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Preface

This graduation report covers my thesis work for obtaining my Master of Science (MSc) degree in Aerospace
Engineering at Delft University of Technology. In Part I a scientific paper is included covering the main re-
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tasks. Part II contains the preliminary graduation report covering a literature study in time-varying identifi-
cation methods in manual control and an investigation on identifying operator delay online. Part III contains
appendices with additional results and supporting material. Both Part I and III are meant for the final thesis
work AE5310, part II was already graded for the literature study AE4020.

Throughout the thesis, the research objective changed from proving a method’s usability in simulation
to an experimental evaluation in the HMI lab. This gave me insight in both types of research, for which I
am glad. I am proud I succeeded in mastering the real-time simulation environment Dueca to add my own
module in C++, a rather new programming language for me.

This would not have been possible without the excellent supervision by Daan, who offered me flexibility
in my work and often reassured me about the track we were following. Thank you to Max and Rene for the
enthusiasm and interest in my work, this was motivating at crucial points.

Now it is time to challenge the future. Thank you TU Delft.

W. Plaetinck
Delft, January 2018
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Abstract—Identifying the time-varying, adapting human op-
erator online could enable adaptive human-machine support
systems and attention monitoring for human-in-the-loop tasks. A
validated, online identification method, including adaptation de-
tection is missing however. In this paper, online identification was
done using low-order ARX models with recursive least squares
estimation during an experiment. Eight subjects performed a
compensatory tracking task with time-varying controlled element,
while explicitly indicating when they detected this change with a
button push. The experiment validated the online identification
method, but time-varying delay estimation is still lacking. Addi-
tionally, two adaptation detection methods were evaluated. The
first method was based on detecting the deviation of the human
error rate response gain Kė from a priori measured non-adapted
behaviour, and was the most successful with a detection accuracy
of 57%. The second method used a moving average of the Kė

trace itself as reference for detecting deviations. This is more
flexible in practical applications, but led to a lower accuracy
of 43%. For both methods, the lag in detection is no issue for
applications since it is similar to the human operator detection lag
or even smaller. The developed methods are a large step towards
adaptive operator support systems in control tasks and operator
attention monitoring. Furthermore, the developed methods are
useful as a tool in manual control tracking task experiments to
learn more about the adaptive and learning human operator.

I. INTRODUCTION

Past efforts in manual control cybernetics resulted mainly
in human operator (HO) models for time-invariant
behaviour [1] [2]. To further advance the field of cybernetics,
time-varying HO behaviour should be investigated [3].
Humans are adaptive, learning controllers which explains
why they are often essential in real-life control tasks [4].
On top of that, performing time-varying HO identification
in an online fashion during a control task could allow for
new applications. For instance, the detection of reduced
operator attention or distraction could be possible [5]. Also
adaptive human-machine support systems and interfaces,
tracking the current operator behaviour, could be enabled [6].
Finally, an online HO adaptation detection tool for use during
experiments would be useful for the cybernetics research
community.

Two perspectives on dealing with time-varying HO behaviour
were followed in previous studies. The time-varying behaviour
was either captured in empirically derived logic rules [7]

[8] or identified using system identification methods. Studies
using the second perspective tried to identify the adaptation to
time-varying controlled elements (e.g., [9]) and time-varying
feedback elements (visual [10], motion [11], and control
manipulator [12]). These were aimed at offline, a posteriori,
identification. Those studies can be classified to fit either a
batch of data at once or fit recursively. Furthermore, they have
different ways of introducing the adaptation in the model.

In [9] genetic maximum likelihood estimation is used while
the adaptation is assumed to follow a sigmoid shape, the
parameters of which are included in the estimation. In [13]
a linear parameter varying model is fit with experimentally
determined scheduling functions to represent the adaptation. In
[14] a two-step method is used: the wavelet transform identifies
a time-varying frequency response and then an operator model
is fit to that response. All are batch estimation methods and
thus not directly applicable online.

On the other hand, recursive methods require no assumption
on the shape of adaptation and could be applicable online. A
non-parametric method is Finite Impulse Response estimation
with RLS [12] [15]. Parametric methods include the extended
Kalman filter [16] [10], the unscented Kalman filter [17]
and dual extended Kalman filter [18] to estimate HO
parameters directly. Another approach is the use of ARX
models with recursive least squares (RLS) estimation for the
ARX coefficients, which then need a conversion to the HO
parameters [19]. Note that in [19], an important extension to
the time-variant case is made of HO modeling with an ARX
model structure [20] [21] [22].

In the state-of-the-art, a validated online HO identification
method, together with a tested algorithm for detecting
adaptation using identified HO parameter traces is missing.
This paper addresses the issue, with a focus on adaptation to
a time-varying controlled element.

In this paper, recursive ARX models are used to develop
an online time-varying identification method, combined with
detection of HO adaptation. A human-in-the-loop experiment
of a compensatory tracking task with time-varying controlled
element (CE), with conditions similar to [9], was set up. A fast
and slow CE change were given as test conditions to eight test
subjects. Subjects were also asked to indicate, by means of a
button push, when they detected the change in CE dynamics.
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Low-order ARX models with constant assumed time delay
were fitted online using RLS. Two adaptation detection
methods were applied to the identified time traces of the HO
error response gain and error rate response gain. The methods
detected a perturbation of the parameter compared to an
average measure, either a time-invariant condition average or
moving average of the actual time trace. This setup allowed
us to directly compare the adaptation detection performance
of the proposed methods and also compare the identified
adaptation instances to the subjective HO detection times.

The paper is structured as follows. In Section II the con-
trol task, identification and adaptation detection methods are
discussed. Section III explains the used experimental setup.
Results are shown in Section IV and discussed in Section V.
Conclusions are drawn in Section VI.

II. METHOD

A. Control task and operator model
A single-axis, single-channel compensatory tracking task was
set up to evaluate the HO identification and adaptation detec-
tion methods, similar to Zaal’s recent experiment [9]. A block
diagram of this task is shown in Fig. 1. The HO steered the
CE dynamics HCE such that its output y tracked the forcing
function f as closely as possible. The only feedback to the
HO was the tracking error e through a compensatory display
and the HO provided a single control output u.

Fig. 1: A compensatory tracking task with time-varying CE
dynamics and adapting quasi-linear HO model.

To induce time-varying HO behaviour, the CE dynamics in
(1) were changed over time according to a sigmoid scheduling
function [9]. Both the gain Kc and the break frequency ωc
were scheduled according to (2), substituting the initial value
P1 and final value P2 for the respective CE parameter values.

HCE(s, t) =
Kc(t)

s2 + ωc(t)s
(1)

P (t) = P1 +
P2 − P1

1 + e−G(t−M)
(2)

The sigmoid transition is determined by the maximum rate
of change G, and centred on time M . The transition in the
CE parameters is shown in Fig. 2, for M = 40.96s and two
different settings of G. The initial CE dynamics resemble a
single integrator and the final CE dynamics approximate a
double integrator, forcing the HO to generate lead [1].
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Fig. 2: CE parameters scheduled by sigmoid function for a
fast (G = 100 s−1) and slow change (G = 0.5 s−1), located
at M = Tm/2. A task run lasts Tm = 81.92s.

A validated HO model in time-invariant compensatory control
tasks is the following quasi-linear model [1]. It consists of
a describing function HP (s) and an additive noise, called
remnant, with filter Hn(s) as in Fig. 1. The remnant was
not explicitly modelled. A valid describing function HP (s)
for the considered CE dynamics is (3), with Hnm(s) the
neuromuscular dynamics [1].

HP (s) = Ke(1 + TLs)e
−sτHnm(s) (3)

To model a time-varying HO, it was assumed the describing
function still holds if all its parameters are free to vary over
time. Additionally, to avoid identification ambiguity between
HO error response gain Ke and lead time constant TL, an
error rate response gain Kė(t) = Ke(t)TL(t) was introduced
as in (4). Due to identification method constraints the HO
delay τ was assumed constant, which was found valid for the
considered task [9]. The neuromuscular dynamics Hnm(s, t)
are given in (5) and are modelled as a second-order system
with natural frequency ωnm and damping ratio ζnm.

HP (s, t) = (Ke(t) +Kė(t)s)e
−sτHnm(s, t) (4)

Hnm(s, t) =
ω2
nm(t)

ω2
nm(t) + 2ζnm(t)ωnm(t)s+ s2

(5)

In total, the HO model thus has four time-varying parameters
(Ke,Kė, ωnm, ζnm) and one time-invariant parameter (τ ) to
be estimated.

B. Online time-varying operator identification

Using measured time traces of the tracking error e and control
signal u, a model for the HO can be identified. In this paper,
an ‘autoregressive with external input’ (ARX) model structure
is used for this purpose [19]. First the ARX coefficients are
identified using Recursive Least Squares (RLS). Secondly,
these identified coefficients are converted to the actual HO
model parameters to complete the identification process.
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1) ARX model structure: The general ARX model structure
is shown in (6). This is a discrete-time model with time shift
operator q, such that q−nke(t) = e(t − nk) to model the HO
delay. The HO describing function is approximated by the ratio
B(q)
A(q) and delay shift of nk samples. In ARX models, the HO
remnant noise is modelled by the ratio 1

A(q) , which filters a
white noise input signal ε(t). Note that the process and noise
dynamics are thus coupled through A(q).

u(t) =
B(q)

A(q)
q−nke(t) +

1

A(q)
ε(t) (6)

In this paper, second-order A(q) and B(q) polynomials were
chosen to match (4) and thus allow straightforward HO pa-
rameter retrieval, as described later. This results in (7) for the
HO model approximation HP (q). The model structure allows
to use RLS for the polynomial coefficients, but not for the
time shift parameter nk [19]. An attempt to include nk in the
estimation is described in [23]. However, in further steps the
time delay was assumed to be set a priori and constant at
τ = 0.28 s [9], corresponding to nk = 28 for the timestep
∆t = 0.01 s chosen in the experiment.

HP (q) =
B(q)

A(q)
q−nk =

bd0 + bd1q
−1

1 + ad1q
−1 + ad2q

−2
q−nk (7)

2) Recursive Least Squares: The ARX model can be rewrit-
ten in linear regression form as û[i|i− 1, θi] = ϕ[i]θi for each
step i, with the regression vector ϕ and coefficient vector θi
in (8) and (9) [24].

ϕ[i] = (−u[i− 1] −u[i− 2] e[i− nk] e[i− nk − 1]) (8)

θi =
(
ad1 ad2 bd0 bd1

)T
(9)

An RLS algorithm with exponential forgetting factor was used
to estimate and track the ARX coefficients. The RLS gain
Ki is calculated from the covariance matrix Pi−1 of the
previous timestep and the current regression vector ϕ[i] in
(10). The RLS gain determines to what extent the prediction
error between current control output u[i] and estimated output
ϕ[i]θ̂i−1 contributes to the coefficient update θ̂i in (11). Finally
the covariance matrix Pi is updated in (12). The exponential
forgetting is taken care of by the λ value in both the RLS gain
update (10) and covariance matrix update (12).

Ki = Pi−1ϕ
T [i](ϕ[i]Pi−1ϕ

T [i] + λ)−1 (10)

θ̂i = θ̂i−1 +Ki(u[i]− ϕ[i]θ̂i−1) (11)

Pi =
1

λ
(Pi−1 −Kiϕ[i]Pi−1) (12)

∀ i = istart, .., N − 1, N

The RLS is done for every step i from istart till N . The
start time must be large enough such that there is enough data

available to perform the nk shift, and initial transient effects
due to the HO finding his steady operating point at the start of
the task are ignored. Therefore, istart = 3 s was chosen. The
initial conditions θ0 and P0 are given in (13). The forgetting
factor, for the 100 Hz data rate, was set to λ = 0.99609 based
on previous work [19]. This corresponds to a memory horizon
of 2.56 s.

θ̂0 = (−1.85 0.85 0.08 −0.08)
T

P0 = 10, 000I4x4
(13)

3) HO parameter retrieval: The estimated discrete-time
ARX coefficients need to be converted to the continuous-
time HO describing function parameters. The ARX model
can be mathematically written as a discrete-time transfer
function HP (z) using the following Z-transform property:
Z[q−nf(i∆t)] = z−nF (z). Note that nk = τ/∆t in (14).

HP (z) =
bd0 + bd1z

−1

1 + ad1z
−1 + ad2z

−2
z−

τ
∆t (14)

To retrieve the HO model parameters, this discrete-time trans-
fer function needs to be converted to the continuous-time
domain. The zero-order-hold conversion method, as specified
in Appendix A, is used for this, which results in the coefficients
of (15).

HP (s) =
bc0s+ bc1

s2 + ac1s+ ac2
e−sτ (15)

By comparing (15) with the HO model in (4) and (5), the
following system of equations to retrieve the HO parameters
from the converted ARX coefficients can be derived:

Ke =
bc1
ac2

Kė =
bc0
ac2

ζnm =
ac1

2
√
ac2

ωnm =
√
ac2

(16)

When using higher order ARX models, these relations between
the ARX coefficients and the HO model parameters be-
come overdetermined. Thus a model order reduction technique
would be required.

C. Adaptation detection
For the considered task, the expected HO adaptation is a
reduced error gain Ke and increased error rate gain Kė.
Because for a change from approximately single to double
integrator to control, HOs will need to generate lead [1].
For the considered change in CE dynamics, the delay and
neuromuscular parameters were found not to vary significantly
[9]. Note that this is in contrast to ?? which showed 150 ms
additional delay for double integrator over single integrator
dynamics. Thus the adaptation detection method should be
based on either Ke or Kė time traces.

The proposed detection methods use an average measure
of the considered parameter, plus or minus a certain value
as margin. In Figs. 3 and 4 the blue area indicates this
reference band. The used average measure is method-specific
as described below, and the width of the reference band as
margin is set by the δK... value.
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Two different average measures were tested for the reference
band, thus leading to two adaptation detection methods:
• Time-Invariant Condition Average (TICA): the measure is

calculated by averaging the identified parameter traces of
several a priori measured time-invariant task runs, with
only the single-integrator CE dynamics.

• Moving Average (MA): the measure is calculated from a
moving average over a window of ns samples up to the
current step i, of the identified parameter trace itself. This
is demonstrated in (17) for Kė, but Ke is equivalent.

MA =
1

ns

ns−1∑

k=0

Kėi−k (17)

Both methods were applied to identified traces of both Ke

and Kė. The methods are graphically illustrated in Figs. 3
and 4 for Kė only, but Ke is equivalent. The reference band
represents the non-adapted HO behaviour, with a margin for
typical oscillations seen in the parameter value. When the
parameter value is outside of this band at a certain timestep, for
a period longer than a window with length ∆T , an adaptation
is detected and the initial time of the current window saved as
tdetect further referred to as td.

Fig. 3: Graphical illustration of adaptation detection based
on the time-invariant condition average (TICA) measure
Kė,T ICA ± δKė .

Fig. 4: Graphical illustration of adaptation detection based on
the moving average (MA) measure Kė,MA ± δKė . Note that
the MA converges again with the actual time trace after the
adaptation took place.

The methods have several settings that can be tuned to
minimise false positives and negatives. A false positive oc-
curs when a detection was made outside of the interval
M < td < 60 s, with M the moment of transition. A limit of
60 s was chosen since by then the HO parameter traces should
definitely be converged already to the adapted behaviour and
thus the detection should have been triggered. A false negative
occurs when no detection was made. This could happen when

the parameter trace did not go outside of the reference band
for longer than ∆T seconds during a task run.

The tunable settings are here referred to as hyperparameters,
to distinguish them from the identified HO parameters. They
are listed as follows:
• Margin size δKe or δKė : the deviation allowed from the

average measure without leaving the reference band for
each considered HO parameter respectively. The width of
the reference band is determined by this value.

• Window size ∆T : the minimum amount of time the
current parameter trace should be outside of the reference
band.

• Number of samples ns: for the MA method, the amount
of samples taken in the moving average calculation.
Naturally, ns influences the tracking speed of the moving
average.

• λ and nk: since both detection methods depend on the
identification results of the recursive ARX, λ and nk
could be seen as hyperparameters of the overall approach
as well.

A sensitivity study of the detection performance with respect
to the described hyperparameters was done for each method.
Each hyperparameter was varied over a relevant range, while
keeping the other hyperparameters constant at their initial
chosen value. Only λ and nk, were not included in the study.
For each combination, the mean squared error (MSE) of the
detection time with respect to the moment of transition M was
calculated. This was done over all measured runs in a certain
condition, as described later. In case of a too early detection
(td < M ) or no detection, the maximum possible MSE was
assigned for that run by setting td = 0 s. The MSE calculation
is shown in (18) for Kė, but Ke is equivalent.

MSE(δKė ,∆T, ns) =

1

nruns

nruns∑

j=1

(M − td[j; δKė ,∆T, ns])2 (18)

III. EVALUATION SETUP

To evaluate the online identification performance of recursive
ARX and to check whether the adaptation detection methods
were accurate, a human-in-the-loop experiment was performed
using the described control task. Also adaptation detection
times as experienced by the HOs were explicitly measured
in the experiment.

