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Summary

In this dissertation, we study (projective) unitary representations of possibly infinite-
dimensional locally convex Lie groups, in the sense of Bastiani, that either satisfy a
positive energy condition, or a KMS(Kubo-Martin-Schwinger) condition. Both of
these are motivated by physics. The main purpose of this thesis is to gain general
understanding for these classes of representations, and more specifically to develop
general tools by which they can be studied in systematic fashion. These tools are
consequently applied to specific cases of interest, demonstrating that these condi-
tions are typically extremely restrictive, that the classification of these classes of
representations is feasible in various cases, and that these tools can be effectively
applied towards achieving such a classification.

We begin in Chapter 1 with a general introduction to the topic, placing it in con-
text and clarifying its relation to other aspects of mathematics and mathematical
physics. This also motivates the study of these classes of representations. Finally,
we explain how the various chapters fit into a larger story.

In Chapter 2, we introduce the positive energy condition and the class of semi-
bounded representations. These play a central role in the thesis. We also fix our
conventions and gather some preliminary definitions that are common to all sub-
sequent chapters. In detail, we introduce continuous Lie algebra cohomology and
recall its relation with projective unitary representations and central T-extensions.

In Chapter 3, we define the notion of a KMS-representation, which plays an impor-
tant role throughout the dissertation. We study its basic properties and provide
various interesting examples. We also introduce the so-called generalized positive
energy condition, which, as the name suggests, relaxes the positive energy condi-
tion. We show, perhaps surprisingly, that a KMS-representation naturally gives
rise to a representation that satisfies the generalized positive energy condition and
that carries a substantial amount of information about the original representation.
This observation plays a crucial role in the remainder of the dissertation, because
it effectively allows the classes of KMS- and positive energy representations to be
treated simultaneously. It also shows that these two classes, which on the face of
it appear to be unrelated, are actually quite similar in certain respects. For pro-
jective unitary representations satisfying a generalized positive energy condition it
is also shown that important information is carried by the class in H2

ct(g,R) as-
sociated to it. This observation is exploited extensively in Chapter 4 and Chapter 5.
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In Chapter 4, we study projective unitary generalized positive energy representa-
tions of the group J∞

0 (V,K) of ∞-jets relative to the action of another Lie group
P , where V is a finite-dimensional real vector space and K is a compact simple Lie
group. This contributes to the understanding of such representations for the gauge
group associated to a principal K-bundle, by discussing those representations that
factor through the ∞-jets at a single point. We determine sufficient conditions for
such representations of J∞

0 (V,K) to factor through J2
0 (V,K), or even through K,

in terms of natural non-resonance conditions. Additionally, we obtain normal form
results for the p-action on J∞

0 (V,K), where p is the Lie algebra of P .

In Chapter 5, we consider projective unitary representations of the Lie group
Diffc(M) of compactly supported diffeomorphisms on a smooth manifold M . Pro-
vided that M is connected and that dim(M) > 1, we show that such a representa-
tion is necessarily trivial on the identity component Diffc(M)0 if it is of generalized
positive energy with respect to the R-action on Diffc(M) induced by a non-zero and
complete vector field υ on M . In order to establish this result, we first determine
the continuous second Lie algebra cohomology H2

ct(Xc(M),R) of the Lie algebra
of compactly supported vector fields onM , equipped with the natural LF-topology.

In the context of possibly infinite-dimensional Lie groups, we extend in Chapter 6
the theory of holomorphic induction of unitary representations, by relaxing the
extremely restrictive assumption that the representation being induced is contin-
uous with respect to the norm topology on U(H). We extend important known
results regarding holomorphic induction to this more general setting. In particu-
lar, we establish uniqueness of the holomorphically induced representation. Under
mild conditions, we also obtain an isomorphism of von Neumann algebras between
the commutant of the induced representation, and that of the representation from
which it is holomorphically induced. We also show that holomorphic induction is
closely related to the positive energy condition, clarifying their precise relationship.
These results make the powerful tool that is holomorphic induction available in a
much more general context.
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Samenvatting

In dit proefschrift bestuderen we (projectieve) unitaire representaties van een moge-
lijk oneindig-dimensionale lokaal convexe Lie-groep, in de zin van Bastiani, die ofwel
aan een positieve energievoorwaarde, of aan een KMS(Kubo-Martin-Schwinger)-
voorwaarde voldoen. Deze zijn beide gemotiveerd vanuit de natuurkunde. Het
hoofddoel van dit proefschrift is om beter algemeen begrip te ontwikkelen over
deze klassen van representaties, en om algemene methodes te ontwikkelen waarmee
ze systematisch bestudeerd kunnen worden. Deze worden vervolgens toegepast op
specifieke gevallen. Hiermee illustreren we dat deze voorwaarden typisch extreem
restrictief zijn, dat de classificatie van deze klassen van representaties in verschil-
lende gevallen mogelijk is en dat deze methodes effectief kunnen worden toegepast
om dergelijke classificaties te behalen.

We beginnen in hoofdstuk 1 met een algemene introductie van het onderwerp. We
verduidelijken de relatie met andere gebieden binnen de wiskunde en mathemati-
sche fysica en plaatsen het hiermee in context. Dit verheldert ook de motivatie
voor het bestuderen van deze klassen van representaties. We leggen daarnaast uit
hoe de verschillende hoofdstukken in een groter geheel passen.

In hoofdstuk 2 introduceren we de positive energievoorwaarde en de klasse van half-
begrensde representaties. Deze spelen een centrale rol in het proefschrift. Verder
specificeren we onze conventies en bespreken we enkele standaardbegrippen die in
alle daaropvolgende hoofdstukken terug komen. Concreet introduceren we continue
Lie-algebra cohomologie en haar relatie met projective unitaire representaties en
centrale T-uitbreidingen.

In hoofdstuk 3 definiëren we de zogenoemde KMS-representaties, die een een be-
langrijke rol spelen in dit proefschrift. We bestuderen hun basiseigenschappen en
bespreken verschillende interessante voorbeelden. Verder introduceren we de gege-
neraliseerde positieve energievoorwaarde. We laten daarbij zien dat men aan elke
KMS-representatie op een natuurlijke wijze een representatie kan associëren die aan
deze gegeneraliseerde positieve energievoorwaarde voldoet, en die veel informatie
bevat over de oorspronkelijke representatie. Deze observatie speelt een cruciale
rol in de rest van dit proefschrift, omdat het mogelijk wordt om de klassen van
KMS- en positieve energierepresentaties tegelijk te behandelen. Het laat ook zien
dat deze twee klassen, die in eerste instantie ongerelateerd lijken, zich in bepaalde
opzichten vergelijkbaar gedragen. Voor projectieve unitaire representaties die aan
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een gegeneraliseerde positieve energievoorwaarde voldoen laten we verder zien dat
belangrijke informatie herleid kan worden uit de bijbehorende klasse in H2

ct(g,R).
Deze observatie speelt een belangrijke rol in de hoofdstukken 4 en 5.

In hoofdstuk 4 bestuderen we projectieve unitaire gegeneraliseerde positieve ener-
gierepresentaties van de groep J∞

0 (V,K) van ∞-jets ten opzichte van de werking
van een andere Lie-groep P , waarbij V een eindig-dimensionale reële vectorruimte
en K een compacte enkelvoudige Lie-groep is. Dit draagt bij aan het begrip van
dergelijke representaties voor de ijkgroep geassocieerd aan eenK-hoofdvezelbundel,
door d́ıé representaties van de ijkgroep te beschouwen die door de ∞-jets in een
enkel punt van de basisruimte factoriseren. We bespreken voldoende voorwaarden
waaronder zulke representaties van J∞

0 (V,K) door J2
0 (V,K) of zelfs door K fac-

toriseren. Deze voorwaarden stellen dat bepaalde resonanties ontbreken. Verder
verkrijgen we normaalvormresultaten voor de p-werking op J∞

0 (V,K), waarbij p
de Lie-algebra is van P .

In hoofdstuk 5 beschouwen we projectieve unitaire representaties van de Lie-group
Diffc(M) van compact gedragen diffeomorfismen op een differentiëerbare variëteit
M . Op voorwaarde dat M samenhangend is en dat dim(M) > 1, laten we zien
dat een dergelijke representatie noodzakelijkerwijs triviaal is op de identiteitscom-
ponent Diffc(M)0 als deze van gegeneraliseerde positieve energie is ten opzichte
van de R-werking op Diffc(M) geassocieerd aan een volledig en niet-triviaal vec-
torveld υ op M . Als tussenstap naar dit resultaat bepalen we de continue tweede
Lie-algebra cohomologie H2

ct(Xc(M),R) van de Lie-algebra van compact gedragen
vectorvelden op M , uitgerust met haar natuurlijke LF-topologie.

In de context van mogelijk oneindig-dimensionale Lie-groepen breiden we in hoofd-
stuk 6 de theorie over holomorfe inductie van unitaire representaties uit, naar het
geval waarin de representatie die moet worden gëınduceerd niet langer continu
hoeft te zijn ten opzichte van de normtopologie op U(H), een uiterst beperkende
veronderstelling die voorheen altijd vereist werd. We breiden belangrijke resulta-
ten over holomorfe inductie uit naar deze algemenere situatie. In het bijzonder
stellen we de uniciteit van de holomorf gëınduceerde representatie vast. Onder
milde voorwaarden tonen we ook een isomorfisme van von Neumann-algebra’s aan
tussen de commutator van de gëınduceerde representatie en die van waaruit wordt
gëınduceerd. We tonen ook aan dat holomorfe inductie nauw verbonden is met
de positieve energievoorwaarde, waarbij hun precieze relatie wordt verduidelijkt.
Deze resultaten stellen het nuttige hulpmiddel holomorfe inductie beschikbaar in
een aanzienlijk algemenere context.

ix



Acknowledgements

Before getting into the subject matter of the thesis, I would like to express my
gratitude to all the people that have assisted me in the PhD process in any form
or shape.

Firstly, I am grateful to be given the opportunity to pursue a PhD in the first
place. I would therefore like to express sincere gratitude to my supervisor Bas
Janssens, who had sufficient confidence in my mathematical ability to offer me this
possibility. He has subsequently taught me a great deal and has properly guided
me through the process of maturing as a mathematician.

Let me next express my gratitude to all members of the doctoral committee, for
agreeing to be a part thereof, and for their time and effort.

I would moreover like to express sincere gratitude to Karl-Hermann Neeb, who has
spent a considerable amount of time and effort in assisting me in various ways.
The numerous valuable conversations and his detailed feedback on my work have
undoubtedly improved the quality of this dissertation considerably. He has also
provided valuable assistance in my pursuit for a career in mathematics. On that
note, I am also very grateful to Helge Glöckner, who has granted me the possibility
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Chapter 1

Introduction

1.1 General introduction

Symmetries are mathematically described by (Lie) groups and their actions. As
symmetries are ubiquitous in mathematics and physics, their importance is un-
surprising. It is substantiated by Emmy Noether’s celebrated theorem, which es-
tablishes a close correspondence between symmetries and conserved quantities in
physics, such as energy and momentum. Symmetries also play an essential role
in gauge theory, the mathematical framework underpinning the standard model of
elementary particle physics.

In the early to mid-20th century, it was realized that Lie groups acting on the phase
space of a classical system can also play a vital role in the task of quantizing it,
which is to say, describing it in a manner that is compatible with the laws enforced
upon us by quantum physics. As the state space of the latter is usually taken to
be a projective Hilbert space, symmetries are in the quantum setting understood
in terms of projective unitary representations of an appropriate Lie group G. For
example, the notion of spin in quantum mechanics is understood using the projec-
tive unitary representation theory of the group SO(3) of rotations on R3, and the
quantum harmonic oscillator is fully described using that of the group R2 ⋊ T.

A remarkable amount of information of a physical system can be extracted from a
good understanding of the irreducible projective unitary representations of the cor-
responding symmetry group G. A good example is provided by a result of Wigner
[Wig39], who classified the projective unitary representations of the Poincaré group,
the symmetry group of special relativity, and showed that physical quantities such
as proper mass, spin and helicity admit a clear representation-theoretic interpre-
tation. They turn out to precisely label the irreducible projective unitary repre-
sentations of the relevant symmetry group, the Poincaré group. Bargmann and
Wigner further showed that the so-called Dirac equation, which describes the time
evolution of relativistic free fermions with non-zero proper mass, is fundamentally
related to the Poincaré group and its unitary representations, in a precise way
[BW48]. In fact, the Dirac equation can be recovered from the representation the-
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ory of the Poincaré group alone, without any additional physical considerations. It
is therefore fundamentally tied to the Poincaré group and its representation theory.

The study of representations is also a tremendously interesting and useful endeavor
from a purely mathematical point of view. As symmetries are omnipresent, one
finds that most parts of mathematics have some relation with Lie groups, Lie alge-
bras and their actions. For example, they play a key role in the notion of a principal
bundle and their associated vector bundles, which in turn are important concepts
in differential geometry, particularly in gauge theory. Intriguing connections with
complex geometry can be established through results like the Borel-Weil Theorem
(cf. [DK00, Sec. 4.12], [CG97, Nee00]). Actions of Lie groups play a role in symplec-
tic and Poisson geometry via momentum maps, symplectic reduction and Kirillov’s
orbit method [Kir04]. In Riemannian geometry they appear via groups of isome-
tries or conformal transformations, spin structures and associated spinor bundles.
Lie groups are directly related to operator algebras via group C∗-algebras, which
also connects their respective representation theories (cf. [Dix77, Wil07]). Repre-
sentations also play a central role in the vast and rich field of abstract harmonic
analysis, which generalizes Fourier theory. It studies the decomposition of group
representations into irreducible pieces and is fundamentally related to analysis on
homogeneous and (locally) symmetric spaces. The theory of special functions is
also closely tied to Lie groups and their representations. Finally, quantum groups
arise as suitable deformations of (semisimple) Lie algebras. The above list of ex-
amples is nowhere near exhaustive, but let us stop here, having hopefully made
clear the ubiquity of symmetries throughout mathematics.

In both physics and mathematics, one frequently encounters symmetry groups that
are very large, in the sense that they are infinite-dimensional Lie groups. For exam-
ple, gauge theory admits the Lie group of compactly supported gauge transforma-
tions as infinite-dimensional symmetry group, because the Yang-Mills functional,
from which the Yang-Mills equations are derived, is invariant under the natural
action of this group on the space of connections on a principal bundle. As another
example, groups of diffeomorphisms appear in both general relativity and in fluid
dynamics. In the former, one observes that Einstein’s field equations are invari-
ant under the group of diffeomorphisms. In fluid dynamics, a diffeomorphism is
interpreted as describing the displacement of some initial configuration of a fluid,
so that the time evolution of a fluid can be interpreted as a path on the diffeomor-
phism group. Groups of unitary elements in a unital Banach ∗-algebra also provide
natural examples of infinite-dimensional Lie groups. In particular, the unitary
group U(H) of a Hilbert space H is a Banach-Lie group. Infinite-dimensional Lie
groups also occur in a wide variety of other contexts, some of which are described
in [KW09, AK98, Ott95, Sch04].

The preceding, and plain mathematical curiosity, lead us to consider the unitary
representation theory of infinite-dimensional Lie groups. This perspective, where
the symmetry group is placed in the center of study, may then lead to a bet-
ter understanding of related physical systems, and their possible quantizations. In

2



particular, if we are to be optimistic, the study of projective unitary representations
of gauge groups may lead to an increased understanding of quantum analogues of
gauge theory, whereas a consideration of groups of diffeomorphisms might provide
an illuminating perspective on some aspects of quantum gravity. Let us also men-
tion that unitary representations of groups of diffeomorphisms have been studied in
relation to quantum- and statistical physics in [GMS80, GMS81, GMS83, Gol04].
Representations of infinite-dimensional Lie algebras also occur in the context of
(geometric) quantization, where one is interested in representations of (Lie subal-
gebras of) the Lie algebra (C∞(M), {−,−}) associated to a symplectic manifold.

It should be mentioned at this stage that differential geometry in infinite dimen-
sions comes with numerous hurdles and subtleties. For example, Lie algebras need
not integrate to a Lie group [vEK64] (cf. [Nee06, Thm. VI.2.5 and VI.2.7]), and an
exponential map might not exist [Nee06, Ex. II.5.5]. When it does, it could be nei-
ther locally injective, nor locally surjective ([Mil84, Warning 1.6] and [PS86, Prop.
3.3.1]). Beyond the context of Banach spaces, the Implicit and Inverse Function
Theorems are also no longer available [Nee06, Rem. I.2.6]. As a consequence of
such difficulties, the infinite-dimensional context requires additional caution, and
one typically makes suitable assumptions to rule out certain unwanted phenom-
ena. We will in particular oftentimes assume that the Lie group G is regular in
the sense of Milnor [Mil84] (cf. [Nee06, Def. II.5.2]). Another difference with the
finite-dimensional setting originates from the observation that infinite-dimensional
Lie groups are not locally compact, and therefore do not admit a left-Haar measure.
Consequently, there is no natural unitary regular representation, and one can no
longer associate a group C∗-algebra to the group under consideration in a natural
way. This entails also that many standard techniques from the finite-dimensional
context break down, and that the rich results from operator algebras are not as
directly accessible.

One is also quickly faced with the realization that for most infinite-dimensional Lie
groups, a full classification of its irreducible (projective) unitary representations is
utterly intractable. It is therefore necessary to isolate a class of representations
that are both physically relevant and more susceptible to systematic study. This
thesis is mostly concerned with two such classes, namely positive energy- and KMS -
representations.

To describe these, letG be a regular locally convex Lie group with Lie algebra g. We
say that a unitary representation ρ of G on the Hilbert space Hρ is smooth if it ad-
mits a dense set of smooth vectors, that is, vectors ψ ∈ Hρ for which the orbit map
g 7→ ρ(g)ψ is smoothG→ Hρ. Such a smooth unitary representation is said to be of
positive energy at ξ ∈ g if ⟨ψ,−idρ(ξ)ψ⟩ ≥ 0 for all smooth vectors ψ ∈ H∞

ρ . If we

think of the unitary 1-parameter group t 7→ ρ(etξ) as representing time translation,
then its generator would be the Hamiltonian, whose spectrum admits an interpre-
tation in terms of energy levels. As the Hamiltonian is in quantum physics nearly
always assumed to be a self-adjoint operator with non-negative spectrum, physically
relevant representations typically reside in this class. It is then no surprise that
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positive energy representations of Lie groups are abundant in mathematical physics
literature [SW64, Bor87, Bor66, Haa92, LM75, Ol’81, PS86, Seg81], thereby moti-
vating their study. As a consequence, they were subject to a substantial amount of
research [NR22, Was98, Tan11, Nee01a, Nee14a, JN21, NS15, Nee17, TL99]. The
positive energy condition is typically also very restrictive, making classification re-
sults feasible.

A different way of isolating physically relevant representations resides in the operator-
algebraic approach to quantum statistical mechanics, where an equilibrium state
of the system is described by a state ϕ on a von Neumann algebraM that satisfies
a so-called Kubo-Martin-Schwinger (KMS) condition, relative to a specified group
of automorphisms onM. This condition appeared in [HHW67] and is named after
the authors of the papers [Kub57, KYN57, MS59]. Such a state may be thought of
as a generalization of the Gibbs states ϕ(x) = 1

Tr(e−βH)
Tr(e−βHx) on B(H), where

H is a Hilbert space and H is a self-adjoint operator for which e−βH is trace-
class, to the setting where e−βH is no longer required to be trace-class. These
Gibbs states play a fundamental role in statistical physics. In particular, the map
β 7→ Tr(e−βH) is known as the partition function, whenever it makes sense. In this
context, the parameter β > 0 admits the interpretation of an inverse-temperature.
The aforementioned second class of representations are in a suitable sense compati-
ble with a KMS-state on the von Neumann algebra generated by the representation.

It is the purpose of this thesis to develop further understanding of the restrictions
imposed on a (projective) unitary representation of a possibly infinite-dimensional
Lie group G by either of these two conditions, the positive energy or KMS con-
dition. To understand these, we will occasionally take either a specialized or a
general perspective. On the one hand, we consider these classes for specific infinite-
dimensional Lie groups, such as gauge and diffeomorphism groups. On the other
hand, we collect and discern general facts regarding these representations, and
contribute to their theory in a more fundamental sense. In particular, an already
well-established and appealing relation between the positive energy condition and
holomorphic induction is extended to a more general setting than was previously
available. It is moreover shown that these two seemingly very different classes of
representations exhibit similar behavior in certain respects.

1.2 Outline of this thesis

1.2.1 Generalized positive energy and KMS representations

After introducing in Chapter 2 some preliminaries that are common to all other
chapters, we proceed in Section 3.1 with the study of KMS-representations. An
observation that is central to this chapter is that both the positive energy and the
KMS condition are encapsulated by a third one, the so-called generalized positive
energy condition, so that they can be studied using the same techniques. This
allows us in subsequent chapters to study these classes simultaneously.
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Briefly, a smooth unitary representation ρ of the possibly infinite-dimensional Lie
group G with Lie algebra g is said to be of generalized positive energy at ξ ∈ g if
there exists a linear subspace Dξ ⊆ H∞

ρ that is dense in Hρ such that for every
ψ ∈ Dξ we have

inf
g∈G0

⟨ψ,−idρ(Adg(ξ))ψ⟩ > −∞, (1.2.1)

where G0 denotes the identity component of G. It is apparent that this relaxes
the positive energy condition. Provided that (1.2.1) is valid, a simple observation
is made in Section 3.1 that can be used to identify elements η ∈ g in the kernel of
the derived representations dρ on H∞

ρ . This is used in later chapters for specific
Lie groups G to determine very large ideals in g on which dρ must vanish.

Let us now introduce the KMS condition in a bit more detail. We consider it from
a few different perspectives, to clarify its role in various parts of mathematics and
mathematical physics. This should then serve as orientation and motivation for
the study of KMS representations, whose definition is presented shortly thereafter.

First, we recall the notion of a KMS state on a von Neumann algebra. We
refer to [Tak03a, Ch. VIII] and [BR97, Ch. 5.3] for more details. If M is a
von Neumann algebra, let S(M) denote the set of normal states on M. Define
St := { z : z ∈ C, 0 < Im(z) < 1 }. There are many equivalent formulations of the
KMS-condition, that we shall not restate, the most commonly encountered one
being the following ([HHW67]):

Definition 1.2.1. Let ϕ ∈ S(M) be a normal state. Let σ : R → Aut(M) be a
one-parameter group of automorphisms ofM.

— ϕ is said to satisfy the modular condition for σ if the following two conditions
are satisfied:

1. ϕ = ϕ ◦ σt for all t ∈ R.
2. For every x, y ∈ M, there exists a bounded and continuous function
Fx,y : St→ C which is holomorphic on St and s.t. for every t ∈ R:

Fx,y(t) = ϕ(σt(x)y),

Fx,y(t+ i) = ϕ(yσt(x)).

— ϕ is said to be KMS w.r.t. σ at inverse temperature β > 0 if it satisfies the
modular condition for t 7→ σ−βt. In that case, we also say that ϕ is σ-KMS
at inverse-temperature β. If β = 1 we simply say that ϕ is a σ-KMS state.

Although it is not at all obvious from this definition, the KMS-condition is consid-
ered to be a well-founded characterization of thermodynamical equilibrium states
in quantum statistical physics. In this regard, let us mention that if β > 0 and
H is a self-adjoint operator on the Hilbert space H for which e−βH is trace class,
then the unique normal state ϕ on B(H) that is KMS w.r.t. the automorphism
group σt(x) := eitHxe−itH at inverse temperature β > 0 is precisely the corre-
sponding Gibbs state ϕ(x) = 1

Tr(e−βH)
Tr(e−βHx), which is characterized by the
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fact that it satisfies a minimum free energy principle, also referred to as the maxi-
mum entropy principle at fixed energy ([BR97, Sec. 6.2.3] and [Haa92, Sec. V.1.3],
cf. [AS77a, AS77b, Ara74]). It was moreover shown in [PW78] that a σ-KMS state
satisfies a condition that is suggested by the second law of thermodynamics, called
passivity. Suitable converse statements are also shown, under stronger assumptions.
Characterizations of equilibrium states in terms of certain stability properties were
considered in [HKTP74], which further motivate the KMS condition.

KMS states are also important in the modular theory of von Neumann algebras,
also known as Tomita-Takesaki theory. A detailed account of this can be found
in [Tak02, Tak03a, Tak03b]. The central result is the following. Suppose that
Ω ∈ H is a vector which is both cyclic and separating for the von Neumann algebra
M ⊆ B(H), meaning that MΩ = H and xΩ = 0 implies x = 0 for all x ∈ M.
Then there is a self-adjoint positive and invertible operator ∆, and a conjugate
linear involution J on H that fix the vector Ω and satisfy the following properties:

1. ∆itM∆−it =M for all t ∈ R.

2. J∆J = ∆−1.

3. JMJ =M′.

In particular, one obtains the one-parameter group

σ : R→ Aut(M), σt(x) = ∆itx∆−it (1.2.2)

and a linear isomorphism j : M → M′ defined by j(x) := Jx∗J . Importantly,
the vector state ⟨Ω, • Ω⟩ on M then satisfies the KMS-condition w.r.t. the auto-
morphism group σ from (1.2.2) at inverse temperature β = 1, and σ is uniquely
determined by this condition. As was observed by Alain Connes, the image of σ
in the quotient Out(M) := Aut(M)/Inn(M) of outer automorphisms does not de-
pend on Ω, which leads to the observation that any σ-finite von Neumann algebra
comes with a canonical homomorphism R→ Out(M). In this sense, von Neumann
algebras are therefore intrinsically dynamical objects. This modular theory also
leads to two invariants of von Neumann algebras, which were essential for the study
of type III factors [Con73]. Modular theory also has other important consequences,
such as the existence of an essentially unique standard form of a von Neumann al-
gebraM, and a corresponding unitary representation of the automorphism group
Aut(M) [Haa75].

It is an absolutely stunning, and a somewhat mysterious fact that the KMS condi-
tion, which historically originates from quantum statistical mechanics, simultane-
ously plays a fundamental role in this seemingly unrelated abstract modular theory
of von Neumann algebras.

There is yet a third role to be played by the KMS-condition and by modular op-
erators, namely in certain aspects of the operator algebraic approach to quantum
field theory, in the sense of Haag-Kastler [HK64, Haa92]. Here, one considers von
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Neumann algebras M(O) ⊆ B(H) that are associated to certain regions O ⊆ M
of some Lorentzian manifold M , and the assignment O → M(O), also called a
net of von Neumann algebras is required to satisfy a particular list of axioms
that we shall not repeat here [HK64]. Suppose that G is a Lie group acting on
M , with Lie algebra g. Suppose further that U : G → U(H) is a unitary G-
representation on H, that Ω ∈ H is a G-invariant vector, and that the net is
G-covariant in the sense that U(g)M(O)U(g)−1 =M(g.O) for all g ∈ G and all
regions O. If Ω is additionally both cyclic and separating for every M(O), then
we obtain the associated modular unitary 1-parameter groups ∆it

O on H. It is
now an interesting matter whether or not these modular operators are geometric,
in the sense that for every region O we have ∆−it

O = U(etξO ) for some ξO ∈ g
and all t ∈ R. This is usually referred to as the Bisognano-Wichmann property
of the net O 7→ M(O). The study of such nets is an active subject of research
[Bor00, Bor92, KW01, Mun01, BGL93, BDFS00, BY99, GL95]. To simplify the
study of such nets tremendously, one may forget most of the structure involved,
remembering only the real subspaces VO :=M(O)saΩ ⊆ H. As it turns out, these
still provide enough information to define the modular operators ∆O. For this rea-
son, so-called nets of standard subspaces are frequently studied as an intermediate
step [BGL02, NO21, Mor18, Lon08, MN21, LL15, NO17, MNO23, NÓ22, FNÓ23].

The preceding motivates study of the unitary representations of Lie groups that
are compatible with a KMS condition in a suitable sense, to be defined shortly. It
also provides context to some of the examples that are given in Section 3.2.2 below,
where it is also shown that in many cases, there is actually a smooth unitary rep-
resentation of a possibly infinite-dimensional Lie group that governs the modular
structure involved, in the sense that the Lie group representation generates the
respective von Neumann algebra and implements the modular flow.

Now that we have established some context for the KMS-condition, let us provide
the definition of a KMS-representation. For this introductory text, we will provide
a slightly simplified version (cf. Definition 3.2.6 and Remark 3.2.7 below). Let
α : R → Aut(G) be a smooth R-action on the possibly infinite-dimensional Lie
group G. A unitary representation ρ of G⋊αR is called smoothly-KMS if there is a
state ϕ on the von Neumann algebraM := ρ(G)′′ that is KMS with respect to the
automorphism group σ : R → Aut(M), t 7→ Ad(ρ(t)) and for which the following
map is smooth:

ϕ̂ : G→ C, ϕ̂(g) := ϕ(ρ(g)),

where we have considered G and R as subgroups of G⋊α R in the obvious fashion.

It is the purpose of Chapter 3 to establish a basic study of such representations.
We present various illustrative and non-trivial examples, and investigate the basic
properties of such representations. In particular, we relate KMS-representations to
the generalized positive energy condition.

To describe this relation, suppose that ϕ ∈ S(M) is a σ-KMS state. We then
naturally obtain a unitary representation ρϕ of G⋊αR on the corresponding GNS-
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Hilbert space Hϕ according to ρϕ(g, t) = πϕ(ρ(g))∆
−it
ϕ , where πϕ : M → B(Hϕ)

is the GNS-representation of M associated to ϕ, and where ∆ϕ is the modular
operator defined using the canonical cyclic and separating vector Ω ∈ Hϕ forMϕ :=
ρϕ(G)

′′. The following now relates the KMS- and the generalized positive energy
conditions:

Theorem 1.2.2. Let ρ be a unitary representation of G⋊αR that is smoothly-KMS.
Let ϕ ∈ S(M) be a σ-KMS state for which ϕ̂ is smooth. Then the associated repre-
sentation ρϕ of G⋊α R on the GNS-Hilbert space Hϕ is smooth and of generalized
positive energy at (0, 1) ∈ g⋊D R.

1.2.2 Generalized positive energy representations of groups
of jets

Now that we have established that the positive energy and KMS representations
may be simultaneously studied using the generalized positive energy condition,
we proceed in Chapter 4 by studying the latter class of representations in the
projective context for a specific infinite-dimensional Lie group, namely the group
G = J∞

0 (V,K) of ∞-jets of smooth maps V → K, where V is a finite-dimensional
real vector space, and K is some simple 1-connected compact Lie group. Before
diving into the results of this chapter, let us explain the motivation for considering
this group in the first place.

Namely, representations of this group G fit into a much larger program, which
aims to study gauge theory from a representation-theoretic perspective. Gauge
fields are typically described by a connection on a principal K-bundle K over some
manifold M . The set of all connections on K carries a natural action of the group
G = Gauc(K) := Γc(Ad(K)) of compactly supported gauge transformations of the
principal bundle. If P is a finite-dimensional Lie group with Lie algebra p, acting
smoothly on the principal bundle K, there is a corresponding smooth action α of
P on the gauge group G, and we can consider projective smooth unitary represen-
tations of the Lie group G ⋊α P that are of positive energy at all elements in some
P -invariant cone C ⊆ p.

These were studied in [JN21], where the case in which the P -action on M has no
fixed points was essentially fully solved (cf. [JN21, Theorem 7.19]). It therefore
remains to understand what happens if α does have fixed points. In Chapter 4,
the latter setting is studied by considering those projective unitary representa-
tions that are entirely localized at a single fixed point a ∈ M , in the sense that
they factor through the germs at the fixed point. Choosing local coordinates near
a ∈ M , this leads one to consider the projective unitary representations of the
group G = J∞

0 (V,K), where V = Ta(M).

Briefly, it is shown in Chapter 4 that the generalized positive energy condition im-
poses severe restrictions on the derived Lie-algebra representation dρ of a projective
unitary representation ρ of G⋊P , leading in particular to sufficient conditions for
ρ|G to factor through the space J2

0 (V,K) of 2-jets, or even throughK. This reduces
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the classification problem to much simpler, well-understood finite-dimensional Lie
groups. The main results, Theorem 4.4.1, Theorem 4.4.3 and Theorem 4.4.6 are
formulated in terms of natural non-resonance conditions for the p-action on g.
We also obtain certain normal form results for this p-action (Theorem 4.3.12 and
Theorem 4.3.13).

1.2.3 Central extensions and generalized positive energy rep-
resentations of the group of compactly supported dif-
feomorphisms

Let υ ∈ X (M) be a complete and non-zero vector field on a smooth manifold
M with flow h : R → Diff(M). Let Diffc(M) ⋊υ R be the semidirect product of
Diffc(M) and R relative to the R-action on Diffc(M) defined by αt(f) := ht◦f ◦h−1

t

for t ∈ R and f ∈ Diffc(M). Its Lie algebra is Xc(M)⋊Rυ, where υ acts on Xc(M)
by the derivation [υ,−]. Aiming to study the extent to which the classical sym-
metry group of general relativity can be implemented as symmetries of a quantum
system, we consider the projective unitary representations of Diffc(M) ⋊υ R that
are of generalized positive energy at υ ∈ Xc(M)⋊Rυ.

Assuming that M is connected and that dim(M) > 1, the main result of this chap-
ter (Theorem 5.3.2) asserts that any such representation is necessarily trivial on
the identity component Diffc(M)0. This naturally leads to asymptotic symmetry
groups, for if G is any Lie group of diffeomorphisms of M containing Diffc(M)0 as
Lie subgroup, then any such projective unitary G-representation necessarily factors
through the quotientG/Diffc(M)0, and is in this sense ‘localized at infinity’. It now
becomes an interesting matter to determine this class of representations for groups
of diffeomorphisms having certain specified behavior at infinity. In particular, one
might wonder whether or not this class of representations, for suitable groups G,
naturally leads to the asymptotic symmetry groups that appear in general relativ-
ity in the context of asymptotically flat spacetimes [Pen64, Ash15, Wal84], such as
the BMS group (Bondi-Metzner-Sachs) [BvdBM62, Sac62, AE18, PS22, AS81], or
extensions thereof [NU62, Ruz20].

A noteworthy corollary of the aforementioned result is that any smooth repre-
sentation ρ : Diffc(M) → PU(Hρ) that is continuous w.r.t. the norm-topology
on PU(Hρ) is necessarily trivial on the identity component Diffc(M)0 (Corol-
lary 5.3.4).

As an intermediate step towards this result, we determine for an arbitrary manifold
M the continuous second Lie algebra cohomology H2

ct(Xc(M),R) with coefficients
in the trivial representation, where Xc(M) denotes the Lie algebra of compactly
supported vector fields onM equipped with its natural locally convex LF-topology.
A crucial observation is that H2

ct(Xc(M),R) = {0} for dim(M) > 1. We also obtain
that H2

ct(Xc(R),R) is one-dimensional and is spanned by an analogue of the well-
known Virasoro 2-cocycle on X (S1). Finally, we consider the relationship between
H2

ct(Xc(M),R) and the continuous second Lie algebra cohomology H2
ct(X (M),R)
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of the Lie algebra X (M) of all smooth vector fields on M , equipped with its
natural Fréchet topology. It should be remarked at this point that the Lie algebra
cohomology H•

ct(X (M),R) is also known as Gelfand-Fuks cohomology in reference
to authors of the papers [GF68, GF69, GF70b, GF70c], and is well-studied [Los98,
Gui73, BS77, Hae76, Fuk86, Bot73, Mia22].

1.2.4 Holomorphic induction beyond the norm-continuous
setting, with applications to positive energy represen-
tations

In Chapter 6, we consider the theory of holomorphic induction, a well-known con-
cept in representation theory which relates certain unitary G-representations to
those of a subgroup H of G, in such a way that properties such as irreducibility
are preserved. As it turns out, this concept is closely related to the positive energy
condition. It has proven to be a very powerful tool, in particular for obtaining clas-
sification results of positive energy representations. The availability of holomorphic
induction is an important reason that the class of positive energy representations
is susceptible to systematic study. In virtually all cases where a full classifica-
tion of irreducible positive energy representations was obtained, this was done
using holomorphic induction in a crucial way ([Nee14a, Nee12, Nee01a, PS86]).
It is therefore vital to develop full understanding and applicability of this tool.
Holomorphic induction is already well-established, even in the infinite-dimensional
context [Nee13, Nee14a]. However, the H-representation σ : H → U(Vσ) being in-
duced is so far always required to be continuous w.r.t. the norm-topology on U(Vσ).
This is an extremely restrictive assumption which greatly limits the applicability
of holomorphic induction. It is the purpose of Chapter 6 to remove this assumption.

Roughly speaking, holomorphic induction attempts to generalize the picture por-
trayed by the Borel-Weil Theorem, which describes the irreducible unitary repre-
sentations of a compact simple Lie group K. Letting T ⊆ K be a maximal torus
with Lie algebra t, such a representation is fully characterized by the corresponding
lowest weight λ ∈ it∗, and can be realized on the space of holomorphic sections
of an associated line bundle over the corresponding coadjoint orbit. Moreover,
to each λ ∈ it∗, there exists up to unitary equivalence at most one irreducible
K-representation having λ as its lowest weight. The unitary dual K̂ is therefore
understood once it has been determined which weights are inducible to a unitary
K-representation, which is then necessarily irreducible and unique up to unitary
equivalence.

This can be generalized vastly, whilst retaining a similar picture. This was exploited
by Pressley and Segal in [Seg81, PS86] (cf. [Nee01a]) to obtain a classification of
the positive energy representations of loop groups, and was further developed in
the infinite-dimensional context by K.-H. Neeb [Nee13, Nee14a]. In particular, re-
turning to the infinite-dimensional Lie group G, the subgroup T is replaced by one
that is no longer required to be Abelian, say H ⊆ G. In all previous results, it
was required that the H-representation σ : H → B(Vσ) being induced, which takes
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the role of the lowest weight λ, is continuous with respect to the norm topology on
B(Vσ).

A central component to the conventional approach towards holomorphic induction
is to equip the G-homogeneous vector bundle Eσ := G ×H Vσ over G/H with a
G-invariant complex-analytic bundle structure (cf. [Nee13, Thm. 2.6]). This con-
struction fails when σ is not norm-continuous, so that a new approach is required
in order to go beyond the norm-continuous setting. This difficulty is overcome in
Chapter 6 by considering a suitable subspace of real-analytic functions G → Vσ
which corresponds to the space O(Eσ) of holomorphic sections of E→ G/H when-
ever the latter makes sense. It is the main point of Chapter 6 that the theory of
holomorphic induction can be developed in its entirety without the need for an
explicit complex bundle structure on Eσ. This allows the theory to be formulated
in a significantly more general context, at the cost of a clear complex-geometric
interpretation.

Assuming that G is connected, two key results in Chapter 6 clarify the potential of
holomorphic induction. Firstly, there is up to unitary equivalence at most one uni-
tary G-representation ρ that is holomorphically induced from σ (Theorem 6.4.21).
Secondly, under a mild assumption there is in that case an isomorphism of von Neu-
mann algebras B(Hρ)G ∼= B(Vσ)H between the corresponding commutants (The-
orem 6.4.29 and Theorem 6.4.30). In particular, ρ is irreducible if and only if
σ is so. The relation with the positive energy condition is furthermore clarified,
where we assume that G is regular. In particular, it is shown that if ρ is a uni-
tary positive energy representation of G⋊αR for which the “energy-zero” subspace
Hρ(0) := ker(dρ(0, 1)) ⊆ Hρ is cyclic for G and admits a dense set of G-analytic
vectors, then ρ|G is holomorphically induced from the unitary H-representation
σ on Hρ(0), where H := (Gα)0 is identity component of the group Gα of α-fixed
points. As a consequence, we obtain an isomorphism B(Hρ)G ∼= B(Hρ(0))H be-
tween the corresponding commutants. In particular, ρ is irreducible of and only if σ
is so. To classify such G-representations ρ, one would need to determine which uni-
tary H-representations are holomorphically inducible up to G, although it should
be mentioned that this task can be extremely difficult in general.

1.3 Further relevant literature

In this final section of the introduction, some additional related literature is gath-
ered for the interested reader.

Extensive surveys on infinite-dimensional Lie theory, in the sense of Bastiani, can
be found in [Mil84, Nee06, GN]. Various applications are discussed in [KW09,
Ott95, Sch04]. A survey regarding infinite-dimensional Lie groups and their repre-
sentations is given in [Nee04].

A class of infinite-dimensional Lie groups whose unitary representation theory was
studied in detail involves various variants of infinite-dimensional unitary groups
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on a separable Hilbert space H. The smallest of these is the direct-limit Lie
group U(∞) =

⋃
n∈N U(n), defined w.r.t. natural inclusions. Another option is

the Banach-Lie group U(H), which carries the operator-norm topology. There is a
range of intermediate Banach-Lie groups Up(H), indexed by p ∈ [1,∞]. These are
defined as Up(H) := U(H) ∩ (1 + Bp(H)), where the Banach space Bp(H) is the
Schatten p-class. In particular, B∞(H) consists of the compact operators. Finally,
one can consider U(H) as a topological group with the strong topology, denoted
U(H)s. These are all related by the continuous inclusions

U(∞) ↪→ U1(H) ↪→ · · ·Up(H) · · · ↪→ U∞(H) ↪→ U(H) ↪→ U(H)s.

The unitary representations of these groups, and of Banach analogs of certain
symmetric pairs (G,K), was studied in [Seg57, Pic88, Pic90, Kir73, Ol’84, Ol’78,
Boy88, Boy80, Boy93, SV75]. A streamlined survey of these results can be found
in [Nee14b]. The paper [SV78] also considers KMS states on the group U(∞).
The papers [Wol05, Wol14, Wol13] moreover discuss analogues of principal series
representations of classical direct-limit Lie groups. Projective unitary representa-
tions of U2(H) are considered in [Car84], and infinite-dimensional analogues of the
metaplectic and spin representations are considered in [SS65, Nee10b, Ott95] (cf.
[PR94]).

With regards to holomorphic induction, it should be mentioned that various infinite-
dimensional analogues of the Borel-Weil Theorem have been achieved in [NRCW01,
NS11, Nee01a, MNS10, PS86]. The paper [Nee13] later established holomorphic
induction in the context of of bounded representations of Banach-Lie groups, which
in turn was generalized to certain Fréchet-Lie groups in [Nee14a, Appendix C]. It
was applied for various infinite-dimensional Lie groups in [Nee14a, Nee12, Nee01a,
PS86, NS15, Nee04], in order to obtain classification results for positive energy or
semibounded unitary representations.

Holomorphic induction and the positive energy condition are both closely related
to highest weight representations (cf. [Nee00, Thm. X.3.9]). The latter have been
considered in great detail for various infinite-dimensional Lie groups and algebras.
For example, [Kac90, KR87] consider these in the context of Kac-Moody Lie al-
gebras (cf. [Nee10c]), whereas [Nat94, DP99] do so for direct-limit Lie groups and
Lie algebras. The papers [Nee98a, NØ98] study highest weight representations of
infinite-dimensional classical Lie algebras and their relation with holomorphic rep-
resentations of infinite-dimensional complex classical groups (cf. [MN16]).

Let us also mention some appearances of the KMS-condition in relation to uni-
tary representations of Lie groups. The paper [Sim23] fully characterizes KMS
representations of finite-dimensional Lie groups that generate a factor of type I.
Certain projective unitary KMS representations of groups of U(N)-valued func-
tions on S1 and R were considered in [CH92, CH87, BMT88]. Projective uni-
tary positive energy representations of loop groups have been studied in detail
in [PS86, Seg57, CR87, Nee01a, Nee14a, TL99]. Other unitary representations of
groups of Lie-group valued maps were also considered in [GGV77, GG68, Ism76,
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AHKM+93, AHK78, AHKT81, PS76].

With regards the central extensions and projective unitary representations of dif-
feomorphism groups, the Lie group Diff(S1) has been subject to detailed study
[PS86, Seg81, GW84, GW85, CDVIT21, NS15, JP04, Wit88, Kir81, LP76, AM22].
A survey regarding unitary representations of more general groups of diffeomor-
phism and currents be found in [Ism96]. In [Boy03], certain factor representations of
the Lie group Diffc(Rn) are constructed using inductive limits of finite-dimensional
unitary groups.
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Chapter 2

Common notation and preliminaries

In this brief chapter, we establish some notation and preliminary definitions that
are common to all chapters in the thesis.

2.1 Locally convex Lie theory

Let us first clarify how differential geometry can be extended to the infinite-
dimensional setting, in the sense of Bastiani [Bas64], where manifolds are con-
sidered that are modeled on a possibly infinite-dimensional locally convex real
vector space, rather than on Rn for some n ∈ N≥0. For a more elaborate expo-
sition than the one presented below, we refer to [Bas64, Mil84, Nee06, Glö02b, GN].

In the following, all locally convex vector spaces are assumed to be Hausdorff
without further mention. The definition of a smooth manifold is readily established
once the notion of smoothness is clarified for a map between two locally convex
vector spaces. In the Bastiani approach, one considers the following definition
([Mil84, Sec. 3]):

Definition 2.1.1 ([Nee06, Def. I.2.1]).
Let E,F be two locally convex vector spaces over R. Let U ⊆ E be open and let
f : U → F be a function. Then the derivative of f at x ∈ U in the direction of
v ∈ E is defined as

dx(f)(v) := (Dvf)(x) :=
d

dt

∣∣∣∣
t=0

f(x+ tv) = lim
t→0

1

t
(f(x+ tv)− f(x)),

whenever it exists. The function f is called differentiable at x if dx(f)(v) exists
for all v ∈ E. It is called continuously differentiable if it is differentiable at every
x ∈ U , and the map

df : U × E → F, df(x, v) := dx(f)(v)

is continuous. We say that f is Ck for k ∈ N ∪ {∞} if the iterated directional
derivatives

dnx(f)(v1, · · · , vn) := (Dv1 · · ·Dvnf)(x)
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exist for all integers n ≤ k, x ∈ U and v1, · · · , vn ∈ E, and the map

dn(f) : U × En → F, dn(f)(x; v1, · · · , vn) := dnx(f)(v1, · · · , vn)

is continuous for every integer n ≤ k. We call f smooth if it is C∞, and we write
C∞(U,F ) for the space of all smooth maps U → F .

With this notion of smooth maps between locally convex vector spaces, the chain
rule holds as expected [Nee06, Prop. I.2.3]. Considering Hausdorff topological
spaces that are locally homeomorphic to an open subset of a locally convex vec-
tor space, this allows the category of locally convex smooth manifold and smooth
maps between them to be defined in the usual way, in complete analogy with
the finite-dimensional case (cf. [Nee06, Def. I.3.1]). It is then also straightfor-
ward to define the notion of a locally convex Lie group, which is defined to be a
group G which is also a locally convex smooth manifold, such that multiplication
G×G→ G, (x, y) 7→ xy and the inversion G→ G, x 7→ x−1 are both smooth maps.

Defining the tangent bundle T (M) of a locally convex manifold M in terms of
equivalence classes of smooth curves, as usual, one also readily defines the tangent
functor analogously to the finite-dimensional case (cf. [Nee06, Def. I.3.3]). The
Lie algebra g of a locally convex Lie group G is then defined as the tangent space
g := Te(G) of G at the identity element e ∈ G, which naturally comes equipped
with a Lie bracket (cf. [Nee06, Def. II.1.5]). We also write L(G) := Te(G) for the
Lie algebra of G, and we write L(f) := Te(f) when f : G→ H is a homomorphism
of Lie groups. In this setting, L(f) : L(G)→ L(H) is a continuous homomorphism
of Lie algebras, and we call L the Lie functor.

Remark 2.1.2. An important reason for requiring local convexity of the model
space of a (possibly infinite-dimensional) smooth manifold is that the continuous
dual space E′ of a locally convex vector space E separates the points of E [Rud91, p.
60]. This ensures in particular that df = 0 implies that f is locally constant [Nee06,
Prop. I.2.3], where U,E and F are as in Definition 2.1.1 and where f ∈ C1(U,F ).
This implication would generally not hold true if E is required to be a metric
topological vector space, for example, as [Nee06, Ex. I.2.5] shows.

Let I := [0, 1]. If γ ∈ C∞(I,G), we write δ(γ) : I → g for its left logarithmic
derivative, defined by δ(γ)(t) := d

ds

∣∣
s=t

γ(t)−1γ(s) ∈ g. An important concept in
locally convex Lie theory, especially in the context of integrability questions, is
Milnor’s notion of regular Lie groups [Mil84, Def. 7.6]:

Definition 2.1.3 ([Nee06, Def. II.5.2]). A Lie group G with Lie algebra g is said
to be regular if the initial value problem

δ(γ) = ξ,

γ(0) = e,
(2.1.1)

has a solution γξ ∈ C∞(I,G) for every ξ ∈ C∞(I, g), and the corresponding
evolution map

evolG : C∞(I, g)→ G, ξ 7→ γξ(1)

is smooth.
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Some remarks are in order:

Remark 2.1.4.

1. Any Banach-Lie group is regular [Nee06, Rem. II.5.4].

2. A regular Lie group G admits a smooth exponential map expG : g → G,
defined by expG(x) := evolG(ξx), where ξx(t) := tx for x ∈ g and t ∈ I. In
this regard, it is important to mention that beyond the Banach setting, the
exponential map expG need not be a local diffeomorphism in zero ([Mil84,
Warning 1.6] and [PS86, Prop. 3.3.1]). Also, a general locally convex Lie
group may not admit a smooth exponential function at all [Nee06, Ex. II.5.5].

3. If G and H are Lie groups, with G 1-connected and H regular, then any
continuous homomorphism ϕ : L(G) → L(H) of Lie algebras integrates to a
unique smooth homomorphism f : G→ H of Lie groups satisfying L(f) = ϕ
[Mil84, Thm. 8.1].

4. If G1 and G2 are two 1-connected regular Lie groups with L(G1) ∼= L(G1) as
topological Lie algebras, then G1

∼= G2 as Lie groups [Mil84, Cor. 8.2].

As illustrated by Remark 2.1.4, the concept of regularity saves various results that
are familiar from the finite-dimensional context, but which are not necessarily true
for general locally convex Lie groups.

In Remark 2.1.4, we noticed that any Banach-Lie group is a regular locally convex
Lie group. Some further illustrative examples are given below. Throughout this
thesis, we will also encounter various other examples.

Example 2.1.5.

1. IfM is a finite-dimensional compact smooth manifold, then the group Diff(M)
of diffeomorphisms on M is a regular Lie group with Lie algebra X (M), the
Fréchet space of smooth vector fields on M [Mil84, Sec. 6 and 7] (cf. [Nee06,
Ex. II.3.14]).

2. IfM is a finite-dimensional smooth manifold andK is a finite-dimensional Lie
group with Lie algebra k, then the group C∞

c (M,K) of compactly supported
smooth functions M → K, equipped with the pointwise product, is a regular
Lie group with Lie algebra C∞

c (M, k) [Nee06, Thm. IV.1.12].

3. If A is a unital C∗-algebra, then the group A× of invertible elements is a reg-
ular Banach-Lie group with Lie algebra (A, [−,−]), equipped with the usual
Lie bracket [a, b] = ab − ba (a, b ∈ A) [Nee06, Thm. IV.1.11]. Similarly, it
follows using [Nee06, Thm. IV.3.3] that group U(A) =

{
u ∈ A : u∗ = u−1

}
of unitary elements is a Banach-Lie group whose Lie algebra u(A) is the Lie
subalgebra u(A) = {x ∈ A : x+ x∗ = 0 } of (A, [−,−]), cf. example 6.8.7
below.
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2.2 Continuous Lie algebra cohomology

We now briefly define continuous Lie algebra cohomology (cf. [Nee06, Def. V.2.2]):

Definition 2.2.1 (Continuous Lie algebra cohomology).
Let g be a locally convex Lie algebra and let E be a topological g-module. The
continuous Lie algebra cohomology H•

ct(g, E) with coefficients in the g-module E
is the cohomology of the complex C•

ct(g, E), where for q ∈ N≥0, the vector space
Cqct(g, E) consists of continuous alternating multi-linear maps gq → E. The differ-
ential dg : C•

ct(g, E)→ C•+1
ct (g, E) of this complex is given by

dgω(ξ0, . . . , ξq) :=

q∑
j=0

(−1)jξj · ω(ξ0, . . . , ξ̂j , . . . , ξq)

+
∑

0≤i<j≤q

(−1)i+jω([ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξq).
(2.2.1)

As usual, the arguments in (2.2.1) with a caret are to be omitted. Unless mentioned
otherwise, the vector space R is considered as trivial g-module.

2.3 Representations and central extensions

Throughout this section, let G denote a locally convex Lie group that admits an
exponential map. Let g be the Lie algebra of G.

Definition 2.3.1.

— A unitary representation of G is a homomorphism ρ : G → U(Hρ), where
Hρ is a Hilbert space and U(Hρ) denotes the group of unitary operators on
Hρ. Similarly, a projective unitary representation of G is a homomorphism
ρ : G → PU(Hρ) := U(Hρ)/TidHρ

. Such a (projective) unitary represen-
tation of G is also denoted as a pair (ρ,Hρ).

— A (projective) unitary representation ρ of G on Hρ is said to be continuous
if it is so w.r.t. the strong topology on U(Hρ).

— Let (ρ,Hρ) be a unitary representation of G on Hρ. A vector ψ ∈ Hρ is
called smooth if the orbit map G → Hρ, g 7→ ρ(g)ψ is smooth. We denote
by H∞

ρ ⊆ Hρ the subspace of smooth vectors. The representation ρ is called
smooth if H∞

ρ is dense in Hρ.

— Let (ρ,Hρ) be a projective unitary representation of G on Hρ. We say that
a ray [ψ] ∈ P(Hρ) is smooth if the orbit map G → P(Hρ), g 7→ ρ(g)[ψ] is
smooth. Denote by P(Hρ)∞ the subspace of smooth rays. The projective
representation ρ is called smooth if P(Hρ)∞ is dense in P(Hρ).

Definition 2.3.2. If D is a complex vector space, denote by L(D) the algebra of
linear operators on D. If D is a pre-Hilbert space, we also define the algebra

L†(D) :=
{
X ∈ L(D) : ∃X† ∈ L(D) : ∀ψ, η ∈ D : ⟨X†ψ, η⟩ = ⟨ψ,Xη⟩

}
.
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The element X† corresponding to X ∈ L†(D) is unique, again an element of L†(D)
and satisfies (X†)† = X, so (−)† endows L†(D) with an involution. We also define
the Lie algebra

u(D) :=
{
X ∈ L†(D) : X† +X = 0

}
.

Definition 2.3.3. Let D be a complex pre-Hilbert space.

— A unitary representation of the locally convex Lie algebra g on D is a Lie
algebra homomorphism π : g→ u(D). A projective unitary representation is
a Lie algebra homomorphism π : g→ pu(D) := u(D)/iRI.

— A unitary representation π of g is called continuous if ξ 7→ π(ξ)ψ is continuous
for any ψ ∈ D. Similarly, a projective unitary representation π is continuous
if ξ 7→ π(ξ)[ψ] is continuous for every [ψ] ∈ P(D).

Remark 2.3.4. Any unitaryG-representation onHρ defines a unitary g-representation
dρ : g → u(H∞

ρ ) on H∞
ρ by dρ(ξ)ψ := d

dt

∣∣
t=0

ρ(etξ)ψ. We will always consider el-
ements of dρ(g) as unbounded operators defined on the invariant domain H∞

ρ . If
G is finite-dimensional, then H∞

ρ is dense in Hρ for any continuous unitary repre-
sentation ρ of G, by a result of G̊arding [G̊ar47] (cf. [War72, Prop. 4.4.1.1]). The
analogous statement is generally false for infinite-dimensional Lie groups [BN08a].

A continuous projective unitary representation ρ : G → PU(Hρ) is equivalently

given by a continuous central T-extension
◦
G together with a unitary representation

ρ :
◦
G → U(Hρ) which satisfies ρ(z) = zI for z in the central T component. Of

course,
◦
G is the pull-back of the central T-extension U(Hρ)→ PU(Hρ) along ρ. We

say that ρ lifts ρ. Suppose ρ1 and ρ2 are two projective unitary representations,

inducing by pull-back the lifts ρ1 :
◦
G1 → U(Hρ1) and ρ2 :

◦
G2 → U(Hρ1) of ρ1 and

ρ2, respectively. Then ρ1 and ρ2 are unitarily equivalent if and only if there is an

isomorphism Φ :
◦
G1 →

◦
G2 of central G-extensions and a unitary U : Hρ1 → Hρ2

such that ρ2(Φ(x)) = Uρ1(x)U
−1 for all x ∈

◦
G1. Analogously, any projective

unitary g-representation π with domain D can be lifted to a unitary representation
π :

◦
g→ u(D) of some central R-extension ◦

g of g. The continuous central extensions
of g by R are up to isomorphism classified by H2

ct(g,R), the continuous second
Lie algebra cohomology with trivial coefficients [JN19, Def. 6.2, Prop. 6.3]. To the
2-cocycle ω ∈ C2

ct(g,R) is associated the Lie algebra R ⊕ω g, which as a vector
space is the direct sum R⊕ g, and whose Lie bracket is given by

[(a, ξ), (b, η)]R⊕ωg := (ω(ξ, η), [ξ, η]g), a, b ∈ R, ξ, η ∈ g.

Thus, to study the projective unitary representations of g up to equivalence, one
may first determine H2

ct(g,R), choose for each class [ω] ∈ H2
ct(g,R) a representative

ω and then proceed to determine the equivalence classes of unitary representations
π of R⊕ω g satisfying π(1, 0) = iI. We will also write c := (1, 0) ∈ R⊕ω g for the
central generator.

Remark 2.3.5. In the literature, one encounters the notion of the level of a unitary
representation π of Rc⊕ωg, which is the number l ∈ R such that π(c) = ilI (see e.g.
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[PS86, sec. 9.3]). Let us briefly clarify how such representations are included in the
program outlined above, even though π(c) = iI is always assumed. Simply notice
that such a representation of level l factors through the map Rc⊕ω g→ Rc⊕l·ω g
induced by multiplication by l on the central factor. The corresponding represen-
tation π2 of Rc ⊕l·ω g satisfies π2(c) = iI. Notice that Rc ⊕ω g → R ⊕l·ω g is an
isomorphism of Lie algebras whenever l ̸= 0, but not of central extensions unless
l = 1, because a morphism of central extensions is required to be the identity on
the central component. For 1 ̸= l ∈ R, the cocycles ω and l · ω are not equivalent
unless [ω] = 0 in H2

ct(g,R).

Remark 2.3.6. If a projective unitary representation ρ of G is smooth, then the

corresponding central T-extension
◦
G is again a locally convex Lie group [JN19,

Thm. 4.3]. Moreover, there is a similar correspondence between smooth projective

unitary representations ρ of G and their lifts ρ :
◦
G→ U(Hρ), which are then again

smooth [JN19, Cor. 4.5, Thm. 7.3]. We furthermore have P(Hρ)∞ = P(H∞
ρ ) by

[JN19, Thm. 4.3].

2.4 Positive energy representations

Let us now introduce the class of positive energy representations. Let G be a locally
convex Lie group with Lie algebra g. We assume that G admits an exponential
map. If c ∈ R, D is a complex pre-Hilbert space and X ∈ L†(D), we write X ≥ c
if X† = X and ⟨ψ,Xψ⟩ ≥ c∥ψ∥2 for every ψ ∈ D.

Definition 2.4.1. Let D be a pre-Hilbert space.

— A continuous unitary representation π of the locally convex Lie algebra g on
D is said to be of positive energy (p.e.) at ξ ∈ g if −iπ(ξ) ≥ 0.

— Let π be a continuous projective unitary representation of g on D with lift

π :
◦
g→ u(D). Then π is of p.e. at ξ if π is of p.e. at some

◦
ξ ∈ ◦

g covering ξ.

— A smooth (projective) unitary representation of G on Hρ is said to be of p.e.
at ξ ∈ g if the corresponding derived (projective) unitary representation of g
on H∞

ρ is so.

— We say that a (projective) unitary representation of G or g is of positive
energy at the convex cone C ⊆ g if it so at every ξ ∈ C.

Remark 2.4.2. Let ρ be a smooth unitary representation of G. Then the set C :=
C(dρ) := { ξ ∈ g : dρ is of p.e. at ξ } is always a closed, G-invariant convex cone.
Consequently, C ∩ −C and C − C are ideals in g, called the edge and span of C,
respectively. If ξ ∈ C ∩ −C then ξ ∈ ker dρ, so by passing to the quotient g/ ker dρ
one may always achieve that C is pointed.
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2.5 Semibounded representations

We now introduce the class of semibounded representations, a ‘stable’ analogue of
the positive energy condition. This class has been extensively studied in [Nee00,
Nee17, Nee10b], and we collect some relevant results associated to such represen-
tations. Throughout the section, G continues to denote a locally convex Lie group
with Lie algebra g, and which admits an exponential map.

Definition 2.5.1. A smooth unitary G-representation ρ is said to be semibounded
if the set

Wρ :=
{
ξ ∈ g : inf Spec(−idρ(ξ)) > −∞

}
contains an interior point.

Remark 2.5.2. For finite-dimensional Lie groups, the class of semibounded repre-
sentations has been subject to detailed study in [Nee00]. In particular, they are
highest weight representations [Nee00, Def. X.2.9, Thm. X.3.9]. For a consideration
of semibounded representations in the context of infinite-dimensional Lie groups,
we refer to [Nee17] and [Nee10b].

In the finite-dimensional context, the semiboundedness condition turns out to be
extremely restrictive, which in turn has consequences for arbitrary positive energy
representations. The following result, Theorem 2.5.3, is based on the results in the
monograph [Nee00]. We say that G is locally exponential if the restriction of its
exponential map to a small-enough open 0-neighborhood in g is a diffeomorphism
onto an open 1-neighborhood of G.

Theorem 2.5.3. Assume that G is connected and locally exponential. Take d ∈ g
and let a = ⟨d⟩◁g be the closed ideal in g generated by d. Assume that dim(a) <∞
and that a is stable, in the sense that AdG(a) ⊆ a. Let (ρ,Hρ) be a smooth unitary
G-representation which is of p.e. at d ∈ g. Define h := a/ ker dρ. The following
assertions are valid:

1. a = C − C, where C ⊆ g is the closed G-invariant convex cone in g generated
by d.

2. The closure of C+ker dρ in h is a pointed, generating and G-invariant convex
cone. Thus C ∩ −C ⊆ ker dρ.

3. Let A ◁ G be a connected normal Lie subgroup integrating a. Then ρ|A is
semibounded.

4. Let hn denote the maximal nilpotent ideal of h. Then [hn, hn] ⊆ z(h). More-
over, there exists a reductive Lie algebra l such that h ∼= hn ⋊ l.

5. Let an denote the maximal nilpotent ideal of a. Then [a, [an, an]] ⊆ ker dρ.

Proof. For the first point, let a′ be the closure of C − C in g. As a′ is a closed ideal
in g containing d, we have a ⊆ a′. On the other hand, we know that AdG(d) ⊆ a
because a is stable. Thus C ⊆ a and hence a′ ⊆ a. So a′ = a. In particular
dim(a′) < ∞ and so C − C = a′ = a. Next we prove the second statement. Take
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ξ ∈ (C + ker dρ) ∩ −(C + ker dρ). Then dρ(ξ) ≥ 0 and dρ(ξ) ≤ 0, in view of
Remark 2.4.2, and hence Spec(dρ(ξ)) = {0}. As dρ(ξ) is essentially skew-adjoint,
it follows that ξ ∈ ker dρ. Thus C + ker dρ is pointed in h. As C is G-invariant and
convex, it is clear that the same holds for the closure of C +ker dρ in h. The latter
is also generating in h because a = C − C. Next we show that ρ|A is semibounded,
where A◁G is a connected normal Lie subgroup integrating a◁g. As a is spanned by
C and dim a <∞, it follows that C ⊆ a has interior points. As C ⊆Wρ, this implies
that Wρ has interior points. Hence ρ|A is semibounded. For the remaining points,
we use the results in [Nee00]. We first show that h is admissible, in the sense of
[Nee00, Def. VII.3.2]. Using the second point, the convex cone (C + ker dρ)⊕R≥0 in
h⊕R is closed, pointed, generating and Inn(h)-invariant. By [Nee00, Lem. VII.3.1,
Def. VII.3.2] this implies that h is admissible. By [Nee00, Thm. VII.3.10], it follows
that [hn, hn] ⊆ z(h) and that h contains a compactly embedded Cartan subalgebra t
(where as in [Nee00, Def. VII.1.1], a subalgebra t ⊆ h is called compactly embedded

if ⟨ead(t)⟩ is compact in Aut(h)). Using [Nee00, Lem. VII.2.26(iv)], we obtain that
there exists some reductive Lie algebra l with h ∼= hn ⋊ l. Since [h, [hn, hn]] = 0
and h = a/ ker dρ, it follows in particular that [a, [an, an]] ⊆ ker dρ.

For projective p.e. representations, this leads to:

Corollary 2.5.4. Let G, d, a and an be as Theorem 2.5.3. Let (ρ,Hρ) be a smooth
projective unitary representation of G. Suppose that ρ is of p.e. at d ∈ g. Then
[a, [an, an]] ⊆ ker dρ.

Proof. Let ρ :
◦
G → U(Hρ) be the lift of ρ to a central T-extension

◦
G of G. Let

◦
g := Lie(

◦
G). There exists some

◦
d ∈ ◦

g s.t. dρ is of p.e. at
◦
d ∈ ◦

g. Let
◦
a denote the

ideal in
◦
g generated by

◦
d and let

◦
an denote the maximal nilpotent ideal in

◦
a. Then

dρ([
◦
a, [

◦
an,

◦
an ]]) = {0} by Theorem 2.5.3. Thus dρ([a, [an, an]]) = {0}, where we

used that the quotient map
◦
g→ g projects

◦
a and

◦
an onto a and an, respectively.

The following simple lemma will also be useful.

Lemma 2.5.5. Assume that dim(G) < ∞. Let ρ : G → PU(Hρ) be a continuous
projective unitary representation of G which is of p.e. at every element of g. Then
ρ is continuous w.r.t. the norm-topology on U(Hρ).

Proof. Let dρ :
◦
g→ u(H∞

ρ ) be the lift of dρ. Identify
◦
g ∼= R⊕ω g for some 2-cocycle

ω : g× g→ R. The assumptions imply that for every ξ ∈ g there exists Eξ ∈ R s.t.
−idρ(ξ) ≥ Eξ. As this holds in particular for both ξ and −ξ, dρ(ξ) is a bounded
operator for any ξ ∈ g. As dim(g) < ∞, one finds by choosing a basis (eµ) of g
that there exists C > 0 s.t. ∥dρ(ξ)∥ ≤ C∥ξ∥ where ∥ξ∥ := supµ |ξµ| if ξ =

∑
µ ξµeµ.

Thus ξ 7→ dρ(ξ) is norm-continuous. This implies norm-continuity of ρ because
B(Hρ) → B(Hρ), T 7→ eT is norm-continuous and ρ(expG(ξ)) = [edρ(ξ)] ∈ PU(Hρ)
for ξ ∈ g.
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Chapter 3

Generalized positive energy and KMS rep-
resentations

As explained in Chapter 1, the main purpose of this thesis is to develop further
understanding of positive energy and KMS representations. These two seemingly
different classes exhibit similar behavior in certain respects. In particular, we will
see that both give rise to so-called generalized positive energy representations, a
notion that is introduced in Section 3.1 below. Its utility lies primarily in the fact
that it unifies the positive energy and KMS conditions to some extent, thereby
allowing their simultaneous study. In Section 3.2, we briefly recall the modular
theory of von Neumann algebras and then proceed to define KMS representations.
We then consider a number of examples and discuss some of their properties, in
particular making the important observation that KMS representations give rise to
generalized positive energy ones.

This chapter is based on [Nie23a, Part I].

3.1 Generalized positive energy representations

Let G denote a regular locally convex Lie group with Lie algebra g. The class
of positive energy representations can be generalized by relaxing the condition
−idρ(ξ) ≥ 0 in Definition 2.4.1. We define a suitable relaxed notion, the gener-
alized positive energy condition, and show that it can still be very restrictive. In
particular, we show that for a projective unitary representation which of is general-
ized positive energy, its kernel is related to a particular quadratic form canonically
associated to the corresponding class in H2

ct(g,R). This observation will play a key
role in Chapter 4 and Chapter 5.

Definition 3.1.1. Let D be a complex pre-Hilbert space with Hilbert space com-
pletion H. Let h be a locally convex topological Lie algebra.

— A continuous unitary representation π : h → u(D) is of generalized positive
energy (g.p.e.) at ξ ∈ h if there exists a 1-connected regular Lie group H
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with Lie algebra h and a dense linear subspace Dξ ⊆ D such that

∀ψ ∈ Dξ : Eψ(π, ξ) := inf
h∈H
⟨ψ,−iπ(Adh(ξ))ψ⟩ > −∞. (3.1.1)

— Let π : h→ pu(D) be a continuous projective unitary representation of h on

D with lift π :
◦
h→ u(D). Then π is said to be of generalized positive energy

at ξ ∈ h if there is some
◦
ξ ∈

◦
h covering ξ such that π is of g.p.e. at

◦
ξ.

— Let ρ : G→ U(Hρ) be a smooth unitary representation of G. Then ρ is said
to be of g.p.e. at ξ ∈ g if its derived representation dρ on H∞

ρ is so.

— Let ρ : G→ PU(Hρ) be a smooth projective unitary representation of G with

lift ρ :
◦
G → U(Hρ). Let

◦
g be the Lie algebra of

◦
G. Then ρ is of g.p.e. at

ξ ∈ g if ρ is of g.p.e. at some
◦
ξ ∈ ◦

g covering ξ.

Remark 3.1.2. If (ρ,Hρ) is a smooth unitary G-representation, then

⟨ψ, dρ(Ad−1
g (ξ))ψ⟩ = ⟨ρ(g)ψ, dρ(ξ)ρ(g)ψ⟩, ∀g ∈ G, ξ ∈ g, ψ ∈ H∞

ρ .

This implies that any (projective) unitary representation of G that is of positive
energy at ξ ∈ g is also of generalized positive energy at ξ.

Remark 3.1.3. A unitary representation (ρ,Hρ) of G is of generalized positive
energy at ξ ∈ g if and only if

inf
g∈G0

⟨ρ(g)ψ,−idρ(ξ)ρ(g)ψ⟩ > −∞

for all ψ in a linear subspace Dξ ⊆ H∞
ρ which is dense in Hρ. A projective unitary

G-representation ρ with lift ρ is of g.p.e. at ξ ∈ g if and only if for some (and hence

any)
◦
ξ ∈ ◦

g covering ξ, the function

µ : P(H∞
ρ )→ R, µ([ψ]) :=

1

∥ψ∥2
⟨ψ,−idρ(

◦
ξ)ψ⟩

is bounded below on theG0-orbitO[ψ] for all ψ in a dense linear subspaceDξ ⊆ H∞
ρ .

Remark 3.1.4. If π is a continuous (projective) unitary representation of g, then
the set

C(π) := { ξ ∈ g : π is of g.p.e. at ξ } ⊆ g

is always an AdG0
-invariant cone in g.

An important observation for the class of g.p.e. representations is the following one:

Lemma 3.1.5. Let π : g → u(D) be a continuous unitary representation of g on
the pre-Hilbert space D that is of g.p.e. at ξ ∈ g. Suppose that η ∈ g satisfies
[[ξ, η], η] ∈ Z(g). Then for every ψ in a dense linear subspace Dξ ⊆ D we have:

0 ≤ ⟨ψ,−iπ([[ξ, η], η])ψ⟩,

⟨ψ,−iπ([ξ, η])ψ⟩2 ≤ 2⟨ψ,−iπ([[ξ, η], η])ψ⟩
(
⟨ψ,−iπ(ξ)ψ⟩ − Eψ(π, ξ))

)
.

