, J. (2012). Robust Adaptive Control.
Dover Publications.

Kianfar, R., Falcone, P., and Fredriksson, J. (2015). A
control matching model predictive control approach
to string stable vehicle platooning. IFAC, Control
Engineering Practice 45, 163–173.

Kuipers, M. and Ioannou, P. (2010). Multiple model
adaptive control with mixing. IEEE Transactions on
Automatic Control, 55(8), 1822–1836.

Larsson, E., Sennton, G., and Larson, J. (2015). The vehi-
cle platooning problem: Computational complexity and
heuristics. Transportation Research Part C: Emerging
Technologies, 60, 258 – 277.

Li, Y., Chen, W., Zhang, K., Zheng, T., and Feng, H.
(2017). Dsrc based vehicular platoon control considering
the realistic V2V/V2I communications. In 2017 29th
Chinese Control And Decision Conference (CCDC),
7585–7590.

Lymperopoulos, G. and Ioannou, P. (2016). Adaptive
control of networked distributed systems with unknown
interconnections. In 2016 IEEE 55th Conference on
Decision and Control (CDC), 3456–3461.

Maiti, S., Winter, S., and Kulik, L. (2017). A concep-
tualization of vehicle platoons and platoon operations.
Transportation Research Part C: Emerging Technolo-
gies, 80, 1 – 19.

Marsden, G., McDonald, M., and Brackstone, M. (2001).
Towards an understanding of adaptive cruise control.
Transportation Research Part C: Emerging Technolo-
gies, 33–51.

Ploeg, J., van de Wouw, N., and Nijmeijer, H. (2014).
lp string stability of cascaded systems: Application to
vehicle platooning. IEEE Transactions on Control
Systems Technology, 22, 786–793.

Qu, Z. (2009). Cooperative Control of Dynamical Systems:
Applications to Autonomous Vehicles. Springer, New
York.

Rai, R., Sharma, B., and Vanualailai, J. (2015). Real and
virtual leader-follower strategies in lane changing, merg-
ing and overtaking maneuvers. In 2015 2nd Asia-Pacific
World Congress on Computer Science and Engineering
(APWC on CSE), 1–12.

Romagnuolo, M. (2018). Estimating uncertainties in co-
operative networks. Master’s thesis, Delft University of
Technology, Delft, The Netherlands.

Sang, Q. and Tao, G. (2012). Adaptive control of piecewise
linear systems: the state tracking case. IEEE Transac-
tions on Automatic Control, 57(2), 522–528.

Scarinci, R., Hegyi, A., and Heydecker, B. (2017). Defi-
nition of a merging assistant strategy using intelligent
vehicles. Transportation Research Part C: Emerging
Technologies, 82, 161 – 179.

Tao, G. (2003). Adaptive Control Design and Analysis.
Wiley.

Wang, W., Wen, C., Huang, J., and Li, Z. (2016). Hi-
erarchical decomposition based consensus tracking for
uncertain interconnected systems via distributed adap-
tive output feedback control. IEEE Transactions on
Automatic Control, 61(7), 1938–1945.

Yuan, S., Schutter, B.D., and Baldi, S. (2017). Adaptive
asymptotic tracking control of uncertain time-driven
switched linear systems. IEEE Transactions on Auto-
matic Control, 62(11), 5802–5807.

IFAC NecSys 2018
Groningen, NL, August 27-28, 2018

153



 Simone Baldi  et al. / IFAC PapersOnLine 51-23 (2018) 148–153 153

Azzollini, I.A. (2018). Adaptive Synchronization
over Uncertain Multi-Agent Systems: A distributed
homogenization-based approach. Master’s thesis, Delft
University of Technology, Delft, The Netherlands.

Baldi, S., Battistelli, G., Mosca, E., and Tesi, P. (2010).
Multi-model unfalsified adaptive switching supervisory
control. Automatica, 46(2), 249 – 259.

Baldi, S. and Frasca, P. (2018). Adaptive
synchronization of unknown heterogeneous
agents: an adaptive virtual model reference
approach. Journal of The Franklin Institute. doi:
https://doi.org/10.1016/j.jfranklin.2018.01.022.

Baldi, S. and Ioannou, P.A. (2016). Stability margins in
adaptive mixing control via a Lyapunov-based switching
criterion. IEEE Transactions on Automatic Control,
61(5), 1194–1207.

Baldi, S., Rosa, M.R., and Frasca, P. (2018). Adaptive
state-feedback synchronization with distributed input:
the cyclic case. 7th IFAC Workshop on Distributed Es-
timation and Control in Networked Systems (NecSys18).

Bengtsson, H.H., Chen, L., Voronov, A., and Englund,
C. (2015). Interaction protocol for highway platoon
merge. In 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, 1971–1976.

Chien, C., Zhang, Y., Lai, M., Hammad, A., and Chu, C.
(1995). Regulation layer controller design for automated
highway system: Platoon merge and split controller
design. In D. Schaechter and K. Lorell (eds.), Automatic
Control in Aerospace 1994 (Aerospace Control ’94), 357
– 362. Pergamon, Oxford.