A. Apparatus
The experiment was performed in the fixed-base Human-
Machine Interaction Laboratory (HMILab) simulator in the
Faculty of Aerospace Engineering at Delft University of Tech-
nology. The HMILab runs the Delft University Simulation
Environment (DUSIME) for real-time distributed simulation
[25]. The identification method described in Section II-B was
implemented in the environment as a separate C++ module.
Task simulation and identification modules ran at 100 Hz.
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The control task was implemented as a pitch tracking task.
Participants sat in front of a simplified artificial horizon display
as in Fig. 5, showing the pitch tracking error as distance
between the aircraft symbol and the horizon line. The distance
to the display was 75 cm. The display had an update rate of
60 Hz and the display lag for this setup was determined to be
20-25 ms [26] [27].

Control inputs were given with an electro-hydraulic side-
stick at the participant’s right hand side as in Fig. 6a.
The stick’s torsional stiffness was 2.5 Nm/rad, its damping
0.22 Nm · s/rad, and its inertia 0.01 kg · m2 with a moment
arm of 9 cm. The stick could only rotate around the pitch
axis. A push button on the stick, see Fig. 6b, was used by the
participants to indicate when they detected the change in the
CE.

On the researcher’s monitoring station the tracking perfor-
mance, time-varying identification results, and the adaptation
detection (button push) by the participant could be followed
in real-time throughout the experiment.

e

Fig. 5: Pitch compensatory display.

(a) (b)

Fig. 6: HMILab setup (a) with push button on control stick
(b).

B. Forcing function

The forcing function f was defined as a sum of ten sinusoids
with different frequencies, amplitudes and phases as in (19).
The frequencies are integer multiples of the base measurement
frequency ωm = 2π/Tm.

f(t) =

10∑

k=1

Af [k]sin(nf [k]ωmt+ φf [k]) (19)

The forcing function was identical to the signal used in
previous work [9]. However, it was shifted to the left in time
by 10.5 s as in Fig. 7, through adjusting the phases φf . This
allowed a larger magnitude change in pitch in the transition
region, possibly giving the HO a more fair change of detecting
the CE transition on time. All forcing function parameters are
listed in Table I.
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Fig. 7: View of forcing function in the CE transition region,
before and after the shift in time.

TABLE I: Forcing function parameters, modified from [9].

k [-] nf [-] nfωm [rad/s] Af [deg] φf [rad]
1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -1.963
8 86 6.596 0.061 -2.189
9 139 10.661 0.036 0.875
10 229 17.564 0.025 0.604

C. Independent variables

Two independent variables were used: rate of change of the
scheduling sigmoid with two levels and run-in time with three
levels. In addition, two time-invariant reference conditions
were given to the participants. Thus in total eight different
conditions were used, as listed in Table II and described below.

TABLE II: Experiment Conditions

Condition Initial dynamics Final dynamics Run-in time [s] G [1/s]
TI1 HCE1

- 5 -
TI2 HCE2

- 5 -
TV12S-T5

HCE1
HCE2

5
0.5TV12S-T10 10

TV12S-T15 15
TV12F-T5 5

100TV12F-T10 10
TV12F-T15 15

A transition in CE could be either present or not in a run.
The time-invariant CE runs had either HCE1

(Kc = 90, ωc =
6 rad/s) or HCE2(Kc = 30, ωc = 0.2 rad/s) dynamics. The
measured behaviour in the TI1 condition was used for the
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average measure calculation in the first adaptation detection
method.

For runs with time-varying CE (HCE1
to HCE2

), the tran-
sition was scheduled by a sigmoid with M = Tm/2, thus
halfway the measurement window. The maximum rate of
change had two levels: G = 0.5 s−1 to represent a gradual
change, G = 100 s−1 to represent an almost instantaneous
change.

Each experiment run contained a measurement time of
Tm = 81.92 s. A minimum run-in time of 5 s was added
to allow transients, due to the HO finding his steady operating
point, to die out. Furthermore, the run-in time was varied
to avoid expectation of the CE transition by the participants.
Three levels were used: 5 s, 10 s and 15 s. Care was taken
to make sure that the forcing function inside the measurement
window remained the same for each level.

D. Participants and experimental procedures
Eight participants volunteered to perform the experiment after
providing written informed consent. Seven participants had
previous experience with equivalent manual control tasks. Par-
ticipants were instructed to minimise the tracking error shown
on the display and push the button whenever they noticed
changed CE dynamics, without giving further information
about the conditions.

The experiment contained a training and test part. In the
training part, a participant performed at least each time-
invariant condition and the two time-varying conditions, all
with a run-in time of 5 s. The test part was divided in three
blocks with each containing the eight conditions, enabling
three repeated measurements. For each block the conditions
were presented in a randomised order by a balanced Latin
square design. After each run, the root mean square of the
tracking error signal e was fed back to the participant as
motivation to perform well. A short break was held in between
each block to reduce fatigue.

E. Data processing
Using the data from conditions TV12S and TV12F, a two-way
repeated measures ANOVA was performed with G and run-
in time as factors to check whether they have a significant
influence on the subjective HO adaptation detection times.
The three repeated measurements with same run-in time were
averaged per level for each subject. These averaged detection
times were then used as input for the ANOVA.

After verifying normality and sphericity assumptions, the
analysis revealed no significant effect due to different run-in
times, with F(2, 14) = 1.92, p > 0.05. However, G does have
a significant influence as expected, with F(1, 7) = 15.76, p <
0.05. This test outcome allows the trimming of the experi-
mental data to the final 8192 samples, corresponding to the
measurement window Tm. Furthermore, the run-in time levels
can now be seen as one set of nine repeated measurements for
the respective TV12S and TV12F conditions, for each subject.

To present the identification results, the parameter traces
were averaged over those nine runs per time-varying condition
(TV12S or TV12F) for each subject.

Adaptation detection is on the other hand still analysed and
presented on a run per run basis, with condition repetitions
seen as separate results.

IV. RESULTS

The average tracking and identified HO parameter traces per
subject are shown in Fig. 8 and 9 for conditions TV12F and
TV12S, respectively. Note that these include a bias due to the
remnant, as explained in Section II-B. A clear increase in Kė

(Fig. 8d & 9d) can be seen for all subjects in both conditions.
The expected decrease in Ke (8c & 9c) is less noticeable and
depends on the subject. Neuromuscular parameters in general
stay approximately constant (8e-f & 9e-f). The median of the
button pushes for each subject is also included (8b & 9b) and
will be discussed in more detail below.

A. Subjective adaptation detection
The HO button pushes are classified in a confusion matrix
in Fig. 10 according to their correctness for the respective
condition. False positives (FP) mean the HO incorrectly pushed
(for TI1 & TI2) or pushed before an actual transition happened
for TV12S & TV12F, thus tpush < M . False negatives (FN)
mean the HO did not push during the run while a CE transition
did in fact occur in TV12S & TV12F. True positives (TP)
indicate the HO did push when required in those conditions,
thus M < tpush. True negatives (TN) indicate that the HO did
not push the button when it was indeed not required, as in TI1
& TI2.
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TP = 127

FP = 19

FN = 12

TN = 32

TI1
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Fig. 10: Confusion matrix of button pushes of all subjects for
all conditions (TP = true positives, FP = false positives, TN =
true negatives, FN = false negatives.)

The matrix shows that the FPs were mainly incorrect pushes
for the time-invariant conditions, with a majority in the TI2
condition. The double integrator dynamics are more difficult
to steer and could have confused the subjects in detecting
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per subject. For reference, the forcing function and tracking are shown, together with the scheduled ωc to indicate the slow CE
transition (a).
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a changed CE. After debriefing, one subject indicated to be
unaware of the option to not push the button during a run.
This resulted in six of the recorded FPs (three in TI1, three in
TI2). Also, when subjects made a detection mistake they often
indicated it directly after. FNs were spread among subjects and
divided between TV12S and TV12F, thus no direct cause was
found. The detection accuracy, as defined in (20), of the HO
was 83% for all conditions. It was 88% within the time-varying
conditions.

Accuracy =
TP + TN

TP + FP + TN + FN
(20)

By comparing the button push time with the moment of tran-
sition M , detection lags can be calculated. Their distribution
for all subjects is shown in Fig. 11 for both time-varying
conditions. Condition TV12F had a lower median detection
lag than TV12S.

A dependent t-test between both conditions was performed
as post-hoc analysis to check significance of this result. Since
ANOVA indicated no significant influence of run-in time
levels on subjective HO adaptation detection, the detection
lags for all nine runs over the three levels were averaged
per subject as input for the test. The t-test implied that the
found difference between TV12F and TV12S is significant
with t(7) = −3.63, p < 0.05.

Note that the lower detection lag for TV12F is logical since
the CE transition completion time of TV12S is later than
that of TV12F. However, this also means that the gradual CE
change does not give the HO the opportunity to detect the
transition before it is fully completed. This is confirmed by
plotting the distribution of button pushes from all subjects, for
TV12S, against the sigmoid completion percentage as in Fig.
12.

0 5 10 15 20 25 30
Detection lag [s]

 

TV12S

TV12F

 

Fig. 11: Distribution of subjective detection lags for all sub-
jects, in TV12F and TV12S conditions.

20 30 40 50 60 70 80 90 100
% completion at button push

Fig. 12: The percentage of sigmoid transition completion
required to trigger the HO adaptation detection, in TV12S.

B. Identified adaptation detection
To demonstrate the working principle of the tested adaptation
detection algorithms, example results for TV12F experiment
runs are shown in Fig. 13 and 14 for both methods. The initial
used hyperparameter settings were based on inspecting the
identified HO parameter traces.

Three levels of the detection calculations are shown. First
the unfiltered detection is given, which is triggered whenever
the actual parameter trace (shown in red) is outside of the blue
shaded reference band (13e & 14e). Then detections that have
a length longer than the ∆T threshold are filtered (13f & 14f).
Finally, only the first occurrence of such a detection is kept,
resulting in a step signal (13g & 14g).

Per method, these calculations are done for both the Ke

and Kė parameters. Note that in the example in Fig. 14, no
detection was in the end found based on the Ke parameter
since the actual parameter trace did not go out of the reference
band for longer than ∆T seconds.

1) Detection performance: The detection results for all runs
and subjects are classified in a confusion matrix in Table III.
FP and FN are defined as in Section II-C, note that the FP
definition for the methods is more strict than for the subjective
HO adaptation detection. For both TV12F and TV12S, the
TICA method combined with the Kė parameter had the highest
number of TPs.

TABLE III: Confusion matrix for both methods and time-
varying conditions. Hyperparameters: δKe = 0.06,
δKė = 0.02, ∆T = 3 s, ns = 1500.

Condition Method Parameter TP FP TN FN
TV12F TICA Ke 12 33 0 27

Kė 41 27 0 4
MA Ke 0 15 0 57

Kė 20 12 0 40
TV12S TICA Ke 6 30 0 35

Kė 41 26 0 4
MA Ke 2 10 0 59

Kė 11 7 0 53

2) Sensitivity study of detection performance: To reduce
misclassification, a sensitivity study of the detection per-
formance to the hyperparameters choice was done. Fig. 15
shows the results of the sensitivity study. A better choice of
hyperparameters was possible and apparently they should be
different for both detection methods.

Setting δKe = 0.05 and δKė = 0.02 for the TICA
method gave minimum MSE. For the MA method this was
achieved for δKe = 0.03 and δKė = 0.012. The initial
∆T and ns values were kept since also in the new situation
they indicate a MSE close to the minimum, as visible in Fig 16.
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Fig. 13: Adaptation detection using TICA. Hyperparameters: δKe = 0.06, δKė = 0.02, ∆T = 3 s.
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Fig. 14: Adaptation detection using MA. Hyperparameters: δKe = 0.06, δKė = 0.02, ∆T = 3 s, ns = 1500.
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Fig. 15: Sensitivity study varying one hyperparameter at a time, while keeping the others constant at the initial chosen setting.
Both TICA and MA methods, combined with both Ke and Kė as input were analyzed for both time-varying conditions.
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Fig. 16: New sensitivity study, after only modifying the δKe and δKė settings. The new situation shows no further need to modify
∆T and ns to significantly reduce MSE.
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After tuning the hyperparameters, the confusion matrices were
updated and changes in the classification indicated. Detection
accuracies (Acc) were calculated according to (20). Table IV
shows a slight improvement in TPs for TICA Ke combined
with less FNs, meaning more detections were attempted. TICA
Kė classification performance remained stable. There is no
huge influence of the condition, indicating the type of CE
transition, on the detection accuracy of each method.

Table V shows a slight improvement in TPs for MA Ke

but a major one for MA Kė. Also the amount of FNs
dropped considerably for both MA Ke and Kė, meaning more
detections were attempted and those were divided between TPs
and FPs. The type of condition does not influence the detection
accuracy achieved by each method.

When comparing the detection accuracies (Acc) in both
tables, there is a significant difference between the methods.
Looking at TV12F, TICA Kė has the highest accuracy with
57%. MA Kė is runner-up with 43%. The difference is
explained by the 9% more FPs and 6% more FNs for MA
Kė. Similar conclusions are drawn for TV12S.

TABLE IV: Confusion matrix for TICA method in the time-
varying conditions. Hyperparameters: δKe = 0.05, δKė =
0.02, ∆T = 3 s.

Condition Parameter TP ∆ FP ∆ FN ∆ Acc

TV12F Ke 16 +4 41 +8 15 -12 22%
Kė 41 +0 24 -3 7 +3 57%

TV12S Ke 11 +5 36 +6 24 -11 15%
Kė 41 +0 22 -4 8 +4 58%

TABLE V: Confusion matrix for MA method in the time-
varying conditions. Hyperparameters: δKe = 0.03, δKė =
0.012, ∆T = 3 s, ns = 1500.

Condition Parameter TP ∆ FP ∆ FN ∆ Acc

TV12F Ke 9 +9 50 +35 13 -44 12%
Kė 31 +11 30 +18 11 -29 43%

TV12S Ke 9 +7 48 +38 14 -45 13%
Kė 30 +19 29 +22 12 -41 42%

C. Comparison of subjective/identified adaptation detection
With the adaptation detection methods now fine-tuned, both
methods are compared with the HO for adaptation detection
performance. Fig. 17 shows the distribution of detection lags
for all TP cases of the subjective HO detection and the
detection methods. Only TICA and MA with the Kė parameter
as input are shown since they have, in general, the most TPs.

To check significance of the comparison, independent
Welch’s t-tests were used. This test can deal with different
sample sizes in the compared groups. This is required because
the amount of runs in each boxplot is not necessarily the
same, since only runs with a TP detection for the respective
detection method are included. Furthermore, the test should
be independent since a TP HO detection and a TP detection
by one of the methods are independent events.
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Fig. 17: Detection lags of true positive detection cases from
the most successful methods and the HO, for all subjects.

In the TV12F condition, detection lags are similar for both
HO and the algorithmic methods. Between the HO and
the TICA method no significant difference was found, with
t(103.1) = −1.62, p > 0.05. Also no significant difference is
present between the HO and the MA method, with t(79.4) =
0.0016, p > 0.05.

In the TV12S condition, both methods outperform the HO
when taking the median as the central measure. They detect the
HO adaptation earlier than the HO itself, the MA method does
this 4.5 s faster and the TICA method 1.3 s faster. The result
is significant for the MA method, with t(83.2) = 2.68, p <
0.05. It is insignificant for the TICA method, with t(97.0) =
1.42, p > 0.05.

V. DISCUSSION

Two adaptation detection methods based on identified HO
parameter time traces were tested to determine their accuracy.
A human-in-the-loop experiment forcing time-varying HO
control behaviour was done to collect the required data and
evaluate the feasibility of online HO model identification using
recursive ARX.

A. Online, time-varying identification performance
The results show that recursive ARX is a feasible online, time-
varying identification method for the HO model considered.
This adds to the work in [19]. However, bias due to HO
remnant will always be present in the results due to the ARX
model structure.

With the current method no online time-varying HO delay
identification was possible, since delay cannot be included in
the RLS update. Including a Padé approximation for delay
would allow this, but then problems appear in the conversion
of ARX coefficients to the HO model parameters due to
the higher ARX model order. Thus now only a constant
assumption can be adjusted to match the HO delay.

B. Adaptation detection performance
The TICA method based on detecting parameter deviations
from a priori measured time-invariant behaviour of the Kė

parameter was found to be the most accurate. However, its
detection accuracy is only 57% compared to the subjective HO
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adaptation detection with an accuracy of 88%. The lower ac-
curacy is mainly due to the extra 42 FPs the TICA Kė method
had in both time-varying conditions combined, compared to the
HO. The moving average method MA with Kė is runner-up,
while TICA and MA combined with Ke gave clearly inferior
results.

Looking at detection lags for the TP cases only, the MA
method with Kė did detect adaptation significantly earlier than
the HO itself: 4.3 s earlier for gradual transitions in CE. For
immediate CE transitions, detection lags were similar for both
methods.

The proposed TICA and MA methods thus do not match
the classification qualities of the HO yet. However whenever
they result in an TP, the tested methods are likely sufficiently
quick to detect HO adaptation for driving adaptive HO support
systems.