(3.1.2)

In particular, if [[ξ, η], η] = 0 then π([ξ, η]) = 0.
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Proof. Let Dξ ⊆ D be a dense linear subspace for which (3.1.1) is valid. Let
ψ ∈ Dξ. Then ⟨ψ,−iπ(etadηξ)ψ⟩ ≥ Eψ(π, ξ) for all t ∈ R. As [[ξ, η], η] ∈ Z(g), the
third derivative γ(3) : R → g of the smooth path γ : R → g, t 7→ etadηξ vanishes.
From Taylor’s formula (which holds for smooth maps between locally convex vector

spaces by [Nee06, Prop. I.2.3]), it follows that etadηξ = ξ + t[η, ξ] + t2

2 [[ξ, η], η] for
all t ∈ R. Thus〈
ψ,−iπ(ξ)ψ⟩+ t⟨ψ,−iπ([η, ξ])ψ⟩+ t2

2
⟨ψ,−iπ([[ξ, η], η])ψ⟩ ≥ Eψ(π, ξ), ∀t ∈ R

The equations (3.1.2) follows from the fact that at2 + bt + c ≥ 0 for all t ∈ R if
and only if a, c ≥ 0 and b2 ≤ 4ac. So if [[ξ, η], η] = 0, then ⟨ψ,−iπ([ξ, η])ψ⟩ = 0
for all ψ ∈ Dξ. As Dξ is a complex vector space, this implies by the polarization
identity that ⟨ψ1,−iπ([ξ, η])ψ2⟩ = 0 for all ψ1, ψ2 ∈ Dξ. As Dξ is dense and
π([ξ, η])† = −π([ξ, η]), it follows that π([ξ, η])ψ = 0 for all ψ ∈ D.

In the projective context, this sets up a relation between kerπ and the class [ω] ∈
H2

ct(g;R) defined by the corresponding central R-extension ◦
g of g. This is exploited

in Section 4.4 and Chapter 5 below.

Proposition 3.1.6. Let π be a continuous projective unitary g-representation on
the pre-Hilbert space D with lift π :

◦
g → u(D) for some continuous central R-

extension
◦
g of g. Let ω represent the corresponding class in H2

ct(g,R). Assume
that π is of g.p.e. at ξ ∈ g. Suppose that η ∈ g satisfies [[ξ, η], η] = 0. Then
ω([ξ, η], η) ≥ 0 and

ω([ξ, η], η) = 0 ⇐⇒ π([ξ, η]) = 0.

Proof. Identify
◦
g with R ⊕ω g. Let

◦
ξ ∈ C(π) and

◦
η ∈ ◦

g be lifts of ξ and η,

respectively. We have that [[
◦
ξ,

◦
η ],

◦
η ] = ω([ξ, η], η) ∈ Z(

◦
g), because [[ξ, η], η] =

0. Using Lemma 3.1.5 it follows that ω([ξ, η], η) ≥ 0. If ω([ξ, η], η) = 0, then

[[
◦
ξ,

◦
η ],

◦
η ] = 0 and so Lemma 3.1.5 implies that π([

◦
ξ,

◦
η ]) = 0. Hence π([ξ, η]) = 0.

Conversely, if π([ξ, η]) = 0, then iω([ξ, η], η) = [π([ξ, η]), π(η)] − π([[ξ, η], η]) = 0,
because [[ξ, η], η] = 0.

Remark 3.1.7. Notice in Proposition 3.1.6 that whenever [[ξ, η], η] = 0, the value
of ω([ξ, η], η) does not depend on the choice of representative ω of [ω] ∈ H2

ct(g,R).

The following special case of Proposition 3.1.6 will be particularly useful:

Corollary 3.1.8. Let p and g be locally convex Lie algebras. Let D : p → der(g)
be a homomorphism for which the corresponding action p × g → g is continuous.
Let D be a complex pre-Hilbert space and let π : g ⋊D p → pu(D) be a continuous
projective unitary representation of g ⋊D p on D that is of g.p.e. at p ∈ p. Let
[ω] ∈ H2

ct(g⋊D p;R) be the corresponding class in H2
ct(g⋊D p;R). Let η ∈ g satisfy

[D(p)η, η] = 0. Then ω(D(p)η, η) ≥ 0 and

ω(D(p)η, η) = 0 ⇐⇒ π(D(p)η) = 0.
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3.2 KMS representations

In the following, we introduce the class of KMS representations. We will see in
particular that these give rise to generalized positive energy representations. Its
definition makes use of the modular theory of von Neumann algebras, which we
recall first.

3.2.1 Modular theory of von Neumann algebras

We recall the modular condition and the notion of a KMS state on a von Neumann
algebra M, whilst fixing our conventions and notation. We refer to [Tak03a, Ch.
VIII], [BR87, Ch. 2.5] and [BR97, Ch. 5.3] for a detailed consideration of the mod-
ular theory of von Neumann algebras and of KMS states.

IfM is a von Neumann algebra, we writeM∗ for its pre-dual, equipped with the
σ(M∗,M)-topology. We write S(M) ⊆ M∗ for the set of normal states on M.
Further, if ϕ ∈ S(M), we write πϕ : M → B(Hϕ) for the GNS-representation of
M relative to ϕ and we defineMϕ := πϕ(M)′′. Let Ωϕ ∈ Hϕ denote the canonical
cyclic vector satisfying ϕ(x) = ⟨Ωϕ, πϕ(x)Ωϕ⟩ for all x ∈M. Whenever Ωϕ is sepa-
rating forMϕ, let Sϕ denote the unique closed conjugate-linear operator satisfying

SϕxΩϕ = x∗Ωϕ for all x ∈Mϕ. Let Sϕ = Jϕ∆
1
2

ϕ be its polar decomposition, where
the operators ∆ϕ and Jϕ are positive and anti-unitary, respectively.

Definition 3.2.1. A map σ : R→ Aut(M) is said to be σ(M∗,M)-continuous if
for every x ∈M, the map R→M, t 7→ σt(x) is continuous w.r.t. the σ(M∗,M)-
topology onM.

Definition 3.2.2. Let ϕ ∈ S(M) be a normal state. Let σ : R → Aut(M) be a
one-parameter group of automorphisms ofM. Define St := { z : z ∈ C, 0 < Im(z) < 1 }.

— ϕ is said to satisfy the modular condition for σ if the following two conditions
are satisfied:

1. ϕ = ϕ ◦ σt for all t ∈ R.
2. For every x, y ∈ M, there exists a bounded continuous function Fx,y :

St→ C which is holomorphic on St and s.t. for every t ∈ R:

Fx,y(t) = ϕ(σt(x)y),

Fx,y(t+ i) = ϕ(yσt(x)).

— ϕ is said to be KMS w.r.t. σ at inverse temperature β > 0 if it satisfies the
modular condition for t 7→ σ−βt. In that case, we also say that ϕ is σ-KMS
at inverse-temperature β. If β = 1 we simply say that ϕ is a σ-KMS state.

Remark 3.2.3.

1. Suppose that ϕ ∈ S(M) is faithful. Then there exists a unique automor-
phism group σϕ : R → Aut(M) for which ϕ satisfies the modular condition
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[Tak03a, Thm. VIII.1.2], [BR87, Thm. 2.5.14]. The automorphism group
σϕ is σ(M∗,M)-continuous. As ϕ is faithful, πϕ : M → Mϕ is injective
and hence a ∗-isomorphism betweenM andMϕ [BR87, Thm. 2.4.24]. Thus
one may identify M with Mϕ via πϕ : M → Mϕ ⊆ B(Hϕ). Finally, there
is a unique conditional expectation E : M → MR s.t. ϕ = ϕ0 ◦ E , where
MR :=

{
x ∈M : σϕt (x) = x ∀t ∈ R

}
and where ϕ0 := ϕ|MR [Tak03a,

Thm. IX.4.2].

2. If ϕ is not necessarily faithful, then ϕ satisfies the modular condition for
some σ(M∗,M)-continuous 1-parameter group σ : R → Aut(M) of ∗-
automorphisms of M if and only if Ωϕ ∈ Hϕ is separating for Mϕ. In
that case, there is a central projection p ∈ Z(M) such that ϕ(1− p) = 0 and
ϕ is faithful onMp. Moreover, σt(p) = p for all t ∈ R and σ|Mp is uniquely
determined by the modular condition for ϕ [BR97, Thm. 5.3.10].

3. In particular, if M is a factor and ϕ is KMS w.r.t. σ : R → Aut(M), then

necessarily p = I and whence ϕ must be faithful. Consequently σ = σϕt is
necessary.

4. In the converse direction, given a σ(M∗,M)-continuous automorphism group
σ : R→ Aut(M), there may be no, precisely one, or multiple states in S(M)
that are KMS w.r.t. σ. The set of σ-KMS states in S(M) is considered in
[BR97, Ch. 5.3.2]. In particular, if ϕ ∈ S(M) is a faithful σ-KMS state and
ψ ∈ S(M), then ψ is σ-KMS if and only if there is a (necessarily unique)

positive operator T affiliated to Z(M) such that ψ(x) = ϕ(T
1
2xT

1
2 ) for all x ∈

M [BR97, Prop. 5.3.29]. In [BEK80] and [BEK86], the set Kβ of normal σ-
KMS states at inverse temperature β is studied in the setting of C∗-dynamical
systems.

5. As a consequence of the previous items, ifM is a factor and ϕ, ψ ∈ S(M) are
both σ-KMS, then ϕ = ψ, so that two distinct normal states can not share
the same modular automorphism group.

Remark 3.2.4. Suppose ϕ ∈ S(M) is KMS w.r.t. σ : R→ Aut(M). Let σϕ denote
the modular automorphism group of Mϕ defined by the faithful state ⟨Ωϕ, • Ωϕ⟩
onMϕ. It then holds true that σϕt (πϕ(x)) = πϕ(σ−t(x)) for any x ∈M and t ∈ R.
Indeed, by [BR97, cor. 5.3.4], the state ⟨Ωϕ, • Ωϕ⟩ onMϕ is KMS w.r.t. the unique
automorphism group τ : R → Aut(Mϕ) satisfying τt(πϕ(x))Ωϕ = πϕ(σt(x))Ωϕ for

all t ∈ R. Then σϕt = τ−t by the uniqueness of the modular automorphism group
(and the minus sign in the definition of KMS states). As Ωϕ is separating forMϕ,

it follows that σϕt (πϕ(x)) = πϕ(σ−t(x)).

Example 3.2.5 (Gibbs States). LetM = B(H) and σt(x) = eitHxe−itH for some
self-adjoint operator H satisfying Zβ := Tr(e−βH) < ∞ for some β > 0. Consider
the normal state ϕ(x) = 1

Zβ
Tr(e−βHx) onM. The modular automorphism group

corresponding to ϕ is given by σϕt (x) = e−iβtHxeiβtH = σ−βt(x) [BR87, Example
2.5.16]. Thus ϕ satisfies the modular condition for σ−βt and is therefore KMS at
inverse temperature β w.r.t. σt.
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Gibbs states ϕ(x) = 1
Zβ

Tr(e−βHx) constitute the simplest class of examples of

KMS states. We will encounter a variety of different KMS states in Section 3.2.2
below.

3.2.2 KMS representations

In the following, let G be a regular locally convex Lie group with Lie algebra g.
Let N ⊆ G be an embedded Lie subgroup.

Definition 3.2.6. Let (ρ,Hρ) be a unitary G-representation. Let N := ρ(N)′′ ⊆
B(Hρ) be the von Neumann-algebra generated by ρ(N). For ϕ ∈ N∗, define the
function

ϕ̂ : N → C, ϕ̂(n) := ϕ(ρ(n)).

Define N∞
∗ :=

{
ϕ ∈ N∗ : ϕ̂ ∈ C∞(N ;C)

}
and set S(N )∞ := S(N ) ∩N∞

∗ .

— Let ξ ∈ g and ϕ ∈ S(N ). We say that ϕ is KMS-compatible with (ρ, ξ,N)
if etξNe−tξ ⊆ N for all t ∈ R and ϕ is KMS w.r.t. the automorphism group
R→ Aut(N ) defined by t 7→ Ad(ρ(etξ)).

— Define KMS(ρ, ξ,N) := {ϕ ∈ S(N ) : ϕ is KMS-compatible with (ρ, ξ,N) }.
Similarly, let KMS(ρ, ξ,N)∞ := KMS(ρ, ξ,N) ∩ S(N )∞.

— ρ is said to be KMS at ξ ∈ g relative to N if KMS(ρ, ξ,N) ̸= ∅.
It is called smoothly-KMS at ξ relative to N if KMS(ρ, ξ,N)∞ ̸= ∅.

If the subgroup N is clear from the context, we drop N from the notation and
simply write KMS(ρ, ξ) and KMS(ρ, ξ)∞. We then also say that ρ is KMS at ξ if
it is so relative to N .

Remark 3.2.7. For any fixed ξ ∈ g satisfying Ad(etξ)N ⊆ N for all t ∈ R, one
may as well consider the semidirect product N ⋊α R, where α : R → Aut(N) is
defined by αt := Ad(etξ)

∣∣
N
. Definition 3.2.6 additionally allows for the situation

where ρ is KMS at multiple ξI ∈ g, relative to possibly distinct subgroups NI ⊆ G,
where I ∈ I for some indexing set I. We will see an example of this situation in
Example 3.2.22 below.

In the projective context, we make the following definition:

Definition 3.2.8. Let ρ : G→ PU(Hρ) be a smooth projective unitary represen-

tation with lift ρ :
◦
G → U(Hρ). Let

◦
g be the Lie algebra of

◦
G and let

◦
N ⊆

◦
G be

the Lie subgroup covering N . We say that ρ is smoothly-KMS at ξ ∈ g relative

to N if there exists
◦
ξ ∈ ◦

g covering ξ such that ρ is smoothly-KMS at
◦
ξ relative to

◦
N .

In the following, let (ρ,Hρ) be a unitary G-representation let N := ρ(N)′′ be the
von Neumann-algebra generated by ρ(N). We denote by πϕ : N → B(Hϕ) the
GNS-representation of N relative to ϕ ∈ S(N ). We also denote by Ωϕ ∈ Hϕ the
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canonical N -cyclic vector satisfying ϕ(x) = ⟨Ωϕ, πϕ(x)Ωϕ⟩ for all x ∈ N , and we
write ρϕ := πϕ ◦ ρ : N → U(Hϕ) for the unitary N -representation on Hϕ. Finally,
define Nϕ := ρϕ(N)′′ ⊆ B(Hϕ).

Lemma 3.2.9. Let ϕ ∈ S(N ). Then ϕ̂ is smooth on N if and only if Ωϕ ∈ H∞
ρϕ
.

In this case, H∞
ρϕ

is dense, so ρϕ is smooth.

Proof. Assume that ϕ̂ is smooth. Then n 7→ ⟨Ωϕ, ρϕ(n)Ωϕ⟩ is smooth. By [Nee10a,
Thm. 7.2], it follows n 7→ ρϕ(n)Ωϕ is smooth N → Hϕ. The converse direction is
trivial. Assume that Ωϕ ∈ H∞

ρϕ
. As H∞

ρϕ
is N -invariant and Ωϕ is cyclic for N , it

follows that H∞
ρϕ

is dense in Hϕ.

Consider the left action of G on S(N ) defined by

(g.ϕ)(x) := ϕ(ρ(g)−1xρ(g)), x ∈ N , ϕ ∈ S(N ).

Notice that this action leaves S(N )∞ invariant.

Lemma 3.2.10. Let g ∈ G and ξ ∈ g. Then

ϕ ∈ KMS(ρ, ξ,N) ⇐⇒ g.ϕ ∈ KMS(ρ,Adg(ξ), gNg
−1).

Proof. Write Ng := ρ(g)Nρ(g)−1. Let ϕ ∈ KMS(ρ, ξ,N). As etξNe−tξ ⊆ N
it follows that etAdg(ξ) normalizes gNg−1 for every t ∈ R. Define the following
automorphism groups:

σξ : R→ Aut(N ), σξ := Ad(ρ(etξ)),

ηξ : R→ Aut(Ng), ηξ := Ad(ρ(etAdgξ)).

In order to show g.ϕ ∈ KMS(ρ,Adg(ξ), gNg
−1), we must verify that g.ϕ satisfies

the modular condition for the automorphism group ηξ−t of Ng. Notice that as
isomorphisms Ng → N we have:

σξt ◦Ad(ρ(g)−1) = Ad(ρ(g)−1) ◦ ηξt , ∀t ∈ R. (3.2.1)

As ϕ ∈ KMS(ρ, ξ,N), we know that ϕ ◦ σξt = ϕ for all t ∈ R. It then follows
immediately from (3.2.1) that

(g.ϕ)◦ηξt = ϕ◦Ad(ρ(g)−1)◦ηξt = ϕ◦σξt ◦Ad(ρ(g)−1) = ϕ◦Ad(ρ(g)−1) = g.ϕ, ∀t ∈ R.

Next, take x, y ∈ Ng. Then x = ρ(g)x′ρ(g)−1 and y = ρ(g)y′ρ(g)−1 for some
x′, y′ ∈ N . Let the function Fx′,y′ : St→ C be continuous and bounded, holomor-

phic on St and satisfy Fx′,y′(t) = ϕ(σξ−t(x
′)y′) and Fx′,y′(t+ i) = ϕ(y′σξ−t(x

′)) for

all t ∈ R. Define F̃x,y : St → C by F̃x,y(z) := Fx′,y′(z). Then F̃x,y satisfies the

conditions of Definition 3.2.2 for ηξ−t. Indeed, notice using Equation (3.2.1) that

σξt (x
′) = ρ(g)−1ηξt (x)ρ(g). Thus

F̃x,y(t) = Fx′,y′(t) = ϕ(σξ−t(x
′)y′) = ϕ

(
ρ(g)−1ηξ−t(x)yρ(g)

)
= (g.ϕ)(ηξ−t(x)y),

F̃x,y(t+ i) = Fx′,y′(t+ i) = ϕ(y′σξ−t(x
′)) = ϕ

(
ρ(g)−1yηξ−t(x)ρ(g)

)
= (g.ϕ)(yηξ−t(x)).

28



Thus g.ϕ ∈ KMS(ρ,Adg(ξ), gNg
−1).

Let ϕ ∈ KMS(ρ, ξ,N). Let α denote the smooth R-action on N defined by

αt(n) := etξne−tξ, for t ∈ R and n ∈ N.

We extend ρϕ to N ⋊α R by setting ρϕ(n, t) = ρϕ(n)∆
−it
ϕ . Define

N∞,ϕ := {x ∈ N : (n, t) 7→ ρϕ(n, t)πϕ(x)Ωϕ is smooth N ⋊α R→ Hϕ } ,
Dϕ := πϕ(N∞,ϕ)Ωϕ ⊆ H∞

ρϕ
.

(3.2.2)

Notice that N∞,ϕ and Dϕ are invariant under the left N - and N ⋊α R-actions,
respectively.

Lemma 3.2.11. If ϕ ∈ KMS(ρ, ξ,N)∞, then N∞,ϕ is dense in N w.r.t. the strong
operator topology, and Dϕ is dense in Hϕ. In particular, ρϕ is smooth when con-
sidered as representation of N ⋊α R.

Proof. Since ϕ ∈ S(N )∞, the vector Ωϕ is smooth for theN -action ρϕ by Lemma 3.2.9.
Let m ∈ N . Then for every n ∈ N ant t ∈ R we have:

ρϕ(n, t)ρϕ(m)Ωϕ = ρϕ(n)∆
−it
ϕ ρϕ(m)∆it

ϕΩϕ = ρϕ(n)σ
ϕ
−t(ρϕ(m))Ωϕ = ρϕ(ne

tξme−tξ)Ωϕ.

where the last equality follows by Remark 3.2.4. Thus (n, t) 7→ ρϕ(n, t)ρϕ(m)Ωϕ is
smooth N ⋊α R→ Hϕ and so ρ(m) ∈ N∞,ϕ. Thus ρ(N) ⊆ N∞,ϕ and ρϕ(N)Ωϕ ⊆
Dϕ. Since ρ(N)′′ = N and ρϕ(N)Ωϕ is total for Hϕ, it follows that N∞,ϕ is
SOT-dense in N and that Dϕ is dense in Hϕ. As Dϕ is contained in the set of
N ⋊α R-smooth vectors by definition, the final observation follows.

Restrictions imposed by the KMS condition

Let us next determine some consequences of the KMS condition. Most notably, we
will show that representations ρ which are smoothly-KMS give rise to generalized
positive energy representations ρϕ on the GNS-Hilbert space Hϕ of the correspond-
ing state ϕ.

We continue in the notation of Section 3.2.2. Fixing a Lie subgroup N ⊆ G and
some element ξ ∈ g satisfying Ad(etξ)N ⊆ N for all t ∈ R, we may as well sup-
pose that G = N ⋊α R for some smooth R-action α on N by automorphisms. Let
g := Lie(G), n := Lie(N) and write D ∈ der(n) for the derivation on n correspond-
ing to α. Thus g = n⋊DRd, where d := 1 ∈ R denotes the standard basis element.
Assume that ρ is KMS at d relative to N , and let ϕ ∈ KMS(ρ,d, N). We extend
the N -representation ρϕ = πϕ ◦ ρ on the GNS-Hilbert space Hϕ to G = N ⋊α R by

setting ρϕ(n, t) = ρϕ(n)∆
−it
ϕ . Define further Hϕ := − log∆ϕ = −idρϕ(d).

A first observation is the following:
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Proposition 3.2.12. Let A be an Abelian Lie subgroup of N such that αt(A) ⊆ A
for all t ∈ R. Then ρϕ(αt(a)) = ρϕ(a) for every t ∈ R and a ∈ A. In particular, if
N is a factor then ρ(αt(a)) = ρ(a) for every t ∈ R and a ∈ A.

Proof. Let Aϕ := ρϕ(A)
′′. Write again ϕ for the vector state ⟨Ωϕ, • Ωϕ⟩ on Nϕ. Let

ψ := ϕ|Aϕ
denote its restriction to Aϕ. As A is R-invariant, so is Aϕ ⊆ Nϕ. Thus,

the modular automorphism group σϕ of Nϕ leaves Aϕ invariant. As ϕ satisfies

the modular condition for σϕ, so does ψ for the automorphism group t 7→ σϕt

∣∣∣
Aϕ

.

Recall from Remark 3.2.3(2) that Ωϕ is separating for Nϕ. Hence it is so for Aϕ.
In view of Remark 3.2.3(1) this implies that the modular automorphism group σψ

on Aϕ is uniquely determined by the modular condition. Thus σψt = σϕt

∣∣∣
Aϕ

for

all t ∈ R. As Aϕ is Abelian, we know by [BR97, Prop. 5.3.28] that σψt = idAϕ
.

Thus σϕt

∣∣∣
Aϕ

= idAϕ
. We know from Remark 3.2.4 that ρϕ ◦ α−t = σϕt ◦ ρϕ.

Thus ρϕ(αt(a)) = ρϕ(a) for all a ∈ A and t ∈ R. If N is a factor, then ϕ is
faithful and πϕ is injective by Remark 3.2.3(1,3). Thus ρ(αt(a)) = ρ(a) follows
from ρϕ(αt(a)) = ρϕ(a).

Let us illustrate Proposition 3.2.12 with the following noteworthy consequence for
loop groups:

Corollary 3.2.13. Let K be a compact 1-connected simple Lie group with Lie
algebra k. Define LK := C∞(S1;K) and Lk := C∞(S1; k). Let α denote the T-
action on LK by rotations, with corresponding derivation D := d

dθ on Lk. Consider
the Lie group G := LK ⋊α T with Lie algebra g := Lk ⋊D Rd, where d := 1 ∈ R.
Suppose that the smooth unitary G-representation ρ is KMS at d ∈ g relative to
LK. Assume that ρ(LK)′′ is a factor. Then LK ⊆ ker ρ.

Proof. Suppose T ⊆ K is a maximal torus with Lie algebra t. Then LT ⊆ LK is an
Abelian α-invariant subgroup. By Proposition 3.2.12 it follows that dρ(DLt) = {0}.
As any X ∈ k is contained in a maximal torus, it follows that dρ( dfdθ ⊗X) = 0 for
any f ∈ C∞(S1) and X ∈ k. Consequently dρ(Dg) = {0} and hence DgC ⊆ ker dρ,
where we have extended dρ : g → L†(H∞

ρ ) C-linearly to the complexification
gC. As ker dρ is an ideal in gC and LkC = DLkC + [DLkC, DLkC], it follows that
LkC ⊆ ker dρ. Notice that LK is connected because K is 1-connected. It is also
locally exponential by [Nee01b, Thm. II.1]. It follows that LK ⊆ ker ρ.

Thus, one necessarily has to pass to a non-trivial central T-extension
◦

LK of LK⋊αT
to allow for interesting KMS-representations of

◦
LK that are smoothly-KMS at some

◦
d ∈

◦
Lk covering d ∈ Lk⋊D Rd, as one may have expected from the positive energy

analogue (which follows from [PS86, Thm 9.3.5]).

We now proceed with the observation that KMS representations give rise to gener-
alized positive energy representations on the GNS-Hilbert space corresponding to
the KMS state:
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Theorem 3.2.14. Let ϕ ∈ KMS(ρ,d, N)∞. Let x ∈ N ϕ,∞ and assume that
ψ := πϕ(x)Ωϕ ∈ Dϕ has unit norm. Then

⟨πϕ(x)Ωϕ,−idρϕ(Adn(d))πϕ(x)Ωϕ⟩ ≥ − log
(
∥πϕ(x)∥2

)
∀n ∈ N. (3.2.3)

In particular the representation ρϕ of N⋊αR on Hϕ is of generalized positive energy
at d ∈ n⋊D Rd.

Lemma 3.2.15. Let x ∈ N be such that 0 ̸= ψ := πϕ(x)Ωϕ ∈ dom(Hϕ). Then

⟨ψ,Hϕψ⟩
∥ψ∥2

≥ − log

(
∥Sϕψ∥2

∥ψ∥2

)
. (3.2.4)

Proof. In view of the correlation lower bounds satisfied by KMS states, see e.g.
[BR97, Thm. 5.3.15 (1) =⇒ (2)] or [FV77, Thm. II.4, (i) =⇒ (iii)], we have:

⟨πϕ(x)Ωϕ, [Hϕ, πϕ(x)]Ωϕ⟩ ≥ −∥πϕ(x)Ωϕ∥2 log
(
∥πϕ(x)∗Ωϕ∥2

∥πϕ(x)Ωϕ∥2

)
.

SinceHϕΩϕ = 0, it follows that ⟨πϕ(x)Ωϕ, [Hϕ, πϕ(x)]ΩΦ⟩ = ⟨πϕ(x)Ωϕ, Hϕπϕ(x)Ωϕ⟩.
The assertion follows.

Proof of Theorem 3.2.14:
Recall that Dϕ ⊆ H∞

ρϕ
and that Dϕ ⊆ dom(Sϕ), because the stronger condi-

tion NϕΩϕ ⊆ dom(Sϕ) is satisfied. Let n ∈ N . Notice that ∥Sϕρϕ(n)ψ∥ =
∥πϕ(x∗)ρϕ(n)−1Ωϕ∥ ≤ ∥πϕ(x)∥. Recalling that Dϕ is N -invariant, we can apply

equation (3.2.4) to the vector ρϕ(n)ψ. Using −idρϕ(d) = − log∆ϕ = Hϕ it follows
that

⟨ψ,−idρϕ(Adn−1(d))ψ⟩ = ⟨ρϕ(n)ψ,−idρϕ(d)ρϕ(n)ψ⟩
≥ − log

(
∥Sϕρϕ(n)ψ∥2

)
≥ − log

(
∥πϕ(x)∥2

)
.

As a consequence of Theorem 3.2.14, we find that the observations of Section 3.1
impose restrictions on KMS representations. Let us illustrate this with the following
immediate consequence:

Corollary 3.2.16. Let ρ be a smooth projective unitary representation of G on

Hρ. Assume that N := ρ(N)′′ is a factor. Let ρ :
◦
G → U(Hρ) be the lift of ρ, for

some central T-extension
◦
G of G with Lie algebra

◦
g. Let

◦
N ⊆

◦
G cover N . Let ω

represent the class in H2
ct(g,R) corresponding to

◦
g. Let ξ ∈ g and suppose

◦
ξ ∈ ◦

g

covers ξ. Let ϕ ∈ KMS(ρ,
◦
ξ,

◦
N)∞. Assume that η ∈ n satisfies [[ξ, η], η] = 0. Then

ω([ξ, η], η) ≥ 0 and

ω([ξ, η], η) = 0 ⇐⇒ dρ([ξ, η]) = 0.

Proof. Consider the representation ρϕ of
◦
N ⋊ R on the GNS Hilbert space Hϕ,

where R acts on
◦
N by Ad(et

◦
ξ)
∣∣∣ ◦
N

and where ρϕ(1, t) = ∆−it
ϕ for t ∈ R. Let ρϕ
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be the corresponding projective unitary representation of N ⋊ R on Hϕ, where R
acts on N by Ad(etξ)

∣∣
N
. By Theorem 3.2.14, ρϕ is of g.p.e. at d ∈ ◦

n ⋊ Rd and
so ρϕ is of g.p.e. at d. It follows from Proposition 3.1.6 that ω([ξ, η], η) ≥ 0 and
ω([ξ, η], η) = 0 ⇐⇒ dρϕ([ξ, η]) = 0. As N is a factor, the KMS state ϕ ∈ S(N ) is
faithful and the corresponding GNS-representation πϕ : N → B(Hϕ) is injective, by
Remark 3.2.3(1,3). This implies that ker dρϕ = ker dρ. Thus ω([ξ, η], η) = 0 ⇐⇒
dρ([ξ, η]) = 0.

Remark 3.2.17. A related notation is that of a passive state, which is usually consid-
ered in the context of a C∗-dynamical system (A, σ), where A is a unital C∗-algebra
and σ : R→ Aut(A) is a strongly continuous homomorphism. If δ is the generator
of σ with domain D(δ) ⊆ A, a state ϕ on A is said to be passive if

−iϕ(u∗δ(u)) ≥ 0, ∀u ∈ U0(A) ∩ D(δ), (3.2.5)

where U0(A) denotes the identity component of the group U(A) of unitary elements
in A. In this case, ϕ is necessarily σ-invariant [PW78, Thm. 1.1], so that σ is canon-
ically implemented by a strongly-continuous unitary 1-parameter group t 7→ eitHϕ

on the GNS-Hilbert space Hϕ. Let πϕ : A → B(Hϕ) be the GNS-representation
of A associated to ϕ and let Ωϕ ∈ Hϕ be the corresponding cyclic vector. Then
(3.2.5) becomes

−i⟨Ωϕ, πϕ(u)−1Hϕπϕ(u)Ωϕ⟩ ≥ 0, ∀u ∈ U0(A) ∩ D(δ),

which is similar to equation (3.1.1). It was moreover shown in [PW78] that any
ground- or σ-KMS state is necessarily passive (cf. [BR97, Thm. 5.3.22]), which is
analogous to the observation that both positive energy and KMS representations
provide examples of generalized positive energy ones, in view of Theorem 3.2.14.
We refer to [PW78] and [BR97] for more information on (completely) passive states.

Some examples of KMS representations

Let us consider a variety of examples of KMS representations, thereby showing in
various situations that a well-known σ-KMS state ϕ on a von Neumann algebra
N admits some underlying smooth structure. More precisely, we construct a con-
tinuous unitary representation ρ of a (typically infinite-dimensional) Lie group G
such that N = ρ(N)′′, ϕ ∈ KMS(ρ, ξ,N)∞ and σt = Ad(ρ(etξ)) for some ξ ∈ g and
Lie subgroup N of G. In particular, in this case the 1-parameter group σ on N
implements the R-action t 7→ Ad(etξ)

∣∣
N

on the Lie subgroup N of G.

Let us begin with the simplest class of examples, which correspond to Gibbs states,
as in Example 3.2.5:

Example 3.2.18. Take for N simply N = G. Let (ρ,H) be a continuous ir-
reducible unitary G-representation. Then N = B(H). Let ξ ∈ g and define
the self-adjoint operator H := −i d

dt

∣∣
t=0

ρ(etξ). Let β > 0 and assume that

Zβ := Tr(e−βH) < ∞. Define the Gibbs state ϕ(x) := 1
Zβ

Tr(e−βHx) for x ∈ N .

As in Example 3.2.5, we have σϕ−t(x) = eitβHxe−itβH = ρ(etβξ)xρ(e−tβξ) for any
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x ∈ N . Consequently, ϕ ∈ KMS(ρ, βξ) and so ρ is a KMS representation at

βξ ∈ g. If in addition ϕ̂ : G→ C is smooth, then ρ is smoothly-KMS at βξ ∈ g. By
Lemma 3.2.10, ρ is also KMS at any element in the adjoint orbit of βξ. In view of

Example 3.2.5, the representation ρϕ of G ⋊ R on Hϕ := B(Hρ)
⟨−,−⟩ϕ

is given by

ρϕ(g, t)xΩϕ = ρ(g)ρ(etβξ)xρ(e−tβξ)Ωϕ = ρ(g)σϕ−t(x)Ωϕ, where Ωϕ := I ∈ B(Hρ) ⊆
Hϕ denotes the cyclic vector.

In fact, Proposition 3.2.19 below entails that any KMS representation ρ for which
N is a factor of type I is of the form described in Example 3.2.18. Moreover a
complete characterization of such representations was very recently obtained in
the context where N is a finite-dimensional Lie group [Sim23].

Proposition 3.2.19. Let ξ ∈ g and β > 0. Suppose that ρ|N is irreducible and
that ϕ ∈ KMS(ρ, βξ,N). Let H := −i d

dt

∣∣
t=0

ρ(etξ). Then Zβ := Tr(e−βH) < ∞
and ϕ(x) = 1

Zβ
Tr(e−βHx).

Proof. As ρ|N is irreducible, it follows that N = B(Hρ). Thus ϕ(x) = Tr(δx)
for some δ ∈ L1(Hρ)+ satisfying Tr(δ) = 1, where L1(Hρ) denotes Banach space
of trace-class operators on Hρ. Moreover, in view of Remark 3.2.3(3), we know
that ϕ is faithful on N . By assumption, ϕ satisfies the modular condition for the
automorphism group t 7→ Ad(ρ(e−tβξ)) =: σ−βt. On the other hand, as ϕ is faithful,

there exists by Remark 3.2.3(1) a unique automorphism group σϕt of N for which

ϕ satisfies the modular condition. It follows that σ−βt = σϕt . When N = B(Hρ)
and ϕ(x) = Tr(δx), the modular automorphism group σϕt corresponding to ϕ is

σϕt (x) = δitxδ−it. In view of σϕt = σ−tβ , it follows that δ
itxδ−it = ρ(e−tβξ)xρ(etβξ)

for every x ∈ N . As Z(N ) = CI and both t 7→ δit and t 7→ ρ(etβξ) are strongly
continuous unitary 1-parameter groups, it follows that there is some continuous
homomorphism c : R → T such that δit = c(t)ρ(e−tβξ) = c(t)e−itβH for all t ∈ R.
Thus there exists µ ∈ R such that δit = e−it(βH+µI) for all t ∈ R. So log δ =
−(βH + µI). Since Tr(δ) = 1, we have Zβ = Tr(e−βH) = Tr(e−(βH+µ)eµ1) =
Tr(δeµ1) = eµϕ(1) = eµ <∞. It follows for every x ∈ B(H) that

1

Zβ
Tr(e−βHx) = e−µTr(e−βHx) = Tr(e−(βH+µ)x) = Tr(δx) = ϕ(x).

For more interesting examples, one has to consider a Lie subgroup N of G which
is not of type I, so that the von Neumann algebra N need not be type I.

Example 3.2.20 (Powers’ factors). DefineGn :=
∏n
k=1 SU(2) and let the inclusion

ηn : Gn ↪→ Gn+1 be defined by

ηn : Gn
id×1−−−→ Gn × SU(2) = Gn+1.

Write gn := Lie(Gn) and L(ηn) := Lie(ηn). The direct limit G := lim−→n
(Gn, ηn)

consists of sequences (uk) in SU(2) with uk = 1 for all but finitely many val-
ues of k. It can be equipped with the structure of a regular Lie group that
is modeled on the locally convex inductive limit g := lim−→n

(gn, L(ηn)) [Glö05,
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Thm. 4.3] and has the exponential map expG = lim−→n
expGn

[Glö05, Prop. 4.6].

Let H :=

(
1 0
0 −1

)
and ξ := iH ∈ su(2). Consider the following R-action α

on G defined by (αt(u))k := etξuke
−tξ for u ∈ G. The corresponding action

R × G → G is smooth. Indeed, the restriction of α to R × Gn yields a smooth
action α(n) : R×Gn → Gn for every n ∈ N. It follows from [Glö05, Thm. 3.1] that
lim−→n

α(n) : lim−→n
(R × Gn) → G is smooth. By [Glö05, Prop. 3.7] we further have

lim−→n
(R × Gn) = R × G as smooth manifolds. This shows that α : R × G → G is

smooth. Consider the Lie group G♯ := G ⋊α R with Lie algebra g♯ := g ⋊D Rd,
where d := (0, 1). Using the so-called Powers’ factors, we define unitary represen-
tations ρ of G♯ which are smoothly-KMS at d relative to G ◁ G♯ and for which
ρ(G)′′ is a factor of type IIIλ for arbitrary λ ∈ (0, 1).

Define the finite-dimensional C∗-algebraMn :=
⊗n

k=1 B(C2) for every n ∈ N. Let
β > 0. Define the state ϕ(x) := 1

Z Tr(e−βHx) on B(C2), where Z := Tr(e−βH) =
2 cosh(β). Let ϕn be the state onMn defined by

ϕn(x1 ⊗ · · · ⊗ xn) =
n∏
k=1

ϕ(xk), xk ∈ B(C2).

The GNS-representation of B(C2) defined by ϕ is Hϕ := B(C2) equipped with left
B(C2)-action and the inner product ⟨a, b⟩ := 1

Z Tr(e−βHa∗b). Similarly the GNS-
representation of Mn corresponding to ϕn is Hϕn

:=
⊗n

k=1Hϕ. The isometric
inclusions

Hϕn
↪→ Hϕn+1

, x 7→ x⊗ 1

define a directed system of Hilbert spaces, and the algebraic direct limit lim−→n
Hϕn

becomes naturally a pre-Hilbert space. Let H denote its Hilbert space completion.
Let ιn : Hϕn

↪→ H denote the canonical inclusion. For every n ∈ N, there is a
∗-representation πn ofMn on H defined for x = x1 ⊗ · · · ⊗ xn ∈Mn by

πn(x)ιm(ψ1 ⊗ · · · ⊗ ψm) := ιm(x1ψ1 ⊗ · · ·xnψn ⊗ ψn+1 ⊗ · · · ⊗ ψm), m ≥ n.

Let M∞ :=

(⋃
n∈N πn(Mn)

)′′

. The vector Ω := 1 ⊗ 1 ⊗ · · · ∈ H is cyclic and

separating for M∞ [Tak03b, XIV, Prop. 1.11], so H may be identified with the
GNS-representation ofM∞ w.r.t. the state ϕ∞ := ⟨Ω, • Ω⟩ onM∞. Observe that
ϕ∞ satisfies ϕ∞(ιn(x)) = ϕn(x) for all n ∈ N and x ∈Mn. The von Neumann alge-
bra (M∞, ϕ∞) =:

⊗∞
k=1(B(C2), ϕ) is the so-called Powers’ factor with parameter

a := e−β

2 cosh(β) ∈ (0, 12 ), which is a factor of type IIIλ with λ = e−2β = a
1−a ∈ (0, 1)

[Tak03b, XVIII, Theorem 1.1]. The modular automorphism group σϕ∞
t onM∞ de-

fined by ϕ∞ is given by σϕ∞
t =

⊗∞
k=1 Ad(e−βtξ) [Tak03b, XIV, Prop. 1.11], where⊗∞

k=1 Ad(e
βtξ) ∈ Aut(M∞) satisfies

⊗∞
k=1 Ad(e

βtξ) ◦ ιn = ιn ◦
⊗n

k=1 Ad(eβtξ) for
all t ∈ R and n ∈ N and is defined from this condition by continuity, where we
used [Tak03b, XIV, Thm. 1.13] and that ϕ ◦ Ad(eβtξ) = ϕ for all t ∈ R. Consider
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the unitary representation ρ : G⋊α R→ U(H) defined by

ρ(u, βt) :=

( ∞⊗
k=1

uk

)
◦∆−it

ϕ∞
, u ∈ G, t ∈ R

which is well-defined because u = (uk) ∈ G is a sequence in SU(2) with uk = 1 for
all k sufficiently large. Since ρ(βt) = ∆−it

ϕ∞
and ρ(G)′′ =M∞, it follows that ρ is

KMS at βd ∈ g♯ relative to G ◁ G♯. To see that ϕ̂∞ : G→ C is smooth, it suffices
to show that its restriction to Gn is smooth for every n ∈ N, using the universal
property of the smooth manifold structure on G = lim−→n

Gn [Glö05, Thm. 3.1]. This

is the case, as ⟨Ω, ρ(u)Ω⟩ =
∏n
k=1 ϕ(uk) for any u ∈ Gn, which is smooth Gn → C.

Thus Ω ∈ H∞
ρ and so ρ is smoothly-KMS at βd ∈ g♯ relative to G ◁ G♯.

Example 3.2.21 (Standard real subspaces and Heisenberg representations). Let
H be a complex Hilbert space. Consider the real Heisenberg group G := H(H, ω),
where ω(v, w) = Im⟨v, w⟩. An R-linear closed subspace K ⊆ H is called cyclic if
K+ iK is dense in H. It is called separating if K ∩ iK = {0}. A standard subspace
is a closed R-linear subspace K ⊆ H which is both cyclic and separating. We show
that any standard real subspace gives rise to a smooth KMS representation. Let
K ⊆ H be a standard real subspace. Write δK for the corresponding modular oper-
ator on H, which is generally unbounded, positive and self-adjoint, see e.g. [NO17,
Sec. 3]. Then t 7→ δitK is a strongly-continuous unitary 1-parameter group on H
satisfying in particular δitKK ⊆ K. We first pass to the R-smooth vectors K∞ to
obtain a regular Lie group H(K∞, ω)⋊R. We then construct a KMS representation
thereof using second-quantization. The details are given below.

Let K∞ denote the set R-smooth vectors in K. Then K∞ is dense in K and
R-invariant. It moreover carries a Fréchet topology which is finer than the one
inherited as a subspace of K and for which the action R × K∞ → K∞ is smooth
[Nee10a, Thm. 4.4, Lem. 5.2]. As ω : K∞×K∞ → R is bilinear and continuous w.r.t.
this topology, it is smooth. Thus the generalized Heisenberg group N := H(K∞, ω)
is a Lie group. (Notice that ω|K∞ may be degenerate.) It is as a subgroup of G
generated by K∞. As K∞ is a Frèchet space, it is Mackey complete by [KM97,
Thm. I.4.11], which implies using [Nee06, Thm. V.1.8] that N is regular. Write
n := Lie(N). By construction R acts smoothly on N by δitK, so that N ♯ := N ⋊ R
is a regular Lie group. Let n♯ := n ⋊ Rd denote its Lie algebra. We construct a
representation of N ♯ which is smoothly KMS at d ∈ n♯ relative to N ◁ N ♯. Let
us recall the standard representation of H(H, ω) on the Bosonic Fock space F(H).
Equip the symmetric algebra S•(H) with the inner product

⟨v1 · · · vn, w1 · · ·wn⟩ =
∑
σ∈Sn

n∏
j=1

⟨vj , wσj
⟩. (3.2.6)

Let F(H) denote the Hilbert space completion of S•(H) and let Ω := 1 ∈ H denote
the vacuum vector. Then H contains (and is generated by) the vectors ev :=∑∞
n=0

1
n!v

n ∈ H for v ∈ H. There is a continuous irreducible unitary representation
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W of H(H, ω) on F(H) satisfying W (z, v)ew = ze−
1
2∥v∥

2−⟨v,w⟩ev+w for v, w ∈ H
and z ∈ T [PS86, Sec. 9.5]. Moreover, any unitary u ∈ U(H) extends canonically
to a unitary F(u) ∈ U(F(H)). We further have:

W (uv) = F(u)W (v)F(u)−1, ∀u ∈ U(H), v ∈ H (3.2.7)

In view of (3.2.7), W and F together define a representation ρ of the Lie group
N ♯ by ρ(n, t) :=W (n)F(δitK). Let N :=W (N)′′. As K is a standard real subspace
and K∞ is dense in K, it follows that Ω is cyclic and separating for N [NO17, Lem.
6.2]. Let ϕ denote the faithful vector state on N defined by ϕ(x) = ⟨Ω, xΩ⟩. Using
[NO17, Prop. 6.10] we have ∆it

ϕ = F(δitK) for all t ∈ R. Consequently ρ is KMS at

−d ∈ n♯ relative to N ◁N ♯ (notice the minus sign in Definition 3.2.2). To see it is

smoothly KMS, observe that ϕ̂ : N → C is smooth because it is given by

ϕ̂(z, v) = ⟨Ω,W (z, v)Ω⟩ = ze−
1
2∥v∥

2

. (3.2.8)

The following provides an example where ρ is smoothly-KMS at various ξI ∈ g,
relative to distinct subgroups NI ⊆ G, where I ∈ I for some indexing set I:

Example 3.2.22 (Bisognano-Wichmann and SU(1, 1)-covariant nets).

Recall that SU(1, 1) acts on S1. Explicitly, for g =

(
α β

β α

)
∈ SU(1, 1) with

α, β ∈ C satisfying |α|2 − |β|2 = 1, define g(z) := αz+β

βz+α
for z ∈ C with |z| = 1.

With g as above, define the unitary action of SU(1, 1) on the complex Hilbert
space L2(S1,C) by (u(g)f)(z) := (α − βz)−1f(g−1(z)) for f ∈ L2(S1,C). Let
H2

+(S
1,C) be the closed subspace of L2(S1,C) spanned by the non-negative Fourier

modes. Let H2
−(S

1,C) be its orthogonal complement in L2(S1,C). Notice that
SU(1, 1) leaves these subspaces invariant. Consider the complex Hilbert space

V := H2
+(S

1,C)⊕H2
−(S

1,C), where H2
−(S

1,C) denotes the Hilbert space complex-
conjugate to H2

−(S
1,C). Let VR = L2(S1,C) denote the real vector space underly-

ing V . Define the real Fréchet space V∞
R := C∞(S1,C) and consider the symplectic

vector space (V∞
R , ω), where ω(v, w) := Im⟨v, w⟩V for v, w ∈ V∞

R . Let H(V∞
R , ω) be

the corresponding real Heisenberg group. Consider the regular Fréchet-Lie group

G := H(V∞
R , ω) ⋊ SU(1, 1). Let r := i

2

(
1 0
0 −1

)
and d := 1

2

(
0 1
1 0

)
denote the

generators in su(1, 1) of the rotation and the dilation subgroups in SU(1, 1), respec-
tively. By an interval of S1, we mean a connected, open, non-empty and non-dense
subset of S1. Write I for the set of intervals of S1, on which SU(1, 1) acts natu-
rally, and let I0 ∈ I denote the upper-semicircle. For I ∈ I, define ξI ∈ su(1, 1)
by ξI := Adg(d), where g ∈ SU(1, 1) is any element satisfying g.I0 = I. Notice
that ξI is well-defined. Define further the closed real subspace VI := L2(I,C) of
VR and set V∞

I := VI ∩V∞
R . Let NI := H(V∞

I , ω) ⊆ G be the corresponding closed
subgroup of G. We construct a unitary representation ρ of G which is of p.e. at
r ∈ su(1, 1) and which is KMS at ξI ∈ su(1, 1) relative to NI , for every I ∈ I. The
details are given below.

As the SU(1, 1)-action u on L2(S1,C) leaves both H2
+(S

1,C) and H2
−(S

1,C) invari-
ant, we obtain a unitary representation ũ of SU(1, 1) on V = H2

+(S
1,C)⊕H2

−(S
1,C)
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which is by construction of p.e. at r ∈ su(1, 1). As in Example 3.2.21, let W
denote the standard representation of the real Heisenberg group H(V, Im⟨−,−⟩)
on the Fock space F(V ). Letting SU(1, 1) act on F(V ) by second quantization,
we obtain a smooth unitary representation ρ of G on F(V ) which is of p.e. at
r ∈ su(1, 1). Explicitly, ρ is given by ρ(v, g) = W (v)F(ũ(g)) for v ∈ H(V∞

R , ω)
and g ∈ SU(1, 1). It follows from [Was98, Sec. II.14] that VI ⊆ V is a standard
real subspace for any interval I ∈ I. Let δitI denote the corresponding modular
1-parameter group, as in Example 3.2.21. The assignment I 7→ VI , called a net
of standard subspaces, satisfies I1 ⊆ I2 =⇒ VI1 ⊆ VI2 (isotony), Vg.I = ũ(g)VI
for g ∈ SU(1, 1) (SU(1, 1)-covariance) and I1 ∩ I2 = ∅ =⇒ VI2 ⊆ V ⊥ω

I1
(locality).

It moreover follows from [Was98, Sec. II.14] that δitI = ũ(e−2πtξI ) for all t ∈ R
and I ∈ I (cf. [Lon08, Thm. 3.3.1] and [Bor92, Thm. II.9]). Passing to the sec-
ond quantization, let NI := ρ(NI)

′′ = W (V∞
I )′′ denote the von Neumann algebra

generated by W (V∞
I ) for I ∈ I. By Example 3.2.21, we obtain that

ρ(e−2πtξI ) = F(ũ(e−2πtξI )) = F(δitI ) = ∆it
I ,

where ∆I denotes the modular operator on F(V ) defined from NI using the cyclic
and separating vector Ω := 1 ∈ F(V ). Let ϕ = ⟨Ω, • Ω⟩ be the corresponding state

on NI . Then (3.2.8) shows that ϕ̂ : NI → C is smooth. Thus ρ is smoothly-KMS
at 2πξI ∈ su(1, 1) relative to NI ⊆ G, for any I ∈ I. For more details on the
Bisognano-Wichmann property and nets of standard subspaces, see e.g. [Mor18] or
[Mun01].
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Chapter 4

Generalized positive energy representations
of groups of jets

Abstract

Let V be a finite-dimensional real vector space and K a 1-connected com-
pact simple Lie group with Lie algebra k. Consider the Fréchet-Lie group
G := J∞

0 (V,K) of ∞-jets at 0 ∈ V of smooth maps V → K, with Lie algebra
g = J∞

0 (V, k). Let P be a Lie group and write p := Lie(P ). Let α be a
smooth P -action on G. We study smooth projective unitary representations ρ
of G⋊α P that satisfy a generalized positive energy condition. We show that
this condition imposes severe restrictions on the derived representation dρ of
g ⋊ p, leading in particular to sufficient conditions for ρ|G to factor through
J2
0 (V,K), or even through K.

This chapter is based on [Nie23a, Part II].

4.1 Introduction

This chapter is concerned with projective representations of groups and Lie algebras
of jets. Let K be a 1-connected compact simple Lie group with Lie algebra k and
let V be a finite-dimensional real vector space. Then we consider the Fréchet-Lie
group G := J∞

0 (V,K) with Lie algebra g := J∞
0 (V, k) ∼= RJV ∗K ⊗ k. These consist

of ∞-jets at 0 ∈ V of smooth K- and k-valued functions, respectively. Let P be a
finite-dimensional Lie group with Lie algebra p, and assume that there is a smooth
action α of P on G. We are interested in smooth projective unitary representations
of G ⋊α P that are of generalized positive energy at all elements p in some cone
C ⊆ p. Recall from Chapter 3 that both positive energy- and KMS representations
give rise to ones that satisfy the generalized positive energy condition.

The motivation for looking at the (generalized) positive energy representations
of the group G ⋊α P originates in prior work by B. Janssens and K.H. Neeb,
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who studied in [JN21] a class of projective unitary representations of the group of
compactly supported gauge transformations G := Γc(M,Ad(K)) of a principal K-
bundle K overM , where Ad(K) denotes the corresponding adjoint bundle. Suppose
that the Lie group P acts smoothly on K by automorphisms of the principal bundle
K. This induces a smooth action of P on the infinite-dimensional Lie group G.
Their main result is:

Theorem 4.1.1. ([JN21, Theorem 7.19]):
Let (ρ,H) be a projective unitary representation of G ⋊ P which has a dense set
of smooth rays and is of positive energy at the cone C ⊆ p. If the cone C has no
fixed points in M , then there exists a 1-dimensional P -equivariantly embedded sub-
manifold S ⊆M s.t. on the connected component G0 of the identity, the projective
representation ρ factors through the restriction map r : G0 → Γc(S,Ad(K)).

Thus, if there are no fixed points in M for C, then the problem of classifying the
projective unitary positive energy representations of G ⋊ P is essentially reduced
to the one-dimensional case, which has been extensively studied, see for example
[PS86, Was98, Tan11, Kac90, KR87, GW84, TL99]. Moreover, if there are no
one-dimensional P -equivariantly embedded submanifolds in M , one is essentially
reduced to the case where ρ factors through the germs at the fixed point set Σ ⊆M
of the cone C ⊆ p. In this chapter, we address the setting where fixed points do
exist and where ρ actually factors through the germs at a single fixed point.

Thus, let a ∈ M be a fixed point of the P -action on M and let V := Ta(M). If
a smooth projective unitary representation ρ of G factors through the germs at
a ∈ M , then the continuity of ρ implies that it must further factor through the
∞-jets J∞

a (Ad(K)) ∼= J∞
0 (V,K) = G at a ∈ M , as is shown in Section 4.5.1 of

the appendix. The brings us to groups of jets and motivates the study of smooth
projective unitary representations of G⋊α P . Clearly, any smooth projective uni-
tary representation of G ⋊α P defines one of G ⋊ P via the jet homomorphism
j∞a : G → J∞

a (Ad(K)) ∼= G. In this way, the results of this chapter contribute to
the understanding of positive energy and KMS-representations of gauge groups.

In [Sim23], KMS-representations were very recently studied in the context of finite-
dimensional Lie groups, leading to full characterization of such representations that
generate a factor of type I. In relation to the unitary representation theory of gauge
groups, let us also mention the papers [GGV77, AHK78, PS76] and [Ism76], in
which unitary representations of gauge groups C∞

c (M,K) are constructed which
are non-local in the sense that they do not factor through the restriction map
C∞
c (M,K)→ C∞

c (N,K) for some proper submanifold N ⊆M . When dim(M) ≥
3, these are irreducible ([Wal87] and [AHKT81]). They are also considered in
[ADGV16] and [AHKM+93]. Unitary representations of groups of jets have also
been considered in [GG68] and [AT94].

Structure of the chapter

After fixing our notation in Section 4.2, we discuss in Section 4.3 a normal-form
problem for the p-action on g = J∞

a (V, k). Using the observations made in Sec-

39



tion 2.5 together with the normal-form results obtained in Section 4.3, we proceed
in Section 4.4 with the study of (generalized) positive energy representations of the
Lie algebra g⋊D p, where D : p→ der(g) is the p-action on g corresponding to α.

Overview of main results

To describe the main results of Section 4.4, we first need to introduce some notation.
We write R := RJV ∗K :=

∏∞
n=0 P

n(V ) for the ring of formal power series on V ,
where Pn(V ) denotes the set of degree-n homogeneous polynomials on V . Recall
that g := J∞

0 (V, k) ∼= R⊗ k. We write XI for the Lie algebra of formal vector fields
on V vanishing at the origin. The p-action D splits into a horizontal and a vertical
part according to D(p) = −Lv(p) + adσ(p), for some Lie algebra homomorphism
v : p→ X opI and a linear map σ : p→ g satisfying the Maurer-Cartan equation

−Lv(p1)σ(p2) + Lv(p2)σ(p1)− σ([p1, p2]) + [σ(p1), σ(p2)] = 0, ∀p1, p2 ∈ p.

For any p ∈ p, the formal vector field v(p) splits further as

v(p) = vl(p) + vho(p),

into its linearization vl(p), a linear vector field on V , and its higher order part
vho(p), a formal vector field on V vanishing up to first order at the origin. Let
σ0(p) ∈ k be the constant part of the formal power series σ(p) ∈ R⊗ k.

Let Σp ⊆ C denote the additive subsemigroup of C generated by Spec(vl(p)). Let
V C
c (p) denote the span in VC of all generalized eigenspaces of vl(p) corresponding to

eigenvalues with zero real part, and define Vc(p) := V C
c (p)∩V . If C ⊆ p is a subset,

define Vc(C) :=
⋂
p∈C Vc(p), which we call the ‘center subspace of V associated to

C’, in analogy with the center manifold of a fixed point of a dynamical system. Let
Vc(C)

⊥ ⊆ V ∗ be its annihilator in V ∗.

If π is a continuous projective unitary representation of g⋊D p, we write

C(π) := { p ∈ p : π is of generalized positive energy at p } .

The first main result concerns positive energy representations. It states that unless
the spectrum of vl(p) and σ0(p) happens to intersect non-trivially, any smooth
projective unitary representation ρ of G⋊α P which is of positive energy at p ∈ p
factors through the 2-jets J2

0 (V,K)⋊α P :

Theorem 4.4.1. Let ρ be a smooth projective unitary representation of G ⋊α P
which is of p.e. at p ∈ p. Assume that Spec(adσ0(p)) ∩ Spec(vl(p)) = ∅. Then
ρ factors through J2

0 (V,K) ⋊α P . Moreover the image of −Lvl(p) + adσ0(p) in
P 2(V )⊗ k ⊆ J2

0 (V,K) is contained in ker ρ.

The second main result determines restrictions imposed by the generalized posi-
tive energy condition. If p ∈ C(π), then unless possibly when the “non-resonance
condition” Spec(adσ0(p))∩Σp = ∅ is violated, it suffices to consider the case where
all eigenvalues of vl(p) are purely imaginary. The precise statement is:
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Theorem 4.4.3. Let π be a continuous projective unitary representation of g⋊D p.
Let C ⊆ C(π). Assume that Spec(adσ0(p)) ∩ Σp = ∅ for all p ∈ C.

Then RVc(C)
⊥ ⊗ k ⊆ kerπ and hence π|g factors through RJVc(C)∗K⊗ k.

Since RJVc(C)∗K ⊗ k = k whenever Vc(C) = {0}, Theorem 4.4.3 in particular gives
sufficient conditions for π to factor through k, that depend only on the spectrum
of σ0 and vl(p).

For the third main result, we consider the special case where p is non-compact and
simple:

Theorem 4.4.6. Assume that p is non-compact and simple. Suppose that vl de-
fines a non-trivial irreducible p-representation on V . Let π be a continuous projec-
tive unitary representation of g⋊D p. Let C ⊆ C(π) be a P -invariant convex cone.
Either C is pointed or π|g factors through k.

Remark 4.1.2. If ρ is a smooth projective unitary representation of G⋊α P which
is of generalized positive energy at the cone C ⊆ p, then its derived representa-
tion dρ on the space of smooth vectors H∞

ρ is so, too. Moreover, as we shall
see in Lemma 4.2.3 below, the exponential map of G = J∞

0 (V,K) restricts to
a diffeomorphism from the pro-nilpotent ideal ker

(
ev0 : J∞

0 (V, k) → k
)
onto

ker
(
ev0 : J∞

0 (V,K) → K
)
. Thus, the above results all have immediate analo-

gous consequences on the group level.

4.2 Notation

Let V be a finite-dimensional real vector space andK a 1-connected compact simple
Lie group with Lie algebra k. For any n ∈ N≥0, we denote by P

n(V ) ⊆ R the space
of homogeneous polynomials on V of degree n. Let R := RJV ∗K :=

∏∞
n=0 P

n(V )
denote the ring of formal power series on V with coefficients in R, equipped with
the direct product topology. Let I = (V ∗) be the maximal ideal of R, containing
those elements with vanishing constant term. We write ev0 : R→ R ∼= R/I for the
corresponding quotient map. Let g be the R-module g := R ⊗ k of formal power
series on V with coefficients in k. Then g is a topological Lie algebra with the Lie
bracket defined by

[f ⊗X, g ⊗ Y ] := fg ⊗ [X,Y ], f, g ∈ R, X, Y ∈ k.

We also write fX instead of f ⊗X for f ∈ R and X ∈ k. Define Rk := R/Ik+1,
Ik := I/Ik+1 and gk := g/(Ik+1.g) for k ∈ N≥0. Then R = lim←−Rk and g = lim←− gk
as topological vector spaces and Lie algebras, respectively. Let Gk = Jk0 (V,K) be
the unique 1-connected Lie group integrating the finite-dimensional Lie algebra gk
for any k ∈ N≥0. Let G := J∞

0 (V,K) := lim←−Gk be the corresponding projective
limit, which is a pro-Lie group with topological Lie algebra g = lim←−k gk. (See e.g.

[HM07] for a detailed consideration of pro-Lie groups). We write XI for the Lie
algebra of formal vector fields on V vanishing at the origin. Identify XI ∼= der(I)
using the Lie derivative v 7→ Lv. Notice further that der(I) ∼= I ⊗ V . Define
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similarly XIk := XI/(Ik+1XI) ∼= der(Ik).

Let p be a finite-dimensional Lie algebra acting on g through the homomorphism
D : p → der(g). Using the fact that all derivations of k are inner, by Whitehead’s
first Lemma [Jac79, III.7. Lem. 3], it follows from [Kac90, Ex. 7.4] that D(p) splits
into a horizontal and vertical part according to

D(p) = −Lv(p) + adσ(p) for p ∈ p,

where v : p → X opI is a homomorphism of Lie algebras and where σ : p → g is a
linear map that necessarily satisfies the following Maurer-Cartan equation:

−Lv(p1)σ(p2)+Lv(p2)σ(p1)−σ([p1, p2])+ [σ(p1), σ(p2)] = 0, ∀p1, p2 ∈ p. (4.2.1)

Remark 4.2.1. As we shall see in Section 4.3.3 below, Equation (4.2.1) can be writ-
ten as δσ + 1

2 [σ, σ] = 0 in the differential graded Lie algebra (
∧•

p∗) ⊗ g, whose
differential is that of the Chevalley-Eilenberg complex, where g is considered as
p-module according to p 7→ −Lv(p).

We will refer to D as a lift of the p-action on R to g, and we call σ the vertical
twist of the lift D. We remark also that D(p) satisfies the following Leibniz rule:

D(p)(fξ) = −Lv(p)(f)ξ + fD(p)ξ, f ∈ R, ξ ∈ g, ∀p ∈ p. (4.2.2)

We will denote by jk various k-jet projections R → Rk, g → gk and XI → XIk .
It should be clear from the context which map is being used. Also, we will freely
identify the quotient g0 ∼= k with the Lie subalgebra k ⊆ g of formal power series
having only a non-trivial constant term. Similarly, we identify j1XI = XI1 ∼= gl(V )
with the subalgebra gl(V ) ⊆ XI of linear vector fields on V .

A first observation is the fact that G = J∞
0 (V,K) is not just a pro-Lie group, but

actually a regular Lie group modeled on the Fréchet space g = J∞
0 (V, k):

Proposition 4.2.2. Both G and G⋊α P are regular Fréchet-Lie groups.

Proof. It is clear that the Lie algebras g and g ⋊D p are Fréchet. Notice for
n ∈ N that the map Gn → Gn−1 defines a fiber bundle whose typical fiber
Pn(V ) ⊗ k is contractible. It follows by considering the associated long exact se-
quence of homotopy groups that πk(Gn) ∼= πk(Gn−1) for every k ∈ N≥0, and hence
πk(Gn) ∼= πk(K) by induction on n. In particular, the Lie group Gn = Jn0 (V,K)
is 1-connected for every n, because K is so. Then also G is 1-connected, since
πk(G) = πk

(
lim←−nGn

)
= lim←−n πk(Gn) for every k ∈ N, by [Hat02, Prop. 4.67].

Thus G is the unique 1-connected pro-Lie group with Lie(G) = g, which is locally
contractible by [HN09, Theorem 1.2]. Then [HN09, Theorem 1.3, Prop. 5.7] entails
that G is a regular Lie group. As the action α : P ×G→ G is smooth, also G⋊αP
is a Lie group and it is regular by [Nee06, Thm. V.I.8], because both G and P are
so.

Moreover, we have the following useful fact:
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Lemma 4.2.3. The exponential map expG : g → G restricts to a diffeomorphism
from I ⊗ k = ker

(
ev0 : g→ k

)
onto ker

(
ev0 : G→ K

)
.

Proof. For k ∈ N≥0, let Hk := ker
(
ev0 : Gk → K

)
◁ Gk be the maximal nilpotent

normal subgroup of Gk. Then hk := Lie(Hk) = ker
(
ev0 : gk → k

)
= (Ik ⊗ k) ◁ gk.

Write H := lim←−kHk for the corresponding normal subgroup of G and h = lim←− hk
for its Lie algebra. Let k ∈ N. Notice that Hk is nilpotent and 1-connected.
Consequently, its exponential map is a diffeomorphism expHk

: hk → Hk [CG90,
Thm. 1.2.1]. Write logHk

: Hk → hk for its inverse. If m ≥ k, then expHk
◦jk =

jk ◦ expHm
: hm → Hk and consequently logHk

◦jk = jk ◦ logHm
: Hm → hk.

Passing to the projective limit, we obtain the inverse logH := lim←−k logHk
of expH .

It is smooth because H = lim←−kHk carries the projective limit topology and logHk

is smooth for every k ∈ N. Thus expH : h→ H is a global diffeomorphism.

4.3 Normal form results

By choosing suitable local coordinates, one may attempt to simplify the vector
fields v(p) and the vertical twist σ(p) of the lift D(p) = −Lv(p)+adσ(p) simultane-
ously. One might for example try to show that there are local coordinates in which
the formal vector fields v(p) are linear for every p ∈ p simultaneously, thereby
linearizing the formal p-action. Similarly, one might aim to show that in suitable
coordinates, σ(p) ∈ k ⊆ R ⊗ k is constant for all p ∈ p, so that σ is a Lie algebra
homomorphism p→ k. In the following, this ‘normal form problem’ is considered.
The results of Section 4.4 will depend on the availability of suitable normal forms,
whose existence we study in the present section.

In Section 4.3.1, we briefly recall the transformation behavior of v and σ under
suitable automorphisms of g. We proceed in Section 4.3.2 to recollect some known
results regarding normal forms for Lie algebras of vector fields with a common fixed
point. Finally, we consider in Section 4.3.3 the vertical twist σ.

4.3.1 Transformation behavior

Definition 4.3.1.

— A formal diffeomorphism of V is an automorphism h of R. An automorphism
of g is said to be horizontal if it is of the form h⊗ idk for some h ∈ Aut(R).
We write h.ξ or h(ξ) instead of (h⊗ idk)(ξ) for ξ ∈ g.

— A gauge transformation is an automorphism of g of the form eadξ for some
ξ ∈ g.

Remark 4.3.2. Any formal diffeomorphism h ∈ Aut(R) preserves the maximal
proper ideal I and is determined by its restriction h|V ∗ , which can be regarded as

an element h̃ of I⊗V for which j1h̃ ∈ V ∗⊗V ∼= gl(V ) is invertible. It is then a con-
sequence of Borel’s Lemma [Hör03, Thm. 1.2.6] and the Inverse Function Theorem
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that for any automorphism h of R, there exist 0-neighborhoods U,U ′ ⊆ V and a dif-
feomorphism h0 : U → U ′ satisfying h0(0) = 0 such that h(j∞0 (f)) = j∞0 (f ◦ h−1

0 ).
Similarly, for ξ ∈ g there exists η ∈ C∞

c (V, k) s.t. j∞0 (η) = ξ, where we have identi-
fied g ∼= J∞

0 (V, k). We then have eadξ ◦ j∞0 = j∞0 ◦ eadη .

To determine the transformation behavior of D : p → der(g), we have to consider
the adjoint action of Aut(g) on der(g). Instead of considering arbitrary automor-
phisms of g, we will specialize to horizontal ones and to gauge transformations. For
h ∈ Aut(R) and v ∈ X opI , we write h.v for the action of Aut(R) on X opI obtained
from the adjoint action of Aut(R) on der(R) ∼= XI ∼= X opI . The following two proofs
are due to K.H. Neeb and B. Janssens. They appear in the presently unpublished
article [JN].

Lemma 4.3.3 ([JN]). Let D ∈ der(g) and ξ ∈ g. Then

eadξ ◦D ◦ e−adξ = D + ad
(
F (adξ)Dξ

)
,

where F (w) = −
∫ 1

0
etwdt = −

∑∞
n=0

1
(n+1)!w

n.

Proof. Let k ∈ N be arbitrary. Consider the continuous path γ : I → der(g) defined
by γ(t) = etadξDe−tadξ . Notice that jk ◦ γ : I → der(gk) is smooth for all k and
consequently so is γ. Moreover

γ′(t) = etadξ [adξ, D]e−tadξ = −etadξadDξe
−tadξ = −ad

(
etadξDξ

)
,

where the last step uses that α ◦ adη = adα(η) ◦ α for any α ∈ Aut(g). Thus

eadξ ◦D ◦ e−adξ −D =

∫ 1

0

γ′(t)dt = −
∫ 1

0

ad
(
etadξDξ

)
dt

= −ad
(∫ 1

0

etadξdt

)
(Dξ) = ad

(
F (adξ)Dξ

)
.

Proposition 4.3.4 ([JN]). Let h ∈ Aut(R) ⊆ Aut(g), σ, ξ ∈ g and v ∈ XI .
Consider the derivation D := −Lv + adσ ∈ der(g). Then

h ◦D ◦ h−1 = −Lh.v + ad(h.σ),

eadξ ◦D ◦ e−adξ = −Lv + ad

(
eadξσ + F (adξ)(−Lvξ)

)
.

(4.3.1)

Proof. It is trivial that h ◦ Lv ◦ h−1 = Lh.v. Moreover, h ◦ adσ ◦ h−1 = adh.σ
is valid because α ◦ adσ = adα(σ) ◦ α for any α ∈ Aut(g). Notice next that

F (adξ)([σ, ξ]) =
∑∞
n=1

1
n!adξ

nσ = eadξσ − σ. It follows using Lemma 4.3.3 that

eadξ ◦D ◦ e−adξ = −Lv + adσ + ad
(
F (adξ)(−Lvξ)

)
+ ad

(
F (adξ)[σ, ξ]

)
= −Lv + ad

(
eadξσ + F (adξ)(−Lvξ)

)
.
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Definition 4.3.5.

— Two homomorphisms v,w : p → X opI are said to be formally-equivalent if
there is a formal diffeomorphism h ∈ Aut(R) such that h.v(p) = w(p) for all
p ∈ p.

— Two linear maps σ, η : p → R ⊗ k satisfying the Maurer-Cartan equation
(4.2.1) are called gauge-equivalent if there is some ξ ∈ g such that

η(p) = eadξσ(p) + F (adξ)(−Lv(p)ξ), ∀p ∈ p. (4.3.2)

In this case, we write σ ∼ η and say that σ and η are related by the gauge
transformation eadξ .

4.3.2 Lie algebras of formal vector fields with a common
fixed point

The normal form problem for vector fields near a fixed point has been subject to
extensive study. Let us first gather some relevant known results.

The case of a single vector field

Naturally, the special case which has been considered most is the case where p is
simply R, in which case one is looking for normal forms of dynamical systems near
a fixed point, in the formal context. This case is already quite interesting. Let us
recollect some relevant results. For more information, we refer to [Arn88].

