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Abstract
Continual learning aims to enable neural networks
to acquire new knowledge sequentially without for-
getting what they have already learned. While
many strategies have been developed to address
catastrophic forgetting, a subtler challenge known
as the stability gap—a temporary drop in perfor-
mance immediately after switching tasks—remains
insufficiently understood. Recent work suggests
that the learning rate may influence this phe-
nomenon by shaping the model’s optimization tra-
jectory. This paper systematically investigates how
different constant learning rates affect the stability
gap and whether dynamic learning rate scheduling
can mitigate it. Experiments on Rotated MNIST
with perfect replay show that smaller constant
learning rates reduce the immediate drop but slow
down recovery and convergence, while larger rates
yield higher final accuracy but at the cost of a more
severe gap. Scheduling methods, including Cycli-
cLR and our custom IncreaseLROnPlateau, demon-
strate potential for balancing this trade-off, but also
introduce new challenges such as intra-task fluctu-
ations. Overall, a carefully tuned constant learn-
ing rate provides the most robust trade-off in this
setting. By isolating and quantifying these effects,
this work offers insights for selecting and tuning
learning rates in continual learning and lays the
groundwork for future studies on more effective
scheduling strategies. All code and experiments
are publicly available at: https://github.com/wjssk/
learning-rate-in-stability-gap.

1 Introduction
In traditional supervised learning, neural networks are trained
under the assumption that all data is available at once. But
in real-world applications, learning is often a continuous pro-
cess, where tasks arrive sequentially, and previously seen data
may no longer be accessible. This paradigm, known as con-
tinual learning (CL), faces a significant challenge known as
the stability-plasticity dilemma [7] - the model has to pre-
serve its old knowledge (stability) while also trying to adapt
to a new task (plasticity). High plasticity and low stabil-
ity models suffered from catastrophic forgetting [2] - upon
learning a new task, the model completely overwrote (forgot)
previously acquired knowledge. Numerous methods have
been developed to mitigate forgetting, such as replay-based
strategies that reintroduce data from past tasks during training
[10][12][8][9], or parameter regularization techniques, which
constrain updates to important weights to preserve knowl-
edge from previous tasks [5][17]. While these approaches
have significantly reduced catastrophic forgetting, some lim-
itations remain unsolved.

Related work Recent research conducted by De Lange et
al. [1] has drawn attention to a subtler, yet potentially damag-
ing issue: the stability gap. This term refers to a temporary
but sudden drop in accuracy on previous tasks immediately

after the model begins learning a new one - even when us-
ing replay-based methods, knowledge distillation or parame-
ter regularization. Figure 1 is reproduced from De Lange et
al. [1], and illustrates the stability gap.

Figure 1: Stability gap example, reproduced from De Lange et al.
[1]. The orange curve shows the accuracy for Task 1 throughout
the whole training process. The vertical lines indicate the start of
training on new tasks.

Although the model often recovers, the authors emphasize
that this instability poses potential risks in real-world applica-
tions. In particular, they highlight concerns about maintain-
ing reliable performance in safety-critical domains (e.g. the
medical field), the possibility of adversaries exploiting mo-
mentary weaknesses, and the broader scientific importance of
understanding why such gaps arise despite mitigation efforts.

Hess et al. [3] suggest that to mitigate the stability gap
we should focus on the optimization trajectory instead of the
optimization objective - i.e., is there a path in the parameter
space that will lead us to the same endpoint, but without the
stability gap? One of the main components shaping these tra-
jectory paths is the learning rate (LR). A large LR means the
model takes bigger steps through the parameter space, which
can help it escape local minima and converge faster. In con-
trast, a small LR results in smaller, more cautious steps, but
can make the model more likely to get stuck in a local mini-
mum.
Contributions To address the idea, this study performs a
two-stage empirical investigation. First, a wide range of con-
stant learning rates is tested to reveal general patterns in how
step size affects the stability gap. The second stage explores
whether carefully tuned learning rate schedulers can reduce
the stability gap by adjusting the step size dynamically during
training. By systematically isolating the effect of the learning
rate in a domain-incremental scenario with perfect replay, this
work aims to provide clearer insights into how the learning
rate influences the stability gap and to guide more informed
choices of this hyperparameter in continual learning models.
The main research question of this study is therefore: How
does the learning rate influence the stability gap in contin-
ual learning, and can it be reduced through scheduling?

Two key hypotheses are formulated.
H1 Smaller learning rates may lead to a smaller stability
gap, as smaller steps might prevent sudden drops in accuracy
at task transitions.
H2 A carefully tuned scheduled learning rate could fur-
ther reduce the stability gap by using both a smaller and
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larger LR to our advantage - smaller for stability, and higher
for escaping local minima.

The remainder of this paper is organized as follows: sec-
tion 2 details the experimental design, including the baseline
model, custom metrics used to quantify the stability gap, and
explanation of the chosen schedulers used in this study and
their evaluation method; section 3 describes the experimen-
tal setup and presents the main results for both constant and
scheduled learning rates; section 4 discusses the key insights,
reflects on the study’s limitations, and outlines recommenda-
tions for future research; section 5 answers the main research
question, evaluates the proposed hypotheses, and highlights
the practical implications; finally, section 6 addresses respon-
sible research practices, ethical considerations, and the repro-
ducibility of all experiments.

2 Methodology
This study aims to isolate and analyze the impact of the learn-
ing rate on the stability gap in continual learning. This section
provides a detailed description of the baseline model archi-
tecture, the dataset and the learning scenario used in the ex-
periments, the stability gap metrics used for the analysis, and
the selected learning rate schedulers together with the moti-
vation behind them, as well as the evaluation method for all
approaches.