As mentioned, both methods suffered from FP and FN detec-
tions which are due to inherent fluctuations in HO parameters.
The following general causes of FPs and FNs were found by
analysing the data run by run:
• For TICA, Ke and Kė: more runs in the time-invariant

condition might be needed to better quantify the reference
non-adapted behaviour. Now only a three run average was
used, and the resulting reference band does not cover the
full variability in parameter traces when no adaptation
takes place. This leads to a lot of FPs.

• For TICA and MA, Ke: the Ke parameter estimates are
found to oscillate with a too large magnitude compared to
the magnitude of the change at adaptation. Therefore, the
detection method does not work well for this parameter,
leading to many FPs. Advise is to not use Ke.

• For TICA and MA, Ke and Kė: some subjects showed
almost no adaptation and thus the changes in Ke and Kė

were too small to detect. Perhaps those subjects needed
more motivation or were not excited enough by the used
forcing function. This leads to FNs. Furthermore, when
the subject is not tracking the forcing function very well
momentarily, the HO parameters go outside of the spread
band although no change in CE happened. This leads to
FPs. Both issues are problems with the HO in general,
not only due to the gathered data.

The methods could be improved by performing a proper
optimisation routine for the hyperparameters, including a train-
ing/validation data split to determine hyperparameter values
that generalise. Also, tuning per subject could be warranted
for certain applications to improve detection accuracy.

C. Implementation of shown methods

Possible applications for the adaptation detection methods are
attention monitoring and adaptive HO support systems (e.g.
haptic feedback). For these applications a weighing will have
to be made between reducing the amount of FPs or FNs at the
cost of TPs. Hyperparameter tuning can be used to emphasise
FP or FN suppression as much as possible. The severity of
a misclassification in realistic settings will determine which

classification error should be reduced the most.

An advantage of both methods is that, due to a focus on detec-
tion, the parameter biases in the identification are permissible,
as long as they are present in both non-adapted and adapted
conditions.

The MA method has two big advantages over the TICA
method for implementation. MA is based only on the current
identified parameter trace, which makes it more practical
since no prior time-invariant behaviour measurements are
needed. Furthermore, it can easily detect separate changes in
CE, as the reference band always converges to the adapted
behaviour. Whenever the parameter goes out of the band
again, a new detection is simply triggered.

A disadvantage of both methods is the fact that the actual time
the detection is triggered, is equal to ttrigger = td + ∆T . The
∆T window is necessary to avoid too many false positives,
but causes a detection delay. Nevertheless the algorithm still
knows when exactly the adaptation started, but for true real-
time detection, this issue still needs to be solved.

On top of that, all adaptation detection results presented in
this paper are likely dependent on the excitation offered by the
forcing function in the considered task.

D. Further research

A comparative study of the current adaptation detection results
with those achieved using another promising online, time-
varying identification solution based on Kalman filtering [10]
[17] [18] could be done. The use of Kalman filtering would
allow different options to solve the problem of online time-
varying identification as well [18].

Further research should also check the influence of forcing
function properties on detection performance, bearing in mind
that in a realistic task no similar excitation might happen.

Finally, applying the developed methods to control tasks
with a different kind of time-varying element could investigate
the general usability of the adaptation detection methods.

VI. CONCLUSION

This paper proved the feasibility of online, time-varying human
operator (HO) identification with recursive ARX model fitting
by performing a human-in-the-loop experiment with compen-
satory tracking task and time-varying controlled element (CE).
Online time delay estimation was however still missing in the
identification.

Two adaptation detection algorithms were tested on the gath-
ered data. The algorithm based on detecting the deviation of the
HO error rate response gain Kė from a priori measured non-
adapted behaviour, called TICA method, was most successful
with a detection accuracy of 57%. Using a moving average of
the Kė parameter trace itself as reference, called MA method,
is more flexible in practical applications. But it was found to
result in an accuracy of 43%, with 9% more false positives
(FP) and 6% more false negative (FN) detections compared to
the TICA method.
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The adaptation detection performance of the proposed meth-
ods was compared with subjective detection by the HO. HO
detection accuracy remained 31% higher than achieved with
the TICA Kė method. Using that method resulted in 30%
more FPs and 2% more FNs than the HO. In case of a true
positive detection, the MA method has a significantly smaller
detection lag than the HO when a gradual CE transition is
happening. The lag is reduced by 4.3 s. For fast CE transitions,
both methods have similar detection lag to the HO.

Regarding applicability, the proposed methods detect adap-
tation likely quick enough. However, currently they do not
allow real-time detection due to the required detection window.
Furthermore, the methods should be further tuned to a FP/FN
balance suitable for their applications.

For the first time online time-varying identification with
adaptation detection was realised. This is a big step towards
adaptive HO support systems in control tasks and HO attention
monitoring. Furthermore, the developed methods are useful as
a tool in manual control tracking task experiments to learn
more about the adaptive and learning HO.
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APPENDIX

A. Discrete to continuous-time conversion of ARX coefficients

To convert the discrete time transfer function coefficients
θd =

(
ad1 ad2 bd0 bd1

)
to continuous time equivalent θc =

(ac1 ac2 bc0 bc1), a zero-order-hold method is used. The
algorithm, based on MATLAB’s d2c command source files,
is as follows:
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1) Rewrite transfer function as state space system in control-
lable canonical form:

Ad =

(
0 1
−ad2 −ad1

)
Bd =

(
0
1

)

Cd =
(
bd1 bd0

)
Dd = 0

2) Create a matrix L containing the Ad and Bd matrices:

L =

(
Ad Bd

OnBd x nAd
InBd x nBd

)
(21)

3) Take the matrix logarithm of L and scale:

M =
1

∆t
log L (22)

4) Select the new Ac and Bc matrices from M . Note that
output equation matrices remain the same:

Ac =

(
M1,1 M1,2

M2,1 M2,2

)
Bc =

(
M1,3

M2,3

)

Cc = Cd Dc = Dd

5) Convert the continuous time state space system to a transfer
function:

H(s) = Cc(sI −Ac)−1Bc + Dc (23)
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1
Introduction

The research field of manual control cybernetics wants to understand how a human operator controls dy-
namic systems. This knowledge helps in designing both the interfaces and the controlled systems themselves
in order to facilitate manual or semi-automatic control. Past efforts have mostly resulted in models appli-
cable to time-invariant human operator behaviour (Lone and Cooke, 2014). However, humans are adaptive,
learning controllers and that is why they are especially useful. At this moment there is only limited knowl-
edge available about time-varying human operator behaviour including adaptation and learning in control
tasks (Mulder et al., 2016).

Current research trying to explain this adaptive behaviour advances cybernetics theory by understanding
the evolving internal representation humans form about a control task (Mulder et al., 2016). More directly,
this research is relevant for several applications with humans in the loop. Since simulators are more and
more relied upon for operator training, understanding human learning is useful in judging training effec-
tiveness. First steps in this direction are identifying adaptation to systematic changes in reference signals
and controlled dynamics (Mulder et al., 2013), or as practical example, motion feedback settings (Zaal and
Pool, 2014). Furthermore knowing how humans adapt helps in designing conformant haptic shared control
devices (Mulder et al., 2016).

In this thesis an attempt is made at identifying adapting human control behaviour online, i.e. in real time.
Next to contributing to the previous research goals, doing this in real-time opens new opportunities. For
example, in real-life control tasks reduced attention or distraction could be detected by continuously mon-
itoring the operator by updating an operator model (Ameyoe et al., 2015). Furthermore this could enable
adaptive haptic feedback, tracking the current behaviour of the operator (Olivari et al., 2014). In experiments
conducted with humans in the loop, online identification can help in adjusting experimental conditions in
real time to directly study adaptation behaviour or achieve desired haptic feedback qualities.

With the relevance of online time-varying system identification in manual control now in mind, the project
proposal is as follows. Based on the current state-of-the-art in time-varying system identification, the aim of
the research is to select a theoretically proven method from literature and implement it in an online fashion
for a manual control task. The method could be tested in an example experiment. Next to an evaluation, the
work will result in identification code useful for other experiments.

The preliminary thesis report is structured as follows. A literature survey in time-varying system identification
methods in manual control is done in Chapter 2. From this a research objective to contribute to the state-
of-the-art in cybernetics is derived in Chapter 3. This is continued by a preliminary analysis of the chosen
method in simulations. The simulation setup is described in Chapters 4 and 5, with code verification in
Chapter 6. A possible solution for the online identification problem is then discussed in Chapter 7. The
further research steps needed are then discussed in Chapter 9.
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2
Literature Survey

To get an overview of the state of the art in time-varying system identification in manual control, a literature
survey is conducted. It treats the different human operator models and associated methods to identify them.
This overview will help in formulating the research questions to answer, to achieve the aim of this research.

2.1. Modeling the human operator
In general, the human operator is a multichannel, adaptive, learning, non-linear controller in a control task.
In the pilot-vehicle loop both a feedback path and feedforward path can be present as controller, based on
visual and motion perception. The neuromuscular system is then used to move the control input device
effecting the controlled element dynamics. These paths can be adapted by an internal mental representation
of the task learned through experience (Mulder et al., 2016). This is illustrated in Figure 2.1. Four signals are
indicated: the forcing function f , the compensatory error e, the control signal u and the controlled element
position y .

Figure 2.1: The multichannel, adaptive, learning human controller. Adapted from (Mulder et al., 2016).

A general control-theoretic model for the human controller has not been found yet, however, for specific con-
trol tasks validated models exist. An overview of human operator models in decades of research is described
in (Lone and Cooke, 2014). For this research, the quasi-linear human operator models are most relevant and
are focused upon in Section 2.1.1. Other perspectives are shortly discussed in Section 2.1.3.

2.1.1. Quasi-linear human operator models
Up to now the quasi-linear human operator models set up by (McRuer and Jex, 1967) have been most suc-
cessful in modeling the human controller. (McRuer and Jex, 1967) postulated the crossover model, which is
only validated for single channel tracking tasks with visual perception from a compensatory display when all
learning is over and no adaptation occurs. This task is shown in Figure 2.2.

The crossover model captures the linear behaviour of the human controller in a describing transfer func-
tion HP ( jω) and separates the further unexplained behaviour by adding noise called ’remnant’ n. The rem-
nant and its corresponding filter Hn( jω) are further treated in Section 2.1.2. The model is purely based on
input-output behaviour of the human operator. The quasi-linear operator model situated in a compensatory
tracking task is shown in Figure 2.3.
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Figure 2.2: The human controller in a tracking task with only visual perception based on a compensatory display, no learning or adapta-
tion included.

Figure 2.3: The quasi-linear human operator model in a compensatory tracking task.

The crossover model states that humans adjust their control behaviour such that Eq.(2.1) is satisfied in the
crossover region when transient behaviour is eliminated. Then adjustment rules state both what the describ-
ing function HP ( jω) is like according to the controlled element HC E ( jω) and what its effect is in the frequency
domain in terms of crossover frequency ωc and time delay τ (McRuer and Jex, 1967).

HOL( jω) = HP ( jω)HC E ( jω) = ωc

jω
e− jωτ, ω≈ωc (2.1)

The describing function is lumping together the operator’s physical limitations and his equalisation. Eq.(2.2)
is a general formulation of the describing function, to be adjusted according to the controlled element using
the adjustment rules.

Operator limitations are modelled as a lumped time delay for visual perception and information process-
ing. In addition the neuromuscular system (NMS) is modelled as a second order transfer function. Note that
this component was added later to McRuer’s work. Operator equalisation is modelled as a gain and a lead/lag
component, this represents the feedback controller.

HP ( jω) = Kp
1+τL jω

1+τl jω
e− jωτ ω2

nm

ω2
nm +2ζnmωnm jω+ ( jω)2

(2.2)

For completeness in this survey, it should be mentioned that another quasi-linear operator model is the ‘de-
scriptive model’. It focuses more on the physiological human sensors for perception in manual control (Hos-
man and Stassen, 1999), in order to better understand them. This model is not further considered in this
work.

2.1.2. Remnant noise filters
There is limited theoretical background on how to model the remnant. To have realistic simulations, an
assumption for the remnant is necessary. The remnant assumption influences the bias and variance found
while identifying parameters in simulation. Generally remnant is generated by passing Gaussian, zero mean
white noise through a filter. Different filter choices are found in literature. Furthermore the location where
the noise is inserted in the loop is a choice.

(Zaal, 2016) assumes a first order low pass filter as in Eq.(2.3), with a gain Kn tuned to achieve a certain
remnant intensity as defined in Eq.(2.4). The noise is injected in the control signal. On the other hand, (Levi-
son et al., 1969) also derived a first order low pass filter, but injected the noise in the error signal.

Hn( jω) = Kn

(0.2 jω+1)
(2.3) Pn = σ2

n

σ2
u

(2.4)

A remnant filter can also be derived from experimental data. (Zaal et al., 2009) compared the modelled control
signal with the actual measured control signal obtained during a compensatory tracking experiment. The
difference between those signals gives a time series for the remnant. By calculating the power spectrum of
this time series, a third order low pass filter was fitted resulting in Eq.(2.5), withωn = 12.7 rad/s and ζn = 0.26.
The gain Kn can again be tuned and the noise is injected in the control signal.
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Hn( jω) = Knω
3
n

(( jω)2 +2ζnωn jω+ω2
n)( jω+ωn)

(2.5)

2.1.3. Other perspectives
Next to the quasi-linear model above, two other perspectives are common. The ‘optimal control model’ sees
the operator as a controller minimising a cost functional to derive a feedback law, while perceiving the envi-
ronment is modelled as a Kalman filter (Kleinman et al., 1970). Finally, Hess set up the ‘structural operator
model’, a non-linear model containing switches to change between different operator behaviour in different
control situations (Hess, 2006). They could be useful in time-varying operator identification research, but are
not often used up to now.

2.1.4. Conclusion
As seen in the next section, most research in time-varying system identification in manual control is done
using formulations of the quasi-linear operator model. Reasons for this are its easy parametrisation in phys-
ically understandable parameters and its validated use in certain tasks. Therefore only the quasi-linear oper-
ator model will be considered further.

2.2. Identifying time-varying operator behaviour
Research in identifying time-varying operator models can be classified according to the method used. The
found methods will be judged on their usability online and how accurate they are. A scheme of the considered
papers is shown in Figure 2.4.

Figure 2.4: Overview of covered studies in the time-varying system identification methods literature survey.
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Note that two different perspectives on identifying the adaptation were found. In (Hess, 2009) the adaptation
is specified as a logic rule, derived empirically by the author. All other papers considered follow the system
identification approach of measuring input-output signals to model the system.

2.2.1. Parametric versus non-parametric approach
In system identification two approaches can be followed. The non-parametric approach only estimates a
frequency response directly.

In (Olivari et al., 2014) and (Olivari et al., 2016) first a discrete Finite Impulse Response (FIR) is estimated,
which is then converted to a frequency response estimated by the Fourier Transform. This is a two-step
method. The FIR estimation is done by recursive least squares (RLS), enabling tracking of time-variations in
the system response. Another non-parametric method is the method of Fourier coefficients in (van Paassen
and Mulder, 1998). A transfer function is estimated only at the frequencies of the forcing function and is
derived analytically. The method is used for time-invariant applications.

All other papers considered are using a parametric approach. The operator is seen as a grey box: a model
structure is assumed and its parameters need to be estimated. This approach gives more physical insight into
the human controller than non-parametric methods.

2.2.2. Parametric methods
The parametric methods are classified further based on the assumed model structure and the method used
for parameter estimation. Four research lines were found in literature. The quasi-linear operator model, with
different formulations of the describing function and remnant, is consistently chosen in the studied papers.
To force time-varying operator behaviour almost all studied papers change the controlled element dynamics
during either simulation or experiments. The following other factors set the methods apart, and these are
discussed for each.

• Allowed adaptation: To model the time-varying operator behaviour, different assumptions are made
regarding how this adaptation is shaped and which operator model parameters can vary in time.

• Identifying time delay: There is an additional challenge in identifying time-varying human operator
time delays in the assumed models, treated differently by different authors.

• Type of fitting: One can fit the assumed models on all data at once, or fit the models recursively.

2.2.2.1 Batch fitting methods

Maximum likelihood estimation: A time-domain technique where the model parameters are estimated us-
ing genetic maximum likelihood estimation is used in (Zaal et al., 2009), (Zaal and Pool, 2014) and (Zaal,
2016). Time variation in the operator model is assumed to follow a sigmoid shape which needs to be fitted.
Only operator equalisation parameters are allowed to vary while the operator limitation parameters are as-
sumed constant, including the operator time delay. This might not be the case in certain operator adaptation
situations. This is a batch fitting method, meaning that the fitting acts on the whole dataset at once.

Fitting LPV state space systems: In (Duarte et al., 2017) a linear parameter varying (LPV) system is identi-
fied using the Predictor-Based Subspace Identification (PBSID) algorithm from (van Wingerden and Verhae-
gen, 2009). For the LPV model a comparison is made between analytically and experimentally determined
scheduling functions which need to reflect the human operator adaptation. Again only operator equalisation
parameters are assumed to vary.

The time delay is treated separately from the other parameters. Low order LPV models with increasing
time delays are fitted and the one with the best quality-of-fit is selected as delay estimate. In the next identi-
fication steps, the input signal is shifted with this delay estimate.