Let v be a vector field on V . Write v = vl + vho, where vl = j10(v) ∈ gl(V ) ⊆ XI
is the linearization of v at 0 ∈ V and vho ∈ XI2 is a vector field vanishing up to
first order at 0 ∈ V . Let vl = vl,s + vl,n be the Jordan decomposition of vl over
C, where vl,s is semisimple and vl,n is nilpotent. Write VC := V ⊗R C. Let (ej)dj=1

be a basis of eigenvectors of vl,s in VC with dual basis (xj)
d
j=1 of V ∗. Let (µj)

d
j=1

denote the corresponding eigenvalues.

Definition 4.3.6. Let n ∈ Nd≥0 be a multi-index. A monomial vector field xn∂xj

with |n| ≥ 2 is called resonant if ⟨n,µ⟩ = µj , where ⟨n,µ⟩ :=
∑d
i=1 niµi. Iden-

tifying vl,s with the linear vector field
∑d
j=1 µjxj∂xj

on Cd, this is equivalent to
[vl,s, x

n∂xj
] = 0.

Theorem 4.3.7 (Poincaré-Dulac Theorem [Dul04] [Arn88, ch.5]).
There exists who ∈ XI2 which is a C-linear combination of resonant monomials s.t.
v is formally equivalent to w = vl +who ∈ XI . In particular [vl,s, who] = 0 in XI .

Corollary 4.3.8 (Poincaré [Poi79]). If there are no resonances, meaning that
⟨n,µ⟩ ̸= µj for all n ∈ Nd≥0 with |n| ≥ 2 and j ∈ {1, . . . , d}, then the vector
field v can be formally linearized, so that v is formally equivalent to the linear
vector field vl.
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The case of actions by a compact Lie group

For actions of compact Lie groups there is the following well-known result, see also
[DK00, Ch. 2.2]:

Theorem 4.3.9 (Bochner’s Linearization Theorem [Boc45]).
Let G ×M → M be a smooth action of compact Lie group on a smooth manifold
which has a fixed point a ∈ M . Then, in suitably chosen smooth local coordinates
around the fixed point, the action is linear.

The case of actions by semisimple Lie algebras

Next, we move to Lie algebra representations by formal vector fields of semisimple
Lie algebras. As nicely explained in [FM04] and first observed by Hermann in
[Her68], in the formal setting the obstructions to being able to linearize a Lie algebra
of vector fields simultaneously lie in various first Lie algebra cohomology groups
H1(p,W ) for suitable finite-dimensional p-modules W . In view of Whitehead’s
First Lemma [Jac79, III.7. Lem. 3], this results in:

Theorem 4.3.10 ([Her68]). Let p be a semisimple Lie algebra and v : p → X opI
be a Lie algebra homomorphism. Then v is formally equivalent to its linearization
j1v : p→ gl(V ) ⊆ X opI around the origin.

Remark 4.3.11. Corresponding statements of Theorem 4.3.10 in the setting of germs
of smooth/analytic vector fields and diffeomorphisms have been proven in [GS68]
and [FM04] under additional assumptions. They are false in general without suit-
able extra conditions, as was shown in [GS68].

4.3.3 Normal form results for the vertical twist

Let us next consider the vertical twist σ : p→ g of the lift D(p) = −Lv(p) +adσ(p)
to g of the p-action −Lv(p) on R, which has to satisfy the Maurer Cartan equation
(4.2.1). We fix the horizontal part v : p → X opI and act by gauge transforma-
tions. The main results of this section are the following two theorems, whose proof
comprises the remainder of the section. The reader who is eager to consider the
projective unitary g.p.e. representations of g can proceed to Section 4.4 after read-
ing Theorem 4.3.12 and Theorem 4.3.13 below.

Let us also remark that the methods used in this section to prove Theorem 4.3.12
and Theorem 4.3.13 were communicated to the author by B. Janssens and K.H.
Neeb and appear in similar form in their presently unpublished work [JN], albeit
in a more specific context. The author has placed their approach in a more general
context and extracted the two theorems below.

Theorem 4.3.12. Assume that p is semisimple. Let the linear map σ : p → g
satisfy the Maurer-Cartan equation (4.2.1). Then σ is gauge-equivalent to σ0 :=
ev0 ◦σ : p → k. If p has no non-trivial compact ideals, then σ is gauge-equivalent
to 0.
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The next result concerns the case p = R, in which case we identify v with v(1) ∈ XI
and σ with σ(1) ∈ g. In this case, the Maurer-Cartan equation (4.2.1) is trivially
satisfied for any σ ∈ g and v ∈ XI .

Theorem 4.3.13. Assume that p = R. Let σ ∈ g and v ∈ XI . Let vl := j1v ∈
gl(V ) be the linearization of v at 0 ∈ V . Assume w.l.o.g. that σ0 := ev0(σ) ∈ t for
some maximal torus t ⊆ k. The following assertions hold true:

1. Assume that ⟨n,µ⟩ ≠ α(σ0) for any root α ∈ it∗ of k and n ∈ Nd≥0 with
|n| ≥ 1.
Then σ is gauge-equivalent to some σ′ ∈ R⊗ t.

2. If vl is semisimple, then σ is gauge-equivalent to some ν ∈ R ⊗ k satisfying
−Lvl

ν + [σ0, ν] = 0.

3. Suppose that v = vl is linear. Assume that D = −Lv + adσ integrates to a
continuous T = R/2πZ-action on g. Then σ is gauge-equivalent to σ0 ∈ t.
Moreover Spec(vl) ∪ Spec(adσ) ⊆ 2πiZ.

Remark 4.3.14. Suppose that K → M is a principal fiber bundle with compact
simple structure group K. Let α : T→ Aut(K) be a smooth action on K by bundle
automorphisms. Suppose that a ∈ M is a fixed point of the induced T-action on
M and set V := Ta(M). By Theorem 4.3.9, the T-action on M is linear in suitable
local coordinates around a ∈ M . Passing to J∞

a (M) ∼= R and J∞
a (Ad(K)) ∼= g,

one obtains a T-action on both R and g. The corresponding derivations are given
by −Lv and D = −Lv + adσ respectively, for some linear semisimple vector field
v on V and some σ ∈ g. This is the setting of the third item in Theorem 4.3.13,
according to which we may further assume that σ ∈ t, where t ⊆ k is a maximal
torus, by acting with gauge transformations.

The remainder of this section is devoted to the proof of Theorem 4.3.12 and The-
orem 4.3.13.

Reformulation using differential graded Lie algebras

In order to classify the equivalence classes of vertical twists σ : p → g, we in-
terpret equation (4.2.1) as the Maurer Cartan equation in the differential graded
Lie algebra (DGLA) L := LR := (

∧•
p∗) ⊗ g. As a cochain complex, L is the

Chevalley-Eilenberg complex associated to the p-module g, where p acts on g by
p.ψ = −Lv(p)ψ. Explicitly, the differential δ is given by

δ(α)(p1, . . . , pk+1) =
∑
i

(−1)i+1pi.α(p1, . . . , p̂i, . . . , pk+1)

+
∑
i<j

(−1)i+jα([pi, pj ], p1, . . . , p̂i, . . . , p̂j , . . . , pk+1),

where as usual, the arguments with a caret are to be omitted. The graded Lie
bracket on L is the unique bilinear map [−,−] : L× L→ L satisfying

[α⊗ σ, β ⊗ ψ] := (α ∧ β)⊗ [σ, ψ], ∀α, β ∈
∧•

p∗, σ, ψ ∈ g.
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We write Lk :=
(∧k

p∗
)
⊗ g for the degree k-elements in L. Interpreting σ as

a degree-1 element of L, equation (4.2.1) can now equivalently be written as the
usual MC-equation δσ + 1

2 [σ, σ] = 0 in L.

Let us next reformulate the gauge-action (4.3.2) of g on the set of vertical twists,
using the DGLA L. Consider the extended DGLA L ⋊ RD, where D is a degree-
1 element satisfying [D,σ] = δ(σ) for any σ ∈ L. Notice for ξ ∈ g = L0 that
δ(ξ)(p) = −Lv(p)ξ. We define the gauge-action of L0 = g on L by

ξ.σ = ead(ξ)(D + σ)−D = eadξ(σ) + F (adξ)(δ(ξ)), ξ ∈ g, (4.3.3)

considered as an expression in L⋊RD, where F (w) = −
∑∞
n=0

1
(n+1)!w

n = −
∫ 1

0
etwdt.

Let us check that the above is indeed well-defined, even though L is not a nilpotent
DGLA. Since G = lim←−kGk is a Lie group, it has an exponential map and so the

automorphism eadξ := Ad(eξ) on g is defined. Consequently, so is

F (adξ)(−Lv(p)ξ) =

∫ 1

0

etadξ(Lv(p)ξ)dt

for any p ∈ p. Thus the expression in equation (4.3.3) makes sense. Notice further
that for σ ∈ L1, the above reduces precisely to the transformation behavior (4.3.2)
of the vertical twist. In accordance with Definition 4.3.5, we say that the MC-
elements σ, σ′ ∈ L1 are gauge-equivalent if they satisfy σ′ = ξ.σ for some ξ ∈ L0,
in which case we write σ ∼ σ′. Our goal is to study the MC-elements in L1 up to
gauge-equivalence.

Let n ∈ N≥0. Define analogously the following DGLAs, where we consider Pn(V ) as
p-module by identifying Pn(V ) with In/In+1 for n ∈ N≥0, so that p.f = −Lvl(p)f
for p ∈ p and f ∈ Pn(V ):

LI :=
∧•

p∗ ⊗ (I ⊗ k), LRn :=
∧•

p∗ ⊗ (Rn ⊗ k),

LIn :=
∧•

p∗ ⊗ (In ⊗ k), LPn :=
∧•

p∗ ⊗ (Pn(V )⊗ k).

Shifted DGLAs

It will be beneficial to split off the constants terms of the k-valued formal power
series, because contrary to LR, LI is a projective limit of nilpotent DGLAs. We
discuss next how this can be done.

For any MC-element χ ∈ L1
R0

= p∗⊗k ⊆ LR of degree 1, define the ”shifted” DGLA
LχR, which agrees with LR as a graded Lie algebra but has a shifted differential given
by δχ(σ) := δ(σ) + [χ, σ]. The differential δχ agrees with the Chevalley-Eilenberg
differential of

(∧•
p∗
)
⊗ g if g is considered as p-module with the twisted action

p.σ := −Lv(p) + [χ,−]. In particular, δ2χ = 0. Let us write R ⊗χ k for this module
structure to distinguish it form the usual one on g = R ⊗ k, which was given by
p.ξ = −Lv(p)ξ. Define also the extended DGLA LχR⋊RDχ, where [Dχ, σ] = δχ(σ).
Define in analogous fashion LχIn , L

χ
I and LχPn , where we have used that the p-action
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on R⊗χ k leaves In⊗k invariant for every n, so that Pn(V )⊗k ∼= (In⊗k)/(In+1⊗k)
is naturally a p-module. The following is a standard result:

Lemma 4.3.15.

1. Let σ ∈ L1
R. Then χ + σ is a MC-element in LR if and only if σ is a MC-

element in LχR.

2. Let σ, σ′ ∈ LχR be degree-1 MC-elements. Then χ+ σ ∼ χ+ σ′ in LR if and
only if σ ∼ σ′ in LχR.

3. Let ψ ∈ L1
R be a MC-element. Then ψ = χ+σ for some degree-1 MC-elements

σ ∈ LχI and χ ∈ LR0 .

Proof.

1. As χ is a MC-element and [σ, χ] = [χ, σ] we have

δ(χ+ σ) +
1

2
[χ+ σ, χ+ σ] = δ(σ) +

1

2
[σ, σ] + [χ, σ] = δχ(σ) +

1

2
[σ, σ].

2. Observe that −F (adξ)([ξ, χ]) = eadξ(χ)− χ. Consequently

F (adξ)(δχ(ξ)) = F (adξ)(δ(ξ)) +F (adξ)([χ, ξ]) = F (adξ)(δ(ξ)) + eadξ(χ)−χ.

Thus, for any ξ ∈ g we have

eadξ(χ+ σ) + F (adξ)(δ(ξ)) = χ+

(
eadξ(σ) + F (adξ)(δχ(ξ))

)
.

3. Since R = R0 ⊕ I as a vector space, we can write ψ = χ + σ, where χ =
j0(ψ) ∈ LR0 and σ ∈ LχI . As j0 is a morphism of DGLAs, it is clear that
χ = j0(ψ) is a MC-element in LR0

⊆ LR. By the first point it follows that σ
is a MC-element in LχI ⊆ L

χ
R.

Study of MC-elements

In view of Lemma 4.3.15, let us first study the classification problem of gauge-orbits
of MC-elements in L1

R0
and then, for each MC-element χ ∈ L1

R0
consider the orbits

in LχI under the gauge-action.

Lemma 4.3.16.

1. Let χ : p → k be linear. Then χ is a MC-element in L1
R0

if and only if it is
a Lie algebra homomorphism. Thus if there are no homomorphisms p → k,
then any MC-element χ ∈ L1

R0
= p∗ ⊗ k is trivial.

2. The gauge-action of X ∈ k = L0
R0

on LR0
is given by X.χ = eXχ.

Proof. Notice that δ(X) = 0 for any X ∈ k ⊆ g, because −Lv(p)X = 0 for any
p ∈ p. So p acts trivially on k = g0 = j0g. Thus the Maurer-Cartan condition reads
simply χ([p1, p2])− [χ(p1), χ(p2)] = 0 for all p1, p2 ∈ p, proving the first statement.
The second statement follows at once from the definition (4.3.3), using once more
that the p-action on k is trivial.
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Next, we fix a homomorphism χ : p→ k and turn to the MC-elements of the twisted
DGLAs LχI . Consider the following diagram of DGLAs:

LχI

· · · LχIk+1
LχIk · · · LχI0 = {0}

Any MC-element in LχI projects to one in LχIk for any k ∈ N, and all maps in the
above diagram are equivariant w.r.t. the gauge-actions. Notice further that each
LχIk is nilpotent. To study the MC-elements in LχI , we consider lifts of MC-elements
from LχIk to LχIk+1

, so as to solve the problem step-by-step. This can be done using

the following central extension of nilpotent DGLAs, where LχI0 = {0} is trivial:

0→ Lχ
Pk → LχIk → LχIk−1

→ 0, k ∈ N (4.3.4)

in combination with the following known result from deformation theory (cf. [Man04,
Sec. V.6]):

Lemma 4.3.17. Let 0 → K → L → M → 0 be a central extension of nilpotent
DGLAs. Let σM ∈M1 be a MC-element.

1. Suppose that σL ∈ L projects to σM . Then h := δσL + 1
2 [σL, σL] ∈ K2 is

closed and [h] ∈ H2(K) is independent of the lift σL of σM . Moreover, there
is some η ∈ K1 such that σL+η is a MC-element in L1 if and only if [h] = 0
in H2(K).

2. If σL and σ′
L are two lifts of σM that are both MC-elements in L1, then

∆ := σ′
L−σL ∈ K1 is closed. Conversely, if ∆ ∈ K1 is closed and σL is a lift

of σM which is a MC-element, then σ′
L := σL +∆ is also a lift of σM which

is a MC-element. Moreover, the class [∆] ∈ H1(K) vanishes if and only if
σL and σL′ are related by a gauge transformation of some element ξ ∈ K0.

3. If σL is any lift of σM which is a MC-element, then the map ∆ 7→ σL +
∆ induces a bijection between H1(K) and K0-orbits of MC-elements in L1

lifting σM .

Proof.

1. It is clear that h ∈ K2 as it projects to zero in M2. Since δh = [δσL, σL] (by
the graded Leibniz rule), we find using δσL = h− 1

2 [σL, σL] that

δh = [h, σL]−
1

2
[[σL, σL], σL] = 0,

where the second term vanishes by the graded Jacobi identity and the first
term vanishes because h ∈ K is central. Thus h is closed. Suppose that
σ′
L is some other lift of σM and define h′ := δσ′

L + 1
2 [σ

′
L, σ

′
L] ∈ K2. Then

∆ := σ′
L − σL ∈ K lies in the center, so that h′ = h + δ∆. It follows that
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[h] ∈ H2(K) does not depend on the lift. If there is some η ∈ K1 such that
σL + η is a MC-element in L1, then

0 = δ(σL + η) +
1

2
[σL + η, σL + η] = δη + h.

Hence [h] = 0. Conversely, if [h] = 0 ∈ H2(K), then there exists η ∈ K1 such
that h+ δη = 0. Then σL + η is a MC-element, by the same computation.

2. Let σ′
L and σL be MC-elements in L1 lifting σM . We have already noticed

that h′ = h+δ∆, where ∆ := σ′
L−σL ∈ K1. Since h = h′ = 0 by assumption,

it follows that δ∆ = 0. Conversely, suppose ∆ ∈ K1 is closed and that σL is
a MC-element projecting to σM . Then σ′

L := σL+∆ projects to σM as well.
Also, σ′

L is a MC-element, because δσ′
L+

1
2 [σ

′
L, σ

′
L] = δσL+

1
2 [σL, σL]+δ∆ = 0.

To see that [∆] = 0 in H1(K) if and only if σL and σ′
L = σL+∆ are related by

a gauge transformation by some element ξ ∈ K0, observation that if ξ ∈ K0,
then as ξ is central we have

ξ.σL = eadξ(σL +D)−D = σL − [D, ξ] = σL − δξ.

3. This is immediate from the previous point.

Next, we apply Lemma 4.3.17 to the exact sequences (4.3.4).

Lemma 4.3.18. For every sequence (ξk)k∈N of degree-0 elements in LχI with
ξk ∈ P k(V ) ⊗χ k for every k ∈ N, there exists η ∈ I ⊗χ k such that jn(η.σ) =
ξn.ξn−1. · · · .ξ1.σ for every σ ∈ LχI and n ∈ N.

Proof. Consider the Lie subgroup H := ker
(
ev0 : G → K

)
◁ G with Lie algebra

h := ker
(
ev0 : g → k

)
= I ⊗ k. Similarly, for n ∈ N let Hn := ker

(
ev0 :

Gn → K
)
and hn := Lie(Hn). Recall that the exponential map exp : h → H is a

global diffeomorphism, by Lemma 4.2.3. Write log : H → h for its inverse. From
jn ◦ exp = exp ◦jn : h → Hn we obtain that log ◦jn = jn ◦ log : H → hn for
any n ∈ N. As [ξk, I ⊗ k] ⊆ Ik+1 ⊗ k and the ξk are of increasing order, we claim

that the limit η := limN→∞ log
(∏N

k=1 e
ξk
)

exists in I ⊗ k w.r.t. the projective

limit-topology, where k increases from right to left in the expression. Indeed, to
see this it suffices to show that for each n ∈ N the sequence (jnηN )∞N=1 stabilizes

for large enough values of N , where ηN := log
(∏N

k=1 e
ξk
)
. This is the case because

for N ≥ n we have:

jnηN = jn log

(
N∏
k=1

eξk

)
= log

(
N∏
k=1

ej
n(ξk)

)
= log

(
n∏
k=1

ej
n(ξk)

)
= jnηn

where it was used that jn(ξk) = 0 for all k > n, because ξk ∈ Ik. Thus η = limN ηN
is well-defined and satisfies jnη = jnηn for all n ∈ N. Let σ ∈ LχI . Using the fact
that

ξn+1.ηn.σ = eadξn+1 (ηn.σ +Dχ)−Dχ

= eadξn+1 eadηn (Dχ + σ)−Dχ = eadηn+1 (Dχ + σ)−Dχ = ηn+1.σ,
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it follows by induction that for any n ∈ N, the equality ηn.σ = ξn.ξn−1 · · · ξ1.σ is
valid. We thus get:

jn(η.σ) = jn(ηn.σ) = jn(ξn.ξn−1 · · · ξ1.σ), ∀n ∈ N.

Proposition 4.3.19. Assume that H1(p, P k(V )⊗χ k) = 0 for every k ∈ N. Then
every degree-1 MC-element in LχI is gauge-equivalent to 0 in LχI .

Proof. Fix a MC-element σ ∈ LχI . Recall that jn(ζ.σ) is again a MC-element
in LχIn for any n ∈ N and ζ ∈ LχI of degree 0. Notice also that j0σ = 0. As

H1(p, P k(V )⊗χ k) = 0 for every k ∈ N, it follows using Lemma 4.3.17 and the exact
sequences (4.3.4), by induction on n ∈ N, that we can find a sequence of degree-0
elements (ξk)k∈N in LχI with ξk ∈ P k(V )⊗ k such that jn(ξn.ξn−1 · · · ξ1.σ) = 0 for
every n ∈ N. It follows from Lemma 4.3.18 that there is some η ∈ I ⊗χ k such that
jn(η.σ) = ξn.ξn−1. · · · .ξ1.σ = 0 in LχI for all n ∈ N. Thus σ ∼ 0.

Lemma 4.3.20. Let p be a semisimple Lie algebra with no nontrivial compact
ideals. If k is a compact semisimple Lie algebra, then there are no non-trivial
homomorphisms p→ k.

Proof. Let χ : p → k be a homomorphism. Then p/ kerχ is isomorphic to a
subalgebra of k and is therefore compact. As p is semisimple and has no nontrivial
compact ideals, it also has no non-trivial compact quotients. Thus p/ kerχ = {0}
or equivalently p = kerχ, so χ is trivial.

Proposition 4.3.21. Assume that p is semisimple. Let χ : p→ k be a homomor-
phism and let σ′ ∈ LχI . Suppose that σ := χ+ σ′ is a degree-1 MC-element in LR.
Then σ is gauge-equivalent to χ in LR.

Proof. Since H1(p, P k(V )⊗χ k) = 0 for all k ∈ N≥0 by Whitehead’s Lemma [Jac79,
III.7. Lem. 3], Proposition 4.3.19 implies that σ is equivalent to 0 in LχI . Equiva-
lently χ+ σ is equivalent to χ in LR.

Theorem 4.3.12. Assume that p is semisimple. Let the linear map σ : p → g
satisfy the Maurer-Cartan equation (4.2.1). Then σ is gauge-equivalent to σ0 :=
ev0 ◦σ : p → k. If p has no non-trivial compact ideals, then σ is gauge-equivalent
to 0.

Proof. Since σ ∈ p∗⊗g is a MC-element in LR, there is some degree-1 MC-element
σ′ ∈ Lσ0

I such that σ = σ0+σ
′, by Lemma 4.3.15. Then Proposition 4.3.21 implies

that σ is gauge-equivalent to σ0. By Lemma 4.3.16 we further know that σ0 : p→ k
is a homomorphism of Lie algebras. Thus, if p has no non-compact ideals then σ0
is trivial by Lemma 4.3.20.

Remark 4.3.22. Alternatively, Theorem 4.3.12 also follows from the structure the-
ory of pro-Lie algebras, developed in [HM07]. To see this, assume that p is semisim-
ple. Consider the pro-Lie algebra h ⋊D0

p, were h := I ⊗ k ⊆ g and where
D0 : p → der(h) is given by D0(p) = −Lv(p) + adσ0(p) for p ∈ p. Since p is
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semisimple, the radical and Levi-factor of h⋊D0
p are h and p, respectively. A Levi

subalgebra of (g⋊D0
p) is equivalently given by a splitting of the exact sequence

0→ h→ h⋊D0
p→ p→ 0, (4.3.5)

which in turn is equivalently given by a linear map σ′ : p → h satisfying the
Maurer-Cartan equation

σ′([p1, p2]) = [σ′(p1), σ
′(p2)] +D0(p1)σ

′(p2)−D0(p2)σ
′(p1), ∀p1, p2 ∈ p.

That is, by a degree-1 MC-element σ′ in the DGLA Lσ0

I . The splitting sσ′ and
Levi subalgebra lσ′ corresponding to σ′ are given by sσ′ : p → h ⋊D0

p, sσ′(p) :=
(σ′(p), p), and lσ′ := { (σ′(p), p) : p ∈ p } ⊆ h ⋊D0 p, respectively. Any two Levi
subalgebras in h⋊D0 p are conjugate by an automorphism of the form eadξ for some
ξ ∈ h, by [HM07, Thm. 7.77(i)]. So if σ′ ∈ Lσ0

I is a degree-1 MC-element, there
exists ξ ∈ h such that eadξ(σ′(p), p) = (0, p) for all p ∈ p. Notice for p ∈ p that
eadξ(σ′(p), p) = ((ξ.σ′)(p), p), where

(ξ.σ′)(p) = eadξσ′(p) + F (adξ)(D0(p)ξ) = eadξσ′(p) + F (adξ)(δσ0
(ξ)(p))

is precisely the gauge action of the degree-zero elements (Lσ0

I )0 = h on Lσ0

I . We
thus find that ξ.σ′ = 0, so σ′ ∼ 0 in Lσ0

I . By Lemma 4.3.16, this is equivalent with
σ ∼ σ0 in LR.

We now prove Theorem 4.3.13.

Theorem 4.3.13. Assume that p = R. Let σ ∈ g and v ∈ XI . Let vl := j1v ∈
gl(V ) be the linearization of v at 0 ∈ V . Assume w.l.o.g. that σ0 := ev0(σ) ∈ t for
some maximal torus t ⊆ k. The following assertions hold true:

1. Assume that ⟨n,µ⟩ ≠ α(σ0) for any root α ∈ it∗ of k and n ∈ Nd≥0 with
|n| ≥ 1.
Then σ is gauge-equivalent to some σ′ ∈ R⊗ t.

2. If vl is semisimple, then σ is gauge-equivalent to some ν ∈ R ⊗ k satisfying
−Lvl

ν + [σ0, ν] = 0.

3. Suppose that v = vl is linear. Assume that D = −Lv + adσ integrates to a
continuous T = R/2πZ-action on g. Then σ is gauge-equivalent to σ0 ∈ t.
Moreover Spec(vl) ∪ Spec(adσ) ⊆ 2πiZ.

Proof.

1. Using Lemma 4.3.15, write σ = σ0 + σ′, where σ′ ∈ Lσ0

I is a degree-1 MC-
element in the shifted DGLA Lσ0

I . Passing to the complexification, observe
for n ∈ N that

Pn(VC)⊗σ0
(k/t)C ∼=

⊕
α

Pn(VC)⊗σ0
(kC)α
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as p-modules. The eigenvalues of −Lvl
+ adσ0

acting on Pn(V ) ⊗σ0
(kC)α

are given by α(σ0) − ⟨n,µ⟩, as n ranges over the multi-indices n ∈ Nd≥0

with |n| = n, and α over the roots of k. Thus −Lvl
+ adσ0 is invertible on

Pn(V )⊗σ0
(kC)α. Consequently

H0(p, Pn(VC)⊗σ0 (kC)α) = H1(p, Pn(VC)⊗σ0 (kC)α) = 0

for any n ∈ N and root α, which in turn implies that

H0(p, Pn(V )⊗σ0
k/t) = H1(p, Pn(V )⊗σ0

k/t) = 0.

By the long exact sequence of cohomology groups associated to the short
exact sequence

0→
(∧•

p∗
)
⊗Pn(V )⊗t→

(∧•
p∗
)
⊗Pn(V )⊗σ0

k→
(∧•

p∗
)
⊗Pn(V )⊗σ0

k/t→ 0,

it follows that for every n ∈ N, the inclusion p∗⊗Pn(V )⊗t ↪→ p∗⊗Pn(V )⊗σ0 k
induces an isomorphism H1(p, Pn(V ) ⊗ t) ∼= H1(p, Pn(V ) ⊗σ0

k). It then
follows using Lemma 4.3.17 by induction on n ∈ N that we can find elements
ξk ∈ P k(V )⊗σ0

k s.t. jn(ξn.ξn−1 · · · ξ1.σ′) ∈ In⊗ t for every n ∈ N, the gauge
action taking place in Lσ0

I . By Lemma 4.3.18 there exists η ∈ I ⊗σ0 k s.t.
jn(η.σ′) = jn(ξn.ξn−1. · · · .ξ1.σ′) ∈ In ⊗ t for every n ∈ N. Hence ζ := η.σ′ ∈
I ⊗ t and σ′ is gauge-equivalent to ζ in Lσ0

I . By Lemma 4.3.15 it follows that
σ = σ0 + σ′ is gauge-equivalent to σ0 + ζ ∈ R⊗ t.

2. As before, decompose σ = σ0 + σ′ using Lemma 4.3.15, where σ′ ∈ Lσ0

I

is a degree-1 MC-element in the shifted DGLA Lσ0

I . Let n ∈ N. Identify
p∗⊗Pn(V )⊗σ0

k with Pn(V )⊗σ0
k by evaluating elements of p∗ at 1 ∈ p = R.

This induces an isomorphism

H1(p, Pn(V )⊗σ0
k) ∼= (Pn(V )⊗σ0

k)/ Im(−Lvl
+ adσ0

)

Since vl is semisimple, so is −Lvl
+adσ0 as operator on Pn(V )⊗σ0 k. Conse-

quently, the inclusion (Pn(V )⊗σ0
k)p ↪→ Pn(V )⊗σ0

k induces an isomorphism

(Pn(V )⊗σ0 k)
p ∼= (Pn(V )⊗σ0 k)/ Im(−Lvl

+ adσ0).

So every element of H1(p, Pn(V ) ⊗σ0 k) admits a representative in p∗ ⊗
(Pn(V )⊗σ0 k)

p, for any n ∈ N. By a similar argument as in the previous item,
it follows that σ′ is gauge-equivalent to some ζ ∈ I ⊗σ0

k in Lσ0

I that satisfies
−Lvl

(ζ) + [σ0, ζ] = 0. By Lemma 4.3.15 it follows that σ0 + σ′ ∼ σ0 + ζ in
LR. Notice that ν := σ0 + ζ satisfies −Lvl

ν + [σ0, ν] = 0.

3. Observe first that any derivation D′ ∈ der(g) satisfying D′(I ⊗ k) ⊆ (I ⊗ k)
integrates to a unique 1-parameter group t 7→ etD

′
of automorphisms on g

that leave the ideal I⊗k ⊆ g invariant. Indeed, this follows from fact that the
corresponding statement is true for the finite-dimensional Lie algebra der(gn)
for every n ∈ N, where we use that g is the projective limit g = lim←−n gn. In

particular this applies to the T-action etD on g, which therefore leaves I ⊗ k
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invariant. It thus induces a continuous T-action on V ∗⊗ k ∼= (I ⊗ k)/(I2⊗ k),
which integrates the linear operator −Lvl

⊗ 1 + 1 ⊗ adσ0
on V ∗ ⊗ k. This

implies that vl ∈ gl(V ) and adσ0 ∈ der(k) integrate to continuous T = R/2πZ-
actions on V and k, respectively. As T is compact it follows in particular that
vl is semisimple and that Spec(vl) ∪ Spec(adσ0

) ⊆ 2πiZ. By Lemma 4.3.15
we know that there is some degree-1 MC-element σ′ ∈ Lσ0

I such that σ =
σ0+σ

′. By the previous item, it follows that we may assume that σ′ satisfies
−Lvl

σ′+[σ0, σ
′] = 0, by acting with gauge transformations in Lσ0

I if necessary.
Let n ∈ N. The T-action on gn = Rn ⊗ k must be unitarizable because T
is compact, so that its generator Dn := −Lvl

+ [jnσ,−] ∈ der(gn) must be
semisimple. Notice further that −Lvl

+ [σ0,−] is semisimple on gn whereas
[jnσ′,−] is nilpotent. Since −Lvl

σ′ + [σ0, σ
′] = 0, the operators −Lvl

+ [σ0,-
−] and [jnσ′,−] on gn commute. Thus Dn =

(
− Lvl

+ [σ0,−]
)
+ [jnσ′,−]

is the Jordan decomposition of Dn. As Dn is semisimple, this implies that
[jnσ′,−] = 0. Thus jnσ′ ∈ Z(gn), where Z(gn) denotes the center of gn. As
k is simple, we know that Z(gn) = Pn(V ) ⊗ k ⊆ gn. Thus σ′ ∈ In−1 ⊗ k for
every n ∈ N, where I0 := R. As

⋂
n∈N(I

n−1⊗k) = {0}, it follows that σ′ = 0.
Hence σ = σ0 ∈ t.

4.4 Projective unitary generalized positive energy
representations

Having obtained the normal form results Theorem 4.3.12 and Theorem 4.3.13, we
now proceed with the study of continuous projective unitary representation of jet
Lie groups and algebras that are of generalized positive energy.

Let us begin by briefly recalling the setting and our notation. We have that V is a
finite-dimensional real vector space, R = RJV ∗K :=

∏∞
n=0 P

k(V ) is the ring of for-
mal power series on V with coefficients in R and equipped with the direct product
topology. Moreover, g denotes the topological Lie algebra g = R ⊗ k, where k is a
compact simple Lie algebra and p is a finite-dimensional real Lie algebra acting on g
by the homomorphism D : p→ der(g), which splits into a horizontal and a vertical
part according to D(p) = −Lv(p) + adσ(p), where v : p→ X opI is a homomorphism
and where the linear map σ : p → g satisfies the Maurer Cartan equation (4.2.1).
Let P and K be the 1-connected Lie groups integrating p and K, respectively. For
n ∈ N write Gn := Jn0 (V,K), G♯n := Jn0 (V,K) ⋊ P and g♯n := gn ⋊D p. Define
further G := J∞

0 (V,K) := lim←−nGn, G
♯ := G⋊α P and g♯ := g⋊D p = lim←−n g

♯
n.

In the following, we are interested in understanding the extent to which the lin-
earization vl of v and the values of σ(p) at the origin already determine properties
of the class of representations which are of g.p.e. at a given cone C ⊆ p. To describe
the main results, we first have to introduce some more notation.

Define σ0 := ev0 ◦σ : p → k and let vl = j1v : p → gl(V ) be the linearization of
v at the origin. For p ∈ p, the vector fields v(p) splits as v(p) = vl(p) + vho(p)
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for some formal vector field vho(p) ∈ XI2 vanishing up to first order at the origin.
Let vl(p) = vl(p)s + vl(p)n be the Jordan decomposition of vl(p) over C. Let
V C
c (p) denote the span in VC of all generalized eigenspaces of vl(p) corresponding to

eigenvalues with zero real part. Set Vc(p) := V C
c (p)∩V . If C ⊆ p is a subset, define

Vc(C) :=
⋂
p∈C Vc(p). We call Vc(C) the ‘center subspace associated to C’, in analogy

with the center manifold of a fixed point of a dynamical system. Let Vc(C)
⊥ ⊆ V ∗

denote the annihilator of Vc(C) in V
∗. For any p ∈ p, let Σp ⊆ C denote the additive

subsemigroup of C generated by Spec(vl(p)). For any continuous projective unitary
representation π of g⋊D p, we define

C(π) := { p ∈ p : π is of generalized positive energy at p } .

Let us describe the main results of this section. In the context of positive energy
representations, we have:

Theorem 4.4.1. Let ρ be a smooth projective unitary representation of G ⋊α P
which is of p.e. at p ∈ p. Assume that Spec(adσ0(p)) ∩ Spec(vl(p)) = ∅. Then
ρ factors through J2

0 (V,K) ⋊α P . Moreover the image of −Lvl(p) + adσ0(p) in
P 2(V )⊗ k ⊆ J2

0 (V,K) is contained in ker ρ.

Remark 4.4.2. Notice that Spec(adσ0(p)) = {α(σ0(p)) : α ∈ ∆ } ∪ {0} is a finite
subset of iR. In particular, the condition Spec(vl(p))∩Spec(adσ0(p)) = ∅ is satisfied
if vl has no purely imaginary eigenvalues.

This is complemented by the following results, which in particular give sufficient
conditions for π|g to factor through k, as RJVc(C)∗K⊗ k ∼= k whenever Vc(C) = {0}.

Theorem 4.4.3. Let π be a continuous projective unitary representation of g⋊D p.
Let C ⊆ C(π). Assume that Spec(adσ0(p)) ∩ Σp = ∅ for all p ∈ C.

Then RVc(C)
⊥ ⊗ k ⊆ kerπ and hence π|g factors through RJVc(C)∗K⊗ k.

Theorem 4.4.4. Let t ⊆ k be a maximal Abelian subalgebra. Let π be a continuous
projective unitary representation of g♯. Let C ⊆ C(π) and assume that σ(p) ∈ R⊗ t
and [vl(p)s, vho(p) ] = 0 for every p ∈ C. Then RVc(C)

⊥⊗ k ⊆ kerπ and hence π|g
factors through RJVc(C)∗K⊗ k.

To prove these results, we consider in Section 4.4.1 the second continuous Lie
algebra cohomology H2

ct(g ⋊D p,R) so as to obtain particular representatives ω
of cohomology classes therein. We proceed in Section 4.4.2 to show that any ir-
reducible smooth projective unitary representation G ⋊α P factors through the
finite-dimensional Gn ⋊ P for some n ∈ N. This gives us access to techniques that
are available for finite-dimensional Lie groups, and in particular to Corollary 2.5.4,
which leads to Theorem 4.4.1. In Section 4.4.3 and Section 4.4.4 we study the
kernel of the quadratic form ξ 7→ ω(D(p)ξ, ξ). Recalling from Corollary 3.1.8 that

[D(p)η, η] = 0 =⇒
(
ω(D(p)η, η) = 0 ⇐⇒ π(D(p)η) = 0

)
, ∀η ∈ g,

this leads to an ideal in g contained in kerπ, and to the proof of Theorem 4.4.3 and
Theorem 4.4.4. These results are supplemented in Section 4.4.5 by a consideration
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of the special case where p is a simple non-compact Lie algebra, in which case
Theorem 4.3.12 is available. This leads to the following:

Theorem 4.4.5. Assume that p is non-compact and simple. Let π be a con-
tinuous projective unitary representation of g ⋊D p. Then π|g factors through
RJVc(C(π))∗K⊗ k.

Theorem 4.4.6. Assume that p is non-compact and simple. Suppose that vl de-
fines a non-trivial irreducible p-representation on V . Let π be a continuous projec-
tive unitary representation of g⋊D p. Let C ⊆ C(π) be a P -invariant convex cone.
Either C is pointed or π|g factors through k.

4.4.1 The second Lie algebra cohomology H2
ct(g⋊D p,R).

We next determine suitable representatives of classes in the second continuous Lie
algebra cohomology H2

ct(g ⋊D p,R), which classifies the continuous R-central ex-
tensions of g⋊ p =: g♯ up to equivalence. As an intermediate step we first consider
H2

ct(g,R), which is completely understood.

Define ΩkR := R ⊗
∧k

V ∗, equipped with projective limit topology obtained from

ΩkR = lim←−n Ω
k
Rn

, where ΩkRn
:= Rn⊗

∧k
V ∗. This makes ΩkR into a Fréchet space. In

particular Ω0
R = R. Since J∞

0 (Ωk(V )) ∼= ΩkR, we can define a continuous differential
d : ΩkR → Ωk+1

R by dj∞0 α := j∞0 dα ∈ J∞
0 (Ωn+1(V )) ∼= Ωk+1

R , which is indeed well-
defined. Choosing a basis (eµ)

d
µ=1 of V with dual basis (dxµ)

d
µ=1 of V ∗, the above

differential d is on R given by df =
∑
µ(∂µf)⊗ dxµ for f ∈ R.

Lemma 4.4.7. Let E be a topological R-module and let D : R→ E be a continuous
derivation. Then there exists a unique continuous R-linear map D : Ω1

R → E such
that D = D ◦ d.

Proof. Let R[V ∗] denote the ring of polynomial functions on V . As R[V ∗] ⊆ R, E is
also a R[V ∗]-module and D|R[V ∗] : R[V ∗]→ E is a derivation. Using the universal

property of the Kähler differential forms Ω1
R[V ∗]

∼= R[V ∗] ⊗ V ∗, there is a unique

R[V ∗]-linear map D : Ω1
R[V ∗] → E such that D ◦ d

∣∣
R[V ∗]

= D|R[V ∗]. As Ω1
R[V ∗] is

dense in Ω1
R, it remains to extend D continuously to the Fréchet space Ω1

R. Let
α ∈ Ω1

R and let (αn)n∈N be a sequence in Ω1
R[V ∗] s.t. αn → α in Ω1

R. We show that

Dα := limn→∞Dαn exists and is independent of the approximating sequence (αn).

Choose a basis (dxµ)
d
µ=1 of V

∗. Write αn =
∑d
µ=1 f

(n)
µ dxµ and α =

∑d
µ=1 fµdxµ for

some unique f
(n)
µ ∈ R[V ∗] and fµ ∈ R. Then f (n)µ → fµ in R for every µ and hence

limn→∞Dαn =
∑d
µ=1 limn→∞ f

(n)
µ Dxµ =

∑d
µ=1 fµDxµ, which is independent of

the approximating sequence (αn). It follows that D extends to a continuous R-
linear map D : Ω1

R → E, which satisfies D ◦ d = D by construction. It is unique
with these properties because its restriction to the dense subspace R[V ∗] ⊆ R is
so.
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Remark 4.4.8. Lemma 4.4.7 entails that d : R → Ω1
R is the universal differential

module R in the category of complete locally convex R-modules, in the sense of
[Mai02, Thm. 6]

Proposition 4.4.9. Any class [ω] ∈ H2
ct(g,R) has a unique representative of the

form ω(ξ, η) = λ(κ(ξ, dη)), where λ ∈ Ω1
R
∗
is closed and continuous functional on

Ω1
R and κ is the Killing form on k. (Closed meaning that λ(dR) = 0.) Conversely,

any such λ defines a 2-cocycle representing some non-zero class in H2
ct(g,R). Con-

sequently, the center of the universal central extension of g is (Ω1
R/dR).

Proof. This is a special case of [Mai02, Theorem 16], seeing as g = R ⊗ k, where
R is a unital, associative and commutative Fréchet algebra and k is a simple Lie
algebra.

Lemma 4.4.10. Let ω be an extension of the 2-cocycle λ(κ(ξ, dη)) on g to a 2-
cocycle on g♯ = g⋊ p. Then λ is p-invariant in the sense that λ(Lv(p)Ω

1
R) = 0 for

every p ∈ p.

Proof. Take ξ = f ⊗ X and η = g ⊗ X for f, g ∈ R and 0 ̸= X ∈ k. Notice that
[ξ, η] = 0 in R⊗ k. Using the cocycle identity, this implies

ω(D(p)ξ, η) + ω(ξ,D(p)η) = ω(D(p), [ξ, η]) = 0

ω([σ(p), ξ], η) + ω(ξ, [σ(p), η]) = ω(σ(p), [ξ, η]) = 0.

Using D(p)ξ = −Lv(p)ξ + [σ(p), ξ] it follows that

0 = ω(Lv(p)ξ, η) + ω(ξ,Lv(p)η) = λ(Lv(p)fdg)κ(X,X).

As κ(X,X) ̸= 0 and RdR = Ω1
R, this shows the claim.

Lemma 4.4.11. Let ω : g♯ × g♯ → R be a continuous 2-cocycle on g♯ = g ⋊D p.
Then there exists n ∈ N and a 2-cocycle ωn on g♯n such that ω(ξ, η) = ωn(j

nξ, jnη)
for all ξ, η ∈ g♯.

Proof. Let ω : g♯ × g♯ → R be a continuous 2-cocycle on g♯. Choose norms ∥ − ∥n
on the finite-dimensional Lie algebras g♯n s.t. the quotient maps jn : g♯m → g♯n
are contractive for any n,m ∈ N with n ≤ m. The topology on g♯ = lim←− g♯n is

specified by the seminorms ξ 7→ ∥jnξ∥n for n ∈ N and ξ ∈ g♯. As ω is continuous
and the maps g♯m → g♯n are contractive for n ≤ m, there exist n ∈ N such that
|ω(ξ, η)| ≤ ∥jnξ∥n∥jnη∥n for all ξ, η ∈ g♯ (using e.g. [Tre67, Prop. 43.1 and Prop.
43.4]). As jn : g♯ → g♯n is surjective, it follows that ω(ξ, η) = ωn(j

nξ, jnη) for a
unique 2-cocycle ωn on g♯n.

4.4.2 Factorization through finite jets

In the context of smooth projective unitary representations ρ of the Lie group
G♯, it is no loss of generality to consider the case where ρ factors through the
finite-dimensional Lie group G♯n for some n ∈ N:
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Theorem 4.4.12. Let ρ be a smooth projective unitary representation of G♯ with

lift ρ :
◦
G → U(Hρ) for some central T-extension

◦
G of G♯. Then ρ decomposes as

a (possibly uncountable) direct sum ρ =
⊕

i∈I ρi s.t. for every i ∈ I there exists
n ∈ N s.t. the projective unitary representations ρi associated to ρi factors through
G♯n. In particular, if ρ is irreducible then it factors through G♯n for some n ∈ N.

Proof. Define

N ♯
m := ker

(
jm : G♯ → G♯m

)
and

n♯m := ker

(
jm : g♯ → g♯m

)
for any m ∈ N≥0, so that G♯m

∼= G♯/N ♯
m. Notice that N ♯

m ⊆ N ♯
n whenever n ≤ m.

Since ρ is a smooth projective representation, it follows from [JN19, Thm. 4.3] that
◦
G is a Lie group. It is moreover regular by [Nee06, Thm. V.I.8], because both

G♯ and T are so. Let
◦
g := Lie(

◦
G). Then

◦
g is a central R-extension of g♯ in the

category of locally convex Lie algebras. Let the continuous 2-cocycle ω : g♯×g♯ → R
represent the corresponding class in H2

ct(g
♯,R). By Lemma 4.4.11, there is some

n ∈ N such that for all ξ ∈ g♯ we have jnξ = 0 =⇒ ω(ξ, η) = 0 for all η ∈ g♯. Let
◦
Nn be the closed normal subgroup of

◦
G covering N ♯

n and let
◦
nn be its Lie algebra.

Then
◦
Nn is a central T-extension of N ♯

n integrating
◦
nn. Since ω|n♯

n×n♯
n
= 0, the

central R-extension ◦
nn is trivial. Hence

◦
nn ∼= R⊕ n♯n as central R-extensions of n♯n.

As N ♯
n is regular and 1-connected, it follows from [Nee06, Thm. III.1.5] that there

is a commutative diagram

R R×N ♯
n N ♯

n

T
◦
Nn N ♯

n

e2πi • ϕ̃ id

of locally convex regular Lie groups. Observe that ϕ̃ is surjective and that ker ϕ̃ = Z.
Thus

◦
Nn ∼= T × N ♯

n as central T-extension of N ♯
n. Let ϕ : T × N ♯

n →
◦
N realize

the isomorphism. For any integer m ≥ n, let Nm := ϕ({1} × N ♯
m) ⊆

◦
Nn ⊆

◦
G,

which is a closed normal subgroup of
◦
G isomorphic to and covering N ♯

m. Then

N := {Nm}m≥n is a filter basis of (decreasing) closed normal subgroups of
◦
G

satisfying lim−→N = {1}, in the sense that for any 1-neighborhood U of
◦
G there exists

m ≥ n such that Nm ⊆ U . Indeed, since G♯ = lim←−mG
♯
m carries the projective limit

topology and
◦
G is a locally trivial principal T-bundle over G♯ [JN19, Thm. 4.3],

it follows that any 1-neighborhood U ⊆
◦
G contains ϕ(I × N ♯

m) for large enough
m and some open 1-neighborhood I ⊆ T. It now follows from [Nee10a, Thm.12.2]
that ρ decomposes as a possibly uncountable direct sum ρ ∼=

⊕
i∈I ρi such that

for every i ∈ I there exists some m ≥ n with ρi(Nm) = {1}, which implies that
ρi(N

♯
m) = {1}.
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Theorem 4.4.12 gives us access to techniques that are available for finite-dimensional
Lie groups, and in particular to Corollary 2.5.4. This can be used to prove Theo-
rem 4.4.1.

Theorem 4.4.1. Let ρ be a smooth projective unitary representation of G ⋊α P
which is of p.e. at p ∈ p. Assume that Spec(adσ0(p)) ∩ Spec(vl(p)) = ∅. Then
ρ factors through J2

0 (V,K) ⋊α P . Moreover the image of −Lvl(p) + adσ0(p) in
P 2(V )⊗ k ⊆ J2

0 (V,K) is contained in ker ρ.

To prove Theorem 4.4.1, it suffices by Theorem 4.4.12 to consider the case where
ρ factors through the finite-dimensional Lie group G♯k for some k ∈ N, which

we thus assume. Write a for the ideal in g♯k generated by p ∈ p. Let an ⊆ a
denote the maximal nilpotent ideal in a. According to Corollary 2.5.4 we have
[a, [an, an]] ⊆ ker dρ. Recall that Ik := I/Ik+1.

Lemma 4.4.13. Suppose that V ∗ ⊗ k ⊆ j1an. Then Ik ⊗ k ⊆ an.

Proof. By assumption V ∗ ⊗ k ⊆ an + I2k ⊗ k. As k is perfect it follows that

I l+1
k ⊗ k = [V ∗ ⊗ k, I lk ⊗ k] ⊆ an + [I2k ⊗ k, I lk ⊗ k] = an + I l+2

k ⊗ k, ∀l ∈ N.

Thus it follows by induction that V ∗ ⊗ k ⊆ an + I l+1
k ⊗ k for all l ∈ N. As⋂

l(an + I l+1
k ⊗ k) = an, it follows that V

∗ ⊗ k ⊆ an and hence Ik ⊗ k ⊆ an.

Proof of Theorem 4.4.1. We may assume that ρ factors through G♯k for some k ∈ N.
It suffices to show that dρ factors through g♯2 and that the image of −Lvl(p) +
adσ0(p) in P 2(V ) ⊗ k ⊆ g2 is contained in ker dρ. By Corollary 2.5.4 we know

that
[
a, [an, an]

]
⊆ ker dρ. Moreover I3k ⊗ k = [Ik ⊗ k, [Ik ⊗ k, Ik ⊗ k]], because k is

perfect. To see that dρ factors through g♯2 it thus suffices to show that Ik⊗ k ⊆ an.
By Lemma 4.4.13 it is further sufficient to show that V ∗ ⊗ k ⊆ j1(an). Write
D1(p) := −Lvl(p) + [σ0(p),−]. Notice that j1(D(p)ξ) = D1(p)ξ for ξ ∈ V ∗ ⊗ k.
The assumption Spec(vl(p))∩Spec(adσ0(p)) = ∅ implies that D1(p) is invertible on
V ∗⊗k. Thus if η ∈ V ∗⊗k is arbitrary, there exists ξ ∈ V ∗⊗k such that η = D1(p)ξ.
Then

η = D1(p)ξ = j1(D(p)ξ) = j1([p, ξ]) ∈ j1(an).

Thus V ∗⊗k ⊆ j1(an). We obtain that Ik⊗k ⊆ an and I3k⊗k ⊆ ker dρ, so dρ factors

through g♯2. We may thus assume that k = 2. We then obtain

D1(p)(P
2(V )⊗ k) = D(p)(I2k ⊗ k) = [p, [Ik ⊗ k, Ik ⊗ k]] ⊆ [a, [an, an] ⊆ ker dρ.

4.4.3 The case where p = R

We proceed with the study of projective unitary representations π of g♯ = g⋊D p
which are of generalized positive energy. We first specialize to the case where
p = R, aiming to consider its consequences for the general case afterwards.

As p = R, we may as well identify v with v(1) ∈ XI , D with D(1) and σ with
σ(1) ∈ g. Recall that the derivation D is given by D = −Lv + [σ,−]. Write
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v = vl + vho, where vl := j1v ∈ gl(V ) is the linearization of v at 0 ∈ V and where
vho ∈ XI2 . Let vl = vl,s + vl,n denote the Jordan decomposition of vl over C. We
write V C

c for the span of the eigenspaces of vl whose corresponding eigenvalue has
zero real part. Set Vc := V C

c ∩ V . Write d := (0, 1) ∈ g♯ = g⋊D R. Let V ⊥
c ⊆ V ∗

denote the annihilator of Vc in V
∗, so V ⊥

c
∼= (V/Vc)

∗.

Theorem 4.4.14. Let t ⊆ k be a maximal Abelian subalgebra. Assume that σ ∈
R ⊗ t ⊆ g and [vl,s,vho] = 0 in XI . Let π be a continuous projective unitary
representation of g♯ on the pre-Hilbert space D. Assume that π is of g.p.e. at
d ∈ g ⋊D Rd. Then RV ⊥

c ⊆ kerπ. Consequently, π|g factors through RJV ∗
c K ⊗ k.

In particular, if Vc = {0} then π|g factors through k.

Remark 4.4.15. By acting with formal diffeomorphisms if necessary, one may by
Theorem 4.3.7 always bring v into a normal form, in the sense that [vl,s,vho] = 0
in XI . Moreover, Theorem 4.3.13 provides sufficient conditions guaranteeing that
σ is gauge equivalent to some element in R⊗ t.

Proof of Theorem 4.4.14

Let ω be a continuous 2-cocycle on g♯ that represents the class in H2
ct(g

♯,R)
corresponding to the central R-extension of g♯ obtained from π by pulling back
u(D)→ pu(D) along π. In view of Proposition 4.4.9 and Lemma 4.4.10, we may and
do assume that ω satisfies ω(ξ, η) = λ(κ(ξ, dη)) for any ξ, η ∈ g, where λ : ΩR → R
is continuous, p-invariant and closed. We write fX instead of f ⊗ X for f ∈ RC
and X ∈ kC. Let ∆ ⊆ it∗ denote the set of roots of k. Finally, write h := tC ⊆ kC.
Recall from Corollary 3.1.8 that

[Dη, η] = 0 =⇒
(
ω(Dη, η) = 0 ⇐⇒ π(Dη) = 0

)
, ∀η ∈ g. (4.4.1)

Moreover, ω(Dη, η) ≥ 0 whenever [Dη, η] = 0. In the present setting, this yields:

Proposition 4.4.16. Fix f ∈ R. Then π(RLvf ⊗ k) = {0} ⇐⇒ λ(fdLvf) = 0.

Proof. For any H ∈ t, observe that DfH = −LvfH because σ ∈ R ⊗ t, so
[DfH, fH] = −[LvfH, fH] = 0. Using (4.4.1) we obtain that

κ(H,H)λ(Lv(f)df) = 0 ⇐⇒ π(LvfH) = 0, ∀H ∈ t. (4.4.2)

Assume that π(RLvf⊗k) = {0}. Then π(LvfH) = 0 for anyH ∈ t, so λ(Lv(f)df) =
0 by (4.4.2). Conversely, suppose that λ(Lv(f)df) = 0. Then π(LvfH) = 0 for all
H ∈ t, by (4.4.2). Taking the commutator with π(gXα), where g ∈ R, α ∈ ∆ is a
root and Xα ∈ (kC)α is a corresponding root vector, it follows that

π(gLvfXα) = 0 ∀Xα ∈ (kC)α, g ∈ R. (4.4.3)

Take Xα ∈ (kC)α and Y−α ∈ (kC)−α. Write Hα = [Xα, Y−α]. By taking com-
mutators with π(1 ⊗ Y−α) in equation (4.4.3) we find that π(gLvfHα) = 0. As
h =

∑
α[(kC)α, (kC)−α], this shows by linearity together with equation (4.4.3) and

the root space decomposition that π(RLvf ⊗ k) = {0}.

61



Define the quadratic form q(f) := λ(Lv(f)df) = −λ(fdLvf) on R. Let N := ker q
denote its kernel. By Proposition 4.4.16, N generates an ideal J ⊗ k on which π
vanishes, where J := RLvN .

Corollary 4.4.17. Set J := RLvN . Then J ⊗ k ⊆ ker(π).

Together with the fact that λ vanishes on exact forms and is Lv-invariant, this
puts severe restrictions on the representation π and leads to Theorem 4.4.14. Let
us also remark the following:

Lemma 4.4.18. The bilinear form βq(f, g) := λ(Lv(f)dg) on R associated to q is
symmetric, the quadratic form q is positive semi-definite and

N = { f ∈ R : βq(f, g) = 0 ∀g ∈ R } .

Proof. As λ is closed and Lv-invariant, it follows that β is symmetric. To see that
q is positive semi-definite, let f ∈ R and 0 ̸= H ∈ t. Write η := fH and notice that
[Dη, η] = 0. By Corollary 3.1.8 we have −κ(H,H)λ(Lv(f)df) = ω(Dη, η) ≥ 0. As
κ is negative definite on k we obtain that q is positive semi-definite. It follows that
|βq(f, g)|2 ≤ q(f)q(g), which implies N = { f ∈ R : βq(f, g) = 0 ∀g ∈ R }.

The following observation is also noteworthy, although it will not be used:

Lemma 4.4.19. N ⊆ R is a subalgebra.

Proof. Let f, g ∈ N . Then using the Leibniz rule and Proposition 4.4.16 we obtain

π(RLv(fg)⊗ k) ⊆ π(fRLvg ⊗ k) + π(gRLvf ⊗ k) ⊆ {0},

Applying Proposition 4.4.16 once more, we conclude that fg ∈ N .

Lemma 4.4.20. λ ◦ Lvl,s
= 0.

Proof. As λ : Ω1
R → R is continuous, it factors through the finite-dimensional space

Ω1
Rk

= Rk ⊗ V ∗ for some k ∈ N. Notice that both Lvl,n
and Lvho

are nilpotent
on Ω1

Rk
⊗R C, whereas Lvl,s

is semisimple on it. Also [Lvl,s
,Lvl,n

+ Lvho
] = 0

because [vl,s, vho ] = [vl,s,vl,n] = 0. Thus Lv = Lvl,s
+
(
Lvl,n

+Lvho

)
is the Jordan

decomposition of Lv acting on Ω1
Rk
⊗R C. Thus Im(Lvl,s

) ⊆ Im(Lv) when Lvl,s

and Lv are considered as operators on Ω1
Rk
⊗R C. As λ is Lv-invariant, we know

λ ◦ Lv = 0. Thus λ ◦ Lvl,s
= 0.

In particular, λ vanishes on the eigenspaces in Ω1
RC

of Lvl,s
corresponding to non-

zero eigenvalues. We introduce some more notation. Let EC denote the span of
all eigenspaces in RC of Lvl,s

corresponding to eigenvalues with non-zero real part.
Define E := EC ∩R and En := E ∩ In.

Lemma 4.4.21. E ⊆ N .
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Proof. Let µ ∈ Spec(Lvl,s
) with Re(µ) ̸= 0. Set Eµ := ker(Lvl,s

− µI) ⊆ RC.
Suppose first that µ ∈ R. If ψ ∈ Eµ ∩R then because Lv leaves the eigenspaces of
Lvl,s

invariant, the 1-form ψdLvψ is an eigenvector of Lvl,s
with non-zero eigenvalue

2µ. By Lemma 4.4.20 it follows that q(ψ) = 0 and hence ψ ∈ N . Thus Eµ ⊆ N .
Next, suppose that µ is not real. Then also µ is an eigenvalue of Lvl,s

. Write
WC := Eµ ⊕ Eµ and W := WC ∩ R. Take ψ ∈ W arbitrary. Then ψ = η + η
for some η ∈ Eµ (and hence η ∈ Eµ). As µ + µ = 2Re(µ) ̸= 0 and Lv leaves
the eigenspaces of Lvl,s

invariant, each of the 1-forms ηdLvη, ηdLvη, ηdLvη and
ηdLvη are eigenvectors of Lvl,s

with non-zero eigenvalue. Using Lemma 4.4.20 it
follows that q(ψ) = 0 and hence ψ ∈ N . Thus W ⊆ N . As N is a linear subspace,
we have shown E ⊆ N .

Lemma 4.4.22. RE ⊆ RLvE.

Proof. Write J := RLvE. As J is an ideal in R it suffices to show E ⊆ J . We claim
that En ⊆ J +En+1 for every n ∈ N≥0. Indeed, take ψ ∈ En. As Lvl

is invertible
on En (which is true because Lvl

is invertible on every finite-dimensional and Lvl
-

invariant subspace E ∩ P k(V ) ⊆ E), there exists some η ∈ En s.t. Lvl
η = ψ.

Observe that Lvho
E ⊆ E because [Lvl,s

,Lvho
] = 0. Also Lvho

In ⊆ In+1, since
vho ∈ XI2 . Thus Lvho

En ⊆ En+1. In particular Lvho
η ∈ En+1. Then

ψ = Lvl
η = Lvη − Lvho

η ∈ J + En+1,

as required. By induction it follows that E = E0 ⊆ J + En for every n ∈ N. As⋂
n∈N(J + En) = J , this implies E ⊆ J .

Proof of Theorem 4.4.14:
Using Lemma 4.4.21 we obtain E ⊆ N . By Corollary 4.4.17, this implies J ⊗ k ⊆
kerπ, where J = RLvE. By Lemma 4.4.22, we know RE ⊆ J . Notice that
E ∩ V ∗ = V ⊥

c , so in particular RV ⊥
c ⊆ J . Thus RV ⊥

c ⊗ k ⊆ kerπ. Notice that
R/(RV ⊥

c ) ∼= RJV ∗
c K, because V ∗

c = V ∗/V ⊥
c . We conclude that π factors through

the quotient (R⊗ k)/(RV ⊥
c ⊗ k) ∼= (RJV ∗

c K⊗ k).

4.4.4 The case of general p

Let us return to the case where P is a 1-connected finite-dimensional Lie group
with Lie algebra p. Let us recall some of the notation introduced earlier in Sec-
tion 4.4.

Define σ0 := ev0 ◦σ : p → k and let vl = j1v : p → gl(V ) be the linearization of
v at 0 ∈ V . For p ∈ p, the vector fields v(p) splits as v(p) = vl(p) + vho(p) for
some formal vector field vho(p) ∈ XI2 vanishing up to first order at the origin. Let
vl(p) = vl(p)s + vl(p)n be the Jordan decomposition of vl(p) over C. Let V C

c (p)
denote the span in VC of all generalized eigenspaces of vl(p) corresponding to eigen-
values with zero real part. Set Vc(p) := V C

c (p) ∩ V . If C ⊆ p is a subset, define
Vc(C) :=

⋂
p∈C Vc(p). Let Vc(C)

⊥ ⊆ V ∗ denote the annihilator of Vc(C) in V
∗. Let

Σp ⊆ C denote the additive subsemigroup of C generated by Spec(vl(p)). For any
continuous projective unitary representation π of g ⋊D p, let C(π) denote the set
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of all points p ∈ p for which π is of generalized positive energy at p.

We use Theorem 4.4.14 combined with suitable normal form results to prove The-
orem 4.4.3 and Theorem 4.4.4.

Lemma 4.4.23. Let W be a finite-dimensional real vector space and let Wi ⊆ W
be a collection of linear subspaces, where i ∈ I for some indexing set I. Then(⋂

i∈I Wi

)⊥
= Spani∈IW

⊥
i .

Proof. Notice first that
⋂
i∈I W

⊥
i =

[
Spani∈IWi

]⊥
. Applying this observation to

the subspacesW⊥
i ⊆W ∗, we obtain that

⋂
i∈I Wi =

⋂
i∈I(W

⊥
i )⊥ =

[
Spani∈IW

⊥
i

]⊥
,

where we also used that (W⊥
i )⊥ ∼=Wi for any i ∈ I. Taking annihilators, this im-

plies
(⋂

i∈I Wi

)⊥
= Spani∈IW

⊥
i .

Recall that C(π) denotes the set of all points p ∈ p s.t. π is of generalized positive
energy at p.

Theorem 4.4.3. Let π be a continuous projective unitary representation of g⋊D p.
Let C ⊆ C(π). Assume that Spec(adσ0(p)) ∩ Σp = ∅ for all p ∈ C.

Then RVc(C)
⊥ ⊗ k ⊆ kerπ and hence π|g factors through RJVc(C)∗K⊗ k.

Proof. Let p ∈ C. By Theorem 4.3.7, there is a formal vector field who(p) ∈ XI2
satisfying [vl(p)s,who(p)] = 0 s.t. v(p) is formally equivalent to w(p) := vl(p) +
who(p). If h ∈ Aut(R) ⊆ Aut(g) is a formal diffeomorphism s.t. w(p) = h.v(p),
then h leaves the constant part σ0(p) of σ(p) fixed, so ev0(h.σ(p)) = ev0 σ(p) =
σ0(p). Thus, we may assume that [vl(p)s,vho(p)] = 0 and Spec(adσ0(p)) ∩ Σp = ∅.
By acting with gauge transformations, we may by Theorem 4.3.13 further as-
sume that σ ∈ R ⊗ t, where t is a maximal torus containing σ0(p). By Theo-
rem 4.4.14, it follows that RVc(p)

⊥ ⊆ kerπ. The above holds for all p ∈ C, so
Spanp∈CRVc(p)

⊥ ⊆ kerπ. By Lemma 4.4.23 we know Spanp∈C

(
Vc(p)

⊥) = Vc(C)
⊥,

so that R/(Spanp∈CRVc(p)
⊥) ∼= RJVc(C)∗K.

Theorem 4.4.4. Let t ⊆ k be a maximal Abelian subalgebra. Let π be a continuous
projective unitary representation of g♯. Let C ⊆ C(π) and assume that σ(p) ∈ R⊗ t
and [vl(p)s, vho(p) ] = 0 for every p ∈ C. Then RVc(C)

⊥⊗ k ⊆ kerπ and hence π|g
factors through RJVc(C)∗K⊗ k.

Proof. By Theorem 4.4.14 it follows that Spanp∈CRVc(p)
⊥ = RVc(C)

⊥ ⊆ kerπ.

4.4.5 The case where p is simple

Let us consider the special case where p is simple. Let P be a 1-connected Lie
group with Lie(P ) = p. In this case, suitable normal form theorems for v and σ
are available (see Theorem 4.3.10 and Theorem 4.3.12). We consequently know that
v : p→ X opI is always formally equivalent to its linearization vl at 0 ∈ V . Similarly
the vertical twist σ : p→ g is gauge-equivalent to some Lie algebra homomorphism
σ0 : p→ k, by Theorem 4.3.12. In particular, if p is not compact then we may and
do assume that σ = 0 by acting with gauge transformations if necessary, for in that
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case there are no homomorphisms p→ k (because k is compact, see Lemma 4.3.20).
Combined with Theorem 4.4.4 we immediately obtain Theorem 4.4.5 below, where
Vc(C) :=

⋂
p∈C Vc(p) for a subset C ⊆ p. Recall also that C(π) denotes the set of

all points p ∈ p for which π is of generalized positive energy at p.

Theorem 4.4.5. Assume that p is non-compact and simple. Let π be a con-
tinuous projective unitary representation of g ⋊D p. Then π|g factors through
RJVc(C(π))∗K⊗ k.

Let p = k0⊕p0 be a Cartan decomposition of p, so that k0 and p0 are the +1 and −1
eigenspaces of a Cartan-involution θ, respectively [Kna96, cor. 6.18]. Let a0 ⊆ p0
be a maximal Abelian subalgebra of p0. According to the Iwasawa decomposition
[Kna96, Prop. 6.43], p decomposes as p ∼= k0 ⊕ a0 ⊕ n0, where n0 ⊆ p is nilpotent.
For p ∈ p we write p = pe+ph+pn for the corresponding decomposition of p, where
pe ∈ k0, ph ∈ a0 and pn ∈ n0. Then Spec(adpe) ⊆ iR, Spec(adph) ⊆ R and adpn is
nilpotent [Kna96, Lem. 6.45]. Moreover, a0 is contained in a Cartan subalgebra of
p0 [Kna96, cor. 6.47].

Proposition 4.4.24. Suppose that p is simple and that the p-representation vl on
V is non-trivial and irreducible. Let C ⊆ p be an AdP -invariant convex cone and
let Vc(C) :=

⋂
p∈C Vc(p). Assume that C contains some non-zero ph ∈ a0. Then

Vc(C) = {0}.

Proof. Notice first that as P is 1-connected, the p-action vl : p→ gl(V ) integrates
to a continuous representation of P on V . As C is AdP -invariant, the subspace
Vc(C) is P -invariant. Thus either Vc(C) = {0} or Vc(C) = V , so it suffices to
show Vc(C) ̸= V . By assumption ph ̸= 0. In view of Cartan’s unitary trick, see
e.g. [Kna01, V. Prop. 5.3], the image of elements in a0 in any finite-dimensional
representation are semisimple and have real spectrum. Thus Spec(vl(ph)) ⊆ R.
As p is simple and vl is a non-trivial p-representation by assumption, it follows
that vl is injective. As vl(ph) ∈ gl(V ) is semisimple, there exists 0 ̸= v ∈ V s.t.
vl(ph)v = µv for some 0 ̸= µ ∈ R. Thus 0 ̸= v /∈ Vc(C). Hence Vc(C) ̸= V and so
Vc(C) = {0}.

Theorem 4.4.6. Assume that p is non-compact and simple. Suppose that vl de-
fines a non-trivial irreducible p-representation on V . Let π be a continuous projec-
tive unitary representation of g⋊D p. Let C ⊆ C(π) be a P -invariant convex cone.
Either C is pointed or π|g factors through k.

Remark 4.4.25. Notice that if p is simple and C is a closed AdP -invariant convex
cone which is not pointed, then C ∩ −C = p and hence C = p.

Proof of Theorem 4.4.6: The edge e := C ∩ −C of the closure C of C is an ideal in
p. Assume that C is not pointed. Then neither is C. As p is simple, it follows that
e = p and hence C = p. Thus C is a dense convex cone in the finite-dimensional
real vector space p, which implies that C = p. As p is non-compact, it contains
some hyperbolic element. Thus, so does C. By Proposition 4.4.24 it follows that
Vc(C) = {0} and hence Theorem 4.4.5 implies that π factors through k.
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Thus if C is an AdP -invariant convex cone which is not pointed, then g admits no
continuous projective unitary representations which are of g.p.e. at C ⊆ p other
than those which factor through k. On the other hand, we know by [Pan81, cor.
2.3] that if p is simple, then a non-trivial pointed closed and P -invariant convex
cone exists in p if and only if p is of hermitian type, meaning that dim(z(k0)) = 1,
where p = k0 ⊕ p0 is a Cartan decomposition of p and where k0 is the Lie algebra
of a compact Lie group.

Let us shift our attention to positive energy representations, in which case a differ-
ent argument is available.

Lemma 4.4.26. Suppose that P is a non-compact simple connected Lie group. If
(σ,Hσ) is a unitary P -representation that is norm-continuous, then σ is trivial.

Proof. As p is simple, dσ is either injective or trivial. Assume that dσ is not
trivial. Let p = k0 ⊕ a0 ⊕ n0 be the Iwasawa decomposition of p. Take x ∈ a0.
Then adx is semisimple and Spec(adx) ⊆ R. As σ is unitary and dσ is injective,
z 7→ ∥dσ(z)∥B(H) defines a P -invariant norm on p. With respect to this norm,

etadx is an isometry on p for every t ∈ R. As adx is semisimple, it follows that
Spec(adx) ⊆ iR. So Spec(adx) ⊆ R ∩ iR = {0} and hence adx = 0. Since p has
trivial center it follows that x = 0. So a0 = {0} and hence p is compact. But P is
non-compact by assumption. So dσ must be trivial. As P is connected, it follows
that σ is trivial.

Proposition 4.4.27. Suppose that P is a non-compact 1-connected simple Lie
group. Assume that the P -action on V is irreducible and non-trivial. Let ρ be
a continuous projective unitary representation of G which is of positive energy at
C := p. Then ρ|G factors through K.

Proof. By Theorem 4.4.12 it suffices to consider the case where ρ factors through
Gk for some k ∈ N. From Whitehead’s Second Lemma, [Jac79, III.9. Lem. 6], we
know that H2(p,R) = {0}. Using in addition that P is simply connected, it follows
that ρ|P lifts to a continuous unitary representation σ : P → U(Hρ) of P , so that
ρ(p) = [σ(p)] in PU(Hρ) for all p ∈ P . By Lemma 2.5.5, the fact that ρ|P is of p.e.
at C = p implies that σ is norm-continuous. It follows from Lemma 4.4.26 that σ is
trivial. Thus ρ(αp(g)) = ρ(g) for all g ∈ G and p ∈ P . It follows that dρ vanishes
on D(p)g. As p acts irreducibly and non-trivially on V , it follows that the ideal in
g generated by D(p)g is I ⊗ k. Thus I ⊗ k ⊆ ker dρ. This implies that ρ|Gk

factors
through K.