2.1 Baseline Model
Architecture The baseline model used in this study is a
fully connected neural network with two hidden layers, each
containing 400 units and using the ReLU activation function.
The model operates on 28x28 grayscale images and performs
multi-class classification over ten digit classes (0-9). No reg-
ularization techniques were used in the model to isolate the
effect of the learning rate on performance.

Dataset The model is trained on the rotated MNIST bench-
mark [6], consisting of three tasks with input rotations of 0°,
80°and 160°. The rotations do not contain multiples of 90, to
avoid the confusion of numbers 6 and 9.

Learning Scenario This study follows the domain-
incremental learning scenario, as described by van de Ven et
al. [15][14][16]. In domain-incremental learning, the model
solves the same classification problem in each task (here, rec-
ognizing digits), but images in each task have some modifica-
tions. For example, in Rotated MNIST, all tasks use the same
digit labels (0-9), but each task contains images rotated by a
different angle.

We employ incremental joint training, meaning that at
each task, the model is trained not only on the new task data,
but also retrained on the full datasets of all previously encoun-
tered tasks. This simulates an idealized form of experience
replay or ”perfect regularization” and is known to still exhibit
the stability gap [3], making it suitable for isolating the effect
of learning rate on this phenomenon.

Accuracy Tracking Accuracy on all tasks is tracked
throughout the whole training and reported in the plots. While
the stability gap metrics are only computed for Task 1, visu-
alizing the performance on Tasks 2 and 3 provides valuable

context — for instance, a lack of stability gap might coin-
cide with poor learning of the new task, which would not be
apparent from Task 1 alone.

2.2 Stability Gap Metrics
To quantify the stability gap observed after each task switch,
we introduce a set of intuitive metrics specifically designed
to capture both the severity and duration of the temporary
performance drop. Since there is currently no standard eval-
uation protocol for measuring the stability gap in continual
learning, these metrics were developed based on visual in-
spection.

Each metric is computed based on the per-iteration accu-
racy curve of the first task. As illustrated in Figure 2, the
main components include:

Final Accuracy (F-ACC) For each task, we record its final
test accuracy at all relevant points during training: for Task
1, we report accuracy after completing Tasks 1, 2, and 3; for
Task 2, after completing Tasks 2 and 3; for Task 3, after Task
3 only.

Height (H) Shows the vertical size of the gap; the differ-
ence between the final accuracy and the minimum accuracy
reached immediately after the task switch (measured in per-
centage points).

Recovery time (REC-TIME) Shows the horizontal size of
the gap; the number of iterations required for the model to
recover from the drop and reach a specified percentage of its
final accuracy, measured from the task switch to the recovery
point. Rather than measuring a single threshold, we report
multiple recovery times: the iteration count needed to return
to 97%, 98%, 99%, and 100% of the final accuracy value
before the task switch, respectively. This provides a more
fine-grained view of the speed and shape of recovery.

Drop slope (DROP-SLOPE) The steepness of the accu-
racy drop, defined as the slope of a line of best fit over the
accuracy values between the task switch and the minimum.

Knowledge loss based on the area (AUC-LOSS) Mea-
sures how much accuracy was lost on the previous task during
the training of a new one. It compares the area under the ac-
tual accuracy curve (actualArea) to the area that would exist
if accuracy had stayed constant at its final value throughout
the whole training period (idealArea). The formula used is
1 − actualArea

idealArea . This metric captures the severity of forget-
ting throughout the whole training period. A value closer to
0 indicates minimal forgetting, while values approaching 1
suggest a prolonged and severe loss of knowledge.

While these metrics are not based on prior work, they are
grounded in observable behavior of the stability gap and aim
to offer a more nuanced understanding of its dynamics.

All metrics are computed independently for each run and
learning rate, then aggregated and reported as mean ± stan-
dard deviation.

2.3 Learning Rate Schedulers
In addition to evaluating a range of constant learning rates,
this study also tests two dynamic learning rate schedulers to
investigate whether adaptive step size adjustment can further
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Figure 2: Visual illustration of the stability gap metrics defined in this section, including drop height, recovery time, drop slope, and gap area.

mitigate the stability gap. The core hypothesis motivating
the choice of schedulers used is that smaller learning rates
tend to produce smaller stability gaps but increase the risk
of the model becoming trapped in suboptimal local minima.
In contrast, larger learning rates can help escape poor local
minima but can cause greater instability.

To balance these effects, both schedulers are designed to
start with a low learning rate to limit the initial drop in ac-
curacy and then increase the step size as training progresses,
aiming to accelerate convergence and prevent the model from
getting stuck in a local minimum. This approach is inspired
by the general concept of learning rate warmup, which has
been shown to reduce large gradient fluctuations at the be-
ginning of training by gradually increasing the learning rate
instead of setting it high from the start [4]. While warmup is
commonly used to stabilize training dynamics in single-task
scenarios, this study tests whether a similar principle can help
smooth out the stability gap. Additionaly, since in realistic
continual learning scenarios the number of tasks is typically
unknown in advance, it is impractical to predefine how the
scheduler should evolve across tasks. To reflect this, each
scheduler is reset to its initial state at the beginning of every
new task.

Cyclic LR Introduced by Smith [13], the Cyclic Learning
Rate scheduler periodically oscillates the learning rate be-
tween a defined minimum and maximum value according to a
chosen cycle length. This scheduler is available as a standard
option in PyTorch’s torch.optim.lr scheduler module,
making it straightforward to integrate into modern training
pipelines. The scheduler has 3 modes, and all are tested in
this study. They are also shown in Figure 3.

• triangular — a simple triangular cycle with constant
amplitude.

• triangular2 — a triangular cycle where the amplitude
decreases by half each cycle, leading to progressively
smaller oscillations.

• exp range — a triangular cycle combined with an expo-
nential decay factor, where the maximum learning rate
gradually shrinks at each step, controlled by a parameter
γ.