2.2.2.2 Recursive fitting methods

Kalman filter estimation: In several studies Kalman filters are used (Boer and Kenyon, 1998) (Rojer et al.,
2016) (Mandal and Gu, 2016) (Popovici et al., 2017). They update the parameters every timestep based on
predictions and measurements. Fitting is done recursively, enabling tracking of changes in the parameters.
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No assumption has to be made regarding the shape of variation the parameters follow and time delay needs
no special treatment. The observation equations use a state-space form of the describing transfer function
with an nth order Padé approximation for the time delay component.

In (Popovici et al., 2017) a dual Extended Kalman Filter (EKF) is used. A state filter estimates the equal-
isation dynamics, and a parameter filter estimates the neuromuscular parameters and time delay. Thus all
parameters are assumed to be time-varying.

In (Rojer et al., 2016) and (Mandal and Gu, 2016) the Unscented Kalman Filter (UKF) is used. Operator
equalisation parameters are assumed to be varying, as well as the time-delay limitation parameter. The other
limitation parameters, i.e. of the NMS, are not allowed to vary.

Fitting recursive ARX models: (van Grootheest, 2017) applies ARX models to identify time-varying human
operator behaviour. This study extends the work in (Nieuwenhuizen et al., 2008), (Drop et al., 2016) and
(Roggenkämper et al., 2016) to the time-varying case. The ARX coefficients are determined using Recursive
Least Squares (RLS). Again no underlying assumption regarding the shape of variation has to be made. Oper-
ator equalisation parameters are varying, the limitation parameters are assumed constant.

The time delay is assumed constant regardless of the adaptation and can only be an integer multiple of the
sample time. Just like in (Duarte et al., 2017), the time delay is estimated a-priori using models with different
assumed delays. A-priori means before performing the actual model fitting, resulting in a shifted input signal
to take the estimated delay into account.

2.2.3. Conclusion
The aim of this research is to identify time-varying human operator behaviour online. To track these changes
online, the recursive fitting methods are suitable. Furthermore methods which do not assume a set shape
for the adaptation are more generally applicable. Thus Kalman filtering and fitting of recursive ARX models
are promising methods. To further delineate the current literature survey, a choice is made to focus on the
recursive ARX method. Its current issues are investigated.

2.3. The recursive ARX method
To build further on the work of (van Grootheest, 2017), a summary is given of the research done and open
issues treated. The goal was to find out whether ARX models could be used to model a time-varying human
controller by recursive estimation. First the model structure will be described, then the major conclusions
regarding the use of ARX to model the human controller are discussed.

2.3.1. ARX model structure and order
The ARX structure is part of a general class of linear models. It is formulated as in Eqs.(2.6)-(2.8). The time shift
operator is indicated by q , such that q−1u(t ) = u(t −1). The A(q) polynomial acts on the control signal u(t ).
The B(q) polynomial acts on the error signal e(t −nk ), which could be delayed by nk timesteps or samples to
represent an input-output delay. ε(t ) represents a white noise signal. The polynomials are determined by na

and nb respectively, indicating the model order.

A(q)u(t ) = B(q)e(t −nk )+ε(t ) (2.6)

A(q) = 1+a1q−1 +a2q−2 + ...+ana q−na (2.7)

B(q) = b0 +b1q−1 + ...+bnb q−nb+1 (2.8)

Rewriting the ARX model in terms of the control output gives Eq.(2.9). The describing function is modelled

by the ratio B(q)
A(q) and delay nk . For straightforward conversion of the ARX model back to the human operator

transfer function, na = 2,nb = 2 is most suited since in that case no model order reduction is required. The
polynomial coefficients and the time delay parameter nk need to be identified.

u(t ) = B(q)

A(q)
e(t −nk )+ 1

A(q)
ε(t ) (2.9)

The model was identified using simulations and experiments similar to the ones set up in (Zaal, 2016). The
direct system identification approach was followed, meaning that no correction was done for closed-loop
issues in identification. This is allowed according to (Drop et al., 2016).
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2.3.2. ARX time delay estimation
The time delay is represented by the nk parameter as in Eq.(2.10). The time delay was always estimated a-
priori because it cannot be included in the least squares used in Section 2.3.3. To estimate the time delay, a
set of ARX models is fitted using Ordinary Least Square (OLS) before the actual identification process takes
place. Each has a different nk parameter. The nk is selected which gives the smallest loss function according
to Eq.(2.11). This is the average squared error between the measured control signal umeas (t ) and the control
signal upr ed (t ) predicted using the fitted ARX model. Now the error signal is shifted with the estimated nkest .
The actual identification now takes place with the time-shifted error signal as input and the ARX model is set
up with nkest .

nk = τ

∆t
(2.10) V = 1

N

N∑
t=1

(umeas (t )−upr ed (t ))2 (2.11)

2.3.3. Recursive ARX identification
After delay estimation, decimation was used on the signals to get rid of high-frequency components above
the range of interest. With decimation only every dth sample is kept, effectively decreasing the sampling fre-
quency. Different decimation factors d were tried, and best results achieved with d = 16. After preprocessing,
identification of the ARX model was done for both the time-invariant and time-varying human controller.

In the time-varying case, the fitting of the ARX model needs to be done recursively to enable tracking
of changes. This means the ARX coefficients become time-varying. RLS with the concept of forgetting was
applied to estimate the coefficients at each timestep. The forgetting factor was tuned to enable good tracking
of parameter changes while not being too sensitive to noise. A forgetting factor of λ = 0.99609 gave best
results when sampling at 100Hz. An example estimation run is given in Figure 2.5.

Figure 2.5: Tracking performance of recursive ARX identification for the ARX model coefficients. The simulation according to (Zaal, 2016)
contains equalisation adaptation at t = 50s, but a constant time delay. A second order remnant filter was assumed, introducing a bias.
The ZOH line is the analytical reference value, the OLS and RLS lines are the estimates with their standard deviations. Obtained from
(van Grootheest, 2017).

The ARX model is a discrete time transfer function estimate. Thus a conversion of the coefficients to con-
tinuous time is necessary. Presumably the Matlab d2c command was used with the zero order hold method.
Next, the continuous time ARX coefficients are converted to the operator parameters by solving a system of
equations, obtained by comparing the continuous time transfer function and the operator model.
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2.3.4. Influence of remnant
The A(q) polynomial is modelling both the describing function and the remnant noise in Eq.(2.9). The rem-
nant is modelled as if the white noise ε(t ) is filtered with 1

A(q) . Thus any identification method will give biased
estimates since the process dynamics and noise dynamics are coupled.

Simulations were done with remnant filters of different order m according to Eq.(2.12), to study their
effect on the bias. Furthermore a remnant with the same transfer function as the human neuromuscular
response was used. Each filter was tuned to induce the same remnant intensity, the remnant gain was made
time-varying to ensure the intensity remained the same throughout the adaptation simulation.

H m
n = Kn(t )

(Tn jω+1)m (2.12)

The highest bias for delay and ARX coefficients occurred when assuming a first order filter as indicated in
Figures 2.6-2.7. The parameter estimation was less biased when the remnant filter order was larger than the
ARX model order, and especially least biased if the filter was equal to the neuromuscular system response.

Figure 2.6: Bias in estimated time delay parameter nk , for different remnant filter orders and intensity levels. Obtained from (van
Grootheest, 2017).

Figure 2.7: Bias in ARX model coefficients, for different remnant filter orders and intensity levels. Obtained from (van Grootheest, 2017).
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In experiments with human operators, a definitive answer on how to model the remnant is not known. Thus
the bias introduced by the remnant is unknown. Therefore a model structure without coupling between
process and noise dynamics could give superior estimation results than with ARX models.

2.3.5. Conclusion
The work of (van Grootheest, 2017) results in three main issues regarding time-varying operator model iden-
tification if it should be implemented online. First a way of converting the discrete time ARX coefficients to
the operator parameters, without relying on opaque Matlab commands, should be found. Secondly an alter-
native linear model structure could avoid introducing bias due to remnant, for example Box-Jenkins models,
if it is suitable for online implementation. Finally an alternative time delay estimation procedure suitable for
online implementation should be developed if this method is selected for further research.

2.4. Identifying time-varying time-delay online
Estimating a time-varying time delay is challenging since it is a non-linearity in the system. This is especially
difficult in online estimation in this research. The considered solutions inside cybernetics are the work of
(Boer and Kenyon, 1998), (Rojer et al., 2016) and (Popovici et al., 2017). More general solutions inside the
system identification field are also considered as in (Björklund, 2003), (Anderson and Moore, 1979), (Zhao
et al., 2017) and (Tan, 2004). Computational effort and convergence are important properties to judge the
methods, even though they can only be qualitatively judged at this stage.

2.4.1. Solutions in cybernetics field
• In most considered cybernetics papers up to now, the human operator time delay is assumed constant.

Even then identification is often not directly possible and the time delay should be estimated before
other parameters as discussed earlier for (Duarte et al., 2017) and (van Grootheest, 2017). This is not
suitable for online implementation.

• In (Boer and Kenyon, 1998) the EKF is successfully used to directly estimate a time-varying time delay
while simultaneously identifying the coefficients of an ARMAX model. The developed Recursive Delay
Identifier (RDI) even allows for fractional delay time estimates using interpolation. The approach was
tested in two different experiments which specifically aim at inducing time-varying time delay in the
human controller: a time-varying gap-postview tracking task and Jex’s critical tracking task. The lat-
ter consists of a controlled element with growing instability that needs to be stabilised by the human
controller (Jex et al., 1966).

• Alternatively the pure time delay could be replaced by an nth order Padé approximation in the opera-
tor model, allowing direct Kalman filter estimation for the operator parameters and the time delay as
in (Rojer et al., 2016) with the UKF and (Popovici et al., 2017) with the dual EKF.

2.4.2. Solutions in system identification field
In system identification, the following solutions are identified. An overview of time delay estimation methods
in time and frequency domain is given in (Björklund, 2003).

• A promising mentioned method is to estimate many different models in parallel with each one assum-
ing a different time delay. The best fitting model is selected at each moment in time according to a
quality-of-fit metric. During online estimation this should be done recursively. This ‘adaptive estima-
tion through parallel processing’ strategy is also described in (Anderson and Moore, 1979). This method
could be directly applied to recursive ARX, and is further referred to as parallel recursive ARX. A low and
scalable computational load is expected due to the simple RLS parameter estimation.

An extension to this approach is proposed in (Björklund, 2003). It counters the unavoidable bias intro-
duced in the estimates because of the interaction between noise and the ARX model structure. At first
an ARMAX or OE model is fitted to get an idea of the noise model, which will then be used to prefilter
the signals used in the ARX model fitting. In an online setting this noise model could then be updated
once in a while.

• In (Zhao et al., 2017) the identification of time-varying industrial processes with delay is studied. A
hidden Markov chain model is used for the delay, while ARX is used as the process model. The Markov
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chain is deemed appropriate because time delays do not jump around randomly but could follow a
certain probabilistic switching mechanism, they are correlated in time. This is expressed in the identi-
fied transition probabilities between possible time delay values. The identification of both the Markov
chain and the model parameters is done using an iterative, recursive Expectation Maximisation (EM)
algorithm. Because of the iterative nature of the algorithm, it is unclear how computationally intensive
it will be in new applications and whether online implementation is feasible.

• Another solution is based on neural networks in (Tan, 2004). A neural network is specifically trained
to estimate a time-varying time delay. Inputs to the neural network are previous delay estimates and
errors between actual and predicted output. The training determines the weights given to each of these
inputs. Accurate results are achieved with rapid convergence, however a high computational load is
seen. This could be reduced once the training procedure is finished, since then no more optimisation
must be done online.

2.4.3. Conclusion
Several solutions for time delay estimation, in combination with identifying the other human operator pa-
rameters, have been found in the cybernetics and system identification fields. The open issue with recursive
ARX regarding time delay estimation can be mitigated by using a parallel processing strategy. Some proper-
ties have been listed of each solution, useful in the selection process to obtain the most suitable method for
this research.

2.5. Method trade-off
To determine the research direction, a trade-off is performed between the identification methods found in
the literature survey. The chosen method will lead to the research objective and questions stated in Chapter
3. The criteria used in the trade-off in Table 2.1 are judged based on the respective papers of the methods, if
such results are available. The four criteria are as follows:

• Recursive updating: whether the method can be updated recursively and if other constraints are present.
• Convergence: whether the parameter estimation converges easily and is robust.
• Computational complexity: how much computational power is needed.
• Estimation bias human operator (HO) parameters: bias magnitude as found in previous work.

From the table, the UKF, dual EKF and parallel recursive ARX methods seem the best recursive methods to
identify the complete human operator. RDI EKF has no information about the achieved bias and is only
focused on estimating delay. Furthermore, by analysing the papers, the dual EKF seems more straightforward
to implement than the UKF with limited performance differences, and will be the only retained Kalman filter
option. The biggest disadvantage of the dual EKF is the heavy dependence on choosing the initial condition
close enough to the actual one to obtain convergence. The parallel recursive ARX method is more robust to
this.

Regarding computational complexity the parallel recursive ARX method might be more expensive since
many models need to be estimated in parallel. For dual EKF only one model is estimated. The estimation bias
for recursive ARX is found to be higher than the bias with dual EKF when comparing their respective paper
results. However the time delay bias is still unknown for parallel recursive ARX and could be examined in this
research.

To conclude, first the parallel recursive ARX method will be tried to find out its time delay estimation perfor-
mance as subject of this preliminary thesis. Later a complete comparison can then be done with the dual EKF
method and the superior option can be selected for further experimental research.
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Table 2.1: Methods suitable to identify the time-varying human operator, including delay, are judged according to four criteria in this
table. Colours indicate their score: red = poor, yellow = mediocre, green = good.

Method Criteria
Recursive
updating

Convergence Computational
complexity

Estimation bias
HO parameters

RDI EKF (Boer and
Kenyon, 1998)

Yes Less dependent on
initial conditions

Low Unknown

UKF (Rojer et al.,
2016)

Yes Heavily dependent on
initial conditions

Low Low

Dual EKF (Popovici
et al., 2017)

Yes Heavily dependent on
initial conditions

Low Low

Parallel recursive ARX
(van Grootheest, 2017)
(Anderson and Moore,
1979)

Yes Less dependent on
initial conditions

Medium Unknown
for delay,
higher for other
parameters

Parallel recursive ARX
with prefilter
(Björklund, 2003)

Yes for ARX,
not for
prefilter

Less dependent on
initial conditions

Medium Unknown

Markov Chain for
delay, ARX for process
(Zhao et al., 2017)

Iterations
required at
each step

No guarantee Potentially high Low for delay,
higher for other
parameters

Neural network for
delay, any other
method for process
(Tan, 2004)

Retraining at
each step
optional

No guarantee Potentially high Low for delay,
unknown
for other
parameters



3
Research Objective and Questions

Online identification has specific requirements for the chosen identification method. The computation time
should be low enough to have a sufficiently high update frequency of parameter estimates. Furthermore the
method should allow for recursive updating of the model as new data points come in.

From the trade-off concluding the literature survey, a promising method to implement online is to use
recursively identified ARX models as treated in (van Grootheest, 2017). Currently the human operator time
delay is estimated a-priori to the ARX model fitting and is assumed constant. Time delays can be time-varying
in real life and they cannot be estimated a-priori in an online setting. Thus a modification of the recursive
ARX method is required. The research objective is set as follows:

The research objective is to contribute to the modeling of the adapting human controller by modifying the recur-
sive ARX method to estimate in an online fashion both equalisation parameters and time delay of a quasi-linear
pilot model, during a human-in-the-loop control task experiment forcing adaptive behaviour.

The research objective leads to the following research questions, to be investigated in the subsequent re-
search. The main question is as follows:

Is it possible to use recursive ARX model fitting to identify the human operator equalisation adaptation online
during a control task experiment, while also modifying the method to simultaneously estimate the operator’s
time delay?

The literature survey concluded that the parallel recursive ARX method is a good first try for the modification.
This leads to the following specific sub-questions:

1. Regarding the implementation of the method in simulation:

(a) What simulation setup allows to try out the parallel recursive ARX method?

(b) Which human operator and controlled element models can be chosen?

(c) Which human operator adaptation could be introduced in the simulation?

(d) How should the remnant noise be introduced in the simulation?

(e) After fitting, which conversion steps are needed to retrieve the operator model parameters from
the ARX coefficients?

(f) What verification tasks can be completed to make sure the simulation is done correctly?

2. Regarding the testing of the method in simulation:

(a) Which quality-of-fit metric can be used to select the best fitting ARX model at each timestep?

(b) What is the best sliding window size for such a metric to enable tracking of the model fit?

(c) What is the influence of the remnant filter choice on the time delay estimation results?

(d) What is the influence of sampling frequency on the time delay estimation results?

(e) What are the computational limits of the method? Can an estimate of its execution time be made?
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3. Regarding experimental evaluation of the found solution:

(a) Which kind of experiment will allow to find out the tracking performance and limits of this method?

(b) Which kind of experiment forces the human operator to significantly adapt his time delay?

(c) What must be done to implement the chosen method in the research simulator framework?