The following provides a simple example of a projective p.e. representation ρ of
G1 ⋊ P s.t. ρ|G1

does not factor through K.

Example 4.4.28. Let P = Mp(2,R) be the double-cover of SL(2,R). Let P act on
V := R2 via the defining action of SL(2,R). We consider a trivial vertical twist, so
that the p-action on g = R⊗k is given by D(p) = −Lv(p). In this case the generator
p0 of rotations generates the unique (up to a sign) pointed, closed and P -invariant
convex cone C in p. Explicitly, v(p0) = y∂x − x∂y. Let us construct a non-trivial
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continuous projective unitary representation of G1 ⋊ P ∼= (V ∗ ⊗ k)⋊ (K × P ) that
is of p.e. at the cone C ⊆ p. Write W := V ∗ ⊗ k.

We begin by specifying a suitable 2-cocycle on V ∗⊗k ⊆ g1. Notice that
(∧2

V
)p ∼=

R is one-dimensional. Let 0 ̸= λ ∈
(∧2

V
)p

and consider it as a p-invariant bilinear

map V ∗ × V ∗ → R. To be consistent with Proposition 4.4.9, let us write λ(fdg)
instead of λ(f, g) for f, g ∈ V ∗. Let x, y ∈ V ∗ be the usual basis of V ∗. Then λ
is fully specified by the number λ(ydx). If λ(ydx) > 0, then the quadratic form
q(v) := λ(Lv(p0)vdv) is positive-definite, because q(ax+ by) = (a2 + b2)λ(ydx) for
a, b ∈ R. Let ω be the unique symplectic form on W satisfying ω(vX,wY ) :=
λ(vdw)κ(X,Y ) for X,Y ∈ k and v, w ∈ V ∗. Then ω(D(p0)ξ, ξ) ≥ 0 for every
ξ ∈ W (recalling that κ is negative definite). Let H(W,ω) be the corresponding
Heisenberg group. Let L± be the ±i-eigenspaces in WC of the complex structure
J := D(p0) on WC, so that WC = L− ⊕ L+. The p-invariance of λ ensures that
J ∗ω = ω. Indeed, extend ω C-bilinearly to WC. As λ is p-invariant, it follows that
ω(J ξ, η) + ω(ξ,J η) = 0 for all ξ, η ∈ WC, which implies that L± ⊆ WC are J -
invariant Lagrangian subspaces for ω. Then J ∗ω = ω follows from J ∗ω(w+, w−) =
ω(iw+,−iw−) = ω(w+, w−) for w± ∈ L±. Notice further that ω(J ξ, ξ) ≥ 0 holds
for all ξ ∈ W , by construction. Equip L+ with the positive definite hermitian
form defined by ⟨v, w⟩L+ := −2iω(v, w) for v, w ∈ L+. For each n ∈ N, equip the
symmetric algebra Sn(L+) with the inner product satisfying

⟨v1 · · · vn, w1 · · ·wn⟩ :=
∑
σ∈Sn

n∏
k=1

⟨vσk
, wk⟩L+

, vk, wk ∈ L+.

Let F := S•(L+) be the Hilbert space completion, where S•(L+) =
⊕∞

n=0 S
n(L+).

The metaplectic representation ρ of H(W,ω) ⋊ Mp(W,ω), with ρ(z) = zI on the
central T component, can be realized on the Fock space F , where Mp(W,ω) denotes
the metaplectic group [Nee00, Thm X.3.3]. Notice that SL(2,R) ↪→ Sp(W,ω)
because λ is p-invariant. By pulling back the metaplectic representation we obtain
a continuous unitary representation of H(W,ω)⋊ P which is of p.e. at C and does
not factor through K.

4.5 Appendix

4.5.1 From germs to jets

Let K → M be locally trivial bundle of Lie groups with typical fiber a finite-
dimensional Lie group G with Lie algebra g. Write K → M for the corresponding
Lie algebra bundle. The following justifies the claim made in Section 4.1 that any
continuous projective unitary representation of Γc(K) which factors through the
germs at a point a ∈ M actually factors through the ∞-jets J∞

a (K) at a ∈ M .
The group Γc(K) is a locally exponential Lie group modeled on the LF-Lie algebra
Γc(K) [JN17, Prop. 2.3].
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Let U ⊆ Rd be an open neighborhood of the origin. Let C∞
flat(U) denote the kernel

of the ∞-jet projection

j∞0 : C∞
c (U)→ J∞

0 (C∞
c (U)) ∼= RJx1, . . . , xdK

at 0 ∈ U . In the following we show known fact that the closure C∞
c (U \ {0}) in

C∞(U) is C∞
flat(U). As a consequence, we deduce that if a continuous projective

unitary representation of the Lie algebra Γc(K) factors through the germs at a point
a ∈ M , then it factors through the ∞-jets J∞

a (K) at a ∈ M . In turn, this implies
a group level-analogue.

If K ⊂ U is a compact set, write C∞
K (U) for the subspace of C∞(U) consist-

ing of functions on U with support in K. Then C∞
K (U) is the projective limit

C∞
K (U) = lim←−n C

n
K(U) of the Banach spaces CnK(U), which we equip with the

norm ∥f∥Cn
K(U) := sup|k|≤n ∥Dαf∥CK(U), where the supremum runs over all multi-

indices k ∈ Nd≥0 with |k| ≤ n. Then C∞
c (U) := lim−→C∞

K (U) is the corresponding
locally convex inductive limit. See e.g. [Rud91, Theorem 6.5] for a description
of this topology. For r > 0, write Br :=

{
x ∈ Rd : ∥x∥ ≤ r

}
for the closed ball

centered at 0 ∈ Rd with radius r.

Lemma 4.5.1. The closure of C∞
c (U \ {0}) in C∞

c (U) is C∞
flat(U).

Proof. As C∞
flat(U) ⊆ C∞

c (U) is closed and C∞
c (U \ {0}) ⊆ C∞

flat(U), it follows

that C∞
c (U \ {0}) ⊆ C∞

flat(U). It remains to show the reverse inclusion. Fix f ∈
C∞

flat(U) ⊆ C∞
c (U). We show f ∈ C∞

c (U \ {0}). Let K0 ⊆ M be a relatively
compact open subset such that supp f ⊆ K0. Set K := K0. We may assume that
0 ∈ K0, for otherwise f ∈ C∞

c (U \ {0}) and we are done. By [Mal67, Lem. I.4.2],
we can find constants Ck > 0 for k ∈ Nd≥0, depending only on k, such that for any

0 < r < 1 with B2r ⊆ K0, there exists a smooth function ψr ∈ C∞(Rd) s.t. ψr ≥ 0,
ψr|Br

= 0, ψr|(Rd\B2r)
= 1 and supx∈Rd |Dkψr(x)| ≤ Ckr

−|k| for every k ∈ Nd≥0.

In particular fψr ∈ C∞
c (U \ {0}) and supp fψr ⊆ K. Moreover observe that

supp(1 − ψr) ⊆ B2r and ∥(1 − ψr)∥Cn
B2r

(Rd) ≲ r−n for some constant depending

on n ∈ N≥0, where we used that 0 < r < 1. On the other hand, suppose that
α ∈ Nd≥0 is a multi-index. Since j∞0 (Dαf) = 0, it follows from Taylor’s Theorem

that ∥Dαf∥C(B2r) ≲ rl for arbitrary l ∈ N≥0, with a constant depending on f , α

and l but not on r. Thus ∥f∥Cn(B2r) ≲ rl for arbitrary n, l ∈ N≥0. In particular
∥f∥Cn(B2r) ≲ rn+1. Combining the previous observations, we obtain that

∥f − fψr∥Cn(K) = ∥f(1− ψr)∥Cn(K) = ∥f(1− ψr)∥Cn(B2r)

≲ ∥f∥Cn(B2r)∥(1− ψr)∥Cn(B2r) ≲ r,

the constants depending only on f and n but not on r. This shows that fψr → f
in C∞

K (U) as r → 0. Thus fψr → f in C∞
c (U). Since ψrf ∈ C∞

c (U \ {0}) for every
r, we conclude that f ∈ C∞

c (U \ {0}).
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If a ∈M , define the spaces of smooth section of K and K which are flat at a ∈M :

Γflat(a)(K) := ker

(
j∞a : Γc(K)→ J∞

a (K)
)
,

Γflat(a)(K) := ker

(
j∞a : Γc(K)→ J∞

a (K)

)
.

Proposition 4.5.2 below clarifies the apparent ambiguity in the topology on J∞
a (K),

for which two candidates are available.

Proposition 4.5.2. Let a ∈M . The projective limit topology on J∞
a (K) := lim←−k J

k(K)

coincides with the quotient topology obtained from J∞
a (K) ∼= Γc(K)/Γflat(a)(K).

Proof. The continuous k-jet projections jka : Γc(K)→ Jka (K) at a ∈ M all descend
to continuous maps Γc(K)/Γflat(a)(K) → Jka (K). By the universal property of the
projective limit, they induce a continuous map Φ : Γc(K)/Γflat(a)(K) → J∞

a (K).
Using Borel’s Lemma [Hör03, Thm. 1.2.6], it is not hard to check that this map is
bijective. It remains to show it is an open map, which follows immediately from the
Open Mapping Theorem [Rud91, cor. 2.12] because Γc(K)/Γflat(a)(K) and J∞

a (K)
are both Fréchet spaces and Φ is bijective and continuous.

Proposition 4.5.3. Let a ∈M .

— The closure of Γc(M \ {a},K) in Γc(M,K) is Γflat(a)(K).

— The closure of Γc(M \ {a},K) in Γc(M,K) is Γflat(a)(K).

Proof. By a partition of unity argument, we may assume that the bundle K→M
is trivial, that M ⊆ Rd is open neighborhood of 0 ∈ Rd and that a = 0. Then
Γc(M,K) ∼= C∞

c (M, k). The claim now follows from Lemma 4.5.1. Notice for the
second assertion that Γflat(a)(M,K) is a locally exponential, being an embedded
closed Lie subgroup of the locally exponential Lie group Γc(M,K). The result is
then immediate from the previous point.

Proposition 4.5.4. Let a ∈M .

1. Let π : Γc(M,K) → L†(D) be a continuous projective unitary representation
on the pre-Hilbert space D. Assume that π vanishes on Γc(M \{a},K). Then
π factors continuously through J∞

a (K).

2. Let ρ : Γc(M,K)→ PU(H) be a continuous projective unitary representation
of Γc(M,K). Assume that ρ vanishes on Γc(M \ {a},K). Then ρ factors
through Γflat(a)(M,K).

Proof. For the first point, notice by continuity that π must also vanish on the clo-
sure of Γc(M \{a},K) in Γc(M,K), which by Proposition 4.5.3 equals Γflat(a)(M,K).
Thus Γc(M,K) factors continuously through the quotient space

J∞
a (K) ∼= Γc(M,K)/Γflat(a)(M,K),

where Proposition 4.5.2 was used. The second point is proven similarly using
Proposition 4.5.3.
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Chapter 5

Central extensions and generalized posi-
tive energy representations of the group of
compactly supported diffeomorphisms

Abstract

We consider the projective unitary representations ρ of the Lie group Diffc(M)
of compactly supported diffeomorphisms of a smooth manifold M that admit
a dense set of smooth rays and satisfy a the generalized positive energy
condition. The latter in particular captures representations that are in a
suitable sense compatible with a KMS state on the von Neumann algebra
generated by ρ. We show that if M is connected and dim(M) > 1, then
any such representation ρ is necessarily trivial on the identity component
Diffc(M)0. As an intermediate step towards this result, we consider the
continuous second Lie algebra cohomology H2

ct(Xc(M),R) of the Lie algebra
of compactly supported vector fields with trivial coefficients, showing in
particular that it is trivial if dim(M) > 1, and comparing it to the second
Gelfand-Fuks cohomology H2

ct(X (M),R).

This chapter is based on [JN23], which is joint work with B. Janssens.

5.1 Introduction

Motivated by the aspiration for a suitable theory of general relativity that is com-
patible with the postulates of quantum physics, we study the extent to which the
classical symmetry group can be implemented as symmetries of a quantum sys-
tem. Classically, the symmetry group of general relativity contains the Lie group
Diffc(M) of compactly supported diffeomorphisms of a smooth manifold M , be-
cause the Einstein-Hilbert action is invariant under diffeomorphisms. On the other
hand, the state space of quantum physics is commonly taken to be a projective
Hilbert space. So we are interested in the study of projective unitary representa-
tions of the Lie group Diffc(M).
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Suppose that υ ∈ X (M) is a complete and non-zero vector field on a smooth mani-
foldM with flow h : R→ Diff(M). Let Diffc(M)⋊υR be the semidirect product of
Diffc(M) and R relative to the R-action on Diffc(M) defined by αt(f) := ht◦f◦h−1

t

for t ∈ R and f ∈ Diffc(M). Its Lie algebra is Xc(M)⋊Rυ, where υ acts on Xc(M)
by the derivation [υ,−]. We consider those projective unitary representation of
Diffc(M) ⋊υ R that are of generalized positive energy at υ. The following is our
main result:

Theorem 5.3.2. Suppose that M is connected and that dim(M) > 1. Consider a
complete vector field υ ∈ X (M) \ {0} on M . Let ρ : Diffc(M)⋊υ R→ PU(Hρ) be
a smooth projective unitary representation that is of generalized positive energy at
υ. Then Diffc(M)0 ⊆ ker ρ.

This has the following consequence in the KMS-setting:

Corollary 5.3.3. Suppose that M is connected and that dim(M) > 1. Consider
a complete vector field υ ∈ X (M) \ {0} on M . Let ρ : Diffc(M) ⋊υ R → PU(Hρ)
be a smooth projective unitary representation that is smoothly-KMS at υ relative to
Diffc(M). Assume that the von Neumann algebra ρ(Diffc(M))′′ is a factor. Then
Diffc(M)0 ⊆ ker ρ.

Finally, Theorem 5.3.2 has the following consequence for norm-continuous projec-
tive unitary representations:

Corollary 5.3.4. Suppose that dim(M) > 1. Let ρ : Diffc(M) → PU(Hρ) be a
smooth projective unitary representation that is bounded, i.e., continuous w.r.t. the
norm topology on PU(Hρ). Then Diffc(M)0 ⊆ ker ρ.

It is important to mention that these results naturally lead to asymptotic symmetry
groups, for if G is any Lie group of diffeomorphisms of M containing Diffc(M)0 as
Lie subgroup, then any such projective unitary G-representation necessarily factors
through the quotientG/Diffc(M)0, and is in this sense ‘localized at infinity’. It now
becomes an interesting matter to determine this class of representations for groups
of diffeomorphisms having certain specified behavior at infinity. In particular, one
might wonder whether or not this class of representations, for suitable groups G,
naturally leads to the asymptotic symmetry groups that appear in general relativ-
ity in the context of asymptotically flat spacetimes [Pen64, Ash15, Wal84], such as
the BMS group (Bondi-Metzner-Sachs) [BvdBM62, Sac62, AE18, PS22, AS81], or
extensions thereof [NU62, Ruz20]. In this context, the group G could for example
reflect the freedom in the choice of a conformal completion of an asymptotically
flat spacetime (cf. [Ash15, Def. 1 and section B]). This line of reasoning, for which
Theorem 5.3.2 provides a key first ingredient, constitutes the main motivation of
this chapter.

Although interesting in its own right from a mathematical perspective, one might
wonder about the physical relevance of the generalized positive energy condition,
as it singles out a distinguished vector field υ onM that is to serve as the generator
of time translation, which seems opposed to the spirit of general relativity. Notice
in this regard that the (generalized) positive energy and the KMS conditions are
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invariant under the adjoint action of Diffc(M) on Xc(M) ⋊ Rυ, in the sense that
if ρ satisfies any of these conditions relative to the vector field υ, then it also does
so relative to Adf (υ) := T (f) ◦ υ ◦ f−1 for any f ∈ Diffc(M). So the choice of υ is
only significant up to the action of Diffc(M). In general, these conditions depend
only on the choice of an adjoint orbit (cf. [Nie23a, Lem. 5.9] for the KMS case), so
if ρ extends to a smooth representation of a larger Lie group G⋊ R, the choice of
υ is only significant up to the adjoint action of G.

As an intermediate step towards Theorem 5.3.2, we consider the continuous second
Lie algebra cohomology H2

ct(Xc(M),R) with coefficients in the trivial representa-
tion, where Xc(M) denotes the Lie algebra of compactly supported vector fields
on M , equipped with its natural locally convex LF-topology. The cohomology
H2

ct(Xc(M),R) labels the equivalence classes of continuous central extensions of
Xc(M) by R. Our main result in this regard is Theorem 5.2.1 below:

Theorem 5.2.1. Let M be a smooth manifold.

1. If dim(M) > 1, then H2
ct(Xc(M),R) = {0}.

2. If dim(M) = 1, then H2
ct(Xc(M),R) ∼= H0

dR(M) is the de Rham cohomology
of M in degree 0.

We also consider the relationship between H2
ct(Xc(M),R) and the continuous sec-

ond Lie algebra cohomology H2
ct(X (M),R) of the Lie algebra X (M) of all vec-

tor fields on M , equipped with its natural Fréchet topology. In particular, we
show that the canonical linear map H2

ct(X (M),R) → H2
ct(Xc(M),R) is injec-

tive (Proposition 5.2.11). Combined with Theorem 5.2.1, it follows at once that
H2

ct(X (M),R) = {0} whenever dim(M) > 1.

For M = R we find that H2
ct(Xc(R),R) ∼= R is spanned by the class of the Virasoro

2-cocycle

ψvir(f∂x, g∂x) =

∫
R
f ′′′(x)g(x)dx, f, g ∈ C∞

c (R).

This is analogous to the well-known Virasoro 2-cocycle on X (S1), whose class spans
H2

ct(X (S1),R) [KW09, Prop. 2.3]. It is also noteworthy that H2
ct(X (R),R) = 0,

unlike its compactly supported sibling H2
ct(Xc(R),R) ∼= R (Lemma 5.2.9 and

Corollary 5.2.12). This shows that the cohomology theories H•
ct(Xc(M),R) and

H•
ct(X (M),R) differ for non-compact manifolds.

Let us mention here that the cohomology H•
ct(X (M),R) of the Lie algebra of all

smooth vector fields, also known as Gelfand-Fuks cohomology in reference to au-
thors of the papers [GF68, GF69, GF70b, GF70c], has been extensively studied
[Los98, Gui73, BS77, Hae76]. This is in contrast to its compactly supported sib-
ling. The latter was considered in [Shn76], where a certain spectral sequence is
associated to the cohomology H•

ct(Xc(Rn),R). Some expositions of Gelfand-Fuks
cohomology can be found in [Fuk86, Bot73, Mia22]. In particular, the vanishing of
H2

ct(X (M),R) is well-known for all compact manifolds with dim(M) > 1 ([Mia22,
Thm. 4.13 and Cor. 4.25]). Nevertheless, Theorem 5.2.1 seems to be a new result if
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M is a non-compact manifold. Its proof is moreover quite brief, in contrast to the
more demanding methods commonly employed in Gelfand-Fuks cohomology, and
is therefore of independent interest.

For some further related literature, we mention the paper [Sim23], which fully
characterizes KMS representations of finite-dimensional Lie groups that generate
a factor of type I. Certain projective unitary KMS representations of groups of
U(N)-valued maps on S1 and R were considered in [CH92, CH87, BMT88]. The
unitary representations of the BMS group were studied in [McC72, McC73, MC73,
McC78, Pia77a] (cf. [Pia77b]). Gelfand-Fuks cohomologies with non-trivial coeffi-
cient modules have been considered in [Tsu81, GF70a, BN08b, LO00, AAL04]. In
[JV16], the continuous central R-extensions are classified for the Poisson Lie alge-
bras C∞(M) and C∞

c (M), associated to a connected symplectic manifold (M,ω),
and for the Lie algebra Sp(M,ω) of symplectic vector fields. Related integrability
questions are addressed in [JV19, Viz09] (cf. [NV03] and [DJNV21]).

In Section 5.2, we consider in detail the continuous second Lie algebra cohomol-
ogy H2

ct(Xc(M),R), in particular proving Theorem 5.2.1. We also consider its
relation with the second Gelfand-Fuks cohomology H2

ct(X (M),R). We proceed in
Section 5.3 with the proofs of Theorem 5.3.2 and Corollary 5.3.3.

5.2 The second Lie algebra cohomology H2
ct(Xc(M),R)

In the following, we determine the continuous second Lie algebra cohomology
H2

ct(Xc(M),R) for manifolds of positive dimension. This classification will play
a crucial role in Section 5.3 below. The main results of this section are summarized
in Theorem 5.2.1 below.

Theorem 5.2.1. Let M be a smooth manifold.

1. If dim(M) > 1, then H2
ct(Xc(M),R) = {0}.

2. If dim(M) = 1, then H2
ct(Xc(M),R) ∼= H0

dR(M) is the de Rham cohomology
of M in degree 0.

In Section 5.2.1 and Section 5.2.2, we consider the proof of Theorem 5.2.1 for the
cases dim(M) > 1 and dim(M) = 1 separately. We will see in particular that
H2

ct(Xc(R),R) ∼= R is spanned by the class of the Virasoro cocycle

ψvir(f∂x, g∂x) =

∫
R
f ′′′(x)g(x)dx, ∀f, g ∈ C∞

c (R),

which is analogous to the well-known Virasoro 2-cocycle on X (S1) (cf. [KW09,
Prop. 2.3]). In Section 5.2.3, we clarify the relationship betweenH2

ct(Xc(M),R) and
the second Gelfand-Fuks cohomology H2

ct(X (M),R), in particular showing that the
canonical map H2

ct(X (M),R)→ H2
ct(Xc(M),R) is injective (Proposition 5.2.11). It

then follows from Theorem 5.2.1 that H2
ct(X (M),R) = {0} whenever dim(M) > 1.

We will also show that H2
ct(X (R),R) = {0} (cf. Corollary 5.2.12), contrary to its
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compactly supported counterpart.

We now proceed with the proof of Theorem 5.2.1. After making some general ob-
servations, we will consider the two cases dim(M) > 1 and dim(M) = 1 separately.
In the following, we will make use of the Einstein summation convention, so that
repeated indices are summed over.

Definition 5.2.2. A 2-cochain ψ : Xc(M)×Xc(M)→ R is called diagonal if

supp(v) ∩ supp(w) = ∅ =⇒ ψ(v, w) = 0, ∀v, w ∈ Xc(M).

Lemma 5.2.3. Every 2-cocycle on Xc(M) is diagonal.

Proof. Let v, w ∈ Xc(M) have disjoint support. Then we can find open subsets
U1, U2 ⊆ M with U1 ∩ U2 = ∅ such that supp(v) ⊆ U1 and supp(w) ⊆ U2. Since
the Lie algebra Xc(U1) is perfect ([Ban97, Thm. 1.4.3] or [Jan16, Cor. 1]), there

exist vi1, v
i
2 ∈ Xc(U1) s.t. v =

∑N
i=1[v

i
1, v

i
2]. Since ψ : Xc(M)×Xc(M)→ R satisfies

the cocycle identity

ψ([u, v], w) = ψ([u,w], v) + ψ(u, [v, w]), (5.2.1)

and since w has support disjoint from that of vi1 and vi2, we have

ψ(v, w) =

N∑
i=1

ψ([vi1, v
i
2], w) =

N∑
i=1

c([vi1, w], v
i
2) + c(vi1, [v

i
2, w]) = 0.

If ψ ∈ C2
ct(Xc(M)) is a 2-cochain on Xc(M), then the functional ψ̂(v) : Xc(M)→ R

defined by ψ̂(v)(w) := ψ(v, w) is continuous for any v ∈ Xc(M). The corresponding

linear map ψ̂ : Xc(M) → Xc(M)′ is continuous w.r.t. the strong dual topology on
Xc(M)′. Equation (5.2.1) is moreover equivalent to the cocycle equation

ψ̂([v, w]) = v · ψ̂(w)− w · ψ̂(v) (5.2.2)

for 1-cochains in the Chevalley-Eilenberg complex C•
ct(Xc(M),Xc(M)′) with coeffi-

cients in the continuous coadjoint representation Xc(M)′, so v · ψ̂(w) = ψ̂([−v, w]).
Thus, if ψ is a 2-cocycle, then ψ̂ is a 1-cocycle in C1

ct(Xc(M),Xc(M)′). If K ⊆ M
is a compact subset, let XK(M) denote the set of smooth vector fields v onM with
supp(v) ⊆ K.

Proposition 5.2.4. Let ψ ∈ C2
ct(Xc(M)) be a 2-cocycle. Then ψ̂ ∈ C1

ct(Xc(M),Xc(M)′)

extends to a continuous 1-cocycle ψ̂ ∈ C1
ct(X (M),Xc(M)′).

Proof. Let Ki be an exhaustion of M by compact subsets. Let v ∈ X (M). Define

ψ̂i(v) ∈ XKi(M)′ by ψ̂i(v)(w) := ψ(fKiv, w) for an arbitrary fKi ∈ C∞
c (M) that

satisfies fKi(x) = 1 for all x in some open neighborhood Ui of Ki. This is indepen-

dent of fKi
by Lemma 5.2.3. The various ψ̂i(v) define an element ψ̂(v) of Xc(M)′,

because Xc(M) is the locally convex inductive limit Xc(M) = lim−→i
XKi

(M) and
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the various ψ̂i(v) are compatible in the sense that ψ̂j(v)
∣∣∣
XKi

(M)
= ψ̂i(v) whenever

Ki ⊆ Kj . The linear map ψ̂ : X (M) → Xc(M)′ obtained in this way clearly ex-

tends the original map ψ̂ : Xc(M)→ Xc(M)′ and because ψ is diagonal, it satisfies
the cocycle identity

ψ̂([v, w]) = v · ψ̂(w)− w · ψ̂(v) (5.2.3)

for the action of X (M) on Xc(M)′ by (v · ϕ)(u) = ϕ([−v, u]). It remains to show

that ψ̂ : X (M)→ Xc(M)′ is continuous w.r.t. the strong dual topology on Xc(M)′.
To see this, observe that Xc(M) = lim−→XKi

(M) is the strict inductive limit of the
Fréchet spaces XKi

(M) (cf. [Rud91, Thm. 6.5]). So any bounded set of Xc(M) is
contained in some XKi

(M). This implies that Xc(M)′ = lim←−i XKi
(M)′ as topo-

logical vector spaces. It therefore suffices to show that the composition of ψ̂ with
the projection Xc(M)′ → XKi(M)′ is continuous. Choosing fKi with support in
the interior of Ki+1, we notice that the latter composition factors through a lin-
ear map XKi+1

(M) → XKi
(M)′ that is continuous because the original 1-cocycle

ψ̂ ∈ C1
ct(Xc(M),Xc(M)′) is so.

Remark 5.2.5. The map ψ̂ : X (M) → Xc(M)′ from Proposition 5.2.4, associ-
ated to the 2-cocycle ψ ∈ C2

ct(Xc(M)), is support decreasing in the sense that

supp(ψ̂(v)) ⊆ supp(v) for any v ∈ X (M), because the original 2-cocycle ψ is diag-

onal (Lemma 5.2.3). This implies by Peetre’s Theorem that ψ̂ : X (M) → Xc(M)′

is a differential operator of locally finite degree [Pee60].

5.2.1 Manifolds M of dimension dim(M) > 1

We now proceed with the proof of Theorem 5.2.1 for manifolds of dimension
dim(M) > 1.

The local setting

We begin with the case where M = Rn for some integer n > 1. This should be
regarded as the local analog of Theorem 5.2.1 for dim(M) > 1. The following is
an adaptation of a result in [JRV23], and we thank Cornelia Vizman and Leonid
Ryvkin for illuminating discussions on this topic. The analogous statement in
Gelfand-Fuks cohomology for n > 1 follows e.g. from [Mia22, Thm. 3.12].

Proposition 5.2.6. Let n > 1 be an integer. Then H2
ct(Xc(Rn),R) = {0}.

Before proceeding with the proof of Proposition 5.2.6, we make some preliminary
observations. The Lie algebra Wn ⊆ X (Rn) of vector fields with polynomial coeffi-
cients is Z-graded, with W k

n being the vector fields with homogeneous polynomial
coefficients of degree k + 1. Since [W k

n ,W
l
n] ⊆ W k+l

n , the constant vector fields
W−1
n decrease the degree by 1. Also, every W k

n is a representation of the Lie alge-
bra W 0

n of linear vector fields, which we identify with gl(n,R) via the isomorphism
gl(n,R)→W 0

n that maps (Aµν )
n
µ,ν=1 to the linear vector field aµνx

ν∂µ with constant

coefficients aµν = −Aµν . Under this identification, we haveW k
n
∼= Sk+1(Rd)∗⊗Rd as

gl(n,R)-representation for every k ∈ N≥0, where S
k+1(Rd)∗ denotes the space of
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homogeneous polynomials on Rn of degree k+1. The Euler vector field E = xµ∂µ
acts on v ∈W k

n by [E, v] = kv.

Lemma 5.2.7. The translation-invariant subspace of Xc(Rn)′ is equivalent to
(Rn)∗ ⊗ ∧n(Rn)∗ as representation of gl(n,R). In particular, the Euler vector
field E ∈W 0

n acts on a translation-invariant ϕ ∈ Xc(Rn)′ by

E · ϕ = (n+ 1)ϕ. (5.2.4)

Proof. The linear vector field aµνx
ν∂µ corresponding to A = (Aµν )

n
µ,ν=1 acts on

ϕ ∈ Xc(Rn)′ according to

(aµνx
ν∂µ · ϕ)(uσ∂σ) = ϕ(−aµν [xν∂µ, uσ∂σ])

= −ϕ(aµνxν(∂µuσ)∂σ) + ϕ(aµσu
σ∂µ)

= −tr(A)ϕ(uσ∂σ) + ϕ(aµσu
σ∂µ) + (∂µ · ϕ)(aµνxνuσ∂σ),

(5.2.5)

where in the last equality we used that

(∂µ · ϕ)(aµνxνuσ∂σ) = −ϕ(aµνuσ∂σ)δνµ − ϕ(aµνxν(∂µuσ)∂σ).

Assume now that ϕ is translation-invariant. Then (∂µ · ϕ)(aµνxνuσ∂σ) = 0 and
ϕ(uσ∂σ) = bσI(u

σ) for some vector b = (bσ)
n
σ=1 ∈ Rn, where I(f) :=

∫
Rn fdx for

f ∈ C∞
c (Rn). It follows using (5.2.5) that

(aµνx
ν∂µ · ϕ)(uσ∂σ) =

(
− Tr(A)bσ + aµσbµ

)
I(uσ) = b′σI(u

σ),

where b′ := −Tr(AT )b − AT b. This corresponds to the natural action of gl(n,R)
on (Rn)∗ ⊗ ∧n(Rn)∗ under the isomorphism gl(n,R) ∼=W 0

n specified above, so the
assertion follows.

Proof of Proposition 5.2.6.
Let ψ be a continuous 2-cocycle on Xc(Rn), and let ψ̂ ∈ C1

ct(X (Rn),Xc(Rn)′) be
the corresponding 1-cocycle obtained using Proposition 5.2.4. By Remark 5.2.5,
we can expand ψ̂ into a locally finite sum as

ψ̂(v) =
∑
σ⃗∈Nn

≥0

(
∂|σ⃗|

∂xσ⃗
vµ
)
ϕσ⃗µ, (5.2.6)

where ϕσ⃗µ ∈ Xc(Rn)′. We show for any integer k ≥ −1 that ψ̂ is cohomologous to

a 1-cocycle that vanishes on the subspace W≤k
n of vector fields with polynomial

coefficients of degree at most k + 1.

The case k = −1. The cocycle identity (5.2.3) for constant vector fields v = ∂µ
and w = ∂ν yields

∂µ · ϕ0⃗ν − ∂ν · ϕ0⃗µ = 0. (5.2.7)

We identify Xc(Rn)′ ≃ D′(Rn) ⊗ (Rn)∗ with n copies of the distributions D′(Rn)
by setting

(ζσ ⊗ dxσ)(vµ∂µ) := ζσ(v
σ), for ζσ ∈ D′(Rn) and vµ ∈ C∞

c (Rn).
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The action of ∂µ on Xc(Rn)′ is then simply given by differentiating the components

in D′(Rn), so that for ϕ0⃗ν = ϕ0⃗νσ ⊗ dxσ we have ∂µ · ϕ0⃗ν = ∂µϕ
0⃗
νσ ⊗ dxσ. Indeed, we

compute that

(∂µ · ϕ0⃗ν)(Xτ∂τ ) = ϕ0⃗ν(−[∂µ, Xτ∂τ ]) = ϕ0⃗νσ ⊗ dxσ(−(∂µXτ )∂τ )

= ϕ0⃗νσ(−(∂µXσ)) = (∂µϕ
0⃗
νσ)(X

σ) = (∂µϕ
0⃗
νσ ⊗ dxσ)(Xτ∂τ ).

Equation (5.2.7) therefore yields for each σ that ∂µ · ϕ0⃗νσ − ∂ν · ϕ0⃗µσ = 0 for all
integers 1 ≤ µ, ν ≤ n. With respect to the differential

d : Ωn−pc (Rn)′ → Ωn−(p+1)
c (Rn)′, ⟨dT, α⟩ := (−1)p+1⟨T, dα⟩

on the space of currents (cf. [dR84, III§11], this means precisely that the current

cσ := ϕ0⃗µσdx
µ ∈ Ωn−1

c (Rn)′ is closed, because

dcσ =
∑

1≤µ<ν≤n

(∂µ · ϕ0⃗νσ − ∂ν · ϕ0⃗µσ)dxµ ∧ dxν = 0.

(Identifying D′(Rn) ∼= Ωnc (Rn)′ using the volume form dx1 ∧ · · · ∧ dxn on Rn,
for any T ∈ D′(Rn) and α ∈ Ωp(Rn), we interpret Tα as element of Ωn−pc (Rn)′
via the pairing ⟨Tα, β⟩ := T (α ∧ β) for β ∈ Ωn−pc (Rn), cf. [dR84, p. 36].) By the
Poincaré Lemma for currents [dR84, IV§19], it follows that there exist distributions

ησ ∈ D′(Rn) with ∂µησ = ϕ0⃗µσ for all integers 1 ≤ µ, σ ≤ n. The 1-coboundary

dg(ησ ⊗ dxσ) in C1
ct(X (Rn),Xc(Rn)′) thus agrees with ψ̂ on ∂µ ∈W−1

n :

dg(ησ ⊗ dxσ)(∂µ) = ∂µ · (ησ ⊗ dxσ) = ∂µησ ⊗ dxσ = ϕ0⃗µσ ⊗ dxσ = ϕ0⃗µ = ψ̂(∂µ)

Replacing ψ̂ by the 1-cocycle ψ̂ − dg(ησ ⊗ dxσ), we assume from now on that ψ̂
vanishes on W−1

n .

The case 0 ≤ k ≤ n. Suppose that ψ̂ vanishes on W
≤(k−1)
n . Let v ∈ W k

n . Since

[∂µ, v] ∈ W k−1
n , the cocycle identity (5.2.3) yields ∂µ · ψ̂(v) = 0 for all µ, so that

ψ̂(v) is translation invariant. So E · ψ̂(v) = (n + 1)ψ̂(v), in view of Lemma 5.2.7.

From the cocycle identity ψ̂([E, v]) = E · ψ̂(v)− v · ψ̂(E), we find for any v ∈ W k
n

that
(n+ 1− k)ψ̂(v) = v · ψ̂(E). (5.2.8)

We consider separately the cases k = 0 and 0 < k ≤ n. Suppose that k = 0.
The preceding then shows that ψ̂(v) = 1

n+1v · ψ̂(E) for all v ∈W 0
n . The 0-cochain

η = 1
n+1 ψ̂(E) therefore satisfies (dgη)(v) = ψ̂(v) for any v ∈W 0

n . Since E ∈W 0
n , we

know that ψ̂(E) is translation-invariant, so we also have (dgη)(v) =
1

n+1v ·ψ̂(E) = 0

for v ∈ W−1
n . Replacing ψ̂ by the cohomologous cocycle ψ̂ − dgη if necessary, we

may assume that ψ̂ vanishes on W≤0
n . Suppose next that 0 < k ≤ n. Then

E ∈ W≤(k−1)
n , so ψ̂(E) = 0. Consequently, (5.2.8) implies that ψ̂(v) = 0 for any

v ∈ W k
n and hence ψ̂ vanishes on W≤k

n . Inductively, we thus find that ψ̂ vanishes

on W≤n
n , and that ψ̂(v) is translation invariant for any v ∈Wn+1

n .

77



The case k = n + 1. The cocycle identity (5.2.3) for A ∈ W 0
n and v ∈ Wn+1

n

reads ψ̂([A, v]) = A · ψ̂(v), because ψ̂(A) = 0. Since ψ̂(v) is translation invariant
for any v ∈Wn+1

n , we conclude using Lemma 5.2.7 that the linear map

ψ̂
∣∣∣
Wn+1

n

:Wn+1
n → (Rn)∗ ⊗ ∧n(Rn)∗ ⊆ Xc(Rn)′

is an intertwiner of gl(n,R)-representations. The action of sl(n,R) on ∧n(Rn)∗ is
trivial, and we notice that

Homsl(n,R)
(
Wn+1
n , (Rn)∗

) ∼= Homsl(n,R)
(
Sn+2(Rn)∗, (Rn)∗ ⊗ (Rn)∗

)
= 0,

because (Rn)∗ ⊗ (Rn)∗ ∼= S2(Rn)∗ ⊕
∧2

(Rn)∗ does not contain the irreducible

sl(n,R)-representation on Sn+2(Rn)∗ (cf. [FH91, Prop. 15.15]). So ψ̂(v) = 0 for
any v ∈Wn+1

n .

The case k > n+ 1. Suppose that ψ̂ vanishes on W
≤(k−1)
n for k > n+ 1. Then

(5.2.8) implies that ψ̂(v) = 0 for any v ∈W k
n , so ψ̂ vanishes on W≤k

n . Inductively,

we thus find that ψ̂ vanishes on W≤k
n for any integer k ≥ −1. This implies that all

the coefficients ϕσ⃗µ in equation (5.2.6) are zero, so ψ̂ = 0 and hence ψ = 0.

A local-to-global argument

Having established that H2
ct(Xc(Rn),R) = {0}, we employ a local-to-global argu-

ment to determine H2
ct(Xc(M),R) for general manifolds M with dim(M) > 1.

We let X ′
c denote the presheaf defined by U 7→ Xc(U)′ and the natural restriction

maps. This is in fact an acyclic sheaf by Proposition 5.4.1.

Theorem 5.2.8. Assume that dim(M) > 1. Then H2
ct(Xc(M),R) = {0}.

Proof. Let n := dim(M). The continuous Chevalley-Eilenberg cochains define a
presheaf U 7→ Cmct (Xc(U),R) for anym ∈ N, that we denote by Cmct (Xc). We denote
by Zmct (Xc) ⊆ Cmct (Xc) its sub-presheaf consisting of cocycles. Let U = {Ui : i ∈ S}
be an open cover of M such that every Ui is diffeomorphic to Rn, and consider
the (augmented) double complex Č•(U , C•

ct(Xc)) for the Čech-cohomology with
coefficients in the presheaf C•

ct(Xc). Restricted to cocycles in Chevalley-Eilenberg
degree 2, the left lower portion looks as follows:

0 0 0

0 Z2
ct(Xc(M))

∏
i∈S Z

2
ct(Xc(Ui))

∏
i,j∈S Z

2
ct(Xc(Ui ∩ Uj))

0 C1
ct(Xc(M))

∏
i∈S C

1
ct(Xc(Ui))

∏
i,j∈S C

1
ct(Xc(Ui ∩ Uj))

0 0 0.

δ̌ δ̌

dg

δ̌

dg

δ̌

dg
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The middle column is exact by Proposition 5.2.6, as every Ui ∈ U is diffeomorphic
to Rn, and the column on the right is exact at

∏
i,j∈S C

1
ct(Xc(Ui ∩ Uj)) because

Xc(Ui∩Uj) is perfect for any i, j ∈ S [Ban97, Thm. 1.4.3]. The bottom row is exact
because C1

ct(Xc) = X ′
c is an acyclic sheaf, by Proposition 5.4.1. Lemma 5.2.3 further

guarantees that the map δ̌ : Z2
ct(Xc(M)) →

∏
i∈S C

2
ct(Xc(Ui)) is injective. Indeed,

suppose that ψ(Xc(Ui),Xc(Ui)) = {0} for all i ∈ S. Then ψ(Xc(Ui),Xc(M)) = {0}
for any ψ ∈ C2

ct(Xc(M)) and i ∈ S, because ψ is diagonal. So ψ = 0, by a
partition of unity argument. A straightforward diagram chase now shows that
H2

ct(Xc(M),R) vanishes.

5.2.2 Manifolds M of dimension one

We proceed with the continuous second Lie algebra cohomology H2
ct(Xc(M),R) for

1-dimensional manifolds. In the connected case,M must be diffeomorphic to either
R or S1. It is well-known that H2

ct(X (S1),R) = R is spanned by the class of the
Virasoro cocycle (cf. [KW09, Prop. 2.3]):

ψvir(f∂θ, g∂θ) =

∫
S1

f ′′′(θ)g(θ)dθ, f, g ∈ C∞(S1).

A slight adaptation of the proof of Proposition 5.2.6 allows us to prove the analo-
gous result on the real line:

Lemma 5.2.9. The second Lie algebra cohomology H2
ct(Xc(R),R) is 1-dimensional.

It is spanned by the class of the Virasoro cocycle

ψvir(f∂x, g∂x) =

∫
R
f ′′′(x)g(x)dx, f, g ∈ C∞

c (R). (5.2.9)

Proof. Let us first observe that the cocycle

ψvir(f∂x, g∂x) =

∫
R
f ′′′(x)g(x)dx

is not a coboundary. Indeed, if η ∈ C1
ct(Xc(R),R) is a 1-cochain, then the map

d̂gη : X (R)→ Xc(R)′ obtained using Proposition 5.2.4 is the first-order differential

operator d̂gη(f∂x) = f(∂x · η) + 2f ′η. Indeed, this follows from the calculation

d̂gη(f∂x)(g∂x) = −η([f∂x, g∂x]) = η(f ′g∂x − fg′∂x) = 2η(f ′g∂x)− η((fg)′∂x)
= (2f ′η + f(∂x · η))(g∂x)

for f ∈ C∞(R) and g ∈ C∞
c (R). On the other hand, ψ̂vir is the third-order differen-

tial operator ψ̂vir(f∂x) = f ′′′I, where I ∈ Xc(R)′ is defined by I(f∂x) =
∫
R f(x)dx.

So ψvir can not be a coboundary.

Let ψ be a continuous 2-cocycle. Let ψ̂ ∈ C1
ct(X (R),Xc(R)′) be the correspond-

ing 1-cocycle obtained using Proposition 5.2.4. We show that ψ̂ is cohomologous
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to a 1-cocycle in C1
ct(X (R),Xc(R)′) that vanishes on the subspace W−1

1 = R∂x.
Choose χ ∈ C∞

c (R) with
∫
R χ(x)dx = 1. For any f ∈ C∞

c (R), the smooth func-

tion P (f)(x) :=
∫ x
−∞ f(s) − I(f∂x)χ(s)ds is smooth and compactly supported.

We moreover have P (f ′) = f , because I(f ′∂x) = 0. Observe that the 0-cochain

η ∈ Xc(R)′ = C0
ct(X (R),Xc(R)′) defined by η(f∂x) := ψ̂(∂x)(P (f)∂x) satisfies

ψ̂(∂x) + (dgη)(∂x) = 0, because

(dgη)(∂x)(f∂x) = −η(f ′∂x) = −ψ̂(∂x)(P (f ′)∂x) = −ψ̂(∂x)(f∂x), ∀f ∈ C∞
c (R).

Replacing ψ̂ by ψ̂ + dgη, we assume from now on that ψ̂ vanishes on W−1
1 = R∂x.

Following the case 0 ≤ k ≤ n in the proof of Proposition 5.2.6, we may then
further assume that ψ̂ vanishes on W≤1

1 and that ψ̂(x3∂x) ∈ Xc(R)′ is translation
invariant. The latter implies that ψ̂(x3∂x) = cI for some constant c ∈ R. It follows
that the 1-cocycle ψ̂ − cψ̂vir ∈ C1

ct(X (R),Xc(R)′) vanishes on W
≤2
1 . Following the

case k > n+1 in the proof of Proposition 5.2.6, this implies that ψ̂−cψ̂vir vanishes
on W≤k

1 for any integer k ≥ −1 and therefore that ψ̂ = cψ̂vir. So ψ = cψvir.

We have thus shown that H2
ct(Xc(M),R) ∼= R for any connected 1-dimensional

manifold. Combined with Proposition 5.2.6, the following now completes the proof
of Theorem 5.2.1.

Theorem 5.2.10. Let M be a smooth manifold of dimension 1. Then

H2
ct(Xc(M),R) = H0

dR(M).

Proof. Let {Mα}α∈I be the set of connected components of M , where I is some
countable indexing set. (Here we used thatM is second-countable.) As the support
of a compactly supported vector field on M intersects only finitely many Mα non-
trivially, Xc(M) is isomorphic to the locally convex direct sum

Xc(M) ∼=
⊕
α∈I
Xc(Mα).

So Xc(M)′ ∼=
∏
α∈I Xc(Mα)

′. Furthermore, any 2-cocycle ψ : Xc(M)×Xc(M)→ R
is diagonal by Lemma 5.2.3, and therefore decomposes as ψ =

∑
α ψα for some 2-

cochains ψα on Xc(Mα). Moreover, ψ is a cocycle, resp. a coboundary, if and only
if every ψα is so. It follows that

H2
ct(Xc(M),R) =

∏
α∈I

H2
ct(Xc(Mα),R) =

∏
α∈I

R ∼= H0
dR(M).

5.2.3 Relation between H2
ct(Xc(M),R) and the second Gelfand-

Fuks cohomology

Finally, let us consider the relationship between H2
ct(Xc(M),R) and the Gelfand-

Fuks cohomology H2
ct(X (M),R). The continuous injection Xc(M) ↪→ X (M) in-

duces a natural morphism C•
ct(X (M),R) → C•

ct(Xc(M),R) of cochain complexes,

80



which descends to a linear map H•
ct(X (M),R) → H•

ct(Xc(M),R) on cohomology.
If ψ ∈ C2

ct(Xc(M),R) is a diagonal 2-cochain, its support supp(ψ) is the set of
points x ∈ M with the property that for any neighborhood U of x, there exist
v, w ∈ Xc(U) with ψ(v, w) ̸= 0. If x /∈ supp(ψ) and U is a neighborhood with
ψ(Xc(U),Xc(U)) = {0}, then ψ(Xc(U),Xc(M)) = {0}, because ψ is diagonal. The
following is a straightforward adaptation of [JV16, Lem. 4.19] to the present setting:

Proposition 5.2.11.

1. A continuous 2-cocycle ψ ∈ C2
ct(Xc(M),R) extends to a continuous 2-cocycle

on X (M) if and only if it has compact support.

2. Assume that the 2-cocycle ψ ∈ C2
ct(Xc(M),R) has compact support and sat-

isfies ψ = dgη for some η ∈ Xc(M)′. Then supp(η) = supp(ψ) and η extends
to a continuous linear map X (M)→ R.

3. The canonical linear map H2
ct(X (M),R)→ H2

ct(Xc(M),R) is injective.

Proof.

1. Assume that ψ has compact support, say supp(ψ) = K. Consider the

1-cocycle ψ̂ ∈ C1
ct(X (M),Xc(M)′) obtained from Proposition 5.2.4. Let

χ ∈ C∞
c (M) satisfy χ|U = 1 for some open neighborhood U of K. De-

fine the bilinear map

ψ̃ : X (M)×X (M)→ R, ψ̃(v, w) := ψ̂(v)(χw),

which extends ψ and is independent of the choice of χ, because ψ has sup-
port K. It is moreover continuous, in view of the continuity of both ψ̂ and
the map X (M) → Xc(M), w 7→ χw. We next show that ψ̃ is a 2-cocycle.

Observe that ψ̂(u)(χ[v, w]) = ψ̂(u)([v, χw]) for any u, v, w ∈ X (M), because

Lv(χ)w ∈ Xc(M) vanishes on a neighborhood ofK, so that ψ̂(u)(Lv(χ)w) = 0.
Using (5.2.3), we therefore have

ψ̃([u, v], w) + ψ̃(v, [u,w]) = ψ̂([u, v])(χw) + ψ̂(v)(χ[u,w])

= ψ̂(u)([v, χw])− ψ̂(v)([u, χw]) + ψ̂(v)(χ[u,w])

= ψ̂(u)(χ[v, w])

= ψ̃(u, [v, w]).

Conversely, assume that ψ extends to a continuous 2-cocycle on X (M), again
denoted ψ. Suppose that K := supp(ψ) is not compact. Then we can find
a countably infinite sequence (xi)i∈N in K of distinct points which has no
convergent subsequence. Let {Ui}i∈N be a collection of pairwise disjoint open
subsets of M so that xi ∈ Ui for all i ∈ N. Since xi ∈ K, there exist for every
i ∈ N some vi, wi ∈ Xc(Ui) satisfying ψ(vi, wi) = 1. Notice that v :=

∑∞
i=1 vi

and w :=
∑∞
i=1 wi are well-defined smooth vector fields on M , because the
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open sets Ui are pairwise disjoint. Since ψ ∈ C2
ct(X (M),R) is diagonal and

continuous, we obtain the evident contradiction that

lim
N→∞

N = lim
N→∞

N∑
i=1

ψ(vi, wi) = lim
N→∞

ψ

(
N∑
i=1

vi,

N∑
i=1

wi

)
= ψ(v, w) <∞.

So supp(ψ) must be compact.

2. Let x /∈ supp(ψ). Then there exists an open neighborhood U of x s.t.
ψ(Xc(U),Xc(U)) = {0}. Let u ∈ Xc(U). Since Xc(U) is perfect ([Ban97,
Thm. 1.4.3]), there exist N ∈ N and vi, wi ∈ Xc(U) for i ∈ {1, . . . , N} s.t.

u =
∑N
i=1[vi, wi]. Then η(u) =

∑N
i=1 η([vi, wi]) = −

∑N
i=1 ψ(vi, wi) = 0. So

η vanishes on Xc(U). So x /∈ supp(η). It follows that supp(η) ⊆ supp(ψ).
Conversely, suppose that x /∈ supp(η). Then there exists an open neigh-
borhood U of x such that η(Xc(U)) = {0}. Then ψ = dgη implies that
ψ(Xc(U),Xc(U)) = {0} as well. So x /∈ supp(ψ). So supp(η) = supp(ψ) =:
K. As η has compact support K, it admits a continuous linear extension η̃
to X (M) by setting η̃(v) := η(χv) for any χ ∈ C∞

c (M) satisfying χ|V = 1 for
some open neighborhood V of K. Notice that η̃ is indeed well-defined and
continuous.

3. Let ψ ∈ C2
ct(X (M),R) be a 2-cocycle and assume that η ∈ Xc(M)′ satisfies

ψ(v, w) = −η([v, w]) for all v, w ∈ Xc(M). The previous items ensure that η
extends to a continuous functional on X (M). As Xc(M) is dense in X (M)
and ψ is continuous on X (M) × X (M), it follows that ψ(v, w) = −η([v, w])
for all v, w ∈ X (M). So ψ = dgη. Hence [ψ] = 0 in H2

ct(X (M),R).

Proposition 5.2.11, Theorem 5.2.8 and Lemma 5.2.9 have the following consequence
for Gelfand-Fuks cohomology:

Corollary 5.2.12.

1. Assume that dim(M) > 1. Then H2
ct(X (M),R) = 0.

2. Assume that dim(M) = 1. Then H2
ct(X (M),R) = H0

dR,c(M) is the compactly
supported de Rham cohomology of M in degree 0. In particular, we have
H2

ct(X (R),R) = 0.

Proof.

1. Assume that dim(M) > 1. Then H2
ct(Xc(M),R) = 0 by Theorem 5.2.1.

Since linear map H2
ct(X (M),R) → H2

ct(Xc(M),R) is injective, by Proposi-
tion 5.2.11, it follows that H2

ct(X (M),R) = 0.

2. By reasoning similar to that in the proof of Theorem 5.2.10, it suffices
to consider the case where M is connected, so that M is either S1 or R.
Since H2

ct(X (S1),R) ∼= R, it remains to show that H2
ct(X (R),R) = 0. By

Lemma 5.2.9 we know that H2
ct(Xc(R),R) ∼= R, which by Proposition 5.2.11

implies that H2
ct(X (R),R) is at most one-dimensional. The non-trivial class
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in H2
ct(Xc(R),R) is spanned by the cocycle ψvir, defined by (5.2.9). Assume

that ψ ∈ C2
ct(X (R),R) is a 2-cocycle on X (R) whose restriction r(ψ) to

Xc(M) × Xc(M) is cohomologous to ψvir. Then r(ψ) = ψvir + dgη for some
η ∈ Xc(R)′. By Proposition 5.2.11, we know that r(ψ) has compact support.

Consider the associated map r̂(ψ) : X (R)→ Xc(R)′. We saw in the proof of

Lemma 5.2.9 that d̂gη(f∂x) = f(∂x · η) + 2f ′η, and that ψ̂vir(f∂x) = f ′′′I,

where I(f∂x) :=
∫
R f(x)dx. So r̂(ψ) is the differential operator given by

r̂(ψ)(f∂x) = f ′′′I + f(∂x · η) + 2f ′η. (5.2.10)

Since r̂(ψ)(f∂x) ∈ Xc(R)′ has compact support for any f ∈ C∞(R), we
obtain by taking f = 1 in (5.2.10) that ∂x ·η has compact support. Choosing
subsequently f(x) = x in (5.2.10), it follows that η has compact support, and

hence so does ψ̂vir = r̂(ψ)− d̂gη. But the support of ψ̂vir is all of R, which is
not compact, a clear contradiction.

5.3 Generalized positive energy representations

Let M be a smooth manifold of dimension dim(M) > 1. If υ ∈ X (M) is a com-
plete vector field on M with flow h : R→ Diff(M), we write Diffc(M)⋊υ R for the
semidirect product of Diffc(M) and R relative to the smooth R-action on Diffc(M)
defined by αs(f) = hs ◦ f ◦ h−1

s for s ∈ R and f ∈ Diffc(M). The corresponding
Lie algebra is Xc(M)⋊Rυ, where υ acts on Xc(M) by the derivation Dw := [υ,w].

The fact that H2
ct(Xc(M),R) is trivial for dim(M) > 1 puts severe restrictions on

the class of projective unitary representations of Xc(M)⋊Rυ that are of generalized
positive energy at υ. The following result is the crux of the matter, from which
group-level analogues immediately follow:

Theorem 5.3.1. Suppose that dim(M) > 1. Let π : Xc(M)→ pu(D) be a contin-
uous projective unitary representation of Xc(M) on the complex pre-Hilbert space
D. Let C ⊆ X (M) be a cone of complete vector fields on M , and define the open
set

U :=
⋃
υ∈C
{ p ∈M : υ(p) ̸= 0 } .

Suppose that for every υ ∈ C the representation π extends to a continuous projective
unitary representation of Xc(M) ⋊ Rυ that is of generalized positive energy at υ.
Then Xc(U) ⊆ kerπ.

Before proving Theorem 5.3.1, let us mention some important consequences:

Theorem 5.3.2. Suppose that M is connected and that dim(M) > 1. Consider a
complete vector field υ ∈ X (M) \ {0} on M . Let ρ : Diffc(M)⋊υ R→ PU(Hρ) be
a smooth projective unitary representation that is of generalized positive energy at
υ. Then Diffc(M)0 ⊆ ker ρ.
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Proof. Since the derived representation dρ : Xc(M) ⋊ Rυ → pu(H∞
ρ ) is of gen-

eralized positive energy at υ, it is so at every υ′ in the cone C generated by the
adjoint orbit of υ in Xc(M)⋊Rυ. Since υ is non-zero, there exists some open subset
U0 ⊆M on which υ is non-vanishing. Then Adf (υ) is non-zero on f(U0) for every
f ∈ Diffc(M). Since M is connected, Diffc(M) acts transitively on M (because all
orbit are open, and therefore also closed). Hence

⋃
υ′∈C { p ∈M : υ′(p) ̸= 0 } =M .

We obtain using Theorem 5.3.1 that Xc(M) ⊆ ker dρ. Corollary 5.4.4 now implies
that Diffc(M)0 ⊆ ker ρ.

Corollary 5.3.3. Suppose that M is connected and that dim(M) > 1. Consider
a complete vector field υ ∈ X (M) \ {0} on M . Let ρ : Diffc(M) ⋊υ R → PU(Hρ)
be a smooth projective unitary representation that is smoothly-KMS at υ relative to
Diffc(M). Assume that the von Neumann algebra ρ(Diffc(M))′′ is a factor. Then
Diffc(M)0 ⊆ ker ρ.

Proof. Let ρ : G → U(Hρ) be the lift of ρ, where the Lie group G is a central T-
extension of Diffc(M)⋊υR. LetH ⊆ G be the Lie subgroup covering Diffc(M). Let
h and g denote the Lie algebras of H and G, respectively. Let N := ρ(H)′′ be the
von Neumann algebra generated by ρ(H). As ρ is smoothly-KMS at υ relative to
Diffc(M), there is some ξ ∈ g covering υ s.t. ρ is smoothly-KMS at ξ ∈ g relative
to H. Let ϕ ∈ KMS(ρ, ξ,H)∞ and let ρϕ : H ⋊ R → U(Hϕ) be the associated
unitary representation of H ⋊ R on the GNS-Hilbert space Hϕ. According to
Theorem 3.2.14, the representation ρϕ on Hϕ is smooth and of generalized positive
energy at (0, 1) ∈ h⋊R. It follows from Theorem 5.3.2 that ρϕ(H0) ⊆ TidHϕ

, where
H0 denotes the identity component of H. Because the von Neumann algebra N is
a factor, the GNS-representation N → B(Hϕ) is injective (see e.g. [Nie23a, Rem.
5.3 items 1 and 3]). It follows that ρ(H0) ⊆ TidHρ

. Since H0 covers Diffc(M)0,
this implies that Diffc(M)0 ⊆ ker ρ.

Corollary 5.3.4. Suppose that dim(M) > 1. Let ρ : Diffc(M) → PU(Hρ) be a
smooth projective unitary representation that is bounded, i.e., continuous w.r.t. the
norm topology on PU(Hρ). Then Diffc(M)0 ⊆ ker ρ.

Proof. Let ρ : G → U(Hρ) be the lift of ρ, where G is a central T-extension of
Diffc(M) with Lie algebra g. Let p ∈ M . Take υ ∈ Xc(M) with υ(p) ̸= 0 and let
ξ ∈ g cover υ. Notice that ρ is continuous w.r.t. the norm-topology on U(Hρ), so
that the self-adjoint operator −i d

dt

∣∣
t=0

ρ(expG(tξ)) is bounded. It follows that ρ is
of (generalized) positive energy at υ ∈ Xc(M). Using Theorem 5.3.2, this implies
that υ′ ∈ ker dρ for any υ′ ∈ Xc(M) for which supp(υ′) is contained in the connected
component of p in M . As p ∈ M was arbitrary, we find that Xc(M) ⊆ ker dρ. We
conclude using Corollary 5.4.4 that Diffc(M)0 ⊆ ker ρ.

We now proceed with the proof of Theorem 5.3.1.
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5.3.1 Ideals of the Lie algebra of compactly supported vector
fields

Let M be a smooth manifold. For any x ∈ M , let Ix ⊆ Xc(M) denote the
closed ideal of vector fields that are flat at x. So v ∈ Ix ⇐⇒ j∞x (v) = 0 for
v ∈ Xc(M). The proof of Theorem 5.3.1 uses a particular observation concerning
ideals in Xc(M), namely Proposition 5.3.7 below.

Definition 5.3.5. If J ⊆ Xc(M) is an ideal, define its hull by

h(J) := {x ∈M : v(x) = 0 for all v ∈ J } .

Remark 5.3.6. The set of maximal ideals in Xc(M) is given by {Ix : x ∈ M}
[SP54, Thm. 1] (cf. [Ban97, prop. 7.2.2] or [Jan16, Prop. 1]). Moreover, if x ∈ M
and J ⊆ Xc(M) is an ideal, then x ∈ h(J) if and only if j∞x (v) = 0 for all
v ∈ J . Indeed, if x ∈ h(J), then for any w1, . . . , wm ∈ Xc(M) and v ∈ J we have
Lw1
· · · Lwm

v ∈ J , as J is an ideal, and so
(
Lw1 · · · Lwmv

)
(x) = 0. Consequently

j∞x (v) = 0. We thus see that h(J) = {x ∈ M : J ⊆ Ix} corresponds to the set of
maximal ideals of Xc(M) containing J .

Proposition 5.3.7. Let J ⊆ Xc(M) be an ideal and let x ∈ M . Then either
x ∈ h(J), or there is an open neighborhood U ⊆M of x such that

Xc(U) ⊆ [J,Xc(M)] ⊆ J.

Proof. This is immediate from the proof of [Jan16, Lem. 2.1], which does not
require the ideal J ⊆ Xc(M) to be maximal.

Although Xc(M) is not simple, the following related result does hold true:

Corollary 5.3.8. Assume that M is connected. Suppose that J ⊆ Xc(M) is an
ideal that is stable, in the sense that Adg(J) ⊆ J for all g ∈ Diffc(M). Then either
J = Xc(M) or J = {0}.

Proof. That J is stable implies that its hull h(J) ⊆M is Diffc(M)-invariant. Since
M is connected, Diffc(M) acts transitively on M . It follows that either h(J) = ∅
or h(J) = M . Using a partition of unity argument, Proposition 5.3.7 implies that
either J = Xc(M) or J = {0}.

Remark 5.3.9. Suppose that M is connected. Let ρ : Diffc(M) → PU(Hρ) be
a smooth projective unitary representation. Let dρ : Xc(M) → pu(H∞

ρ ) be its

derived representation. Its kernel J := ker dρ is a closed ideal in Xc(M) that
satisfies Adg(J) ⊆ J for all g ∈ Diffc(M). So dρ is either trivial or injective by
Corollary 5.3.8.
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5.3.2 The proof of Theorem 5.3.1

We now proceed with the proof of Theorem 5.3.1. Let n := dim(M) > 1. We start
with a lemma that concerns the local situation near a regular point of a vector field
υ ∈ C. We thus consider the following setting:

Let I ⊆ R be an open interval containing zero. Let U0 ⊆ Rn−1 be an open subset
that is diffeomorphic to Rn−1. Define U := I × U0, which is then diffeomorphic
to Rn. We consider the locally convex Lie algebra Xc(U) of compactly supported
smooth vector fields on U . We write (t, x1, . . . , xn−1) ∈ Rn for the coordinates on
Rn, and (∂t, ∂x1 , . . . , ∂xn−1) for the corresponding basis of X (Rn) over C∞(Rn).
Notice that the derivation [∂t,−] on Xc(U) does not necessarily integrate to a 1-
parameter group of automorphisms of Xc(U), because the open set U need not be
invariant under the flow of ∂t.

Lemma 5.3.10. Let π : Xc(U)⋊R∂t → pu(D) be a continuous projective unitary
representation on the pre-Hilbert space D. Assume that

[v,Dv] = 0 =⇒ π(Dv) = 0, ∀v ∈ Xc(U). (5.3.1)

Then Xc(U) ⊆ kerπ.

Proof. Let p0 = (t0, x0) ∈ U = I×U0 be arbitrary. Let f ∈ C∞
c (I) and w ∈ Xc(U0)

be s.t. f ′(t0) ̸= 0 and w(x0) ̸= 0. Define v ∈ Xc(U) by v(t, x) := f(t)w(x) for t ∈ I
and x ∈ U0. Observe that Dv(t, x) = f ′(t)w(x). In particular, Dv(p0) ̸= 0 and
[v,Dv](t, x) = f(t)f ′(t)[w,w](x) = 0. It follows using (5.3.1) that Dv ∈ kerπ. Let
J ⊆ Xc(U) be the closed ideal generated by Dv. Since π is a strongly continuous
homomorphism of Lie algebras, we have J ⊆ kerπ. As Dv(p0) ̸= 0, it follows using
Proposition 5.3.7 that Xc(V ) ⊆ J for some open neighborhood V ⊆ U of p0. So
we have Xc(V ) ⊆ kerπ. We have thus shown that any p ∈ U has a neighborhood
V ⊆ U for which Xc(V ) ⊆ kerπ. Consequently, if K ⊆ U is a compact subset,
we can find a finite open cover {U1, . . . , Um} of K with Xc(Uk) ⊆ ker dρ for all
k ∈ {1, . . . ,m}. Using a partition of unity argument, it follows that XK(U) ⊆ ker dρ
for any compact set K ⊆M , so that Xc(M) ⊆ ker dρ.

We now return to the setting of Theorem 5.3.1.

Proof of Theorem 5.3.1:
Let p ∈ U and let υ ∈ V satisfy υ(p) ̸= 0. By assumption, π extends to a continuous
projective unitary representation of Xc(M) ⋊ Rυ that is of generalized positive
energy at υ, again denoted π. Since υ(p) ̸= 0, we can find an open neighborhood
Up ⊆ M of p, an open interval I ⊆ R containing zero, an open subset U0 ⊆ Rn−1

that is diffeomorphic to Rn−1, and a diffeomorphism ϕ : I × U0 → Up such that
ϕ∗([∂t, w]) = [υ, ϕ∗(w)] for all w ∈ Xc(I ×U0) [Lee13, Thm. 9.22]. So ϕ∗ defines an
isomorphism

ϕ∗ : Xc(I × U0)⋊R∂t → Xc(Up)⋊Rυ.

In view of Theorem 5.2.8, we know that H2
ct(Xc(M),R) = 0. As π is of generalized

positive energy at υ, it follows using Corollary 3.1.8 that [w,Dw] = 0 implies
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π(Dw) = 0 for any w ∈ Xc(M). As a consequence, the pull-back of π along the
composition

Xc(I × U0)⋊R∂t
ϕ∗−→ Xc(Up)⋊Rυ ↪→ Xc(M)⋊Rυ

satisfies the conditions of Lemma 5.3.10, from which it subsequently follows that
Xc(Up) ⊆ kerπ. So any p ∈ U has an open neighborhood Up ⊆ M satisfying
Xc(Up) ⊆ kerπ. This implies that Xc(U) ⊆ kerπ.

5.4 Appendix

5.4.1 Sheaves of distributions

Let E → M be a smooth vector bundle over the smooth manifold M . If U ⊆
M is an open subset, we denote by Γc(U,E) the locally convex vector space of
smooth compactly supported sections of E|U → U , equipped with the natural
LF-topology. Let Γc(U,E)′ denote its continuous dual space. It is clear that the
assignment U 7→ Γc(U,E)′ defines a presheaf Γ′

c w.r.t. the natural restriction maps.
In the following, we show that Γ′

c actually defines an acyclic sheaf. Since we are
considering the continuous dual space, we have to slightly extend the usual sheaf-
theoretic arguments (such as [Bre97, §V.1 Prop. 1.6 and 1.10]).

Proposition 5.4.1. Γ′
c is an acyclic sheaf.

Proof. Let {Uα}α∈I be a collection of open subsets ofM and define U :=
⋃
α∈I Uα.

Let {χα}α∈I be a partition of unity subordinate to the open cover {Uα}α∈I of U
[Lee13, Thm. 2.23]. Notice for s ∈ Γc(U,E) that χαs is non-zero for only finitely
many α ∈ I, because { suppχα }α∈I is locally finite. To see that Γ′

c satisfies
the locality axiom, suppose that λ ∈ Γc(U,E)′ satisfies λα := λ|Γc(Uα,E) = 0 for

all α ∈ I. Then λ(s) =
∑
α∈I λα(χαs) = 0 for any s ∈ Γc(U,E), so λ = 0.

For the gluing axiom, take λα ∈ Γc(Uα, E)′ for all α ∈ I and suppose for any
α, β ∈ I that the restrictions of λα and λβ to Γc(Uα ∩ Uβ , E) coincide whenever
Uα ∩ Uβ ̸= 0. Define λ ∈ Γc(U,E)′ by λ(s) :=

∑
α∈I λα(χαs) for s ∈ Γc(U,E).

Notice that λ does indeed define a continuous functional on the LF-space Γc(U,E)
because { suppχα }α∈I is locally finite. If s ∈ Γc(Uβ , E) for some β ∈ I, then
χαs ∈ Γc(Uα ∩ Uβ , E) and consequently λα(χαs) = λβ(χαs) for any α ∈ I. Hence
λ(s) =

∑
α λα(χαs) =

∑
α λβ(χαs) = λβ(s). So λ|Γc(Uβ ,E) = λβ for any β ∈ I. It

follows that Γ′
c is a sheaf. We show next that it is fine (cf. [Wel80, Def. II.3.3]).

Assume henceforth that U = M . Define for any open set V ⊆ M and α ∈ I
the linear map ηα : Γc(V,E)′ → Γc(V,E)′ by ηα(λ)(s) := λ(χαs). This defines
a morphism ηα : Γ′

c → Γ′
c of sheaves. Since

∑
α ηα(λ)(s) =

∑
α λ(χαs) = λ(s)

for any s ∈ Γc(V,E)′, the sum being finite, we have
∑
α ηα = 1. Additionally,

ηα vanishes on the stalk of the sheaf Γ′
c at x for any x in the open neighborhood

M \ suppχα of M \ Uα. So Γ′
c is fine and therefore acyclic [Wel80, II. Prop. 3.5

and Thm. 3.11].
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5.4.2 Unitary equivalence of projective representations

Let G be a locally convex Lie group with Lie algebra g and exponential map
expG : g→ G.

Definition 5.4.2. Suppose for k ∈ {1, 2} that Dk is a complex pre-Hilbert space,
and let πk : g→ pu(Dk) be a projective unitary representation of g on Dk. We say
that π1 and π2 are unitarily equivalent if there is a unitary operator U : D1 → D2

such that π2(ξ) = U π1(ξ)U
−1

for all ξ ∈ g, where U : P(D1) → P(D2) is the
descent of U to the projective spaces. In this case, we write π1

∼= π2.

The following is the projective analogue of [JN19, Prop. 3.4]:

Proposition 5.4.3. Assume that G is connected. For k ∈ {1, 2}, let (ρk,Hρk)
be a smooth projective unitary representation of G with derived representation
dρk : g → pu(H∞

ρk
) on H∞

ρk
. Then

ρ1
∼= ρ2 ⇐⇒ dρ1

∼= dρ2.

Proof. Passing to the universal cover of G, which is a Lie group by [Nee06, Cor.
II.2.4], we may and do assume that G is 1-connected. Let U : Hρ1 → Hρ2 be a
unitary map, and let U : P(Hρ1)→ P(Hρ2) be its descent to the projective spaces.

Assume first that Uρ1(g)U
−1

= ρ2(g) for all g ∈ G. Then by [JN19, Cor. 4.5], we

know that ρ1 and ρ2 correspond to the same central T-extension
◦
G of G, up to iso-

morphism of central extensions. Let
◦
g denote the Lie algebra of

◦
G. Let the smooth

unitary
◦
G-representations ρ1 and ρ2 be lifts of ρ1 and ρ2 respectively. Then there

exists a smooth character ζ :
◦
G → U(1) such that ρ2(

◦
g) = ζ(

◦
g)Uρ1(

◦
g)U−1 for all

◦
g ∈

◦
G. This implies in particular that UH∞

ρ1 = H∞
ρ2 . Differentiating the preceding

equation at the identity of
◦
G, it also follows that dρ2(

◦
ξ) = Udρ1(

◦
ξ)U−1+dζ(

◦
ξ)I for

all
◦
ξ ∈ ◦

g, where I denotes the identity on H∞
ρ2 . Hence dρ2(ξ)[ψ] = U dρ1(ξ)U

−1
[ψ]

for all ξ ∈ g and [ψ] ∈ P(H∞
ρ2). So dρ1

∼= dρ2.