IncreaseLROnPlateau This custom scheduler, inspired by
PyTorch’s widely used ReduceLROnPlateau, operates in
the opposite direction. While ReduceLROnPlateau de-
creases the learning rate by some predefined factor when
the monitored metric (here: accuracy) stops improving,
IncreaseLROnPlateau starts with a low learning rate and
increases it by the factor once the metric plateaus.

Hyperparameter Tuning To determine the optimal hyper-
parameters for each learning rate scheduler, a grid search was
performed. The objective function, defined in Equation 1,
quantifies the trade-off between stability and final perfor-
mance by combining two complementary metrics. The goal
is to maximize knowledge retention (high final accuracy)
while simultaneously minimizing local instability (low gap
heights). In effect, the objective approximates a worst-case
accuracy by penalizing temporary drops, and is constructed
to be maximized to select the best-performing configuration.

Objective = MeanFinalAcc − MeanHeight (1)

where: MeanFinalAcc is the mean final test accuracy of
all three tasks measured after training on Task 3:

MeanFinalAcc =
1

3
(A1 +A2 +A3) (2)

MeanHeight is the average height of all observed stability
gaps:

MeanHeight =
1

3
(H1,2 +H1,3 +H2,3) (3)

where H1,2 denotes the height of the drop in Task 1 accuracy
after starting Task 2, H1,3 after starting Task 3, and H2,3 the
drop in Task 2 accuracy after starting Task 3.

Smoothing the curves Since raw accuracy curves can ex-
hibit high-frequency noise due to the stochastic nature of
SGD, Exponential Moving Average (EMA) with α = 0.1 is
applied to smooth each curve before computing the objective
value. This smoothing step ensures that the selected hyper-
parameter configuration reflects the true underlying pattern,
rather than being overly influenced by random fluctuations.



(a) Mode ”triangular”. Keeps constant amplitude.

(b) Mode ”triangular2”. Amplitude decreases by half each cycle.

(c) Mode ”exp range”. Amplitude decreases each cycle, the de-
crease rate is controlled by parameter γ.

Figure 3: All 3 modes of CyclicLR. Images reproduced from [11]

Evaluation of final configurations To ensure the reliability
of the findings, the hyperparameter configurations identified
as optimal during grid search were subsequently re-evaluated
by performing 20 independent training runs for each con-
figuration. Additionally, all constant learning rates were re-
assessed using the objective function defined in Equation 1,
and the best-performing one was selected as the baseline.
This enables a clear comparison to determine whether the
schedulers provide any actual improvement over an optimally
tuned fixed learning rate.

2.4 Evaluation procedure for constant and
scheduled learning rates

The constant learning rate setup is evaluated using the full
set of stability gap metrics defined in subsection 2.2. This
enables systematic exploration of how varying the constant
step size affects both the severity and recovery characteris-
tics of the gap. The goal is to identify trends and trade-offs
— for example, whether smaller learning rates consistently
yield lower drop heights at the cost of slower recovery, or
vice versa.

In contrast, for the scheduled learning rate experiments,

the primary goal is not to exhaustively compute all stability
gap metrics for each configuration but rather to identify the
most promising schedulers using the objective function intro-
duced in Equation 1. Once the top-performing configurations
are selected based on this objective, they are further assessed
through a combination of visual inspection and the metrics
defined in Equation 2 and Equation 3 reported as mean ± stan-
dard deviation. This limited set of numerical results provides
a consistent reference for comparison, while the detailed met-
rics are intentionally omitted for schedulers, as they are pri-
marily designed to reveal systematic trends under fixed learn-
ing rates rather than to capture the more dynamic behavior
introduced by adaptive scheduling.

3 Experimental Setup and Results
This section outlines the complete experimental setup and
then presents the results, separately showing the effects of
constant learning rates on the stability gap and the perfor-
mance of the proposed learning rate schedulers.

3.1 Setup
The model is trained using stochastic gradient descent (SGD),
with batch size increasing linearly with the number of seen
tasks. All other experimental factors - such as architecture,
task order, and optimizer - are held constant, so that the learn-
ing rate is the only controlled variable. To ensure reliability
and account for stochasticity, each configuration was run 20
times with different random seeds. Key training settings are
summarized in Appendix A.

Learning rate configurations Two sets of experiments
were conducted:

Constant learning rates: 15 values were tested: 0.001,
0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, 1.5.

Scheduled learning rates: two schedulers tested as de-
scribed in section 2. For each scheduler, a grid search over
relevant hyperparameters was performed to identify the best
configuration. All tested values of the hyperparameters are
summarized in Appendix B. In total, 1200 configurations
were evaluated for Cyclic LR and 3200 for IncreaseLROn-
Plateau.

Convergence adjustment For the three lowest constant
learning rates (0.001, 0.005, 0.01) the number of training it-
erations per task was increased from 500 to 2500, to ensure
convergence to a stable accuracy level.

Metrics To quantify the stability gap, we compute all met-
rics based on the per-iteration test accuracy on the first task.
This allows us to isolate and analyze the temporary perfor-
mance drop that occurs when the model begins learning a new
task.

Reproducibility A full implementation of the experimental
pipeline is publicly available on GitHub1.

1https://github.com/wjssk/learning-rate-in-stability-gap
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3.2 Constant Learning Rate — Results
This section focuses on visual inspection of trends and pat-
terns in the stability gap metrics, based on the mean perfor-
mance across 20 runs. Detailed numerical results for each
learning rate, including mean and standard deviation, are pro-
vided in Appendix D for reference. Visual representations
are prioritized because they offer a clearer overview of the
general dynamics and comparative behavior across different
learning rates, which may be less apparent from raw tables
alone. To further support the analysis, trend lines are overlaid
on the plots. They illustrate general tendencies and are not
intended as precise predictive models.