(d) Is the tracking of time delay sufficiently accurate and fast?

To answer these questions, the following tangible steps are taken in this preliminary thesis. First the recursive
ARX method is implemented in a time-varying human operator simulation. Then the time-varying delay
estimation problem is solved and its performance is evaluated. Finally conclusions can be made about the
method’s usability in order to continue the research later with experimental evaluation.



4
Human Controller Simulation Setup

In order to try out time delay identification strategies, a simulation placing the human operator in a control
task is needed. A single-axis, single channel compensatory tracking task is simulated based on (Zaal, 2016).
A quasi-linear pilot model is used. The simulation loop is the control task indicated in Figure 2.3. To force
time-varying human operator behaviour, the controlled element dynamics change from single to double in-
tegrator. The operator will adapt itself accordingly.

The simulation is implemented in Python 3.6.0. This requires basic understanding of each element in
the simulation. Matlab would offer straightforward commands for certain elements. However, when im-
plementing the identification strategy (Chapters 5 and 7) in the experiment software platform, the in-depth
understanding gained by using a Python simulation will be useful.

In this chapter the simulation loop is described in terms of its input signals, the used models and how
time-varying behaviour is introduced. To repeat simulation runs involving noise realisations, a Monte-Carlo
implementation is described. Finally a flow chart gives an overview of the steps taken.

4.1. Input signals and simulation time
Two input signals are needed for a simulation run: a forcing function and a remnant realisation. A run has
length T = 100s, with a measurement time of Tm = 81.92s, conveniently chosen for Fourier transforming
signals with minimal leakage. A timestep of ∆t = 0.01s was chosen for the simulation, corresponding to a
sampling frequency of 100 Hz.

4.1.1. Forcing function
A forcing function is used to excite the closed loop system consisting of a pilot and controlled element model.
It is a summation of N f sinusoids with different amplitudes A f [k], frequencies n f [k]ωm and phases φ f [k],
as in Eq.(4.1). The frequencies are integer multiples of the base measurement frequency ωm = 2π/Tm . The
values used are listed in Table 4.1. This is the same forcing function as in (Zaal, 2016).

f (t ) =
Ns∑

k=1
A f [k]sin(n f [k]ωm t +φ f [k]) (4.1)

Table 4.1: Forcing function properties used, adapted from (Zaal, 2016).

k f [-] n f [-] n f ωm [rad/s] A f [deg] φ f [rad]
1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -2.189
8 86 6.596 0.061 -2.189
9 139 10.661 0.036 0.875
10 229 17.564 0.025 0.604

33
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4.1.2. Remnant realisation
A remnant realisation is generated for each single simulation run by passing zero mean, unit variance, Gaus-
sian white noise through a filter. Different remnant filters are taken into account since ARX models are par-
tially modelling the noise next to the dynamic system. This way the influence of remnant filter choice on
identification performance can be studied. The injection point for the remnant noise was chosen to be the
control output signal.

Three filters of different order are mentioned in Table 4.2. The first order filter is from (Zaal, 2016). The
second order filter is mentioned in (van Grootheest, 2017), and was found to give the least bias in ARX model
identification. The third order filter is also chosen because it was experimentally validated in (Zaal et al.,
2009) as resembling the operator remnant noise process.

The remnant gain is tuned to achieve a certain remnant intensity. Tuning was done manually by averag-
ing the intensity of ten simulation runs and then adjusting the gain iteratively until the target intensity was
reached. This was done for both the single and double integrator controlled element case for each filter. Note
that the actual intensity obtained will differ between runs due to the randomness of the noise realisations.
The gains to obtain Pn = 0.15 are in Table 4.2.

Table 4.2: Remnant gains for different filters and controlled elements to achieve Pn = 0.15.

Remnant filter Hn( jω) Controlled element HC E ( jω) Gain Kn
Kn

(0.2 jω+1) K/s 0.205

K/s2 0.52
Kn (t )

(0.06 jω+1)2 K/s 0.16

K/s2 0.39
Knω

3
n

(( jω)2+2ζnωn jω+ω2
n )( jω+ωn )

, ωn = 12.7, ζn = 0.26 K/s 0.117

K/s2 0.275

In time-varying operator behaviour simulations, explained in the next section, the remnant gain immedi-
ately switches from one gain to the other at half of the transition period. This approximation becomes more
accurate when the scheduling function approaches a step function.

4.2. Time-varying human operator and controlled element models
To simulate a manual control task a human operator model and controlled element model are required. The
parameters of those models are made time-varying according to a sigmoid scheduling function as in Eq.(4.2),
to enable time-varying human operator behaviour simulations. P1 and P2 indicate the initial and final pa-
rameter value respectively. The time of maximum rate of change is set by M and the maximum rate of change
itself by G .

P (t ) = P1 + P2 −P1

1+e−G(t−M)
(4.2)

4.2.1. Human operator model
The chosen human operator model is the describing function from the McRuer quasi-linear pilot model as in
Eq.(2.2). Note that this model was only validated for the time-invariant operator in (McRuer and Jex, 1967).
In this thesis it is assumed the model can be extended to time-varying operators, where the model parameters
change over time.

A modification is done in the parametrisation of the model. For controlled elements of the studied con-
trol task, the lag component can be removed according to the crossover model (McRuer and Jex, 1967).
Furthermore Kp (t ) and τL(t ) are replaced by a proportional and derivative error gain Ke (t ) = Kp (t ) and
K ė (t ) = Kp (t )τL(t ) respectively as in Eq.(4.3). This avoids an ambiguity in identification between Kp (t ) and
τL(t ).

HP ( jω, t ) = (Ke (t )+K ė (t ) jω)e− jωτ(t ) ω2
nm(t )

ω2
nm(t )+2ζnm(t )ωnm(t ) jω+ ( jω)2

(4.3)

For simulation the transfer function needs to be converted to state-space format. The introduced states have
no physical meaning however. The time delay e− jωτ(t ) is ignored for the conversion and will be implemented
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separately. The resulting continuous time state-space system is given in Eq.(4.4)-(4.5). Note that the system
matrices are time-varying.

(
ẋ1

ẋ2

)
=

(
0 1

−ω2
nm(t ) −2ζnm(t )ωnm(t )

)
︸ ︷︷ ︸

Ac (t )

(
x1

x2

)
+

(
0
1

)
︸︷︷︸
Bc (t )

e

(4.4)

u = (
Ke (t )ω2

nm(t ) K ė (t )ω2
nm(t )

)︸ ︷︷ ︸
Cc (t )

(
x1

x2

)
(4.5)

The continuous time state space system could be numerically integrated over time. However, during verifica-
tion it was found that the simulation needs to happen with discrete time models as this maintains consistency
with the discrete identification method, and therefore avoids unwanted biases. Thus the time-varying system
needs to be discretised each timestep. In Matlab one would use the c2d command, in Python this procedure
was implemented by the author as in Figure 4.1. Both Ac and Bc matrices are discretised, resulting in system
Eq.(4.6). The Cc matrix remains the same.

˙̄x = Ad [i ]x̄ +Bd [i ]e u =Cc [i ]x̄ ∀i = 0, .., N −1, N (4.6)

Figure 4.1: Python implementation of Matlab’s c2d for discretising state space matrices.

With the discrete time state space system, the undelayed control output is calculated. Delay is taken into
account by index shifting the control output by a corresponding number of timesteps as in Eq.(4.7). Index
shifts can only be integers. This is an exact representation of delay, as long as the delay is an integer multiple
of the sample time. The index shift is varying in size as the time delay is varied.

ud [i ] = u[i − int

(
τ[i ]

∆t

)
] ∀i = 0, .., N −1, N (4.7)

4.2.2. Controlled element model
The controlled element transfer function is given in Eq.(4.8). It is capable of representing both single and
double integrator dynamics by varying the break frequency ωb(t ). For simulation it is converted to the state
space system in Eq.(4.9)-(4.10). Again a discretisation is done at each timestep using the algorithm in Figure
4.1 for the Ec and Fc matrices. The discretised state space system for the controlled element is then given by
Eq.(4.11).

HC E ( jω) = Kc (t )

( jω)2 +ωb(t ) jω
(4.8)

(
ż1

ż2

)
=

(
0 1
0 −ωb(t )

)
︸ ︷︷ ︸

Ec (t )

(
z1

z2

)
+

(
0
1

)
︸︷︷︸
Fc (t )

u (4.9) y = (
Kc (t ) 0

)︸ ︷︷ ︸
Hc (t )

(
z1

z2

)
(4.10)

˙̄z = Ed [i ]z̄ +Fd [i ]u y = Hc [i ]z̄ ∀i = 0, .., N −1, N (4.11)
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4.3. Simulation conditions
Several simulation scenarios are considered in the following work, corresponding to different time-variant
and time-invariant human operator behaviours. Furthermore a distinction is made between remnant noise
active or not. If noise is active, different remnant filters are possible. These choices are encoded in the condi-
tion ID CX-NX-X as in Eq.(4.12).

C 1︸︷︷︸
Condition

− N 1︸︷︷︸
Noise active (N1) or not (N0)

− 1︸︷︷︸
Filter order

(4.12)

The studied conditions are described in Table 4.3. They are simulated for all remnant filters. The correspond-
ing parameters for the human operator model and controlled element model are shown in Table 4.4, both
before (P1) and after (P2) adaptation following the sigmoid scheduling function. Conditions C1, C2 and C3
are obtained from (Zaal, 2016), they were determined experimentally. In C4 the time delay adaptation is cho-
sen by the author, with the constraint to keep the simulation stable. Condition C5 is then a combination of
the adapting operator in both equalisation and time delay.

Table 4.3: Descriptions of studied simulation conditions and their scheduling function.

Condition Description Scheduling function

G [s−1] M [s]
C1 Time-invariant operator, single integrator controlled element - -
C2 Time-invariant operator, double integrator controlled element - -
C3 Time-variant operator in equalisation, single to double integrator

controlled element
0.5 50

C4 Time-variant operator in time delay, single integrator controlled
element

10 50

C5 Time-variant operator in equalisation and time delay, single to
double integrator controlled element

10 50

Table 4.4: Parameters for operator and controlled element models as function of condition number.

Human operator Controlled element
Ke [−] K ė [−] τ [s] ωnm [r ad/s] ζnm [−] Kc [−] ωb [r ad/s]

1 2 1 2 1 2 1 2 1 2 1 2 1 2
C1 0.09 - 0.036 - 0.28 - 11.25 - 0.35 - 90 - 6 -
C2 - 0.07 - 0.084 - 0.28 - 11.25 - 0.35 - 30 - 0.2
C3 0.09 0.07 0.036 0.084 0.28 0.28 11.25 11.25 0.35 0.35 90 30 6 0.2
C4 0.09 0.09 0.036 0.036 0.28 0.32 11.25 11.25 0.35 0.35 90 90 6 6
C5 0.09 0.07 0.036 0.084 0.28 0.32 11.25 11.25 0.35 0.35 90 30 6 0.2

4.4. Simulation flow-chart
Because of the introduced noise the signals and results are stochastic processes. To say something useful
about the process, different realisations need to be generated. Therefore a Monte-Carlo simulation structure
is created, as shown in Figure 4.2. An overview of all major steps in the simulation is given.
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Figure 4.2: Flow chart of simulation loop.
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Human Controller Identification Setup

Using the simulated time traces of the error and the control signal, a model for the human operator can be
identified. A linear difference equation with ‘AutoRegressive with eXternal input’(ARX) structure of certain
order is used. The coefficients of this ARX model need to be identified. Then these coefficients need to be
converted to the actual pilot model parameters to complete the identification process. The approaches used
for these two steps are described in this chapter.

5.1. ARX model fitting
In the literature review in Section 2.3 the general ARX model structure is described. In the work of (van
Grootheest, 2017), an investigation is done which model order gives the best identification results. However,
the order is constrained by the parameter retrieval method used. Therefore a second order ARX model is
assumed to allow for straightforward parameter retrieval as described later.

The ARX model structure is repeated in Eq.(5.1). Note that e(t −nk ) = q−nk e(t ). Substituting the A(q) and
B(q) polynomials corresponding to a second order model (na = 2,nb = 2), then Eq.(5.2) is the resulting model
from error signal to control signal that needs to be identified.

u(t ) = B(q)

A(q)
q−nk e(t )+ 1

A(q)
ε(t ) (5.1)

H(q) = u(t )

e(t )
= bd

0 +bd
1 q−1

1+ad
1 q−1 +ad

2 q−2
q−nk (5.2)

The ARX model can be rewritten in linear regression format using the one-step-ahead predictor û(t |t − 1)
in Eq.(5.3) (Ljung, 1999). This results in the regression vector and coefficient vector as in Eq.(5.4)-(5.6). The
coefficients can be estimated using the least squares approach. The delay parameter nk cannot be included in
the regression vector and needs to be specified before applying least squares estimation. This will be treated
in Chapter 7.

Ordinary least squares (OLS) is performed for the time-invariant operator parts of the simulation, thus
before and after the change. Recursive least squares (RLS) is used for both time-invariant and time-variant
operator, i.e. during the change as well. They are described in the next sections.

û(t |t −1) = [1− A(q)]u(t )+B(q)e(t ) (5.3) û[i |i −1,θ] =ϕ[i ]θ (5.4)

ϕ[i ] = (−u[i −1] −u[i −2] e[i −nk ] e[i −nk −1]
)

(5.5)

θ = (
ad

1 ad
2 bd

0 bd
1

)T
(5.6)

5.1.1. Ordinary least squares estimation
OLS estimation is done when the simulation run is completed, since then all data points are known. OLS
estimation is performed only for the time-invariant parts of the run (before and after the adaptation), since it
acts in batch mode and cannot track changes in the parameters.

The OLS criterion to be minimised is given in Eq.(5.7). The corresponding OLS estimator is given in
Eq.(5.8) using n data points. Regression matrix Φ and the vector of simulated control output values u are
then defined in Eq.(5.9)-(5.10). Care should be taken to choose ist ar t such that all entries in the regression
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matrix are known. Furthermore a run-in time equal to two seconds is chosen to let transients die out in the
simulation. This means ist ar t = 200.

θ̂OLS
n = argmin

θ

1

n

ist ar t+n∑
i=ist ar t

(u[i ]−ϕ[i ]θ)2 (5.7) θ̂OLS
n = (ΦTΦ)−1ΦT u (5.8)

Φ=


ϕ[ist ar t ]

ϕ[ist ar t +1]
· · ·

ϕ[ist ar t +n]

 (5.9) u = (
u[ist ar t ] u[ist ar t +1] · · · u[ist ar t +n]

)T

(5.10)

5.1.2. Recursive least squares estimation
To track the adaptation of the human operator, the RLS algorithm with forgetting factor is used during the
simulation run. Initial conditions for the coefficient vector θ̂0 and for the covariance matrix P0 are specified
in Eq.(5.11). The forgetting factor was tuned in (van Grootheest, 2017) and is taken as λ = 0.99609. The
RLS algorithm update steps are given in Eq.(5.12). Again, estimation can only start when all entries in the
regression vector are known, however, the run-in time of ist ar t = 200 already takes care of that.

θ̂0 =
(−1.85 0.85 0.08 −0.08

)T
P0 = 10,000I 4x4 (5.11)

Ki = Pi−1ϕ
T [i ](ϕ[i ]Pi−1ϕ

T [i ]+λ)−1

θ̂i = θ̂i−1 +Ki (u[i ]−ϕ[i ]θ̂i−1) ∀i = ist ar t , .., N −1, N
Pi = 1

λ (Pi−1 −Kiϕ[i ]Pi−1)
(5.12)

5.2. Parameter retrieval
To retrieve the human operator model parameters from the identified ARX coefficients, a parameter retrieval
process is followed. The ARX model as in Eq.(5.2) can be converted to a discrete time transfer function as in
Eq.(5.13) using the following Z-transform property: Z [q−n f (i∆t )] = z−nF (z). Note that nk = τ/∆t .

Hp (z) = bd
0 +bd

1 z−1

1+ad
1 z−1 +ad

2 z−2
z− τ

∆t (5.13)

This discrete time transfer function should be converted to continuous time domain, since the human oper-
ator model is defined in that domain. In Matlab this is done easily using the d2c command by specifying a
conversion method and the timestep the discrete model uses. In Python an equivalent function to d2c will
need to be programmed. The conversion result is a continuous time transfer function as in Eq.(5.14).

Hp (s) = bc
0s +bc

1

s2 +ac
1s +ac

2

e−sτ (5.14)

The final step is to compare the continuous time identified transfer function coefficients with the analytical
human operator transfer function shown in Eq.(5.15). A system of equations can be set up to retrieve the
human operator parameters as in Eq.(5.16). The delay is treated in Chapter 7.