Assume conversely that UH∞
ρ1 = H∞

ρ2 and that U dρ1(ξ)U
−1

[ψ] = dρ2(ξ)[ψ] for

all ξ ∈ g and [ψ] ∈ P(H∞
ρ2). This implies that dρ1 and dρ2 induce isomorphic

central R-extension of g, up to isomorphism. Since G is 1-connected, it follows

using [Nee02, Cor. 7.5(i)] that ρ1 and ρ2 induce the same central T-extension
◦
G of

G, up to isomorphism. Let the smooth unitary
◦
G-representations ρ1 and ρ2 once

again be lifts of ρ1 and ρ2, respectively. As U is equivariant w.r.t. the projective
g-actions dρ1 and dρ2, there exists a continuous linear map λ :

◦
g→ R such that

dρ2(
◦
ξ) = Udρ1(

◦
ξ)U−1 + iλ(

◦
ξ)I, ∀

◦
ξ ∈ ◦

g, (5.4.1)

where I denotes the identity on H∞
ρ2 . Let ψ ∈ H∞

ρ1 and χ ⊥ ψ. Let γ : R →
◦
G

be a smooth path in
◦
G with γ0 = 1 the identity of

◦
G, and let γ : R → G be its

projection to G. Consider the smooth function f : R→ C defined by

f(t) := ⟨Uχ, ρ2(γt)Uρ1(γt)−1ψ⟩.
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Notice that f(0) = 0. Let γ′ : R→ ◦
g be the left-logarithmic derivative of γ, defined

by γ′s :=
d
dt

∣∣
t=s

γ−1
s γt for s ∈ R. Observe using equation (5.4.1) that the derivative

f ′ of f satisfies

f ′(s) = ⟨Uχ, ρ2(γs)dρ2(γ′s)Uρ1(γs)−1ψ⟩ − ⟨Uχ, ρ2(γs)Udρ1(γ′s)ρ1(γs)−1ψ⟩
= iλ(γ′s)⟨Uχ, ρ2(γs)Uρ1(γs)−1ψ⟩
= iλ(γ′s)f(s), ∀s ∈ R.

The unique solution of the ODE f ′(s) = iλ(γ′s)f(s) with initial condition f(0) = 0
is given by f(t) = 0 for all t ∈ R. So ⟨Uχ, ρ2(γt)Uρ1(γt)−1ψ⟩ = 0 for every χ ⊥ ψ
and t ∈ R. Thus [ρ2(γt)Uρ1(γt)

−1ψ] = [Uψ] for all t ∈ R and ψ ∈ H∞
ρ1 . Hence

U ρ1(γt) = ρ2(γt)U for all t ∈ R. Since
◦
G is a path-connected principal T-bundle

over G, it follows that U ρ1(g) = ρ2(g)U for all g ∈ G. Thus ρ1 ∼= ρ2.

Corollary 5.4.4. Let ρ : G→ PU(Hρ) be a smooth projective unitary representa-
tion with derived representation dρ : g→ pu(H∞

ρ ). Let H be a connected Lie group
with Lie algebra h, and let f : H → G be smooth homomorphism of Lie groups. If
Te(f)(h) ⊆ ker dρ, then f(H) ⊆ ker ρ.

Proof. By considering the pull-back of ρ along f , it suffices to consider the case
where H = G and f = idG. Thus, assume that G is connected and that g ⊆ ker dρ.
Then Proposition 5.4.3 implies that G ⊆ ker ρ.
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Chapter 6

Holomorphic induction beyond the norm-
continuous setting, with applications to pos-
itive energy representations

Abstract

We extend the theory of holomorphic induction of unitary representations
of a possibly infinite-dimensional Lie group G beyond the setting where the
representation being induced is required to be norm-continuous. We allow
the group G to be a connected BCH(Baker-Campbell-Hausdorff) Fréchet-Lie
group. Given a smooth R-action α on G, we proceed to show that the
corresponding class of so-called positive energy representations is intimately
related with holomorphic induction. Assuming that G is regular, we in
particular show that if ρ is a unitary ground state representation of G ⋊α R
for which the energy-zero subspace Hρ(0) admits a dense set of G-analytic
vectors, then ρ|G is holomorphically induced from the representation of the
connected subgroup H := (Gα)0 of α-fixed points on Hρ(0). As a consequence,
we obtain an isomorphism B(Hρ)G ∼= B(Hρ(0))H between the corresponding
commutants. We also find that any two such ground state representations
are necessarily unitary equivalent if their energy-zero subspaces are unitarily
equivalent as H-representations. These results were previously only available
under the assumption of norm-continuity of the H-representation on Hρ(0).

This chapter is based on [Nie23b].

6.1 Introduction

This chapter is concerned with unitary representations of a possibly infinite-dimensional
connected Lie group G that is modeled on a locally convex vector space. Given a
smooth action α of R on G, we consider those G-representations that extend to a
unitary representation ρ of G⋊α R which is smooth, in the sense that it admits a
dense set of smooth vectors, and which is of positive energy, meaning that the self-
adjoint generator −i d

dt

∣∣
t=0

ρ(1G, t) of the unitary 1-parameter group t 7→ ρ(1G, t)
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has non-negative spectrum.

For infinite-dimensional Lie groups, a full classification of all irreducible represen-
tations is typically not tractable, and even less so for factor representations. The
positive energy condition serves to isolate a class of representations that are more
susceptible to systematic study. It is also quite natural from a physical perspec-
tive, because the Hamiltonian in quantum physics is nearly always required to be
a positive self-adjoint operator. It is then no surprise that positive energy repre-
sentations of Lie groups are abundant in physics literature [SW64, Bor87, Bor66,
Haa92, LM75, Ol’81, PS86, Seg81].

Holomorphic induction has proven to be a particularly effective tool in the study
of positive energy representations. Let us first describe the main idea of holomor-
phic induction in the case where G is finite-dimensional. Let H := (Gα)0 be the
connected subgroup of α-fixed points in G, with Lie algebra h = L(H). A unitary
G-representation ρ is typically called holomorphically induced from the unitary H-
representation σ on Vσ if the homogeneous Hermitian vector bundle V := G×H Vσ
over G/H can be equipped with a G-invariant complex-analytic bundle structure,
with respect to which the Hilbert space Hρ can be G-equivariantly embedded into
the space of holomorphic sections O(G/H,V) of V, in such a way that the corre-
sponding point evaluations Ex : Hρ → Vx are continuous and satisfy ExE∗x = idVx

for every x ∈ G/H. In particular, these conditions imply that Hρ is unitarily
equivalent to the G-representation on a reproducing kernel Hilbert space, and that
Hρ contains Vσ as an H-subrepresentation.

An important special case is obtained when Vσ is one-dimensional. If ρ is holomor-
phically induced from σ, we may identify Vσ with a cyclic ray [v0] in Hρ, whose
G-orbit in the projective space P(Hρ) is a complex submanifold. This means that
ρ is a so-called coherent state representation [Nee00, Def. XV.2.1]. In this case,
the G-homogeneous line bundle V is the pull-back of the tautological line bundle
over P(Hρ) along the map G/H → P(Hρ), gH 7→ [ρ(g)v0], and elements in the
image of the corresponding map V → Hρ are usually called coherent states. This
is also the setting of the well-known Borel-Weil Theorem [DK00, Thm. 4.12.5].
Such representations have been studied extensively [Per86, Nee00, Lis95], and are
known to be tightly related to highest-weight representations [Nee00, Def. X.2.9,
Ch. XV]. In particular, every unitary highest weight representation of G is a co-
herent state representation [Nee00, Prop. XV.2.6]. The converse is not true. The
Schrödinger representation of the Heisenberg group Heis(R2, ω) provides a coun-
terexample [Nee00, Ex. XV.3.5].

Holomorphic induction, defined as above, was studied in [Nee13] in the context
where G is a Banach-Lie group and where σ is bounded, meaning that it is continu-
ous with respect to the norm-topology on B(Vσ). Writing g for the Lie algebra of G
and gC for its complexification, invariant complex structures on G/H correspond
to closed Lie subalgebras b ⊆ gC satisfying b+ b = gC, b ∩ b = hC and Adh(b) ⊆ b
for all h ∈ H [Bel05, Thm. 15] (cf. [Kir76, p. 203] for the case where G is finite
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dimensional). The corresponding G-invariant holomorphic bundle structures on
V then turn out to be parametrized by extensions of dσ : h → B(Vσ) to a Lie
algebra homomorphism χ : b → B(Vσ) satisfying χ(Adh(ξ)) = σ(h)χ(ξ)σ(h)−1

for all ξ ∈ b and h ∈ H [Nee13, Thm. 2.6], as is to be expected from the finite-
dimensional setting [TW71, Thm. 3.6]. The holomorphic structure is used to relate
various important properties of the G-representation ρ with those of σ. For ex-
ample, [Nee13, Thm. 3.12] entails that the commutants B(Hρ)G ∼= B(Vσ)H,χ are
isomorphic as von Neumann algebras if Vσ ⊆ Hρ is invariant under B(Hρ)G, which
implies in particular that ρ is irreducible, multiplicity-free or of type I, II or III
if and only if this is true for σ [Nee13, Cor. 3.14]. Moreover, [Nee13, Cor. 3.16]
states that there is up to unitary equivalence at most one unitary G-representation
ρ that is holomorphically induced from a given pair (σ, χ). The relation between
holomorphically induced representations and the positive energy condition is then
explained by [Nee13, Thm. 4.12, 4.14], which essentially state that in the above
context, and under suitable assumptions, holomorphically induced representations
correspond to so-called semibounded ones, the semiboundedness condition being a
‘stable’ and stronger version of the positive energy condition (cf. [Nee10b]). These
observations suggest that the class of holomorphically induced representations may
well admit a fruitful classification theory of its factor representations. This line of
reasoning was pursued in [Nee14a, Thm. 5.4, 5.10] and [Nee12, Thm. 6.1, 7.3, 8.1],
resulting in a classification of the irreducible semibounded unitary representations
of certain double extensions of Hilbert Loop groups and of hermitian Lie groups
corresponding to infinite-dimensional irreducible symmetric spaces.

In [Nee14a, Appendix C], the theory of holomorphic induction was further devel-
oped, allowing G to be a connected BCH Fréchet-Lie group, under certain addi-
tional assumptions. (Recall that G is BCH if it is real-analytic and has an analytic
exponential map which is a local diffeomorphism in 0 ∈ g.) Still, σ was required to
be norm-continuous. Let us mention that a particular and well-known special case
of such a situation had already appeared in the study of smooth positive energy
representations of loop groups. In fact, these had been completely classified using
holomorphic induction [PS86] (cf. [Nee01a]).

Still, the assumption of norm-continuity of σ is too restrictive in numerous exam-
ples, some of which we encounter in Section 6.8 below. It is typically only suitable
for describing the class of semibounded unitary representations of G. In order to
obtain a theory that can be used to describe the possibly larger class of all positive
energy representations, one must go beyond the norm-continuity of σ.

The purpose of this chapter is to remove this assumption of norm-continuity of
the representation σ being induced, whilst still allowing G to be a connected BCH
Fréchet-Lie group. A main difficulty in this direction is that of equipping the
homogeneous vector bundle G×H Vσ with a G-invariant complex-analytic bundle
structure. The proof of [Nee13, Thm. 2.6] breaks down beyond the norm-continuous
setting, so a new approach is required.
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We provide two possible solutions to this problem. As in [Nee14a, Appendix C], we
assume that gC admits a triangular decomposition of the form gC = n−⊕ hC⊕ n+,
where n± and hC are closed Lie subalgebras of gC satisfying n± ⊆ n∓, and where
b = hC ⊕ n−. In the first, which we call the general approach, we avoid speci-
fying a complex-analytic vector bundle altogether. Instead we replace the space
of holomorphic sections by a suitable subspace Cω(G,Vσ)

H,χ of the space of real-
analytic H-equivariant maps Cω(G,Vσ)

H , defined directly in terms of an extension
χ : b→ L(D) of dσ to b with some domain D ⊆ V ωσ consisting of analytic vectors.
This also avoids the need for a G-invariant complex structure on the homogeneous
space G/H. In the second, which we call the geometric approach, we define a
stronger notion of holomorphic induction. In this case, H∞

ρ actually embeds into a
space of holomorphic mappings on a homogeneous vector bundle. It therefore re-
quires complex geometry. A significant drawback of this approach is that it requires
a dense set of so-called b-strongly-entire vectors, whose availability is usually not
known, unless G happens to be finite-dimensional, in which case it is completely
understood by the results of [Goo69] and [Pen74], see also Theorem 6.3.6 below.

Let us also mention that the results presented in this chapter do not complete
the story of holomorphic induction. The developed theory still excludes Fréchet-
Lie groups that are not BCH, such as the Virasoro group. Yet, it is known that
holomorphic induction can be used to obtain a complete classification of the posi-
tive energy representations of the Virasoro group [NS15]. Nevertheless, the present
chapter makes substantial progress towards a more complete understanding of holo-
morphic induction in the infinite-dimensional context. In relation to positive energy
representations, progress was made in a different direction in [NR22], where the
class of ground state representations is studied in the setting of topological groups.

Structure of the chapter

— In Section 6.2, we first recall some preliminaries regarding analytic functions
on locally convex spaces. We proceed to define smooth, analytic and strongly-
entire representations, which are increasingly regular. We also recall some
important results related to positive energy and ground state representations.

— We proceed in Section 6.3 to define and study the spaces HO
ρ and HOb

ρ of
so-called strongly-entire and b-strongly-entire vectors, respectively. We equip
these spaces with a locally convex topology, and extend the results of [Goo69]
from the setting of finite-dimensional Lie groups to the present one, where
G is allowed to be infinite-dimensional. In particular, if GC is a complex 1-
connected regular BCH Fréchet-Lie group with Lie algebra gC, we obtain that
both HO

ρ and HOb
ρ carry a representation of GC that has holomorphic orbit

maps. The space HOb
ρ plays an important role in the geometric approach to

holomorphic induction.

— In Section 6.4.2 we present the general approach towards holomorphic induc-
tion. After determining a useful equivalent formulation, we characterize the
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inducibility of pairs (σ, χ) in terms of positive definite functions on G, which
leads to the uniqueness of the holomorphically induced representation up to
unitary equivalence. We then proceed to show that there is an isomorphism
of von Neumann algebras B(Hρ)G ∼= B(Vσ)H,χ between the commutants,
provided that Vσ ⊆ Hρ is invariant under B(Hρ)G, in complete analogy with
the previously described norm-continuous setting. We also briefly discuss
holomorphic induction in stages.

— After equipping the G-homogeneous vector bundle Vσ := G ×H V Ob
σ with a

complex-analytic bundle structure, using a suitable extension χ of dσ with
domain V Ob

σ and under certain assumptions, we define in Section 6.5.4 the ge-
ometric notion of holomorphically induced representations. We also compare
the geometric notion to the one presented in Section 6.4.2.

— In relating holomorphic induction with the positive energy condition, we shall
have need for a suitably general notion of Arveson spectral subspaces. We
therefore generalize in Section 6.6 the results of [NSZ15, Sec. A.3] and [Nee13,
Sec. A.2] to the level of generality needed in the next section.

— In Section 6.7 we study the relation between holomorphic induction and the
positive energy condition, under the additional assumption that G is regu-
lar. In particular, we show that if ρ is a unitary ground state representa-
tion of G ⋊α R for which the energy-zero subspace Hρ(0) admits a dense
set of G-analytic vectors, then ρ|G is holomorphically induced from the
H-representation on Hρ(0). As a consequence, we obtain an isomorphism
B(Hρ)G ∼= B(Hρ(0))H of von Neumann algebras between the corresponding
commutants. We also find that any two such ground state representations
are necessarily unitary equivalent if their energy-zero subspaces are unitarily
equivalent as H-representations.

— In Section 6.8, we consider numerous interesting examples of unitary rep-
resentations that are holomorphically induced from representations that are
not norm-continuous.

6.2 Preliminaries

6.2.1 Analytic functions on locally convex vector spaces

Let us recall some definitions and properties of analytic functions between locally
convex vector spaces. The main references are [BS71b], [BS71a] and [Glö02b].
Throughout the following, fix locally convex vector spaces E and F over the field
K that both are complete and Hausdorff, where K is either R or C. Define

∆k : E → Ek, ∆k(h) = (h, . . . , h).
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Homogeneous polynomials

Definition 6.2.1. Suppose U ⊆ E is open and f ∈ C∞(U,F ). For any x ∈ U
and k ∈ N, define δ0x(f) : E → F and δkx(f) : E → F by δ0x(f)(v) := f(x) and
δkx(f)(v) := dkf(x; v, . . . , v).

Definition 6.2.2. Let k ∈ N. A map f : E → F is called a homogeneous poly-
nomial of degree k if there exists a k-linear symmetric map f̃ : Ek → F such that
f = f̃ ◦∆k. Let P

k(E,F ) denote the space of continuous homogeneous polynomials
E → F of degree k. For k = 0, we set P 0(E,F ) := F .

Set E0 := K. For k ∈ N≥0, we write Mult(Ek, F ) for the space of continuous k-
linear maps Ek → F , equipped with the topology of uniform convergence on prod-
ucts of compact sets in E. For the case k = 1, we also write B(E,F ) := Mult(E,F ).
Let Symk(E,F ) ⊆ Mult(Ek, F ) denote the closed subspace of continuous symmet-
ric k-linear maps Ek → F . Let E⊗̂F denote the completed projective tensor
product of E and F [Tre67, Def. 43.2, 43.5]. Define E⊗̂k := E⊗̂ · · · ⊗̂E (k times).

The topology on E⊗̂k is defined by the seminorms q1 ⊗ · · · ⊗ qk, where each qi is
a continuous seminorms on E, see also [Tre67, Def. 43.3]. On algebraic tensors
t ∈ E⊗k, this seminorm is given by

(q1⊗· · ·⊗qk)(t) := inf

∑
j

k∏
i=1

qi(ξ
(j)
i ) : t =

∑
j

ξ
(j)
1 ⊗ · · · ⊗ ξ

(j)
k , with ξ

(j)
i ∈ E

 .

(6.2.1)

On simple tensors we have (q1⊗· · ·⊗ qk)(ξ1⊗· · ·⊗ ξk) =
∏k
i=1 qi(ξi), where ξi ∈ E

[Tre67, Prop. 43.1].

Proposition 6.2.3 ([Tre67, Prop. 43.4, Cor. 3 on p. 465]).

There is a canonical linear isomorphism Mult(Ek, F ) ∼= B(E⊗̂k, F ). It is a home-
omorphism if E is Fréchet.

Equip P k(E,F ) with the topology of uniform convergence on compact sets. If p is
a continuous seminorm on F , B ⊆ E is a subset and f : E → F is a function, we
write pB(f) := supx∈B p(f(x)).

Proposition 6.2.4. Let k ∈ N≥0. Then P
k(E,F ) ∼= Symk(E,F ) as locally convex

vector spaces.

Proof. If f̃ : Ek → F is a symmetric k-linear map and f = f̃ ◦ ∆k is the cor-
responding homogeneous polynomial, then f̃ can be recovered from f using the
formula [BS71b, Thm. A]:

f̃(x1, . . . , xk) =
1

k!

1∑
ϵ1,...,ϵk=0

(−1)k−(ϵ1+···+ϵk)f(ϵ1x1 + · · ·+ ϵkxk). (6.2.2)

This formula moreover shows that f̃ is continuous if and only if f is so, and there
is a linear isomorphism Symk(E,F ) → P k(E,F ) given by f̃ 7→ f̃ ◦ ∆k =: f . It
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remains to show that this map is also a homeomorphism. Suppose that f = f̃ ◦∆k

for some f̃ ∈ Symk(E,F ). If B ⊆ E is a compact subset and p is a continuous

seminorm on F , then pB(f) ≤ pBk(f̃). Hence Symk(E,F ) → P k(E,F ), f̃ 7→ f is
continuous. For the continuity of the inverse, we use (6.2.2), from which it follows
that if Bi ⊆ E are compact subsets for i ∈ N and p is a continuous seminorm on
F , then

sup
xi∈Bi

p(f̃(x1, . . . , xk)) ≤
2k

k!
pB(f), (6.2.3)

where

B = { ϵ1x1 + · · ·+ ϵkxk : ϵi ∈ {0, 1}, xi ∈ Bi for i ∈ {1, . . . , k} } ,

which is a compact subset of E. Consequently the map f 7→ f̃ is continuous
P k(E,F )→ Symk(E,F ).

Define the locally convex space P (E,F ) :=
∏∞
k=0 P

k(E,F ), equipped with the
product topology. If F = K, we simply write Pn(E) := Pn(E,K).

Analytic functions

Let U ⊆ E be open and let f : U → F be a function.

Definition 6.2.5.

— Suppose K = C. The function f : U → F is called complex-analytic or holo-
morphic if it is continuous, and for every x ∈ U there exists a 0 neighborhood
V in E with x+ V ⊆ U and functions fk ∈ P k(E,F ) for k ∈ N≥0 such that:

f(x+ h) =

∞∑
k=0

fk(h), ∀h ∈ V.

— Suppose K = R. The function f : U → F is called real-analytic if it extends
to some complex-analytic map fC : UC → FC for some open neighborhood
UC of U in EC.

— Suppose K = C and U = E. The function f : E → F is called entire if it
is continuous and there exist functions fk ∈ P k(E,F ) for k ∈ N≥0 such that
f(x) =

∑∞
k=0 fk(x) for all x ∈ E.

Remark 6.2.6. The above definition of a real-analytic map differs from the one used
in [BS71a], where a function f : U → F is called real-analytic if it is continuous
and for every x ∈ U there exists a 0-neighborhood V in U with x + V ⊆ U and
homogeneous polynomials fk : E → F such that f(x+ h) =

∑∞
k=0 fk(h) holds for

all h ∈ V . The two notions are equivalent if E and F are Fréchet spaces [Glö02b,
Rem. 2.9], [BS71a, Thm. 7.1].
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Proposition 6.2.7 ([BS71a, Prop. 5.1]).
Suppose K = C. Let fk ∈ P k(E,F ) for every k ∈ N≥0. Let U ⊆ E be a 0-
neighborhood s.t. f(h) :=

∑
k fk(h) is convergent for every h ∈ U . Assume that

f : U → F is continuous at 0 ∈ U . Then, for every continuous seminorm p on F ,
there exists a 0-neighborhood V ⊆ U such that

∑∞
k=0 pV (fk) <∞.

Lemma 6.2.8. Suppose K = C. Let fn ∈ Pn(E,F ) for every n ∈ N≥0. Consider
the following assertions:

1. f :=
∑∞
n=0 fn defines an entire function E → F .

2.
∑∞
n=0 pB(fn) <∞ for any compact subset B ⊆ E and continuous seminorm

p on F .

We have that (1) =⇒ (2). If E is a Fréchet space, then also (2) =⇒ (1) holds
true.

Proof. Assume that f =
∑∞
n=0 fn defines an entire function E → F . Let B ⊆ E

be a compact subset and let p be a continuous seminorm on F . We may assume
that B is balanced. As f is continuous, f(2B) ⊆ F is compact and hence bounded.
So Mp := p2B(f) < ∞. As f is entire, we have f(zx) =

∑∞
n=0 fn(x)z

n for any
x ∈ E and z ∈ C. Let x ∈ 2B. Then also zx ∈ 2B for any z ∈ C with |z| ≤ 1, as
B is balanced. Applying [BS71a, Cor. 3.2] to the holomorphic map

g : C→ F, g(z) := f(zx),

we find that fn(x) =
1

2πi

∫
|z|=1

g(z)
zn+1 dz and moreover that

p(fn(x)) ≤ sup
|z|=1

p(g(z)) ≤ p2B(f) =Mp, ∀n ∈ N≥0.

Hence p2B(fn) ≤Mp, so that pB(fn) ≤Mp2
−n for all n ∈ N≥0. Thus

∞∑
n=0

pB(fn) ≤Mp

∞∑
n=0

2−n <∞.

Suppose that E is a Fréchet space. Assume that (2) holds true. Then in particular
the series

∑∞
n=0 fn(x) is convergent for any x ∈ E. So f :=

∑∞
n=0 fn defines a

function E → F . To show f is entire, it remains only to show that it is continuous.
The condition (2) implies that sN → f uniformly on compact subsets, where sN :=∑N
n=0 fn for any N ∈ N. As sN is continuous for every N ∈ N and E is Fréchet by

assumption, this implies that f is continuous (by a standard 3ϵ argument).

Proposition 6.2.9 ([Glö02b, Prop. 2.4]).
Every real- or complex-analytic map is smooth.

Proposition 6.2.10 ([BS71a, Prop. 5.5]).
Suppose K = C. If f : U → F is complex-analytic, then f(x+h) =

∑∞
k=0

1
k!δ

k
x(f)(h)

for all h ∈ V , where V is the maximal balanced 0-neighborhood of E such that
x+ V ⊆ U .
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Proposition 6.2.11 ([Glö02b, Lem. 2.5]).
Suppose K = C. Then f is complex-analytic if and only if f is smooth and the map
δ1x = df(x;−) : E → F is complex-linear for every x ∈ U .

Proposition 6.2.12 ([Glö02b, Lem. 2.6]).
Suppose K = C. If f : U → F is complex-analytic, then so is df : U × E → F .

With these definitions, the chain rule holds for both real- and complex-analytic
mappings. One proceeds to define real- and complex- analytic manifolds and Lie
groups, see e.g. [Mil84] and [Nee06] for more details.

Definition 6.2.13. If M is a real-analytic manifold and V is a locally convex
vector space, we write Cω(M,V ) for the set of analytic functions M → V . If M is
a complex-analytic manifold and V is complex, we write O(M,V ) for the space of
complex-analytic mappings M → V .

Proposition 6.2.14 (Identity Theorems [BS71a, Prop. 6.6]).

1. Suppose that E and F are complex. Let f : U → F be complex-analytic and
assume that U is connected. If f(x) = 0 for all x ∈ V for some open and
non-empty V ⊆ U , then f = 0.

2. Suppose that E is real and F is complex. Let f : UC → F be complex-analytic,
where UC ⊆ EC is open and connected. If UC contains a non-empty subset
V ⊆ E that is open in E and f(x) = 0 holds for every x ∈ V , then f = 0.

Proposition 6.2.15. Let x ∈ U . The following linear map is continuous:

j∞x : C∞(U,F )→ P (E,F ),

f 7→
∞∑
k=0

1

k!
δkx(f)

If U is connected, then its restriction to Cω(U,F ) is injective.

Proof. The map j∞x is linear, as each δkx : C∞(U,F ) → P k(E,F ) is so. As
P (E,F ) =

∏∞
n=0 P

n(E,F ) carries the product topology, to see j∞x is continu-
ous it suffices to show that δkx is continuous for every k ∈ N≥0. This is immediate
from the definition of the compact-open C∞-topology on C∞(U,F ) [Nee06, Def.
I.5.1(d)], and the topology of uniform convergence on compact subsets carried by
P k(E,F ). Assume that U is connected. Let f ∈ Cω(U,F ) and suppose that
j∞x (f) = 0. Using Proposition 6.2.10 it follows that f(x+ h) = 0 for all h in some
0-neighborhood of E. By Proposition 6.2.14 this implies that f = 0.
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6.2.2 Smooth, analytic and strongly-entire representations

Let G be a BCH(Baker-Campbell-Hausdorff) Fréchet-Lie group with Lie algebra
g. We write gC for the complexification of g.

Let us first recall some notation, introduced earlier in Chapter 2. If D is a pre-
Hilbert space, we write L(D) for the set of linear operators on D. We further define
the algebra

L†(D) :=
{
X ∈ L(D) : ∃X† ∈ L(D) : ∀ψ, η ∈ D : ⟨X†ψ, η⟩ = ⟨ψ,Xη⟩

}
.

Then (−)† is an involution on L†(D), turning it into a ∗-algebra. We will also have
need for various involutions on the universal enveloping algebra U(gC) of gC. Let
θ : gC → gC be defined by θ(ξ + iη) := ξ − iη for ξ, η ∈ g.

Definition 6.2.16. Extend the conjugation θ on gC to a complex conjugate-linear
automorphism of U(gC). Let τ denote the involutive anti-automorphism of U(gC)
extending ξ 7→ −ξ on gC. Define x∗ := τ(θ(x)) for x ∈ U(gC). Explicitly, θ, τ and
(−)∗ satisfy the following relations, where ξj ∈ gC for j ∈ N:

θ(ξ1 · · · ξn) = θ(ξ1) · · · θ(ξn),
τ(ξ1 · · · ξn) = (−1)nξn · · · ξ1,
(ξ1 · · · ξn)∗ = (−1)nθ(ξn) · · · θ(ξ1).

If (ρ,Hρ) is a unitary G-representation, we say that it is continuous if it is so with
respect to the strong operator topology on U(Hρ).

Definition 6.2.17. Let (ρ,Hρ) be a continuous unitary representation of G. A
vector ψ ∈ Hρ is called smooth, resp. analytic, if the orbit map G→ Hρ, g 7→ ρ(g)v
is smooth, resp. analytic. We write H∞

ρ and Hωρ for the linear subspaces of smooth
and analytic vectors, respectively. We say that the representation ρ is smooth if
H∞
ρ is dense in Hρ and analytic if Hωρ is dense in Hρ.

Remark 6.2.18. If ρ is a smooth unitary representation of G, then the derived
representation dρ of gC on H∞

ρ extends to a homomorphism dρ : U(gC)→ L†(H∞
ρ )

satisfying dρ(x)† = dρ(x∗) for any x ∈ U(gC).

Definition 6.2.19. Let (ρ,Hρ) be a smooth unitary representation of G.

— Following [JN19, Def. 3.9], we define two locally convex topologies on H∞
ρ :

– The weak topology on H∞
ρ is defined by the seminorms

pξ(ψ) := ∥dρ(ξ1 · · · ξn)ψ∥, where n ∈ N≥0 and ξ = (ξ1, . . . , ξn) ∈ gn.

– The strong topology is defined by the seminorms

pB(ψ) := sup
ξ∈B
∥dρ(ξ1 · · · ξn)ψ∥,

where B ⊆ gn is bounded and n ∈ N≥0.
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If G is regular, then the space H∞
ρ is complete w.r.t. to either of these topolo-

gies [JN19, Prop. 3.19], where we also used that G is a Fréchet-Lie group.

— A vector ψ ∈ H∞
ρ is called entire if

∞∑
n=0

1

n!
sup
ξ∈B
∥dρ(ξn)ψ∥ <∞

for every compact B ⊆ gC.

— If ψ ∈ H∞
ρ and B ⊆ gC, we define

pnB(ψ) := sup
ξ1,...,ξn∈B

∥dρ(ξ1 · · · ξn)ψ∥

and

qB(ψ) :=

∞∑
n=0

1

n!
pnB(ψ).

— A vector ψ ∈ H∞
ρ is called strongly-entire if qB(ψ) < ∞ for every compact

subset B ⊆ gC. It is said to be b-strongly-entire if qB(ψ) < ∞ for every
bounded subset B ⊆ gC.

— We write HO
ρ ⊆ H∞

ρ and HOb
ρ for the linear subspace of strongly-entire and

b-strongly-entire vectors, respectively. EquipHO
ρ (resp.HOb

ρ ) with the locally
convex topology defined by the seminorms qB for compact (resp. bounded)
subsets B ⊆ gC.

— We say that the representation ρ is strongly-entire if HO
ρ is dense in Hρ, and

that it is b-strongly-entire if HOb
ρ is dense in Hρ.

If ψ ∈ H∞
ρ , we write fψ : G → Hρ for the orbit map fψ(g) = ρ(g)ψ. As fψ

is smooth, the homogeneous polynomial fψn (ξ) := 1
n!dρ(ξ

n)ψ is continuous as a
map gC → Hρ, so fψn ∈ Pn(gC,Hρ). Notice further that j∞0 (fψ) =

∑∞
n=0 f

ψ
n ∈

P (gC,Hρ). Let βψn be the unique element of Symn(gC,Hρ) satisfying fψn = βψn ◦∆n.
Explicitly, βψn (ξ1, . . . , ξn) =

1
(n!)2

∑
σ∈Sn

dρ(ξσ1 · · · ξσn)v.

Lemma 6.2.20. Let ψ ∈ H∞
ρ . Assume that qB(ψ) <∞ for every compact subset

B ⊆ g. Then qB(ψ) <∞ for every compact subset B ⊆ gC.

Proof. Let BC ⊆ gC be compact. Replacing BC by its balanced hull, we may
assume that BC is balanced. Let B :=

{
ξ + ξ : ξ ∈ BC

}
⊆ g, which is compact in

g. Then BC ⊆ B + iB and so qBC(ψ) ≤ q2B(ψ) <∞.
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Proposition 6.2.21. Let (ρ,Hρ) be a smooth unitary representation of G. Let
ψ ∈ H∞

ρ . The following assertions are equivalent:

1. ψ ∈ Hωρ .

2. There exists a 0-neighborhood V ⊆ g such that
∑∞
n=0

1
n!dρ(ξ

n)ψ converges
for every ξ ∈ V and the map V → Hρ, ξ 7→

∑∞
n=0

1
n!dρ(ξ

n)ψ is continuous.

3.
∑∞
n=0

1
n!dρ(ξ

n)ψ converges for every ξ in a 0-neighborhood g.

4. There is a 0-neighborhood V ⊆ g such that
∑
n=0

1
n!p

n
V (ψ) <∞.

5. There is a 0-neighborhood V ⊆ g such that
∑∞
n=0

1
n! ⟨ψ, dρ(ξ

n)ψ⟩ converges
for all ξ ∈ V .

6. The map G→ C, g 7→ ⟨ψ, ρ(g)ψ⟩ is analytic on a neighborhood of 1 ∈ G.

Proof. Assume that ψ ∈ Hωρ . Then the orbit map fψ : G→ Hρ is real-analytic, and
hence so is fψ ◦ exp : g→ Hρ. Notice that fψ(eξ) = ρ(eξ)ψ, so that δn0 (f

ψ ◦ exp) =
dρ(ξn)ψ. Using Proposition 6.2.10, it follows that fψ(eξ) =

∑∞
n=0

1
n!dρ(ξ

n)ψ on
some balanced 0-neighborhood V ⊆ g. So (1) =⇒ (2).

We show that (2) =⇒ (1). Let V ⊆ g be a 0-neighborhood such that
∑∞
n=0

1
n!dρ(ξ

n)ψ
converges for every ξ ∈ V and s.t. the map ξ 7→

∑∞
n=0

1
n!dρ(ξ

n)ψ is continuous on
V . Replacing V by some smaller balanced open set, we may assume that V is
balanced. Define hψ(ξ) :=

∑∞
n=0

1
n!dρ(ξ

n)ψ. In view of Remark 6.2.6, the assump-
tions imply that hψ is real-analytic on V , where it was used that g is Fréchet and
Hρ is a Hilbert space. Then hψ is smooth by Proposition 6.2.9. Let ξ ∈ V . We
show that hψ(ξ) = ρ(eξ)ψ. Let s ∈ I := [−1, 1]. Then sξ ∈ V , because V is
balanced. Notice that

d

dt

∣∣∣∣
t=s

hψ(tξ)ψ = dρ(ξ)hψ(sξ), and
d

dt

∣∣∣∣
t=s

ρ(etξ)ψ = dρ(ξ)ρ(esξ)ψ.

Let η ∈ H∞
ρ . Using dρ(ξ)∗η = −dρ(ξ)η it follows that d

dt

∣∣
t=s
⟨ρ(etξ)η, hψ(tξ)⟩ = 0

for all s ∈ I. Hence ⟨η, ρ(e−tξ)hψ(tξ)⟩ = ⟨η, ψ⟩ for all t ∈ I. As this is valid for
any η in the dense set H∞

ρ it follows that ρ(e−tξ)hψ(tξ)ψ = ψ or equivalently that

hψ(tξ)ψ = ρ(etξ)ψ for all t ∈ I. In particular, taking t = 1 we conclude that
hψ(ξ) = ρ(eξ)ψ for all ξ ∈ V . As hψ is real-analytic on V , so is ξ 7→ ρ(eξ)ψ. Since
G is BCH, this implies that g 7→ ρ(g)ψ is analytic on a neighborhood of 1 ∈ G.
In turn, this implies that it is analytic everywhere, where we have used that G is
a real-analytic Lie group and that the composition of real-analytic maps is again
real-analytic [Glö02b, Proposition 2.8]. Thus ψ ∈ Hωρ .

The implication (2) =⇒ (3) is trivial whereas (3) =⇒ (4) follows from [BS71a,
Prop. 5.2] because V is absorbing and g is a Baire space, as it is Fréchet. To see
that (4) =⇒ (2), assume that V ⊆ g is a 0-neighborhood s.t.

∑∞
n=0

1
n!p

n
V (ψ) <∞.

For ξ ∈ V , we write sN (ξ) :=
∑N
n=0

1
n!dρ(ξ

n)ψ and s(ξ) :=
∑∞
n=0

1
n!dρ(ξ

n)ψ. It
remains only to prove that s is continuous on V . Let ξ ∈ V . Suppose that (ξk) is
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a sequence in V with ξk → ξ. Let ϵ > 0. Let N ∈ N be s.t.
∑∞
n=N+1

1
n!p

n
V (ψ) < ϵ.

Then for any η ∈ V we have ∥s(η) − sN (η)∥ ≤
∑∞
n=N+1

1
n!p

n
V (ψ) < ϵ. Using that

sN is continuous, let N ′ ∈ N be s.t. ∥sN (ξ)−sN (ξk)∥ < ϵ and ξk ∈ V for all k ≥ N ′.
Then

∥s(ξ)−s(ξk)∥ ≤ ∥s(ξ)−sN (ξ)∥+∥sN (ξ)−sN (ξk)∥+∥sN (ξk)−s(ξk)∥ < 3ϵ, ∀k ≥ N ′.

Thus s(ξk) → s(ξ). Hence s is sequentially continuous at 0. As g is Fréchet, this
implies that s is continuous at ξ. Thus (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). It is
trivial that (3) =⇒ (5) whereas (5) =⇒ (3) follows immediately from [Nee11,
Prop. 3.4, 6.3] (by considering D := H∞

ρ and v := ψ). Finally, (6) ⇐⇒ (1) is
precisely [Nee11, Thm. 5.2]. This completes the proof.

Let us consider an analogous statements for entire vectors:

Proposition 6.2.22. Let ψ ∈ H∞
ρ . The following assertions are equivalent:

1. The series
∑∞
n=0 f

ψ
n (ξ) =

∑∞
n=0

1
n!dρ(ξ

n)ψ defines an entire function

gC → Hρ, ξ 7→
∞∑
n=0

fψn (ξ).

2. ψ is an entire vector for ρ, i.e.,
∑∞
n=0

1
n! supξ∈B ∥dρ(ξ

n)ψ∥ < ∞ for every
compact B ⊆ gC.

3. The map g→ Hρ, ξ 7→ ρ(eξ)ψ extends to an entire function gC → Hρ.

4.
∑∞
n=0 supξi∈B ∥β

ψ
n (ξ1, . . . , ξn)∥ <∞ for every compact B ⊆ g.

Proof. As gC is Fréchet by assumption, we know using Lemma 6.2.8 that the series∑∞
n=0 f

ψ
n (ξ) =

∑∞
n=0

1
n!dρ(ξ

n)ψ defines an entire function on gC if and only if

∞∑
n=0

1

n!
sup
ξ∈B
∥dρ(ξn)ψ∥ <∞, ∀B ⊆ gC compact.

That is, if and only if (2) holds true. Thus (1) ⇐⇒ (2). Assume next that
(2) is valid. As singletons are compact, it follows in particular that

∑
n=0 f

ψ
n (ξ)

converges for every ξ ∈ gC. By Proposition 6.2.21, this implies that ψ ∈ Hωρ . Hence

the orbit map fψ : G → Hρ is real-analytic. As G is BCH, the exponential map
exp : g→ G is real-analytic and hence ξ 7→ fψ(eξ) = ρ(eξ)ψ is a real-analytic map
g→ Hρ. Since δn0 (fψ◦exp; ξ) = dρ(ξn)ψ for every n ∈ N, Proposition 6.2.10 implies
that fψ(eξ) =

∑∞
n=0

1
n!dρ(ξ

n)ψ on some 0-neighborhood in V . As (2) and hence
(1) hold by assumption, it follows that

∑∞
n=0 f

ψ
n is an entire function extending

ξ 7→ ρ(eξ)ψ. Thus (3) holds true. Suppose conversely that (3) is valid, so that
fψ◦exp extends to an entire function F : gC → Hρ. By Proposition 6.2.10 and using
that δn0 (f

ψ ◦ exp; ξ) = dρ(ξn)ψ for n ∈ N, we find that F (ξ) =
∑∞
n=0

1
n!dρ(ξ

n)ψ
for every ξ ∈ gC. Thus (1) holds true. We have shown (1) ⇐⇒ (2) ⇐⇒ (3).
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Next we show (2) =⇒ (4). Let B ⊆ gC be compact. As gC is complete, the
closed convex hull of B is again compact [Tre67, p. 67]. Thus we may assume that
B is convex. Replacing B further by its balanced hull, we may assume that B is
balanced. Then B+ · · ·+B (n times) ⊆ nB. From equation (6.2.3) it follows that

sup
ξi∈B

∥βψn (ξ1, . . . , ξn)∥ ≤
2n

n!
sup
ξ∈nB

∥fψn (ξ)∥ =
(2n)n

n!
sup
ξ∈B
∥fψn (ξ)∥.

Choose some t > 2e. Since
∑∞
n=0 supξ∈B ∥fψn (ξ)∥ < ∞ for every compact B, it

follows (by considering tB) that there exists some C > 0 s.t. supξ∈B ∥fψn (ξ)∥ ≤
Ct−n for every n ∈ N≥0. Then

∞∑
n=0

sup
ξi∈B

∥βψn (ξ1, . . . , ξn)∥ ≤ C
∞∑
n=0

1

n!

(
2n

t

)n
<∞.

The implication (4) =⇒ (2) is trivial.

Remark 6.2.23. The characterization (4) of entire vectors in Proposition 6.2.22
makes the difference between entire and strongly-entire vectors clear, namely whether
one considers the symmetric n-linear maps βψn or their non-symmetric analogues
(ξ1, . . . , ξn) 7→ 1

n!dρ(ξ1 · · · ξn)ψ. Analogous to [Nee11, Rem. 3.7], it is in general not
known whether or not any entire vector is in fact strongly-entire. In the case where
g is finite-dimensional, this follows immediately from [Pen74, Thm. I.3, Rem. I.7].

Corollary 6.2.24. HO
ρ ⊆ Hωρ ⊆ H∞

ρ .

Proof. Any strongly-entire vector is entire. Consequently, the first inclusion follows
by combining Proposition 6.2.22 and Proposition 6.2.21. The second one follows
from the fact that if the orbit map fψ : G→ Hρ is real-analytic, then it is smooth
by Proposition 6.2.9.

The space HO
ρ of strongly-entire vectors will be considered in more detail in Sec-

tion 6.3 below.

6.2.3 Positive energy and ground state representations.

Let G be a locally convex Lie group with Lie algebra g. If H is a Hilbert space and
S ⊆ H is a subset, we write JSK ⊆ H for the closed linear span of S.

Theorem 6.2.25 (Borchers-Arveson [BR87, Thm. 3.2.46], [BGN20, Lem. 4.17]).
Let M ⊆ B(H) be a von Neumann algebra on the Hilbert space H. Let (Ut)t∈R
be a strongly continuous unitary one-parameter group satisfying UtMU−1

t ⊆ M
for all t ∈ R. Assume that Ut = eitH with H ≥ 0. Define α : R → Aut(M) by
αt(x) := AdUt

(x) := UtxU
−1
t for t ∈ R and x ∈ M. Denote by Mα(S) ⊆ M the

Arveson spectral subspace for S ⊆ R. Then
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1. There exists a strongly continuous unitary one-parameter group Vt = eitH0 in
M with H0 ≥ 0 and AdVt

= αt for every t ∈ R.

2.
⋂
t>0JMα[t,∞)HK = {0}.

3. Vt is uniquely determined by the additional requirement that for any other
such V ′

t = eitH
′
0 , we have H ′

0 ≥ H0. In this case, the spectral projection P
corresponding to Vt is determined uniquely by

P [t,∞)H =
⋂
s<t

JMα[s,∞)HK.

Definition 6.2.26. Consider the setting of Theorem 6.2.25. A unitary one-
parameter group Vt = eitH0 satisfying the conditions of Theorem 6.2.25(1) is called
a positive inner implementation of α : R → Aut(M) on H. If Vt additionally sat-
isfies the condition in Theorem 6.2.25(3) then it is said to be the minimal positive
inner implementation of α on H.

Definition 6.2.27.
A smooth unitary representation (ρ,Hρ) of G is of positive energy (p.e.) at ξ ∈ g if

−iSpec(dρ(ξ)) ≥ 0. If additionally Hρ(0) := ker dρ(ξ) is cyclic for G, then (ρ,Hρ)
is said to be ground state at ξ ∈ g.

Definition 6.2.28. Let α : R → Aut(G) be a homomorphism for which the
corresponding action R×G→ G is smooth. DefineG♯ := G⋊αR and g♯ := L(G♯) =
g⋊D Rd, where d := 1 ∈ R. Let (ρ,Hρ) be a smooth unitary representation of G.
We writeM := ρ(G)′′ for the von Neumann algebra generated by ρ(G).

1. An extension of ρ to G♯ is a smooth unitary representation ρ̃ of G♯ on Hρ
such that ρ̃|G = ρ.

2. We say that ρ is of positive energy w.r.t. α if there exists an extension ρ̃ of ρ
to G♯ which is of p.e. at d ∈ g♯. In this case ρ̃ is called a positive extension
of ρ.

3. Assume that ρ is of positive energy w.r.t. α. A minimal positive extension ρ̃
of ρ is a positive extension ρ̃ of ρ to G♯ such that Vt := ρ̃(e, t) is the minimal
positive inner implementation of the automorphism group R→ Aut(M), t 7→
AdVt

. Then in particular Vt ∈M for every t ∈ R.

4. A unitary representation ρ of G that is of p.e. w.r.t. α is said to be ground
state if it has a minimal positive extension that is ground state at d ∈ g♯.

Definition 6.2.29. Let α : R → Aut(G) be an R-action on G for which the

corresponding map R × G → G is smooth. Let Ĝ denote the set of equivalence
classes of irreducible unitary representations of G that are smooth. Define

Ĝpos(α) :=
{
ρ ∈ Ĝ : ρ is of p.e. w.r.t. α

}
.
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Proposition 6.2.30.
Consider the setting of Definition 6.2.28. Assume that ρ is of p.e. w.r.t. α.

1. There exists a unique minimal positive extension ρ̃0 of ρ to G♯.

2. If ρ̃ is any other positive extension of ρ to G♯, there exists a strongly contin-
uous unitary 1-parameter group (Ut) inM′ such that ρ̃(t) = ρ̃0(t)Ut. In this
case ρ̃0(G

♯)′′ = ρ(G)′′. In particular, ρ is irreducible if and only if ρ̃0 is.

3. Assume that αT = idG for some T > 0. Then ρ̃0(T ) = idHρ
and ρ is ground

state w.r.t α.

4. Let P denote the spectral measure associated to t 7→ ρ̃0(t). Let ϵ > 0. Then
the projection P [0, ϵ) has central support 1M = idHρ ∈ Z(M). In particular
P [0, ϵ)Hρ is cyclic forM.

Proof. The first three assertions follow by [JN21, Cor. 3.9] and the last by [BGN20,
Lem. 4.17].

6.3 The space HOρ of strongly-entire vectors

Let G be a BCH Fréchet-Lie group with Lie algebra g. Let (ρ,Hρ) be a smooth
unitary representation of G. In this section, we extend some results of [Goo69]
concerning the space of strongly-entire vectors HO

ρ from the case where G is finite-
dimensional to the present setting.

6.3.1 Necessary conditions for the existence of strongly-entire
representations

We first show that when dim(g) < ∞, the definition for HO
ρ (Definition 6.2.19)

agrees with the one used in [Goo69, p.61]. The existence of a dense set of strongly-
entire vectors is well-understood for continuous unitary representations of finite-
dimensional Lie groups, yielding immediate necessary conditions for the existence
of strongly-entire representations in the infinite-dimensional setting. This will turn
out to be quite restrictive.

Assume that dim(g) < ∞. Let us recall the definition used in [Goo69, p.61]. Let
{eµ}dµ=1 be a basis of g. For v ∈ H∞

ρ , we define

Es(v) :=

∞∑
n=0

sn

n!
sup

1≤µk≤d
∥dρ(eµ1

· · · eµn
)v∥ ∈ [0,∞].

Set Hωt
ρ :=

{
v ∈ H∞

ρ : Es(v) <∞ for all 0 < s < t
}

for t > 0. We now define

HO′

ρ :=
⋂
t>0Hωt

ρ . Equip HO′

ρ with the locally convex topology defined by the
seminorms Es for s > 0.

Lemma 6.3.1. HOb
ρ = HO

ρ = HO′

ρ as an equality of locally convex vector spaces.
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Proof. Define for s > 0 the compact subsets

Bs :=

{
d∑

µ=1

cµeµ : cµ ∈ C, |cµ| ≤ s ∀µ ∈ {1, . . . , d}

}
⊆ gC.

Let s > 0. As seµ ∈ Bs for any µ ∈ {1, . . . , d}, it is immediate that Es(v) ≤ qBs(v).

Conversely, take ξj ∈ Bs for j ∈ {1, . . . , n}. Then ξj =
∑d
µj=1 cµj

eµj
∈ Bs for some

cµj
∈ C with |cµj

| ≤ s. So

dρ(ξj1 · · · ξjn)v =

d∑
µ1,...µn=1

cµ1
· · · cµn

dρ(eµ1
· · · eµn

)v.

Consequently

∥dρ(ξj1 · · · ξjn)v∥ ≤ sn
d∑

µ1,...µn=1

∥dρ(eµ1 · · · eµn)v∥ ≤ sndn sup
1≤µk≤d

∥dρ(eµ1 · · · eµn)v∥.

Hence Es(v) ≤ qBs(v) ≤ Esd(v) for any s > 0. This shows that HO
ρ = HO′

ρ

as locally convex vector spaces. Since dim(gC) < ∞, it is moreover clear that
HOb
ρ = HO

ρ , because the closure of any bounded set in gC is compact.

Following [AM66, p. 128], [Jen73, p. 115] and [Pen74], we define:

Definition 6.3.2.

— A finite-dimensional Lie group G is said to be of type R if Spec(Adg) ⊆ T for
every g ∈ G, where T ⊆ C is the unit-circle.

— A finite-dimensional Lie algebra g is said to be of type R if Spec(adξ) ⊆ iR
for every ξ ∈ g.

Remark 6.3.3. Lie algebras of type R are by some authors also called weakly elliptic
[Nee98b, Def. II.1].

Proposition 6.3.4 ([Jen73, Prop. 1.3]).
Let G be a finite-dimensional connected Lie group with Lie algebra g. Then G is
of type R if and only if g is of type R.

Proposition 6.3.5 ([Pen74, Lem. on p. 120]).
A finite-dimensional Lie algebra g is of type R if and only if it is the semi-direct
product s ⋊ k of a compact semisimple Lie algebra k and a solvable Lie algebra s
that is of type R.

Theorem 6.3.6 ([Pen74, Cor. II.5]).
Let G be a finite-dimensional Lie group and ρ a continuous unitary representation
of G. Then HO

ρ is dense if and only if ρ factors through a Lie group of type R.

In the setting where G is a possibly infinite-dimensional BCH Fréchet-Lie group,
this yields:
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Corollary 6.3.7. Let G be a possibly infinite-dimensional BCH Fréchet-Lie group.
Suppose that (ρ,Hρ) is a strongly-entire unitary representation of G. If ρ is injec-
tive, then any finite-dimensional Lie subgroup of G is of type R.

Proof. Let H be a finite-dimensional Lie subgroup of G. Then π := ρ|H is a
continuous unitary H-representation on Hπ := Hρ =: H. Since HO

ρ ⊆ HO
π , HO

π is
dense in H. As ρ is injective, it follows by Theorem 6.3.6 that H is of type R.

As an illustration: If ρ is injective and HO
ρ is dense, then G can not contain

a single copy of the ax + b group. On the other hand, Theorem 6.3.6 provides
ample examples of continuous representations that admit a dense set of strongly-
entire vectors. Indeed, simply take any continuous unitary representation of a
finite-dimensional Lie group of type R. The following examples show that also
infinite-dimensional Lie groups may admit a dense set of strongly-entire vectors.

Example 6.3.8 (Norm-continuous representations).
Let G be a BCH Fréchet-Lie group and let ρ : G→ U(Hρ) a unitary representation
of G which is continuous w.r.t. the norm-topology on U(Hρ). Equipped with the
norm topology, U(Hρ) is a Banach-Lie group with Lie algebra

u(Hρ) := {T ∈ B(Hρ) : T ∗ = −T } ,

and the continuous homomorphism ρ : G → U(Hρ) is automatically analytic by
[Nee06, Thm. IV.1.18]. This implies that Hωρ = Hρ. Let us show that we even

have HOb
ρ = Hρ. As the representation dρ : g → u(Hρ) is continuous, there exist

a continuous seminorm p on g s.t. ∥dρ(ξ)∥ ≤ p(ξ) for all ξ ∈ g [Tre67, Ch. I.7,
Prop. 7.7]. So ∥dρ(ξ1) · · · dρ(ξn)ψ∥ ≤ p(ξ1) · · · p(ξn)∥ψ∥, where ξj ∈ g for j ∈ N
and ψ ∈ Hρ. So if B ⊆ g is bounded, then with M := sup p(B) <∞ we get that

qB(ψ) :=

∞∑
n=0

1

n!
sup
ξi∈B

∥dρ(ξ1) · · · dρ(ξn)ψ∥ ≤
∞∑
n=0

Mn

n!
∥ψ∥ = eM∥ψ∥ <∞.

Using Lemma 6.2.20, this proves that HOb
ρ = Hρ.

Example 6.3.9 (Positive energy representations of Heisenberg groups).
We recall the construction of positive energy representations of Heisenberg groups,
and show that they admit a dense set of b-strongly-entire vectors. Let V be a real
Fréchet space and ω a non-degenerate continuous skew bilinear form V × V → R.
Let G := Heis(V, ω) be the corresponding Heisenberg group, so its underlying set
is T × V and it has multiplication (z1, v1) · (z2, v2) := (z1z2e

−iω(v1,v2), v1 + v2).
As V is a Frèchet space, it is Mackey complete by [KM97, Thm. I.4.11]. Using
[Nee06, Thm. V.1.8], this implies that G is regular. Let GC := Heis(VC, ω) be the
corresponding complexification. Let J be a compatible positive complex structure
on V , meaning that J ∗ω = ω and ω(v,J v) > 0 for any non-zero v ∈ V . The
positive-definite sesquilinear form ⟨v, w⟩ := ω(v,Jw) + iω(v, w) makes V into a
complex pre-Hilbert space, whose completion we denote by VJ . Notice that the
inclusion V → VJ is continuous. Equip the symmetric algebra S•(VJ ) with the

107



inner product satisfying

⟨v1 · · · vn, w1 · · ·wn⟩ =
∑
σ∈Sn

n∏
j=1

⟨vj , wσj ⟩, for vj , wj ∈ VJ . (6.3.1)

LetHρ be the corresponding Hilbert space completion of S•(VJ ). ThenHρ contains
and is generated by the “coherent states” ev :=

∑∞
n=0

1
n!v

n ∈ Hρ for v ∈ VJ , and
there is a unitary representation ρ of Heis(V, ω) on Hρ satisfying ([PS86, Sec. 9.5]):

ρ(z, v)ew = ze−
1
2∥v∥

2−⟨v,w⟩ev+w, for v, w ∈ V and z ∈ T.

A direct computation verifies the equation ρ(v1)ρ(v2) = e−iω(v1,v2)ρ(v1 + v2) for
v1, v2 ∈ V . Let Ω ∈ Hρ be the vacuum vector. The map

G→ C, (z, v) 7→ ⟨Ω, ρ(z, v)Ω⟩ = ze−
1
2∥v∥

2

is smooth, so it follows from [Nee10a, Thm. 7.2] that H∞
ρ contains the cyclic vector

Ω and is therefore dense in Hρ. So ρ is smooth. The infinitesimal g-action dρ sat-
isfies dρ(v)ψ = (c(v)− a(v))ψ for any v, w ∈ V and ψ ∈ S•(VJ ), where c(v)ψ = vψ
is the creation operator with core S•(VJ ) and a(v) := c(v)∗ is its adjoint, the an-
nihilation operator. From c(J v) = ic(v) and a(J v) = −ia(v) we obtain that the
C-linear extension of dρ to gC satisfies dρ(v + iw) = c(v + Jw) − a(v − Jw) for
v, w ∈ V .

To see that HOb
ρ is dense in Hρ, it suffices to show that it contains the cyclic vector

Ω, because HOb
ρ is G-invariant (cf. Lemma 6.3.19 below). Let B be the open unit-

ball in VJ . Let K ⊆ V be a bounded subset of the real Fréchet space V . Then K
is also bounded as subspace of VJ , and is thus contained in sB for some s > 0. If
v ∈ B, then ([BR97, p. 9])

∥ c(v)|Sn(VJ ) ∥ = ∥ a(v)|Sn+1(VJ ) ∥ <
√
n+ 1.

So if (vj)j∈N is a sequence in B, then supv1,...,vn∈B ∥dρ(vn) · · · dρ(v1)Ω∥ < 2n
√
n!

for any n ∈ N. Consequently,

qK(Ω) ≤ qsB(Ω) =
∞∑
n=0

sn

n!
sup
vj∈B

∥dρ(vn) · · · dρ(v1)Ω∥ <
∞∑
n=0

(2s)n√
n!

<∞.

It follows using Lemma 6.2.20 that Ω ∈ HOb
ρ . Hence HOb

ρ is dense in Hρ and ρ is
b-strongly-entire.
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6.3.2 Properties of HO
ρ and holomorphic extensions

Let (ρ,Hρ) be a smooth unitary representation of G. Throughout this section, we
assume in addition that G is a regular Lie group. Our goal is to determine various
properties of the locally convex space HO

ρ . These are summarized below:

Theorem 6.3.10. The locally convex space HO
ρ has the following properties:

1. The inclusion HO
ρ ↪→ H∞

ρ is continuous w.r.t. the weak topology on H∞
ρ .

2. HO
ρ is Hausdorff and complete.

3. HO
ρ is both G- and g-invariant.

4. The series
∑∞
m=0

1
m!dρ(η

m)ψ converges in HO
ρ for every ψ ∈ HO

ρ and η ∈ gC.
The corresponding map

gC ×HO
ρ → HO

ρ , (η, ψ) 7→
∞∑
m=0

1

m!
dρ(ηm)ψ =: ρ̃C(η)ψ (6.3.2)

is separately continuous and extends the map g×HO
ρ → HO

ρ , (η, ψ) 7→ ρ(eη)ψ.

In particular, the function gC → HO
ρ , η 7→ ρ̃C(η)ψ is entire for every ψ ∈ HO

ρ .

5. For any ψ ∈ HO
ρ , the orbit map G→ HO

ρ , g 7→ ρ(g)ψ is real-analytic.

Before proceeding with the proof of Theorem 6.3.10, we first mention some impor-
tant corollaries and related remarks.

Corollary 6.3.11. Assume that HO
ρ is dense in Hρ. Define the map

ρ̃C : gC → B(HO
ρ ), ρ̃C(η)v :=

∞∑
n=0

1

n!
dρ(ηn)v. (6.3.3)

Let U ⊆ gC be open and convex. Assume that U ∩ g is non-empty and open in
g. Suppose that the BCH series defines a complex-analytic map ∗ : U × U → gC.
Then ρ̃C(ξ ∗ η) = ρ̃C(ξ)ρ̃C(η) for any (ξ, η) ∈ U × U .

Proof. Define UR := U ∩ g. Let v, w ∈ HO
ρ ⊆ H∞

ρ . Recall from Remark 6.2.18 that

dρ(x)† = dρ(x∗) in L†(H∞
ρ ) for any x ∈ U(gC). Using Theorem 6.3.10(4) and the

fact that compositions of analytic maps are again analytic [BS71a, Thm. 6.4], it
follows that the two maps U2 → C given by

(ξ, η) 7→ ⟨v, ρ̃C(ξ)ρ̃C(η)w⟩ = ⟨ρ̃C(ξ∗)v, ρ̃C(η)w⟩,
(ξ, η) 7→ ⟨v, ρ̃C(ξ ∗ η)w⟩

are both complex-analytic. They agree on the real subspace U2
R, on which they both

equal (ξ, η) 7→ ⟨v, ρ(eξ)ρ(eη)w⟩ = ⟨v, ρ(eξeη)w⟩. It follows using Proposition 6.2.14
that they must be equal everywhere. Since HO

ρ is dense in Hρ, we find with

ξ, η ∈ U that ρ̃C(ξ)ρ̃C(η)w = ρ̃C(ξ ∗ η)w for every w ∈ HO
ρ , and therefore that

ρ̃C(ξ)ρ̃C(η) = ρ̃C(ξ ∗ η).
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Corollary 6.3.12. Let (ρ,Hρ) be a strongly-entire unitary G-representation and
define ρ̃C : gC → B(HO

ρ ) by equation (6.3.3). Let GC be a regular 1-connected
complex BCH Fréchet-Lie group with L(GC) = gC. Then there is a representation

ρC : GC → B(HO
ρ )

×

of GC on HO
ρ satisfying ρC(e

ξ) = ρ̃C(ξ) for all ξ ∈ gC, and for which the orbit map

GC → HO
ρ , g 7→ ρC(g)ψ is complex-analytic for every ψ ∈ HO

ρ .

Proof. As GC is a complex BCH Lie group, there are open symmetric convex 0-
neighborhoods U,U ′ ⊆ gC such that U ⊆ U ′, U ∩ g is open in g and the BCH
series ∗ defines a complex-analytic map ∗ : U × U → U ′ ⊆ gC. Shrinking U
and U ′ if necessary, we may further assume that the restriction of expGC

to U ′

is biholomorphic onto some open 1-neighborhood V of GC. Define the function
f : V → B(HO

ρ ) by f(e
ξ) := ρ̃C(ξ). In view of Corollary 6.3.11, f satisfies

f(eξeη) = f(eξ∗η) = ρ̃C(ξ ∗ η) = ρ̃C(ξ)ρ̃C(η) = f(eξ)f(eη), ∀ξ, η ∈ U, (6.3.4)

where the first equality follows from [Nee06, Thm. IV.2.8] and Proposition 6.2.15.
In particular f(eξ) ∈ B(HO

ρ )
× and f(eξ)−1 = f(e−ξ) for any ξ ∈ U . As GC

is a 1-connected topological group, (6.3.4) further implies that there is a group
homomorphism ρC : GC → B(HO

ρ )
× extending f (cf. [GN, Proposition C.2.1]). Let

ψ ∈ HO
ρ . As expGC

restricts to a biholomorphic map U ′ → V , it follows using
Theorem 6.3.10(4) that the map

V → HO
ρ , eξ 7→ ρC(e

ξ)ψ = f(eξ)ψ = ρ̃C(ξ)ψ, ξ ∈ U ′

is complex-analytic. As GC is a complex-analytic Lie group and V ⊆ GC is an
open 1-neighborhood, this implies that orbit map g 7→ ρC(g)ψ is complex-analytic
GC → HO

ρ . The map gC → HO
ρ , ξ 7→ ρC(e

ξ)ψ is therefore complex-analytic, and it
agrees by construction with the entire map ξ 7→ ρ̃(ξ)ψ on the open 0-neighborhood
U ′ of gC. It follows by Proposition 6.2.14 that they are equal everywhere, so
ρC(e

ξ)ψ = ρ̃(ξ)ψ for every ξ ∈ gC. Since this holds for all ψ ∈ HO
ρ , we conclude

that ρC(e
ξ) = ρ̃(ξ) for all ξ ∈ gC.

One might wonder whether or not the map in equation (6.3.2) is also jointly con-
tinuous. The following example shows that this is generally false:

Example 6.3.13. Consider the Frèchet-Lie group G = RN, equipped with the
product topology. Let g = RN be its Lie algebra. Notice that G is also regu-
lar and BCH. Consider the unitary representation of G on Hρ := ℓ2(N,C) de-
fined by (ρ(g)ψ)(k) := eig(k)ψ(k) for g ∈ G and ψ ∈ ℓ2(N,C). Letting C(N)

denote the space of sequences in C with only finitely many non-zero components,
the space H∞

ρ of smooth vectors is H∞
ρ = C(N) [Nee10a, Ex. 4.8]. Notice that

(dρ(ξ)ψ)(k) = iξ(k)ψ(k) for ξ ∈ gC and ψ ∈ C(N). The weak and strong topolo-
gies on H∞

ρ agree, and they both coincide with the locally convex inductive limit

topology on C(N) [JN19, Ex. 11]. This is the strongest locally convex topology on
C(N) for which the inclusion CN ↪→ C(N) is continuous for every N ∈ N. We claim
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in addition that HOb
ρ = HO

ρ = C(N) as locally convex spaces.

Let πk : CN → C, ψ 7→ ψ(k) be the projection onto the k-th component for k ∈ N.
Let ψ ∈ C(N). Then there exists N ∈ N s.t. ψ(k) = 0 for all k > N . Let B ⊆ gC be a
compact subset, and notice that B is contained in the compact set B′ :=

∏∞
k=1Bk,

where Bk := πk(B). Set M := sup{|ξ(k)| : ξ ∈ B′, 1 ≤ k ≤ N} <∞. Then

∥dρ(ξ1 · · · ξn)ψ∥2ℓ2 =

N∑
k=1

|ξ1(k) · · · ξn(k)ψ(k)|2 ≤M2n∥ψ∥2ℓ2 , ∀ξ1, · · · , ξn ∈ B′.

We thus obtain that

qB(ψ) ≤ qB′(ξ) =

∞∑
n=0

1

n!
sup
ξj∈B′

∥dρ(ξ1 · · · ξn)ψ∥ℓ2 ≤ eM∥ψ∥ℓ2 <∞. (6.3.5)

Hence ψ ∈ HO
ρ . So C(N) ⊆ HO

ρ . We also have HO
ρ ⊆ H∞

ρ = C(N), so HO
ρ = C(N).

Noticing that the constant M in (6.3.5) depends only on N and B, the estimate
(6.3.5) moreover shows that the inclusion CN ↪→ HO

ρ is continuous for every N ∈ N.
The locally convex inductive limit topology on C(N) is therefore finer than that of
HO
ρ . As the inclusion HO

ρ ↪→ H∞
ρ = C(N) is moreover continuous w.r.t. the weak

topology on H∞
ρ , by Theorem 6.3.10(1), it follows that HO

ρ = H∞
ρ = C(N) as locally

convex vector spaces. Since
∏∞
k=1Bk ⊆ RN is bounded whenever every Bk ⊆ R is

so, it is similarly shown that HOb
ρ = C(N) as locally convex vector spaces.

Now, it is shown in [Nee10a, Ex. 4.8] that the action

g× C(N) → ℓ2(N,C), (ξ, ψ) 7→ dρ(ξ)ψ

is not jointly continuous (w.r.t. any locally convex topology on C(N)). This also
implies that the map

gC × C(N) → C(N), (ξ, ψ) 7→
∞∑
k=0

1

k!
dρ(ξk)ψ

can not be jointly continuous.

Remark 6.3.14. Replacing ‘compact’ by ‘bounded’ and HO
ρ by HOb

ρ in the proof of
Theorem 6.3.10 (given shortly), one verifies that all statements in Theorem 6.3.10
remain true if HO

ρ is replaced by the locally convex space HOb
ρ . The inclusion

HOb
ρ ↪→ H∞

ρ is moreover evidently continuous w.r.t. the strong topology on H∞
ρ .

Remark 6.3.15. It may in certain situations be desirable to consider HOb
ρ instead

of HO
ρ . For example, if G is a Banach-Lie group, then the locally convex topology

on HOb
ρ is Fréchet. Since the map

gC ×HOb
ρ → HOb

ρ , (ξ, ψ) 7→
∞∑
m=0

1

m!
dρ(ηm)ψ = ρ̃(ξ)ψ (6.3.6)
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is separately continuous and linear in the HOb
ρ -variable, this implies using [Nee10a,

Prop. 5.1] that the function in (6.3.6) is jointly continuous, and is therefore entire.

In this case we consequently obtain a stronger analogue of Corollary 6.3.12. Indeed,
take U ⊆ gC as in Corollary 6.3.11, and suppose that the BCH series defines
a complex-analytic map ∗ : U × U → gC. The functions (ξ, η) 7→ ρ̃C(ξ)ρ̃C(η)v
and (ξ, η) 7→ ρ̃C(ξ ∗ η)v are then both complex-analytic U × U → HOb

ρ for every

v ∈ HOb
ρ . As they agree on UR × UR, the must be equal on U × U . Consequently,

with GC as in Corollary 6.3.12, we obtain a representation ρC : GC → B(HOb
ρ )×

that satisfies ρC(e
ξ) = ρ̃C(ξ) for all ξ in some 0-neighborhood of gC, and for which

the corresponding action GC×HOb
ρ → HOb

ρ is complex-analytic. We will come back
to this point in Section 6.5 below. Notice also that Example 6.3.13 above shows
that (6.3.6) need not be jointly continuous if G is only assumed to be Fréchet.

The proof of Theorem 6.3.10

Lemma 6.3.16. Let B ⊆ gC be compact and let ψ ∈ HO
ρ . Then 1

n!p
n
B(ψ) ≤ qB(ψ)

for any n ∈ N. In particular, the inclusion HO
ρ ↪→ H∞

ρ is continuous w.r.t. the
weak topology on H∞

ρ .

Proof. Let ψ ∈ HO
ρ . It is trivial that 1

n!p
n
B(ψ) ≤ qB(ψ). For the final statement,

consider the continuous seminorm pξ(ψ) := ∥dρ(ξ1 · · · ξn)ψ∥ on H∞
ρ for some ξ =

(ξ1, . . . , ξn) ∈ gn. Taking for B the finite set B := {ξ1, . . . , ξn} ⊆ gC, we obtain
that 1

n!pξ(ψ) ≤
1
n!p

n
B(ψ) ≤ qB(ψ).

Lemma 6.3.17. HO
ρ is both Hausdorff and complete.

Proof. It is clear that HO
ρ is Hausdorff, because H∞

ρ is so. Let us show that it is

complete. Let (ψα)α∈I be a Cauchy net in HO
ρ . Then it is also a Cauchy net in

H∞
ρ . The latter is complete [JN19, Prop. 3.19], where we use that G is a regular

Fréchet-Lie group. Thus ψα → ψ in H∞
ρ for some ψ ∈ H∞

ρ . We must show that

ψ ∈ HO
ρ and ψα → ψ in HO

ρ . Fix a compact set B ⊆ g. Let ϵ > 0. Choose ϵ0 > 0

such that ϵ0(1 + ϵ0) < ϵ. Let t > 1 be such that t
t−1 < 1 + ϵ0. As (ψα)α∈I is

a Cauchy net in HO
ρ , there exists γ ∈ I such that qtB(ψα − ψβ) < ϵ0 whenever

α, β ≥ γ. In particular 1
k!p

k
B(ψα − ψβ) < ϵ0t

−k for any α, β ≥ γ and k ∈ N≥0.
Consequently, for any ξi ∈ B with i ∈ {1, . . . , k} we have (using that ψα → ψ in
H∞
ρ ):

1

k!
∥dρ(ξ1 · · · ξk)(ψ−ψβ)∥ =

1

k!
lim
α
∥dρ(ξ1 · · · ξk)(ψα−ψβ)∥ ≤ ϵ0t−k for β ≥ γ.