Dey, K.C., Yan, L., Wang, X., Wang, Y., Shen, H.,
M.Chowdhury, Yu, L., Qiu, C., and Soundararaj, V.
(2016). A review of communication, driver charac-
teristics, and controls aspects of cooperative adaptive
cruise control (cacc). IEEE Transactions on Intelligent
Transportation Systems, 17, 491–509.

Günther, H.J., Kleinau, S., Trauer, O., and Wolf, L.
(2016). Platooning at traffic lights. IEEE Intelligent
Vehicles Symposium (IV), 1047–1053.

Goli, M. and Eskandarian, A. (2014). Evaluation of lateral
trajectories with different controllers for multi-vehicle
merging in platoon. In 2014 International Conference
on Connected Vehicles and Expo (ICCVE), 673–678.

Hafez, M., Ariffin, M., Rahman, M.A., and Zamzuri,
H. (2015). Effect of leader information broadcasted
throughout vehicle platoon in a constant spacing pol-
icy. IEEE International Symposium on Robotics and
Intelligent Sensors, 132–137.

Harfouch, Y.A., Yuan, S., and Baldi, S. (2017a). Adaptive
control of interconnected networked systems with appli-
cation to heterogeneous platooning. In 13th IEEE In-
ternational Conference on Control Automation (ICCA),
212–217.

Harfouch, Y.A., Yuan, S., and Baldi, S. (2017b). An adap-
tive switched control approach to heterogeneous pla-
tooning with inter-vehicle communication losses. IEEE
Transactions on Control of Network Systems. doi:
10.1109/TCNS.2017.2718359.

Hespanha, J.P., Liberzon, D., and Morse, A. (2003).
Hysteresis-based switching algorithms for supervisory
control of uncertain systems. Automatica, 39(2), 263
– 272.

Ioannou, P. and Sun, J. (2012). Robust Adaptive Control.
Dover Publications.

Kianfar, R., Falcone, P., and Fredriksson, J. (2015). A
control matching model predictive control approach
to string stable vehicle platooning. IFAC, Control
Engineering Practice 45, 163–173.

Kuipers, M. and Ioannou, P. (2010). Multiple model
adaptive control with mixing. IEEE Transactions on
Automatic Control, 55(8), 1822–1836.

Larsson, E., Sennton, G., and Larson, J. (2015). The vehi-
cle platooning problem: Computational complexity and
heuristics. Transportation Research Part C: Emerging
Technologies, 60, 258 – 277.

Li, Y., Chen, W., Zhang, K., Zheng, T., and Feng, H.
(2017). Dsrc based vehicular platoon control considering
the realistic V2V/V2I communications. In 2017 29th
Chinese Control And Decision Conference (CCDC),
7585–7590.

Lymperopoulos, G. and Ioannou, P. (2016). Adaptive
control of networked distributed systems with unknown
interconnections. In 2016 IEEE 55th Conference on
Decision and Control (CDC), 3456–3461.

Maiti, S., Winter, S., and Kulik, L. (2017). A concep-
tualization of vehicle platoons and platoon operations.
Transportation Research Part C: Emerging Technolo-
gies, 80, 1 – 19.

Marsden, G., McDonald, M., and Brackstone, M. (2001).
Towards an understanding of adaptive cruise control.
Transportation Research Part C: Emerging Technolo-
gies, 33–51.

Ploeg, J., van de Wouw, N., and Nijmeijer, H. (2014).
lp string stability of cascaded systems: Application to
vehicle platooning. IEEE Transactions on Control
Systems Technology, 22, 786–793.

Qu, Z. (2009). Cooperative Control of Dynamical Systems:
Applications to Autonomous Vehicles. Springer, New
York.

Rai, R., Sharma, B., and Vanualailai, J. (2015). Real and
virtual leader-follower strategies in lane changing, merg-
ing and overtaking maneuvers. In 2015 2nd Asia-Pacific
World Congress on Computer Science and Engineering
(APWC on CSE), 1–12.

Romagnuolo, M. (2018). Estimating uncertainties in co-
operative networks. Master’s thesis, Delft University of
Technology, Delft, The Netherlands.

Sang, Q. and Tao, G. (2012). Adaptive control of piecewise
linear systems: the state tracking case. IEEE Transac-
tions on Automatic Control, 57(2), 522–528.

Scarinci, R., Hegyi, A., and Heydecker, B. (2017). Defi-
nition of a merging assistant strategy using intelligent
vehicles. Transportation Research Part C: Emerging
Technologies, 82, 161 – 179.

Tao, G. (2003). Adaptive Control Design and Analysis.
Wiley.

Wang, W., Wen, C., Huang, J., and Li, Z. (2016). Hi-
erarchical decomposition based consensus tracking for
uncertain interconnected systems via distributed adap-
tive output feedback control. IEEE Transactions on
Automatic Control, 61(7), 1938–1945.

Yuan, S., Schutter, B.D., and Baldi, S. (2017). Adaptive
asymptotic tracking control of uncertain time-driven
switched linear systems. IEEE Transactions on Auto-
matic Control, 62(11), 5802–5807.

IFAC NecSys 2018
Groningen, NL, August 27-28, 2018

153