General Findings and Visual Inspection As shown in Fig-
ure 4, the model trained with a learning rate of 0.001 does not
exhibit the typical immediate accuracy drop associated with
a stability gap. However, the final accuracy remains low, sug-
gesting that even 2500 training iterations may have been in-
sufficient to reach convergence. In contrast, the configuration
with a learning rate of 0.005, which also shows a relatively
minor stability gap (Figure 5), achieves a much higher final
accuracy despite its small learning rate. Additionally, this set-
ting yields results with low variance across runs, indicating a
stable and consistent learning trajectory.
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Figure 4: Mean accuracy (%) curves for Task 1 (blue), Task 2 (or-
ange), and Task 3 (green) at LR = 0.001. Shaded areas indicate
standard deviation across runs. This configuration exhibits no vis-
ible stability gap, but achieves lower overall accuracy compared to
higher learning rates.
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Figure 5: Mean accuracy (%) curves for Task 1 (blue), Task 2 (or-
ange), and Task 3 (green) at LR = 0.005. Shaded areas indicate stan-
dard deviation across runs. This configuration exhibits only a mini-
mal stability gap, which is smaller than for higher learning rates, but
achieves slightly lower overall accuracy.

All higher learning rates demonstrate the presence of a sta-
bility gap, though its shape and severity vary systematically
with the learning rate. As illustrated in Figure 6, increasing
the learning rate alters the dynamics of the drop and subse-
quent recovery. Note that the plots in this figure use a re-
stricted y-axis range (70–100) to better visualize these dif-
ferences, in contrast to the full-scale range used in the other
plots. The figure includes three representative learning rates
(0.1, 0.2, 0.3), but plots for all values can be found in Ap-
pendix C.
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(a) LR = 0.1
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(b) LR = 0.2
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(c) LR = 0.3

Figure 6: Mean accuracy (%) curves for Task 1 (blue), Task 2 (or-
ange), and Task 3 (green) for selected learning rates. Shaded areas
indicate standard deviation across runs. In general, lower learning
rates produce a more gradual decline in accuracy with slower recov-
ery, while higher learning rates cause a sharper initial drop but tend
to enable faster recovery. Note that the plots in this figure use a re-
stricted y-axis range (70–100).

In general, lower learning rates tend to result in a more
gradual decline in accuracy, accompanied by slower recov-



ery. In contrast, higher learning rates cause a sharper initial
drop but appear to facilitate faster recovery. These trends,
which emerge from visual inspection, will be examined quan-
titatively in the subsequent sections to assess whether the nu-
merical metrics align with the observed patterns.

It is also worth noting that the stability gap observed for
Task 2 (orange curves) closely resembles that of Task 1 (blue
curves), suggesting that the model exhibits similar behavior
across tasks when it begins training on a new one.

Learning rate 1.5 was also tested, but the resulting accuracy
curve displayed highly unstable and erratic behavior. Due to
this instability, it is excluded from further quantitative analy-
sis, as its results are not meaningful for interpreting the sta-
bility gap phenomena.
Final Accuracy (F-ACC) Figure 7 shows the mean final
accuracy for Task 1, Task 2, and Task 3 after completing
training on Task 3. Overall, learning rates in the range of
0.1–1.0 achieve consistently high final accuracy (typically
above 95%) and demonstrate strong knowledge retention, re-
covering to the same or even higher accuracy after each task.
In contrast, very low learning rates (e.g., 0.001, 0.005) tend
to underperform and may fail to converge, especially for later
tasks.
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Figure 7: Final Accuracies (%) for all tasks after finishing training
on Task 3. All constant LR > 0.1 keep a very similar level of final
accuracies, generally above 95%.

Height (H) From this point onwards, all metrics will be cal-
culated for Task 1 only - they will be reported separately for
Gap 1 (after starting Task 2) and Gap 2 (after starting Task 3).

Figure 8 shows a clear upward trend: as the learning rate
increases, the height of the gap also increases. The second
gap tends to be more severe than the first.
Recovery Time (REC-TIME) Figure 9 visualizes the re-
covery time trends. To enable fair comparison between set-
tings with different total training lengths, recovery times are
normalized as a percentage of the full training duration. The
curves indicate that recovery generally becomes faster as the
learning rate increases, reaching its lowest point around LR
values of 0.6–0.7. Beyond this range (LR > 0.7), the trend
shows a slight upward tendency, suggesting that excessively
high learning rates may again hinder the model’s ability to
regain its pre-drop accuracy quickly.
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Figure 8: Lines of best fit for height for Gap 1 and Gap 2. A clear
upward trend indicates that higher learning rates cause larger gaps,
with Gap 2 generally showing greater severity than Gap 1.
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Figure 9: Normalized recovery times for Gap 1 (solid) and Gap 2
(dashed) across thresholds. The recovery speed is increasing with
larger learning rates, with a slight decrease beyond 0.7.

Drop Slope (DROP-SLOPE) As illustrated in Figure 10,
the descent towards the minimum becomes increasingly steep
with larger learning rates.

Knowledge loss (AUC-LOSS) As shown in Figure 11, the
overall knowledge loss, measured as the ratio of areas under
the curve (AUC-LOSS), remains relatively low across most
learning rates. Interestingly, a small peak is observed for
learning rates between 0.005 and 0.05, where the loss gap
reaches its highest values (around 0.05), indicating a modest
degradation in performance. For higher learning rates, partic-
ularly in the range of 0.6 to 0.8, the knowledge loss reaches a
minimum, suggesting that the model retains knowledge more
effectively across task transitions.

Notably, for LR = 0.001, both loss gap values are slightly
negative. This could indicate that the model was still in
the process of converging and continued to improve even af-
ter switching tasks, rather than exhibiting forgetting. How-
ever, this effect is likely due to undertraining rather than true
knowledge retention.
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Figure 10: Lines of best fit for drop slopes for Gap 1 and Gap 2.
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Figure 11: Lines of best fit for knowledge loss (AUC-LOSS) for
Gap 1 and Gap 2. Loss remains low across most learning rates,
with a slight peak at low LRs (0.005–0.05) and minimum values for
moderate-to-high LRs (0.6–0.8).