HP (s) = Keω
2
nm +K ėω

2
nm s

ω2
nm +2ζnmωnm s + s2

e−sτ (5.15)

Ke = bc
1

ac
2

K ė = bc
0

ac
2

ζnm = ac
1

2
p

ac
2

ωnm =
√

ac
2

(5.16)

Now it becomes clear why a second order model is advantageous for parameter retrieval: the obtained system
is neither under- or overdetermined. Higher order ARX models would lead to an overdetermined system,
requiring model order reduction in order to solve for the operator parameters.
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5.2.1. Implementing Matlab’s d2c in Python
The goal of the d2c function is to convert the discrete time transfer function coefficients estimates, θd =(
ad

1 ad
2 bd

0 bd
1

)
, to continuous time transfer function coefficients θc =

(
ac

1 ac
2 bc

0 bc
1

)
. Four different

conversion methods can be chosen for the command. It was found that the ‘zero order hold’ (ZOH) method
is the most straightforward one to implement in Python and later in the experiment software.

The steps in Table 5.1 are identified in the conversion process by analysing the Matlab command source
code files. Next to the Matlab implementation, the corresponding step in the Python implementation by the
author is stated.

Table 5.1: Steps in converting the discrete time transfer functions coefficients to continuous time in Matlab and Python. [path] =
C:\Program Files\MATLAB\R2017a\toolbox\shared\controllib \engine

Step Matlab implementation Python implementation
1 Input to d2c() is a transfer function, convert it first

to state space format and call corresponding d2c()
function for a state space system.

Write the transfer function in controllable
canonical form state space system as in
Eq.(5.17). Fill in matrices with the coeffi-
cients.

Source: [path]\+ltipack\@ tfdata\d2c.m
2 Check if state space system is proper. Then call

utInvDiscretize.m
/

Source: [path]\+ltipack\@ssdata\d2c.m
3 The specified method is ZOH. Create expanded ma-

trix containing Ad and Bd as in Eq.(5.18). Then call
utScaledLogm.m with that expanded matrix as in-
put.

Create expanded matrix containing Ad

and Bd as in Eq.(5.18).

Source: [path]\+ltipack\@ssdata\utInvDiscretize.m
4 Prescale the matrix using mscale.m. Then take

the matrix logarithm using logm.m. Finally apply
postscaling to the result using lrscale.m

Ignore pre- and postscaling. Just apply
Numpy’s logm() function to the expanded
matrix.

Source: [path]\numerics\utScaledLogm.m
5 Divide result by sample time. Select the new Ac and

Bc matrices from the expanded matrix. Cc and Dc

are equal to Cd and Dd respectively.

Divide result by sample time. Select the
new Ac and Bc matrices from the ex-
panded matrix. Cc and Dc are equal to
Cd and Dd respectively.

Source: [path]\+ltipack\@ssdata\utInvDiscretize.m
6 Convert the continuous time state space system to

a continuous time transfer function.
Convert continuous time state space sys-
tem to a continuous time transfer func-
tion by calculating the coefficients using
Eq.(5.19).

Source: [path]\+ltipack\@ssdata\d2c.m & Source:
[path]\+ltipack\@tfdata\d2c.m

Ad =
(

0 1
−ad

2 −ad
1

)
Bd =

(
0
1

)
Cd = (

bd
1 bd

0

)
Dd = 0 (5.17)

L =
(

Ad Bd

OnBd
x nAd

I nBd
x nBd

)
(5.18)

H(s) =Cc (sI − Ac )−1Bc +Dc (5.19)
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5.3. Identification flow-chart
The functional steps in the identification are shown in Figure 5.1. Note that the ARX model fitting and param-
eter retrieval is done for a whole range of ARX models with different delay parameter. This will be explained
in detail in Chapter 7.

Figure 5.1: Flow chart of identification loop.



6
Code verification

Before using the developed simulation to perform research, verification of the code ensures correct conclu-
sions can be drawn from its results. This is done by checking simplified cases up to the complicated case. The
simulation and identification loop are verified separately.

6.1. Verification of simulation loop
A comparison is done between two operator transfer functions. The first is the known analytical transfer
function from the operator model. The second is an identified transfer function obtained with the Fourier
Coefficient (FC) method, using only the error input and control output signals of the operator. This is done
in a remnant free, time-invariant behaviour simulation run (C1-N0) as shown in Figure 6.2a.

The FC method is an open-loop identification method giving an estimate of the true transfer function at
the frequencies of the forcing function (van Paassen and Mulder, 1998). Time series data from the simulation
is directly used, giving an independent estimate. In Figure 6.1 the transfer functions are shown to be a close
match. Similar results were obtained for condition C2-N0. This implies that the state-space implementation
of the operator and controlled element models and their propagation is done correctly.

Figure 6.1: Comparison between analytical and identified transfer function using the FC method, for condition C1-N0.

Finally, a time-varying human operator simulation run is shown in Figure 6.2b according to condition C3-N0.
As expected larger amplitude control action can be seen for the double integrator. Further verification for the
time-varying simulation can be done by verifying the identification loop.

6.2. Verification of identification loop
To verify the identification loop both the OLS and RLS estimation of the ARX model need to be checked.
This is done for the time-invariant and time-varying behaviour simulations respectively. Furthermore the
conversion of the discrete ARX model coefficients to the actual operator model parameters is verified in the
time-varying case. No remnant noise is added, since this would add a bias disturbing the verification. Without
remnant, theoretically a zero bias in parameter estimation is expected.

Reference values for the ARX coefficients are found by discretising the known continuous time human op-
erator transfer function for the different simulated conditions. This is done using Matlab’s c2d command and
the results are listed in Table 6.1. Note that the results are dependent on the method and timestep assumed
in the discretisation. The reference values will be used in plots to verify whether the estimation bias is zero.
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(a) C1-N0: Time-invariant, single integrator. (b) C3-N0: Time-variant, single to double integrator.

Figure 6.2: Time traces of remnant-free simulation.

Table 6.1: Reference values for discrete ARX model coefficients valid for conditions C1-N0, C2-N0 and C3-N0, assuming ZOH discretisa-
tion with timestep ∆t = 0.01s

Coefficient Before HO adaptation (C1, C3) After HO adaptation (C2, C3)
bd

0 0.04428 0.1024
bd

1 -0.04318 -0.1016
ad

1 -1.912 -1.912
ad

2 0.9243 0.9243

In Figure 6.3a the coefficient time traces estimated by OLS and RLS are shown for condition C1-N0. The OLS
estimation perfectly overlaps with the reference values. The estimation relative bias can be calculated from
Equation 6.1. They are listed in Table 6.2. Their small magnitudes show that the OLS estimation is correct,
with only insignificant numerical precision errors remaining. Furthermore the RLS estimation converges to
the OLS estimated coefficients at about 10s, after a 2s run-in time. This time to convergence is dependent on
the forgetting factor selected, the fact that it converges is a verification that the RLS method is implemented
correctly.

Br = θ̂−θ
θ

(6.1)

Table 6.2: Relative bias in ARX coefficients with OLS estimation for condition C1-N0.

Coefficient Br Coefficient Br

ad
1 5.91e-5 bd

0 -7.69e-5
ad

2 -3.14e-5 bd
1 5.51e-5

With the time-invariant case verified, the more complicated time-varying case can be checked. Only the
equalisation adaptation scenario C3-N0 is taken into account since then a straightforward comparison of
the results can be made with (van Grootheest, 2017). In Figure 6.3b the RLS estimation results for the ARX
coefficients are shown. After converging, the RLS follows the change in the reference coefficients due to
operator adaptation as expected.

The final step to be verified is the conversion of the identified ARX coefficients to the operator model
parameters. This conversion is done at every timestep and can be compared with the reference parameter
values set in the simulation inputs. The reference values are again scaled by the sigmoid function used to
introduced the adaptation. Figure 6.4 shows the evolution in time, indicating that the conversion is done
correctly.
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(a) C1-N0: Time-invariant, single integrator. (b) C3-N0: Time-variant, single to double integrator.

Figure 6.3: Time traces of estimated ARX model coefficients in remnant-free simulation, compared with the actual reference values.

Figure 6.4: C3-N0: Time traces of estimated operator model parameters, with the actual reference values.





7
Time delay estimation with parallel

recursive ARX

From the literature study a promising strategy to perform time-varying delay estimation is based on ‘adaptive
estimation through parallel processing’ in (Anderson and Moore, 1979). Applied to recursive ARX, this means
a range of ARX models is estimated in parallel, each one assuming a different delay parameter nk . At each
timestep, a quality-of-fit metric is calculated for each ARX model. The delay parameter corresponding to the
best fitting ARX model is then selected as delay estimate. Thus the estimate varies over time according to how
the actual time delay varies.

In Section 7.1 the implementation of parallel recursive ARX in identification and prediction is described.
Two questions arise regarding the performance of this method. In Section 7.2, the sensitivity of the chosen
quality-of-fit metrics to time delay error is investigated. Then the tracking ability of the method is judged
based on time-varying delay simulations in Section 7.3. For both questions the effect of remnant noise is also
treated.

7.1. Implementation in identification and prediction
Parallel recursive ARX estimation is easily implemented in the identification loop. Instead of updating a sin-
gle ARX model at each timestep, a for-loop iterates over a range of nk values, stored in an array nka with
length k. This leads to regression vectors with different delay shifts. The RLS update is performed for each re-
gression vector and the resulting coefficient estimates and covariances are saved for the range of ARX models.

For prediction, a separate loop was made to easily experiment with different quality-of-fit metrics. The iden-
tified ARX models are used to predict the human operator output. The one-step-ahead prediction takes as
input the error signal obtained in the simulation loop and the RLS coefficient estimates obtained in the iden-
tification loop. By iterating over the timesteps, Eq.(7.1) results in the predicted control signal upr edk

[i ] for
each ARX model k.

upr edk
[i ] =ϕk [i ,nka [k]] · θ̂k [i ] ∀ i = ist ar t , ..., N −1, N & k = 0, ...,K −1,K (7.1)

Next, the quality-of-fit between each upr edk
and the simulated control signal usi m is calculated. To enable

tracking of changes in time delay, the quality-of-fit is recalculated every timestep over a window with a length
of iw samples. This allows to select the best fitting ARX model at each moment. The Sliding Variance Ac-
counted For (sVAF) in Eq.(7.2) measures how much of the variance in usi m is explained by upr edk

. A higher
sVAF value is a better fit.

sV AFk,i = max

0,

1−

i∑
j=i−iw

(
usi m[ j ]−upr edk

[ j ]
)2

i∑
j=i−iw

u2
si m[ j ]

 ·100


∀ i = ist ar t + iw , ..., N −1, N & k = 0, ...,K −1,K (7.2)
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The best fitting ARX model is selected at each timestep according to Eq.(7.3). The corresponding delay param-
eter nkesti

is then converted to a time delay by Eq.(7.4) and stored as the time delay estimate at that timestep.
When all predictions are done, plots are generated comparing the actual and estimated time delay from both
metrics. A flow chart of these steps in the prediction loop is given in Figure 7.1.

nkesti
= nka [argmax

k
(sV AFk,i ∀ k = 0, ...,K −1,K )] ∀ i = ist ar t , ..., N −1, N (7.3)

τesti =∆t ·nkesti
∀ i = ist ar t , ..., N −1, N (7.4)

Figure 7.1: Flowchart of prediction loop.

7.2. Sensitivity of quality-of-fit to time delay error
The goal is to find out how sensitive the value of the VAF metric is to errors in time delay estimation. A larger
error sensitivity is preferred since then the ARX model with the correct time delay can be found easier. The
sensitivity is studied in the noise free and noise present case.

7.2.1. Without remnant noise
The noise free case is studied using the data from a single time-invariant operator simulation run with con-
dition C1-N0. The metric is calculated with usi m and upr edk

for each ARX model k over the whole simulation
length at once, after the run-in time of ist ar t samples. This is equivalent to setting iw = N − ist ar t in Eq.(7.2).
In Figure 7.2 the resulting VAF distribution over the ARX models with different delay parameter nk is shown.

Figure 7.2: Quality-of-fit VAF metric for condition C1-N0.

The extremum is reached for nktr ue . However the curve is very flat around the true delay value, meaning that
it is not very sensitive to time delay estimation error. The differences in VAF are due to a bias introduced in
the ARX coefficients, when the time delay assumed is wrong. Note that the huge jumps in VAF value to zero
indicate that predictions became unstable because the time delay assumed in the ARX model is too far from
the true one.
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7.2.2. With remnant noise
To find out whether the metric can identify the correct time delay also in the presence of noise, the previous
simulation is done with remnant noise active. The remnant intensity was set at Pn = 15% using each of the
filters discussed in Section 4.1. Several simulation runs are then done with different realisations. The effect on
the VAF distribution is shown for several realisations in Figure 7.3. The noise-free case is plotted as reference.
For all filters, the VAF values achieved are lower than in the noise-free case. This happens because the noise
introduces an additional bias in the ARX coefficients, adding to the bias present when having a wrong time
delay. For the first and second order filters, there is a broader stability range, while the third order filter gives
a more narrow stability range. Most importantly, the point of maximum VAF, indicated by a cross, does not
correspond anymore to nktr ue in all cases.

(a) C1-N1-1: first order filter. (b) C1-N1-2: second order filter. (c) C1-N1-3: third order filter.

Figure 7.3: Quality-of-fit VAF metric distribution versus delay parameter nk for different remnant filters.

In Figure 7.4 the distribution of maximum VAF for twenty realisations is shown in a scatter plot for each filter.
Each cross represents the extremum of the VAF metric in a certain realisation, plotted against the estimated
delay parameter nkest . Again it is shown that the metric seems to have difficulties to achieve its extremum for
nktr ue in most of the realisations.

The first and second order filter overestimate the time delay, the third order filter underestimates the
delay. This matches results obtained with same order filters in (van Grootheest, 2017). Additionally, the
spread in estimates is a lot smaller for the first and second order filters compared to the third one. Only
the third order filter has realisations in which the true delay parameter was estimated.

(a) C1-N1-1: first order filter. (b) C1-N1-2: second order filter. (c) C1-N1-3: third order filter.

Figure 7.4: Scatter plot of metric extrema and estimated delay parameters for twenty realisations, using the different remnant filters.

To check whether any convergence is happening towards a certain time delay estimate when combining all
realisations, a histogram is included in Figure 7.5 showing the distribution of nkest .

The first order filter converges to nkest = 31, while the second order filter goes more to nkest = 30. Note
again the larger spread in estimates for the third order filter and that it is the only one for which nktr ue was
estimated.

As verification, a scatter plot showing the actual remnant intensity Pn obtained in each run versus nkest

estimated in that run is shown in Figure 7.6. The plots indicate that the nkest result is mainly dependent on
the remnant realisation, and not on small changes in remnant intensity.
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(a) C1-N1-1: first order filter. (b) C1-N1-2: second order filter. (c) C1-N1-3: third order filter.

Figure 7.5: Histograms showing the distribution of estimated delay parameters for twenty realisations, using the different remnant filters.

(a) C1-N1-1: first order filter. (b) C1-N1-2: second order filter. (c) C1-N1-3: third order filter.

Figure 7.6: Remnant intensity versus estimated delay parameter for twenty realisations using the different remnant filters.

7.2.3. Conclusion
To conclude the VAF metric is rather insensitive to errors in time delay estimation due to the small differences
in magnitude between different nk values. In the noise free case the extremum is reached for nktr ue . When
noise is included, the extrema reached do not always correspond to nktr ue , leading to biased time delay es-
timates. Two causes are hypothesised for this. Firstly, the sensitivity to time delay estimation error could be
masked by the introduced noise. Secondly, with noise a bias appears in the ARX model coefficients. Because
of that, different combinations of coefficients and time delay parameter could result in the best quality-of-fit.
That combination does not necessarily correspond anymore to the actual time delay.

7.3. Tracking time-varying time delay
To evaluate the tracking performance of parallel recursive ARX, the sliding window size is varied between
three lengths. The window size is inherently a trade-off between sensitivity to noise and how fast changes
in time delay will be tracked. Two different time-varying operator scenarios are considered. In the first one,
adaptation occurs only in time delay. In the second one, adaptation occurs both in time delay and equalisa-
tion as well, since the controlled element is varied. Both the noise free and noise present case are considered.

7.3.1. Without remnant noise
First the noise free case is considered as verification of time delay estimation with parallel recursive ARX. In
condition C4-N0 only the time delay is varying. This enables to see whether the delay estimates using the
sliding window VAF metric converge to the actual time delay.

As first view, a colour map is made of the sVAF values achieved over time for all ARX models. This view is
shown in Figure 7.7. Three different window sizes are considered. As overlay, the line following the maximum
VAF over time is plotted, indicating nkest . Furthermore nktr ue is included for reference. A second view directly
shows the time delay estimation over time for all windows as in Figure 7.8.
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Figure 7.7: Colour map of sVAF metric over time for condition C4-N0.

Figure 7.8: Delay estimation over time for condition C4-N0.

The window size influences the starting time of the delay estimation, as enough samples need to be present
before the sliding window can be calculated. The estimated delay then converges quickly to the actual delay
for all window sizes.

In Figure 7.7, note the large band of high VAFs, indicating very small differences between the best ARX
model and its neighbours. Furthermore one can see more oscillations in the VAF values for the smaller win-
dow size, because less samples are used to calculate the quality-of-fit and thus it is more sensitive to local
conditions. This effect is smoothed out as the window size increases. After the operator adaptation, the range
of stable ARX models reduces at the lower end of delay estimates.