Thus 1
k!p

k
B(ψ − ψβ) ≤ ϵ0t−k for any β ≥ γ. Hence

qB(ψ−ψβ) =
∞∑
k=0

1

k!
pkB(ψ−ψβ) ≤ ϵ0

∞∑
k=0

t−k =
t

t− 1
ϵ0 ≤ ϵ0(1+ϵ0) < ϵ, ∀β ≥ γ

This shows that qB(ψ) ≤ qB(ψ−ψβ)+qB(ψβ) <∞ and that qB(ψ−ψβ) < ϵ for all
β ≥ γ. As B and ϵ were arbitrary, we conclude (using the proof of Lemma 6.2.20)
that ψ ∈ HO

ρ and ψα → ψ in HO
ρ .
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Lemma 6.3.18. Let B,B0 ⊆ gC be compact subsets and let t > 1. Then there
exists a compact subset B′ ⊆ gC and some C > 0, both depending on B,B0 and t,
such that B ⊆ B′ and

1

m!

∞∑
n=0

1

n!
sup
ηj∈B0

pnB(dρ(η1 · · · ηm)ψ) ≤ Ct−mqB′(ψ) (6.3.7)

for every m ∈ N≥0 and ψ ∈ HO
ρ . In particular, we have

1

m!
qB(dρ(η

m)ψ) ≤ Ct−mqB′(ψ)

for any ψ ∈ HO
ρ , η ∈ B0 and m ∈ N≥0.

Proof. We may assume that B0 and B are both balanced. Define B′′ := B ∪ B0,
which is again compact and balanced in gC. For any η1, . . . , ηm ∈ B0 and ψ ∈ HO

ρ

we have
pnB(dρ(η1 · · · ηm)ψ) ≤ pn+mB′′ (ψ) = t−(n+m)pn+mtB′′ (ψ).

Hence supηj∈B0
pnB(dρ(η1 · · · ηm)ψ) ≤ t−(n+m)pn+mtB′′ (ψ). It follows that

∞∑
n=0

1

n!
sup
ηj∈B0

pnB(dρ(η1 · · · ηm)ψ) ≤ t−m
∞∑
n=0

t−n

n!
pn+mtB′′ (ψ)

≤ t−m
( ∞∑
n=0

t−n
)( ∞∑

n=0

1

n!
pn+mtB′′ (ψ)

)

=
t−m

1− t−1

∞∑
n=0

1

n!
pn+mtB′′ (ψ)

Let s > 2. Notice that
∑∞
n=0

(n+m)!
n! s−(n+m) <∞, and that

∞∑
n=0

1

n!
pn+mtB′′ (ψ) =

∞∑
n=0

(
(n+m)!

n!
s−(n+m) · 1

(n+m)!
pn+mstB′′(ψ)

)

≤
( ∞∑
n=0

(n+m)!

n!
s−(n+m)

)
· qstB′′(ψ).

Consequently, with Cm :=
∑∞
n=0

(n+m)!
m!n! s

−(n+m) > 0 and B′ := stB′′, we have:

1

m!

∞∑
n=0

1

n!
sup
ηj∈B0

pnB(dρ(η1 · · · ηm)ψ) ≤ Cm
t−m

1− t−1
qB′(ψ). (6.3.8)

Using
∑N
k=0

(
N
k

)
= 2N , notice that

∑∞
m=0 Cm =

∑∞
N=0

(
2
s

)N
<∞, and hence the

sequence (Cm)m∈N≥0
is bounded. So there exists C > 0 with Cm ≤ (1− t−1)C for

all m ∈ N≥0. Now simply observe using (6.3.8) that (6.3.7) holds for this C and
B′. Notice also that B ⊆ B′.
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Lemma 6.3.19. HO
ρ is both G- and g-invariant.

Proof. Let ψ ∈ HO
ρ and let B ⊆ gC be compact. As the adjoint action of G on

gC is continuous, Adg(B) is again compact in gC for every g ∈ G. Since ρ(g) is
unitary, we find that qB(ρ(g)ψ) = qAdg−1 (B)(ψ) < ∞. Thus ρ(g)ψ ∈ HO

ρ and so

HO
ρ is G-invariant. The g-invariance of HO

ρ is immediate from Lemma 6.3.18.

Lemma 6.3.20. Define for every m ∈ N≥0 the function

fm : gC ×HO
ρ → HO

ρ , fm(ξ, ψ) :=
1

m!
dρ(ξm)ψ.

The series
∑∞
m=0 fm(ξ, ψ) converges in HO

ρ for every ξ ∈ gC and ψ ∈ HO
ρ . It

defines a separately continuous map

f : gC ×HO
ρ → HO

ρ , f(ξ, ψ) :=

∞∑
m=0

fm(ξ, ψ). (6.3.9)

In particular, the map gC → HO
ρ , ξ 7→ f(ξ, ψ) is entire for every ψ ∈ HO

ρ .

Proof. Let ξ ∈ gC, t > 1 and let B ⊆ gC be a compact subset. According to
Lemma 6.3.18, there is a constant C > 0 and a compact subset B′ ⊆ gC s.t.
1
m!qB(dρ(ξ

m)ψ) ≤ Ct−mqB′(ψ) for every m ∈ N≥0 and ψ ∈ HO
ρ . So for ψ ∈ HO

ρ

we have
∞∑
m=0

1

m!
qB(dρ(ξ

m)ψ) ≤ C
( ∞∑
m=0

t−m
)
qB′(ψ) =

C

1− t−1
qB′(ψ) <∞.

We thus find that the series
∑∞
m=0 fm(ξ, ψ) converges in HO

ρ , and that

qB(f(ξ, ψ)) ≤
C

1− t−1
qB′(ψ), ∀ψ ∈ HO

ρ .

In particular, the linear map HO
ρ → HO

ρ , ψ 7→ f(ξ, ψ) is continuous.

We now show that f is also separately continuous in the ξ-variable. Take ψ ∈ HO
ρ

and define fψ(ξ) := f(ξ, ψ) for ξ ∈ gC. Let B0 ⊆ gC be a compact subset. Consider
the functions hm : B0 → HO

ρ defined by hm(ξ) := 1
m!dρ(ξ

m)ψ for m ∈ N≥0. Define

also h := fψ
∣∣
B0

. So h(ξ) =
∑∞
m=0 hm(ξ) = fψ(ξ) for ξ ∈ B0. We show that

hm is continuous for every m ∈ N≥0 and that
∑N
m=0 hm → h uniformly on B0 as

N →∞. This will imply that h is continuous.

Let m ∈ N≥0. Assume that (ηn)n∈N is a sequence in B0 with ηn → η for some
η ∈ B0. Let B ⊆ gC be a compact subset and let t > 1. Using Lemma 6.3.18,
there exists a constant C > 0 and a compact subset B′ ⊆ gC containing B such
that (6.3.7) holds true. Let m ∈ N≥0. Notice that

qB(hm(ηn)− hm(η)) =
1

m!
qB(dρ(η

m
n − ηm)ψ) =

1

m!

∞∑
k=0

1

k!
pkB(dρ(η

m
n − ηm)ψ).

(6.3.10)
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Since the multilinear map

gmC → H∞
ρ , (ξ1, · · · , ξm) 7→ dρ(ξ1, · · · , ξm)ψ

is continuous w.r.t. the strong topology on H∞
ρ [JN19, Lem. 3.22] and pkB is a

continuous seminorm on H∞
ρ , it follows that the function

τN : B0 → [0,∞), τN (ξ) :=

N∑
k=0

1

k!
pkB(dρ(ξ

m − ηm)ψ)

is continuous for every N ∈ N. Moreover, in view of (6.3.7) we have that

∞∑
k=0

1

k!
sup
ξ∈B0

pkB(dρ(ξ
m − ηm)ψ) ≤ 2

∞∑
k=0

1

k!
sup
ζ∈B0

pkB(dρ(ζ
m)ψ) ≤ 2C

m!

tm
qB′(ψ) <∞.

It follows that the continuous functions τN converge uniformly to

τ : B0 → [0,∞), τ(ξ) :=

∞∑
k=0

1

k!
pkB(dρ(ξ

m − ηm)ψ).

It follows that τ is continuous. In particular we obtain that τ(ηn) → τ(η) = 0 as
n→∞, which in view of equation (6.3.10) implies that

qB(hm(ηn)− hm(η))→ 0 as n→∞.

We can thus conclude that hm is continuous for every m ∈ N≥0.

With t > 1, B,B′ and C > 0 as above, notice using Lemma 6.3.18 that

∞∑
m=0

sup
ξ∈B0

qB(hm(ξ)) =

∞∑
m=0

1

m!
sup
ξ∈B0

qB(dρ(ξ
m)ψ) ≤ C

1− t−1
qB′(ψ) <∞.

Hence
∑N
m=0 hm → h uniformly on B0 as N →∞. Thus h = fψ

∣∣
B0

is continuous.

We have shown that fψ
∣∣
B0

: B0 → HO
ρ is continuous for every compact subset

B0 ⊆ gC. Since gC is Fréchet and thus first-countable, it is compactly generated
in the sense that a set S ⊆ gC is open if and only if S ∩ B0 is open in B0 for
every compact B0 ⊆ gC. From the fact that fψ

∣∣
B0

is continuous for every compact

subset B0 ⊆ gC, it therefore follows that f
ψ is continuous. So f is indeed separately

continuous.

Lemma 6.3.21. Consider the function f in (6.3.9). For any ξ ∈ g and ψ ∈ HO
ρ ,

we have f(ξ, ψ) = ρ(eξ)ψ.

Proof. Let ψ ∈ HO
ρ . Then ψ is an analytic vector for ρ, by Corollary 6.2.24. In

view of Lemma 6.3.20, we find that the two maps ξ 7→ ρ(eξ)ψ and ξ 7→ f(ξ, ψ) are
both real analytic as maps g→ Hρ. They moreover have the same image under the
jet-projection j∞0 : Cω(g,Hρ) → P (g,Hρ). Using Proposition 6.2.15, we conclude
that ρ(eξ)ψ = f(ξ, ψ) for all ξ ∈ g.
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Lemma 6.3.22. The orbit map G→ HO
ρ , g 7→ ρ(g)v is analytic for any ψ ∈ HO

ρ .

Proof. Let ψ ∈ HO
ρ . As the Lie group G is BCH, Lemma 6.3.20 and Lemma 6.3.21

together imply that the map G → HO
ρ , g 7→ ρ(g)ψ is analytic on U for some

1-neighborhood U ⊆ G, which implies the assertion.

6.4 A general approach to holomorphic induction

In this section, we define and study a notion of holomorphic induction for unitary
representations of Lie groups. The presented definition and results extend that
of [Nee13], by removing the requirement of norm-continuity of the representation
being induced. The precise setting we consider is as described below.

Let G be a connected BCH Fréchet-Lie group with Lie algebra g. Let H ⊆ G be
a connected and closed subgroup of G, and assume that H is a locally exponential
Lie subgroup of G (cf. [Nee06, Def. IV.3.2]). Let h := L(H) be its Lie algebra,
which we identify as Lie subalgebra of g using the pushforward of the inclusion
H ↪→ G. We then have expG(ξ) = expH(ξ) for all ξ ∈ h ⊆ g. We furthermore have:

Lemma 6.4.1. There exists an open neighborhood U of g s.t. expG|U is an analytic
diffeomorphism onto an open neighborhood in G and s.t.

expG(U ∩ h) = expG(U) ∩H.

In particular, H is BCH and an analytic embedded Lie subgroup of G.

Proof. Since H is a locally exponential Lie subgroup of G by assumption, it follows
using [Nee06, Thm. IV.3.3] that there exists an open neighborhood U ⊆ g such that
expG|U is a diffeomorphism onto an open 1-neighborhood in G and expG(U ∩ h) =
expG(U) ∩H. Consequently, H is an analytic embedded Lie subgroup of G, and
the exponential map expG can be used to obtain analytic slice charts for H. Since
G is BCH, it follows that also H is BCH.

Let θ : gC → gC be the conjugation defined by θ(ξ + iη) = ξ − iη for ξ, η ∈ g. We
assume given a triangular decomposition

gC = n− ⊕ hC ⊕ n+,

where n± and hC are closed Lie subalgebras of gC satisfying θ(n±) ⊆ n∓, θ(hC) ⊆ hC
and [hC, n±] ⊆ n±. Set b± := n± ⋊ hC.

The structure of this chapter is as follows. In Section 6.4.1 we establish some nota-
tion and preliminary definitions, in particular specifying a certain space of functions
on G that takes the role usually taken by the holomorphic sections of a complex
homogeneous vector bundle over G/H. In Section 6.4.2 we present the definition
of holomorphically induced representations and establish an equivalent characteri-
zation. We then proceed in Section 6.4.3, Section 6.4.4 and Section 6.4.5 to study
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the most important properties enjoyed by holomorphically induced representations.

As the theory of this section no longer has a clear interpretation in terms of holo-
morphic maps, we present in Section 6.5 a stronger notion that involves complex
geometry. The approach presented there depends crucially on the availability of a
dense set of b-strongly-entire vectors in the representation being induced.

6.4.1 A substitute for holomorphic sections

Let (σ, Vσ) be an analytic unitary representation of H. Let us establish some
notation and preliminary definitions.

Definition 6.4.2. For ξ ∈ g, define the differential operators Lv(ξ) and Lv(ξ)r on
C∞(G,Vσ) by

(Lv(ξ)f)(g) :=
d

dt

∣∣∣∣
t=0

f(getξ),

(Lv(ξ)rf)(g) :=
d

dt

∣∣∣∣
t=0

f(e−tξg), ∀g ∈ G, f ∈ C∞(G,Vσ).

Extend both ξ 7→ Lv(ξ) and ξ 7→ Lv(ξ)r C-linearly to gC and further to algebra
homomorphisms on U(gC), so we have e.g. Lv(ξ1···ξn)r = Lv(ξ1)r · · · Lv(ξn)r for all
ξk ∈ gC and k ∈ {1, . . . , n}.

Remark 6.4.3. We thus adopt the convention that for ξ ∈ g, v(ξ) denotes the
left-invariant vector field on G associated to ξ ∈ g whereas v(ξ)r denotes the right-
invariant one.

Definition 6.4.4. Let D ⊆ V ωσ be a subspace that is dense in Vσ.

— An extension of dσ to b± with domain D is a Lie algebra homomorphism
χ : b± → L(D) such that χ(ξ) = dσ(ξ)|D for all ξ ∈ hC. We call (σ, χ) an
(H, b−)-extension pair with domain D.

— The trivial extension of dσ to b± with domain D is defined by letting n± act
trivially on D.

Definition 6.4.5. For k ∈ {1, 2}, let (σk, χk) be an (H, b−)-extension pair with
domain Dk. We say that (σ1, χ) and (σ2, χ2) are unitarily equivalent if there is a
unitary isomorphism U : Vσ1

→ Vσ2
of H-representation such that UD1 = D2 and

Uχ1(ξ)v = χ2(ξ)Uv for all ξ ∈ b− and v ∈ D1. In this case we write (σ1, χ1) ∼=
(σ2, χ2).

Definition 6.4.6. For k ∈ {1, 2}, let (σk, χk) be an (H, b−)-extension pair with
domain Dk. Define the direct sum (σ1, χ1)⊕ (σ2, χ2) := (σ1 ⊕ σ2, χ1 ⊕ χ2), where
χ1 ⊕ χ2 is defined by

χ1 ⊕ χ2 : b− → L(D1 ⊕D2), (χ1 ⊕ χ2)(ξ)(v1, v2) = (χ1(ξ)v1, χ2(ξ)v2).
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Definition 6.4.7. Let (σ, χ) be an (H, b−)-extension pair with domain D. We
say that (σ, χ) is decomposable if (σ, χ) ∼= (σ1, χ1) ⊕ (σ2, χ2) for some non-trivial
(H, b−)-extension pairs (σ1, χ1) and (σ2, χ2). We say that (σ, χ) is indecomposable
if it is not decomposable.

Recall the definition of the involutions τ, θ and (−)∗ on U(gC), specified in Defini-
tion 6.2.16. Recalling that θ(ξ + iη) = θ(ξ − iη) for ξ, η ∈ g, the involutions τ and
(−)∗ satisfy τ(ξ) = −ξ and ξ∗ = −θ(ξ) for ξ ∈ gC. Extensions are used to specify
a suitable G-subrepresentation of Cω(G,Vσ)

H :

Definition 6.4.8. Let (σ, χ) be an (H, b−)-extension pair with domain D. Define

Cω(G,Vσ)
H :=

{
f ∈ Cω(G,Vσ) : f(gh) = σ(h)−1f(g), ∀ g ∈ G, h ∈ H

}
Cω(G,Vσ)

H,χ :=
{
f ∈ Cω(G,Vσ)H : ⟨v,Lv(ξ)f⟩ = −⟨χ(ξ∗)v, f⟩, ∀ξ ∈ b+, v ∈ D

}
.

Let us next record an important property regarding Cω(G,Vσ)
H,χ:

Proposition 6.4.9. Let (σ, χ) be an (H, b−)-extension pair with domain D. Let
f ∈ Cω(G,Vσ)H,χ. Then

f(g) ∈ dom(χ(x∗)∗) and (Lv(τ(x))f)(g) = χ(x∗)∗f(g), ∀x ∈ U(b+), ∀g ∈ G.

Proof. Let v ∈ D. Suppose that x = ξ1 · · · ξn for n ∈ N and ξi ∈ b+. Observe
that f(g) ∈ dom(χ(η∗)∗) and (Lv(η)f)(g) = −χ(η∗)∗f(g) for any g ∈ G and
η ∈ b+, as a consequence of Definition 6.4.8. It follows by induction on n ∈ N that
⟨v,Lv(ξ1···ξn)f⟩ = (−1)n⟨χ(ξ∗1 · · · ξ∗n)v, f⟩. This implies ⟨v,Lv(τ(x))f⟩ = ⟨χ(x∗)v, f⟩
for any x ∈ U(b+) and v ∈ D. The assertion follows.

6.4.2 Holomorphically induced representations

We now define holomorphically induced representations. Fix throughout the sec-
tion an (H, b−)-extension pair (σ, χ) with a domain Dχ ⊆ V ωσ that is dense in Vσ.
Let (ρ,Hρ) be a unitary representation of G.

Remark 6.4.10. The theory of holomorphic induction presented in the upcoming
section makes use of reproducing kernel Hilbert spaces. For more details thereon,
one may refer e.g. to [Nee00, Ch. I-II]. The most relevant properties are recalled
in Section 6.9.1 below.

Definition 6.4.11. We say that (ρ,Hρ) is holomorphically induced from (σ, χ) if
there exists a G-equivariant injective linear map Φ : Hρ ↪→ Map(G,Vσ)

H satisfying
the following conditions:

1. The point evaluation Ex : Hρ → Vσ, Ex(ψ) := Φψ(x) is continuous for every
x ∈ G.

2. ExE∗x = idVσ
for every x ∈ G.

3. Dχ =
{
v ∈ Vσ : Φ(E∗e v) ∈ Cω(G,Vσ)H,χ

}
.
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Remark 6.4.12. The first condition entails that (ρ,Hρ) is unitarily equivalent to
the natural G-representation on the reproducing kernel Hilbert space HQ, where
Q ∈ C(G × G,B(Vσ))H×H is the positive definite and G-invariant kernel defined
by Q(x, y) := ExE∗y , cf. Theorem 6.9.3 and Proposition 6.9.5 below.

We have the following equivalent characterization, whose proof comprises the re-
mainder of the section:

Theorem 6.4.13. The following assertions are equivalent.

1. The G-representation (ρ,Hρ) is holomorphically induced from the (H, b−)-
extension pair (σ, χ).

2. There is a closed H-invariant subspace V ⊆ Hρ with the following properties:

(a) V is cyclic for the G-representation Hρ.
(b) Dχ̃ := V ∩Hωρ satisfies dρ(n−)Dχ̃ ⊆ Dχ̃.
(c) (σ, χ) is unitarily equivalent to (σ̃, χ̃), where (σ̃, χ̃) is the (H, b−)-extension

pair defined by

σ̃ : H → U(V ), χ̃ : b− → L(Dχ̃),
σ̃(h) := ρ(h)|V , χ̃(ξ) := dρ(ξ)|Dχ̃

.

In particular, Dχ̃ is dense in V .

If these equivalent assertions are satisfied, then ρ is an analytic G-representation.

We proceed with the proof of Theorem 6.4.13. We have the following simple but
important observation:

Lemma 6.4.14. Let Φ : Hρ ↪→ Map(G,Vσ)
H be a G-equivariant injective linear

map. Assume that the point evaluation Ex(ψ) := Φψ(x) is continuous for every
x ∈ G. Define fv := Φ(E∗e v) ∈ Map(G,Vσ)

H for v ∈ Vσ. Then:

1. Eg = Eeρ(g)−1 for any g ∈ G.

2. Φψ(g) = Eeρ(g)−1ψ for any ψ ∈ Hρ. In particular, fv(g) = Eeρ(g)−1E∗e v for
v ∈ Vσ.

3. Let v ∈ Vσ. Then

E∗e v ∈ Hωρ ⇐⇒ fv ∈ Cω(G,Vσ)H ⇐⇒ ⟨v, fv⟩ ∈ Cω(G,C).

Proof.

1. As Φ is G-equivariant, we have Egψ = Φψ(g) = Φρ(g)−1ψ(e) = Eeρ(g)−1ψ for
any ψ ∈ Hρ.

2. This is immediate from the first assertion.
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3. Let v ∈ Vσ. If E∗e v ∈ Hωρ , then the orbit map g 7→ ρ(g)E∗e v is analytic
G → Hρ. It follows that fv(g) = Eeρ(g)−1E∗e v is analytic G → Vσ, which in
turn implies that ⟨v, fv⟩ ∈ Cω(G,C). Assume that ⟨v, fv⟩ ∈ Cω(G,C). Then
g 7→ ⟨E∗e v, ρ(g)E∗e v⟩Hρ = ⟨v, fv(g−1)⟩V is analytic. As G is a BCH Fréchet-Lie
group, this implies using [Nee11, Thm. 5.2] that E∗e v ∈ Hωρ .

We first prove that (1) =⇒ (2) in Theorem 6.4.13. Assume that ρ is holomor-
phically induced from (σ, χ). Let the map Φ : Hρ → Map(G,Vσ)

H satisfy the
conditions in Definition 6.4.11. Let Ex := evx ◦Φ be the point evaluation at x ∈ G.
We write fv := Φ(E∗e v) ∈ Cω(G,Vσ)H,χ for v ∈ Dχ.

We show that the H-invariant subspace W := E∗eVσ ⊆ Hρ satisfies the conditions
in Theorem 6.4.13. Define Dχ̃ := E∗eDχ ⊆ W . By Theorem 6.9.3 we know that
ρ(G)W =

⋃
g∈G E∗gVσ is total in Hρ, so that W is cyclic for ρ. It is moreover

immediate from Lemma 6.4.14 that Dχ̃ ⊆ Hωρ . Because Dχ̃ is dense in the cyclic
subspace W and Hωρ is G-invariant, we obtain that Hωρ is dense in Hρ. Hence ρ is
analytic.

Lemma 6.4.15. Let v ∈ Dχ. The following assertions hold true:

1. Eeρ(g)E∗e v ∈ dom(χ(x∗)∗) and Eedρ(x)ρ(g)E∗e v = χ(x∗)∗Eeρ(g)E∗e v for any
x ∈ U(b+) and g ∈ G.

2. dρ(b−)Dχ̃ ⊆ Dχ̃ and dρ(x)E∗e v = E∗eχ(x)v for any x ∈ U(b−).

Proof.

1. Let x ∈ U(b+). Since fv ∈ Cω(G,Vσ)H,χ, we obtain from Proposition 6.4.9
that fv(e) ⊆ dom(χ(x∗)∗) and that Lv(τ(x))fv = χ(x∗)∗fv. On the other
hand, notice using the formula fv(g) = Eeρ(g)−1E∗e v that (Lv(τ(x))fv)(g) =
Eedρ(x)ρ(g)−1E∗e v holds true for any g ∈ G, say by induction on the degree of
x. We thus obtain that Eedρ(x)ρ(g)−1E∗e v = χ(x∗)∗fv(g) = χ(x∗)∗Eeρ(g)−1E∗e v
for any g ∈ G.

2. Let x ∈ U(b−). Recall from Lemma 6.4.14 that Dχ̃ ⊆ Hωρ . Let ψ ∈ ρ(G)Dχ̃.
Using the first assertion, observe that

⟨E∗eχ(x)v, ψ⟩ = ⟨v, χ(x)∗Eeψ⟩ = ⟨v, Eedρ(x∗)ψ⟩ = ⟨dρ(x)E∗e v, ψ⟩.

As Dχ̃ is cyclic for G in Hρ, it follows that E∗eχ(x)v = dρ(x)E∗e v. In particular
dρ(b−)Dχ̃ ⊆ Dχ̃.

Define the unitary H-action σ̃ on W by σ̃(h) = ρ(h)|W . Consider the extension
χ̃(ξ) := dρ(ξ)|Dχ̃

of dσ̃ to b−, whose domain is Dχ̃. By Lemma 6.4.15, E∗e defines

a unitary equivalence between (σ, χ) and (σ̃, χ̃). In particular, it follows that Dχ̃
is dense in W , because Dχ is dense in Vσ by assumption.

Lemma 6.4.16. Dχ̃ =W ∩Hωρ .
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Proof. The inclusion Dχ̃ ⊆W ∩Hωρ follows from Lemma 6.4.14. Let w ∈W ∩Hωρ .
Then w = E∗e v for some v ∈ Vσ. We must show that v ∈ Dχ. Lemma 6.4.14 implies
that fv ∈ Cω(G,Vσ)

H . Let v2 ∈ Dχ and ξ ∈ b+. Using Lemma 6.4.15 and the
formula fv(g) = Eeρ(g)−1E∗e v we obtain:

⟨v2, (Lv(ξ)fv)(g)⟩ = −⟨dρ(ξ∗)E∗e v2, ρ(g)−1E∗e v⟩ = −⟨χ(ξ∗)v2, Eeρ(g)−1E∗e v⟩
= −⟨χ(ξ∗)v2, fv(g)⟩.

It follows that fv ∈ Cω(G,Vσ)H,χ. By the third property in Definition 6.4.11, this
means that v ∈ Dχ.

This completes the proof of (1) =⇒ (2) in Theorem 6.4.13. The converse is
Lemma 6.4.17 below:

Lemma 6.4.17. Let (ρ,Hρ) be a unitary representation of G. Let V ⊆ Hρ be
a closed H-invariant subspace. Define an H-representation σ on V by σ(h) :=
ρ(h)|V . Set Dχ = V ∩ Hωρ . Assume that ρ(G)V is total in Hρ, that Dχ is dense
in Vσ and that dρ(n−)Dχ ⊆ Dχ. Define the extension χ(ξ)v := dρ(ξ)v of dσ to b−
with domain Dχ, where ξ ∈ b− and v ∈ Dχ. Then ρ is holomorphically induced
from (σ, χ).

Proof. Let pV : Hρ → Vσ denote the orthogonal projection onto Vσ. For ψ ∈ Hρ,
define Φψ(g) := pV ρ(g)

−1ψ. Consider the linear map

Φ : Hρ → C(G,Vσ)
H , ψ 7→ Φψ.

It is clear that Φ is G-equivariant and that the point-evaluation Eg = pV ρ(g)
−1

is continuous for any g ∈ G. The map Φ is injective because Φψ = 0 is equiva-
lent to ψ ⊥ ρ(G)V and ρ(G)V is total in Hρ, by assumption. Notice next that
E∗g v = ρ(g)v for any v ∈ V and so EgE∗g = idV . Define V 0 := {v ∈ V : Φv ∈
Cω(G,Vσ)

H,χ}. It remains to show that Dχ = V 0. It is immediate from the
third assertion in Lemma 6.4.14 that V 0 ⊆ Dχ. Suppose conversely that v ∈ Dχ.
By Lemma 6.4.14, we have Φv ∈ Cω(G,Vσ)

H . Let ξ ∈ b+ and w ∈ Dχ. Using
Lv(ξ)Φv(g) = −pV dρ(ξ)ρ(g)−1v, we find that

⟨w,Lv(ξ)Φv(g)⟩ = −⟨dρ(ξ∗)w, ρ(g)−1v⟩ = −⟨χ(ξ∗)w, ρ(g)−1v⟩ = −⟨χ(ξ∗)w,Φv(g)⟩.

Thus Φv ∈ Cω(G,Vσ)H,χ, which means that v ∈ V 0. Thus V 0 = Dχ.

6.4.3 Uniqueness

In the following, we determine that there is up to unitary equivalence at most one
unitary G-representation that is holomorphically induced from a given (H, b−)-
extension pair. Let (σ, χ) be such an (H, b−)-extension pair, whose domainDχ ⊆ V ωσ
is dense in Vσ. Let (ρ,Hρ) be a unitary representation of G.

Definition 6.4.18. We say that (σ, χ) is holomorphically inducible to G if there
is a unitary G-representation which is holomorphically induced from (σ, χ).
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Proposition 6.4.19. Assume that ρ is holomorphically induced from (σ, χ). Let
the map Φ : Hρ ↪→ Map(G,Vσ)

H satisfy the conditions in Definition 6.4.11 and let
Ex := evx ◦Φ be the point evaluation at x ∈ G. Define:

F : G→ B(Vσ), F (g) := Eeρ(g)E∗e .

Then F satisfies the following properties:

1. F (e) = idVσ .

2. The function Q : G×G→ B(Vσ), Q(x, y) := F (x−1y) is positive definite (cf.
Definition 6.9.2).

3. Dχ = { v ∈ Vσ : g 7→ ⟨v, F (g)v⟩ is real-analytic G→ C }.

4. For all v, w ∈ Dχ and g ∈ G, ξ ∈ b+ we have:[
Lv(ξ)r ⟨w,Fv⟩

]
(g) = −⟨χ(ξ∗)w,F (g)v⟩. (6.4.1)

Finally, ρ is unitarily equivalent to the G-representation on the reproducing kernel
Hilbert space HQ.

Proof. Define the Q̃ : G × G → B(Vσ) by Q̃(x, y) := ExE∗y , which is positive-
definite by Theorem 6.9.3. In view of the first assertion in Lemma 6.4.14, we have
Q̃(x, y)v = Eeρ(x−1y)E∗e v = F (x−1y)v = Q(x, y)v for any v ∈ Vσ. Thus Q̃ = Q. In
particular, Q is positive definite and F (e) = Q(e, e) = idVσ

. Let v ∈ Vσ. Writing
fv := Φ(E∗e v), notice that fv(g) = F (g−1)v for g ∈ G. We find that E∗e v ∈ Hωρ if
and only if ⟨v, Fv⟩ ∈ Cω(G,C), using Lemma 6.4.14. Then

Dχ =
{
v ∈ Vσ : E∗e v ∈ Hωρ

}
= { v ∈ Vσ : ⟨v, Fv⟩ ∈ Cω(G,C) } ,

where we used Lemma 6.4.16 in the first equality. Finally, notice that

⟨w,F (g)v⟩ = ⟨E∗ew, ρ(g)E∗e v⟩ for v, w ∈ Dχ and g ∈ G.

It thus follows from Lemma 6.4.15 that F satisfies (6.4.1) for all g ∈ G and ξ ∈ b+.
The final statement is immediate from Proposition 6.9.5.

The next result, Theorem 6.4.20, gives a characterization of (σ, χ) being holomor-
phically inducible in terms B(Vσ)-valued positive-definite functions on G.

Theorem 6.4.20. The following assertions are equivalent:

1. (σ, χ) is holomorphically inducible.

2. There is a function F : G → B(Vσ) satisfying the properties in Proposi-
tion 6.4.19.

Assume that these assertions are valid. Let F : G → B(Vσ) satisfy the conditions
in Proposition 6.4.19. Then F (g)∗ = F (g−1) for all g ∈ G. Moreover, for v ∈ Dχ
and w ∈ Vσ we have:[

Lv(x+)rLv(x−)⟨w,Fv⟩
]
(g) = ⟨w,χ(τ(x+)∗)∗F (g)χ(x−)v⟩, (6.4.2)[

Lv(x+x−)⟨w,Fv⟩
]
(e) = ⟨w,χ(x∗+)∗χ(x−)v⟩, (6.4.3)

for all g ∈ G and x± ∈ U(b±). Finally, the function F : G→ B(Vσ) is unique.
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Proof. The implication (1) =⇒ (2) is immediate from Proposition 6.4.19. Con-
versely, let F : G → B(Vσ) be a function satisfying the conditions in Propo-
sition 6.4.19. Define Q(x, y) := F (x−1y) for x, y ∈ G. Let Hρ be the corre-
sponding reproducing kernel Hilbert space. Using Proposition 6.9.5 we obtain a
unitary representation ρ of G on Hρ and a G-equivariant injective linear map
Φ : Hρ → Map(G,Vσ)

H for which the point evaluation Ex := evx ◦Φ is continuous
and satisfies Ex = Eeρ(x)−1 for every x ∈ G. From F (e) = idVσ

it follows that
Q(x, x) = idVσ for every x ∈ G. Define fv := Φ(E∗e v) for v ∈ Vσ.

To see that (1) holds true, it remains only to show that

Dχ =
{
v ∈ Vσ : fv ∈ Cω(G,Vσ)H,χ

}
.

Let x ∈ G and v ∈ Vσ. From the equations fv(x) = ExE∗e v = Q(x, e)v = F (x−1)v
and ExE∗e v = Eeρ(x)E∗e v, we conclude that F (x)v = Eeρ(x)E∗e v = fv(x

−1). It
follows that

Dχ = { v ∈ Vσ : ⟨v, Fv⟩ ∈ Cω(G,C) } =
{
v ∈ Vσ : fv ∈ Cω(G,Vσ)H

}
,

where Lemma 6.4.14 was used in the second equality. Assume that fv ∈ Cω(G,Vσ)H .
Let w ∈ Dχ and ξ ∈ b+. From the equation F (g)v = fv(g

−1) we obtain that
Lv(ξ)fv(g) =

[
Lv(ξ)rFv

]
(g−1) for any g ∈ G. Using Equation (6.4.1) we find:〈

w,Lv(ξ)fv(g)
〉
=
[
Lv(ξ)r ⟨w,Fv⟩

]
(g−1) = −⟨χ(ξ∗)w,F (g−1)v⟩

= −⟨χ(ξ∗)w, fv(g)⟩, ∀g ∈ G.

Hence fv ∈ Cω(G,Vσ)H,χ. Thus Dχ =
{
v ∈ Vσ : fv ∈ Cω(G,Vσ)H,χ

}
. We con-

clude that (ρ,Hρ) is holomorphically induced from (σ, χ). So (1) ⇐⇒ (2).

Assume these equivalent assertions are satisfied. From F (g) = Eeρ(g)E∗e it is im-
mediate that F (g−1) = F (g)∗ for all g ∈ G. We next show (6.4.2) and (6.4.3). Let
v ∈ Dχ. Notice using F (g) = Eeρ(g)E∗e that for any x, y ∈ U(gC) we have[

Lv(y)rLv(x)Fv
]
(g) = Eedρ(τ(y))ρ(g)dρ(x)E∗e v (6.4.4)

for all g ∈ G. Thus, for x± ∈ U(b±) we obtain using (6.4.4) and Lemma 6.4.15
that [

Lv(x+)rLv(x−)Fv
]
(g) = Eedρ(τ(x+))ρ(g)dρ(x−)E∗e v

= χ(τ(x+)
∗)∗Eeρ(g)E∗eχ(x−)v,

(6.4.5)[
Lv(x+x−)Fv

]
(e) = Eedρ(x+x−)E∗e v

= χ(x∗+)
∗χ(x−)v.

. (6.4.6)

From (6.4.5) we conclude that
[
Lv(x+)rLv(x−)Fv

]
(g) = χ(τ(x+)

∗)∗F (g)χ(x−)v
for all g ∈ G, which implies (6.4.2). On the other hand, (6.4.3) is implied by
(6.4.6). Finally, assume that F1 and F2 are two functions satisfying the conditions
in Proposition 6.4.19. Let v ∈ Dχ. The functions g 7→ F1(g)v and g 7→ F2(g)v
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are both analytic and satisfy (6.4.6). As U(gC) is spanned by U(n+)U(b−) by the
PBW Theorem, it follows that j∞e (F1v) = j∞e (F2v). As G is connected, it follows
from Proposition 6.2.15 that F1(g)v = F2(g)v for all g ∈ G and v ∈ Dχ. For any
fixed g ∈ G, the map v 7→ (F1(g)−F2(g))v is continuous and vanishes on the dense
subset Dχ ⊆ Vσ. Hence F1 = F2.

Combining Proposition 6.4.19 with the uniqueness of F : G → B(Vσ) in Theo-
rem 6.4.20, we obtain the desired uniqueness of the holomorphically induced rep-
resentation up to unitary equivalence:

Theorem 6.4.21. Let ρ1 and ρ2 be unitary G-representations which are both holo-
morphically induced from (σ, χ). Then ρ1 ∼= ρ2 as unitary G-representations.

Finally, we focus our attention on the important special case where χ is a triv-
ial extension. Using the PBW Theorem, notice that we have the vector space
decomposition U(gC) = U(hC)⊕ (n+U(gC) + U(gC)n−).

Definition 6.4.22. Let E0 : U(gC) → U(hC) ∼= U(gC)/(n+U(gC) + U(gC)n−) be
the quotient map.

Lemma 6.4.23. Assume that ρ is holomorphically induced from (σ, χ), where χ is
the trivial extension of dσ to b− with domain D ⊆ Vσ. Let v ∈ D and x ∈ U(gC).
Then dσ(E0(x

∗))v = dσ(E0(x))
∗v. Moreover for all w ∈ V∞

σ we have

⟨w, dρ(x)v⟩ = ⟨w, dσ(E0(x))v⟩, and

⟨dρ(x∗)v, w⟩ = ⟨v, dσ(E0(x))w⟩.

Proof. By Theorem 6.4.13 we may assume that Vσ ⊆ Hρ is a closed subspace,
that Dχ = V ∩ Hωρ , σ(h) = ρ(h)|Vσ

and χ(ξ) = dρ(ξ)|Dχ
for every h ∈ H and

ξ ∈ b−. Let pV : Hρ → Vσ be the orthogonal projection onto Vσ. Take v ∈ Dχ,
ξ+ ∈ n+, x ∈ U(gC) and ξ− ∈ n−. From Lemma 6.4.15 we obtain pV dρ(xξ−)v =
pV dρ(x)χ(ξ−)v = 0 and pV dρ(ξ+x)v = χ(ξ∗+)

∗pV dρ(x)v = 0. Thus

pV dρ(x)v = pV dρ(E0(x))v = dσ(E0(x))v, ∀x ∈ U(gC).

Let w ∈ Dχ. Recall from Lemma 6.4.16 that Dχ ⊆ Hωρ . We have:

⟨dσ(E0(x
∗))v, w⟩ = ⟨dρ(x∗)v, w⟩ = ⟨v, dρ(x)w⟩ = ⟨v, dσ(E0(x))w⟩

= ⟨dσ(E0(x))
∗v, w⟩.

As Dχ is dense in Vσ we conclude dσ(E0(x
∗))v = dσ(E0(x))

∗v. Consequently, if
w ∈ V∞

ρ then

⟨dρ(x∗)v, w⟩ = ⟨dσ(E0(x
∗))v, w⟩ = ⟨dσ(E0(x))

∗v, w⟩ = ⟨v, dσ(E0(x))w⟩.
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We complement Theorem 6.4.20 with the following result, regarding the uniqueness
of the domain:

Proposition 6.4.24. Let σ be an analytic unitary representation of H. Assume
that there exists a subspace Dχ ⊆ V ωσ dense in Vσ for which (σ, χ) is holomorphically
inducible, where χ b− → L(Dχ) is the trivial extension of dσ to b− with domain
Dχ. Then Dχ is unique with this property.

Proof. Suppose that D1 and D2 are two such domains. For k ∈ {1, 2}, let χk de-
note the trivial extension of dσ to b− with domain Dk. By assumption (σ, χk) is
holomorphically inducible. Let Fk : G → B(Vσ) satisfy the conditions in Propo-
sition 6.4.19 for (σ, χk). Let vk ∈ Dk. Observe using Lemma 6.4.23 that for
any k ∈ {1, 2}, x ∈ U(b−) and v ∈ Dk we have χk(x)v = dσ(E0(x))v and
χk(x)

∗v = dσ(E0(x))
∗v = dσ(E0(x

∗))v. Consider the functions a, b : G → C
defined by a(g) := ⟨v1, F1(g)v2⟩ and b(g) := ⟨v1, F2(g)v2⟩. Notice that both a and
b are analytic, where we remark that a(g) = ⟨F1(g

−1)v1, v2⟩. Let x± ∈ U(b±).
Using (6.4.3) we obtain:

(Lv(x+x−)b)(e) = ⟨v1, χ2(x
∗
+)

∗χ2(x−)v2⟩ = ⟨v1, dσ(E0(x+))dσ(E0(x−))v2⟩
= ⟨dσ(E0(x

∗
+))v1, dσ(E0(x−))v2⟩.

We next compute (Lv(x+x−)a)(e). Let ι : G→ G, g 7→ g−1 denote the inversion on
G and Σ : C→ C, z 7→ z the conjugation on C. Define

h : G→ C, h(g) = ⟨v2, F1(g)v1⟩,

so that a = Σ ◦ h ◦ ι. For any x ∈ U(gC) and f ∈ C∞(G,C), we have[
Lv(x)(f ◦ ι)

]
(e) = (Lv(τ(x))f)(e),[

Lv(x)(Σ ◦ f)
]
(e) = Σ

[
Lv(θ(x))f

]
(e).

Using these equations we obtain that (Lv(x)a)(e) = Σ
[
Lv(x∗)h

]
(e) for any x ∈ U(gC).

By equation (6.4.3) we have[
Lv(x∗

−x
∗
+)h
]
(e) = ⟨v2, χ(x−)∗χ(x∗+)v1⟩ = ⟨v2, dσ(E0(x−))

∗dσ(E0(x
∗
+))v1⟩

= ⟨dσ(E0(x−))v2, dσ(E0(x
∗
+))v1⟩.

Thus

(Lv(x+x−)a)(e) = Σ
[
Lv(x∗

−x
∗
+)h
]
(e) = ⟨dσ(E0(x

∗
+))v1, dσ(E0(x−))v2⟩

= (Lv(x+x−)b)(e).

As U(gC) is spanned by elements in U(n+)U(b−) by the PBW Theorem, it follows
that j∞e (a) = j∞e (b). Since G is connected, it follows from Proposition 6.2.15 that
a = b. Thus ⟨v1, F1(g)v2⟩ = ⟨v1, F2(g)v2⟩ for all g ∈ G, v1 ∈ D1 and v2 ∈ D2. As
both D1 and D2 are dense, it follows that F1 = F2 =: F . From the third property
in Proposition 6.4.19, we conclude that

D1 = D2 = { v ∈ Vσ : g 7→ ⟨v, F (g)v ∈ Cω(G,C) } .
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Theorem 6.4.21 and Proposition 6.4.24 justify the following notation:

Definition 6.4.25. We write ρ = HolIndGH(σ, χ) if ρ is holomorphically induced
from (σ, χ). If additionally χ is the trivial extension of dσ to b− on some necessarily
unique domain Dχ ⊆ V ωσ , we simply write ρ = HolIndGH(σ).

Remark 6.4.26. For k ∈ {1, 2}, let (σk, χk) be an (H, b−)-extension pair and let
ρk be a unitary G-representation with ρk = HolIndH(σk, χk). In view of Theo-
rem 6.4.21, one might wonder whether or not ρ1 ∼= ρ2 implies (σ1, χ1) ∼= (σ2, χ2).
This turns out to be false. For an explicit and simple counterexample, consider
G = SU(3). Let H ⊆ G be the subgroup consisting of diagonal matrices and let
b− ⊆ sl(3,C) consist of upper-triangular matrices. The defining representation ρ of
G on C3 is holomorphically induced from the two (H, b−)-extension pairs obtained
by restricting ρ|H and dρ|b−

to either Vσ1
:= Ce1 or Vσ2

:= Ce1⊕Ce2, as is quickly
verified using Theorem 6.4.13. These are not unitary equivalent.

6.4.4 Commutants

Suppose that ρ = HolIndGH(σ, χ).

Definition 6.4.27. Let T ∈ B(Vσ). We say that T commutes with (σ, χ) if
T ∈ B(Vσ)H , TDχ ⊆ Dχ and Tχ(ξ)v = χ(ξ)Tv for every ξ ∈ b− and v ∈ Dχ.
Define the ∗-closed commutant B(Vσ)H,χ of (σ, χ) by

B(Vσ)H,χ :=
{
T ∈ B(Vσ)H : both T and T ∗ commute with (σ, χ)

}
.

Remark 6.4.28. Orthogonal projections in B(Vσ)H,χ correspond to direct sum de-
compositions of (σ, χ). To see this, suppose p1 ∈ B(Vσ)H,χ is an orthogonal projec-
tion. Let p2 := 1−p1. For k ∈ {1, 2}, define Vk := pkVσ and Dk := pkDχ ⊆ Dχ. De-
fine the (H, b−)-extension pair (σk, χk) by σk(h) := σ(h)|Vk

and χk(ξ) := χ(ξ)|Dk
,

where h ∈ H and ξ ∈ b−. Then (σ, χ) ∼= (σ1, χ1)⊕ (σ2, χ2).

The main results of this section are Theorem 6.4.29 and Theorem 6.4.30 below:

Theorem 6.4.29. Suppose that ρ = HolIndGH(σ, χ). Let Vσ be a closed subspace of
Hρ satisfying the conditions in Theorem 6.4.13.2. Let qV ∈ B(Hρ) be the orthogonal
projection onto Vσ. Then

1. B(Vσ)H,χ is a von Neumann algebra.

2. Assume that qV ∈ ρ(G)′′. Then

r : B(Hρ)G → B(Vσ)H,χ, r(T ) := T |Vσ

defines a ∗-isomorphism of von Neumann algebras. In particular, ρ is irre-
ducible if and only if (σ, χ) is indecomposable.
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Theorem 6.4.30. Consider the setting of Theorem 6.4.29. Let χ : b− → L(Dχ)
denote the trivial extension of dσ to b− with domain Dχ. The following assertions
are valid:

1. B(Vσ)H,χ = B(Vσ)H .

2. Assume that qV ∈ ρ(G)′′. Then B(Hρ)G ∼= B(Vσ)H . In particular, ρ is
irreducible if and only if σ is.

Remark 6.4.31. In the context of positive energy representations, the case where
χ is a trivial extension is of central importance. In that setting we can typically
guarantee that qV ∈ ρ(G)′′. The relation between positive energy representations
and holomorphic induction is considered Section 6.7.

Proof of Theorem 6.4.29 and Theorem 6.4.30

Assume throughout the following that ρ is holomorphically induced from (σ, χ).
In view of Theorem 6.4.13, we may and do assume that Vσ ⊆ Hρ is a closed
subspace, σ(h) = ρ(h)|Vσ

for all h ∈ H, that Dχ = Vσ ∩ Hωρ , dρ(b−)Dχ ⊆ Dχ
and that χ(ξ)v = dρ(ξ)v for all ξ ∈ b− and v ∈ Dχ. We may further assume that
the map Φ : Hρ → Map(G,Vσ)

H satisfying the conditions in Definition 6.4.11 is
given by Φψ(g) = pV ρ(g)

−1ψ. In particular Ee = pV is the orthogonal projection
pV : Hρ → Vσ and E∗e = ιV is the inclusion ιV : Vσ ↪→ Hρ. We also have qV = ιV pV .

Lemma 6.4.32. Let T ∈ B(Hρ)H,χ, x ∈ U(gC) and v, w ∈ Dχ. Then

⟨v, Tdρ(x)w⟩ = ⟨v, dρ(x)Tw⟩.

Proof. Using the PBW Theorem, it suffices to consider the case where x = x+x−
for some x+ ∈ U(n+) and x− ∈ U(b−). In that case we obtain using Lemma 6.4.15
and the fact that T ∈ B(Hρ)H,χ:

⟨v, Tdρ(x)w⟩ = ⟨χ(ξ∗+)T ∗v, χ(x−)w⟩ = ⟨χ(ξ∗+)v, Tχ(x−)w⟩
= ⟨χ(ξ∗+)v, χ(x−)Tw⟩ = ⟨v, dρ(x)Tw⟩.

Lemma 6.4.33. Let T ∈ B(Vσ). Assume that ⟨v, Tρ(eξ)w⟩ = ⟨v, ρ(eξ)Tw⟩ for all
v, w ∈ Dχ and all ξ in some 0-neighborhood in g. Then TDχ ⊆ Dχ and

⟨w, Tρ(g)v⟩ = ⟨w, ρ(g)Tv⟩, ∀g ∈ G, ∀v, w ∈ Vσ. (6.4.7)

Proof. Let v, w ∈ Dχ. Both g 7→ ⟨w, Tρ(g)v⟩ and g 7→ ⟨w, ρ(g)Tv⟩ are real-
analytic G→ C. As G is BCH, so in particular locally exponential, these functions
agree on some 1-neighborhood in G by assumption. As G is connected, it follows
from Proposition 6.2.14 that they are equal everywhere. We thus obtain that
⟨w, Tρ(g)v⟩ = ⟨w, ρ(g)Tv⟩ for all g ∈ G. As Dχ is dense, equation (6.4.7) follows.
Let v ∈ Dχ. Then using (6.4.7) we find that ⟨Tv, ρ(g)Tv⟩ = ⟨Tv, Tρ(g)v⟩ for
all g ∈ G. The right-hand side defines a real-analytic function G → C because
v ∈ Hωρ . Thus also g 7→ ⟨Tv, ρ(g)Tv⟩ is real-analytic. Recalling that G is a BCH
Fréchet-Lie group, we conclude using [Nee11, Thm. 5.2] that Tv ∈ Hωρ . Thus
Tv ∈ Hωρ ∩ Vσ = Dχ.
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Lemma 6.4.34. B(Hρ)H,χ is a von Neumann algebra. Moreover we have

⟨w, Tρ(g)v⟩ = ⟨w, ρ(g)Tv⟩, ∀T ∈ B(Hρ)H,χ, ∀g ∈ G, ∀v, w ∈ Vσ. (6.4.8)

Proof. Let N ⊆ B(Vσ)H denote the von Neumann algebra in B(Vσ) generated by
B(Hρ)H,χ. We show N = B(Hρ)H,χ. It only remains to show N ⊆ B(Hρ)H,χ. As
N is ∗-closed, it suffices to show that TDχ ⊆ Dχ and that Tχ(ξ)v = χ(ξ)Tv for all
T ∈ N , ξ ∈ b− and v ∈ Dχ. Let T ∈ N . Let (Tλ) be a net in B(Hρ)H,χ such that
Tλ → T strongly. Let v, w ∈ Dχ and x ∈ U(gC). Using Lemma 6.4.32 we have:

⟨v, Tdρ(x)w⟩ = lim
λ
⟨v, Tλdρ(x)w⟩ = lim

λ
⟨v, dρ(x)Tλw⟩ = lim

λ
⟨dρ(x∗)v, Tλw⟩

= ⟨dρ(x∗)v, Tw⟩
(6.4.9)

As v, w ∈ Dχ ⊆ Hω
ρ , the orbit maps g 7→ ρ(g)v and g 7→ ρ(g)w are both real-

analytic G → Hρ. We obtain using (6.4.9) for all ξ ∈ g in a small-enough 0-
neighborhood in g that:

⟨w, Tρ(eξ)v⟩ =
∞∑
n=0

1

n!
⟨w, Tdρ(ξn)v⟩ =

∞∑
n=0

(−1)n

n!
⟨dρ(ξn)w, Tv⟩ = ⟨ρ(e−ξ)w, Tv⟩

= ⟨w, ρ(eξ)Tv⟩.
(6.4.10)

It follows from Lemma 6.4.33 that TDχ ⊆ Dχ and that equation (6.4.7) is valid
for T . Thus NDχ ⊆ Dχ. Differentiating (6.4.7) at the identity e ∈ G we find that
⟨w, Tdρ(ξ)v⟩ = ⟨w, dρ(ξ)Tv⟩ for all ξ ∈ gC and w ∈ Dχ. Suppose ξ ∈ b−. Using
that TDχ ⊆ Dχ, we obtain

⟨w, Tχ(ξ)v⟩ = ⟨w, Tdρ(ξ)v⟩ = ⟨w, dρ(ξ)Tv⟩ = ⟨w,χ(ξ)Tv⟩, ∀w ∈ Dχ,

where Lemma 6.4.15 was used in the first and last equality. As Dχ is dense in Vσ, it
follows for every ξ ∈ b− and v ∈ Dχ that Tχ(ξ)v = χ(ξ)Tv. Thus T ∈ B(Hρ)H,χ.
Hence N = B(Hρ)H,χ.

Combined with Lemma 6.4.34, Lemma 6.4.35 below completes the proof of Theo-
rem 6.4.29.

Lemma 6.4.35. Assume that qV ∈ ρ(G)′′. Then the map

r : B(Hρ)G → B(Vσ)H,χ, r(T ) := T |Vσ

defines an isomorphism of von Neumann algebras.

Proof. We know using Lemma 6.4.34 that B(Vσ)H,χ is a von Neumann algebra.
Notice that the assumption qV ∈ ρ(G)′′ is equivalent with TVσ ⊆ Vσ for every
T ∈ B(Hρ)G. Let T ∈ B(Hρ)G. Then THωρ ⊆ Hωρ and TVσ ⊆ Vσ. Recalling
that Dχ = Vσ ∩ Hωρ , it follows that TDχ ⊆ Dχ. Since both T and T ∗ are in

B(Hρ)G, it follows that r(T ) ∈ B(Vσ)H,χ, where we recall that ρ(h)|Vσ
= σ(h) and
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dρ(ξ)|Dχ
= χ(ξ) for h ∈ H and ξ ∈ b−. It is clear that r is a weakly-continuous

unital ∗-preserving homomorphism. It is also injective, because r(T ) = 0 implies
Tρ(G)Vσ = ρ(G)TVσ = {0}, which in turn implies that T = 0 because Vσ is cyclic
for the G-representation Hρ. As r is weakly continuous, its image is weakly closed
[Mur90, Thm. 4.3.4]. Thus, to see that r is surjective, it suffices to show that its
image contains all orthogonal projections in B(Vσ)H,χ. Let p1 ∈ B(Vσ)H,χ be an
orthogonal projection and let p2 := 1 − p1. For k ∈ {1, 2}, define Vk,Dk, σk and
χk as in Remark 6.4.28, so that (σ, χ) ∼= (σ1, χ1)⊕ (σ2, χ2). Let H1 and H2 be the
closed G-invariant subspaces of Hρ generated by V1 and V2, respectively. It suffices
to show that H1 ⊥ H2. Let v1 ∈ V1 and v2 ∈ V2. As p1 ∈ B(Vσ)H,χ, it follows from
equation (6.4.8) that

⟨v1, ρ(g)v2⟩ = ⟨v1, p1ρ(g)v2⟩ = ⟨v1, ρ(g)p1v2⟩ = 0, ∀g ∈ G.

It follows that V1 ⊥ ρ(G)V2, which in turn implies H1 ⊥ H2.

Finally, it remains to prove Theorem 6.4.30:

Proof of Theorem 6.4.30: It remains only to prove the first item. The second will
follow using Theorem 6.4.29. It is clear that B(Vσ)H,χ ⊆ B(Vσ)H . Conversely, take
T ∈ B(Vσ)H . Let v, w ∈ Dχ. Then in particular the orbit maps G→ Hρ, g 7→ ρ(g)v
and g 7→ ρ(g)w are real-analytic. Notice that TDχ ⊆ V∞

σ and similarly T ∗Dχ ⊆
V∞
σ . Using Lemma 6.4.23, we obtain for all ξ in a small-enough 0-neighborhood

that

⟨w, Tρ(eξ)v⟩ =
∞∑
n=0

1

n!
⟨w, Tdρ(ξn)v⟩ =

∞∑
n=0

1

n!
⟨w, Tdσ(E0(ξ

n))v⟩

=

∞∑
n=0

1

n!
⟨w, dσ(E0(ξ

n))Tv⟩ =
∞∑
n=0

(−1n)
n!
⟨dρ(ξn)w, Tv⟩

= ⟨ρ(e−ξ)w, Tv⟩ = ⟨w, ρ(eξ)Tv⟩.

Using Lemma 6.4.33, it follows that TDχ ⊆ Dχ. Hence B(Vσ)HDχ ⊆ Dχ and in
particular T ∗Dχ ⊆ Dχ. Suppose that v ∈ Dχ, ξ0 ∈ hC and ξ− ∈ n−. Then

Tχ(ξ0 + ξ−)v = Tdσ(ξ0)v = dσ(ξ0)Tv = χ(ξ0 + ξ−)Tv.

Hence Tχ(ξ)v = χ(ξ)Tv for all ξ ∈ b− and v ∈ Dχ. We conclude that T ∈
B(Vσ)H,χ. Thus B(Vσ)H,χ = B(Vσ)H .

6.4.5 Holomorphic induction in stages

Let us next consider holomorphic induction in stages. We specialize to the context
of trivial extensions. Recall from Section 6.4.5 that gC = n− ⊕ hC ⊕ n+ and that
H ⊆ G is a connected Lie subgroup with L(H) = h. Assume similarly that
hC = a− ⊕ tC ⊕ a+, where a± and tC are closed subalgebras with θ(tC) ⊆ tC,
θ(a±) ⊆ a∓ and [tC, a±] ⊆ a±. Let T be a connected and closed locally exponential
Lie subgroup of H integrating t ⊆ h. Using the notation of Definition 6.4.25:
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Proposition 6.4.36 (Induction In Stages). Let (ρ,Hρ), (σ,Hσ) and (ν,Hν) be
analytic unitary representations of G, H and T , respectively. Then

1. ρ = HolIndGT (ν) and σ = HolIndHT (ν) =⇒ ρ = HolIndGH(σ).

2. Suppose that σ = HolIndHT (ν) and ρ = HolIndGH(σ). Assume w.l.o.g. that
Hν ⊆ Hσ ⊆ Hρ using Theorem 6.4.13, the inclusions being T - and H-

equivariant, respectively. If Hν ∩Hωρ is dense in Hν , then ρ = HolIndGT (ν).

Proof. These observations follow from a repeated application of Theorem 6.4.13.

1. In view of Theorem 6.4.13, we may assume thatHν ⊆ Hρ as T -representations
and that Hν ∩ Hωρ is dense in Hν and killed by dρ(n− ⊕ a−). Let (π,Hπ)
denote the unitary H-representation in Hρ generated by Hν ∩ Hωρ ⊆ Hρ.
Using Theorem 6.4.13 it follows that π = HolIndHT (ν). By Theorem 6.4.21,
it follows that π ∼= σ as unitary H-representations. Thus we may assume
Hσ = Hπ ⊆ Hρ, the last inclusion being H-equivariant. The H-orbit of
Hν ∩ Hωρ under ρ|H in Hσ is contained in Hσ ∩ Hωρ and is trivially total for
Hσ. Thus Hσ ∩Hωρ is dense in Hσ. As Hν ∩Hωρ is already cyclic for (ρ,Hρ),
so is the larger space Hσ ∩Hωρ . To see that ρ = HolIndGH(σ), it just remains
to show that Hσ∩Hωρ is killed by dρ(n−). As Hν∩Hωρ is killed by dρ(n−) and
AdH(n−) ⊆ n−, it follows that dρ(n−)ρ(H)ψ ⊆ ρ(H)dρ(n−)ψ = {0} for any
ψ ∈ Hν ∩Hωρ . Thus dρ(n−) kills ρ(H)(Hν ∩Hωρ ). As ρ(H)(Hν ∩Hωρ ) is total
in Hσ, it follows that dρ(n−) kills Hσ ∩ Hωρ . Having shown all conditions of

Theorem 6.4.13, we conclude that ρ = HolIndGH(σ).

2. As σ = HolIndHT (ν) we may assume that Hν ⊆ Hσ as T -representations and
that Hωσ ∩Hν is dense in Hν , cyclic for the H-representation Hσ, and killed
by dσ(a−). Similarly, as ρ = HolIndGH(σ) we may assume that Hσ ⊆ Hρ
as H representations and moreover that Hωρ ∩ Hσ is dense in Hσ, cyclic for
the G-representation Hρ and killed by dρ(n−). Then Hν ⊆ Hσ ⊆ Hρ the
inclusions being T - and H equivariant, respectively. By assumption Hν ∩Hωρ
is dense in Hν . Since Hν is cyclic for (σ,Hσ) and Hσ for (ρ,Hρ), it follows
that Hν ∩ Hωρ is cyclic for (ρ,Hρ). For any ψ ∈ Hν ∩ Hωρ ⊆ Hσ ∩ Hωρ we
have dρ(a− ⊕ n−)ψ ⊆ dσ(a−)ψ + dρ(n−)ψ = {0}. Thus Hν ∩Hωρ is killed by

dρ(a− ⊕ n−). By Theorem 6.4.13 it follows that ρ = HolIndGT (ν).

6.5 A complex-geometric approach

In this section, a definition of holomorphically induced representations is presented
which ensures that H∞

ρ embeds in a space of holomorphic mappings. Contrary to
Section 6.4, this approach involves complex geometry. It is not as generally appli-
cable, and in particular requires access to a dense set of b-strongly-entire vectors
in the representation being induced, a condition that is well-understood for finite-
dimensional Lie groups but barely studied for infinite-dimensional ones.
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We begin in Section 6.5.1 and Section 6.5.2 with a detailed consideration of ana-
lytic manifold structures on the homogeneous space G/H. The results in these two
sections are not original, as they are mentioned in [Nee14a, Appendix C]. Rather,
it is the purpose of these sections to provide detailed proofs. In Section 6.5.3,
we consequently equip the homogeneous vector bundle G×H V Ob

σ with a suitable
complex-analytic bundle structure. Here, we closely follow the construction of
[Nee13, Thm. 2.6]. We then proceed in Section 6.5.4 to define geometric holomor-
phic induction and compare the notion with the one studied in Section 6.4.

6.5.1 Real-analytic manifold structure on G/H

Let G be a BCH Fréchet-Lie group with Lie algebra g. Let H ⊆ G be a closed
locally exponential Lie subgroup of G, in the sense of [Nee06, Def. IV.3.2]. In
this case, H is necessarily BCH and an analytic embedded Lie subgroup of G (cf.
Lemma 6.4.1). Let h := L(H) be the Lie algebra of H, which we identify as Lie
subalgebra of g using the pushforward of the inclusion H ↪→ G.

Theorem 6.5.1 below is the main result of this section. Its proof follows that of the
Quotient Manifold Theorem in the finite-dimensional context, replacing the use of
the Inverse Function Theorem by (A1).

Theorem 6.5.1. Let p ⊆ g be a closed complement of h in g. Assume that Up ⊆ p
and Uh ⊆ h are open 0-neighborhoods for which

Up × Uh → g, (x, y) 7→ x ∗ y, (A1)

is an analytic diffeomorphism onto an open subset Ug ⊆ g, where x∗y is defined by
the BCH series. Then M = G/H carries a unique real-analytic manifold structure
satisfying the following properties:

1. The left G-action G×G/H → G/H is real-analytic.

2. q : G→ G/H is a real-analytic principal H-bundle.

Moreover, if N is a real-analytic manifold, then a map f : G/H → N is real-

analytic if and only if its lift f̃ : G→ N is so.

Notice that the uniqueness of the analytic structure follows immediately from the
second property in Theorem 6.5.1. Indeed, for k ∈ {1, 2}, let Mk denote the space
G/H equipped with a real-analytic manifold structure for which the quotient map
qk : G → Mk is a real-analytic principal H-bundle. The identity on G/H defines
a diffeomorphism I : M1 → M2. If σ1 : U → G is a real-analytic local section of
q1 : G→M1, defined on some open set U ⊆M1, then I|U = q2 ◦σ1 is real-analytic.
It follows that I is an analytic diffeomorphism, so M1

∼=M2.

Before diving into analytic manifold structures on the homogeneous space G/H,
let us verify that it is indeed a Hausdorff space.

Lemma 6.5.2. The quotient space G/H is Hausdorff.
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Proof. The map

f : G×H ↪→ G×G, (g, h) 7→ (g, gh)

is closed, because it is the composition of the inclusion G×H ↪→ G×G, which is
a closed map because H ⊆ G is closed, and the map

G×G→ G×G, (x, y) 7→ (x, xy),

which is closed because it is a diffeomorphism with inverse (x, y) 7→ (x, x−1y). It
follows that the equivalence relation R := f(G,H) ⊆ G × G is closed in G × G.
Since q : G → G/H is an open map, and the image of the open set (G × G) \ R
under q× q is the complement of ∆(G/H) in G/H×G/H, it follows that ∆(G/H)
is closed in G/H ×G/H. We conclude that G/H is Hausdorff.

We proceed with the proof of existence in Theorem 6.5.1, which requires some
preparatory lemmas. Throughout the following, we denote the multiplication of G
by µ : G×G→ G.

We first show that for any point g ∈ G, there exists an analytically embedded
submanifold S ⊆ G that contains g, is analytically diffeomorphic to an open subset
of p, and for which µ|S×H : S ×H → G is an analytic diffeomorphism onto some
open subset of G. In this case, we call S a transversal (through g).

Lemma 6.5.3. Let S ⊆ G be a transversal. Then q(S) ⊆ G/H is open and q|S is
a homeomorphism onto q(S) ⊆ G/H.

Proof. The map q|S : S → q(S) is injective because µ|S×H : S × H → G is
injective, so if g1, g2 ∈ S and g2 = g1h for some h ∈ H, then g1 = g2 and h = e is
the identity. It also an open map, because q−1(q(W )) = WH = µ(W,H) is open
in G for any open set W ⊆ S. Hence q|S is a homeomorphism.

Transversals thus define charts for the quotient space G/H. For these to define a
manifold structure on G/H, there should exist a transversal through any g ∈ G.

Lemma 6.5.4. If there exists a transversal through e ∈ G, then there exists a
transversal through any g ∈ G.

Proof. If Se is a transversal through e and g ∈ G, then Sg := gS is a transversal
through g, because

µ|Sg×H = lg ◦ µ|Se×H ◦ (l
−1
g × idH)

is an analytic diffeomorphism onto its image, where lg(x) = gx for x ∈ G.

We show next that there exists a transversal through the identity e ∈ G. As-
sume that Up ⊆ p and Uh ⊆ h are open 0-neighborhoods for which (A1) is an
analytic diffeomorphism onto an open subset Ug of g. Shrinking these open sets,
we may furthermore assume that expG|Ug

is an analytic diffeomorphism onto an

open 1-neighborhood UG of G. Define also the open sets UP := expG(Up) ⊆ G and
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UH := expG(Uh) ⊆ H.

Define the map

ϕ : Up × Uh → UG, ϕ(x, y) := expG(x) expG(y) = expG(x ∗ y).

Notice that the assumptions on Up and Uh imply that both µ|UP×UH
and ϕ are

analytic diffeomorphisms. Notice also that ϕ is a foliated chart for the foliation on
G defined by the right H-action. The analytic submanifolds ϕ({η}×Uh) of UG are
plaques of the foliated chart defined by ϕ, where η ∈ Up.

Lemma 6.5.5. There exist open 0-neighborhoods Vp ⊆ Up and Vh ⊆ Uh such
that for any right H-orbit O in G, there exists at most one η ∈ Vp satisfying
ϕ({η} × Vh) ∩ O ≠ ∅.

Proof. Assume that there exist no open subsets Vp ⊆ Up and Vh ⊆ Uh as in the
assertion. Since g is metrizable, we can find a countable and decreasing neigh-
borhood basis {Vi}i∈N of the identity e ∈ G, where the open 0-neighborhoods Vi
are of the form Vi = ϕ(Vi,p × Vi,h) for some open 0-neighborhoods Vi,p ⊆ Up and
Vi,h ⊆ Uh and distinct points gi, g

′
i ∈ Vi,P := ϕ(Vi,p × {0}) lying in the same H-

orbit, for every i ∈ N. Then g′i = gihi for some hi ∈ H. The construction of
{Vi}i∈N ensures that gi → e and g′i → e in G. We then also have hi = g−1

i g′i → e.
Notice that µ(g′i, e) = µ(gi, hi) for all i ∈ N. Since gi ̸= g′i for i ∈ N and hi ∈ UH
for large-enough i ∈ N, this contradicts the injectivity of µ|UP×UH

.

By Lemma 6.5.5, we may and do assume that for any right H-orbit O in G, there
exists at most one η ∈ Up satisfying ϕ({η} × Uh) ∩O ̸= ∅, by shrinking Up and Uh

if necessary.

Lemma 6.5.6. UP is a transversal through e ∈ G.

Proof. We must show that µ|UP×H is an analytic diffeomorphism onto its image.
To see that µ|UP×H is injective, let x, y ∈ Up and assume that expG(y) = expG(x)h
for some h ∈ H. Since expG(x) = ϕ(x, 0) and expG(y) = ϕ(y, 0) lie on the same
right H-orbit in G, and any right H-orbit intersects UG in at most one plaque of
the foliated chart defined by ϕ, we must have x = y. Hence µ|UP×H is injective.
We already know that µ|UP×UH

is an analytic diffeomorphism onto UG. Since
µ|UP×(UH ·h) = rh ◦ µ|UP×UH

for any h ∈ H, where rh(g) = gh for g ∈ G, it follows
that µ|UP×H is an analytic local diffeomorphism. Since it is also injective, we are
done.

Proof of Theorem 6.5.1:
The quotient space is Hausdorff by Lemma 6.5.2. Combining Lemma 6.5.4 with
Lemma 6.5.6, it follows that there exists a transversal through any point in G. In
particular, the set { q(S) : S is a transversal } is an open cover of G/H. Suppose
that S1, S2 ⊆ G are two transversals and assume that UG/H := q(S1) ∩ q(S1) ̸= ∅.
Let UG := q−1(UG/H) ⊆ G. For k ∈ {1, 2}, let ψk : Vk → Sk be an analytic
diffeomorphism for some open neighborhood Vk ⊆ p. Consider the charts

σk := (q|Sk
◦ ψk)−1 : q(Sk)→ Vk (6.5.1)
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of G/H, let Wk := σk(UG/H) ⊆ Vk be the domain of the transition function, and
let Zk := ψk(Wk) ⊆ Sk. The maps µ|Z1×H and µ|Z2×H are both real-analytic
diffeomorphisms onto UG, because UG = Z1H = Z2H. We thus have commutative
diagrams

Wk ×H Zk ×H UG

Wk Zk UG/H

ψk×idH

πWk

µ

q

ψk
q|Zk

for k ∈ {1, 2}. (6.5.2)

Notice that the upper horizontal arrows in (6.5.2) are analytic H-equivariant dif-
feomorphisms. Define

Ψk := (µ|Zk×H ◦ (ψk × idH))−1 : UG →Wk ×H, k ∈ {1, 2}

and Ψ12 := Ψ1 ◦Ψ−1
2 . It follows from the commutativity of (6.5.2) that the transi-

tion function σ12 := σ1◦σ−1
2 is given by σ12(x) = πW1

(Ψ12(x, e)) for x ∈W2, which
is real-analytic because both πW1

and Ψ12 are so. It follows that charts of the form
(6.5.1) equip G/H with the structure of a real-analytic manifold. Moreover, taking
S1 = S2 in the preceding argument, the diagram (6.5.2) shows that q : G→ G/H
is an analytic principal H-bundle. This in turn implies for a real-analytic man-
ifold N that a map G/H → N is real-analytic if and only if its lift to G is so.
Similarly, the action map G×G/H → G/H, (g, q(x)) 7→ q(gx) is real-analytic be-

cause G×G idG×q−−−−→ G×G/H is a principal H-bundle and the group multiplication
G×G→ G is real-analytic.