3.3 Scheduled Learning Rates
Figure 12 shows the mean accuracy curves for the baseline
constant learning rate (LR = 0.2), the IncreaseLROnPlateau
scheduler, and the best-performing CyclicLR configuration
(Triangular2). All three represent the top configurations iden-
tified using the objective function defined in Equation 1 for
each approach.

Although all CyclicLR modes (Triangular, Triangular2,
Exp Range) were tested separately, for all of them the op-
timal cycle length was consistently found to be 500 iterations
(with an optimal step size of 250). This resulted in exactly
one full cycle per task, which means that the specific mode
had little impact on the resulting schedule shape — the main
differences between modes, such as how they adjust the am-
plitude across multiple cycles, could not manifest with only
a single cycle. Consequently, all CyclicLR modes produced
nearly identical accuracy curves and objective values. For
clarity, only the curve for Triangular2 (which achieved the
highest objective value) is shown here.

Visual inspection of Figure 12 reveals that while CyclicLR
effectively maintains high overall accuracy, it introduces pro-

nounced high-frequency fluctuations in the middle of each
task’s training. These oscillations do not represent the sta-

0 200 400 600 800 1000 1200 1400
Iteration

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Accuracy on Tasks 1 3 during Incremental Training (LR=0.2)

Task 1
Task 2
Task 3
Start of a new task

(a) Baseline Constant LR = 0.2
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(b) IncreaseLROnPlateau
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(c) CyclicLR Triangular2

Figure 12: Mean accuracy (%) with standard deviation (shaded area)
for Task 1 (blue), Task 2 (orange), and Task 3 (green). Each plot
shows the configuration that maximized the objective function from
Equation 1, selected via grid search for each method. Each configu-
ration was evaluated over 20 independent runs.

bility gap as defined earlier, which specifically refers to the
immediate drop in accuracy occurring directly after switch-
ing tasks. Because this study focuses on analyzing the initial
drop rather than later within-task oscillations, the reported
gap height for CyclicLR in Table 1 was recalculated using
only the first 100 iterations following each task switch, in-
stead of the entire window. This narrower range isolates the
part of the curve that truly represents the defined stability gap.
However, it should be noted that these local fluctuations re-



main present and visible in the curves and could still affect the
overall training stability in practice. Thus, while CyclicLR
achieves the lowest measured drop height under this stricter
definition, its tendency to produce internal fluctuations high-
lights a trade-off between minimizing the immediate gap and
ensuring smooth convergence throughout training. Table 1
summarizes the key numerical results for each method, com-
bining this refined height measurement with the final mean
accuracy across tasks.

Table 1: Summary of the MeanFinalAcc defined in Equation 2 and
MeanHeight defined in Equation 3 for each approach. For Cycli-
cLR, the gap height is computed only over the first 100 iterations
after each task switch, to better isolate the initial drop from the
scheduler’s further oscillations. Fluctuations occurring later are not
included in the height value but are clearly visible in the accuracy
plots. All values are reported as mean ± standard deviation across
20 runs. The best values are highlighted in bold.

Scheduler MeanFinalAcc ↑ MeanHeight ↓

IncreaseLROnPlateau 87.54 ± 2.49 5.33 ± 0.70
CyclicLR Triangular2 96.08 ± 0.57 4.39 ± 0.47
Constant LR = 0.2 94.61 ± 0.72 7.75 ± 1.40

4 Discussion and Future Work
This study systematically examined how the learning rate in-
fluences the stability gap in continual learning and whether
scheduling can help mitigate this effect. For constant learn-
ing rates, the results highlight a clear trade-off: smaller step
sizes reduce the immediate drop in accuracy at task switches
but slow down recovery, while larger step sizes speed up con-
vergence but lead to a more pronounced gap. Furthermore,
across nearly all learning rate values, the second gap for Task
1 (so after starting Task 3) tended to be more severe than
the first, suggesting that cumulative effects may compound
as more tasks are added.

For the tested schedulers, no configuration clearly outper-
formed the others in all respects. CyclicLR achieved the low-
est measured gap height when the measurement was delib-
erately restricted to the first 100 iterations after each switch,
isolating the true initial drop from later oscillations. How-
ever, visual inspection shows that CyclicLR introduces pro-
nounced fluctuations within each cycle, which undermines its
practical stability — especially when considering worst-case
performance; this makes it less suitable for safety-critical
applications (e.g., medical applications or self-driving cars)
where this aspect is crucial. IncreaseLROnPlateau achieved
a smaller average gap than the constant learning rate but did
not reach comparable final accuracy, and it too showed some
variability across runs.

Overall, a well-chosen constant learning rate (LR = 0.2)
offered the most robust trade-off in this controlled setting,
combining high final accuracy with a moderate gap and no
intra-task oscillations. This suggests that while adaptive
schedulers hold promise in theory, their practical benefit may
depend critically on careful tuning and sufficient training
time, which should be factored into deployment decisions for
real-world continual learning systems.

Practical Implications The findings of this study pro-
vide guidance for selecting learning rates in continual learn-
ing scenarios. For applications where worst-case perfor-
mance must remain stable — such as medical systems or au-
tonomous vehicles — it may be safer to favor lower learn-
ing rates that yield smaller and more predictable gap heights,
even at the cost of slower recovery. In less critical domains,
where fast adaptation is more valuable than strict stability,
higher learning rates may be preferable. Additionally, prac-
titioners with sufficient computational resources may benefit
from experimenting with scheduler tuning to achieve more
dynamic control over the stability gap.