Figure 7.8 shows that the time delay is well tracked. Naturally the smallest window size tracks the change
in delay the best. For larger window sizes it takes longer before the estimate converges to the actual delay.

Finally a time-varying behaviour simulation where both operator equalisation and time delay vary, is consid-
ered. In Figure 7.10 it can be seen that the tracking is done well but a bit slower as in the case where delay is
the only time-varying element. This is probably due to the fact that ARX coefficients now also need to con-
verge to their new value corresponding to the double integrator in the time-variant behaviour simulation,
before a reliable time delay estimate can be made.
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Figure 7.9: Colour map of sVAF metric over time for condition C5-N0.

Figure 7.10: Delay estimation over time for condition C5-N0.

7.3.2. With remnant noise
For the case with remnant noise active, a distinction is made again between a time-invariant and time-variant
behaviour simulation. This is done to check the tracking performance in presence of noise but without adap-
tation, which could be deteriorated when the sliding window VAF metric is too sensitive to the noise. Next
time-varying behaviour simulations are used to draw the final conclusions about the usability of the parallel
recursive ARX method.

Time-invariant behaviour simulation
Condition C1-N1 was used again in combination with each studied remnant filters. One realisation was used
to plot the evolution of the VAF metric for each window size, as shown in Figures 7.11-7.13.

As was shown before, there were already difficulties to identify the true delay parameter in the time-
invariant scenario where the whole simulation run was used as window for the VAF quality-of-fit metric. This
is naturally also the case for the sliding window VAF metric. In these runs the time delay is actually constant,
but nkest is sensitive to noise. The results are the best for the second order filter. Furthermore window size
iw = 100 is useless, since it is too sensitive to noise.
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Figure 7.11: Colour map of sVAF metric over time for condition C1-N1-1 with first order filter for one realisation.

Figure 7.12: Colour map of sVAF metric over time for condition C1-N1-2 with second order filter for one realisation.

Figure 7.13: Colour map of sVAF metric over time for condition C1-N1-3 with third order filter for one realisation.

Time-variant behaviour simulation
This simulation is done only with the second order filter because it gave the best results in the time-invariant
case. The delay estimation in conditions C4-N1-2 and C5-N1-2 for one realisation is shown in Figures 7.14 and
7.15. Only window sizes iw = 500 and iw = 1000 are shown. In both conditions a change in the average level
of time delay can be seen, however the result is oscillating heavily and biased. Whether or not these results
will be achieved as well in real-life experiments depends on how the human remnant noise is in reality.
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Figure 7.14: Delay estimation over time in condition C4-N1-2 for one realisation.

Figure 7.15: Delay estimation over time in condition C5-N1-2 for one realisation.

7.4. Online implementation
To implement the parallel recursive ARX procedure the steps in Figure 7.16 need to be implemented in the
experiment software platform. Note that the sVAF is only calculated for one window size.

Figure 7.16: Steps for online identification and prediction.

Since the estimated parameters should be updated frequently, it is necessary to investigate how fast these
steps can be executed. In the Python implementation the elapsed time for some critical steps was deter-
mined. In Table 7.1 the execution times are listed for the case where 40 ARX models are estimated in parallel.

Thus for one timestep, the procedure takes approximately 0.126s. This is quite long, and would mean
that an update frequency of 8Hz is only possible for the human operator parameters. However the method
should be implemented in the experiment software platform. This is written in C++, thus the method could
probably execute faster since C++ is a compiled language. Conclusions about the parameter estimate update
frequency can therefore only be drawn once the method is implemented in C++.

System on Intel i5-2450M CPU @ 2.50 GHz with 8GB RAM. Background processes may have influenced these estimates.
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Table 7.1: Approximate execution time of selected steps in identification-prediction algorithm in Python. For steps 2, 3 and 4 there are
40 different ARX models estimated.

Step Execution time [s]
2. Perform RLS 0.040
3. Calculate one-step-ahead prediction 0.040
4. Calculate sVAF 0.040
6. Convert discrete ARX coefficients to HO model parameters 0.006

Sum 0.126

7.5. Results summary
As expected, when looking at results from the investigation in Section 7.2 in the case with noise present, the
tracking of the time delay is also very sensitive to the remnant noise in Section 7.3. The second order filter
gives good results, but the question is now how different real remnant noise is from this assumption. This
will either improve estimation performance or make it worse. It can only be investigated when using human
operator data obtained from an experiment.

The sliding window sizes iw = 500 and iw = 1000 give acceptable results, however with a sampling rate of
100 Hz this means a change in time delay is only detected after 5 or 10 seconds respectively. This could be too
slow in certain situations where time delay is continuously varying. An increased sampling frequency could
reduce this estimation delay for time delay, since more samples are available for the sliding window.

A quick check for execution time of the parallel recursive ARX method was performed for the Python
implementation. It shows that currently the update frequency of the parameters is rather low, and it is hoped
that when implementing the method in the experiment software platform, which is a compiled language, the
update frequency could increase to a feasible level.





8
Conclusion

The aim of this research is to identify time-varying human operator behaviour online during experiments.
The goal of the preliminary study was to find a suitable method for this and check its feasibility in a simula-
tion. The literature survey gave an overview of human operator models and system identification methods
used in cybernetics. The quasi-linear human operator model by McRuer is the most used one. The most suit-
able time-varying identification methods with a potential online implementation are the Extended Kalman
Filter and ARX models with recursive least squares.

The latter was investigated in (van Grootheest, 2017) for offline applications. Two main issues were dis-
covered. Firstly, the ARX model is unavoidably also fitted to the introduced noise and this causes a bias in the
estimated ARX coefficients. Secondly, the time-varying human operator delay cannot be included in the least
squares estimation, thus requiring a different approach.

Looking at different time delay estimation methods from the field of system identification, the following
potential solution was identified. A range of ARX models is estimated in parallel, each one assuming a dif-
ferent delay parameter. At each timestep, a quality-of-fit metric is calculated for each ARX model. The delay
parameter corresponding to the best fitting ARX model is then selected as delay estimate. The delay can how-
ever only be an integer multiple of the sampling time. The method is called parallel recursive ARX.

To check feasibility a time-varying human operator simulation was made in Python according to the work
of (Zaal, 2016). The operator is adapting to a sigmoid-scheduled change of single integrator to double in-
tegrator controlled element. The whole range of ARX models was fitted using recursive least squares with
forgetting factor and then the resulting coefficients were converted to the human operator model parame-
ters. For that conversion a special focus was needed on implementing Matlab’s d2c command in Python.

Using the identified ARX models, the predicted control signal was generated. The VAF metric with sliding
window determined the quality-of-fit between the simulated and predicted control signals at each timestep.
Then the best fitting ARX model was selected and its corresponding assumed time delay was the estimate.

The influence of the sliding window size and the assumed remnant filter on the time delay tracking was
investigated. A window size of 500 samples and the second order remnant filter gave best results. However
the time delay estimate was still oscillating with a high spread. Adaptation could be seen, however it is not
clear whether the method will still work when in real life adaptations are smaller. Finally the execution time
was analysed to check whether online implementation is feasible. However no conclusions could be drawn
yet because for the experiment the algorithm will be implemented in C++, which might be a lot faster than
the Python implementation.
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9
Further Research

The following further research steps proceed towards online identification of the human operator. They are
split in two phases. Phase I consists of further developing parallel recursive ARX and implementing it in the
experiment software platform. Phase II considers the experimental evaluation itself.

Phase I

• The time delay estimation method will be validated by using experimental data as input for the identifi-
cation and prediction loop. Data from a previous experiment at the faculty following the work of (Zaal,
2016) is available.

• The effect of sampling frequency on the delay estimation needs to be investigated using simulation.

• Then the parallel recursive ARX algorithm can be implemented in the experiment software platform,
called DUECA. At first the code from an existing experiment, according to (Zaal, 2016), will be analysed
and the time delay estimation algorithm inserted.

Phase II

In Phase II the time delay tracking performance of the parallel recursive ARX algorithm could be experimen-
tally evaluated. The experiment could be set up to specifically focus on forcing the human operator to adapt
the time delay. Possible experiments include:

• Follow the existing experiment done in (Zaal, 2016) where the controlled element changes from ap-
proximately single to approximately double integrator dynamics. Alternatively, a pure single and dou-
ble integrator could be used. According to (McRuer and Jex, 1967), there should be an adaptation in
operator time delay then.

• In (Boer and Kenyon, 1998) a time-varying gap postview tracking task is used to specifically force adap-
tation of the operator time delay.

• The critical tracking task of (Jex et al., 1966) could be used, which consists of a controlled element
with growing instability that needs to be stabilised by the human controller. There is an associated
adaptation in operator time delay.

• A more exotic experiment is the one described in (Zaal et al., 2013). The display type could be changed
from an explicit representation of self-motion to an optical flow based representation. This increases
the human operator time delay significantly.

Suppose the bias present in the time delay estimates with the current method is unacceptable, the following
alternatives obtained from the literature survey could be considered:

• Extend the parallel recursive ARX method with a prefilter (Björklund, 2003). The prefilter is a noise
model obtained from a fitted ARMAX model to the human operator signals. It is used to filter the noise
out of the input and output signals, before the ARX model is fitted. The ARMAX model requires a non-
linear fitting procedure. The associated computational load could be a problem online, however, the
prefilter could be identified at a lower rate than the ARX model or a-priori to mitigate this.
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• Another option is to use the Box-Jenkins model structure, which allows independent identification of
the noise and system dynamics. The online feasibility of this method requires an investigation however,
since it requires a nonlinear fitting procedure and its potential for recursive fitting is not clear.

• Finally, a possible last resort is to switch to the work of (Popovici et al., 2017) where a dual extended
Kalman filter is successfully used to estimate both human operator equalisation and time delay. The
method is not yet tried out in an online setting during an experiment.
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A
Appendices to preliminary

graduation report

A.1. Monte Carlo simulation for parallel recursive ARX Identification of
delay and other HO Parameters

In the preliminary graduation report only a single simulation run was shown of the parallel recursive ARX
identification (parARX) method used to identify a time-varying human operator (HO) time delay. Further-
more, the focus was only on the HO delay parameter, while also the other HO parameters (Ke , K ė , ωnm and
ζnm) were estimated by parARX. In this appendix, HO parameter estimation results for a Monte Carlo simu-
lation with 100 realisations are discussed.

A.1.1. Parallel recursive ARX for HO delay identification
Since remnant noise is a stochastic process, the identification results of a large amount of realisations of the
simulation should be combined. This way a more general conclusion can be drawn about the usability of
parARX for HO delay estimation. The delay traces were averaged over 100 simulation runs, and 2σ bounds
were calculated. This is done for conditions C1-N1-2 and C5-N1-2 with two different sVAF window lengths
iw , as shown in Figure A.1.
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Figure A.1: Result of delay identification with parARX, averaged over 100 realisations of conditions C1-N1-2 (a-b) and C5-N1-2 (c-d) for
two window lengths iw . The 2σ bounds and the actual delay τr e f are shown as well for reference.

Delay τ is overestimated on average, in both the time-invariant (Figure A.1a-b) and time-variant case (Figure A.1c-d).
The time-variant case also shows the significant estimation lag before the delay is converged to its new level.
Although the bounds are smaller for a larger window length, note that the 2σ bounds cover already a large
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region in which possible time delay adaptations might happen. This reduces the ability of parARX to detect
small delay adaptations.

On top of that, the single run results in Section 7.3 already indicated the large oscillations in the estimation
compared to the magnitude of adaptation. This also reduces the practical usability of parARX for online
identification of delay.

A.1.2. Identification of other HO parameters
Next to parARX, which relies on many ARX models with different delay assumption, one can use a single
recursively identified ARX model with a constant delay assumption (referred to as singleARX, with nk = 28
and τ = 0.28 s). A comparison is made of identification performance between parARX and singleARX for
estimation of HO parameters other than delay.

Results for condition C3-N1-2 are shown in Figure A.2. Condition C3-N1-2 contains HO adaptation from
single to double integrator in all HO parameters, except for the HO delay which is taken constant. The parARX
method shows more bias for Ke and similar bias for the other parameters. This is likely due to the overesti-
mated delay with parARX, while singleARX assumes the correct delay.
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Figure A.2: Result of HO parameter identification with parARX (iw = 500 only) and singleARX, averaged over 100 realisations of condition
C3-N1-2. The actual HO parameters are shown as well for reference.

Figure A.3 shows identification results for C5-N1-2. This condition also contains an adaptation in HO delay.
The biases achieved with parARX remain very similar to those in condition C3-N1-2. However, the biases for
singleARX do change. After adaptation, for Ke & ζnm the bias increases and for K ė & ωnm the bias decreases.
This is due to the wrong delay being assumed in singleARX after adaptation. Depending on whether there is
an overestimation or underestimation (as in this case), the bias magnitudes will either increase or decrease
for the different HO parameters.
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Figure A.3: Result of HO parameter identification with parARX (iw = 500 only) and singleARX, averaged over 100 realisations of condition
C5-N1-2. The actual HO parameters are shown as well for reference.
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A.2. Parallel recursive ARX identification at 1000 Hz
To extend the preliminary graduation report, the effect of sampling frequency on human operator identifi-
cation with recursive ARX is investigated. Up to now identification was done at 100 Hz. Perhaps a higher
sampling frequency improves the tracking of the human operator model parameters. In this appendix, the
modifications required in the simulation and identification to run at 1000 Hz are described. Furthermore the
identification results at this higher sampling frequency are discussed and a conclusion is made whether they
improved.

A.2.1. Modifications to simulation and identification
Simulation runs now need to be done with a timestep of ∆t = 0.001s. This is as simple as changing the
timestep value in the code, except for the remnant noise generation. The noise needs to be scaled according
to the time step, to have equal remnant intensity in the 100Hz and 1000Hz case. The generated white noise
array nw is scaled according to Eq. A.1, before passing it through the remnant filter. This approach makes the
remnant gains independent of sampling frequency.

nwscaled = nw

∆t
(A.1)

The following modifications in the identification process are required. First, the analytical human operator
transfer function needs to be discretised again using Matlab’s c2d command with the new timestep as input.
This results in updated discrete ARX coefficients shown in Table A.1, for use as reference in plots.

Table A.1: Reference values for discrete ARX model coefficients valid for condition C3 and C5, assuming ZOH discretisation with timestep
∆t = 0.01s and ∆t = 0.001s

Coefficient Before HO adaptation After HO adaptation
∆t = 0.01s ∆t = 0.001s ∆t = 0.01s ∆t = 0.001s

bd
0 0.04428 0.004544 0.1024 0.01059

bd
1 -0.04318 -0.004533 -0.1016 -0.01058

ad
1 -1.912 -1.992 -1.912 -1.992

ad
2 0.9243 0.9922 0.9243 0.9922

The recursive least squares (RLS) used in the identification is dependent on a forgetting factor, tuned in (van
Grootheest, 2017) for the 100 Hz case. To keep the same weighing when the sampling frequency is increased,
the factor needs to be adjusted. It is selected such that the memory horizon size in time is kept constant,
according to Eqs. A.2-A.3. This means an increased number of samples is used while the same time-span
of data is covered in the RLS update. Not adjusting the forgetting factor resulted in unstable identification
results at 1000 Hz for simulations with remnant noise.

Furthermore the initial condition for the RLS is chosen in the neighbourhood of the new reference values
to enable fair comparison. The time required for convergence depends on how close initial conditions are
chosen.

T0100H z =
Ts100H z

1−λ100H z
= 0.01

1−0.99609
= 2.5575 s (A.2)

λ1000H z = 1− Ts1000H z

T0100H z

= 1− 0.001

2.5575
= 0.999609 (A.3)

Finally, in parallel recursive ARX identification the best fitting model is selected at each time instant with the
sVAF metric. Its window size is now adjusted to keep the same time span in the 1000 Hz case as in the 100 Hz
case. This means more samples are used for the sVAF calculation in the 1000 Hz case.

A.2.2. Identification results at 1000 Hz sampling
Identification is first done at 1000 Hz for conditions C3-N0 and C3-N1-2. They can show whether recursive
ARX identification improves with increased sampling frequency, adding to the work of (van Grootheest, 2017).
Then time-varying time delay condition C5-N1-2 can be evaluated, requiring the use of parallel recursive ARX.

Constant delay, without remnant noise: For condition C3-N0, recursive ARX identification is applied while
assuming a constant and known time delay (nk = 28 for 100Hz and nk = 280 for 1000Hz, thus τ = 0.28s). In
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Figure A.4, the RLS with adjusted forgetting factor converges correctly in the 1000 Hz case. Figure A.5 shows
the human operator model parameters, with no major differences in tracking performance between 100 Hz
and 1000 Hz.

(a) 100 Hz. (b) 1000 Hz.

Figure A.4: Time traces of estimated ARX coefficients for condition C3-N0, assuming τ= 0.28s. Estimation with recursive ARX.

(a) 100 Hz. (b) 1000 Hz.