6.5.2 Complex-analytic manifold structure on G/H

As in Section 6.4, we let θ : gC → gC denote the conjugation θ(ξ + iη) = ξ − iη for
ξ, η ∈ g. Throughout this section, we continue in the setting of Section 6.5.1 and
assume in addition that we have a decomposition

gC = n− ⊕ hC ⊕ n+, (6.5.3)

where n± and hC are closed Lie subalgebras of gC satisfying θ(n±) ⊆ n∓, θ(hC) ⊆ hC
and [hC, n±] ⊆ n±. We assume further that GC is a complex-analytic BCH Fréchet-
Lie group with Lie algebra L(GC) = gC. We also assume the existence of a real-
analytic embedding G ↪→ GC whose pushforward is the inclusion g ↪→ gC. Fi-
nally, we assume that AdH(n±) ⊆ n±. Let b± := hC ⊕ n± and define the closed
complement p := (n− ⊕ n+) ∩ g of h in g. Notice that (6.5.3) induces an iso-
morphism gC/b− ∼= n+, and that the inclusion g ↪→ gC descends to an isomor-
phism g/h ∼= gC/b− of real topological vector spaces. As in Section 6.5.1, we let
q : G→ G/H denote the quotient map.

The main result of this section is the following complex analogue of Theorem 6.5.1:
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Theorem 6.5.7. Assume that there exist open 0-neighborhoods Uh ⊆ h, Up ⊆ p,
Un+

⊆ n+ and Ub− ⊆ b− such that the maps

Up × Uh → g, (x, y) 7→ x ∗ y, (A1)

Up × Ub− → gC, (x, y) 7→ x ∗ y, (A2)

Un+
× Ub− → gC, (x, y) 7→ x ∗ y, (A3)

are analytic diffeomorphisms onto an open subset in their codomain, where x ∗ y is
defined by the BCH series. Then G/H carries a unique complex-analytic manifold
structure compatible with the real-analytic structure obtained from Theorem 6.5.1,
and which satisfies the following properties:

1. The left G-action lg : G/H → G/H is complex-analytic for any g ∈ G.

2. The C-linear extension of the map

g→ TeH(G/H), ξ 7→ d

dt

∣∣∣∣
t=0

q(etξ)

descends to a C-linear isomorphism gC/b− ∼= Te(G/H) of topological complex
vector spaces.

Moreover, if Q is a complex-analytic manifold, then a smooth map f : G/H → Q

is holomorphic if and only if its lift f̃ : G → Q satisfies TC
g (f̃)(vg(ξ)) = 0 for all

g ∈ G and ξ ∈ b−, where T
C
g (f̃) : TC

g (G) → Tf̃(g)Q is the C-linear extension of

Tg(f̃) and where v(ξ) is the left-invariant TCG-valued vector field on G satisfying
ve(ξ) = ξ.

Remark 6.5.8. In [Nee14a, Example C.4], sufficient conditions are discussed that
guarantee that (A1), (A2) and (A3) are satisfied. Using the Inverse Function The-
orem, this is in particular the case if G is a simply connected Banach-Lie group
and G/H is a Banach homogeneous space. In [Nee14a, Sec. 5.2], these conditions
are also shown to be satisfied in the context where G is (a central T-extensions of)
a (twisted) loop group, and where H ⊆ G is the subgroup of fixed points under a
particular R-action on G.

We proceed with the proof of Theorem 6.5.7. Its proof will parallel that of The-
orem 6.5.1. Throughout, we let µ : GC × GC denote the multiplication of GC.
As (A1) is satisfied, we equip G/H with the corresponding real-analytic manifold
structure obtained from Theorem 6.5.1. So q|S : S → q(S) ⊆ G/H is a real-
analytic diffeomorphism for any transversal S ⊆ G.

Let us first prove the uniqueness assertion. Suppose that M1 and M2 are two com-
plex manifolds that are equal to G/H as real-analytic manifold, and which both
satisfy the two conditions in Theorem 6.5.7. Then the identity map on G/H defines
a real-analytic diffeomorphism I :M1 →M2. The two conditions in Theorem 6.5.7
moreover ensure that its tangent map T (I) is fiber-wise C-linear. It follows using
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Proposition 6.2.11 that I is holomorphic, and consequently that M1
∼=M2 as com-

plex manifolds.

We next introduce some terminology. If A and B are topological spaces, we let πA
and πB denote the canonical projections of A×B onto A and B, respectively. We
also write cg(x) := gxg−1 for x, g ∈ GC.

Definition 6.5.9. A good triple (S,N,UB) consists of:

1. A transversal S ⊆ G.

2. An embedded complex submanifold N ⊆ GC that is biholomorphic to an
open 0-neighborhood of n+.

3. An embedded complex submanifold UB ⊆ GC of the form UB = expGC
(Ub−),

where Ub− ⊆ b− is a symmetric 0-neighborhood such that expGC

∣∣
Ub−

is

biholomorphic onto UB , and such that the BCH series of gC defines a holo-
morphic map Ub− × Ub− → b−,

such that:

— µ|S×UB
is a real-analytic diffeomorphism onto an open set in GC.

— µ|N×UB
is biholomorphic onto an open set in GC.

— S ∩NUB ̸= ∅.

— The implication

n1b1 = n2b2ch(b3) =⇒ n1 = n2 (6.5.4)

holds true for every n1, n2 ∈ N and b1, b2, b3 ∈ UB and h ∈ H.

We call the (non-empty) open subset S0 := S ∩NUB of S the real domain of the
good triple, and we say that the open subset N0 := N ∩ SUB of N is its complex
domain. We say that (S,N,UB) contains g if g ∈ S0.

Lemma 6.5.10. Assume that (S,N,UB) is a good triple with real and complex
domains S0 and N0, respectively. Let ζ be the inverse of µ|N×UB

: N×UB → NUB.
Then πN ◦ ζ|S0

is a real-analytic diffeomorphism S0 → N0.

Proof. Let χ be the inverse of µ|S×UB
: S × UB → SUB . Write ν(p) := πN (ζ(p))

for p ∈ S0. It is clear that ν : S0 → N is real-analytic, being the composition of
ζ|S and πN . Notice for p ∈ S, n ∈ N and b ∈ UB that p = nb ⇐⇒ n = pb−1.
Since UB is symmetric, these equivalent conditions imply that p ∈ S0 and n ∈ N0.
It moreover follows that the image of ν is precisely N0. With p, n and b as above,
it also follows that p = πS(χ(n)), so that ν is bijective onto N0, with inverse given
by the real-analytic map ν−1(n) = πS(χ(n)) for n ∈ N0.
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In view of Lemma 6.5.10, notice in the notation of Definition 6.5.9 that q(S0) ∼=
S0
∼= N0 are diffeomorphic as real-analytic manifolds. Since N0 is a complex

manifold, we can use this isomorphism to turn q(S0) into a complex manifold,
yielding candidates for complex charts of the homogeneous space G/H. We first
have to verify that there are sufficiently many good triples, which is our next aim.

Lemma 6.5.11. Let (S,N,UB) be a good triple containing e ∈ G, and let g ∈ G.
Then (gS, gN,UB) is a good triple containing g.

Proof. Notice that gS is a transversal by the proof of Lemma 6.5.4. Moreover,
µ|gN×UB

is biholomorphic onto its image because

µ|gN×UB
= lg ◦ µ|N×UB

◦ (l−1
g × idUB

),

where lg(x) := gx for x ∈ GC. It similarly follows that µ|gS×UB
is a real-analytic

diffeomorphism onto its image. Assume next that n1, n2 ∈ UN , b1, b2, b3 ∈ UB
and h ∈ H are s.t. gn1b1 = gn2b2ch(b3). Then n1b1 = n2b2ch(b3), so n1 = n2 by
(6.5.4). Finally, from e ∈ S ∩NUB we find g ∈ gS ∩ gNUB . Hence (gS, gN,UB) is
a good triple containing g.

We show next that there exists a good triple containing the identity e ∈ G. Let
Up ⊆ p, Un+

⊆ n+, Ub− ⊆ b− and Uh ⊆ h be open 0-neighborhoods s.t. (A1),
(A2) and (A3) are analytic diffeomorphisms onto an open 0-neighborhood in their
codomain. In view of Lemma 6.5.6, we may assume that UP := expG(Up) is a
transversal inG, by shrinking Up if necessary. Define UgC := (Un+

∗Ub−)∪(Up∗Ub−),
which is open in gC. Shrinking all these sets further, we may additionally assume
that expGC

∣∣
UgC

is biholomorphic onto some open subset of GC, that the BCH se-

ries defines a holomorphic map UgC × UgC → gC, (x, y) 7→ x ∗ y, and that Ub− is
symmetric.

Recall that UP := expG(Up). Define also UN := expGC
(Un+

) and UB := expGC
(Ub−).

By construction, all desired properties for (UP , UN , UB) to be a good triple are sat-
isfied, except for (6.5.4).

Lemma 6.5.12. There exist open 1-neighborhoods VN ⊆ UN and VB ⊆ UB s.t.

n1b1 = n2b2ch(b3) =⇒ n1 = n2 (6.5.5)

for all n1, n2 ∈ VN , b1, b2, b3 ∈ VB and h ∈ H.

Proof. Assume that there exist no open 1-neighborhoods VN ⊆ UN and VB ⊆ UB
as in the assertion. Since gC is metrizable, we can find a countable and decreasing
neighborhood basis {Vi}i∈N of the identity e ∈ GC, where each Vi ⊆ GC is of the
form Vi = Vi,NVi,B for some open 1-neighborhoods Vi,N ⊆ UN and Vi,B ⊆ UB ,

elements b
(i)
1 , b

(i)
2 , b

(i)
3 ∈ Vi,B , hi ∈ H and distinct n

(i)
1 , n

(i)
2 ∈ Vi,N , such that

n
(i)
1 b

(i)
1 = n

(i)
2 b

(i)
2 chi

(b
(i)
3 ) for every i ∈ N. The construction of {Vi}i∈N ensures that

the sequences (n
(i)
1 ), (n

(i)
2 ), (b

(i)
1 ), (b

(i)
2 ) and (b

(i)
3 ) all converge to e ∈ GC. Hence

chi(b
(i)
3 )→ e in GC.
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The map H × GC → GC × GC, (h, g) 7→ (g, ch(g)) is proper, because it equals
the composition of the inclusion H × GC ↪→ GC × GC and the diffeomorphism

GC ×GC → GC ×GC, (x, y) 7→ (y, cx(y)). Since chi
(b

(i)
3 )→ e and b

(i)
3 → e, we may

therefore assume, after passing to a subsequence, that (hi) is convergent in H.

Notice that there exists an open neighborhood OB ⊆ UB of e ∈ UB such that
OBOB ⊆ UB , because the BCH product ∗ on UgC is continuous, b− is a closed
subalgebra in gC and expGC

∣∣
Ub

is a homeomorphism onto UB . Notice similarly

that chi
(b

(i)
3 ) ∈ OB for large-enough i ∈ N, because AdH(b−) ⊆ b− and the adjoint

action of H on b is jointly continuous. Thus b
(i)
2 chi(b

(i)
3 ) ∈ UB for large-enough

i ∈ N. Since n
(i)
1 ̸= n

(i)
2 and µ(n

(i)
1 , b

(i)
1 ) = µ(n

(i)
2 , b

(i)
2 chi

(b
(i)
3 )) for all i ∈ N, this

contradicts the injectivity of µ|UN×UB
.

We may thus assume that (6.5.5) holds true for VN := UN and VB := UB , by
shrinking UN and UB further if necessary. Then (UP , UN , UB) is a good triple
containing e ∈ G. We therefore have shown:

Lemma 6.5.13. There exists a good triple (S,N,UB) containing e ∈ G.

Proof of Theorem 6.5.7:

By Lemma 6.5.13, there exists a good triple (S(e), N (e), U
(e)
B ) containing the iden-

tity e ∈ G. By Lemma 6.5.4, we then find that for any g ∈ G, there ex-

ists a good triple of the form (S,N,U
(e)
B ) containing g. Consequently, the set{

q(S) : (S,N,U
(e)
B ) is a good triple

}
is an open cover of G/H. Henceforth, we

write UB := U
(e)
B . Let Ub− ⊆ b− be a symmetric 0-neighborhood such that

expGC

∣∣
Ub−

is biholomorphic onto UB , and such that the BCH series defines a

holomorphic map ∗ : Ub− × Ub− → b−.

For k ∈ {1, 2}, let (S(k), N (k), UB) be a good triple with real and complex domains

S
(k)
0 andN

(k)
0 , respectively. Denote the inverse of µ|N(k)×UB

: N (k)×UB → N (k)UB
by ζk. Let νk := πN(k) ◦ ζk|S(k)

0
be the associated real-analytic diffeomorphism

S
(k)
0 → N

(k)
0 (cf. Lemma 6.5.10). Concretely, for gk ∈ S

(k)
0 there exists unique

(nk, bk) ∈ N (k)
0 × UB s.t. gk = nkbk, and then νk(gk) = nk. Denote the associated

chart of G/H by σk := νk ◦ q|−1

S
(k)
0

: q(S
(k)
0 ) → N

(k)
0 . (We avoid choosing concrete

charts of the complex manifold N
(k)
0 , to avoid unnecessary notation.) The situation

is depicted in the diagram below:

S
(k)
0 N (k) × UB

q(S
(k)
0 ) N

(k)
0

q|
S
(k)
0

νk

ζk|
S
(k)
0

π
N(k)

σk

.

Suppose that VG/H := q(S
(1)
0 ) ∩ q(S(2)

0 ) ̸= ∅. For k ∈ {1, 2}, define the open set
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Z(k) := q|−1

S
(k)
0

(VG/H) ⊆ S
(k)
0 and let D(k) := σk(VG/H) ⊆ N

(k)
0 be the domain of

the transition function. Notice concretely that

n ∈ D(k) ⇐⇒ ∃(g, b) ∈ Z(k) × UB : g = nb.

Notice that the transition function σ12 := σ1 ◦ σ−1
2 : D(2) → D(1) is real-analytic.

We must show that it is also holomorphic. To determine σ12 explicitly, observe
that σ12 = ν1 ◦ q|−1

S(1) ◦ q|S(2) ◦ ν−1
2 . Take n2 ∈ D(2) and let g2 := ν−1

2 (n2) ∈ Z(2)

be the corresponding element in the transversal, so that g2 = n2b2 for a unique
b2 ∈ UB . There exists unique h ∈ H such that

(q|−1
S(1) ◦ q|S(2))(g2) = g2h ∈ Z(1).

Letting (n1, b1) ∈ D(1)×UB be s.t. g2h = n1b1, we have ν1(g2h) = n1 = πN(1)(ζ1(g2h)),
and σ12(n2) is explicitly given by

σ12(n2) = (ν1 ◦ q|−1
S(1) ◦ q|S(2))(g2) = ν1(g2h)

= n1 = πN(1)(ζ1(n2b2h)).

Let us henceforth write g2(n2), n1(n2), b1(n2), b2(n2) and h2(n2) instead of g2, n1, b1, b2
and h2, to emphasize their (real-analytic) dependence on n2. We thus have

σ12(n2) = n1(n2) = πN(1)(ζ1(g2(n2)h(n2))) = πN(1)(ζ1(n2b2(n2)h(n2))). (6.5.6)

We must show that σ12 is holomorphic near any point. Let n•2 ∈ D(2). Define
b•1 := b1(n

•
2), b

•
2 := b2(n

•
2), h

• := h(n•2) and h∆(n2) := (h•)−1h(n2). Using the
continuity of the BCH product ∗ : Ub− ×Ub− → b−, observe that we can find open
neighborhoods OB ⊆ UB and OH ⊆ H of b•1 ∈ UB and e ∈ H, respectively, such
that OBOH ⊆ UB . Now, from

n1(n2)b1(n2) = g(n2)h(n2) = g(n2)h
•h∆(n2),

we obtain that g(n2)h
• = n1(n2)b1(n2)h∆(n2)

−1. Since n1(n2), b1(n2) and h∆(n2)
−1

depend continuously on n2, we have b1(n2) ∈ OB and h∆(n2)
−1 ∈ OH for all n2

in some open neighborhood O(2)
N ⊆ D(2) of n•2, so that b1(n2)h∆(n2)

−1 ∈ UB . We

then have g(n2)h
• ∈ S(1)

0 and

ζ1(g(n2)h
•) = (n1(n2), b1(n2)h∆(n2)

−1) ∈ D(1) × UB , ∀n2 ∈ O(2)
N . (6.5.7)

We thus see for any n2 ∈ O(2)
N that g(n2)h(n2) and g(n2)h

• have the same N (1)-
component, namely n1(n2). Using (6.5.6) we therefore find that

σ12(n2) = πN(1)(ζ1(n2b2(n2)h
•)), ∀n2 ∈ O(2)

N .

Shrinking O(2)
N if necessary, we may further assume that b2(n2)

−1b•2 ∈ UB (using
the continuity of the BCH product ∗ : Ub−×Ub− → b−), and that n2b

•
2h

• ∈ D(1)UB

(because n•2b
•
2h

• ∈ D(1)UB andD(1)UB is open inN (1)UB ⊆ GC), for any n2 ∈ O(2)
N .

We show that we then have

σ12(n2) = πN(1)(ζ1(n2b
•
2h

•)), ∀n2 ∈ O(2)
N . (6.5.8)
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Take n2 ∈ O(2)
N . Suppose that (n1, β1) = ζ1(n2b2(n2)h

•) and (n′1, β
′
1) = ζ1(n2b

•
2h

•)
for some n1, n

′
1 ∈ D(1) and β1, β

′
1 ∈ UB , so n1β1 = n2b2(n2)h

• and n′1β
′
1 = n2b

•
2h

•.
(In fact, notice that β1 = b1(n2)h∆(n2)

−1 by (6.5.7).) Then

n′1β
′
1 = n1β1c

−1
h• (b2(n2)

−1b•2).

Using that b2(n2)
−1b•2 ∈ UB , this implies by (6.5.4) that n1 = n′1. Thus (6.5.8)

holds true. Since πN(1) , rh•b•2
and ζ1 are all holomorphic, it follows from (6.5.8)

that σ12|O(2)
N

is so, too. As the point n•2 ∈ D(2) was arbitrary, we conclude that

σ12 is holomorphic.

The charts defined by good triples (S,N,UB) therefore turn the real-analytic man-
ifold G/H into a complex manifold modeled on n+, that has the same underlying
real-analytic structure.

Let us show next that the C-linear extension of the map

g→ Te(G/H), ξ 7→ d

dt

∣∣∣∣
t=0

q(expG(tξ)) (6.5.9)

descends to a C-linear isomorphism gC/b− ∼= Te(G/H) of topological complex
vector spaces. Consider the good triple (UP , UN , UB) defined in the proof of
Lemma 6.5.13, with associated real and complex domains S0 ⊆ UP and N0 ⊆ UN ,
respectively. Let σ : q(S0) → N0 be the associated chart of G/H. Let ζ be the
inverse of µ|UN×UB

: UN × UB → UNUB , and let ν := πUN
◦ ζ|S0

be the corre-
sponding map S0 → N0 (cf. Lemma 6.5.10). Finally, let UH ⊆ UB ∩H be an open
1-neighborhood of H.

Let ξ ∈ g. Using (A1), there exist smooth paths p(t) and h(t) in S0 and UH
respectively, both defined for all t in some interval I ⊆ R containing zero, such
that expG(tξ) = p(t)h(t) for all t ∈ I. Then q|−1

S0
(q(expG(tξ))) = p(t) for t ∈ I.

Letting (n(t), b(t)) = ζ(p(t)), so that p(t) = n(t)b(t) for t ∈ I, we have that
ν(p(t)) = n(t). The smooth path q(expG(tξ)) in G/H is in the local coordinates
defined by σ therefore represented by the path n(t) in N0 ⊆ UN . Since

expG(tξ) = p(t)h(t) = n(t)b(t)h(t)

and b(t)h(t) ∈ UB for all t ∈ I with |t| small-enough, we also have

n(t) = πUN
(ζ(expG(tξ)))

for all t in some interval I0 ⊆ I containing zero. We thus find that

d

dt

∣∣∣∣
t=0

n(t) =
d

dt

∣∣∣∣
t=0

πUN
ζ(expG(tξ)) = πUn+

(
Te(ζ)(ξ)

)
. (6.5.10)

Since both πUn+
and Te(ζ) are C-linear, we see using (6.5.10) that the C-linear

extension of the map in (6.5.9) is in these local coordinates of G/H represented by
the map

gC → n+, ξ 7→ πUn+

(
Te(ζ)(ξ)

)
. (6.5.11)
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Notice that Te(ζ) : gC → n+ ⊕ b− is simply the inverse of the linear isomorphism

T(e,e)(µ|UN×UB
) : n+ ⊕ b− → gC, (ξ+, ξ−) 7→ ξ+ + ξ−.

It is therefore clear that the kernel of the map in (6.5.11) is precisely b−. Con-
sequently, (6.5.11) induces a C-linear isomorphism gC/b− ∼= Te(G/H) ∼= n+ of
topological complex vector spaces.

We verify next that lg : G/H → G/H is complex-analytic for any g ∈ G. In
the charts defined by the good triples (S,N,UB) and (gS, gN,UB), the map lg is
simply represented by N0 → gN0, n 7→ gn, where N0 is the complex domain of
(S,N,UB). This map is holomorphic because GC is a complex Lie group.

Finally, suppose that Q is a complex manifold and that f : G/H → Q is a smooth

map with lift f̃ : G → Q. By Proposition 6.2.11, f is holomorphic if and only
if T (f) is fiberwise C-linear. Identifying Tg(G/H) ∼= Te(G/H) ∼= gC/b− for any

g ∈ G using the left G-action, this is the case if and only if TC
g (f̃)(vg(ξ)) = 0 for

all g ∈ G and ξ ∈ b−.

6.5.3 Complex bundle structures on Eσ = G×H V Ob
σ

Throughout the following, we continue in the setting of Section 6.5.2 and assume in
addition that the assumptions of Theorem 6.5.7 are satisfied. We write M for the
homogeneous space G/H, endowed with the unique G-invariant complex manifold
structure satisfying the conditions in Theorem 6.5.7.

Fix a unitary H-representation (σ, Vσ). Recall from Definition 6.2.19 that V Ob
σ

denotes the space of b-strongly-entire vectors for the H-representation σ on Vσ.
Assume that the H-action σ on V Ob

σ is real-analytic H × V Ob
σ → V Ob

σ . Since
G → G/H is a real-analytic principal H-bundle, by Theorem 6.5.1, we have in
this case that the G-homogeneous vector bundle Eσ := G×H V Ob

σ over G/H with
typical fiber is V Ob

σ carries a natural real-analytic bundle structure.

Remark 6.5.14. If H is actually a Banach-Lie group, so that h is a Banach space
w.r.t. the subspace topology inherited from g, then the H-action on V Ob

σ is always
real-analytic H × V Ob

σ → V Ob
σ , cf. Remark 6.3.15.

In the following, we adapt the proof of [Nee13, Thm. 2.6] to endow Eσ with a
complex-analytic bundle structure, using the notion of entire extensions χ : b− →
B(V Ob

σ ) of dσ to b−, see Definition 6.5.17 below. We write Lg : Eσ → Eσ for the
left G-action on Eσ.

Definition 6.5.15. Let W be a complete Hausdorff complex (resp. real) locally
convex vector space and let F : W → B(V Ob

σ ) be a function. We say that F is
complex-analytic (resp. real-analytic, smooth) if the corresponding map

F∨ :W × V Ob
σ → V Ob

σ

is complex-analytic (resp. real-analytic, smooth).
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Lemma 6.5.16. Consider the setting of Definition 6.5.15. If F is smooth then F
is complex-analytic if and only if the map Tx(F ) : W → B(V Ob

σ ) is C-linear for
every x ∈W , where Tx(F )(w)v := d

dt

∣∣
t=0

F (x+ tw)v

Proof. By Proposition 6.2.11, the map F∨ :W×V Ob
σ → V Ob

σ is complex-analytic if
and only if it is smooth and T (F∨) is fiber-wise C-linear. F∨ is smooth by assump-
tion and v 7→ Tx(F

∨)(0, v) is trivially C-linear. Thus F is complex-analytic if and
only if w 7→ Tx(F

∨)(w, 0) is C-linear for any x,w ∈W , which is the statement.

Definition 6.5.17. An entire extension χ of dσ : hC → B(V Ob
σ ) to b− is a homo-

morphism χ : b− → B(V Ob
σ ) of Lie algebras such that:

1. χ|hC
= dσ.

2. χ(Adh(ξ)) = σ(h)χ(ξ)σ(h)−1 for all h ∈ H and ξ ∈ b−.

3. The series
∑∞
n=0

1
n!χ(ξ)

nv converges in V Ob
σ for all ξ ∈ b− and v ∈ V Ob

σ , and
defines an entire map

b− × V Ob
σ → V Ob

σ , (ξ, v) 7→
∞∑
n=0

1

n!
χ(ξ)nv.

In this case, we write eχ(ξ)ψ :=
∑∞
n=0

1
n!χ(ξ)

nψ.

Notice that an entire extension is in particular an extension in the sense of Defini-
tion 6.4.4.

The following example and the discussion in Remark 6.3.15 reflect the main reason
for working with the space V Ob

σ of b-strongly-entire vectors, instead of V O
σ :

Example 6.5.18. Assume thatH is a Banach-Lie group. In view of Remark 6.3.15,
we then know that the following map is entire:

hC × V Ob
σ → V Ob

σ , (η, v) 7→
∞∑
n=0

1

n!
dσ(ηn)v (6.5.12)

Consequently, the trivial extension χ : b− → B(V Ob
σ ) of dσ to b− with domain V Ob

σ

is an entire extension.

Using the notion of entire extensions, [Nee13, Thm. 2.6] adapts straightforwardly
to the present setting:
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Theorem 6.5.19. Let χ : b− → B(V Ob
σ ) be an entire extension of dσ to b−. Then

Eσ = G ×H V Ob
σ carries a unique complex-analytic bundle structure satisfying the

following properties:

1. The left G-action Lg is complex-analytic for any g ∈ G.

2. The quotient map G× Vσ → Eσ is real-analytic.

3. Let U ⊆ G be a neighborhood of g ∈ G. A smooth function f ∈ C∞(UH, V Ob
σ )H

corresponds to a local holomorphic section of Eσ if and only if

Lv(ξ)f = −χ(ξ)f, ∀ξ ∈ n−.

If the two entire extensions χ1 and χ2 of dσ to b− define the same complex-bundle
structure, then χ1 = χ2.

Definition 6.5.20. Let χ : b− → B(V Ob
σ ) be an entire extension of dσ to b−.

We denote by E(σ,χ) → M the vector bundle Eσ → M equipped with the unique
complex-analytic bundle structure satisfying the conditions in Theorem 6.5.19.

Proof of Theorem 6.5.19: This proof essentially follows from trivial adaptations of
[Nee13, Thm. 2.6]. Let us indicate the required changes and recall the construction
of the local charts, for later use.

Let qM : G → G/H denote the quotient map. Let Ug ⊆ g and UG ⊆ G be
neighborhoods of 0 ∈ g and e ∈ G, respectively, s.t. expG|Ug

: Ug → UG is an

analytic diffeomorphism. Shrinking Ug if necessary, there exists by (A1) some
0-neighborhoods Up ⊆ p and Uh ⊆ h s.t. the BCH series defines an analytic dif-
feomorphism Up × Uh → Ug. Define UP := expG(Up) and UH := expG(Uh), so
UG = UPUH . (Comparing with the proof of [Nee13, Thm. 2.6], UP takes the role
of UZ .) Define for any x ∈ G the open subsets

Ux := xqM (UP ) ⊆M and Ũx := xUPH ⊆ G. (6.5.13)

Using (A3), and replacing β : b− → B(Vσ) in steps 2 − 4 of the proof of [Nee13,
Thm. 2.6] by the entire extension χ : b− → B(V Ob

σ ), we obtain after shrinking Ug

if necessary for each x ∈ G a smooth function Fx : Ũx → B(V Ob
σ )× satisfying the

following properties:

1. Fx(gh) = σ(h)−1Fx(g) for all g ∈ Ũx and h ∈ H.

2. Lv(ξ)Fx = −χ(ξ)Fx for all ξ ∈ b−.

3. Fx(x) = id
V

Ob
σ

.

Moreover, using (A1), (A3), that eχ : b− → B(V Ob
σ ) is complex-analytic and that

the action H×V Ob
σ → V Ob

σ is real-analytic, in view of Remark 6.3.15, observe from
its construction that both Fx and F−1

x are actually real-analytic. These functions

moreover satisfy Fyx(yg) = Fx(g) for any x, y ∈ G and g ∈ Ũx, as is immediate
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from their construction. As in [Nee13, Thm. 2.6], we now define for each x ∈ G
the trivialization

ϕx : Ux × V Ob
σ → Eσ|Ux

, (gH, v) 7→ [g, Fx(g)v], (6.5.14)

so that the transition function ϕ−1
x ◦ ϕy : Ux ∩Uy × V Ob

σ → Ux ∩Uy × V Ob
σ is given

by (gH, v) 7→ (gH, ϕxy(gH)v), where

ϕxy : Ux ∩ Uy → B(V Ob
σ )×, ϕxy(gH) = Fx(g)

−1Fy(g).

Let us check as in [Nee13, Thm. 2.6] that these transition functions are complex-

analytic. It suffices by Lemma 6.5.16 to show that the lift ϕ̃xy : Ũx∩ Ũy → B(V Ob
σ )

of ϕxy satisfies Lv(ξ)ϕ̃xy = 0 for all ξ ∈ b−. This follows from the three properties
of the functions Fx mentioned above:

Lv(ξ)ϕ̃xy =
(
Lv(ξ)F

−1
x

)
Fy + F−1

x

(
Lv(ξ)Fy

)
= −F−1

x

(
Lv(ξ)Fx)F

−1
x Fy + F−1

x

(
Lv(ξ)Fy

)
= F−1

x χ(ξ)Fy − F−1
x χ(ξ)Fy

= 0.

Thus the trivializations {ϕx}x∈G define a complex-analytic bundle structure on Eσ.
Let E(σ,χ) denote the corresponding complex-analytic bundle. We show that the
properties 1− 3 in Theorem 6.5.19 are satisfied:

1. Let x, g ∈ G. In the local charts defined by ϕx and ϕgx, Lg is represented
by lg × id

V
Ob
σ

, which is complex-analytic from the corresponding property of

lg :M →M .

2. Let x ∈ G. Consider the local coordinates of E(σ,χ) defined by ϕx. In these
local coordinates, the quotient map G× V Ob

σ → E(σ,χ) is represented by the
real-analytic function

Ũx × V Ob
σ → Ux × V Ob

σ , (g, v) 7→ (gH,Fx(g)
−1v).

3. Take f ∈ C∞(UH, V Ob
σ )H . The corresponding local section of E(σ,χ) is ob-

tained by descending the function f̃ : UH → Eσ, f̃(g) := [g, f(g)] to the

quotient qM (U). Let x ∈ U and define Wx := Ux ∩ U and W̃x := Ũx ∩ UH.

Using the local chart ϕx, the map f̃
∣∣∣
W̃x

is represented by the smooth function

f : W̃x → Ux × V Ob
σ , f(g) = (gH, Fx(g)

−1f(g)),

which is complex-analytic if and only if Lv(ξ)h = 0 for any ξ ∈ b−, where h
is given by

h : W̃x → V Ob
σ , h(g) := Fx(g)

−1f(g).
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We compute that

Lv(ξ)h =
(
Lv(ξ)F

−1
x

)
f + F−1

x

(
Lv(ξ)f

)
= −F−1

x

(
Lv(ξ)Fx)F

−1
x f + F−1

x

(
Lv(ξ)f

)
= F−1

x χ(ξ)f + F−1
x

(
Lv(ξ)f

)
.

Thus Lv(ξ)h = 0 if and only if Lv(ξ)f = −χ(ξ)f for any ξ ∈ b−. Consequently
f corresponds to a holomorphic local section of Eσ → M if and only if
Lv(ξ)f = −χ(ξ)f for every ξ ∈ b−. The equation is automatically satisfied
for any ξ ∈ hC by the H-equivariance of f . The conclusion follows.

Step 5 in [Nee13, Thm. 2.6] shows that if the two entire extensions χ1 and χ2 define
the same complex bundle structure, then χ1 = χ2. To see that the complex-bundle
structure is unique, we simply remark that if E1

σ and E2
σ denote the vector bundle

Eσ equipped à priori with possibly different complex-analytic bundle structures
satisfying the properties 1− 3 in Theorem 6.5.19, then by the third property they
have the same holomorphic local sections. This implies E1

σ = E2
σ as complex-

analytic vector bundles over M .

6.5.4 Geometric holomorphic induction

Having the complex-analytic G-homogeneous vector bundles E(σ,χ) at hand, we
are now in a position to define a stronger notion of holomorphic induction, which
guarantees that H∞

ρ actually embeds into a space of holomorphic mappings. We
continue under the assumptions of Section 6.5.3. In particular, σ is a unitary
representation ofH on Vσ for which theH-action on V Ob

σ is real-analyticH×V Ob
σ →

V Ob
σ . Let χ : b− → B(V Ob

σ ) be an entire extension of dσ : hC → B(V Ob
σ ) to b−, and

let (ρ,Hρ) be a unitary G-representation.

Definition 6.5.21. We say that (ρ,Hρ) is geometrically holomorphically induced
from (σ, χ) if σ is b-strongly-entire and there exists a G-equivariant injective linear
map Φ : Hρ ↪→ Map(G,Vσ)

H satisfying:

1. The point evaluation Ex : Hρ → Vσ, Ex(ψ) := Φψ(x) is continuous for every
x ∈ G.

2. ExE∗x = idVσ
for every x ∈ G.

3. For every w ∈ V Ob
σ , the following function is holomorphic:

fw : E(σ,χ) → C, fw([g, v]) := ⟨E∗ew, ρ(g)E∗e v⟩.

Remark 6.5.22. The first condition in Definition 6.5.21 entails that (ρ,Hρ) is
unitarily equivalent to the natural G-representation on the reproducing kernel
Hilbert space HQ, where Q ∈ C(G×G,B(Vσ))H×H is the positive definite and G-
invariant kernel defined by Q(x, y) := ExE∗y . Combined with the second property,
we additionally have that E∗e is an H-equivariant isometry and that the subspace
E∗eVσ ⊆ Hρ is cyclic for G, cf. Theorem 6.9.3 and Proposition 6.9.5 below.
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We start with a lemma:

Lemma 6.5.23. Assume that Vσ ⊆ Hρ as unitary H-representations and that
Vσ is cyclic for G in Hρ. Assume further that σ is b-strongly-entire. Then the
following assertions are equivalent:

1. V Ob
σ ⊆ H∞

ρ and dρ(ξ)v = χ(ξ)v for all ξ ∈ b− and v ∈ V Ob
σ .

2. fw ∈ O(E(σ,χ)) for every w ∈ V Ob
σ , where fw([g, v]) := ⟨w, ρ(g)v⟩.

If these assertions are satisfied, then we even have V Ob
σ ⊆ Hωρ . Moreover, we have

fψ ∈ O(E(σ,χ)) for any ψ ∈ H∞
ρ , where fψ([g, v]) := ⟨ψ, ρ(g)v⟩.

Proof. Let ψ ∈ H∞
ρ and consider the function

fψ : E(σ,χ) → C, fψ([g, v]) = ⟨ψ, ρ(g)v⟩.

Consider its lift to G × V Ob
σ , defined by f̃ψ : G × V Ob

σ → C, f̃ψ(g, v) = fψ([g, v]).

Let x ∈ G. Define the open sets Ũx ⊆ G and Ux ⊆ M as in (6.5.13), so Ux is an

open neighborhood of xH ∈M . Let Fx : Ũx → B(V Ob
σ )× be defined as in the proof

of Theorem 6.5.19. In particular, Fx satisfies Lv(ξ)Fx = −χ(ξ)Fx for any ξ ∈ b−.

Let ϕx : Ux × V Ob
σ → E(σ,χ)

∣∣
Ux

be the corresponding chart of the holomorphic

vector bundle E(σ,χ), defined in (6.5.14). In these local coordinates, fψ and f̃ψ are

represented by hψ,x and h̃ψ,x, respectively, where

hψ,x : Ux × V Ob
σ → C, hψ,x(gH, v) = ⟨ρ(g)−1ψ, Fx(g)v⟩,

h̃ψ,x : Ũx × V Ob
σ → C, h̃ψ,x(g, v) = ⟨ρ(g)−1ψ, Fx(g)v⟩.

As Fx is smooth, and because ψ ∈ H∞
ρ , this shows in particular that fψ is smooth

for the underlying real manifold structure. Then hψ,x is complex-analytic if and

only if Lv(ξ)h̃ψ,x = 0 for any ξ ∈ b−. Let ξ ∈ b−. Using Lv(ξ)Fx = −χ(ξ)Fx, we
compute for any (g, v) ∈ Ũx × V Ob

σ that

(Lv(ξ)h̃ψ,x)(g, v) = ⟨dρ(ξ∗)ρ(g)−1ψ,Fx(g)v⟩ − ⟨ρ(g)−1ψ, χ(ξ)Fx(g)v⟩. (6.5.15)

Thus if (1) holds true, then (6.5.15) shows that Lv(ξ)h̃ψ,x = 0 for any ξ ∈ b−, so
that hψ,x is complex-analytic for any x ∈ G. We then conclude that fψ ∈ O(E(σ,χ))
for any ψ ∈ H∞

ρ . Since V Ob
σ ⊆ H∞

ρ by assumption, we in particular notice that (2)
holds true.

Assume conversely that fw ∈ O(E(σ,χ)) for any w ∈ V Ob
σ . Let v ∈ V Ob

σ . Then the
function g 7→ ⟨v, ρ(g)v⟩ = fv([g, v]) is real-analytic G → C, where we have used
that the quotient map G× V Ob

σ → E(σ,χ) is real-analytic. As G is a BCH Fréchet-
Lie group, this implies by [Nee11, Thm. 5.2] that v ∈ Hωρ . Hence V Ob

σ ⊆ Hωρ . We

know from Corollary 6.2.24 that Hωρ ⊆ H∞
ρ , so we also obtain that V Ob

σ ⊆ H∞
ρ .

To see that (1) holds true, it remains to show that dρ(ξ)v = χ(ξ)v for all ξ ∈ b−
and v ∈ V Ob

σ . Consider the set D :=
{
ψ ∈ H∞

ρ : fψ ∈ O(E(σ,χ))
}
. The preceding
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shows that V Ob
σ ⊆ D. The set D is moreover G-invariant. Indeed, if ψ ∈ D and

g ∈ G, then fρ(g)ψ = fψ ◦ Lg−1 defines a holomorphic map on E(σ,χ), because
Lg−1 : E(σ,χ) → E(σ,χ) is holomorphic. As V Ob

σ is dense in Vσ and Vσ is cyclic for
G, it follows that D is dense in Hρ. Let ξ ∈ b−, ψ ∈ D and v ∈ V Ob

σ . Recall that

Fe(e) = id
V

Ob
σ

. As fψ ∈ O(E(σ,χ)), we know that (Lv(ξ)h̃ψ,e)(e) = 0. Using that

v ∈ H∞
ρ , it follows by evaluating (6.5.15) at (e, v) ∈ Ũe × V Ob

σ that

⟨ψ, dρ(ξ)v⟩ = ⟨dρ(ξ∗)ψ, v⟩ = ⟨ψ, χ(ξ)v⟩.

As D is dense, it follows that dρ(ξ)v = χ(ξ)v for all ξ ∈ b− and v ∈ V Ob
σ , so that

(1) holds true. We have also shown that if these equivalent conditions are satisfied,
then V Ob

σ ⊆ Hωρ and fψ ∈ O(E(σ,χ)) for any ψ ∈ H∞
ρ .

The following entails that H∞
ρ can be seen as a space of of holomorphic functions

on the complex-analytic bundle E(σ,χ) →M conjugate to E(σ,χ) →M :

Proposition 6.5.24. Assume that ρ is geometrically holomorphically induced from
(σ, χ). Then there is an injective G-equivariant C-linear map H∞

ρ ↪→ O(E(σ,χ)) for
which all point evaluations are continuous.

Proof. Assume that ρ is geometrically holomorphically induced from (σ, χ). In
particular, this implies that σ is b-strongly-entire. Let Φ : Hρ ↪→ Map(G,Vσ)

H

satisfy the conditions in Definition 6.5.21. We may consider Vσ as a subspace
of Hρ using the H-equivariant isometry E∗e . We know by Theorem 6.9.3 that
Vσ ⊆ Hρ is cyclic. From Lemma 6.5.23 we obtain that fψ ∈ O(E(σ,χ)) for any

ψ ∈ H∞
ρ . The map ψ 7→ fψ defines a G-equivariant C-linear map H∞

ρ → O(E(σ,χ))

that has continuous point evaluations, where O(E(σ,χ)) denotes the vector space

complex conjugate to O(E(σ,χ)), which may be identified with O(E(σ,χ)). This map
is injective because fψ = 0 implies that ψ ⊥ ρ(G)V Ob

σ , which in turn implies ψ = 0
because V Ob

σ is cyclic for Hρ.

Let us next compare the notion of geometric holomorphic induction with Defini-
tion 6.4.11. Recall that χ is an entire extension of dσ : hC → B(V Ob

σ ) to b−. We
assume in the following that G and H are both connected.

Theorem 6.5.25. Assume that σ is b-strongly-entire. The following assertions
are equivalent:

1. (ρ,Hρ) is geometrically holomorphically induced from (σ, χ).

2. There is a subspace Dχ̃ ⊆ V ωσ containing V Ob
σ and an extension χ̃ : b− → L(Dχ̃)

of dσ to b− such that χ(ξ) = χ̃(ξ)|
V

Ob
σ

for every ξ ∈ b−, and such that

ρ = HolIndGH(σ, χ̃).

Suppose that χ is the trivial extension of dσ to b− with domain V Ob
σ . Then these

assertions are equivalent to:

3. ρ = HolIndGH(σ) and V Ob
σ ⊆ H∞

ρ , where we considered Vσ as a subspace of
Hρ using Theorem 6.4.13.
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Proof. Assume that (ρ,Hρ) is geometrically holomorphically induced from (σ, χ).
Let Φ : Hρ ↪→ Map(G,Vσ)

H satisfy the conditions in Definition 6.5.21. Identify Vσ
with a cyclic subspace of Hρ using E∗e . Define Dχ̃ := Vσ ∩Hωρ . From Lemma 6.5.23

we obtain that V Ob
σ ⊆ Dχ̃ and that dρ(ξ)v = χ(ξ)v for all ξ ∈ b− and v ∈ V Ob

σ .
As V Ob

σ is dense in Vσ, the latter in particular implies that dρ(b−)Dχ̃ ⊆ Vσ,
which in turn implies dρ(b−)Dχ̃ ⊆ Dχ̃. From Theorem 6.4.13 it follows that

ρ = HolIndGH(σ, χ̃), where χ̃ : b− → L(Dχ̃) is the extension of dσ to b− with
domain Dχ̃, defined by χ̃(ξ)v = dρ(ξ)v. This extension satisfies χ̃(ξ)|

V
Ob
σ

= χ(ξ)

for any ξ ∈ b−, as required.

Conversely, let χ̃ : b− → L(Dχ̃) satisfy the conditions in (2), so in particular

ρ = HolIndGH(σ, χ̃). By Theorem 6.4.13 we may assume that Vσ ⊆ Hρ as unitary
H-representations, that Dχ̃ = Vσ ∩ Hωρ and that χ̃(ξ)v = dρ(ξ)v for all ξ ∈ b−
and v ∈ Dχ̃. As Dχ̃ contains V Ob

σ by assumption, it follows in particular that
V Ob
σ ⊆ Hωρ . From Lemma 6.5.23, we obtain that fw ∈ O(E(σ,χ)) for any w ∈ V Ob

σ ,
where fw([g, v]) = ⟨w, ρ(g)v⟩. So the map

Φ : Hρ → Map(G,Vσ)
H , Φψ(g) := pV ρ(g)

−1ψ

satisfies the conditions in Definition 6.5.21, where pV : Hρ → Vσ is the orthogonal
projection.

Assume that χ is the trivial extension of dσ to b− with domain V Ob
σ . Assume that

(2) holds true. Let the subspace Dχ̃ ⊆ Vσ and the extension χ̃ : b− → L(Dχ̃)
satisfy the conditions in (2). We may consider Vσ as a closed H-invariant linear
subspace of Hρ satisfying the conditions in Theorem 6.4.13. In particular, we have
V Ob
σ ⊆ Dχ̃ = Vσ∩Hωρ , so certainly V Ob

σ ⊆ V∞
σ . As χ is the trivial extension on V Ob

σ

and χ(ξ) = χ̃(ξ)|
V

Ob
σ

for every ξ ∈ b−, we also have dρ(n−)V
Ob
σ = {0}. As V Ob

σ is

dense in Vσ, this further implies that dρ(n−)Dχ̃ = {0}, so χ̃ is the trivial extension
on Dχ̃. Hence (3) holds true. Assume conversely that (3) is valid. Let χ̃ denote
the trivial extension of dσ to b− on the domain Dχ̃ := Vσ ∩ Hωρ . By assumption

ρ = HolIndGH(σ, χ̃) and V Ob
σ ⊆ H∞

ρ . As Dχ̃ is killed by dρ(n−) and dense in Vσ, it

follows that dρ(n−)V
Ob
σ = {0}. Thus (1) in Lemma 6.5.23 is satisfied, from which

we obtain that V Ob
σ ⊆ Hωρ . This means that V Ob

σ ⊆ Dχ̃. So (2) is satisfied using
the trivial extension χ̃ on the subspace Dχ̃ ⊆ Vσ.

6.6 Arveson spectral theory

In Section 6.7 below, we shall have need for a suitably general notion of Arveson
spectral subspaces. As such, we extend the already existing notion to a more
general setting. Let V be a complete locally convex vector space over C that is
Hausdorff. We define Arveson spectral subspaces of V associated to a strongly
continuous R-representation α on V that satisfies a suitable condition, using the
convolution algebra S(R) of C-valued Schwartz functions on R. The results are
adaptations of those in [Arv74, Sec. 2], [NSZ15, Sec. A.3] and [Nee13, Sec. A.2].
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6.6.1 Certain classes of R-representations
Throughout the section, let α : R→ B(V )× be a strongly continuous representation
of R on V . In [NSZ15, Sec. A.3], the R-action α is required to be polynomially
bounded (see Definition 6.6.1 below). It will however be convenient to define both a
stronger and a weaker notion, that in turn are both still weaker than equicontinuity,
which is used in [Nee13, Sec. A.2].

Definition 6.6.1. Let α : R→ B(V )× be a strongly continuous representation of
R on V .

— α is said to be equicontinuous if there is a basis of absolutely convex α-
invariant 0-neighborhoods in V . Equivalently, if the topology of V is defined
by a family of α-invariant continuous seminorms.

— α is said to have polynomial growth if there is a basis B of absolutely convex
0-neighborhoods in V such that for every U ∈ B there is a monic polynomial
r ∈ R[t] such that αt(U) ⊆ r(|t|)U for all t ∈ R. Equivalently, if there is a
family P of defining seminorms on V such that for every p ∈ P there exists
a monic polynomial r ∈ R[t] such that p(αt(v)) ≤ r(|t|)p(v) for all t ∈ R and
v ∈ V .

— α : R → B(V )× is called polynomially bounded if for every continuous semi-
norm p on V , there is a 0-neighborhood U ⊆ V and some N ∈ N such that

sup
v∈U

sup
t∈R

p(αt(v))

1 + |t|N
<∞.

— α : R → B(V )× is said to be pointwise polynomially bounded if for every
v ∈ V and continuous seminorm p on V , there exists N ∈ N such that

sup
t∈R

p(αt(v))

1 + |t|N
<∞.

Remark 6.6.2. Notice that we have the following implications:

α is equicontinuous =⇒ α has polynomial growth =⇒ α is polynomially bounded.

If V is a Banach space, then α has polynomial growth if and only if it is polynomially
bounded.

Example 6.6.3.

1. The R-representations on both L2(R) and C∞(T) by translation are equicon-
tinuous.

2. The R-action α on S(R) by translation is not equicontinuous but does have
polynomial growth. Indeed, one checks that the open set

U :=

{
f ∈ S(R) : sup

x∈R
|xf(x)| < 1

}
⊆ S(R)
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satisfies
⋂
t∈R αt(U) = {0}. By [Nee13, Prop. A.1], this implies that α is not

equicontinuous. It does have polynomial growth, because the topology on
S(R) is generated by the seminorms

pn,m(f) := sup
x∈R

(1 + |x|)n|(∂mf)(x)|, for n,m ∈ N≥0,

which satisfy pn,m(αtf) ≤
[∑n

k=0

(
n
k

)
|t|n−k

]
pn,m(f) for t ∈ R and f ∈ S(R).

3. The action of R on C∞(R) by translations is not pointwise polynomially
bounded. For example, the smooth function f(x) = ex satisfies

∥αt(f)∥C([0,1]) = ∥f∥C[t,t+t] ≥ et, ∀t ∈ R.

Let P denote the set of continuous seminorms on V . For p ∈ P, let

Np := { v ∈ V : p(v) = 0 }

denote its kernel. Let Vp := V/Np be the corresponding Banach space. If p, q ∈ P
and p ≤ q, then Nq ⊆ Np and hence there is a canonical contraction ηp,q : Vq → Vp.

Lemma 6.6.4. Assume that α is strongly continuous and has polynomial growth.
Then α descends for each p ∈ P to a representation of R on Vp with polynomial
growth. Moreover V = lim←−Vp as R-representations.

Proof. Let p ∈ P. Since α has polynomial growth, we have αt(Np) ⊆ Np for every
t ∈ R. Consequently, α descends to a strongly continuous R-representation α(p) on

Vp that again has polynomial growth. If p, q ∈ P and t ∈ R, then ηp,q ◦α(q)
t = α

(p)
t .

We thus obtain an R-action on the projective limit lim←−Vp for which the canonical
isomorphism V ∼= lim←−Vp is R-equivariant.

Proposition 6.6.5. Assume that α is strongly continuous and has polynomial
growth. Then the action α : R× V → V is continuous.

Proof. By Lemma 6.6.4 it follows that V = lim←−Vp as R-representation on locally
convex space. If p ∈ P, then since Vp is a Banach space and the R-representation
on Vp is strongly continuous, it follows from [Nee10a, Prop. 5.1] that the action
map R × Vp → Vp is jointly continuous. Using that V ∼= lim←−Vp as topological
representations of R, it follows that the action α : R×V → V is jointly continuous.

6.6.2 Arveson spectral subspaces

Let V be a complete locally convex vector space over C that is Hausdorff. Let
α : R→ B(V )× be a strongly continuous representation of R on V . Assume that α
is pointwise polynomially bounded. In the following, we define the Arveson spectral
subspaces of V associated to subsets E of R. We extend the results in [NSZ15,
A.3] to the case where α is only required to be pointwise polynomial bounded. We

will use the convention that the Fourier transform f 7→ f̂ on S(R) is given by

f̂(p) :=

∫
R
f(t)eitpdt. (6.6.1)
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Definition 6.6.6.

— If I ⊆ S(R) is an ideal, define its hull h(I) ⊆ R by

h(I) :=
{
p ∈ R : f̂(p) = 0 for all f ∈ I

}
.

— If E ⊆ R is a closed subset, define the ideal I0(E) of S(R) by

I0(E) :=
{
f ∈ S(R) : supp(f̂) ∩ E = ∅

}
.

Lemma 6.6.7 ([NSZ15, Prop. A.8]).

1. If E ⊆ R is a closed subset, then h(I0(E)) = E.

2. If I ⊆ S(R) is a closed ideal, then I0(h(I)) ⊆ I.

Corollary 6.6.8. Let I ⊆ S(R) be a closed ideal with h(I) = ∅. Then I = S(R).

Proof. Since I0(∅) = S(R) it follows using Lemma 6.6.7 that

S(R) = I0(∅) = I0(h(I)) ⊆ I.

We proceed by defining a representation of the convolution algebra (S(R), ∗) on V .

Lemma 6.6.9. Let f ∈ S(R) and v ∈ V . Then the weak integral
∫
R f(t)αt(v)dt

exists in V .

Proof. For any a > 0, the weak integral
∫ a
−a f(t)αt(v)dt exists in V because

R → V, t 7→ f(t)αt(v) is continuous and V is complete (cf. [Mil84, p. 1021]
or [GN, Prop. 1.1.15]). As α is pointwise polynomially bounded and f ∈ S(R)
is a Schwartz function, the limit v∗ := lima→∞

∫ a
−a f(t)αt(v)dt exists in V , and

v∗ =
∫
R f(t)αt(v)dt ∈ V .

Definition 6.6.10. For any Schwartz function f ∈ S(R), define the linear operator
αf ∈ L(V ) by

αf (v) :=

∫
R
f(t)αt(v)dt.

Then f 7→ αf defines a strongly continuous representation of the convolution alge-
bra (S(R), ∗) on V .

Remark 6.6.11. If α is polynomially bounded, then αf ∈ B(V ) is a continuous
operator for every f ∈ S(R).

Definition 6.6.12.

— Let Specα(V ) := h(kerα) ⊆ R be the hull of the closed ideal kerα in S(R).

— For v ∈ V , let S(R)v := { f ∈ S(R) : αf (v) = 0 } denote the annihilator of v
in S(R), which is a closed ideal in S(R), and let Specα(v) := h(S(R)v) ⊆ R
be its hull.
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— If E ⊆ R is a subset, define

Vα(E)0 :=
{
v ∈ V : Specα(v) ⊆ E

}
and let Vα(E) := Vα(E)0 be its closure in V . Define moreover

V +
α (E) :=

⋂
N

Vα(E +N),

where N runs over all 0-neighborhoods in R.

If the action α is clear from the context, we drop α from the notation and simply
write V (E)0, V (E) and V +(E) instead of Vα(E)0, Vα(E) and V +

α (E).

Example 6.6.13. Let U : R → U(H) be a strongly continuous unitary repre-
sentation of R. Then Ut = etH for some self-adjoint operator H on H. Sup-
pose that Ut =

∫
R e

itpdP (p) is the corresponding spectral decomposition of U ,
for some projection-valued measure P on R. With the convention (6.6.1) we

have Uf :=
∫
R f(t)Utdt =

∫
R f̂(p)dP (p) for f ∈ S(R). The Arveson spectrum

SpecU (H) coincides with Spec(H), the spectrum of the self-adjoint operator H.
Moreover, for a closed subset E ⊆ R, the corresponding spectral subspace is given
by HU (E) = P (E)H.

Remark 6.6.14. Let {Ei}i∈I be a family of closed subsets of R. Observe that⋂
i∈I V (Ei)0 = V

(⋂
i∈I Ei

)
0
.

Remark 6.6.15. Notice for any v ∈ V that kerα ⊆ S(R)v, so Specα(v) ⊆ Specα(V ).
Thus

V = V (Specα(V ))0 = V
(
Specα(V )

)
= V +

(
Specα(V )

)
.

Combining this with Remark 6.6.14, we obtain for any closed subset E ⊆ R that
V (E)0 = V (E ∩ Specα(V ))0.

Lemma 6.6.16. Let f ∈ S(R) and v ∈ V . Then Specα(αf (v)) ⊆ supp(f̂).

Proof. Let p ∈ R \ supp(f̂) and choose g ∈ S(R) s.t. ĝ(p) ̸= 0 and ĝ|supp(f̂) = 0.

Then g ∗ f = 0, because ĝf̂ = 0. It follows that αgαfv = αf∗gv = 0. Since we also
have ĝ(p) ̸= 0 it follows that p /∈ Specα(αfv).

Proposition 6.6.17. Let v ∈ V . Then S(R)v = S(R) implies v = 0. Moreover
v ̸= 0 implies Specα(v) ̸= ∅.

Proof. Assume that S(R)v = S(R). If λ ∈ V ′ is a continuous functional, it follows
that

∫
R f(t)λ(αtv)dt = 0 for any f ∈ S(R). As t 7→ λ(αtv) is continuous, this

implies that λ(αtv) = 0 for all t ∈ R. In particular λ(v) = 0. As V ′ separates the
points of V by the Hahn-Banach Theorem [Rud91, Thm. I.3.4], it follow that v = 0.
Finally, if Specα(v) = ∅ then by Corollary 6.6.8 it follows that S(R)v = S(R) and
hence v = 0.
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Corollary 6.6.18. If E1, E2 ⊆ R are two disjoint closed subsets, then

V (E1)0 ∩ V (E2)0 = {0}.

Proof. We have V (E1)0 ∩ V (E2)0 = V (E1 ∩ E2) = V (∅) = {0} by Remark 6.6.14
and Proposition 6.6.17.

If E ⊆ R is a subset, recall from Definition 6.6.6 that I0(E) ⊆ S(R) denotes the

ideal of functions f ∈ S(R) whose Fourier transform f̂ vanishes on a neighborhood
of E ⊆ R. Proposition 6.6.19 below provides a convenient characterization of
V (E)0 in terms of I0(E), which will be used repeatedly.

Proposition 6.6.19 ([NSZ15, Prop. A.8]).
For any subset E ⊆ R we have

V (E)0 =
{
v ∈ V : I0(E) ⊆ S(R)v

}
=
{
v ∈ V : ∀f ∈ S(R) : supp(f̂) ∩ E = ∅ =⇒ αf (v) = 0

}
.

In particular V (E)0, V (E) and V +(E) are linear subspaces of V .

Proof. The proof of [NSZ15, Prop. A.8] continues to hold when α is only pointwise
polynomially bounded.

Corollary 6.6.20. Assume that α is polynomially bounded. Then for any E ⊆ R
we have

V (E)0 = V (E) = V +(E).

Proof. Let E ⊆ R be a subset. By Remark 6.6.11 we know that αf is a continuous
linear operator for every f ∈ S(R). It then follows from Proposition 6.6.19 that
V (E)0 is closed, so V (E)0 = V (E). Using Remark 6.6.14, we further obtain that

V +(E) =
⋂
N

V (E+N) =
⋂
N

V (E+N)0 = V

(⋂
N

E+N

)
0

= V (E)0 = V (E)0.

The following will also be used frequently:

Corollary 6.6.21. Let E ⊆ R be a subset. The following assertions are equivalent:

1. Specα(V ) ⊆ E .

2. V ⊆ V (E)0.

3. I0(E) ⊆ kerα.

Proof. Assume that Specα(V ) ⊆ E. Then for any v ∈ V we have

Specα(v) ⊆ Specα(V ) ⊆ E,

by Remark 6.6.15. This means that V ⊆ V (E)0. Assume next that V ⊆ V (E)0.
By Proposition 6.6.19, this means that I0(E) ⊆ S(R)v for all v ∈ V . So elements
of I0(E) annihilate every v ∈ V . Thus I0(E) ⊆ kerα. If I0(E) ⊆ kerα, then
Specα(V ) = h(kerα) ⊆ h(I0(E)) = E, where the last equality uses Lemma 6.6.7.
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Corollary 6.6.22. Specα(V ) =
⋃
v∈V Specα(v).

Proof. Define E :=
⋃
v∈V Specα(v). By Remark 6.6.15 we have Specα(v) ⊆ Specα(V )

for any v ∈ V . As Specα(V ) is closed, it follows that E ⊆ Specα(V ). Conversely,
recall that V (E)0 =

{
v ∈ V : Specα(v) ∈ E

}
. So from our definition of E, we

trivially have V ⊆ V (E)0. Then Specα(V ) ⊆ E follows by Corollary 6.6.21.

Let us next record the behavior of spectral subspaces under continuous linear and
multi-linear maps:

Proposition 6.6.23. For j ∈ {1, 2}, let αj : R→ B(Vj)× be a strongly continuous
representation of R on the complete and Hausdorff complex locally convex vector
space Vj. Assume that αj is pointwise polynomially bounded. Let T : V1 → V2
be a continuous R-equivariant linear map. Then for every subset E ⊆ R we have
T (V1(E)) ⊆ V2(E). If T is injective, then Specα1

(V1) ⊆ Specα2
(V2).

Proof. Let v ∈ V . As T is equivariant, we have that S(R)v ⊆ S(R)Tv. Hence
h(S(R)Tv) ⊆ h(S(R)v), which is to say that Specα2

(Tv) ⊆ Specα1
(v). Thus if

E ⊆ R is a subset then TV1(E)0 ⊆ V2(E)0. As T is continuous, it also follows that
TV1(E) ⊆ V2(E). If T is injective, we have S(R)v = S(R)Tv for any v ∈ V1. Conse-
quently, Specα1

(v) = Specα2
(Tv) ⊆ Specα2

(V2). As Specα2
(V2) is closed, it follows

using Corollary 6.6.22 that Specα1
(V1) =

⋃
v∈V1

Specα1
(v) ⊆ Specα2

(V2).

In the multi-linear context, we have the following analogue of [NSZ15, A.10]:

Proposition 6.6.24. For j ∈ {1, 2, 3}, let αj : R→ B(Vj)× be a strongly continu-
ous representation of R on the complete and Hausdorff complex locally convex vector
space Vj. Assume that αj is pointwise polynomially bounded. Let β : V1× V2 → V3
be a continuous R-equivariant bilinear map. Let E1, E2 ⊆ R be closed subsets.
Then

β(V1(E)× V2(E)) ⊆ V +
3 (E1 + E2).

In particular, if α3 is polynomially bounded then β(V1(E)×V2(E)) ⊆ V3(E1+E2).

Before proceeding to to proof of Proposition 6.6.24, let us mention the following
immediate consequence:

Corollary 6.6.25. Consider the setting of Proposition 6.6.24. Assume addition-
ally that β has dense span and that α3 is polynomially bounded. Then

Specα3
(V3) ⊆ Specα1

(V1) + Specα2
(V2).

Proof. We know by Proposition 6.6.24 that β(V1, V2) ⊆ V +
3

(
Specα1

(V1)+Specα2
(V2)

)
.

In view of Proposition 6.6.19 and Corollary 6.6.20, we further know that

V +
3

(
Specα1

(V1) + Specα2
(V2)

)
= V3

(
Specα1

(V1) + Specα2
(V2)

)
0
,
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and this is a closed linear subspace of V3. As β(V1, V2) has dense linear span in V3,
it follows that

V3 ⊆ V3
(
Specα1

(V1) + Specα2
(V2)

)
0
.

According to Corollary 6.6.21, this equivalent with

Specα3
(V3) ⊆ Specα1

(V1) + Specα2
(V2).

The proof of Proposition 6.6.24 requires some preparation. It closely follows that
of [Arv74, Prop. 2.2] and [Nee13, Prop. A.14]. We first introduce some additional
notation:

Definition 6.6.26. For a subset E ⊆ R, define the ideal J(E) ⊆ S(R) and the
subspace Rα(E)0 ⊆ V by

J(E) :=
{
f ∈ S(R) : f̂ ∈ C∞

c (R) and supp f̂ ⊆ E
}
,

Rα(E)0 := {αfv : f ∈ J(E), v ∈ V } ⊆ V

Let Rα(E) := Rα(E)0 be its closure. If α is clear from the context, we write simply
R(E)0 and R(E) instead of Rα(E)0 and Rα(E), respectively.

If E ⊆ R is a subset, recall from Definition 6.6.6 that I0(E) consists of all Schwartz

functions f whose Fourier transform f̂ vanishes on a neighborhood of E ⊆ R. On
the other hand, J(E) is the ideal in S(R) generated by those f ∈ S(R) for which
f̂ has compact support contained in E.

Lemma 6.6.27. Let E ⊆ R be a closed subset and let N ⊆ R be a 0-neighborhood.
Then

I0(E) + J(E +N) = S(R).

Proof. Let J2 := J(E +N)0 + I0(E) be the closed ideal of S(R) generated by
J(E + N) and I0(E). Observe that h(J(E + N)) ⊆ R \ E. On the other hand,
h(I0(E)) ⊆ E by Lemma 6.6.7. We thus find that

h(J2) ⊆ h(I0(E)) ∩ h(J(E +N)) ⊆ ∅

and hence h(J2) = ∅. It follows using Corollary 6.6.8 that J2 = S(R).

Lemma 6.6.28. Let v ∈ V and N ⊆ R be a 0-neighborhood. Assume that
J(Specα(V ) +N) ⊆ S(R)v. Then v = 0.

Proof. Let E := Specα(V ). Assume that J(E + N) ⊆ S(R)v. Recall from Re-
mark 6.6.15 that V = V (E)0. By Proposition 6.6.19, this means that I0(E) ⊆
S(R)v. On the other hand, J(E + N) ⊆ S(R)v, by assumption. Since S(R)v is
closed we obtain using Lemma 6.6.27 that S(R) = I0(E) + J(E +N) ⊆ S(R)v. By
Proposition 6.6.17, this implies that v = 0.

Lemma 6.6.29. Let E ⊆ R be closed. Then V (E) ⊆
⋂
N R(E + N) ⊆ V +(E),

where N runs over all open 0-neighborhoods in R.
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Proof. This proof follows that of [Arv74, Prop. 2.2]. Lemma 6.6.16 entails that

Specα(αfv) ⊆ supp(f̂) for any f ∈ S(R) and v ∈ V . If N ⊆ R is a 0-neighborhood

and f ∈ J(E + N), then by definition supp f̂ ⊆ E + N and hence Specα(αfv) ⊆
E+N for any v ∈ V . Recalling that R(E+N)0 is the subspace of V generated by
J(E+N), we obtain that R(E+N)0 ⊆ V (E+N)0. Consequently

⋂
N R(E+N) ⊆⋂

N V (E+N) = V +(E). Next, take v ∈ V (E)0. We show that v ∈
⋂
N R(E+N).

Let N be a 0-neighborhood in R. Let λ ∈ V ′ be a continuous functional with
λ(R(E + N)) = {0}. Trivially, αf (v) ∈ R(E + N)0 for any f ∈ J(E + N), and
hence λ(αfv) = 0. We further have I0(E) ⊆ S(R)v, by Proposition 6.6.19, and
consequently λ(αgv) = 0 for any g ∈ I0(E). Thus λ(αfv) = 0 for any f in the

closed ideal J2 := I0(E) + J(E +N) of S(R) spanned by I0(E) and J(E + N).
By Lemma 6.6.27 this ideal equals S(R), so

∫
R f(t)λ(αtv)dt = λ(αfv) = 0 for any

f ∈ S(R). As t 7→ λ(αtv) is continuous, it follows that λ(αtv) = 0 for all t ∈ R.
In particular λ(v) = 0. Using the Hahn-Banach Theorem [Rud91, Thm. I.3.5], it
follows that v ∈

⋂
N R(E + N). Thus V (E)0 ⊆

⋂
N R(E + N) and consequently

also V (E) ⊆
⋂
N R(E +N).

Proof of Proposition 6.6.24: Having Lemma 6.6.29 at hand, we proceed as in [Nee13,
Prop. A.14]. Let N ⊆ R be an open 0-neighborhood. Let N1, N2 ⊆ R be open
0-neighborhoods s.t. N1 +N2 ⊆ N . We show that

β

(
Rα1(E1 +N1)0 ×Rα2(E2 +N2)0

)
⊆ V

(
E1 + E2 +N

)
0
. (6.6.2)

As such, for k ∈ {1, 2}, take vk ∈ V and fk ∈ J(Ek+Nk), meaning that supp(f̂k) ⊆
Ek + Nk. We show that β(α1(f1)v1, α2(f2)v2) ∈ V

(
E1 + E2 + N

)
0
. In view of

Proposition 6.6.19, we must show that it is annihilated by I0(E1 + E2 +N). Let

f3 ∈ I0(E1 + E2 +N), so supp(f̂3) ∩ E1 + E2 +N = ∅. Then

αf3β(αf1(v1), αf2(v2)) =

∫
R

∫
R
f1(t1)f2(t2)f3(t3)β(α1(t1 + t3)v1, α2(t2 + t3)v2)dt1dt2dt3,

=

∫
R

∫
R
F (t1, t2)β(α1(t1)v1, α2(t2)v2)dt1dt2,

(6.6.3)

where F ∈ S(R2) is defined by

F (t1, t2) :=

∫
R
f3(t3)f1(t1 − t3)f2(t2 − t3)dt3.

The Fourier transform F̂ ∈ S(R2) of F is given by

F̂ (p1, p2) = f̂1(p1)f̂2(p2)f̂3(p1 + p2).

Observe that supp(f̂1)+supp(f̂2) ⊆ (E1+N1)+(E2+N2) ⊆ E1+E2+N . Since f̂3
vanishes on E1+E2+N , we find that F̂ = 0. Hence F = 0. From Equation (6.6.3)
we obtain that α3(f3)β(α1(f1)v1, α2(f2)v2) = 0. By Proposition 6.6.19 we conclude
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that β(α1(f1)v1, α2(f2)v2) ∈ V
(
E1 + E2 + N

)
0
. Thus (6.6.2) is valid. As β is

continuous, it follows that

β(V1(E)× V2(E)) ⊆ β
(
Rα1

(E1 +N1)×Rα2
(E2 +N2)

)
⊆ V

(
E1 + E2 +N

)
,

where the first inclusion uses Lemma 6.6.29. Thus

β(V1(E)× V2(E)) ⊆
⋂
N

V
(
E1 + E2 +N

)
= V +(E1 + E2).

Assume next that α3 is polynomially bounded. Then αf is continuous for every
f ∈ S(R), by Remark 6.6.11. By Corollary 6.6.20 it follows that

V +(E1 + E2) = V (E1 + E2).

Let us next consider the behavior of spectra under tensor products and spaces of
continuous linear maps:

Proposition 6.6.30. Let α and σ be R-representation on the complete and Haus-
dorff locally convex vector spaces V and W over C, respectively. Assume that α
and σ are strongly continuous and have polynomial growth. Let n ∈ N.

1. The R-representation α⊗̂σ on the completed projective tensor product V ⊗̂W
has a continuous action R×V ⊗̂W → V ⊗̂W , polynomial growth and satisfies

Specα⊗̂σ(V ⊗̂W ) ⊆ Specα(V ) + Specα(W ). (6.6.4)

2. Equip B(V,W ) either with the strong topology or that of uniform convergence
on compact sets. The R-representation γ on B(V,W ) defined by

γtT = σt ◦ T ◦ α−t

is strongly continuous, pointwise polynomially bounded and satisfies

Specγ(B(V,W )) ⊆ Specσ(W )− Specα(V ). (6.6.5)

Proof. Notice by Proposition 6.6.5 that the actions α : R×V → V and σ : R×W →
W are continuous.

1. We write γt := αt⊗̂σt for t ∈ R. We first show that the R-representation γ on
V ⊗̂W has polynomial growth. Let p and q be continuous seminorms on V and
W respectively. Assume that p(αtv) ≤ rα(|t|)p(v) and q(αtw) ≤ rσ(|t|)q(w)
for all t ∈ R, v ∈ V and w ∈ W , where rα, rσ ∈ R[t] are monic polynomials.
Using this inequality, it follows from the definition of the seminorm p⊗ q on
V ⊗̂W (see Equation (6.2.1)) that (p ⊗ q)(γtψ) ≤ rα(|t|)rσ(|t|)(p ⊗ q)(ψ) for
all t ∈ R and ψ ∈ V ⊗̂W . Thus α⊗̂σ has polynomial growth.