Limitations This work is subject to some limitations. Due
to computational constraints, both the training time per task
(500 iterations) and the scheduler grid search size were rela-
tively limited. In particular, the short cycle length may have
prevented CyclicLR from fully stabilizing, exaggerating fluc-
tuations near the maximum learning rate. Additionally, the
custom gap metrics defined here, although motivated by clear
visual patterns, are not yet standardized in the continual learn-
ing literature, which may limit their general applicability.
Similarly, the objective function used to select the best sched-
uler configurations was based on these same custom metrics
and does not follow any established framework, so it may not
fully capture the best possible trade-offs between stability and
performance.

Future Work Future research should apply longer training
times, test a wider variety of scheduling strategies, and adopt
more advanced hyperparameter optimization techniques to
refine and validate these preliminary insights. Experiments
involving more tasks could further clarify whether the trend
of increasingly severe gaps continues and how quickly this
effect grows with task count. Finally, verifying these obser-
vations on different datasets and model architectures would
help establish whether the patterns found here generalize to
more complex and practical continual learning scenarios.

5 Conclusion
This study set out to clarify how the learning rate affects
the stability gap in continual learning and whether dynamic
scheduling can help reduce it. The results confirm that
smaller learning rates limit the immediate drop but slow the
recovery and risk underperformance, while larger rates en-
able faster learning but at the cost of a more pronounced gap.
Scheduling shows promise for improving this balance but re-
quires careful tuning to avoid introducing new instability.

Together, these findings partially support both initial hy-
potheses and provide practical insights into the role of the
learning rate in shaping the stability gap. By isolating and
quantifying these effects, this work offers a solid foundation
for future research on better-tuned schedulers and provides
insights for making more informed choices when adjusting
learning rates for stable continual learning.

6 Responsible Research
This study focuses on a fundamental aspect of continual
learning and does not directly involve human participants,



sensitive data, or real-world deployment, so it does not pose
any immediate ethical risks. However, understanding and
mitigating the stability gap might have important implica-
tions for the security and reliability of AI systems in safety-
critical applications. In domains such as autonomous driving
or healthcare, sudden drops in model performance could lead
to harmful decisions. By exploring how learning rate con-
figurations affect this phenomenon, this research contributes
to developing more robust and trustworthy continual learning
algorithms.

All experiments were conducted using publicly available
datasets (Rotated MNIST) under a permissive license. The
complete implementation, including training scripts, hyper-
parameter configurations, and the code for computing the sta-
bility gap metrics, is openly shared on GitHub to support full
reproducibility. This ensures that other researchers can repli-
cate the results, verify the findings, and build upon this work
to advance the field responsibly.

Use of Large Language Models (LLMs) To support the
writing process, a Large Language Model (ChatGPT by Ope-
nAI) was used as a tool for brainstorming and rephrasing sen-
tences for clarity and coherence. All content generated by
the LLM was critically reviewed, verified, and revised to en-
sure correctness and appropriateness for this project. Exam-
ple prompts and interactions with the LLM are provided in
Appendix F.
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A Key training settings used for all experiments

Table 2: Training configuration used for all experiments

Parameter Value

Dataset Rotated MNIST
Tasks 3 (0°, 80°, 160°)
Learning scenario Domain-incremental
Training scheme Incremental joint training
Optimizer SGD with no momentum
Batch size 128× number of seen tasks
Iterations per task 500 (2500 for constant LR = 0.001, 0.005, 0.01)
Evaluation frequency After every training iteration
Test set size 2000 examples

B Search Space for Grid Search for Scheduled LR
This appendix provides a detailed overview of the hyperparameters and their tested ranges for each learning rate scheduler
evaluated in this study. The chosen hyperparameters represent the most fundamental factors that directly control the core
behavior of each scheduler.

B.1 CyclicLR (Triangular, Triangular2, Exp Range)
The CyclicLR scheduler was tested in all three standard modes available in PyTorch: triangular, triangular2, and
exp range. In all cases, momentum cycling was explicitly disabled (cycle momentum = False), and all other parameters
were kept at PyTorch’s default values.

Table 3: Grid search parameters for CyclicLR (all modes)

Parameter Values
min lr {0.001, 0.005, 0.01, 0.05}
max lr {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
step size {250, 125, 100, 50, 1}
gamma (Exp Range only) {0.9999, 0.9995, 0.99, 0.98}

B.2 IncreaseLROnPlateau
The custom IncreaseLROnPlateau scheduler was designed analogously to PyTorch’s standard ReduceLROnPlateau, but
operates in the opposite direction by increasing the learning rate when the monitored loss plateaus. The grid search varied the
increase factor, patience, and threshold for plateau detection, together with the minimum and maximum learning rates.

Table 4: Grid search parameters for IncreaseLROnPlateau

Parameter Values
min lr {0.001, 0.005, 0.01, 0.05}
max lr {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
factor {1.1, 1.2, 1.3, 1.4, 1.5}
patience {5, 10, 15, 20}
threshold {1e-2, 1e-3, 1e-4, 1e-5}

B.3 Constant Learning Rates (Baseline)
For reference, the following set of constant learning rates was evaluated as a baseline. These values span a wide range from
very small to large step sizes to fully map their influence on the stability gap:

{0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5}.



Motivation Only the core hyperparameters directly responsible for controlling the fundamental cycle shape, amplitude, and
frequency (for CyclicLR) and the increase pattern (for IncreaseLROnPlateau) were included in the search. This design choice
isolates their principal effect on training dynamics while keeping the search computationally feasible and the results inter-
pretable.

C All accuracy plots for Constant Learning Rates
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D Constant LR Metrics - All Tables with Raw Values

Final Accuracy (F-ACC)

Table 5: Final accuracy (%) for each task measured after subsequent task training. Values are reported as mean ± standard deviation across
20 runs.