Figure A.5: Time traces of estimated operator model parameters for condition C3-N0, assuming τ = 0.28s. Estimation with recursive
ARX.
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Constant delay, with remnant noise: Remnant noise is now added in the simulation. The remnant intensity
in both the 100 Hz and 1000 Hz was checked to be the same. The identification results for the ARX coefficients
in Figure A.6 show that both cases have a bias due to remnant while also showing the operator adaptation.
Figure A.7 with operator model parameters gives a better view on the tracking performance in both cases. It
can be seen that 1000 Hz sampling is not resulting in a major improvement.

(a) 100 Hz. (b) 1000 Hz.

Figure A.6: Time traces of estimated ARX coefficients for condition C3-N1-2, assuming τ= 0.28s. Estimation with recursive ARX.

(a) 100 Hz. (b) 1000 Hz.

Figure A.7: Time traces of estimated operator model parameters for condition C3-N1-2, assuming τ = 0.28s. Estimation with recursive
ARX.

Time-varying delay, with remnant noise: For the time-varying delay case, condition C5-N1-2, the parallel
recursive ARX method is used. Thus at every time step the best fitting ARX model and corresponding pa-
rameter estimates are chosen. Figure A.8 shows that the tracking of the model parameters does not improve
with increasing sampling frequency. Additionally estimates of the time delay are shown in Figure A.9, with no
significant improvement in tracking in the 1000 Hz case.
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(a) 100 Hz, with window size iw = 500. (b) 1000 Hz, with adjusted window size iw = 5000.

Figure A.8: Time traces of estimated operator model parameters for condition C5-N1-2. Estimation with parallel recursive ARX.

(a) 100 Hz, with window size iw = 500. (b) 1000 Hz, with adjusted window size iw = 5000.

Figure A.9: Time traces of estimated time delay for condition C5-N1-2. Estimation with parallel recursive ARX.
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A.3. Applying parallel recursive ARX on experimental data
As validation of the parallel recursive ARX method (parARX), it is applied to experimental data obtained in
the experiment described in Part I. Additionally, it is compared with using a single recursively identified ARX
model with a constant delay assumption (referred to as the singleARX method, with nk = 28 and τ = 0.28 s).
Runs in condition TV12F for one subject are considered.

Figure A.10 shows identification results for a single experimental run. The singleARX method can start at
t = 0 s, while parARX can only start at t = 5 s because of the sliding window used in the VAF calculation. The
parameter traces are similar in both methods for Ke , ζnm and ωnm . For the K ė parameter the traces diverge
for some periods in time. When looking simultaneously at τ, in those periods its estimation is lacking. This
is due to the fact that not one ARX model had a positive VAF value in those periods, as shown in Figure A.11.
However, all the ARX models did deliver parameter estimation during those periods. This issue is not present
in the singleARX method, a clear advantage in online identification.
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Figure A.10: Comparison of HO identification with parARX method (iw = 500) and singleARX method, for a single run of a single subject
in condition TV12F.
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Figure A.11: Plot of sVAF for both sliding window sizes used in parARX method. Each trace presents the sVAF of an ARX model with a
certain delay assumption. There are periods where all sVAF traces are zero.

The same comparison was done when averaging identification results over all runs done by the subject in
condition TV12F, resulting in Figure A.12. The drop-outs in the estimation with parARX are now smoothed by
the averaging. The τ estimation shows on average a relatively constant delay before and after the adaptation,
as expected for this condition according to (Zaal, 2016).
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Figure A.12: Comparison of HO identification with parARX method (iw = 500) and singleARX method, averaged for all runs of a subject
in condition TV12F.
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Appendices to scientific article

B.1. Implementing recursive ARX in DUECA
For the experiment described in the scientific article, the recursive ARX identification method was imple-
mented inside an existing DUECA project "TVDynamicsExp" used in (van Grootheest, 2017). The modified
project was called "TVIdentExp". The modifications are listed below and indicated in Figure B.1.

Figure B.1: Flow chart of DUECA project "TVIdentExp", showing modules and channels. Modifications with respect to the
"TVDynamicsExp" project are indicated in red.

Modifications, classified by module:

• Identification: a new module was added in which the recursive ARX method and the conversion of the
ARX coefficients to operator model parameters were implemented. Two output streaming channels
were created, namely: PilotParam channel containing the identified operator model parameters and
Debug channel containing recursive least squares debug information.

• SignalChecker: in the window shown at the HMIlab monitoring station, plots were added showing time
traces of the ARX coefficients and the operator parameters. Furthermore a plot was added to show the
status of the frontal push button on the side stick. This information came from the PrimarySwitches
channel.
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• Datalogging: added logging of PilotParam, Debug and PrimarySwitches channels to the log file.

• ECI: the experiment conditions described in the scientific article were added as selectable options to
the experiment control interface.

• ForcingFunctions:

– in the input FoFuData_2_T.dat file, the forcing function was shifted to the left by adjusting the
phases as specified in the scientific article.

– Furthermore a replay mode was added which forces DUECA to load the control signal and pitch
signal from Sim_u_pitch.dat and replay it through the FoFuChannel.

– To allow for an adjustable run-in time of the simulation, the forcing function length is adjusted.
Additional run-in time is seen as negative time t .

B.1.1. Verification
To verify the new identification module, a replay mode was incorporated in the DUECA simulation. If en-
abled, both the human operator control signal and pitch signal are loaded from a file instead of being gener-
ated by the operator. Identification is then done using the loaded control signal and the resulting error signal.
The operator parameter traces are then compared with results from identification in the developed Python
simulation using the same input traces. The Python simulation was already verified in Chapter 6.

In Figure B.2 the traces for the operator parameters are compared, showing no difference after conver-
gence from the initial condition to the actual parameters. The initial convergence might be different between
both cases due to numerical precision errors.

Figure B.2: Comparison between identification in DUECA and Python based on the same control and error signals.



EXPERIMENT BRIEFING  

ONLINE TIME-VARYING PILOT MODEL IDENTIFICATION 

Thank you for your contribution to this scientific endeavour! You will be participating in a tracking 
experiment in the research simulator in the HMI laboratory. The adaptation of the human controller to 
changing controlled element dynamics is investigated. This briefing will introduce you to the experiment and 
what is expected of you as a participant. 

GOAL OF THE EXPERIMENT 

The goal of this experiment is to investigate the performance of an online identification algorithm to identify a 
time-varying model of the adapting human controller. The results can be used to evaluate the algorithm’s 
performance and its use in future operator adaptation detection tools. 

PITCH TRACKING TASK WITH CHANGING DYNAMICS 

The task you will be trained in is a pitch tracking task. In this task, it is your goal to continuously minimize a 
deviation of the current pitch angle from a desired pitch angle, as shown in Figure 1. The tracking task can be 
compared to a glide-slope following task in an aircraft, in which the only variable controlled is the pitch angle. 

 

FIGURE 1:  SCHEMATIC REPRESENTATION OF A PITCH TRACKING TASK               FIGURE 2: COMPENSATORY 
DISPLAY 

The error between the desired and current pitch angle will be displayed on the primary flight display, shown 
in Figure 2. The aircraft’s attitude is displayed by fixed wings and the error is displayed by a moving 
horizontal line, on a contrasting background. It is important that you try to keep the error as small as 
possible. For giving control inputs, you will use a side-stick on the right-hand side of the seat. 

In the experiment, the dynamics of the system you are controlling might change during the tracking run. In 
addition to minimizing the tracking error, it is your task to shortly press the button on the front of the stick 
(Figure 3) as soon as possible after you detect a change in the controlled system dynamics.  
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FIGURE 3: control stick with front push button indicated. 

PROCEDURE  

First a training session will familiarize you with the tracking task at hand for all considered system dynamics 
to be controlled. Furthermore some practice runs with changing dynamics will be done where you will also 
practice indicating a change in dynamics happened through the button push.  

This initial training is followed by the real experiment session, in which all different experiment conditions 
(changes in system dynamics) will be presented in a randomized order. The full experiment will last around 
60mins, with a break halfway.  In case you feel you are getting tired or losing focus, please indicate this: a 
small break can be taken in between any two runs.  

Each tracking run, the subsequent procedure is followed: 

1. The researcher applies the settings for the next run 
2. The researcher checks whether the participant is ready to proceed and initiates the run 
3. The participant performs the tracking task and gives a sign when he notices a different system behaviour 

by pushing the stick button, the button push is confirmed by the researcher 
4. The researcher informs the participant of the performance in the completed run 
5. The researcher checks whether the participant feels any signs of reduced focus 
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EXPERIM ENT CONSENT F ORM 

ONLINE TIME-VARYING PILOT MODEL IDENTIFICATION 

 

Researcher: Wouter Plaetinck   Supervisor: Daan Pool 

Name: ___________________________  Age: ____ 

 

Have you participated in a tracking experiment before: Yes/No 

Do you play computer games regularly: Yes, I play(ed) ____________hour per 
week /No 

Do you have a pilot licence or flying experience: Yes/No 

Are you prone to motion sickness: Yes/No 

If you are sensitive to motion sickness, it is firmly recommended that you do not 
participate in this experiment 

 

 

Please provide your signature below to indicate that you agree to participate 
in this experiment. Signing this form does not annul the responsibilities of the 
researcher and Delft University of Technology towards you as a participant. 

I hereby confirm that I have read the experiment briefing. Also, I affirm that I 
understand the experiment instructions, and I declare that I voluntarily 
participate in this experiment. Finally, I have been informed of the fact that I 
can opt-out of participating in the experiment at any time. 

 

DATE:    SIGNATURE:  
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B.4. Experiment results
This section contains figures with time traces showing adaptation detection results per run. Only the final
repeated measurement of each run-in time level is shown, classified per time-varying condition (TV12F and
TV12S) and per subject. The hyperparameters used for both adaptation detection methods are in Table B.1.
The figures will help the future researcher to investigate cases where the adaptation detection did not work
or triggered a detection too late.

Table B.1: Hyperparameters used in both methods for the shown figures.

δKe [-] δK ė [-] ∆T [s] ns [-]
TICA 0.05 0.02 3 -
MA 0.03 0.012 3 1500
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B.4.1. Condition TV12F
Subject 1
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(a) TICA method
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(b) MA method
Figure B.3: Run-in time 5 s, run 26.
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(a) TICA method
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(b) MA method
Figure B.4: Run-in time 10 s, run 22.
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(a) TICA method
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] Kėavg ± δKė
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(b) MA method
Figure B.5: Run-in time 15 s, run 23.
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Subject 2
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(a) TICA method
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(b) MA method
Figure B.6: Run-in time 5 s, run 25.
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(a) TICA method
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(b) MA method
Figure B.7: Run-in time 10 s, run 26.
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(a) TICA method
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(b) MA method
Figure B.8: Run-in time 15 s, run 29.
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(a) TICA method
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(b) MA method
Figure B.9: Run-in time 5 s, run 26.
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(a) TICA method

0 10 20 30 40 50 60 70 80
−5
0
5

f,
y
[d
eg

],
ω

b[
ra
d/
s] ωb

f

0 10 20 30 40 50 60 70 80
0.0

0.2

K e
[−

] Keavg ± δKe

0 10 20 30 40 50 60 70 80
0.0

0.1

K ė
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(b) MA method
Figure B.10: Run-in time 10 s, run 25.
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(a) TICA method
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(b) MA method
Figure B.11: Run-in time 15 s, run 29.
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(a) TICA method
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(b) MA method
Figure B.12: Run-in time 5 s, run 23.
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] Kėavg ± δKė
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(a) TICA method
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(b) MA method
Figure B.13: Run-in time 10 s, run 26.
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(a) TICA method
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[−
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(b) MA method
Figure B.14: Run-in time 15 s, run 25.
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(a) TICA method

0 10 20 30 40 50 60 70 80
−5
0
5

f,
y
[d
eg

],
ω

b[
ra
d/
s] ωb

f

0 10 20 30 40 50 60 70 80
0.0

0.2

K e
[−

] Keavg ± δKe

0 10 20 30 40 50 60 70 80
0.0

0.1

K ė
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(b) MA method
Figure B.15: Run-in time 5 s, run 24.
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(a) TICA method
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(b) MA method
Figure B.16: Run-in time 10 s, run 27.
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(a) TICA method
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(b) MA method
Figure B.17: Run-in time 15 s, run 25.
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(a) TICA method
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(b) MA method
Figure B.18: Run-in time 5 s, run 24.
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(a) TICA method
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(b) MA method
Figure B.19: Run-in time 10 s, run 26.
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(a) TICA method
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(b) MA method
Figure B.20: Run-in time 15 s, run 30.
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(a) TICA method
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] Kėavg ± δKė
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(b) MA method
Figure B.21: Run-in time 5 s, run 22.
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(a) TICA method
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(b) MA method
Figure B.22: Run-in time 10 s, run 24.
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(a) TICA method
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(b) MA method
Figure B.23: Run-in time 15 s, run 25.
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(a) TICA method
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(b) MA method
Figure B.24: Run-in time 5 s, run 24.
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(a) TICA method
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(b) MA method
Figure B.25: Run-in time 10 s, run 23.
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(a) TICA method
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(b) MA method
Figure B.26: Run-in time 15 s, run 27.
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B.4.2. Condition TV12S
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(a) TICA method
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(b) MA method
Figure B.27: Run-in time 5 s, run 24.
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(a) TICA method
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(b) MA method
Figure B.28: Run-in time 10 s, run 28.
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(a) TICA method
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(b) MA method
Figure B.29: Run-in time 15 s, run 25.
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] Kėavg ± δKė
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(a) TICA method
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(b) MA method
Figure B.30: Run-in time 5 s, run 27.
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(a) TICA method
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(b) MA method
Figure B.31: Run-in time 10 s, run 31.
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0 10 20 30 40 50 60 70 80
0

1

bu
tto

n 
pu

sh
 [-

]

0 10 20 30 40 50 60 70 80
0

1

de
te
ct
io
n 
[-]

TICA Ke
TICA K  e

0 10 20 30 40 50 60 70 80
0

1

fil
te
re
d 
[-]

0 10 20 30 40 50 60 70 80
0

1

st
ep

 [-
]

(a) TICA method
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(b) MA method
Figure B.32: Run-in time 15 s, run 28.
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(a) TICA method
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(b) MA method
Figure B.33: Run-in time 5 s, run 23.
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(a) TICA method
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(b) MA method
Figure B.34: Run-in time 10 s, run 28.
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(a) TICA method
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[−
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(b) MA method
Figure B.35: Run-in time 15 s, run 22.
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(a) TICA method
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(b) MA method
Figure B.36: Run-in time 5 s, run 28.
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0 10 20 30 40 50 60 70 80
0

1

bu
tto

n 
pu

sh
 [-

]

0 10 20 30 40 50 60 70 80
0

1

de
te
ct
io
n 
[-]

TICA Ke
TICA K  e

0 10 20 30 40 50 60 70 80
0

1

fil
te
re
d 
[-]

0 10 20 30 40 50 60 70 80
0

1

st
ep

 [-
]

(a) TICA method
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(b) MA method
Figure B.37: Run-in time 10 s, run 21.
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(a) TICA method
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(b) MA method
Figure B.38: Run-in time 15 s, run 22.
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(a) TICA method
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(b) MA method
Figure B.39: Run-in time 5 s, run 21.
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(a) TICA method
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0 10 20 30 40 50 60 70 80
0

1

bu
tto

n 
pu

sh
 [-

]

0 10 20 30 40 50 60 70 80
0

1

de
te
ct
io
n 
[-]

MA Ke
MA K  e

0 10 20 30 40 50 60 70 80
0

1

fil
te
re
d 
[-]

0 10 20 30 40 50 60 70 80
0

1

st
ep

 [-
]

(b) MA method
Figure B.40: Run-in time 10 s, run 28.
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(a) TICA method
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(b) MA method
Figure B.41: Run-in time 15 s, run 26.
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(a) TICA method
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(b) MA method
Figure B.42: Run-in time 5 s, run 32.
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(a) TICA method
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(b) MA method
Figure B.43: Run-in time 10 s, run 31.
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(a) TICA method
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0 10 20 30 40 50 60 70 80
0

1

bu
tto

n 
pu

sh
 [-

]

0 10 20 30 40 50 60 70 80
0

1

de
te
ct
io
n 
[-]

MA Ke
MA K  e

0 10 20 30 40 50 60 70 80
0

1

fil
te
re
d 
[-]

0 10 20 30 40 50 60 70 80
0

1

st
ep

 [-
]

(b) MA method
Figure B.44: Run-in time 15 s, run 29.
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(a) TICA method
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(b) MA method
Figure B.45: Run-in time 5 s, run 23.
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(a) TICA method
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(b) MA method
Figure B.46: Run-in time 10 s, run 29.
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(a) TICA method
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(b) MA method
Figure B.47: Run-in time 15 s, run 27.
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(a) TICA method
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(b) MA method
Figure B.48: Run-in time 5 s, run 25.
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(a) TICA method
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(b) MA method
Figure B.49: Run-in time 10 s, run 26.
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(a) TICA method

0 10 20 30 40 50 60 70 80
−5
0
5

f,
y
[d
eg

],
ω

b[
ra
d/
s] ωb

f

0 10 20 30 40 50 60 70 80
0.0

0.2

K e
[−

] Keavg ± δKe

0 10 20 30 40 50 60 70 80
0.0

0.1

K ė
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Figure B.50: Run-in time 15 s, run 29.
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