To see that α⊗̂σ has a continuous action, it suffices by Proposition 6.6.5
to show it is strongly continuous. Let ψ ∈ V ⊗̂W . It suffices to show that
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t 7→ γtψ is continuous at t = 0. Assume first that ψ ∈ V ⊗ W , so that
ψ =

∑n
k=1 vk ⊗wk for some vk ∈ V and wk ∈W . Let p and q be continuous

seminorms on V and W , respectively. Let rα, rσ ∈ R[t] be as above. Let
ϵ > 0. As α and σ are strongly continuous, we can find δ > 0 s.t. p(αtvk −
vk)q(σtwk) < ϵ and p(vk)q(σtwk − wk) < ϵ for all t ∈ (−δ, δ) and k ∈
{1, . . . , n}. Writing αtvk ⊗ σtwk − vk ⊗ wk = (αtvk − vk) ⊗ σtwk + vk ⊗
(σtwk − wk), we obtain for any t ∈ (−δ, δ) that

(p⊗ q)(γtψ − ψ) ≤
n∑
k=1

p(αtvk − vk)q(σtwk) + p(vk)q(σtwk − wk) < 2kϵ.

This proves that γtψ → ψ as t→ 0, for any ψ in the dense subspace V ⊗W .
Let us next consider general ψ ∈ V ⊗̂W . Let η ∈ V ⊗ W be such that
(p ⊗ q)(ψ − η) < ϵ. For small enough δ > 0 we have rα(|t|)rσ(|t|) ≤ 2 and
(p⊗ q)(γtη − η) < ϵ for all t ∈ (−δ, δ). Using

(p⊗ q)(γt(ψ − η)) ≤ rα(|t|)rσ(|t|)(p⊗ q)(ψ − η) < 2ϵ,

we find for all t ∈ (−δ, δ) that

(p⊗ q)(γtψ − ψ) ≤ (p⊗ q)(γt(ψ − η)) + (p⊗ q)(ψ − η) + (p⊗ q)(γtη − η)
< 4ϵ

Thus R→ V ⊗̂W, t 7→ γtψ is continuous.

As the canonical bilinear map ⊗̂ : V × W → V ⊗̂W is continuous, R-
equivariant and has dense span in V ⊗̂W , the remaining assertion is immedi-
ate from Corollary 6.6.25.

2. It suffices to consider only the topology of uniform convergence on compact
sets. Let T ∈ B(V,W ). Let q be a continuous seminorm on W and let
K ⊆ V be compact. Consider the continuous seminorm on B(V,W ) defined
by qK(T ) := supv∈K q(Tv). As T is bounded, there is a continuous seminorm
p on V s.t. q(Tv) ≤ p(v) for all v ∈ v. Let rσ, rα ∈ R[t] be monic polynomials
s.t. q(σtw) ≤ rσ(|t|)q(w) and p(αtv) ≤ rα(|t|)p(v) for all t ∈ R, v ∈ V and
w ∈W . Then

qK(γt(T )) = sup
v∈K

q(σtTα−tv) ≤ rσ(|t|)rα(|t|) sup p(K).

This implies that γ is pointwise polynomially bounded.

We next show that γ is strongly continuous. Let T ∈ B(V,W ), ϵ > 0 and
O := q−1([0, ϵ)) ⊆W . The map

Φ : R× V →W, Φ(t, v) := γt(T )v − Tv = σtTα−tv − Tv

is continuous, because the map T : V → W and the actions α : R × V → V
and σ : R ×W → W are all continuous. Since {0} × K ⊆ Φ−1(O) and K
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is compact, it follows from the Tube Lemma (cf. [Mun00, Lem. 26.8]) that
there is an interval I ⊆ R containing 0 s.t. Φ(I ×K) ⊆ O. This means that
qK(γt(T )− T ) < ϵ for all t ∈ I, so γ is strongly continuous.

It remains to show (6.6.5). Define EV := Specα(V ) and EW := Specα(W ).
LetN ⊆ R be a 0-neighborhood. Let T ∈ B(V,W ) and f3 ∈ I0(EW − EV +N),

so f3 ∈ S(R) satisfies supp(f̂3) ∩ EW − EV +N = ∅. We show γf3(T ) = 0.
Let N1, N2 ⊆ R be symmetric 0-neighborhoods such that N1 +N2 ⊆ N . Let
v ∈ V , f1 ∈ J(EV +N1) and f2 ∈ J(EW +N2). So f̂1 and f̂2 have compact
support contained in EV +N1 and EW +N2, respectively. One verifies that

σf2γf3(T )αf1v =

∫
R

∫
R

∫
R
f1(t1)f2(t2)f3(t3)σt2+t3Tαt1−t3v dt1dt2dt3

=

∫
R

∫
R
F (t1, t2)σt2Tαt1dt1dt2,

(6.6.6)

where F ∈ S(R2) is given by

F (t1, t2) =

∫
R
f1(t1 + t3)f2(t2 − t3)f3(t3)dt3.

The Fourier transform F̂ ∈ S(R2) of F is given by

F̂ (p1, p2) = f̂1(p1)f̂2(p2)f̂3(p2 − p1).

Recalling that N1 is symmetric, notice that

supp(f̂2)− supp(f̂1) ⊆ (EW +N2)− (EV +NV ) ⊆ EW − EV + (N1 +N2)

⊆ EW − EV +N.

As f̂3 vanishes on EW − EV + N , it follows that F̂ = 0 and hence F = 0.
From (6.6.6) we conclude that σf2γf3(T )αf1v = 0 for all f2 ∈ J(EW + N2).
This implies γf3(T )αf1v = 0, by Lemma 6.6.28. Consequently, if λ ∈ W ′ is
any continuous functional, then

∫
R f1(t1)⟨λ, γf3(T )αt1v⟩dt = 0. As the map

t 7→ ⟨λ, γf3(T )αt1v⟩ is continuous it follows that ⟨λ, γf3(T )αt1v⟩ = 0 for all
t ∈ R. In particular ⟨λ, γf3(T )v⟩ = 0. As W ′ separates the points of W by
the Hahn-Banach Theorem [Rud91, Thm. I.3.4], it follows that γf3(T )v = 0.
As v ∈ V was arbitrary we find that γf3(T ) = 0. We have thus shown
that I0(EW − EV +N) ⊆ ker γ. By Corollary 6.6.21, this is equivalent to
Specγ(B(V,W )) ⊆ EW − EV +N . Hence

Specγ(B(V,W )) ⊆
⋂
N

EW − EV +N = EW − EV .
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Recall from Section 6.2.1 that P (V,W ) =
∏∞
k=0 P

k(V,W ) is equipped with the
product topology, where each P k(E,F ) carries the topology of uniform convergence
on compact sets. We will have need for the following result in Section 6.7 below:

Corollary 6.6.31. Consider the setting of Proposition 6.6.30. Assume that V is
Fréchet. Define the representation γ of R on P (V,W ) by γt(f)(v) := σt(f(α−t(v))).
Then γ is strongly continuous and pointwise polynomially bounded. Moreover, if
Specα(V ) ⊆ (−∞, 0], then

inf Specγ(P (V,W )) = inf Specσ(W ) ∈ {−∞} ∪ R.

Proof. Let n ∈ N≥0. Notice that γ leaves the homogeneous component Pn(V,W ) ⊆
P (V,W ) invariant. Recall from Proposition 6.2.4 and Proposition 6.2.3 that

Pn(V,W ) ∼= Symn(V,W ) ⊆ Mult(V n,W ) ∼= B(V ⊗̂n,W )

as locally convex vector spaces. The thus-obtained continuous linear embedding
Φn : Pn(V,W ) ↪→ B(V ⊗̂n,W ) is R-equivariant when B(V ⊗̂n,W ) is equipped
with the R-action defined by γ̃t(T ) := σtTα−t. By Proposition 6.6.30, this ac-
tion is strongly continuous and pointwise polynomially bounded. Consequently,
also γ is strongly continuous and pointwise polynomially bounded on Pn(V,W ).
As P (V,W ) carries the product topology, the same holds for the R-action γ on
P (V,W ).

For the final statement, notice that W = P 0(V,W ) ⊆ P (V,W ). By Proposi-
tion 6.6.23 it follows that Specσ(W ) ⊆ Specγ(P (V,W )), thereby showing

inf Specγ(P (V,W )) ≤ inf Specσ(W )

Conversely, let n ∈ N. As Φn is continuous, injective and R-equivariant, we know
that Specγ(P

n(V,W )) ⊆ Specγ̃
(
B(V ⊗̂n,W )

)
, by Proposition 6.6.23. Furthermore,

using Proposition 6.6.30 we notice that Specα⊗n(V ⊗̂n) ⊆ (−∞, 0] and therefore also

that Specγ̂
(
B(V ⊗̂n,W )

)
⊆ Specσ(W ) + [0,∞) =: E. Thus Specγ(P

n(V,W )) ⊆ E
for any n ∈ N≥0. By Corollary 6.6.21 this means that γfψn = 0 for any f ∈ I0(E),
ψn ∈ Pn(V,W ) and n ∈ N. Consequently, γfψ = 0 for any f ∈ I0(E) and
ψ ∈ P (V,W ). So I0(E) ⊆ ker γ. By Corollary 6.6.21, this is equivalent with
Specγ(P (V,W )) ⊆ E. Hence inf Specσ(W ) = inf E ≤ inf Specγ(P (V,W )).

Finally, we record some useful facts regarding the space of smooth vectors of a
unitary G-representation:

Proposition 6.6.32. Let G be a regular locally convex Fréchet-Lie group. Let
d ∈ g and assume that the R-action α̇ : R → Aut(g) defined by α̇t := Ad(exp(td))
is polynomially bounded. Let (ρ,Hρ) be a smooth unitary representation of G. Let
E ⊆ R be a closed subset. Then the following assertions are valid:
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1. The R-representation t 7→ ρ(exp(td))|H∞
ρ

on H∞
ρ is strongly continuous and

pointwise polynomially bounded, where H∞
ρ is equipped with the strong topol-

ogy.

2. The operator π(f) :=
∫
R f(t)ρ(exp(td))dt on Hρ leaves H∞

ρ invariant for any
f ∈ S(R).

3. H∞
ρ (E) = Hρ(E) ∩H∞

ρ

4. For any open subset U ⊆ R, H∞
ρ (U) is dense in Hρ(U).

5. If E1, E2 ⊆ R are closed subsets then dρ(gC(E1))H∞(E2) ⊆ H∞
ρ (E1 + E2).

Proof. The second item follows from [NSZ15, Thm. 2.3], the fourth from [NSZ15,
Prop. 3.2] and the fifth from [NSZ15, Thm. 3.1]. We provide an alternative proof
of the second assertion and prove the first and third.

By [JN19, Prop. 3.19], the locally convex space H∞
ρ is complete. Let n ∈ N and

B ⊆ gn be a bounded subset. Consider continuous seminorm

pB(ψ) := sup
ξ∈B
∥dρ(ξ1 · · · ξn)ψ∥

on H∞
ρ . Let ψ ∈ H∞

ρ . By [JN19, Lem. 3.24], the orbit map ρϕ : G → H∞
ρ , g 7→

ρ(g)ψ is smooth. It follows in particular that the R-representation t 7→ ρ(exp(td))
on H∞

ρ is strongly continuous. It follows moreover that the multi-linear map
gn → H∞

ρ , (ξ1, . . . , ξn) 7→ dρ(ξ1 · · · ξn)ψ is continuous. Using Proposition 6.2.3, we
find that there exists a continuous seminorm p on g such that ∥dρ(ξ1 · · · ξn)ψ∥ ≤∏n
k=1 p(ξk) for every ξ ∈ gn. Let N ∈ N and the 0-neighborhood U ⊆ g be s.t.

C := supξ∈U supt∈R
1

1+|t|N p(α̇t(ξ)) <∞. As B ⊆ gn is bounded, so is its projection

Bk ⊆ g onto the kth factor for every k ∈ {1, . . . , n}. Thus there exists s > 0 such
that Bk ⊆ sU for all 1 ≤ k ≤ n. We obtain that

sup
ξk∈Bk

sup
t∈R

1

1 + |t|N
p(α̇t(ξk)) ≤ sC

for every 1 ≤ k ≤ n. Using that ρ is unitary we find for all t ∈ R that

pB(ρ(e
−td)ψ) = sup

ξ∈B
∥dρ(α̇t(ξ1) · · · α̇t(ξn)ψ∥ ≤ sup

ξ∈B

n∏
k=1

p(α̇t(ξk)) ≤ Cnsn(1+|t|N )n.

This implies that the R-action t 7→ ρ(exp(td)) on H∞
ρ is pointwise polynomially

bounded. As in Definition 6.6.10, we conclude that π∞(f)ψ :=
∫
R f(t)ρ(exp(td))ψdt

defines a representation π∞ : S(R) → L(H∞
ρ ) of S(R) on H∞

ρ by linear oper-
ators. It is clear that π∞(f) := π(f)|H∞

ρ
, so this proves that π(f) leaves H∞

ρ

invariant for every f ∈ S(R). It is further immediate from Definition 6.6.12 that
H∞
ρ (E) = Hρ(E) ∩H∞

ρ .
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6.7 Positive energy representations and holomor-
phic induction

In this section we explore the connection between positive energy representations
and holomorphic induction. It is shown in Theorem 6.7.6 and Theorem 6.7.17 that
these two are intimately related, as is to be expected from similar known results in
more restrictive settings, such as [PS86, Thm. 11.1.1], [Nee13, Sec. 4] and [Nee14a,
Thm. 6.1]. This is used to transfer various results from holomorphic induction to
the context of positive energy representations, under suitable assumptions. Before
proceeding to the main results, let us clarify the setting and make some preliminary
observations.

Notation and preliminary observations

Let G be a connected regular BCH Fréchet-Lie group with Lie algebra g. Let
α : R→ Aut(G) be a homomorphism having a smooth action R×G→ G and let α̇
be the corresponding R-action on gC, defined by α̇s(ξ) := L(αs)ξ :=

d
dt

∣∣
t=0

αs(e
tξ)

for s ∈ R. Let Dξ := d
ds

∣∣
s=0

α̇s(ξ) be the corresponding derivation on gC. Assume
that α̇ has polynomial growth, in the sense of Definition 6.6.1. Define the Lie
group G♯ := G⋊α R, which has Lie algebra g♯ := g⋊D Rd, where we have written
d := 1 ∈ R ⊆ g♯ for the standard basis element. Then G♯ is again a connected
regular Fréchet-Lie group, using [Nee06, Thm. V.I.8], but not necessarily BCH.

As α̇ is assumed to have polynomial growth, we can define the Arveson spectral
subspaces of gC as in Definition 6.6.12. If E ⊆ R is any subset, we write gC(E)
for the spectral subspace of gC associated to E. Define hC := kerD ⊆ gC({0}),
h := hC ∩ g and

n− :=
⋃
δ>0

gC((−∞,−δ]), n+ :=
⋃
δ>0

gC([δ,∞)).

We assume that (gC, α) satisfies the so-called splitting condition, meaning that

gC = n− ⊕ hC ⊕ n+.

Define b± := hC ⊕ n± ⊆ gC. Let H := (Gα)0 ⊆ G be the connected subgroup of
α-fixed points in G. Let us first establish that the assumptions on H, n± and hC
made in Section 6.4.2 are presently satisfied.

Lemma 6.7.1. H is a locally exponential Lie subgroup of G with Lie algebra h.

Proof. Since G is locally exponential, we can find a 0-neighborhood Ug ⊆ g s.t.
expG restricts to a diffeomorphism on Ug. Let ξ ∈ Ug arbitrary. Using the fact
that αt(expG(ξ)) = expG(α̇t(ξ)) for all t ∈ R, observe that

ξ ∈ kerD ⇐⇒ expG(ξ) ∈ Gα.

This implies that expG(Ug ∩ h) = expG(Ug) ∩H. We also obtain that

h = { ξ ∈ g : expG(Rξ) ⊆ H } .
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It follows that H is a locally exponential Lie subgroup with Lie algebra h, by
[Nee06, Thm. IV.3.3].

Lemma 6.7.2. The subspaces n±, hC and b± are Lie subalgebras of gC and we have
[hC, n±] ⊆ n±. Moreover, AdH(n±) ⊆ n±. Finally, θ(n±) ⊆ n∓ and θ(hC) ⊆ hC.

Proof. The Lie bracket [−,−] : gC × gC → gC is bilinear, continuous and R-
equivariant, meaning that α̇s([ξ, η]) = [α̇s(ξ), α̇s(η)] for all s ∈ R and ξ, η ∈ gC.
Using Proposition 6.6.24 we obtain for any two closed subsets E1, E2 ⊆ R that
[gC(E1), gC(E2)] ⊆ gC(E1 +E2). This implies that n±, hC and b± are Lie subalge-
bras of gC and that [hC, n±] ⊆ n±. We next show that AdH(n±) ⊆ n±. Let h ∈ H.
Then α̇s and Adh commute for any s ∈ R, so Adh : gC → gC is a continuous equiv-
ariant linear map. It follows using Proposition 6.6.23 that Adh(gC(E)) ⊆ gC(E)
for any closed subset E ⊆ R. Hence AdH(n±) ⊆ n±. Let us next consider
the conjugation θ. Using that α̇t commutes with θ for any t ∈ R, observe that
θα̇fθ = α̇f for any f ∈ S(R). Consequently, S(R)θ(ξ) =

{
f : f ∈ S(R)ξ

}
. Using

that F(f)(p) = Ff(−p) for p ∈ R, we obtain for any ξ ∈ gC that

Specα̇(θ(ξ)) = h(S(R)θ(ξ)) = −h(S(R)ξ) = −Specα̇(ξ).

So we have θ(gC(E)) = gC(−E) for any closed E ⊆ R. This implies that θ(n±) ⊆
n∓. Since hC = kerD and θ commutes with D, we also have θ(hC) ⊆ hC.

As the Lie group G♯ = G ⋊α R need not be analytic, we only have access to the
analytic structure of G:

Definition 6.7.3. If (ρ,Hρ) is a unitary representation of G♯, we write HωG
ρ for

the space of G-analytic vectors in Hρ. We further define

H∞,n−
ρ :=

{
ψ ∈ H∞

ρ : dρ(n−)ψ = {0}
}

and we write V (ρ) := H∞,n−
ρ for its closure.

Let us first clarify that V (ρ) can equivalently be defined as the closure of the set of
G-smooth vectors in Hρ that are killed by n−, as opposed to the G♯-smooth ones:

Lemma 6.7.4. Let ρ be a unitary G♯-representation. Let W (ρ) ⊆ Hρ be the closed
linear subspace generated by the set of G-smooth vectors in Hρ that are killed by
dρ(n−). Then W (ρ) = V (ρ).

Proof. It is trivial that V (ρ) ⊆ W (ρ). Let ψ ∈ Hρ be a G-smooth vector s.t.
dρ(n−)ψ = {0}. Let f ∈ C∞

c (R) and define πfψ :=
∫
R f(t)ρ(t)ψdt ∈ Hρ. Then

πfψ is a smooth vector for G♯, e.g. using [NSZ15, Lem. A.4]. Let ξ ∈ n−. Then
α̇−t(ξ) ∈ n− and hence dρ(α̇−t(ξ))ψ = 0 for every t ∈ R. Using [NSZ15, Lem. A.4]
to differentiate under the integral, we obtain:

dρ(ξ)πfψ =

∫
R
f(t)dρ(ξ)ρ(t)ψdt =

∫
R
f(t)ρ(t)dρ(α̇−t(ξ))ψdt = 0.

So πfψ ∈ H∞,n−
ρ for any f ∈ C∞

c (R). Approximating ψ by vectors of the form
πfψ, we conclude that ψ ∈ V (ρ). So V (ρ) =W (ρ).
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To keep a uniform notation for G- and G♯-representations, we complement Defini-
tion 6.7.3 with:

Definition 6.7.5. If (ρ,Hρ) is a smooth unitary representation of G, we write
HωG
ρ := Hωρ for the space of G-analytic vectors in Hρ. Define

H∞,n−
ρ :=

{
ψ ∈ H∞

ρ : dρ(n−)ψ = {0}
}

and let V (ρ) := H∞,n−
ρ denote its closure.

Let us proceed with the task of relating the positive energy condition with holomor-
phic induction. Notice that V (ρ) ⊆ Hρ is H ×R-invariant for any smooth unitary
G-representation ρ, because n− is invariant under α̇t and Adh for any t ∈ R and
h ∈ H. The following makes use of the notation specified in Definition 6.4.25:

Theorem 6.7.6. Let (ρ,Hρ) be a smooth unitary representation of G♯ and let σ be
the unitary representation of H×R on Vσ := V (ρ) defined by σ(h, t) := ρ(h, t)|V (ρ).
The following assertions are equivalent:

1. ρ is of positive energy at d, V (ρ) is cyclic for ρ and V (ρ) ∩HωG
ρ is dense in

V (ρ).

2. σ is of positive energy at d and ρ|G = HolIndGH(σ|H).

If these conditions are satisfied, then inf Spec(−idρ(d)) = inf Spec(−idσ(d)) ≥ 0.

We start the proof of Theorem 6.7.6 with two lemmas:

Lemma 6.7.7. LetW ⊆ V (ρ) be a H-invariant closed linear subspace that is cyclic
for G and contains a dense set of G-analytic vectors. Then W = V (ρ).

Proof. Let W⊥ be the orthogonal complement of W in V (ρ), so V (ρ) =W ⊕W⊥

as unitary H-representations. It suffices to show that W⊥ ⊥ ρ(G)W . Define
WωG := W ∩ HωG

ρ . Let w ∈ WωG and v ∈ W⊥ ⊆ V (ρ). Consider the analytic
function f : G → C, f(g) := ⟨v, ρ(g)w⟩. Let E0 : U(gC) → U(hC) be defined as in
Definition 6.4.22. As dρ(n−) kills bothH∞,n−

ρ andWωG , observe that ⟨v, dρ(x)w⟩ =
⟨v, dσ(E0(x))w⟩ = 0 for any x ∈ U(gC). It follows that j∞e (f) = 0. As G is
connected and f is analytic, we conclude using Proposition 6.2.14 that f = 0.
Because WωG is dense in W , it follows that W⊥ ⊥ ρ(G)W .

Lemma 6.7.8. Let D ⊆ Hωρ be a linear subspace. Then dρ(U(gC))D is the closed
G-invariant linear subspace of Hρ generated by D.

Proof. Define F := dρ(U(gC))D and let F ′ denote the closed G-invariant linear
subspace generated by D. The inclusion F ⊆ F ′ is clear. Let v ∈ F⊥ ⊆ Hρ and
take ψ ∈ D. Consider the analytic function f : G→ C, f(g) := ⟨v, ρ(g)ψ⟩. Notice
for x ∈ U(gC) that ⟨v, dρ(x)ψ⟩ = 0, because dρ(x)ψ ∈ F . It follows that j∞e (f) = 0.
As G is connected and f is analytic, we conclude using Proposition 6.2.14 that
f = 0. We therefore find that v ⊥ ρ(G)D, so in fact v ⊥ F ′. Hence F⊥ ⊆ (F ′)⊥,
which is equivalent to F ′ ⊆ F .
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Proof of Theorem 6.7.6: Define Dχ := V (ρ) ∩ HωG
ρ . Assume that (1) holds true.

Then in particular, σ is of positive energy at d. Let χ : b− → L(Dχ) be the
trivial extension of dσ to b− with domain Dχ. By definition of V (ρ), Dχ is killed
by dρ(n−). The conditions for Vσ in Theorem 6.4.13 are satisfied for the (H, b−)-
extension pair (σ|H , χ), so (2) follows from Theorem 6.4.13.

Conversely, assume that ρ|G = HolIndGH(σ|H) and that σ is of p.e. at d. It follows
from Theorem 6.4.13 that there is a H-invariant closed linear subspace W ⊆ Hρ
s.t. W is cyclic for ρ and W ∩HωG

ρ is both dense in W and killed by dρ(n−). The
last condition implies using Lemma 6.7.4 that W ⊆ V (ρ). By Lemma 6.7.7 we
obtain that W = V (ρ). To see that (1) holds true, it only remains to show that ρ
is of positive energy at d. Define

Φ : H∞
ρ → C∞(G,Vσ)

H , Φψ(g) := pV ρ(g)
−1ψ

for ψ ∈ H∞
ρ , where pV : Hρ → V (ρ) is the orthogonal projection. Using the expo-

nential map as a local chart, identify J∞
e C

∞(G,Vσ) ∼= P (gC, Vσ) G-equivariantly.
Let A denote the composition

A : H∞
ρ

Φ−→ C∞(G,Vσ)
H j∞e−−→ P (gC, Vσ)

restr−−−→ P (n−, Vσ).

Observe that

Φρ(t)ψ(g) = pV ρ(g)
−1ρ(t)ψ = pV ρ(t)ρ(α−t(g))

−1ψ = σ(t)pV ρ(α−t(g))
−1ψ

= σ(t)Φψ(α−t(g)).

Consequently, A is R-equivariant if we equip P (n−, Vσ) with the R-action de-
fined by (νtf)(ξ) := σ(t)f(α̇−t(ξ)) for t ∈ R and f ∈ Pn(n−, Vσ). Equip H∞

ρ

with the strong topology (cf. Definition 6.2.17), with respect to which it is com-
plete because G is a regular Fréchet-Lie group [JN19, Prop. 3.19]. Recall that
P (n−, Vσ) =

∏∞
n=0 P

n(n−, Vσ) carries the product topology and each Pn(n−, Vσ)
carries the topology of uniform convergence on compact sets. We show that
A is continuous with respect to these topologies. For any ψ ∈ H∞

ρ , let fψ ∈
C∞(G,Hρ), fψ(g) := ρ(g)ψ denote the orbit map. Using that ρ is unitary, observe
that the linear map H∞

ρ → C∞(G,Hρ), ψ 7→ fψ is continuous w.r.t. the smooth
compact-open topology on C∞(G,Hρ). This implies that Φ is continuous. As j∞e
is continuous by Proposition 6.2.15, the continuity of A follows. We remark further
that the R-representation t 7→ ρ(t) on H∞

ρ is strongly continuous and pointwise
polynomially bounded by Proposition 6.6.32, so that its Arveson spectrum can
be defined according to Definition 6.6.12. Similarly, because the R-actions on n−
and Vσ both have polynomially growth and are strongly continuous, it follows from
Corollary 6.6.31 that the R-action ν on P (n−, Vσ) is strongly continuous and point-
wise polynomially bounded. Since n− and Vσ have non-positive and non-negative
spectrum, respectively (relative to the R-actions α̇t and σ(t), respectively), we
further obtain from Corollary 6.6.31 and Example 6.6.13 that

inf Specν
(
P
(
n−, Vσ

))
= inf Spec(Vσ) = inf Spec(−idσ(d)) ≥ 0
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We show next that A is injective. Let ψ ∈ H∞
ρ and suppose that A(ψ) = 0.

Then pV dρ(U(n−))ψ = {0}, which implies ψ ⊥ dρ(U(n+))Dχ. Since Dχ is dρ(b−)-

invariant, notice that dρ(U(n+))Dχ = dρ(U(gC))Dχ by the PBW Theorem. By
Lemma 6.7.8, this is the closed G-invariant subspace of Hρ generated by Dχ, which
equals all of Hρ because Dχ is dense in V (ρ) and V (ρ) is cyclic for ρ. Thus ψ ⊥ Hρ
and so ψ = 0. Hence A is injective, continuous and R-equivariant. It follows by
Proposition 6.6.23 that Spec(H∞

ρ ) ⊆ Specν
(
P
(
n−, Vσ

))
, where we consider the

R-action t 7→ ρ(t) on H∞
ρ . Thus

inf Spec(H∞
ρ ) ≥ inf Specν

(
P
(
n−, Vσ

))
= inf Spec(−idσ(d)),

Notice that Hρ and H∞
ρ have the same spectrum, because H∞

ρ is dense in Hρ. So

inf Spec(−idρ(d)) = inf Spec(Hρ) = inf Spec(H∞
ρ ) ≥ inf Spec(−idσ(d)) ≥ 0.

Thus, ρ is of positive energy at d. So (1) holds true. Finally, the inclusion
V (ρ) ⊆ Hρ is R-equivariant, so by Proposition 6.6.23 we also have the reverse

inequality inf Spec(−idρ(d)) ≤ inf Spec(−idσ(d)).

Let us state some important immediate consequences of Theorem 6.7.6.

Lemma 6.7.9. Let (ρ,Hρ) be a smooth unitary G-representation. Let qV ∈ B(Hρ)
denote the orthogonal projection onto V (ρ). Then qV ∈ ρ(G)′′.

Proof. Let T ∈ ρ(G)′ = B(Hρ)G. Then TH∞
ρ ⊆ H∞

ρ and

dρ(n−)TH∞,n−
ρ = Tdρ(n−)H∞,n−

ρ ⊆ {0}.

Thus TH∞,n−
ρ ⊆ H∞,n−

ρ . It follows that TV (ρ) ⊆ V (ρ). As B(Hρ)G is ∗-closed, we
have also shown that T ∗V (ρ) ⊆ V (ρ). Thus qV T = TqV , and so qV ∈ ρ(G)′′.

Corollary 6.7.10. Suppose that the unitary G♯-representation ρ satisfies the equiv-
alent conditions of Theorem 6.7.6. Then T 7→ T |V (ρ) defines isomorphisms of von
Neumann algebras

B(Hρ)G ∼= B(V (ρ))H and B(Hρ)G
♯ ∼= B(V (ρ))H×R.

Proof. That T 7→ T |V (ρ) defines an isomorphism B(Hρ)G → B(V (ρ))H is immedi-
ate from Lemma 6.7.9 and Theorem 6.4.30. Consequently, it suffices to show that
any T ∈ B(Hρ)G with T |V (ρ) ∈ B(V (ρ))H×R automatically commutes with the

R-action t 7→ ρ(t) on Hρ. Consider such T and let t ∈ R. Then

ρ(t)Tρ(g)v = ρ(t)ρ(g)Tv = ρ(αt(g))ρ(t)Tv = ρ(αt(g))Tρ(t)v

= Tρ(αt(g))ρ(t)v = Tρ(t)ρ(g)v
(6.7.1)

for any g ∈ G and v ∈ V (ρ). As V (ρ) is cyclic for G, it follows that Tρ(t) = ρ(t)T
for all t ∈ R.
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Corollary 6.7.11. Suppose that the unitary G♯-representations ρ1 and ρ2 satisfy
the equivalent conditions of Theorem 6.7.6. Then the following assertions are valid:

1. If V (ρ1) ∼= V (ρ2) as unitary H-representations, then ρ1|G ∼= ρ2|G.

2. If V (ρ1) ∼= V (ρ2) as unitary H × R-representations, then ρ1 ∼= ρ2.

Proof. The first assertion is immediate from Theorem 6.4.21. Assume that the
unitary u : V (ρ1) → V (ρ2) intertwines the H × R-actions. Consider the unitary
G♯-representation ρ = ρ1 ⊕ ρ2 on Hρ1 ⊕Hρ2 . Notice that

V (ρ1 ⊕ ρ2) = V (ρ1)⊕ V (ρ2) =:W

and that ρ satisfies the conditions in Theorem 6.7.6. Define S ∈ B(W )H×R by

S(v1, v2) := (0, uv1). By Corollary 6.7.10, there is some T ∈ B(Hρ1 ⊕Hρ2)G
♯

s.t.
T |W = S. As V (ρ1) and V (ρ2) are cyclic for G in Hρ1 and Hρ2 , respectively,
T is of the form T (ψ1, ψ2) = (0, Uψ1) for some U : Hρ1 → Hρ2 intertwining the
G♯-actions. Notice that S∗S and SS∗ are the orthogonal projections onto V (ρ1)
and V (ρ2), respectively. By Corollary 6.7.10 it follows that T ∗T and TT ∗ are the
orthogonal projections onto Hρ1 and Hρ2 , respectively. This implies that U is
unitary.

The spectral gap condition

We will next assume that the so-called spectral gap condition is satisfied, a stronger
variant of the splitting condition. We show that in this case, V (ρ) is always cyclic
for positive energy representations.

Definition 6.7.12. We say that the spectral gap (SG) condition is satisfied if there
is some δ > 0 such that

gC = gC((−∞,−δ])⊕ hC ⊕ gC([δ,∞)). (6.7.2)

If ρ is a smooth unitary representation of G♯ and E ⊆ R is a subset, we writeHρ(E)
and H∞

ρ (E) for the closed spectral subspaces associated to the R-representation
t 7→ ρ(t) on Hρ and H∞

ρ , respectively, where we recall that the R-action on H∞
ρ is

pointwise polynomially bounded by Proposition 6.6.32. Recall also from Proposi-
tion 6.6.32 that H∞

ρ (E) = Hρ(E) ∩H∞
ρ .

Lemma 6.7.13. Assume that (SG) is satisfied. Let ρ be a smooth unitary repre-
sentation of G♯ which is of p.e. at d ∈ g♯. If Hρ ̸= {0}, then V (ρ) ̸= {0}.

Proof. Let δ > 0 be such that (6.7.2) is satisfied. Set E0 := −i inf Spec(dρ(d)).
Let 0 < ϵ < δ and define U := [E0, E0 + ϵ). By definition of E0, the spectral
subspace Hρ(U) is nonzero. By Proposition 6.6.32(4), H∞

ρ (U) is dense in Hρ(U) =
Hρ((E0 − ϵ, E0 + ϵ)). Since Hρ(U) is nonzero, so is H∞

ρ (U). By the last point in
Proposition 6.6.32, we obtain that dρ(n−)H∞(U) ⊆ H∞

ρ ((−∞, E0 + ϵ− δ]) = {0}.
Hence H∞(U) ⊆ H∞,n−

ρ ⊆ V (ρ). It follows that V (ρ) ̸= {0}.

Proposition 6.7.14. Assume that (SG) is satisfied. Let ρ be a smooth unitary
representation of G♯ which is of p.e. at d ∈ g♯. Then V (ρ) is cyclic for ρ.
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Proof. Let W be the closed G♯-invariant subspace of Hρ generated by V (ρ). Then
W⊥ carries a smooth representation of G♯ that is of positive energy at d ∈ g♯.
From (W⊥)∞,n− ⊆ H∞,n−

ρ ⊆ V (ρ), we obtain that (W⊥)∞,n− ⊆W⊥∩V (ρ) = {0}.
Using Lemma 6.7.13 we conclude that W⊥ = {0}, so W = Hρ.

Ground state representations

We now shift our attention to ground state representations, where Theorem 6.7.6
simplifies somewhat. If ρ is a smooth unitary representation of G♯ on Hρ, we define
Hρ(0) = ker dρ(d), H∞

ρ (0) := Hρ(0)∩H∞
ρ and HωG

ρ (0) := Hρ(0)∩HωG
ρ . It will be

convenient to make the following definition:

Definition 6.7.15. Let (ρ,Hρ) be a smooth unitary representation of G♯ that is
ground state at d ∈ g♯. We say that ρ is analytically ground state at d ∈ g♯ if
HωG
ρ (0) is dense in Hρ(0).

Lemma 6.7.16. Let (ρ,Hρ) be a smooth unitary representation of G♯ that is of
positive energy at d ∈ g♯. Then H∞

ρ (0) ⊆ H∞,n−
ρ . If ρ is analytically ground state

at d, then V (ρ) = Hρ(0).

Proof. Using Proposition 6.6.24, we obtain that

dρ(gC((−∞,−δ]))H∞
ρ (0) ⊆ H∞

ρ ((−∞,−δ]) = {0}, ∀δ > 0.

Hence H∞
ρ (0) ⊆ V (ρ). If ρ is analytically ground state at d, the preceding implies

Hρ(0) ⊆ V (ρ). Using Lemma 6.7.7 we conclude that Hρ(0) = V (ρ).

The following clarifies the tight relation between unitary representations of G⋊αR
that are analytically ground state at d ∈ g♯ and holomorphic induction:

Theorem 6.7.17. Consider the setting of Theorem 6.7.6. The following assertions
are equivalent:

1. ρ is analytically ground state at d ∈ g♯.

2. ρ|G = HolIndGH(σ|H) and V (ρ) = Hρ(0).

Proof. Assume that (1) is valid. Then V (ρ) = Hρ(0), by Lemma 6.7.16, so (2)
follows from Theorem 6.7.6. Suppose conversely that (2) holds true. Theorem 6.7.6
then yields that ρ is of positive energy at d, that Hρ(0) is cyclic for G and that
HωG
ρ (0) is dense in Hρ(0). Thus (1) is valid.

Let us complement Theorem 6.7.17 with the following observation:

Proposition 6.7.18. Let ρ be a smooth unitary p.e. representation of G. Let ρ0
denote its minimal positive extension to G♯. Assume that ρ0 satisfies the equivalent
conditions of Theorem 6.7.6. If ρ is irreducible, then ρ0 is analytically ground state
and V (ρ) = Hρ0(0).
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Proof. Define Vσ := V (ρ), σ0(h, t) := ρ0(h, t)|Vσ
and σ(h) := ρ(h)|Vσ

. Let M :=
ρ(G)′′ be the von Neumann algebra generated by ρ(G). By Corollary 6.7.10 we
have B(Vσ)H = C idVσ . Thus σ0(t) = eitp idVσ for some p ∈ R. As σ0 is of p.e., we
have p ≥ 0. By Theorem 6.7.6 we know that inf Spec(−idρ0(d)) = p, so ρ1(t) :=
ρ0(t)e

−itp defines a positive inner implementation of R→ Aut(M), t 7→ Ad(ρ0(t)).
As ρ0(t) is minimal, it follows that p ≤ 0. Hence p = 0, and so V (ρ) ⊆ Hρ0(0). On
the other hand, we know from Lemma 6.7.16 that H∞

ρ0(0) ⊆ V (ρ). Since H∞
ρ0(0)

contains all vectors of the form
∫
R f(t)ρ0(t)v for f ∈ C∞

c (R) and v ∈ V (ρ) ∩HωG
ρ ,

H∞
ρ0(0) contains V (ρ)∩HωG

ρ , which is dense in V (ρ). So H∞
ρ0(0) = V (ρ) = Hρ0(0).

This implies that ρ0 is analytically ground state.

Strongly-entire ground state representations for T-actions

The preceding results become particularly applicable for representations ρ which
are both strongly-entire and ground state w.r.t. a T-action. In this case, we can
always guarantee that they are analytically ground state:

Lemma 6.7.19. Suppose that α descends to a T-action. Let ρ be a unitary p.e.
representation of G ⋊α T. We write HOG

ρ for the vectors in Hρ that are strongly-
entire for the G-action. Let P : Hρ → Hρ(0) denote the orthogonal projection.
Then PHOG

ρ ⊆ HOG
ρ . In particular, if ρ|G is strongly-entire then Hρ(0) ∩ HOG

ρ is
dense in Hρ(0).

Proof. For a compact subset B ⊆ gC and ψ ∈ H∞
ρ , we write

pnB(ψ) := sup
ξj∈B

∥dρ(ξ1 · · · ξn)ψ∥

for n ∈ N≥0 and set qB(ψ) :=
∑∞
n=0

1
n!p

n
B(ψ). Let ψ ∈ HOG

ρ and let B ⊆ gC be
compact. Then B′ := α(T×B) ⊆ gC is compact, T-invariant and satisfies B ⊆ B′.
Observe that

pnB(ρ(t)ψ) ≤ pnB′(ρ(t)ψ) = pnα̇−t(B′)(ψ) = pnB′(ψ), ∀t ∈ T.

Identifying T ∼= R/2πZ, recall that P = 1
2π

∫ 2π

0
ρ(t)dt. Notice using e.g. [NSZ15,

Lem. A.4] that PH∞
ρ ⊆ H∞

ρ , and moreover that

pnB(Pψ) ≤
1

2π

∫ 2π

0

pnB(ρ(t)ψ)dt ≤ pnB′(ψ), ∀ψ ∈ H∞
ρ , n ∈ N≥0.

We thus find that qB(Pψ) ≤ qB′(ψ). So PHOG
ρ ⊆ HOG

ρ .
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Combining Theorem 6.7.17 and Lemma 6.7.19 we obtain the following:

Theorem 6.7.20. Assume that α is a T-action. Let (ρ,Hρ) be a unitary repre-
sentation of G ⋊α T. Assume that ρ|G is strongly-entire. Let σ be the unitary
representation of H × T on V (ρ). The following are equivalent:

1. ρ is ground state at d ∈ g♯.

2. ρ|G = HolIndGH(σ|H) and V (ρ) = Hρ(0).

In this case, also σ is strongly-entire.

By Proposition 6.2.30(3), we know that any smooth unitary representation ρ of G
which is of p.e. w.r.t. a smooth T-action α is automatically ground state, and also
that the minimal positive extension ρ0 of ρ to G♯ descends to G⋊α T. Combining
Theorem 6.7.20, Corollary 6.7.10 and Corollary 6.7.11, we obtain:

Corollary 6.7.21. Assume that α is a smooth T-action and that every irreducible
unitary representation of G that is of positive energy w.r.t. α is strongly-entire.
Then there is an injective map Ĝpos(α) ↪→ Ĥ, obtained by sending ρ ∈ Ĝpos(α) to
the irreducible unitary H-representation on V (ρ).

Remark 6.7.22. Recall from Theorem 6.3.6 that if G is a finite-dimensional Lie
group of type R, then every continuous unitary G-representation is in fact strongly-
entire.

It would be beneficial to obtain sufficient conditions for V (ρ)∩HωG
ρ to be dense in

V (ρ). We state the following related open problem:

Problem 6.7.23. Assume there are 0-neighborhoods U ⊆ gC, U− ⊆ n−, U0 ⊆ hC
and U+ ⊆ n+ for which the map

U+ × U0 × U− → U, (ξ+, ξ0, ξ−) 7→ ξ+ ∗ ξ0 ∗ ξ−

is biholomorphic, where ∗ is defined by the BCH series. We write ξ 7→ (ξ+, ξ0, ξ−)
for its inverse. Let ρ be a unitary representation of G that is of positive energy. Set
Vσ := V (ρ), considered as a unitary H-representation. Assume that Vσ is cyclic
for ρ. Is it true that V ωσ ⊆ HωG

ρ ? Taking v ∈ V ωσ , the assumptions imply that the

map U → C, ξ 7→ ⟨v, σ(eξ0)v⟩ is analytic on some 0-neighborhood. If it can be
shown to locally extend the map g→ C, ξ 7→ ⟨v, ρ(eξ)v⟩ on some 0-neighborhood
in g, then it would follow from [Nee11, Thm. 5.2] that v ∈ HωG

ρ .

6.8 Examples

Example 6.8.1 (Finite-dimensional Lie groups of type R).
Let G be a connected finite-dimensional Lie group of type R and let α be a T-action
on G. Let H := (Gα)0 be the connected subgroup of α-fixed points. In view of
Theorem 6.3.6 and Theorem 6.7.20, any continuous ground state representation ρ
of G is holomorphically induced from V (ρ). According to Corollary 6.7.21, this

defines an injection Ĝpos(α) ↪→ Ĥ.
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Example 6.8.2 (Holomorphically induced, but not geometrically).

1. Consider G = SL(2,R) and let ρ be any non-trivial continuous unitary rep-
resentation. Trivially, we have ρ = HolIndGG(ρ). However, as ρ admits no
non-trivial strongly-entire vectors by Theorem 6.3.6, it is not geometrically
holomorphically induced from itself.

2. For a slightly less trivial example, consider the group G = K × SL(2,R),
where K is a connected compact simple Lie group. Let T ⊆ K be a max-
imal torus and set t := L(T ). Pick a regular element H ∈ treg and let
∆+ := {α ∈ ∆ : −iα(H) > 0 } be the corresponding system of positive roots,
where ∆ ⊆ it∗ denotes the set of all roots of k. Consider the T-action on G
defined by αt(k, x) = (etHke−tH , x). Let (ρ,Hρ) be a continuous irreducible
unitary representation of G. Then ρ decomposes as Hρ = Hν ⊗Hσ for some
irreducible unitary K- and SL(2,R)-representations (ν,Hν) and (σ,Hσ), re-
spectively. Then ρ is of positive energy w.r.t. α and V (ρ) = Cλ ⊗Hσ, where
Cλ ⊆ Hν is a lowest-weight subspace. Since Hωρ = Hν ⊗Hωσ , Theorem 6.4.13
implies that ρ is holomorphically induced from the T×SL(2,R)-representation
on Cλ ⊗Hσ. The latter admits no strongly-entire vectors by Theorem 6.3.6,
so ρ is not geometrically holomorphically induced from the T × SL(2,R)-
representation on Cλ ⊗Hσ.

Example 6.8.3 (Positive energy representations of Heisenberg groups).
Let V be a real Fréchet space equipped with a non-degenerate continuous skew-
symmetric bilinear form ω. Let β : T→ Sp(V, ω) be a homomorphism with smooth
action T × V → V . Then β is equicontinuous by [Nee13, Lem. A.3]. Define
Dv := d

dt

∣∣
t=0

βtv and consider the closed subspaces

V0 := kerD = { v ∈ V : βtv = v ∀t ∈ R } ,
Veff := Span {βtv − v : t ∈ R, v ∈ V } .

(6.8.1)

As β∗
t ω = ω for all t ∈ R, notice that V0 and Veff are symplectic complements, so

(V, ω) ∼= (V0, ω0)⊕(Veff, ω1), where ω0 and ω1 are the restrictions of ω to V0 and Veff,
respectively. Assume that (Veff)C decomposes as (Veff)C ∼= L+ ⊕ L− into the posi-
tive (L+) and negative (L−) Fourier modes of the T-action β. Let heis(V, ω)⋊DRd
be the Lie algebra of Heis(V, ω)⋊β T. By Theorem 6.7.17, we know for any unitary
representation ρ of Heis(V, ω) ⋊β T which is analytically ground state at d that
ρ|Heis(V,ω) is holomorphically induced by some analytic unitary representation of

Heis(V0, ω0).

Let us consider a concrete example. Assume that ω1(v,Dv) > 0 for every nonzero
v ∈ Veff. Let J1 be the complex structure on V defined by J1(v + w) := iv − iw
for v ∈ L+ and w ∈ L−. Then J ∗

1 ω1 = ω1 and ω1(v,J1v) > 0 for every v ∈ Veff, so
J1 defines a compatible positive polarization on Veff. If J0 is a compatible positive
polarization on V0, then J = J0 ⊕ J1 defines one on V . As in Example 6.3.9,
we equip the (now complex) vector space V with the inner product ⟨v, w⟩J :=
ω(v,Jw) + iω(v, w), making V into a complex pre-Hilbert space, on which βt acts
unitarily for any t ∈ T. LetH be its Hilbert space completion, and letH0 andH1 be
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the closures in H of V0 and Veff, respectively. Consider the unitary representation
u : T→ U(H) of T on H defined by t 7→ ut, where ut is the unitary operator on H
extending βt. Notice that as unitary T-representations, we have

(Veff, ⟨−,−⟩J1
) ∼= (L+, ⟨−,−⟩L+

),

where ⟨v, w⟩L+
:= 2iω(v, w) for v, w ∈ L+. The unitary T-representation u on

H is therefore of positive energy. Let F(H) be the Hilbert space completion of
the symmetric algebra S•(H) w.r.t. the inner product (6.3.1), and let ρ be the
b-strongly-entire unitary representation of Heis(V, ω) on F(H) constructed in Ex-
ample 6.3.9. Similarly, we write ρ0 and ρ1 for the representations of Heis(V0, ω0)
and Heis(Veff, ω1) on F(H0) and F(H1), respectively. Letting T act on F(H) ac-
cording to the second quantization F(u) of u, we obtain an extension of ρ to a
smooth representation of Heis(V, ω) ⋊β T on F(H), which we denote again by ρ.
Explicitly, we have ρ(g, t) = ρ(g)F(ut) for (g, t) ∈ Heis(V, ω)⋊β T. This extension
is ground state w.r.t. β. We have F(H) ∼= F(H0)⊗F(H1) and

V (ρ) = F(H0)⊗ Ω1 ⊆ F(H),

where Ω1 ∈ F(H1) is the vacuum vector. Theorem 6.7.20 implies that ρ|Heis(V,ω)

is holomorphically induced from the representation ρ0 of Heis(V0, ω0) on F(H0).
Moreover, we have F(H0)

∞ ⊗Ω1 ⊆ H∞
ρ . Indeed, the vacuum vector Ω1 is smooth

for Heis(Veff, ω1), so if ψ ∈ F(H0)
∞ is a smooth vector for Heis(V0, ω0) then

(z, v) 7→ ρ(z, v)ψ = zρ0(v0)ψ0 ⊗ ρ1(v1)Ω1

is a smooth map Heis(V, ω)→ F(H). So provided that V0 is a Banach space, it fol-
lows using Theorem 6.5.25 and Example 6.5.18 that ρ|Heis(V,ω) is also geometrically
holomorphically induced from ρ0.

Example 6.8.4 (Metaplectic representation).
We continue in the notation and setting of Example 6.8.3. Let HR be the real
vector space underlying H. The symplectic form ω on V extends to HR by setting
ω(v, w) := Im⟨v, w⟩J for v, w ∈ HR. Define

Bres(HR) := {A ∈ B(HR) : [J , A] ∈ B2(H) } ,

whose elements are ‘close’ to being C-linear. It is a real Banach algebra with norm
∥A∥res := ∥A∥ + ∥[J , A]∥2, where B2(H) denotes the space of Hilbert-Schmidt
operators on H. The restricted symplectic group is defined by

Spres(HR, ω) := Sp(HR, ω) ∩ Bres(HR),

equipped with the subspace topology. Being an algebraic subgroup of Bres(HR)
×,

we obtain using [Nee04, Prop. IV.14] that Spres(HR, ω) is a Banach-Lie group
modeled on the Banach-Lie algebra

spres(HR, ω) := sp(HR, ω) ∩ Bres(HR).
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By Example 6.8.3, there is an irreducible projective unitary representation ρ of the
Abelian Banach-Lie group (HR,+) on the symmetric Fock space F(H), which is
well-known to extend to the semi-direct product HSpres(HR, ω) := HR⋊Spres(HR, ω)

[Nee10b, Rem. 9.12]. We denote this extension again by ρ. Let S̃pres(HR, ω) and

H̃Spres(HR, ω) be the central T-extensions of Spres(HR, ω) and HSpres(HR, ω), re-
spectively, obtained by pulling back the central T-extension U(F(H))→ PU(F(H))
along ρ. Let

ρ : H̃Spres(HR, ω)→ U(F(H))

be the corresponding lift of ρ. It is proven in [Nee10b, Thm. 9.3, Rem. 9.12]

that both H̃Spres(HR, ω) and S̃pres(HR, ω) are again Banach-Lie groups, and that
the (cyclic) vacuum vector Ω ∈ F(H) is smooth for ρ, which implies that ρ is a

smooth representation of H̃Spres(HR, ω). Identify F(H0) as a subspace of F(H)
via F(H0) ↪→ F(H), ψ0 7→ ψ0⊗Ω1. We observe first that ρ is in fact analytic, and

that F(H0) contains a dense set of H̃Spres(HR, ω)-analytic vectors. To see this,
notice using equation (35) and the subsequent remarks in the proof of [Nee10b,
Thm. 9.3] that Ω is not just a smooth-, but even an analytic vector for the action

of S̃pres(HR, ω) on F(H). We furthermore know from Example 6.8.3 that Ω is
analytic for Heis(HR, ω) (and even b-strongly-entire), so the function

Heis(HR, ω)× S̃pres(HR, ω)→ C,
(v,A) 7→ ⟨Ω, ρ(v)ρ(A)Ω⟩ = ⟨ρ(v)−1Ω, ρ(A)Ω⟩

is real-analytic. This implies using [Nee11, Thm. 5.2] that Ω is an analytic vector

for the representation ρ of H̃Spres(HR, ω) on F(H). As Ω is cyclic for the action ρ0
of Heis((H0)R, ω0) on F(H0), it follows that the set of vectors in F(H0) ⊆ F(H)
that are analytic for the action of H̃Spres(HR, ω) is dense in F(H0). It also follows
that ρ is analytic, because Ω is cyclic for ρ.

Now, suppose thatG is a connected regular BCH Fréchet-Lie group with Lie algebra
g, and that the homomorphism α : T → Aut(G) defines a smooth T-action on G.
Assume that α satisfies the assumptions made in Section 6.7. Let H := (Gα)0
be the connected subgroup of α-fixed points in G. Consider the T-actions on
HSpres(HR, ω) and U(F(H)) defined by t · (v, x) := (utv, utxu

−1
t ) and t · U :=

F(ut)UF(ut)−1 respectively, where (v, x) ∈ HSpres(HR, ω), U ∈ U(F(H)) and
t ∈ T. This also equips the T-invariant subgroup

H̃Spres(HR, ω) ⊆ HSpres(HR, ω)×U(F(H))

with a T-action. Assume that

η : G→ H̃Spres(HR, ω)

is a continuous and T-equivariant homomorphism. Then η is automatically analytic
by [Nee06, Thm. IV.1.18]. Letting T act on F(H) by t 7→ F(ut), notice that ρ ◦ η
extends to a smooth unitary representation of G ⋊α T which is of positive energy
at (0, 1) ∈ g ⋊ R. Moreover, it follows from the preceding that F(H0) contains
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a dense set of vectors that are analytic for the G-action ρ ◦ η on F(H). Letting
K ⊆ F(H) be the closed (G ⋊α T)-invariant linear subspace generated by F(H0),
it follows that the unitary representation of G ⋊α T on K is analytically ground-
state at (0, 1) ∈ g ⋊ R. According to Theorem 6.7.17, it further follows that the
G-representation ρ ◦ η on K is holomorphically induced from the H-representation
on F(H0).

Example 6.8.5 (Groups of jets).
Let K be a 1-connected compact simple Lie group with Lie algebra k. Let V be a
finite-dimensional real vector space. We consider the Lie group Jn0 (V,K) of n-jets at
0 ∈ V of smooth maps V → K. Let γ : R→ GL(V ) be a continuous representation
of R on V and let ϕ ∈ k. Assume that the R-action α̃t(f)(x) := etϕf(γ−t(x))e

−tϕ

on C∞
c (V,K) factors through T := R/Z. As γ fixes the origin, α̃ descends to

a smooth T-action on Jn0 (V,K), denoted α. Let D := d
dt

∣∣
t=0

α̇t be the corre-
sponding derivation on the Lie algebra Jn0 (V, k). Let G be a central T-extension of
Jn0 (V,K)⋊α T, and let d ∈ g := Lie(G) cover (0, 1) ∈ Jn0 (V, k)⋊D R. As usual, we
write H := (Gα)0 ⊆ G for the connected Lie subgroup of α-fixed points in G, whose
Lie algebra is h = kerD. As G ∼= N ⋊K for some nilpotent Lie group N , it follows
from Proposition 6.3.5 that G is of type R. By Example 6.8.1, we thus obtain
that any continuous unitary G-representation which is of positive energy w.r.t. α
is holomorphically by some unitary H-representation. A classification of Ĝpos(α)

amounts to determining the holomorphically inducible elements in Ĥ. Unitary pos-
itive energy representations of groups of jets are studied in more detail in Chapter 4.

To make the preceding concrete, suppose that V = R2, n = 2k for some k ∈ N,
that γ is the action of T on R2 by rotations and that ϕ = 0. Then

h ∼= R⊕ω (Rk[x2 + y2]⊗ k),

where Rk[c] denotes the polynomial ring in c truncated at the kth degree, and where
ω is a 2-cocycle on the Lie algebra Rk[x2+y2]⊗k (which in this case actually must be
a coboundary). Every continuous unitary representation ρ of G that is of positive
energy w.r.t. α is holomorphically induced from the H-representation on V (ρ).

Example 6.8.6 (Gauge groups).
LetM be a compact manifold and let P →M be a principal bundle with structure
group K, a simple compact Lie group with Lie algebra k. Consider the group of
gauge transformations Gau(P ) = Γ(M,Ad(P )), where Ad(P ) = P ×Ad K is the
adjoint bundle. This group is a regular BCH Fréchet-Lie group with Lie algebra
gau(P ) = Γ(M,P ×Ad k) [Nee06, Thm. IV.1.12]. Suppose that γ : T → Aut(P ) is
a smooth T-action on P by automorphisms of P . Let η : T → Aut(Ad(P )) and
γ : T → Diff(M) denote the induced T-actions on Ad(P ) and M , respectively.
Explicitly, η is given by ηt([p, k]) := [γt(p), k] for p ∈ P, k ∈ K and t ∈ T. Then
T acts smoothly on Gau(P ) by αt(s) := ηt ◦ s ◦ γ−t for s ∈ Gau(P ) and t ∈ T.
The paper [JN21] studies projective unitary representations of Gau(P ) which are
smooth in the sense of admitting a dense set of smooth rays. According to [JN19,
Cor. 4.5, Thm. 7.3], these correspond to smooth unitary representations of a central
T-extension of Gau(P ). One of the main results of [JN19] is the full classification of
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smooth projective unitary of the identity component Gau(P )0 which are of positive
energy w.r.t α, provided that M has no T-fixed points for γ [JN21, Thm. 8.10].
Let us consider a central T-extension G of the connected component Gau(P )0
of the identity. Suppose that α lifts to a smooth T-action α̃ on G. In view of
[JN21, Prop. 8.6], a consequence of the classification [JN21, Thm. 8.10] is that
every smooth unitary representation ρ of G which is of positive energy w.r.t. α̃
is holomorphically induced from the corresponding representation of H := (Gα̃)0
on V (ρ). The more general case where M is allowed to have T-fixed points is not
yet fully understood. One approach would be to determine, in specific cases, the
irreducible unitary factor representations of H that are holomorphically inducible
to G, as an intermediate step towards the classification of the possibly larger class
of all p.e. factor representations of G.

Example 6.8.7 (Unitary groups of CIA’s).
An interesting class of examples to which the theory of Section 6.7 applies can be
obtained using so-called continuous inverse algebras (CIAs). Suppose that A is
a unital complex Fréchet algebra that is a CIA, meaning that its group of units
A× is open in A and that the inversion a 7→ a−1 is continuous A → A. Let
us suppose further that A carries a continuous conjugate-linear algebra involution
A → A, a 7→ a∗. In this setting, A× is a complex BCH Fréchet-Lie group modeled
on A [Glö02a, Thm. 5.6]. Assume that the Lie group A× is moreover regular. A
sufficient condition for this is provided in [GN12]. The unitary subgroup

U(A) :=
{
a ∈ A× : a∗ = a−1

}
is a real Lie subgroup of A×, so that it is an embedded submanifold. It is modeled
on the Lie algebra

u(A) := { a ∈ A : a∗ = −a } ,

equipped with the commutator bracket. To see this, let U ⊆ A be a 0-neighborhood
s.t. expA maps U diffeomorphically onto its image in A×. We may assume that
U = −U and that U∗ = U , by shrinking U if necessary. By [Glö02a, Cor. 4.11] we
know that expA(a) =

∑∞
n=0

1
n!a

n for all a ∈ A. Using that both a 7→ a−1 and a 7→
a∗ are continuous, it follows that expA(a)

∗ = exp(a∗) and expA(a)
−1 = expA(−a)

for all a ∈ U . This implies that expA(U ∩ u(A)) = expA(U) ∩ U(A). As U(A) is
a closed subgroup of the locally exponential Lie group A×, it follows from [Nee06,
Thm. IV.3.3] that U(A) ⊆ A× is a locally exponential Lie subgroup. It is there-
fore a regular BCH Fréchet-Lie group. Notice further that u(A)C = (A, [−,−]) as
complex Lie algebras.

Suppose that α : R → Aut(A) is a homomorphism that has a smooth action
R × A → A and that has polynomial growth. Assume further that the splitting
condition

A = A− ⊕A0 ⊕A+

is satisfied. Setting G := U(A)0 and H := U(A0)0 = (Gα)0, all assumptions of
both Section 6.4.2 and Section 6.7 are satisfied.
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Typically, such triples (A,R, α) can be obtained as the set of smooth points of a
C∗-dynamical system (B, G, γ), where B is a unital C∗-algebra, G is a Banach-Lie
group and γ : G → Aut(B) is a strongly continuous G-action on B by automor-
phisms. By [Nee10a, Def. 4.1, Thm. 6.2], we know in this setting that the set of
smooth points A := B∞ is a G-invariant and ∗-closed subalgebra which naturally
carries a Fréchet topology. Moreover, A is a CIA and the G-action γ : G×A → A
is smooth w.r.t. this topology. If G is finite-dimensional, then this topology coin-
cides with the one obtained from the embedding A ↪→ C∞(G,B), where C∞(G,B)
carries the smooth compact-open topology [Nee10a, Prop. 4.6]. If ι : R ↪→ G is a
one-parameter subgroup of G for which the corresponding R-action α := γ ◦ ι on
A has polynomial growth and satisfies the splitting condition A = A− ⊕A0 ⊕A+,
then the triple (A,R, α) satisfies all the above assumptions.

As a concrete example, let Aθ := C∞
θ (T2) be the smooth non-commutative 2-torus

with parameter θ ∈ [0, 12 ]:

Aθ :=

 ∑
n,m∈Z

an,mu
nvm :

∑
n,m∈Z

(1 + |n|+ |m|)k|an,m| <∞ for all k ∈ N

 ,

where u and v are unitary operators satisfying uv = ei2πθvu, and where Aθ is
equipped with the seminorms pk(a) :=

∑
n,m∈Z(1 + |n|+ |m|)k|an,m| for k ∈ N≥0.

This is a unital Fréchet CIA carrying a continuous involution, obtained as the
smooth points of the natural T2-action on the ‘continuous’ non-commutative 2-
torus Cθ(T2) with parameter θ. It is moreover shown in [GN] that the Lie group
A×
θ is regular. Consider the smooth and equicontinuous T-action α on C∞

θ (T2)
satisfying αz(u

nvm) := zmunvm for all n,m ∈ Z and z ∈ T. Define G := U(Aθ)0.
Then for any unitary representation ρ of G⋊α T that is analytically ground state
w.r.t. α, we obtain from Theorem 6.7.17 that ρ|G is holomorphically induced from
the corresponding unitary representation of the connected Abelian group H :=
(U(Aθ)α)0 ∼= C∞(T,T)0 on Hρ(0). In particular, if ρ(G)′′ is a factor, then as H is
Abelian, we obtain with Corollary 6.7.10 that ρ|G is holomorphically induced from
a character of H. By Corollary 6.7.10 this implies that ρ|G is irreducible.

6.9 Appendix

6.9.1 Representations on reproducing kernel Hilbert spaces

In the following we summarize relevant properties concerning reproducing kernel
Hilbert spaces in the context of unitary group representations. Let H and V be
Hilbert spaces and let G be a group. We write V G or Map(G,V ) for the space of
functions G→ V and V (G) for the space of finitely-supported functions G→ V .

Definition 6.9.1. Suppose that H ⊆ V G. Then H is said to have continuous
evaluation maps if for every x ∈ G the linear map Ex : H → V, ψ 7→ ψ(x) is
bounded.
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Definition 6.9.2. A function Q : G×G→ B(V ) is said to be positive definite if

∥v∥2Q :=
∑

x,y∈supp(v)

⟨vx, Q(x, y)vy⟩V ≥ 0, ∀v ∈ V (G).

Theorem 6.9.3 ([Nee00, Thm. I.1.4]).
Let Q : G×G→ B(V ) be a function. The following assertions are equivalent:

1. Q is positive definite

2. There exists a Hilbert space HQ ⊆ V G with continuous point-evaluations
Ex : HQ → V s.t. Q(x, y) = ExE∗y for all (x, y) ∈ G×G.

In this case HQ is unique up to unitary equivalence and { E∗xv : x ∈ G, v ∈ V } is
total in HQ.

Definition 6.9.4. A function Q : G×G→ B(V ) is said to be a reproducing kernel
for the Hilbert space H if Q is positive definite and H ∼= HQ.

Proposition 6.9.5. Let G be a topological group and H ⊆ G be a closed sub-
group. Let (σ, Vσ) be a strongly continuous unitary H-representation. Let Q ∈
C(G × G,B(Vσ))H×H , so Q(xh1, yh2) = σ(h1)

−1Q(x, y)σ(h2) for all x1, x2 ∈ G
and h1, h2 ∈ H. Assume that Q is positive definite.

1. The left-regular action of G on V
(G)
σ induces a unitary G-action π on HQ if

and only if Q is G-invariant. In this case, there is a function F : G→ B(Vσ)
such that Q(x, y) = F (x−1y).

2. Assume that Q is G-invariant. There exists a G-equivariant linear map
HQ ↪→ Map(G,Vσ)

H with continuous point-evaluations Ex for x ∈ G. These
satisfy the equivariance condition Exπ(g) = Eg−1x for all x, y ∈ G.

3. Assume that Q : G × G → B(Vσ) is G-invariant and strongly continuous.
Then the unitary G-representation HQ is strongly continuous.

4. Suppose that (ρ,Hρ) is a unitary G-representation and that there is a G-
equivariant injective linear map Φ : Hρ ↪→ Map(G,Vσ)

H having continuous
point evaluations Ex := evx ◦Φ for x ∈ G. Then the corresponding kernel Q
is G-invariant, and Hρ ∼= HQ as unitary G-representations.

Proof. Let lg denote the left G-action on itself by left-multiplication. Recall that

HQ = V
(G)
σ /NQ

⟨−,−⟩Q
, where NQ :=

{
f ∈ V (G)

σ : ∥f∥Q = 0
}
. For any x ∈ G we

have a map δx : Vσ ↪→ V
(G)
σ defined by considering elements of Vσ as functions on

G with support {x}. Let qx : Vσ → HQ, v 7→ [δx(v)] be its composition with the

quotient map V
(G)
σ → HQ. We then have Ex = q∗x (cf. [Nee00, Thm. I.1.4] for more

details). The embedding HQ ↪→ V Gσ is defined by f 7→ fψ, where fψ(x) = Ex(ψ).

1. For g ∈ G and f ∈ V
(G)
σ , we write g.f := f ◦ l−1

g for the left-regular ac-

tion of G on V
(G)
σ . Let x, y ∈ G. Take v, w ∈ Vσ. Then g.δx(v) = δgx(v)
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and g.δy(w) = δgy(w) have support on {gx} and {gy}, respectively. Thus
⟨g.δx(v), g.δy(w)⟩Q = ⟨v,Q(gx, gy)w⟩ whereas ⟨qx(v), qy(w)⟩Q = ⟨v,Q(x, y)w⟩.
The first assertion follows. If Q is G-invariant, then F (x) := Q(e, x) satisfies
F (x−1y) = Q(x, y).

2. Let x ∈ G and h ∈ H. From Q(xh, y) = σ(h)−1Q(x, y) it follows that
ExhE∗yv = σ(h)−1ExE∗yv for any y ∈ G and v ∈ Vσ. As {E∗yv : y ∈ G, v ∈ Vσ}
is total in HQ by Theorem 6.9.3, it follows that Exh = σ(h)−1Ex. Thus
fψ ∈ Map(G,Vσ)

H for any ψ ∈ HQ. We show that ψ 7→ fψ is G-equivariant.
We have π(g)E∗xv = π(g)qx(v) = qgx(v) = E∗gx(v) for every x, g ∈ G and
v ∈ Vσ. Hence π(g)E∗x = E∗gx and Exπ(g) = Eg−1x for every x, g ∈ G. Thus for
ψ ∈ HQ we obtain fψ(g

−1x) = Eg−1xψ = Exπ(g)ψ = fπ(g)ψ(x), so ψ 7→ fψ is
G-equivariant.

3. As G acts unitarily on HQ, it suffices to show that G→ C g 7→ ⟨ψ, π(g)ψ⟩Q is
continuous for any ψ in some total subspace. Consider ψ = E∗xv for arbitrary
x ∈ G and v ∈ Vσ. Such vectors form a total set in HQ by Theorem 6.9.3.
For g ∈ G, we have

⟨ψ, π(g)ψ⟩Q = ⟨v, Exπ(g)E∗xv⟩V = ⟨v, ExE∗gxv⟩V = ⟨v,Q(x, gx)v⟩V . (6.9.1)

As Q : G × G → B(Vσ) is continuous w.r.t. the strong topology, the map
g 7→ ⟨ψ, π(g)ψ⟩Q is continuous.

4. As Φ is G-equivariant, we have Exρ(g) = Eg−1x for every x, g ∈ G. As ρ is uni-
tary this implies that the corresponding kernel Q(x, y) := ExE∗y is G-invariant.
This kernel is also positive definite by Theorem 6.9.3, so HQ is a unitary G-
representation by the first item. We already know from Theorem 6.9.3 that
HQ ∼= Hρ as Hilbert spaces. The unitary isomorphism U : HQ → Hρ is on

the dense subspace V
(G)
σ /NQ given by Uq(f) :=

∑
x∈supp(f) E∗xf(x), where

q : V
(G)
σ → HQ denotes the quotient map. Write π for the unitary G-action

on HQ. Using qx = E∗x , qgx = π(g)qx and ρ(g)E∗x = E∗gx, we obtain that

Uπ(g)qx(v) = Uqgx(v) = E∗gxv = ρ(g)E∗xv = ρ(g)Uqx(v), ∀v ∈ Vσ.
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[FNÓ23] J. Frahm, K.-H. Neeb, and G. Ólafsson. Nets of standard sub-
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[Glö02b] H. Glöckner. Infinite-dimensional Lie groups without completeness
restrictions. In Geometry and Analysis on Finite- and Infinite-
dimensional Lie Groups, volume 55, pages 43–59. Polish Acad. Sci.
Inst. Math., 2002.
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Ann. Henri Poincaré, 2(5):907–926, 2001.

[Mur90] G.J. Murphy. C∗-algebras and Operator Theory. Academic Press,
Inc., Boston, MA, 1990.

[Nat94] L. Natarajan. Unitary highest weight-modules of inductive limit Lie
algebras and groups. J. Algebra, 167(1):9–28, 1994.

[Nee98a] K.-H. Neeb. Holomorphic highest weight representations of infinite-
dimensional complex classical groups. J. Reine Angew. Math.,
497:171–222, 1998.

[Nee98b] K.-H. Neeb. Some open problems in representation theory related
to complex geometry. In Positivity in Lie Theory: Open Problems,
volume 26, pages 195–220. de Gruyter, Berlin, 1998.

[Nee00] K.-H. Neeb. Holomorphy and Convexity in Lie Theory, volume 28.
Walter de Gruyter & Co., Berlin, 2000.

[Nee01a] K.-H. Neeb. Borel-Weil theory for loop groups. In Infinite Dimen-
sional Kähler Manifolds, volume 31, pages 179–229. Birkhäuser Ver-
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[NRCW01] L. Natarajan, E. Rodŕıguez-Carrington, and J. Wolf. The Bott-
Borel-Weil theorem for direct limit groups. Trans. Amer. Math. Soc.,
353(11):4583–4622, 2001.

[NS11] K.-H. Neeb and H. Seppänen. Borel-Weil theory for groups over
commutative Banach algebras. J. Reine Angew. Math., 655:165–187,
2011.

[NS15] K.-H. Neeb and H. Salmasian. Classification of positive energy rep-
resentations of the Virasoro group. Int. Math. Res. Not., Volume
2015(18):8620–8656, 2015.

[NSZ15] K.-H. Neeb, H. Salmasian, and C. Zellner. On an invariance property
of the space of smooth vectors. Kyoto J. Math., 55(3):501–515, 2015.

[NU62] E. Newman and T. Unti. Behavior of asymptotically flat empty
spaces. J. Math. Phys., 3:891–901, 1962.

[NV03] K.-H. Neeb and C. Vizman. Flux homomorphisms and principal bun-
dles over infinite dimensional manifolds. Monatsh. Math., 139(4):309–
333, 2003.
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