F-ACC of Task Task 1 Task 2 Task 3
After task T1 T2 T3 T2 T3 T3

Learning rate

0.001 62.1 ± 4.0 65.5 ± 1.8 64.6 ± 1.5 46.8 ± 3.0 59.2 ± 1.7 40.3 ± 1.9
0.005 86.5 ± 0.7 82.7 ± 1.1 79.2 ± 0.9 79.3 ± 1.1 80.2 ± 0.6 71.9 ± 0.9
0.01 90.1 ± 0.6 87.7 ± 0.7 87.7 ± 0.6 85.5 ± 1.0 87.6 ± 0.7 84.4 ± 0.8
0.05 89.9 ± 0.6 87.4 ± 0.7 87.5 ± 0.8 85.2 ± 0.6 87.9 ± 0.7 83.7 ± 0.8
0.1 91.7 ± 0.7 92.0 ± 0.7 92.7 ± 0.3 90.4 ± 0.6 92.2 ± 0.4 90.5 ± 0.6
0.2 94.2 ± 0.6 94.9 ± 0.5 95.2 ± 0.5 93.7 ± 0.5 94.8 ± 0.4 93.8 ± 0.4
0.3 95.2 ± 0.5 95.9 ± 0.5 95.8 ± 0.3 94.8 ± 0.5 95.6 ± 0.6 94.5 ± 0.5
0.4 95.6 ± 0.7 96.1 ± 0.5 96.2 ± 0.6 95.4 ± 0.4 96.0 ± 0.5 95.2 ± 0.4
0.5 95.9 ± 0.6 96.4 ± 0.4 96.6 ± 0.4 95.5 ± 0.6 96.1 ± 0.4 95.5 ± 0.7
0.6 96.2 ± 0.5 96.5 ± 0.4 96.7 ± 0.4 95.9 ± 0.6 96.1 ± 0.4 95.3 ± 0.8
0.7 95.8 ± 0.7 96.7 ± 0.4 96.9 ± 0.4 95.9 ± 0.5 96.1 ± 0.3 95.6 ± 0.5
0.8 95.9 ± 0.5 96.6 ± 0.4 96.7 ± 0.3 95.5 ± 0.8 96.2 ± 0.4 95.5 ± 0.6
0.9 95.8 ± 0.6 96.4 ± 0.5 96.6 ± 0.4 95.6 ± 0.5 96.2 ± 0.4 95.4 ± 0.8
1.0 95.1 ± 1.5 95.7 ± 1.1 96.0 ± 0.9 94.7 ± 1.5 95.7 ± 0.7 95.0 ± 0.7

Height (H)



Table 6: Mean heights for Gap 1 and Gap 2 reported as mean ± standard deviation across 20 runs.

Learning rate Height Gap 1 Height Gap 2

0.001 3.7 ± 1.8 3.9 ± 1.3
0.005 7.4 ± 0.8 8.4 ± 1.3
0.01 7.8 ± 0.6 6.5 ± 0.7
0.05 7.6 ± 0.8 6.1 ± 0.7
0.1 6.2 ± 0.8 7.0 ± 1.5
0.2 6.1 ± 1.2 10.8 ± 3.1
0.3 7.5 ± 2.8 16.2 ± 5.2
0.4 8.9 ± 3.8 16.3 ± 4.7
0.5 12.3 ± 4.8 17.8 ± 5.7
0.6 12.6 ± 3.7 17.9 ± 5.8
0.7 11.8 ± 3.6 16.9 ± 4.9
0.8 11.7 ± 3.8 16.9 ± 5.9
0.9 16.6 ± 5.7 16.5 ± 4.7
1.0 15.1 ± 4.6 15.8 ± 6.3

Recovery Time (REC-TIME)

Table 7: Number of iterations needed to recover for the selected thresholds for Gap 1. Values are reported as mean ± standard deviation across
20 runs. Boldface highlights rows corresponding to learning rates of 0.001, 0.005, and 0.01, which were trained for 2500 iterations instead
of 500, to clarify the higher recovery counts. A dash (“–”) indicates that fewer than 85% of runs (i.e., fewer than 17 out of 20) reached the
specified threshold, and thus the value is not reported.

Threshold REC-TIME 100% REC-TIME 99% REC-TIME 98% REC-TIME 97%
Learning rate

0.001 889.9 ± 720.4 864.8 ± 688.7 852.8 ± 675.1 926.2 ± 743.9
0.005 - - - 1669.3 ± 503.4
0.01 - - 1840.5 ± 292.0 1434.5 ± 339.7
0.05 - - 414.3 ± 67.8 320.2 ± 92.1
0.1 306.4 ± 75.2 232.2 ± 63.2 169.6 ± 42.3 127.4 ± 31.7
0.2 186.2 ± 91.8 98.9 ± 51.9 49.4 ± 36.0 38.0 ± 26.1
0.3 153.6 ± 69.4 63.8 ± 45.6 25.8 ± 24.8 16.8 ± 12.9
0.4 150.2 ± 99.8 64.7 ± 52.0 21.0 ± 16.4 16.1 ± 12.1
0.5 138.4 ± 107.5 53.3 ± 42.5 24.2 ± 22.6 11.6 ± 16.3
0.6 158.8 ± 75.5 63.8 ± 36.6 21.6 ± 16.5 10.2 ± 11.4
0.7 84.2 ± 53.1 36.5 ± 21.2 11.3 ± 8.2 8.7 ± 6.5
0.8 94.1 ± 53.1 36.5 ± 21.9 11.8 ± 7.7 9.4 ± 7.0
0.9 118.3 ± 82.9 48.8 ± 34.1 18.4 ± 13.1 9.0 ± 5.7
1.0 140.6 ± 72.1 58.8 ± 38.5 24.4 ± 15.2 12.8 ± 9.3



Table 8: Number of iterations needed to recover for the selected thresholds for Gap 2. Values are reported as mean ± standard deviation across
20 runs. Boldface highlights rows corresponding to learning rates of 0.001, 0.005, and 0.01, which were trained for 2500 iterations instead
of 500, to clarify the higher recovery counts. A dash (“–”) indicates that fewer than 85% of runs (i.e., fewer than 17 out of 20) reached the
specified threshold, and thus the value is not reported.

Threshold REC-TIME 100% REC-TIME 99% REC-TIME 98% REC-TIME 97%
Learning rate

0.001 1561.5 ± 888.2 1599.8 ± 881.5 1632.0 ± 868.2 1671.2 ± 864.9
0.005 - - - 1762.4 ± 535.0
0.01 1688.0 ± 327.8 1351.7 ± 324.0 959.2 ± 271.8 696.1 ± 182.3
0.05 359.1 ± 55.7 297.1 ± 60.5 211.0 ± 56.2 154.0 ± 47.8
0.1 249.5 ± 62.0 195.2 ± 47.9 135.6 ± 48.7 103.6 ± 39.4
0.2 202.3 ± 55.0 126.3 ± 31.2 70.9 ± 16.5 33.7 ± 20.0
0.3 232.5 ± 110.6 110.8 ± 55.3 56.8 ± 18.7 27.8 ± 17.3
0.4 175.6 ± 85.0 78.4 ± 40.1 35.2 ± 17.1 17.4 ± 9.1
0.5 171.4 ± 96.7 69.2 ± 33.5 34.0 ± 18.1 14.6 ± 10.0
0.6 147.2 ± 59.9 59.2 ± 34.7 24.4 ± 14.8 11.6 ± 7.0
0.7 158.9 ± 57.9 62.2 ± 23.7 29.4 ± 13.5 12.3 ± 6.2
0.8 170.8 ± 110.7 70.2 ± 33.0 31.2 ± 21.3 16.0 ± 15.1
0.9 163.6 ± 80.7 67.6 ± 33.1 25.1 ± 13.6 11.6 ± 7.1
1.0 128.4 ± 58.7 52.6 ± 29.8 20.2 ± 11.4 11.5 ± 6.7

Drop Slope (DROP-SLOPE)

Table 9: DROP-SLOPE for Gap 1 and Gap 2 respectively, reported as mean ± standard deviation across 20 runs.

DROP-SLOPE Gap 1 DROP-SLOPE Gap 2
Learning rate

0.001 -0.06 ± 0.24 -0.01 ± 0.03
0.005 -0.0 ± 0.0 -0.01 ± 0.0
0.01 -0.01 ± 0.0 -0.01 ± 0.0
0.05 -0.04 ± 0.02 -0.04 ± 0.02
0.1 -0.05 ± 0.02 -0.06 ± 0.05
0.2 -1.15 ± 1.71 -0.75 ± 1.13
0.3 -1.88 ± 2.35 -2.28 ± 2.34
0.4 -2.37 ± 3.06 -2.87 ± 2.41
0.5 -4.83 ± 3.37 -4.96 ± 2.75
0.6 -4.5 ± 3.16 -5.21 ± 2.87
0.7 -4.71 ± 3.04 -4.21 ± 2.75
0.8 -3.78 ± 2.61 -4.81 ± 2.97
0.9 -6.31 ± 3.98 -5.74 ± 2.79
1.0 -4.86 ± 3.6 -4.97 ± 2.28

Knowledge Loss (AUC-LOSS)



Table 10: AUC-LOSS for Gap 1 and Gap 2 respectively, reported as mean ± standard deviation across 20 runs.

AUC-LOSS Gap 1 AUC-LOSS Gap 2
Learning rate

0.001 -0.01 ± 0.04 -0.0 ± 0.02
0.005 0.05 ± 0.01 0.05 ± 0.01
0.01 0.05 ± 0.01 0.03 ± 0.01
0.05 0.05 ± 0.01 0.03 ± 0.01
0.1 0.02 ± 0.01 0.02 ± 0.01
0.2 0.01 ± 0.01 0.01 ± 0.0
0.3 0.01 ± 0.01 0.01 ± 0.01
0.4 0.01 ± 0.01 0.01 ± 0.01
0.5 0.01 ± 0.01 0.01 ± 0.0
0.6 0.01 ± 0.01 0.01 ± 0.0
0.7 0.0 ± 0.01 0.01 ± 0.0
0.8 0.0 ± 0.01 0.01 ± 0.01
0.9 0.0 ± 0.01 0.01 ± 0.0
1.0 0.01 ± 0.01 0.01 ± 0.0

E Grid Search - Best configurations found for IncreaseLROnPlateau and CyclicLR
This appendix lists the hyperparameter configurations selected as optimal for each scheduler based on the objective function
defined in Equation 1. These configurations were used for the final experiments and figures shown in the main paper.

E.1 Best Configuration for IncreaseLROnPlateau

Table 11: Best hyperparameters found for IncreaseLROnPlateau

Parameter Selected Value
min lr 0.05
max lr 0.9
factor 1.5
patience 5
threshold 1e-5

E.2 Best Configuration for CyclicLR

Table 12: Best hyperparameters found for CyclicLR (Triangular2 mode)

Parameter Selected Value
mode Triangular2
min lr 0.05
max lr 0.8
step size 250
cycle momentum False

Note All other non-listed parameters were kept at their PyTorch default values.

F Use of LLMs
During the preparation of this paper, ChatGPT (by OpenAI) was used as a support tool for improving the academic style and
ensuring a clear and logical structure of the text. Typical prompts included:

• “Could you rephrase this paragraph in a more academic style?”

• “Does this section flow logically? How could I reorganize it?”

• “Could you suggest a clearer way to express this idea?”



• “Can you help rewrite this sentence to sound more formal?”

All generated suggestions were carefully reviewed and edited by the author to ensure correctness and appropriateness for the
final report.
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